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Abstract 

Groundwater (GW) is an important natural resource for Europe and the world, and has been affected by 

extreme weather and climate, e.g., summer heat waves and droughts, and human overexploitation. As 

climate change and human interventions increase, extreme events and GW depletion are expected to 

become more frequent and severe in many parts of Europe in the future, aggravating the vulnerability of 

GW systems. This emphasizes the necessity of GW monitoring in GW management. Up to date, however, 

it is still challenging to monitor GW at the large, continental scale, mainly due to the lack of water table depth 

(wtd) observations. 

In order to address the challenge, the PhD work proposes an indirect, generic methodology based on 

advanced machine learning (ML) techniques, that are Long Short-Term Memory (LSTM) networks and 

transfer learning (TL), to produce reliable monthly wtd anomaly (wtda) estimates at the continental scale. 

The methodology is named LSTM-TL. While in this work, LSTM-TL has been implemented over Europe, it 

is transferable to other regions in the world. The methodology relies on the close connection between GW 

and other atmospheric and terrestrial compartments in the water cycle, using precipitation and soil moisture 

anomalies (pra and θa) as input, which have data available at large scales from, e.g., remotely sensed 

observations. Several steps were involved in the development of LSTM-TL for GW monitoring. 

In the first step, LSTM networks were applied in combination with spatiotemporally continuous pra and wtda 

data from uncalibrated integrated hydrologic simulation results (named the TSMP-G2A data set) over 

Europe to capture the time-varying and time-lagged relationship between pra and wtda in order to obtain 

reliable networks to estimate wtda at the individual pixel level assuming that pra is a useful proxy for wtda. In 

most European regions, LSTM networks showed good skill with respect to the TSMP-G2A data set in 

predicting wtda with pra as input. The results indicated that the local factors, that are yearly averaged wtd, 

evapotranspiration (ET), soil moisture (θ), and snow water equivalent (SWE), had a significant impact on 

the performance of the LSTM networks. Moreover, the decrease in the network test performance at some 

pixels was attributed to a change in the temporal TSMP-G2A pra-wtda pattern during the study period. 

In the second step, a number of input hydrometeorological variables, in addition to pra, were included in the 

construction of LSTM networks to arrive at improved wtda estimates at individual pixels over Europe in 

various experiments. All input and target data were derived from the TSMP-G2A data set. Improved LSTM 

networks were found with pra and θa as input. Considering θa strongly increased the network test 

performance particularly in the areas with wtd ≤ 3 m (i.e., the major wtd category of Europe), suggesting the 

substantial contribution of θa to the estimation of wtda over Europe. The results highlight the importance to 

combine θ information with precipitation information in quantifying and predicting wtda. 
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In the final step, LSTM-TL was proposed for real-world applications. In LSTM-TL, LSTM networks were first 

trained on TSMP-G2A anomalies, and then, without additional training, utilized to estimate wtda with pra and 

θa from common observational datasets as input, thus, transferring knowledge from simulation results (i.e., 

the TSMP-G2A data set) to the observation-based estimation of wtda. Applying TL addressed the issue of 

scarce wtda observations (wtda,o) to train LSTM networks at the European scale. The implementation of 

LSTM-TL was based on two assumptions, that are i) the modeled relationship between wtda and input 

hydrometeorological variables (i.e., pra and θa) agreed well with the observed; and ii) the internal LSTM 

networks successfully captured the modeled relationship. The obtained wtda estimates were evaluated with 

collated in-situ wtda measurements from approximately 2,600 European GW monitoring wells, which 

demonstrated the good skill of LSTM-TL in estimating wtda. LSTM-TL was used for reconstructing monthly 

wtda from the early 1980s to the near present over Europe. The reconstructed wtda data exhibited seasonal 

wtda trends in different European regions in the past, contributing significantly to the understanding of 

historical GW dynamics at the continental scale over Europe, which has not been possible before. 

The proposed LSTM-TL has three salient features. First, the methodology does not rely on wtda,o to estimate 

wtda, which enables its usage over large regions even without wtd observations. Second, the methodology 

can be used to generate wtda estimates beyond the time period of the TSMP-G2A data set utilized for 

training, which is useful for reconstructing historical wtda and predicting future wtda at the continental scale. 

Third, once the internal LSTM networks are successfully trained, the methodology can be directly 

implemented without additional training, and thus, requires low computational cost in comparison to 

physically-based numerical simulation systems to generate new wtda estimates. 

This PhD work presents a novel approach in the field of ML to estimate wtda in the absence of wtd 

observations, which advances significantly GW monitoring capacities at large scales. Since the TSMP-G2A 

data set provides a near-natural representation of the terrestrial water and energy cycles, the current 

implementation of LSTM-TL does not account for anthropogenetic impacts on GW dynamics. Nevertheless, 

LSTM-TL has been shown to produce reliable wtda estimates over Europe and can serve as an alternative 

methodology to in-situ wtda measurements. In addition to data reconstruction, the methodology can be 

employed for online GW monitoring and predictions, which is useful to GW management in Europe and 

beyond. 
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1.1 Background 

Groundwater (GW) is an important natural resource for Europe and the world. About 75% of the residents 

in the European Union (European Commission, 2008) and billions of people worldwide (Alley et al., 2002) 

rely on GW for their drinking water supply. In addition, GW plays a crucial role in ensuring food security, 

adapting to climate variability, supporting biodiversity and sustaining surface water bodies (van der Gun, 

2020).  In recent years, however, global GW systems have been more or less affected as a consequence 

of extreme weather and climate, e.g., summer heat waves and droughts, and human overexploitation 

(Green et al., 2011; de Graaf et al., 2019; Jasechko and Perrone, 2021). As climate change and human 

interventions increase, the risks of extreme events and GW depletion are expected to escalate in many 

parts of Europe in the future (Guerreiro et al., 2018; Bloomfield et al., 2019; de Graaf et al., 2019), 

exacerbating the adverse impact on GW, thereby threatening environmental and socioeconomic 

sustainability and security. This emphasizes the need of effective and efficient GW monitoring over large 

regions. 

Currently, continental-scale GW monitoring is lacking, mainly due to the scarcity of water table depth (wtd) 

observations, and fragmentation of data sets between different industries, and communal, state and federal 

agencies (Brauns et al., 2020). This inhibits the understanding of the connection of weather and climate 

extreme events with GW dynamics over large regions. As such, several alternative methodologies have 

been proposed to quantify and predict GW changes in the absence of wtd observations, using e.g., 

standardized meteorological drought indices over extended time scales (Bloomfield and Marchant, 2013; 

Kumar et al., 2016; Van Loon et al., 2017); terrestrial water storage anomalies derived from satellite 

observations (Rodell et al., 2018; Boergens et al., 2020); and physically-based numerical models (Tallaksen 

et al., 2009; Hartick et al., 2021). These methodologies can be or have been used to estimate GW anomalies 

at large scales, but they are questioned for their reliability, or require extensive computational resources 

(see Section 1.3 for more details). 

As an alternative, machine learning (ML) techniques are able to automatically capture complex nonlinear 

relationship between GW and hydrometeorological variables (e.g., precipitation) from historical data, 

potentially resulting in more robust predictive models for GW anomalies. Relying on less background 

knowledge, ML techniques may be used to obtain accurate and reliable wtd anomaly (wtda) estimates 

comparable to physically-based numerical models, thereby significantly reducing the requirements for 

human involvement and expertise (Govindaraju, 2000). Moreover, they generally require less computational 

resources after successful training in routine applications. Malakar et al. (2021) provided a summary of 

previous studies, in which ML techniques were employed for GW resource modeling. These studies were 

mainly conducted at the aquifer and watershed scales. The application of ML to model GW at the large, 

continental scale is still not covered, which may be due to sparse GW observations available for training. 
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The present PhD work explores the potential of ML techniques to generate wtda estimates at the European 

scale based on different input hydrometeorological variables, and attempts to derive a ML-based 

methodology to obtain reliable estimation for wtda in space and time over Europe in the absence of wtd 

observations. It is worth noting that although the study area is Europe, the proposed methodology is 

transferable to other regions in the world. This chapter first presents the interactions between GW and other 

compartments in the water cycle, constituting the physical basis of the proposed methodology. Then, three 

common alternative methodologies for estimating GW anomalies are introduced, together with a discussion 

about their strengths and weaknesses. Next, the application of ML in GW resource modeling is reviewed. 

In what follows, the objective of the PhD work and the outline of each chapter are provided. Finally, the 

software tools and supercomputing environment adopted in the work are detailed. 

1.2 Interactions between groundwater and other compartments in the 
water cycle 

The water cycle (Figure 1.1) refers to the pathways of water through the Earth system including the 

atmosphere, land and oceans. Atmospheric water vapor condenses and falls over the land and oceans as 

precipitation. When precipitation arrives at the land surface, some of the water may flow over the surface in 

the form of surface flow, and some may infiltrate into the soil. A similar phenomenon occurs as snow melts. 

The surface flow collects locally into surface depression, or it runs directly into streams or rivers, which ends 

up into a larger water body, e.g., lakes or oceans. Except for retaining in the soil layers, the infiltrated water 

may travel rapidly through the near-surface soil layers into springs or neighboring streams or percolate 

slowly across the soil layers into GW. Vegetation takes up GW or soil water by means of root water uptake. 

In turn, evapotranspiration (ET) returns water to the atmosphere and closes the water cycle. ET 

encompasses direct evaporation from open water or the soil and land surface, transpiration of the biological 

water from plants, and sublimation from snow (Brutsaert, 2005).   

As an important terrestrial compartment of the water cycle, GW is stored in the pore space of permeable 

geological units termed aquifers (Aeschbach-Hertig and Gleeson, 2012) and closely linked to other 

terrestrial and atmospheric compartments. Most aquifers are replenished by precipitation (diffuse recharge) 

and surface water (localized recharge). Diffuse recharge moves the precipitation falling on the land surface 

to the water table (i.e., the upper boundary of unconfined aquifers where the water pressure is atmospheric) 

through infiltration and percolation. Localized recharge transports water from surface water bodies to 

aquifers and is more heterogenous in space than diffuse recharge. In arid regions, diffuse recharge is often 

less pronounced (Alley et al., 2002). Lateral flow occurs between adjacent aquifers, which is also a potential 

source of GW recharge. In general, water not only moves from surface water bodies to aquifers (i.e., 

localized recharge), but also flows reversely as GW discharge, providing baseflows to rivers and lakes in 

dry periods (Fan et al., 2013). Hence, a two-way interaction exists between GW and surface water, 

influenced by factors such as the location of the surface water body relative to the aquifer, the characteristics 

of the river or lake bed and underlying materials, and the climate (Alley et al., 2002). In addition, shallow 
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GW sustains water in the soil and vegetations during dry periods, and thus, acts as a source term of ET to 

the atmosphere (York et al., 2002; Fan et al., 2013). Anthropogenic activities (e.g., GW pumping and 

irrigation) can also have a substantial impact on GW systems, leading to increased recharge and decreased 

discharge, which is outside the scope of this work. 

 
Figure 1.1: Sketch of the water cycle, adapted from the National Oceanic and Atmospheric Administration (NOAA) 
National Weather Service (2015). 

Precipitation is a dominant source of GW, which provides diffuse recharge. Typically, only a small amount 

of precipitation becomes GW recharge, and the percentage of precipitation that recharges GW is controlled 

by factors including weather patterns, properties of surface soils, vegetation, local topography and the wtd 

(Alley et al., 2002). A time lag exists in the response of GW to precipitation changes, varying in space. The 

maximum dry/wet anomaly is attenuated in the movement of precipitation from the land surface to aquifers. 

As such, the land surface and soil layers behave as a low-pass filter to precipitation, resulting in smoothed 

and delayed GW anomaly signals (Van Loon, 2015). GW storage depends on antecedent storage conditions 

as well as recharge and discharge (Tallaksen et al., 2009; Van Loon, 2015). Precipitation deficits only affect 

GW recharge to some extent, and thus, may not be sufficient to induce GW drought. 

1.3 Three common alternative methodologies for estimating 
groundwater anomalies 

The lack of spatiotemporally continuous wtd observations is ubiquitous in GW studies. Several alternative 

methodologies have been proposed to estimate GW anomalies in the absence of wtd observations. 
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Because these methodologies do not rely on scarce wtd observations, they can be applied to large regions. 

Here, three commonly used methodologies are discussed briefly. 

The first methodology is to use standardized meteorological drought indices over extended time scales to 

represent wtda, which consist of the Standardized Precipitation Index (SPI) introduced by McKee et al. (1993) 

and the Standardized Precipitation Evapotranspiration Index (SPEI) introduced by Vicente-Serrano et al. 

(2010). SPI and SPEI are obtained via the sum of corresponding monthly values (precipitation or 

precipitation minus potential ET) over different time scales (e.g., 3, 6, 9 and 12 months). The sum is fitted 

to a probability distribution, which is then transformed to a normal distribution. Thus, for the desired location 

and time scale, the mean and standard deviation of the obtained SPI or SPEI are zero and one, respectively 

(Mishra and Singh, 2010). This methodology assumes that the accumulation of meteorological drought 

signals (e.g., precipitation deficits) over a long period is representative for GW anomalies (Van Loon et al., 

2017). It has two main advantages, which are i) easy to compute; ii) and comparable across different 

hydrometeorological regions. Hence, the methodology has been applied in many countries, e.g., Khan et al. 

(2008) in Australia, Fiorillo and Guadagno (2012) in Italy, ZAKHEM and KATTAA (2016) in Syria and Van 

Loon et al. (2017) in the Netherlands and Germany. However, some studies have shown that the 

methodology has difficulties in reproducing GW fluctuations due to the nonlinear translation of 

meteorological forcing such as precipitation to GW (Bloomfield and Marchant, 2013; Kumar et al., 2016; 

Uddameri et al., 2019). Moreover, as discussed in Section 1.2, simply considering meteorological 

information is not enough to quantify GW anomalies.  

With the launch of the Gravity Recovery and Climate Experiment (GRACE) satellite mission in 2002, 

GRACE terrestrial water storage anomalies have become a common proxy for wtda, which show the 

variations in both near-surface water and GW storages. Chen et al. (2016) presented a review of GRACE 

applications in GW studies at the global scale. In addition, Thomas et al. (2017) proposed a new GW drought 

index - the GRACE Groundwater Drought Index, derived from GRACE terrestrial water storage anomalies. 

However, due to the coarse spatial resolution of the GRACE data (0.5°, about 55 km), the proxy may fail to 

represent spatially varying GW dynamics at the scale of small watersheds (Van Loon et al., 2017). Simulated 

near-surface water storage (including surface water, soil water and snow) is often used to isolate GW 

anomalies from GRACE terrestrial water storage anomalies (e.g., Rodell et al., 2007; Bonsor et al., 2018; 

Han et al., 2019), which introduces uncertainties in the simulation results for GW anomaly estimation. For 

instance, Van Loon et al. (2017) found that uncertainties in the simulation of soil moisture (θ) by various 

GLDAS models were the main reason for unreliable GRACE-based GW anomalies. 

Physically-based numerical models constitute a tool for estimating GW anomalies. They are established 

based on physics equations to simulate processes in the terrestrial water and energy cycles. The first 

numerical models for modeling GW emerged around the 1960s, e.g., Tyson and Weber (1964) and Freeze 

and Witherspoon (1966). Later, many numerical models, such as MODFLOW (Hughes et al., 2017), 

FEFLOW (Diersch, 2014) and ParFlow (Maxwell et al., 2019), have been used to simulate GW flow 
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worldwide. Some of them have been coupled to land surface and atmospheric numerical models to obtain 

a more realistic representation of feedbacks between GW, the land surface and atmosphere, e.g., 

Sophocleous et al. (1999), Shrestha et al. (2014) and Simmer et al. (2015). Although physically-based 

numerical models can provide accurate estimates, they are time consuming and expensive to develop, 

apply and maintain, especially for high-resolution long-term simulations at large scales (Wunsch et al., 2018). 

The large amount of background knowledge and input data required for model setup is also a challenge.  

1.4 Application of machine learning in groundwater resource modeling 

ML is the study of computer algorithms that allow systems to extract knowledge from raw data without 

explicit programming (Goodfellow et al., 2017a; Müller and Guido, 2017a). ML belongs to the broad field of 

artificial intelligence (AI), which attempts to enable machines to mimic human behaviors. As a family of ML 

techniques, artificial neural networks (ANNs) are computing systems constituting many basic information-

processing units (termed neurons) interconnected together (Haykin, 2009). Deep learning (DL) generally 

refers to large, multi-layer ANNs capable of learning and adapting directly from big raw data. The main 

difference between deep and non-deep neural networks is the depth of the network, often determined by 

the number of layers it contains (Shen, 2018; Malakar et al., 2021). The relationship between these different 

terminologies is shown in Figure 1.2. 

 
Figure 1.2: Relationship between AI, ML, ANNs and DL. 

As described in Section 1.1, ML techniques can achieve comparable performance to physically-based 

numerical models but utilize much less background knowledge and computational resources. Benefiting 

from these advantages, they have been widely applied in GW resource modeling, such as predicting GW 

levels or terrestrial water storage. Most of these studies are devoted to simple ANNs especially feedforward 

neural networks (FFNNs) and their variants. Sun (2013) proposed FFNN ensembles to predict GW level 

changes one to three month ahead at multiple wells in the US based on precipitation, minimum and 

maximum temperatures and GRACE terrestrial water storage changes. They found that the FFNN 
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ensembles performed well at multi-month lead times by including GRACE terrestrial water storage changes 

as input. Gholami et al. (2015) successfully reconstructed GW level fluctuations from 1912 to 2013 at two 

wells in an alluvial aquifer in Iran based on tree rings and a FFNN. Yet, the method was only applicable to 

alluvial aquifers and non-arid regions. Sun et al. (2016) showed that a FFNN outperformed a multiple linear 

regression model in predicting GW levels up to seven days ahead in a tropical wetland in Singapore using 

surrounding reservoir levels and rainfall as input. Wunsch et al. (2018) presented the outstanding skill of 

nonlinear autoregressive networks with exogenous inputs (regarded as a combination of a FFNN and an 

autoregressive model with exogenous input) in short- and mid-term GW level predictions (one day up to six 

months ahead) at several wells in southwest Germany solely based on precipitation and temperature. More 

studies using shallow ANNs in GW resource prediction are referred to Malakar et al. (2021). 

While shallow ANNs have shown great promise in modeling GW resources worldwide, they necessitate 

dedicated design for input data, i.e., manually defining the time lag in the response of target GW variables 

to input hydrometeorological forcings. The time lag generally varies in space, which increases the difficulties 

to apply shallow ANNs at large scales. In recent years, deep neural networks especially Long Short-Term 

Memory (LSTM) networks have attracted more and more attention in predicting GW levels, e.g., J. Zhang 

et al. (2018), Jeong et al. (2020), Supreetha et al. (2020), Müller et al. (2021), Wunsch et al. (2021) and Vu 

et al. (2021). Due to their internal memory, LSTM networks can automatically detect the long-short-term 

dependencies between input and target time sequences without explicitly defining the time lag. There are 

some debates about the superiority of LSTM networks over shallow ANNs for time sequence processing 

when training data sizes are small, such as Müller et al. (2021) and Wunsch et al. (2021). Nevertheless, 

simplified data preprocessing is still a big advantage for applying LSTM networks over large regions.  

The above ML methods used for modeling GW resources, i.e., FFNNs and LSTM networks, are transferable 

to the estimation of wtda, which is the focus of this PhD work. Up to date, however, it is challenging to apply 

ML techniques to model GW at the large, continental scale, mainly due to sparse GW observations. 

Modeling GW resources based on ML is a supervised learning task that requires target data as a 

supplementary teacher signal to guide the training process. Therefore, even though GW data may not be 

utilized as input, they are still needed to train ML techniques, which is impossible for regions without GW 

observations. 

1.5 Objective and outline 

The objective of the PhD work is to develop a ML-based indirect methodology to produce reliable wtda 

estimates at the European scale in the absence of wtd observations in order to facilitate the pan-European 

GW monitoring. The inputs are chosen from hydrometeorological variables that have spatiotemporally 

continuous coverage over Europe. The methodology development relies on uncalibrated integrated 

hydrologic simulation results (named the TSMP-G2A data set) under a near-natural climatology of the 
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physical states of the terrestrial system, thereby neglecting the influences of human interventions on GW 

dynamics.  

The PhD work is structured as follows. 

Chapters 2 to 4 detail the development and application of the methodology (illustrated in Figure 1.3).  

 
Figure 1.3: Schematic of the methodology development. The 𝐼𝐼  indicates input variable. The variables with the 
subscripts 𝑚𝑚 and 𝑜𝑜 represent data from modeling results (also called simulation results) and observations, respectively. 
The wtda.lstm(m) is the wtda estimate obtained by LSTM networks with simulation results as input. The wtda.lstm-tl  is the 
wtda estimate obtained by the proposed methodology LSTM-TL. The 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚 is the input-output relationship learned from 
simulation results by the LSTM networks involved in LSTM-TL. 

In Chapter 2, LSTM networks were employed in combination with spatiotemporally continuous pra and wtda 

data from the TSMP-G2A data set over Europe to capture the time-varying and time-lagged relationship 

between pra and wtda in order to obtain reliable networks to estimate wtda at the individual pixel level. The 

pra is the most common proxy of wtda, that is, using standardized meteorological drought indices over 

extended time scales to represent wtda. 

In Chapter 3, a number of input hydrometeorological variables, in addition to pra, were investigated for the 

construction of LSTM networks to arrive at improved wtda estimates at individual pixels over Europe in 

various experiments. All input and target data were obtained from the TSMP-G2A data set. 

Both Chapters 2 and 3 proposed and evaluated methodologies of modeled wtda (wtda,m) based on LSTM 

networks. In Chapter 4, the optimized LSTM networks from Chapter 3 were applied to real-world 

observations. Transfer learning (TL) was performed to overcome the challenge of scarce wtda observations 

(wtda,o) to train the LSTM networks over Europe. The proposed methodology, LSTM-TL, combined LSTM 

networks and TL to estimate wtda at the European scale in the absence of wtda,o through knowledge transfer 

from the TSMP-G2A data set to the observation-based estimation. Two assumptions were made, that are i) 

the modeled relationship between wtda and input hydrometeorological variables was in good agreement 



1.6    Software tools and supercomputing environment 
 

10 
 

with the observed; and ii) the internal LSTM networks successfully captured the modeled relationship during 

training. 

Finally, Chapter 5 summarizes the findings in the development of LSTM-TL, discusses the strengths and 

limitations of implementing ML techniques especially LSTM networks and LSTM-TL in hydrological studies, 

and provides conclusions and an outlook for future research. A statement about where to find the data and 

codes utilized or generated in this work is also provided. 

1.6 Software tools and supercomputing environment 

All the ML-based estimation models reported in this PhD work were developed using PyTorch 

(https://pytorch.org/), an open-source ML python library. The models were constructed on the 

supercomputer Jülich Wizard for European Leadership Science (JUWELS) at Forschungszentrum Jülich, 

including training, validation and testing. JUWELS is a modular supercomputer composed of a cluster 

module and a booster module. Each standard compute node on the cluster module utilized in this work has 

two Intel Xeon 24-core AVX512 CPUs with 96 GB of memory, and the compute nodes are interconnected 

with a Mellanox EDR InfiniBand (JSC, 2018). Training the ML-based models at all pixels with valid data (not 

including NaN or infinite values) over Europe cost ~ 150,000 core hours (~ 4 core hours at the individual 

pixel level). After successful training, the models required much less computational resources for validation 

and testing, i.e., ~ 160 core hours at the European scale. The obtained wtda estimates may be impacted by 

the versions of the applied python libraries and the platform on which the models were built. 
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Ma, Y., Montzka, C., Bayat, B. and Kollet, S.: Using Long Short-Term Memory networks to connect water 

table depth anomalies to precipitation anomalies over Europe, Hydrol. Earth Syst. Sci., 25(6), 3555–3575, 

doi:10.5194/hess-25-3555-2021, 2021. 
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Abstract 

Many European countries rely on groundwater (GW) for public and industrial water supply. Due to a scarcity 

of near-real-time water table depth (wtd) observations, establishing a spatially consistent GW monitoring 

system at the continental scale is a challenge. Hence, it is necessary to develop alternative methods for 

estimating wtd anomalies (wtda) using other hydrometeorological observations routinely available near real 

time. In this work, we explore the potential of Long Short-Term Memory (LSTM) networks for producing 

monthly wtda using monthly precipitation anomalies (pra) as input. LSTM networks are a special category of 

artificial neural networks (ANNs) that are useful for detecting a long-term dependency within sequences, in 

our case time series, which is expected in the relationship between pra and wtda. In the proposed 

methodology, spatiotemporally continuous data were obtained from daily terrestrial simulations of the 

Terrestrial Systems Modeling Platform (TSMP) over Europe (hereafter termed the TSMP-G2A data set) with 

a spatial resolution of 0.11°, ranging from the year 1996 to 2016. The data were separated into a training 

set (1996-2012), a validation set (2013-2014), and a test set (2015-2016) to establish local networks at 

selected pixels across Europe. The wtda maps obtained by LSTM networks agreed well with TSMP-G2A 

wtda maps on spatially distributed dry and wet events, with 2003 and 2015 constituting drought years over 

Europe. Moreover, we categorized the test performances of the networks based on intervals of yearly 

averaged wtd, evapotranspiration (ET), soil moisture (θ), snow water equivalent (SWE), soil type (St), and 

dominant plant functional type (PFT). Superior test performance was found at the pixels with wtd < 3 m, ET > 

200 mm, θ > 0.15 m3m-3 and SWE < 10 mm, revealing a significant impact of the local factors on the ability 

of the networks to process information. Furthermore, results of the cross-wavelet transform (XWT) showed 

a change in the temporal pattern between TSMP-G2A pra and wtda at some selected pixels, which can be 

a reason for undesired network behavior. Our results demonstrate that LSTM networks are useful for 

producing high-quality wtda based on other hydrometeorological data measured and predicted at large 

scales, such as pra. This contribution may facilitate the establishment of an effective GW monitoring system 

over Europe that is relevant to water management. 
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2.1 Introduction 

Groundwater (GW) is an essential natural resource, accounting for about 30% of the fresh water on Earth 

(Perlman, 2013) and sustains various domestic, agricultural, industrial and environmental uses, due to its 

widespread availability and limited vulnerability to pollution (Naghibi et al., 2016; Tian et al., 2016). 

According to the report of the European Environment Agency (EEA) in 1999, GW comprises over 50% of 

the public water supply in most European countries (EEA, 1999). GW systems are dynamic and adapt 

continuously to natural and anthropogenic stresses (Kenda et al., 2018). However, they have been affected 

in recent years as a consequence of frequent extreme weather conditions, e.g., severe droughts, and human 

overexploitation. Thus, effective and efficient GW management, especially under drought conditions, is 

required at the European scale to maintain environmental and socioeconomic sustainability. 

Drought is characterized as the costliest natural hazard worldwide, resulting in significant societal, 

economic, and ecological impacts (Wilhite, 2000). The report of the EEA in 2016 demonstrated that drought 

had become a recurrent feature of the European climate; more droughts have occurred in some European 

countries than in the past, and their severity has also increased (EEA, 2016). Recent severe heat wave 

events in Europe occurred in 2003, 2015, and 2018, which led to several drought events covering most of 

the European continent (Norris, 2018). GW drought is a specific type of drought, impacting several important 

drought-sensitive sectors such as drinking water supply and irrigation (Van Loon et al., 2017). Hence, GW 

monitoring is ultimately indispensable over the European continent.  

Effective GW monitoring requires accurate information on GW dynamics in space and time. One crucial 

variable for characterizing GW dynamics is the water table depth anomaly (wtda), reflecting anomalies in 

GW storage (Zhao et al., 2020), which is a key variable in GW drought analysis. The wtda is the deviation 

of the wtd value from the climatological average for a specified time period normalized by the climatological 

standard deviation, and can serve as a measure of GW drought. Commonly, wtd observations are measured 

in-situ in observation wells. However, to date, it is still a challenge to obtain near-real-time spatially 

continuous wtd observations over Europe (Van Loon et al., 2017; Bloomfield et al., 2018), and available 

data sets often suffer from uncertainties originating from unknown well bore and well installation specifics. 

Therefore, an alternative (indirect) method is needed to produce reliable area-wide wtda information over 

Europe. 

Indirect methods rely on measurements of one (or more) hydrometeorological variable related to wtd via 

physical processes in the water cycle, such as infiltration and percolation. The precipitation anomaly (pra) is 

the most common variable used to model wtda, for which the calculation method is the same as wtda but 

based on precipitation. Precipitation is connected with GW via the process of percolation through soil layers. 

Thus, depending on evapotranspiration (ET) and the thickness of the vadose zone, a lag exists in the 

response of GW to precipitation. A considerable number of studies linked the accumulation of pra over 

extended timescales (e.g., 6 or 12 months) to wtda, often applying the Standardized Precipitation Index 
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(SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) to represent wtda (e.g., SPI: 

McKee et al., 1993; Thomas et al., 2015; SPEI: Vicente-Serrano et al., 2010; Van Loon et al., 2017). In 

these studies, equal weighting was assigned to the meteorological input in the derivation of the drought 

indices.   

As an alternative, artificial neural networks (ANNs) are able to account for non-uniformly weighted, 

temporally lagged contributions of pra to wtda, potentially providing more robust prediction models. ANNs 

are one of the most widely used machine learning methods that have been inspired by biological neural 

systems, with many interconnected information processing units (i.e., neurons) (Haykin, 2009; Ma et al., 

2019). ANNs adapt learnable parameters (i.e., weights and biases) in the links between neurons to achieve 

an appropriate input-output mapping based on observed data; this is also for complex nonlinear 

relationships. ANNs are not easily affected by input noise and are able to readjust their parameters when 

new information is included. More importantly, compared to physically-based numerical models, they 

necessitate little background knowledge, reducing the requirements for human involvement and expertise, 

thus enabling rapid hypothesis testing (Govindaraju, 2000; Shen, 2018; Sun and Scanlon, 2019).  

Feedforward neural networks (FFNNs, also termed multilayer perceptrons in some of the literature) and 

their variants are commonly used ANNs for GW level modeling in previous studies (e.g., Yang et al., 1997; 

Nayak et al., 2006; Adamowski and Chan, 2011; Yoon et al., 2011; Mohanty et al., 2015; Gong et al., 2016; 

Sun et al., 2016). One major drawback of FFNNs is that they cannot preserve previous information, resulting 

in inefficiencies in handling sequential data (J. Zhang et al., 2018; Supreetha et al., 2020). To leverage the 

performance of FFNNs, the delay time in the network response needs to be estimated in advance. 

Recurrent neural networks (RNNs) are a special type of ANN mainly designed for sequential data analysis. 

Through loops in their hidden layers, the information generated in the past flows back to neurons as the 

input of new computing processes (Karim and Rivera, 1992). Due to the ability to store information traveling 

through, RNNs can avoid the aforementioned preprocessing step of FFNNs and can, thereby, solve 

sequential data problems more efficiently. However, standard RNNs suffer from the exploding and vanishing 

gradient issues and often fail to exploit long-term dependencies between sequences, which is expected in 

the response of wtda to pra. These issues can be overcome by a variant of standard RNNs named Long 

Short-Term Memory (LSTM) networks (Supreetha et al., 2020). Although RNNs have been employed 

extensively in other science fields, particularly in natural language processing (D. Zhang et al., 2018), their 

application in hydrology is still in its infancy and has only recently received increasing attention (e.g., Kratzert 

et al., 2018; Shen, 2018; J. Zhang et al., 2018; Le et al., 2019; Sahoo et al., 2019). Thus, limited studies 

have been conducted to estimate GW fluctuations using RNNs, especially with LSTM networks.  

The consistency of the temporal pattern between input and target variables is a prerequisite for the good 

performance of ANNs, including LSTM networks. Cross-wavelet transform (XWT) is a useful tool for 

visualizing the pattern changes between input and target variables, aiming to extract similarities of two time 



 
Chapter 2    Exploring the connection between water table depth anomalies and precipitation anomalies 

  

17 
 

series in time and frequency. The technique has been applied for time-frequency analysis in many 

publications (e.g., Adamowski, 2008; Prokoph and El Bilali, 2008; Banerjee and Mitra, 2014).  

In this study, we utilized spatiotemporally continuous pra and wtda from integrated hydrologic simulation 

results of the Terrestrial Systems Modeling Platform (TSMP) over Europe (hereafter termed the TSMP-G2A 

data set and introduced in Section 2.2.4) in combination with LSTM networks to capture the time-varying 

and time-lagged relationship between pra and wtda in order to obtain reliable prediction models at the 

individual pixel level. The impact of local factors on the network behavior was also investigated, and the 

local factors studied were yearly averaged wtd, ET, soil moisture (θ), snow water equivalent (SWE), and 

soil type (St) and dominant plant functional type (PFT). In addition, we implemented XWT on both TSMP-

G2A pra and wtda series for time-frequency analysis to gain insight into the internal characteristics of the 

obtained networks. 

This chapter is organized as follows: in Section 2.2 (Methodology), we first present a conceptual model of 

GW balance to theoretically derive the relationship between pra and wtda and then briefly introduce the 

architecture of the proposed LSTM networks and continuous and cross-wavelet transform. This is then 

followed by detailed information on our study area and data set as well as a generic workflow to construct 

local LSTM networks at selected pixels over Europe. Section 2.3 (Results and discussion) shows 

reproduced wtda maps for GW drought analysis, discusses the impact of local factors on the network 

behaviors and investigates the network performances at the local scale, before completing the chapter with 

Section 2.4 (Summary and conclusions). 

2.2 Methodology 

LSTM networks were applied to estimate monthly wtda over the European continent, using monthly pra as 

input. We constructed the networks at the individual pixels and analyzed temporal patterns between TSMP-

G2A pra and wtda using XWT. In this section, we briefly recall the conceptual model of GW balance, 

introduce the principle of LSTM networks and the application of XWT, and describe the study area and data 

set before presenting a universal workflow to establish the proposed LSTM networks locally at selected 

pixels.  

2.2.1 Conceptual model of groundwater balance 

The subsurface water balance can be described by a control volume that contains the vadose zone and an 

unconfined aquifer that is closed at the bottom (Figure 2.1). Note that areas with surface water are not taken 

into account in this study, and the impact of anthropogenic activities such as GW abstraction is neglected. 

Flows in and out of the control volume are precipitation and ET across the land surface and lateral flows in 

the subsurface. These flows are balanced by changes in the water stored in the vadose zone and the 

unconfined aquifer.  
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Figure 2.1: Conceptual model of GW balance over a control volume (after Maxwell, 2010). 𝑃𝑃 is precipitation, 𝐸𝐸𝐸𝐸 is 
actual ET, 𝑄𝑄𝑔𝑔 is the lateral GW flow, 𝑆𝑆𝑣𝑣𝑣𝑣 and 𝑆𝑆𝑢𝑢𝑢𝑢 are the water storages in the vadose zone and the unconfined aquifer, 
respectively, and 𝑡𝑡 is time. 

The GW balance equation for the conceptual model is given in Eq. (2.1) as follows: 

𝑑𝑑(𝑆𝑆𝑣𝑣𝑣𝑣)/𝑑𝑑𝑡𝑡 + 𝑑𝑑(𝑆𝑆𝑢𝑢𝑢𝑢)/𝑑𝑑𝑡𝑡 = 𝑃𝑃 − 𝐸𝐸𝐸𝐸 + 𝑸𝑸𝒈𝒈 .                                       (2.1) 

Rearranging Eq. (2.1), will result in Eq. (2.2), as follows: 

𝑑𝑑(𝑆𝑆𝑢𝑢𝑢𝑢)/𝑑𝑑𝑡𝑡 = 𝑃𝑃 − 𝐸𝐸𝐸𝐸 + 𝑸𝑸𝒈𝒈 − 𝑑𝑑(𝑆𝑆𝑣𝑣𝑣𝑣)/𝑑𝑑𝑡𝑡 ,                                                                 (2.2) 

where, 𝑃𝑃 is precipitation [millimeters per month], and 𝐸𝐸𝐸𝐸 is actual ET [millimeters per month], and 𝑸𝑸𝒈𝒈 is the 

lateral GW flow [millimeters per month]. 𝑆𝑆𝑣𝑣𝑣𝑣 and 𝑆𝑆𝑢𝑢𝑢𝑢 are the water storages in the vadose zone [millimeters] 

and the unconfined aquifer [millimeters], respectively, and 𝑡𝑡 is time [months]. 

The term on the left-hand side and the first term on the right-hand side in Eq. (2.2) indicate an explicit 

relationship between the fluctuation of Sua and precipitation, providing the theoretical basis of this study. In 

the case of large continental watersheds (i.e., 𝑸𝑸𝒈𝒈 = 0), the difference between precipitation and ET is equal 

to the total variations in 𝑆𝑆𝑣𝑣𝑣𝑣 and 𝑆𝑆𝑢𝑢𝑢𝑢. Note that we explicitly separated the water storage term of the vadose 

zone from the unconfined aquifer to highlight the transient impact of unsaturated storage on the relationship 

between 𝑑𝑑(𝑆𝑆𝑢𝑢𝑢𝑢)/𝑑𝑑𝑡𝑡 and (precipitation - ET). 

2.2.2 Long Short-Term Memory networks 

In this study, we employed LSTM networks with the same architecture of hidden neurons as Gers et al. 

(2000), which is shown in Figure 2.2. As a category of RNNs, LSTM networks have loops in their hidden 

layers that facilitate hidden neurons to weigh not only new inputs but also earlier outputs internally for 

predictions. Hence, similar to other RNNs, they are considered to have memory. Compared with standard 

RNNs, LSTM networks add a constant error carousel (CEC) and three gates that are the input, forget and 

output gates in their hidden neurons (see Figure 2.2), in order to overcome the exploding and vanishing 

gradient issues. For a detailed description of the functions of these components, the reader is referred to 

Hochreiter and Schmidhuber (1997) and Gers et al. (2000). Benefiting from the interaction of these 
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components, LSTM networks show great promise for studying long-term relationships between time series. 

They have the ability to capture dependencies over 1000 time steps, outperforming standard RNNs whose 

upper boundary of reliable performances is only 10 time steps (Hochreiter and Schmidhuber, 1997; Kratzert 

et al., 2018). The response of wtda to pra is expected to exhibit a long time lag, especially in case of deep 

aquifers, and thus LSTM networks are an appropriate type of network to use here. In addition, compared 

with traditional physically-based numerical models, the proposed LSTM networks require less computational 

time and background knowledge to perform the simulations. Moreover, when the proposed LSTM networks 

are available, we only need the pra data to estimate wtda, which are available from bias-corrected operational 

forecasts and reanalysis data sets. 

 

Figure 2.2: One-hidden-layer LSTM network with one hidden neuron. The green lines indicate the entry points of new 
inputs into the hidden neuron. The blue lines show the entry points of previous outputs into the hidden neuron, where 
𝑤𝑤∗ is the weight on a linkage, ℎ(∗) is the output of the hidden neuron, 𝑥𝑥(𝑡𝑡) is the input at the time step t, and 𝑐𝑐(∗) is the 
cell state of the CEC. 𝜎𝜎 represents a sigmoid function of a gate, and tanh is a hyperbolic tangent function. 

The procedure for processing inputs in hidden neurons of LSTM networks is as follows (Olah, 2015; Ma et 

al., 2019): 1) filter the information used for prediction from new inputs based on the result of the input gate, 

2) filter the information to be remembered from the old CEC state according to the output of the forget gate, 

3) update the CEC state using the results from the previous two steps, and 4) compute outputs of hidden 

neurons from the new CEC state and the results given by the output gate. 

Figure 2.2 illustrates a one-hidden-layer LSTM network containing only one hidden neuron; the pseudocode 

is presented in Appendix A to detail how data are transferred in the given LSTM network. Owing to the 

limited data available at each pixel (i.e., a total of 252 time steps), we built small LSTM networks at the local 
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scale with one input layer, one hidden layer, and one output layer. The network receives monthly pra from 

the input layer, processes it on the hidden layer, and finally generates monthly wtda from the output layer. 

The numbers of input and output neurons are determined by how many input and output variables are used 

in the derivation of the network. In the constructed LSTM networks, only one neuron is located on either the 

input or output layer, as the number of input or output variables is one. Thus, the complexity of the network 

only depends on the number of hidden neurons and, therefore, can vary by changing the number of hidden 

neurons. The architecture of a network plays an important role in its behavior when processing new data, 

and it can be a double-edged sword to apply a network with considerable hidden neurons. On the one hand, 

the bigger we allow a network to grow, the better it can learn from a given data set. On the other hand, a 

complex network easily captures unwanted patterns when it learns too much from the given data set, 

eliminating its ability to deal with previously unobserved information (Dawson and Wilby, 2001; Müller and 

Guido, 2017b). This phenomenon is termed overfitting. Hence, it is crucial to identify the optimal number of 

hidden neurons and specify the appropriate structure of the network, which is the focus of the 

hyperparameter tuning described in Section 2.2.5. 

2.2.3 Continuous and cross-wavelet transform 

Continuous wavelet transform (CWT) is a type of wavelet transform useful for feature extraction (Grinsted 

et al., 2004). Given a mother wavelet 𝜓𝜓0(𝜂𝜂), with 𝜂𝜂 being a dimensionless time parameter, the CWT of a 

time series 𝑥𝑥𝑛𝑛0 is formulated as the convolution of 𝑥𝑥𝑛𝑛0 and a scaled and translated form of 𝜓𝜓0(𝜂𝜂) as follows 

(Torrence and Compo, 1998): 

𝑊𝑊(𝑠𝑠,𝑛𝑛) = ∑ 𝑥𝑥𝑛𝑛0𝜓𝜓
∗[(𝑛𝑛0 − 𝑛𝑛)𝛿𝛿𝑡𝑡 𝑠𝑠⁄ ]𝑁𝑁−1

𝑛𝑛0=0  ,                            (2.3) 

where the asterisk (*) signifies the complex conjugate, 𝛿𝛿𝑡𝑡 is the time step of 𝑥𝑥𝑛𝑛0, 𝑁𝑁 is the total number of 𝛿𝛿𝑡𝑡 

in 𝑥𝑥𝑛𝑛0, 𝑠𝑠 is the wavelet scale, and 𝑛𝑛 is the localized time index along which 𝜓𝜓0(𝜂𝜂) is translated. Here, the 

wavelet power is defined as |𝑊𝑊(𝑠𝑠,𝑛𝑛)|2.  

The mother wavelet must be zero mean and localized in the time and frequency domains (Torrence and 

Compo, 1998). In this study, we applied the Morlet wavelet as the mother wavelet, defined as follows: 

𝜓𝜓0(𝜂𝜂) = 𝜋𝜋−1/4𝑒𝑒𝑖𝑖𝜔𝜔0𝜂𝜂𝑒𝑒−𝜂𝜂2/2 ,                              (2.4) 

where 𝜔𝜔0 is the dimensionless frequency, which is set as 6 here to acquire a good balance between time 

and frequency localization (Grinsted et al., 2004). 

XWT is a method for locating common high power in the wavelet transforms of two time series. The XWT 

of two time series 𝑥𝑥𝑛𝑛0 and 𝑦𝑦𝑛𝑛0 can be computed using the following (Grinsted et al., 2004): 

𝑊𝑊𝑥𝑥𝑥𝑥(𝑠𝑠,𝑛𝑛) = 𝑊𝑊𝑥𝑥(𝑠𝑠,𝑛𝑛)𝑊𝑊𝑥𝑥
∗(𝑠𝑠,𝑛𝑛) ,                             (2.5) 
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where 𝑊𝑊𝑥𝑥(𝑠𝑠,𝑛𝑛) and 𝑊𝑊𝑥𝑥(𝑠𝑠,𝑛𝑛) are the CWT of the time series 𝑥𝑥𝑛𝑛0 and 𝑦𝑦𝑛𝑛0, respectively. The cross-wavelet 

power is calculated as �𝑊𝑊𝑥𝑥𝑥𝑥(𝑠𝑠,𝑛𝑛)�. However, directly using the cross-wavelet power gives biased results of 

the XWT analysis, so we applied �𝑊𝑊𝑥𝑥𝑥𝑥(𝑠𝑠,𝑛𝑛)� 𝑠𝑠⁄  proposed by Veleda et al. (2012) for correction. For detailed 

descriptions about CWT and XWT, the reader is referred to Torrence and Compo (1998), Grinsted et al. 

(2004), Prokoph and El Bilali (2008), and Veleda et al. (2012). 

In this study, XWT is used as an independent and additional analysis tool to visualize the pattern in the pra-

wtda relationship at the individual pixel level in time and frequency. In the XWT analyses, we focus on 

common, localized high-power frequency modes of 𝜓𝜓0(𝜂𝜂) in pra and wtda time series and the dynamics of 

the modes over time. Using the XWT analysis, we expect to clarify whether a changing pattern exists in the 

pra-wtda relationship during the study period and if it affects the network behavior. Moreover, by linking the 

results of the XWT analysis with the network outputs, we explore the impact of the amount and range of the 

frequency modes on the LSTM network performance in order to obtain insight into the internal operations 

of LSTM networks.  

2.2.4 Study area and data set 

We constructed the LSTM networks at individual pixels over eight hydrometeorologically different regions 

within Europe (Figure 2.3), which are known as the PRUDENCE (Prediction of Regional scenarios and 

Uncertainties for Defining EuropeaN Climate change risks and Effects) regions (Christensen and 

Christensen, 2007). Table 2.1 lists the region names and abbreviations, coordinates, and climatologic 

information. The climatology is represented by regional averages and standard deviations of yearly 

averaged data derived from the TSMP-G2A data set (Furusho-Percot et al., 2019) from the years 1996 to 

2016, except for SWE of which data are only available from the years 2003 to 2010. The TSMP-G2A data 

set consists of daily averaged simulation results from TSMP over Europe, using the grid definition from the 

COordinated Regional Downscaling Experiment (CORDEX) framework with a spatial resolution of 0.11° 

(12.5 km; EUR-11). TSMP is a fully coupled atmosphere-land-surface-subsurface modeling system, giving 

a physically consistent representation of the terrestrial water and energy cycle from the GW via the land 

surface to the top of the atmosphere, which is unique (Keune et al., 2016; Furusho-Percot et al., 2019). The 

current version (version 1.1) of TSMP consists of the numerical weather prediction model of COnsortium for 

Small-scale MOdeling (COSMO), version 5.01, the National Center for Atmospheric Research (NCAR) 

Community Land Model (CLM), version 3.5, and the 3D surface–subsurface hydrologic model ParFlow, 

version 3.2, which are externally coupled by the Ocean Atmosphere Sea Ice Soil Model Coupling Toolkit 

(OASIS3–MCT) coupler (Gasper et al., 2014; Shrestha et al., 2014). TSMP has been successfully applied 

in many studies to simulate the terrestrial hydrological processes (e.g., Shrestha et al., 2014; Kurtz et al., 

2016; Sulis et al., 2018; Keune et al., 2019). Furusho-Percot et al. (2019) showed good agreement of the 

hydrometeorological variability between TSMP-G2A and observed data at the regional scale in the 

PRUDENCE regions. They compared anomalies of temperature, precipitation, and total column water 

storage from the TSMP-G2A data set with commonly used reference observational datasets (i.e., the 0.25 
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degrees gridded European Climate Assessment and Dataset, ECA&D, E-OBS v19, and observations from 

the Gravity Recovery and Climate Experiment, GRACE), resulting in Pearson correlation coefficients (r) 

ranging from 0.73 to 0.94 for temperature anomalies and from 0.62 to 0.88 for pra. Similar results were 

obtained by Hartick et al. (2021), who compared anomalies of total column water storage from the TSMP-

G2A data set with the novel GRACE‐REC data set and obtained r from 0.69 to 0.89 in the different 

PRUDENCE regions. For details of the TSMP-G2A data set, the reader is referred to Furusho-Percot et al. 

(2019). 

 
Figure 2.3: TSMP-G2A wtd [m] climatology over the European continent for the time period from 1996 to 2016. Areas 
bounded by the thick black lines show the PRUDENCE regions (i.e., SC - Scandinavia; BI - British Isles; ME - Mid-
Europe; EA - Eastern Europe; FR - France; AL - Alps; IP - Iberian Peninsula; MD - Mediterranean). 

Table 2.1: Overview of the PRUDENCE regions, including region names and abbreviations, coordinates, and 
climatologic information extracted from the TSMP-G2A data set (expressed as average ± standard deviation). 

Area Coordinate 

(long_west, 

long_east, 

lat_south, 

lat_north) 

Regional 

precipitation 

[mm] 

Regional 

water table 

depth, wtd 

[m] 

Regional 

evapotranspiration, 

ET 

[mm] 

Regional 

soil 

moisture, θ 

[m3 m-3] 

Regional snow 

water 

equivalent, 

SWE  

[mm] 

Scandinavia (SC)  (5, 30, 55, 70) 1005 ± 451 2.43 ± 5.83 283 ± 129 0.32 ± 0.11 79.80 ± 109.17 

British Isles (BI)  (-10, 2, 50, 59) 1119 ± 308 2.29 ± 6.11 395 ± 130 0.36 ± 0.10 0.82 ± 2.19 

Mid-Europe (ME)  (2, 16, 48, 55) 885 ± 192 2.77 ± 6.87 444 ± 141 0.35 ± 0.10 2.44 ± 5.49 

Eastern Europe (EA)  (16, 30, 44, 55) 776 ± 185 3.08 ± 7.37 470 ± 164 0.33 ± 0.10 9.50 ± 13.07 

France (FR)  (-5, 5, 44, 50) 897 ± 169 2.95 ± 7.04 485 ± 164 0.35 ± 0.10 0.31 ± 1.12 

Alps (AL)  (5, 15, 44, 48) 1494 ± 638 4.14 ± 9.16 499 ± 185 0.35 ± 0.10 65.57 ± 127.23 

Iberian Peninsula (IP)  (-10, 3, 36, 44) 841 ± 371 6.62 ± 10.61 495 ± 233 0.29 ± 0.11 3.38 ± 28.18 

Mediterranean (MD)  (3, 25, 36, 44) 894 ± 338 6.48 ± 10.76 518 ± 229 0.30 ± 0.10 3.59 ± 15.22 

 

As shown by the averages in Table 2.1, precipitation is heterogeneously distributed over the PRUDENCE 

regions, with the highest rainfall in AL (1494 mm) and the lowest in EA (776 mm). Most regional average 
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wtd’s range from 2 m to 5 m, other than IP and MD (having a larger average wtd > 6 m). Within this range, 

AL has a relatively high average wtd (4.14 m) due to its strong relief. Higher ET is naturally observed in 

more arid regions, e.g., the highest regional average ET (518 mm) is recorded in MD. No significant 

difference is observed in regional average θ over PRUDENCE regions, and the minimal regional average θ 

is observed in IP (0.29 m3m-3) and MD (0.30 m3m-3).  For SWE, large values (> 60 mm) are simulated in SC 

and AL, while values below 10 mm are recorded in the other regions.  

We utilized the TSMP-G2A data set to compute pra and wtda (Eqs. 2.6 and 2.7) at the individual pixel level 

over Europe, which are the input and output data of the proposed LSTM networks. The associated average 

and standard deviation values are based on the training set (i.e., the data within the years 1996 to 2012, 

described in Section 2.2.5) to guarantee that no future information leaks into the networks in the training 

process.  

𝑝𝑝𝑝𝑝𝑢𝑢 = (𝑝𝑝𝑝𝑝𝑚𝑚 − 𝑝𝑝𝑝𝑝𝑢𝑢𝑣𝑣)/𝑝𝑝𝑝𝑝𝑙𝑙𝑠𝑠 ,                                                 (2.6)  

where 𝑝𝑝𝑝𝑝𝑚𝑚  is the monthly sum precipitation calculated from the TSMP-G2A data set, 𝑝𝑝𝑝𝑝𝑢𝑢𝑣𝑣  is the 

climatological average of 𝑝𝑝𝑝𝑝𝑚𝑚 (i.e., averages of 𝑝𝑝𝑝𝑝𝑚𝑚 in January, February, …, December), and 𝑝𝑝𝑝𝑝𝑙𝑙𝑠𝑠 is the 

climatological standard deviation of 𝑝𝑝𝑝𝑝𝑚𝑚. 

𝑤𝑤𝑡𝑡𝑑𝑑𝑢𝑢 = (𝑤𝑤𝑡𝑡𝑑𝑑𝑚𝑚 − 𝑤𝑤𝑡𝑡𝑑𝑑𝑢𝑢𝑣𝑣)/𝑤𝑤𝑡𝑡𝑑𝑑𝑙𝑙𝑠𝑠 ,                                               (2.7) 

where 𝑤𝑤𝑡𝑡𝑑𝑑𝑚𝑚 is the monthly average wtd derived from the TSMP-G2A data set, 𝑤𝑤𝑡𝑡𝑑𝑑𝑢𝑢𝑣𝑣 is the climatological 

average of 𝑤𝑤𝑡𝑡𝑑𝑑𝑚𝑚, and 𝑤𝑤𝑡𝑡𝑑𝑑𝑙𝑙𝑠𝑠 is the climatological standard deviation of 𝑤𝑤𝑡𝑡𝑑𝑑𝑚𝑚. 

The wtda is a measure of GW drought. Here we define wtda ≥ 2 corresponding to extreme drought, 1.5 ≤ 

wtda < 2 corresponding to severe drought, 1 ≤ wtda < 1.5 corresponding to moderate drought, 0 ≤ wtda < 1 

corresponding to minor drought and wtda < 0 corresponding to no drought, following McKee et al. (1993). 

To identify the effect of local factors on the network behaviors, we categorized the network performances 

based on different intervals of yearly averaged wtd, ET, θ, SWE, and St and dominant PFT. The data of θ 

were calculated based on the information at a depth from 0 to 5 cm below the land surface. It is important 

to note that the data used in this study cover the years 1996 to 2016 (except for SWE data, which are only 

available from 2003 to 2010) to ensure that spinup effects do not impact the analyses (Furusho-Percot et 

al., 2019). 

2.2.5 Experiment design 

LSTM networks are employed here to detect connections between pra and wtda from the pan-European 

simulation results and utilize pra as input to predict wtda. At each time step, one new input enters a network, 

together with information stored in the network’s memory (i.e., useful messages from inputs in the past) to 

generate outputs. Therefore, LSTM networks have the ability to handle the lagged response of wtda to pra.  
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Monthly anomaly time series at individual pixels were divided into three parts for network training (01/1996–

12/2012), validation (01/2013–12/2014), and testing (01/2015–12/2016) containing about 80%, 10%, and 

10% of the total data, respectively. In training, the network is fitted to a given training set by adjusting its 

weights and biases. The technique of adjusting network parameters is called an optimizer that minimizes a 

cost function at a certain learning rate (Govindaraju, 2000). This study utilized a supervised training 

algorithm with a supplementary teacher signal (i.e., TSMP-G2A monthly wtda) to guide the training process, 

which is widely adopted in hydroscience in case of, e.g., stream stage modeling (Sung et al., 2017), stream 

discharge modeling (Zhang et al., 2015), and GW level modeling (Adamowski and Chan, 2011). One 

common challenge in the training process is overfitting. Validation is a process to address overfitting by 

comparing the network output with the teacher signal to obtain a validation loss (Govindaraju, 2000; Liong 

et al., 2000). Provided that the network has gained sufficient knowledge from the training set, training ceases 

when the number of epochs (i.e., an iteration when the whole training set travels through the network forward 

and backward once) is ≥ 50, and the validation loss starts increasing. The strategy to stop training based 

on validation losses is termed early stopping. 

Moreover, the validation losses were applied to tune hyperparameters of the LSTM networks whose 

architecture was introduced in Section 2.2.2. To simplify the procedure of hyperparameter tuning, we only 

focused on the optimization of the number of hidden neurons in this study and set other hyperparameters 

to be constant (Table 2.2). The networks with hidden neurons from 1 to 100 were trained at individual pixels, 

and the best three of them were selected for testing based on the validation losses. 

Table 2.2: Hyperparameter settings of the proposed LSTM networks. 

Hyperparameter Value or method 

Number of input, hidden, and output layer(s) (1, 1, 1) 

Number of input, hidden and output neuron(s) (1, 1-100, 1) 

Initial weights and biases of all neurons U(-0.5, 0.5)* 

Initial cell states of LSTM neurons 0 

Optimizer and learning rate  RMSprop (Hinton et al., 2012), 0.001 

Loss function Mean square error (MSE) 
* U(-0.5, 0.5) - uniform distribution bounded by -0.5 and 0.5. 

 

Finally, during testing, the optimally trained networks were provided with a previously unknown data set, 

originating from the same source as the training set. The difference between generated and target values 

during testing is called the generalization error, representing the ability of a network to perform on previously 

unobserved data. The average of the three optimal network results was utilized for evaluation in order to 

moderately eliminate the individual deficiencies of the selected networks, thereby improving the quality of 

the final results (Goodfellow et al., 2017b; Brownlee, 2018). The metrics to assess network performance in 

this study are the root mean square error (RMSE), the Nash-Sutcliffe efficiency (NSE) and the bias from r 

(α) as shown in Eqs. (2.8)-(2.10), respectively. α indicates systematic additive and multiplicative biases in 

the generated values, with a value between 0 and 1, where α = 1 means no bias (Duveiller et al., 2016). 
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𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸 = �∑ (𝑦𝑦𝑙𝑙 − 𝑦𝑦𝑒𝑒)2𝑁𝑁
𝑖𝑖=1 /𝑁𝑁 ,                                       (2.8) 

𝑁𝑁𝑆𝑆𝐸𝐸 = 1 − ∑ (𝑦𝑦𝑙𝑙 − 𝑦𝑦𝑒𝑒)2𝑁𝑁
𝑖𝑖=1 /∑ (𝑦𝑦𝑙𝑙 − 𝑦𝑦𝑙𝑙� )2𝑁𝑁

𝑖𝑖=1 ,                                      (2.9) 

𝛼𝛼 = 2  �𝜎𝜎𝑥𝑥𝑡𝑡 𝜎𝜎𝑥𝑥𝑒𝑒⁄ + 𝜎𝜎𝑥𝑥𝑒𝑒 𝜎𝜎𝑥𝑥𝑡𝑡⁄ + (𝑦𝑦𝑙𝑙� − 𝑦𝑦𝑒𝑒� )2 �𝜎𝜎𝑥𝑥𝑡𝑡𝜎𝜎𝑥𝑥𝑒𝑒�� �⁄ ,                                                              (2.10) 

where 𝑦𝑦𝑙𝑙, 𝑦𝑦𝑙𝑙� , and 𝜎𝜎𝑥𝑥𝑡𝑡 are the target value, the average of the target values, and the standard deviation of 

the target values, respectively. 𝑦𝑦𝑒𝑒, 𝑦𝑦𝑒𝑒� , and 𝜎𝜎𝑥𝑥𝑒𝑒 are the estimated value, the average of the estimated values, 

and the standard deviation of the estimated values, respectively. 𝑁𝑁 is the number of time steps in the given 

time series. 

Repeating the above network training, validation, and testing processes (right panel of Figure 2.4), we 

constructed the proposed LSTM networks locally at ≤ 200 pixels randomly selected in each group in order 

to save computing time. As described in Section 2.2.4, climatologic differences occur not only between 

different PRUDENCE regions but also at certain pixels in the same region, which potentially explains varying 

network performances at individual pixels. To analyze the network reaction to local factors, we categorized 

the pixels into groups based on various intervals of yearly averaged wtd, ET, θ, SWE, and St and dominant 

PFT (Table 2.3), and the analysis results will be presented in Section 2.3.2. Figure 2.4 gives a generic 

workflow of this study to establish the LSTM networks at the local scale and analyze their output. 

 

Figure 2.4: Workflow for LSTM network setup over the European CORDEX domain. The left section represents the 
overall processes of the network setup, whereas the right section shows how to apply LSTM networks at a selected 
pixel. The blue dashed lines with arrows indicate additional data transmission paths.  
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Table 2.3: Intervals of yearly averaged wtd, ET, θ, SWE, and St and dominant PFT for categorization. 

Yearly 
averaged 
water table 
depth, wtd  
[m] 

Yearly averaged 
evapotranspiration
, ET  
[mm] 

Yearly 
averaged 
soil 
moisture, θ  
[m3 m-3] 

Yearly 
averaged 
snow 
water 
equivalent
, SWE 
[mm] 

Soil type, St  Dominant plant functional type, PFT* 

0.0–1.0 

1.0-2.0 

2.0-3.0 

3.0-4.0 

4.0-5.0 

5.0-6.0 

6.0-7.0 

7.0-8.0 

8.0-9.0 

9.0-10.0 

10.0-50.0 

< 0.0 

0.0-100.0 

100.0-200.0 

200.0-300.0 

300.0-400.0 

400.0-500.0 

500.0-600.0 

600.0-700.0 

700.0-800.0 

800.0-900.0 

900.0-1000.0 

1000.0-1100.0 

0.0-0.05 

0.05-0.10 

0.10-0.15 

0.15-0.20 

0.20-0.25 

0.25-0.30 

0.30-0.35 

0.35-0.40 

0.40-0.45 

0.45-0.50 

≤ 10.0 

> 10.0 

Sand 

Loamy sand 

Sandy loam 

Silt loam 

Silt 

Loam 

Sandy clay loam 

Silty clay loam 

Clay loam 

Sandy clay 

Silty clay 

Clay 

Organic Material 

Water 

Bedrock 

Others 

Needleleaf evergreen temperate tree 

Needleleaf evergreen boreal tree 

Needleleaf deciduous boreal tree 

Broadleaf evergreen tropical tree 

Broadleaf evergreen temperate tree 

Broadleaf deciduous tropical tree 

Broadleaf deciduous temperate tree 

Broadleaf deciduous boreal tree 

Broadleaf evergreen shrub 

Broadleaf deciduous temperate shrub 

Broadleaf deciduous boreal shrub 

C3 Arctic grass 

C3 non-Arctic grass 

C4 grass 

Corn 

Wheat 
*Dominant PFT - the PFT of which percentage is ≥ 50% at one pixel. 

2.3 Results and discussion 

2.3.1 Water table depth anomaly maps in 2003 and 2015 reproduced by the LSTM 
network results 

We employed the outputs of the proposed LSTM networks to reproduce wtda over the European continent 

in 2003 and 2015, constituting drought years (Van Loon et al., 2017). Here, we displayed the wtda from the 

TSMP-G2A data set and the networks (hereafter called LSTM wtda) for August 2003 (in the training period; 

Figure 2.5a) and August 2015 (in the testing period; Figure 2.5b) with respect to strength. We focused on 

areas where wtda ≥ 1.5 (i.e., a strong drought) and studied the consistency between the TSMP-G2A and 

the LSTM wtda results on the distribution of GW drought. As the LSTM networks performed well at most 

pixels during the training period, the LSTM wtda map appears almost identical to the TSMP-G2A wtda map 

for August 2003 (see Figure 2.5a), showing severe GW drought in most parts of Europe, which is in good 

agreement with previous studies (Andersen et al., 2005; Van Loon et al., 2017). Moreover, in the simulations 

and LSTM results, there is increased GW storage over central Germany, central Britain, southeastern 

France, the western Iberian Peninsula, and several parts in Eastern Europe, illustrating the strong spatial 

heterogeneity of the anomalies, which is expected. In contrast, due to decreased network performance 

during testing, the LSTM wtda map shows less agreement with the TSMP-G2A wtda map for August 2015 

(see Figure 2.5b) with respect to the severity of drought. Extremes in wet and dry anomalies (i.e., |wtda| ≥ 

2) were especially underestimated, suggesting that the training set contains too little information on extreme 
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events and, thus, is too short. Yet overall, a visual inspection of Figure 2.5b shows that the LSTM wtda map 

agrees well with the TSMP-G2A wtda map on the spatial distribution of dry and wet events. In both maps, 

we identified severe drought in mid-Europe, the Alps, and the northwest of Eastern Europe, lending 

confidence in the trained networks to predict wtda from pra information. Additional European wtda maps for 

the second half of 2003 and 2015 are shown in Figures A.1 and A.2, leading to similar conclusions regarding 

the ability of the LSTM results to reproduce TSMP-G2A wtda.  

 

Figure 2.5: European wtda maps for (a) August 2003 (i.e., in the training period) and (b) August 2015 (i.e., in the testing 
period), derived from the TSMP-G2A data set (left) and the results from LSTM networks (right). 

2.3.2 Impact of local factors on the network performance 

In each PRUDENCE region, we computed the averages and standard deviations of the test NSE scores 

and RMSEs for the categories based on different intervals (Table 2.3) of yearly averaged wtd, ET, θ, SWE, 

and St and dominant PFT (Figure 2.6) to study dependents of the network test performances on different 

local factors. For statistical significance, we only considered categories with ≥ 50 pixels. In addition, negative 

NSE values at the pixel level were set to zero in the calculation of averages and standard deviations. 
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Figure 2.6: Averages and standard deviations of the test NSE scores (left) and RMSEs (right) over the categorized 
results. Shown are the yearly averaged (a) wtd, (b) ET, (c) θ, and (d) SWE. The averages are indicated as dots, while 
the bars indicate standard deviations. The different colors reflect test results in different PRUDENCE regions. 

There was no significant influence of St and dominant PFT on the scores (not shown here). In general, the 

performance decreased with increasing yearly averaged wtd, which was manifested by decreasing average 

NSE scores and growing average RMSEs (Figure 2.6a). This type of network behavior can be attributed to 

a stronger connection of GW to precipitation in shallow aquifers, which is intuitive. In contrast to the impact 

of yearly averaged wtd on the test performance, the performance was positively correlated to yearly 

averaged ET and θ. With increasing yearly averaged ET (Figure 2.6b) or θ (Figure 2.6c), there was an 

increase in average NSE scores and a decrease in average RMSEs. We can explain this phenomenon by 

the overlap between low-wtd and high-ET (or high-θ) areas over Europe. We also discovered that yearly 

averaged SWE played an important role in the network test performance. In most PRUDENCE regions, the 

performance decreased in the case of increasing SWE, leading to smaller average NSE scores and larger 
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average RMSEs presented in Figure 2.6d. The reason is that snow accumulation resulted in complex 

feedback with GW processes that cannot be captured well by the networks without including additional input 

information. Overall, in the same region, most of the proposed LSTM networks achieved a relatively good 

test performance at the pixels with yearly averaged wtd < 3 m, ET > 200 mm, θ > 0.15 m3m-3 and SWE < 

10 mm, where a stronger relationship exists between pra and wtda. 

As mentioned in Section 2.2.4, we only used the training set to calculate the climatological average and 

standard deviation in order to prevent the networks from incorporating future information in the training 

process. However, some extreme values in the validation and test sets may exceed the range of the training 

set, resulting in decreased validation and test performances and suggesting that a varying pattern may exist 

between pra and wtda over the study period (see discussion in Section 2.3.3). This can also be a potential 

reason for large standard deviations in the test RMSEs in Figure 2.6. 

Figure 2.6 also reveals different regional network test performances. In the same interval of yearly averaged 

wtd, the difference in yearly average NSE scores between two PRUDENCE regions can be more than 40%. 

FR exhibits the overall best network performance during testing. As shown in Table 2.1, the regional average 

wtd, ET, θ, and SWE of FR are 2.95 m (< 3 m), 485 mm (> 200 mm), 0.35 m3m-3 (> 0.15 m3m-3), and 0.31 

mm (< 10 mm), respectively. Hence, there was a close connection between pra and wtda at most pixels in 

FR, resulting in good network test performance.  

To further analyze the network test performances in different PRUDENCE regions, Figure 2.7 and Table 

2.4 provide test NSE scores over Europe and percentages of the selected pixels with test NSE ≥ 50%, 

respectively. FR outperformed the other regions on test NSE scores, which is consistent with the finding 

from Figure 2.6. In BI, ME, EA and AL, the proposed LSTM networks behaved well during testing (i.e., 

having test NSE ≥ 50%) at more than 30% of the selected pixels (colored in blue in Figure 2.7). However, 

we also found low percentages of the selected pixels with test NSE ≥ 50% in SC, IP, and MD, which are 

17.46%, 29.66%, and 27.72%, respectively. In Table 2.1, SC is characterized as the region with the largest 

regional average SWE (79.80 mm) and the smallest regional average ET (283 mm), and as shown in Figure 

2.6, the networks tended to perform poorly during testing in the areas with large SWE and small ET. The 

pixels in IP and MD (regional average wtd > 6 m) generally have larger wtd than the other regions, resulting 

in a more lagged and weaker connection between pra and wtda, which is intuitive. Therefore, the network 

behavior in IP and MD was relatively poor. 
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Figure 2.7: Map of test NSE scores achieved by the proposed LSTM networks in the PRUDENCE regions.   

Table 2.4: Percentages of the selected pixels with a test NSE score ≥ 50% in the PRUDENCE regions [%]. 

SC BI ME EA FR AL IP MD 
17.46 33.38 50.00 32.09 57.28 40.06 29.66 27.72 

 

We extended the scope of the analyses to the entire study period and found that the performance of 

individual networks generally followed two combinations with respect to training and test scores, which are 

as follows: 

• C1: training NSE score ≥ 50%, test NSE score ≥50%; 

• C2: training NSE score ≥ 50%, test NSE score ≤ 0%. 

The data distribution in the training and test sets was expected to be analogous, and if the networks did not 

encounter overfitting during training, their test performance increased by the improvement of the training 

performance, and vice versa. C1 is the expected network behavior with both satisfactory training and test 

scores. C2 is an exception in which the networks that performed well on the training set failed to handle the 

test set. Significantly reduced test performance in C2 can be attributed to the hypothesis that the pattern 

between pra and wtda varied over the study period.   

Figure 2.8 shows the percentages of the pixels where the network performance followed C1 (Figure 2.8a) 

and C2 (Figure 2.8b) in different PRUDENCE regions and intervals of wtd, ET, θ and SWE. For statistical 

significance, only the regions and the intervals of wtd, ET, θ and SWE with ≥ 50 selected pixels were 

considered. Here, we focused on the regions and the intervals with high percentages (> 30%; above the 

black dashed lines in Figure 2.8) to identify common hydrometeorological characteristics of a pixel where 

the network performance followed C1 or C2. For C1, high percentages were found in regions except for SC, 

IP and MD and in areas with wtd ≤ 3 m, ET ≥ 200 mm, θ ≤ 0.10 m3m-3 and θ ≥ 0.20 m3m-3, and SWE ≤ 10 

mm, which are in good agreement with our previous findings. In contrast, for C2, the percentages are high 
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in SC, EA, IP and MD and in areas with wtd ≥ 2 m, ET ≤ 300 mm, and 0.10 m3m-3 < θ ≤ 0.25 m3m-3. The 

distribution of C2 is not very sensitive to SWE, and the percentages are large in both areas with SWE ≤ 10 

mm and SWE > 10 mm. Moreover, in areas with negative ET, there is no pixel where the network 

performances followed C1, and C2 is the dominant network performance combination. We explain negative 

ET by pronounced freezing and sublimation processes in these areas, which significantly affect the 

response of wtda to pra. 

 

Figure 2.8: Bar plots showing the percentages of pixels where the network performance followed the combinations (a) 
C1, and (b) C2 in different regions and intervals of yearly averaged wtd, ET, θ, and SWE, from left to right, respectively. 
Black dashed lines indicate percentages equal to 30%. 

2.3.3 Cross-wavelet transform (XWT) analysis 

In the previous section, we posed the hypothesis that the temporal pattern between pra and wtda during 

training, validation, and testing was different at a number of pixels over the European continent. XWT was 

employed here for hypothesis testing at the individual, representative pixels (Table 2.5), which were 

randomly selected based on the hydrometeorological characteristics of C1 and C2 summarized in Figure 

2.8. XWT showed the time-frequency pattern in the pra and wtda time series derived from the TSMP-G2A 

data set (i.e., TSMP-G2A pra and wtda) at these pixels and highlighted the common high power of the 

frequency components in the time series (Figure 2.9). The α values (Eq. 2.10) of pixel 1 were generally 

suggesting that smaller biases existed in the results of the LSTM networks. In addition, we found different 

α values for pixel 2 with small biases in the training and large biases in the validation and testing.  

Figure 2.9 shows the results of the XWT analyses of the selected pixels in combination with the 

corresponding TSMP-G2A pra and wtda time series. Inspecting the results of the XWT analyses (bottom 

panel of Figure 2.9), the concentration period of power was inconsistent in the area without edge effects 

(i.e., the area within the black dashed line) at pixel 2 from the time period 1996 to 2016, indicating a time-

varying pattern between pra and wtda at the pixel, thus supporting our hypothesis. It also explores the high 

sensitivity of LSTM networks to outliers, which is a drawback of data-driven models.  
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The high power in the XWT results at the representative pixel of C1 (pixel 1; Figure 2.9a) was consistently 

located in a certain period (i.e., below 64 months), indicating a consistent pattern between pra and wtda 

throughout the whole study period, which is the prerequisite of good network performances. At the pixel, we 

found that most of the high power in the XWT results was consistently concentrated in the period from 2 to 

16 months during the study period (see Figure 2.9a). Figure A.3a showed similar phenomena as above. 

Therefore, we speculate that LSTM networks might be frequency aware and work well to capture the pra-

wtda relationship at the monthly, seasonal and annual periods. 

Table 2.5: Pixel characteristics in the XWT analysis (pixels 1-2). 

 Performance 

combination 

Region Yearly averaged 

water table 

depth, wtd  

[m] 

Yearly averaged 

evapotranspiration, 

ET  

[mm] 

Yearly averaged 

soil moisture, θ  

[m3 m-3] 

Yearly average 

snow water 

equivalent, SWE 

[mm] 

Pixel 1 C1 FR 1.38 422.91 0.28 0.0 

Pixel 2 C2 SC 5.19 -24.41 0.16 535.0 

 Training NSE 

[%] 

Training α  

[%] 

Validation NSE 

[%] 

Validation α [%] Test NSE  

[%] 

Test α 

 [%] 

Pixel 1 82.50 98.94 53.99 91.32 82.63 99.09 

Pixel 2 66.47 93.72 -34.74 34.82 -802.83 8.84 

 

 

Figure 2.9: TSMP-G2A pra, TSMP-G2A wtda, and LSTM wtda time series (top), as well as cross-wavelet spectra for 
TSMP-G2A pra and wtda series (bottom), at a representative pixel of the performance combination (a) C1 and (b) C2. In 
the cross-wavelet spectra, the black dashed line marks the boundary of the cone of influence. The color bar presents 
log2(power/scale). In all plots, the two gray dashed lines separate the study period into the training, validation, and 
testing periods. 
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2.4 Summary and conclusions 

In this study, we proposed LSTM networks as an indirect method to model monthly wtda over the European 

continent, using monthly pra as input. Local LSTM networks were constructed at individual pixels randomly 

selected over Europe to capture the time-varying and time-lagged relationship between pra and wtda from 

integrated hydrologic simulation (TSMP-G2A) results covering the 1996 to 2016 episode. The monthly 

anomaly series derived from the TSMP-G2A data set were divided into three sections at each pixel for 

network training, validation, and testing. Using the output of the LSTM networks, we successfully reproduced 

TSMP-G2A wtda maps over Europe for drought months in both the training and testing period (e.g., August 

2003 and August 2015) in terms of the spatial distribution of dry and wet events. The good agreement 

between the TSMP-G2A and LSTM wtda maps demonstrated the ability of the trained networks to model 

wtda from pra data. The results highlighted the impact of local factors on the network test performance, as 

manifested by NSE scores and RMSEs. Most of the networks attained high test NSE scores at the pixels 

with wtd < 3 m, ET > 200 mm, θ > 0.15 m3m-3, and SWE < 10 mm, where a stronger connection existed 

between pra and wtda. Also, the various hydrometeorological characteristics in each PRUDENCE region 

resulted in regional differences in the test performance of the proposed networks, with FR showing the 

overall best network performance. In some regions, test performance deteriorated due to changing temporal 

patterns in the pra-wtda relationship, approved by XWT analyses. According to the results of the XWT 

analyses, we hypothesize that LSTM networks have frequency awareness and tend to perform well to 

capture the pra-wtda relationship at the monthly, seasonal and annual periods.  

We also recognized that the limited amount of data in the training introduces uncertainties in the network 

performances. Any potential extension of training data may lead to a significant improvement in the quality 

of the derived networks. In addition, hyperparameters of the proposed LSTM networks may be further tuned 

at the individual pixel level to improve network performance. Due to a lack of spatiotemporally continuous 

wtd observations over Europe, this study presents a methodology for deriving a LSTM network model for 

wtda from pra based on simulation results from a terrestrial model (i.e., the TSMP-G2A data set). As 

demonstrated in Furusho-Percot et al. (2019) and Hartick et al. (2021), the TSMP-G2A data set shows a 

good agreement with hydrometeorological and GRACE observations in different European regions. 

Therefore, we argue that the TSMP-G2A data set is a good reference data set to establish the methodology. 

The results suggest that LSTM networks are useful for estimating wtda time series based on other 

hydrometeorological variables which are routinely measured and, therefore, are more easily available from, 

e.g., atmospheric reanalyses and forecast data sets and observations than GW level measurements. After 

training, LSTM networks could provide fast and reliable predictions of wtda only based on the data of input 

variables, which is impossible for traditional physically-based models such as TSMP. The proposed 

methodology may be transferred into a real-time monitoring and forecasting workflow for wtda at the 

continental scale.



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
  

 

 

 

 

 

Chapter 3  An indirect approach based on Long Short-
Term Memory networks to estimate groundwater table 
depth anomalies across Europe with an application for 

drought analysis 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The content of this chapter is adapted from: 

Ma, Y., Montzka, C., Bayat, B. and Kollet, S.: An Indirect Approach Based on Long Short-Term Memory 

Networks to Estimate Groundwater Table Depth Anomalies Across Europe With an Application for Drought 

Analysis, Front. Water, 3, doi:10.3389/frwa.2021.723548, 2021. 

 

 



 
 

 
 

 

 

 

 

 

 



 
Chapter 3    Improving Long Short-Term Memory network performance 

 

37 
 

Abstract 

The lack of high-quality continental-scale water table depth (wtd) observations necessitates developing an 

indirect method to produce reliable estimation for water table depth anomalies (wtda) over Europe to facilitate 

European groundwater (GW) management under drought conditions. Long Short-Term Memory (LSTM) 

networks are a deep learning technology to exploit long-short-term dependencies in the input-output 

relationship, which have been observed in the response of GW dynamics to atmospheric and land surface 

processes. Here, we introduced different input variables including precipitation anomalies (pra), which is the 

most common proxy of wtda, for the networks to arrive at improved wtda estimates at individual pixels over 

Europe in various experiments. All input and target data involved in this study were obtained from the 

simulated TSMP-G2A data set. We performed wavelet coherence analysis to gain a comprehensive 

understanding of the contributions of different input variable combinations to wtda estimates. Based on the 

different experiments, we derived an indirect method utilizing LSTM networks with pra and soil moisture 

anomaly (θa) as input, which achieved the optimal network performance. The regional medians of test NSE 

scores and RMSEs obtained by the method in the areas with wtd ≤ 3.0 m were 76%-95% and 0.17-0.30, 

respectively, constituting a 20%-66% increase in median NSE and a 0.19-0.30 decrease in median RMSEs 

compared to the LSTM networks only with pra as input. Our results show that introducing θa significantly 

improved the performance of the trained networks to predict wtda, indicating the substantial contribution of 

θa to explain GW anomalies. Also, the European wtda map reproduced by the method had good agreement 

with that derived from the TSMP-G2A data set with respect to drought severity, successfully detecting ~41% 

of strong drought events (wtda ≥ 1.5) and ~29% of extreme drought events (wtda ≥ 2) in August 2015. The 

study emphasizes the importance to combine soil moisture (θ) information with precipitation information in 

quantifying or predicting GW anomalies. In the future, the indirect method derived in this study can be 

transferred to real-time monitoring of GW drought at the continental scale using remotely sensed θ and 

precipitation observations or respective information from weather prediction models. 
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3.1 Introduction 

Drought is one of the major natural disasters worldwide, considerably affecting environmental, human, and 

economic well-being. According to a report of the European Environment Agency (EEA) in 2020, in most 

parts of Europe, the frequency and severity of droughts have increased since 1950 and will further increase 

in the future (EEA, 2020). In this context, many studies on drought have been carried out over Europe, e.g., 

Stagge et al. (2017), Bachmair et al. (2018), and Hänsel et al. (2019). 

Mishra and Singh (2010) categorized drought into five types, namely, meteorological, hydrological, 

agricultural, groundwater (GW) and socio-economic drought. Except for the last type, which reflects socio-

economic situations, the severity of the others can be quantified by the following standardized 

hydrometeorological variables: 1) precipitation anomaly (pra) and evapotranspiration anomaly (ETa) for 

meteorological drought, e.g., the Standardized Precipitation Index (SPI) (McKee et al., 1993) and the 

Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010); 2) river stage 

anomaly (rsa) and river discharge anomaly for hydrological drought, e.g., the Standardized Runoff Index 

(Shukla and Wood, 2008) and the Streamflow Drought Index (Nalbantis and Tsakiris, 2009); 3) soil moisture 

anomaly (θa) for agricultural drought, e.g., the Crop Moisture Index (Palmer, 1968); 4) water table depth 

anomaly (wtda) for GW drought, e.g., the Standardized Groundwater level Index (Bloomfield and Marchant, 

2013) and the GRACE Groundwater Drought Index (Thomas et al., 2017). These examples are not 

exhaustive, providing some of the related drought indices that have been widely used for extreme event 

analyses. 

With the advances of in-situ and remotely sensed observation technologies, many variables mentioned 

above can be monitored routinely and are also available at large scales from, e.g., atmospheric reanalysis 

and forecast data sets, thereby significantly supporting drought investigations. However, to date, it is still 

challenging to obtain high-quality spatiotemporally continuous water table depth (wtd) measurements over 

Europe for the calculation of wtda (Van Loon et al., 2017; Brauns et al., 2020). Thus, it is necessary to 

develop an indirect approach to produce reliable wtda estimates over Europe in order to mitigate the potential 

negative impact of scarce wtd measurements on GW management at the European scale.  

Indirect methods exploit the close connection between GW drought and other types of natural drought to 

predict wtda based on additional drought-related hydrometeorological variables that have data available at 

the continental scale. Depending on atmospheric and land surface processes, the contributions of these 

variables to wtda are non-linearly weighted and temporally lagged, which cannot be well represented by 

simple techniques such as using SPI or SPEI over extended time scales (commonly 6 to 12 months) to 

represent wtda.  

Long Short-Term Memory (LSTM) networks are a type of recurrent neural networks (RNNs) used in the field 

of deep learning. Without either subjective human annotation needed in the application of simple machine 

learning techniques (e.g., a predefined time lag in the response of output to input variables) or extensive 
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physical background knowledge required by physically-based models, they can automatically detect long-

short-term dependencies between input and output sequences (Reichstein et al., 2019), which are prevalent 

in hydrological responses. Benefiting from this characteristic, LSTM networks have recently drawn 

increasing attention from researchers in the hydrological sciences, e.g., rainfall-runoff modeling, Kratzert et 

al. (2019); flooding forecasting, Le et al. (2019); river stage modeling, Ma et al. (2019); and GW level 

modeling, J. Zhang et al. (2018). 

In Chapter 2, we have demonstrated the utility of LSTM networks constructed at the individual pixel level to 

capture the time-varying and time-lagged relationship between monthly pra and wtda derived from the TSMP-

G2A data set over Europe. The pra is the most common proxy of wtda. The dataset was published by 

Furusho-Percot et al. (2019), consisting of daily integrated hydrologic simulation results from the Terrestrial 

Systems Modeling Platform (TSMP). Furusho-Percot et al. (2019) and Hartick et al. (2021) corroborated the 

realism of the dataset in a comparison of simulated temperature, precipitation, and total column water 

storage anomalies with common observational datasets (i.e., E‐OBS, ERA‐Interim, GRACE and GRACE‐

REC). With the results of the proposed LSTM networks, we successfully reproduced European TSMP-G2A 

wtda maps for drought months in 2003 and 2015, showing good agreement concerning the spatial 

distribution of dry and wet events. Nevertheless, we also noticed relatively poor performance of the 

proposed networks at some pixels, which suggested the need for additional input to improve wtda estimates. 

Introducing additional input variables supplements the information used to estimate certain frequency 

components of wtda. However, the improvement in each frequency component is not identifiable by general 

evaluation metrics. In this case, wavelet coherence analysis is a useful tool. The method reveals time-

frequency localized coherence between time series and thus enables the detection of transient cross-

correlation for a specific frequency (Labat, 2005). Several studies, such as Lane (2007), Salerno and Tartari 

(2009) and Fang et al. (2015), have applied wavelet coherence analysis to gain insight into the cross-

correlation between modeled and target time series in the time-frequency domain. 

The objective of this study was to optimize the LSTM networks proposed in Chapter 2 to arrive at improved 

wtda estimates at the individual pixel level over Europe. In addition to pra, which was the original input 

variable, we introduced ETa, θa, scaled yearly averaged snow water equivalent (SWEscaled), and anomalies 

at adjacent pixels (e.g., rsa) as optional input variables for the networks in various experiments. Using data 

from the TSMP-G2A data set, we derived an indirect method based on the LSTM networks with the optimal 

input variable combination to estimate wtda at the European scale in order to facilitate European GW 

management under drought conditions. General evaluation metrics (i.e., the root mean square error, RMSE 

and the Nash-Sutcliffe efficiency, NSE) and wavelet coherence analysis provide a comprehensive 

understanding of the contributions of different input variables to the explanation of GW anomalies. As such, 

we presented and evaluated a LSTM-based method of simulated wtda, which can be transferred to other 

data sources for observation-based estimation. To our best knowledge, this study is among the first efforts 
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applying LSTM networks on estimating GW dynamics at the continental scale based on information in 

addition to meteorological data.   

3.2 Methodology 

We designed experiments that introduced different input variable combinations into the LSTM networks 

proposed in Chapter 2, which utilized a supervised training algorithm with target data (i.e., wtda data from 

the TSMP-G2A data set, hereafter named TSMP-G2A wtda) to guide the training process, and conducted 

wavelet coherence analysis to investigate the impact of the input variable combinations on the estimation 

of wtda over Europe in the time-frequency domain. In this section, we start with a brief overview of LSTM 

networks and wavelet coherence analysis, then describe the study area and data, and continue with the 

design of the performed experiments and a generic workflow to construct the LSTM networks at individual 

pixels. 

3.2.1 Long Short-Term Memory networks 

LSTM networks were introduced by Hochreiter and Schmidhuber (1997) to solve the exploding and 

vanishing gradient issues in standard RNNs. A LSTM network contains one input layer for receiving inputs, 

one or more hidden layers for internal computation and one output layer for producing final outputs. Through 

loops on their hidden layer(s), previous output of each hidden neuron (i.e., information-processing units on 

the hidden layer) in LSTM networks flows back to all neurons on the same layer and is then combined with 

new input to produce new neuron output. Therefore, LSTM networks are deep in time and considered to 

have memory (Shen, 2018). Here, we adopted the same architecture of hidden neurons as Gers et al. 

(2000), constructed by three gates with different functions and a constant error carousel (CEC), as illustrated 

in Figure 3.1. Benefiting from the interaction of these components, LSTM networks are able to exploit 

dependencies over 1000 time steps, surpassing standard RNNs that only remember up to 10 previous 

inputs (Hochreiter and Schmidhuber, 1997; Kratzert et al., 2018). The highly improved learning ability of 

LSTM networks facilitates estimating wtda in deep aquifers where a large time lag exists in the response of 

GW to other drought-related hydrometeorological variables. Compared to physically-based models, LSTM 

networks commonly necessitate less computational time and physical background knowledge (e.g., 

topography). Moreover, when the LSTM networks are available, they only require the data of input variables 

to estimate wtda, which can be easily accessed from observations and reanalysis products. For details about 

the functions of the components in LSTM hidden neurons, the reader is referred to Hochreiter and 

Schmidhuber (1997) and Gers et al. (2000). 
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Figure 3.1: A LSTM hidden neuron. The i, f, and o represent the input, forget, and output gates, which are activated by 
the sigmoid function. The green arrows indicate the entry of new inputs into the hidden neuron, and the blue arrows 
show the entry of neuron outputs of the previous time step (i.e., t–1) into the hidden neuron. For the sake of simplicity, 
biases are not shown here. 

Given an input variable whose time series is 𝑥𝑥(𝑡𝑡) (t ≥ 1), the computing process in a LSTM hidden neuron 

(Figure 3.1) at the time step t is presented by Eqs. (3.1)-(3.6). 

𝑖𝑖(𝑡𝑡) =  𝜎𝜎(𝑤𝑤𝑖𝑖𝑥𝑥(𝑡𝑡) + 𝑏𝑏𝑖𝑖 + 𝑤𝑤𝑖𝑖ℎℎ(𝑡𝑡 − 1) + 𝑏𝑏𝑖𝑖ℎ)                                                                                                 (3.1) 

𝑓𝑓(𝑡𝑡) =  𝜎𝜎(𝑤𝑤𝑓𝑓𝑥𝑥(𝑡𝑡) + 𝑏𝑏𝑓𝑓 + 𝑤𝑤𝑓𝑓ℎℎ(𝑡𝑡 − 1) + 𝑏𝑏𝑓𝑓ℎ)                                                                                               (3.2) 

𝑜𝑜(𝑡𝑡) =  𝜎𝜎(𝑤𝑤𝑜𝑜𝑥𝑥(𝑡𝑡) + 𝑏𝑏𝑜𝑜 + 𝑤𝑤𝑜𝑜ℎℎ(𝑡𝑡 − 1) + 𝑏𝑏𝑜𝑜ℎ)                                                                                               (3.3) 

𝑔𝑔(𝑡𝑡) =  𝑡𝑡𝑡𝑡𝑛𝑛ℎ(𝑤𝑤𝑐𝑐𝑥𝑥(𝑡𝑡) + 𝑏𝑏𝑐𝑐 + 𝑤𝑤𝑐𝑐ℎℎ(𝑡𝑡 − 1) + 𝑏𝑏𝑐𝑐ℎ)                                                                                          (3.4) 

𝑐𝑐(𝑡𝑡) = 𝑓𝑓(𝑡𝑡) ∗ 𝑐𝑐(𝑡𝑡 − 1) + 𝑖𝑖(𝑡𝑡) ∗ 𝑔𝑔(𝑡𝑡)                                                                                                             (3.5) 

ℎ(𝑡𝑡) = 𝑜𝑜(𝑡𝑡) ∗ tanh(𝑐𝑐(𝑡𝑡))                                                                                                                             (3.6) 

where 𝑖𝑖(𝑡𝑡), 𝑓𝑓(𝑡𝑡), 𝑜𝑜(𝑡𝑡) are the information that enters into the neuron via the input, forget and output gates, 

respectively. ℎ(𝑡𝑡 − 1) and ℎ(𝑡𝑡) are the neuron output at time step t - 1 and t, respectively. 𝑐𝑐(𝑡𝑡 − 1) and 𝑐𝑐(𝑡𝑡) 

are the cell state at time step t - 1 and t, respectively. 𝑤𝑤∗ and 𝑏𝑏∗ are the learnable weight and bias on a 

linkage between neurons, respectively. The subscripts 𝑖𝑖, 𝑓𝑓, 𝑜𝑜 and 𝑐𝑐 represent the input, forget and output 

gates and the cell state, respectively. For example, 𝑤𝑤𝑖𝑖 is the weight on the linkage of the new input 𝑥𝑥(𝑡𝑡) to 

the input gate of a hidden neuron while 𝑤𝑤𝑖𝑖ℎ is the weight on the linkage of the previous neuron output 

ℎ(𝑡𝑡 − 1) to the input gate of a hidden neuron. 𝜎𝜎  represents the sigmoid function, 𝑡𝑡𝑡𝑡𝑛𝑛ℎ  represents the 

hyperbolic tangent function, and ∗ represents the Hadamard product. 

At the individual pixel level, we constructed one-hidden-layer LSTM networks, due to the relatively small 

amount of data available (i.e., a total of 252 time steps). The numbers of neurons on the input and output 

layers depend on the numbers of input and output variables, respectively, and they are constant in each 
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experiment. Therefore, in this study, the network complexity is only affected by the number of hidden 

neurons, which is the only hyperparameter to tune during network validation (described in Section 3.2.4). 

The desired number of hidden neurons should allow a network not only to gain enough knowledge from a 

given data set but also be able to handle previously unobserved data (Dawson and Wilby, 2001; Müller and 

Guido, 2017b). 

3.2.2 Wavelet coherence analysis 

Wavelet transforms map time series into the time-frequency domain and help localizing intermittent 

periodicities. Continuous wavelet transform (CWT) is a common type of wavelet transforms useful for feature 

extraction (Grinsted et al., 2004). The CWT of a discrete time series 𝑥𝑥𝑛𝑛0 at the time step 𝑛𝑛 and a specific 

time scale 𝑠𝑠 is given by Eq. (3.7). 

𝑊𝑊(𝑠𝑠,𝑛𝑛) = ∑ 𝑥𝑥𝑛𝑛0𝜓𝜓
∗[(𝑛𝑛0 − 𝑛𝑛)𝛿𝛿𝑡𝑡 𝑠𝑠⁄ ]𝑁𝑁−1

𝑛𝑛0=0                                                                                                         (3.7) 

where 𝜓𝜓 is the mother wavelet, here using the Morlet wavelet, and 𝜓𝜓∗ is the complex conjugate of 𝜓𝜓. 𝛿𝛿𝑡𝑡 is 

the time step of 𝑥𝑥𝑛𝑛0, and 𝑁𝑁 is the total number of 𝛿𝛿𝑡𝑡 in 𝑥𝑥𝑛𝑛0. The power of the CWT is defined as |𝑊𝑊(𝑠𝑠,𝑛𝑛)|2 

(Torrence and Compo, 1998). While CWT can effectively identify localized intermittent oscillations in the 

time-frequency domain, it is only applicable to a single time series. 

Wavelet coherence analysis is a method that measures the cross-correlation of two time-dependent 

variables in the time-frequency domain, of which calculation (Eq. 3.8) is based on CWT. The results of 

wavelet coherence analysis are comparable with traditional correlation coefficients, ranging from 0 to 1. 

𝐶𝐶𝑜𝑜ℎ𝑒𝑒𝑝𝑝𝑒𝑒𝑛𝑛𝑐𝑐𝑒𝑒(𝑠𝑠,𝑛𝑛) = �〈𝑠𝑠−1𝑊𝑊𝑥𝑥𝑥𝑥(𝑠𝑠,𝑛𝑛)〉�2 �〈𝑠𝑠−1|𝑊𝑊𝑥𝑥(𝑠𝑠,𝑛𝑛)|2〉 〈𝑠𝑠−1�𝑊𝑊𝑥𝑥(𝑠𝑠,𝑛𝑛)�2〉��                                                     (3.8) 

where the 〈 ∙ 〉 indicates smoothing in both time and scale. 𝑊𝑊𝑥𝑥(𝑠𝑠,𝑛𝑛) and 𝑊𝑊𝑥𝑥(𝑠𝑠,𝑛𝑛) are the CWT of the time 

series 𝑥𝑥𝑛𝑛0  and 𝑦𝑦𝑛𝑛0 . 𝑊𝑊𝑥𝑥𝑥𝑥(𝑠𝑠,𝑛𝑛) is the cross-wavelet spectrum of the time series 𝑥𝑥𝑛𝑛0  and 𝑦𝑦𝑛𝑛0  and equal to 

𝑊𝑊𝑥𝑥(𝑠𝑠,𝑛𝑛)𝑊𝑊𝑥𝑥
∗(𝑠𝑠,𝑛𝑛), where the (*) indicates the complex conjugate (Torrence and Webster, 1999; Grinsted et 

al., 2004).     

The phase shift in the results of wavelet coherence analysis is calculated by: 

𝜙𝜙(𝑠𝑠,𝑛𝑛) = tan−1�ℑ�〈𝑠𝑠−1𝑊𝑊𝑥𝑥𝑥𝑥(𝑠𝑠,𝑛𝑛)〉� ℜ�〈𝑠𝑠−1𝑊𝑊𝑥𝑥𝑥𝑥(𝑠𝑠,𝑛𝑛)〉�� �                                                                              (3.9) 

where, ℑ{ ∙ } and ℜ{ ∙ } signify the imaginary and real parts of a complex number, respectively (Torrence and 

Webster, 1999). 𝜙𝜙(𝑠𝑠,𝑛𝑛) = 0 means that the wavelets of two considered time series at the time step 𝑛𝑛 and 

the time scale 𝑠𝑠 are in phase. Detailed descriptions of wavelet coherence analysis and phase shift can be 

found in Torrence and Webster (1999), Grinsted et al. (2004) and Rahmati et al. (2020). 
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In this study, we conducted wavelet coherence analysis to derive the time-frequency correlation and phase 

shifts between regionally averaged wtda time series obtained from the TSMP-G2A data set and the LSTM 

network results. In this way, we expected to gain an understanding of the network performance in various 

experiments and thus help explain the contributions of different input variable combinations to the estimation 

of wtda over Europe in the time-frequency domain.  

3.2.3 Study area and data set 

We utilized the TSMP-G2A data set to evaluate the ability of the proposed LSTM networks to estimate wtda 

over Europe in different experiments. As aforementioned, the dataset contains daily averaged continuous 

simulation results over Europe from TSMP, which is a fully coupled atmosphere-land-surface-subsurface 

modeling system. The spatial resolution of the dataset is 0.11° (~ 12.5 km). For details regarding TSMP and 

the TSMP-G2A data set, the reader is referred to Shrestha et al. (2014), Gasper et al. (2014) and Furusho-

Percot et al. (2019). 

This study focused on eight different European regions, which are known as the PRUDENCE (Prediction of 

Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects) regions 

(Christensen and Christensen, 2007): Scandinavia (SC), British Isles (BI), Mid-Europe (ME), Eastern 

Europe (EA), France (FR), Alps (AL), Iberian Peninsula (IP), and Mediterranean (MD). The individual 

PRUDENCE regions are characterized by different hydrometeorological regimes, potentially resulting in 

various responses of GW anomalies to other hydrometeorological variables, and constitute reference 

regions in climate science. Regionally averaged precipitation, evapotranspiration (ET) and soil moisture (θ) 

values calculated from the TSMP-G2A data set range from 776 mm (EA) to 1494 mm (AL), 283 mm (SC) 

to 518 mm (MD) and 0.29 m3m-3 (IP) to 0.36 m3m-3 (BI), respectively. Regionally averaged wtd values are 

from 2 m to 3 m, apart from AL (4.14 m), IP (6.62 m) and MD (6.48 m). Figure 3.2 presents the yearly 

averaged spatially distributed wtd values calculated from the TSMP-G2A data set from 01/1996 to 12/2016. 

Based on intervals of yearly averaged wtd, we categorized pixel values into three classes following Chapter 

2, that is, C1 corresponding to 0.0 m < wtd ≤ 3.0 m, C2 corresponding to 3.0 m < wtd ≤ 10.0 m and C3 

corresponding to wtd > 10.0 m. Most pixels on the European continent belong to C1 (colored in light blue), 

accounting for 52% to 75% of different PRUDENCE regions. Less than 20% of pixels in each PRUDENCE 

region belong to C2 (colored in orange). Less than 15% of pixels in each PRUDENCE region belong to C3 

(colored in red), except for AL (24%), IP (30%) and MD (28%). In addition, there is also a heterogeneous 

pattern in the yearly averaged snow water equivalent (SWE) values derived from the TSMP-G2A data set 

(see Table 2.1). SC and AL have the largest regionally averaged SWE (> 60 mm) while the other regions 

have regionally averaged SWE < 10 mm. 

The anomaly data were calculated from the TSMP-G2A data set for each calendar month and pixel 

individually for the period 01/1996 to 12/2016 to enable the spatial comparability and to account for the 

seasonality in the variables. Here, we only considered the data after the year 1996 to avoid the influence of 

spinup effects on the simulation results (Furusho-Percot et al., 2019). We used Eq. (3.10) to calculate pra, 
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ETa, θa and wtda, where the climatological average and standard deviation values were derived from the 

training set (i.e., the data from 01/1996 to 12/2012, described in Section 3.2.4) to prevent future information 

from leaking into the training process. The rsa is equal to wtda at pixels where wtd ≤ 0 m. Regionally averaged 

pra, ETa, θa and wtda time series for the wtd categories C1 to C3 in different PRUDENCE regions are 

presented in Figure B.1. 

𝑣𝑣𝑢𝑢 = (𝑣𝑣𝑚𝑚 − 𝑣𝑣𝑢𝑢𝑣𝑣)/𝑣𝑣𝑙𝑙𝑠𝑠                                                                                                                                 (3.10) 

where 𝑣𝑣 is the considered variable, such as wtd, 𝑣𝑣𝑚𝑚 is the monthly data of 𝑣𝑣 calculated from the TSMP-G2A 

data set, 𝑣𝑣𝑢𝑢𝑣𝑣 is the climatological average of 𝑣𝑣𝑚𝑚 (i.e., averages of 𝑣𝑣𝑚𝑚 in January, February, …, December), 

and 𝑣𝑣𝑙𝑙𝑠𝑠 is the climatological standard deviation of 𝑣𝑣𝑚𝑚. 

 
Figure 3.2: TSMP-G2A wtd [m] climatology over the European continent from 01/1996 to 12/2016. Areas bounded by 
the black polygons show PRUDENCE regions (i.e., SC - Scandinavia; BI - British Isles; ME - Mid-Europe; EA - Eastern 
Europe; FR - France; AL - Alps; IP - Iberian Peninsula; MD - Mediterranean). 

The pra, ETa, θa, rsa and wtda are measures of different types of drought. Table 3.1 provides the definition 

of drought severity based on anomalies, following McKee et al. (1993). 

Table 3.1: Definition of drought severity based on anomalies. 

Drought severity pra / θa ETa / rsa / wtda 

Extreme drought ≤ -2 ≥ 2 

Severe drought -2 – -1.5 1.5 – 2 

Moderate drought -1.5 – -1 1 – 1.5 

Minor drought -1 – 0 0 – 1 

No drought > 0 < 0 
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Moreover, we utilized Eqs. (3.11) and (3.12) to calculate SWEscaled from SWE which has data only available 

from 01/2003 to 12/2010. The obtained SWEscaled data only has one value in the range from -1 to 1 at each 

pixel, so it is static. 

𝑆𝑆𝑊𝑊𝐸𝐸0 = (𝑆𝑆𝑊𝑊𝐸𝐸𝑥𝑥 − 𝑆𝑆𝑊𝑊𝐸𝐸𝑚𝑚𝑖𝑖𝑛𝑛)/(𝑆𝑆𝑊𝑊𝐸𝐸𝑚𝑚𝑢𝑢𝑥𝑥 − 𝑆𝑆𝑊𝑊𝐸𝐸𝑚𝑚𝑖𝑖𝑛𝑛)                                                                                     (3.11) 

𝑆𝑆𝑊𝑊𝐸𝐸𝑙𝑙𝑐𝑐𝑢𝑢𝑙𝑙𝑒𝑒𝑠𝑠 = 𝑆𝑆𝑊𝑊𝐸𝐸0 ∗ [1 − (−1)] + (−1)                                                                                                    (3.12) 

where 𝑆𝑆𝑊𝑊𝐸𝐸𝑥𝑥 is the yearly averaged SWE value from 2003 to 2010, 𝑆𝑆𝑊𝑊𝐸𝐸𝑚𝑚𝑖𝑖𝑛𝑛 is the minimum value of 𝑆𝑆𝑊𝑊𝐸𝐸𝑥𝑥 

over the European continent, and 𝑆𝑆𝑊𝑊𝐸𝐸𝑚𝑚𝑢𝑢𝑥𝑥 is the maximum value of 𝑆𝑆𝑊𝑊𝐸𝐸𝑥𝑥 over the European continent. 

3.2.4 Experimental design 

In this study, we varied a number of input variables, in addition to pra used in the LSTM networks proposed 

in Chapter 2, to arrive at improved wtda estimates. The combinations of input variables used in different 

experiments are listed in Table 3.2. We selected the input variables based on their demonstrated 

relationship with wtda (Van Loon, 2015) and availability in the TSMP-G2A data set and common 

observational datasets. In E1, the LSTM networks used combinations of pra, ETa and θa as input. The pra, 

ETa and θa are drought-related hydrometeorological variables with spatiotemporally continuous data over 

Europe, which can be easily obtained from observations and reanalysis datasets, e.g., ERA5-Land. The pra 

and ETa are measures of meteorological drought, while the θa shows the degree of agricultural drought. 

Except for the input variables involved in E1, the quality of wtda estimates can also be affected by SWE; 

Chapter 2 found that large SWE can degrade the network test performance. Moreover, in an unconfined 

aquifer, GW and surface water dynamics have a strong lateral connection, and thus, wtda at a pixel is also 

influenced by the change in water dynamics at neighboring pixels, especially for a pixel close to a river, due 

to the interaction between surface water and GW. Here, in addition to the optimal input variable combination 

determined in E1, we introduced a static input SWEscaled and anomalies at adjacent pixels as input to the 

LSTM networks in E2, to explore potential improvement in the network performance. Especially, at pixels 

close to rivers, we investigated the impact of rsa at adjacent pixels on the network performance (see E2.3). 

Table 3.2: Combinations of input variables in different experiments. 

Experiment Combination of input variables 

E1 E1.1 pra 

E1.2 ETa 

E1.3 θa 

E1.4 pra, ETa 

E1.5 pra, θa 

E1.6 ETa, θa 

E1.7 pra, ETa, θa 

E2 

 

E2.1 Optimal input variable combination in E1, SWEscaled 

E2.2 Optimal input variable combination in E1 at the considered pixel and adjacent pixels 

E2.3 Optimal input variable combination in E1, rsa at adjacent pixels 
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At the individual pixel level, we divided anomaly data into a training set (01/1996 - 12/2012, 204 time steps, 

about 80% of the total data), a validation set (01/2013 - 12/2014, 24 time steps, about 10% of the total data) 

and a test set (01/2015 – 12/2016, 24 time steps, about 10% of the total data) for network training, validation 

and testing, respectively. The static input SWEscaled provided the same value at every time step.  

The LSTM networks applied here have the same configuration of hyperparameters (listed in Table 3.3) as 

Chapter 2, except for the number of input neurons which depends on the number of input variables used in 

the different experiments. As described in Section 3.2.1, the number of hidden neurons has a significant 

impact on the network performance and is the only hyperparameter to tune here, ranging from 1 to 100.  

Table 3.3: Hyperparameter setting of the applied LSTM networks. 

Hyperparameter Value or method 

Number of input, hidden, and output layer(s) (1, 1, 1) 

Number of input, hidden and output neuron(s) (number of input variables, 1-100, 1) 

Initial weights and biases on all connections between neurons U(-0.5, 0.5)* 

Initial cell states of LSTM neurons 0 

Optimizer and learning rate  RMSprop (Hinton et al., 2012), 0.001 

Loss function Mean square error (MSE) 
* U(-0.5, 0.5) - uniform distribution bounded by -0.5 and 0.5. 

 

Figure 3.3 illustrates the generic workflow used to construct the LSTM networks at the individual pixel level 

in the different experiments. The workflow started with the network training process during which we fitted 

the training set to the LSTM networks with 1 to 100 hidden neurons. An epoch is an iteration when the whole 

training set travels once through the network forward and backward. Weights and biases on all connections 

between neurons commenced from random values selected from a uniform distribution bounded by -0.5 

and 0.5, and in each epoch, the networks automatically updated weights and biases based on the difference 

between the network output and the target data (i.e., TSMP-G2A wtda) calculated by the loss function (here 

mean square error, MSE). The technique of adjusting weights and biases is termed an optimizer (here 

RMSprop), and the rate at which an optimizer adjusts weights and biases is termed learning rate (here 

0.001). In the interval of two consecutive epochs, the network validation process was run to check the 

performance of the trained network in each epoch on the validation set. The criteria for stopping the training 

process were 1) the number of epochs ≥ 50; and 2) the validation performance started to decrease. Based 

on the validation performance, we determined three optimal numbers of hidden neurons, which were often 

various for the LSTM networks constructed at different pixels. In the end, we applied the trained networks 

with the three optimal numbers of hidden neurons on the test set (i.e., unobserved data during training) and 

averaged the results from the three networks as the final result for evaluation. In this way, we compensated 

for the individual shortcomings of the selected networks to some extent and obtained improved final results. 

For details about the network setup, the reader is referred to Section 2.2.5. 

We adopted RMSE and NSE scores as the metrics to assess the network performance, which show the 

goodness of fit of the LSTM networks in terms of the magnitude and variance of the error. They are 
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calculated by Eqs. (3.13) and (3.14), and the LSTM networks with good performance are expected to obtain 

low RMSEs and high NSE scores. 

𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸 = �∑ (𝑦𝑦𝑙𝑙 − 𝑦𝑦𝑒𝑒)2𝑁𝑁
𝑖𝑖=1 /𝑁𝑁                                                                                                                       (3.13) 

𝑁𝑁𝑆𝑆𝐸𝐸 = 1 − ∑ (𝑦𝑦𝑙𝑙 − 𝑦𝑦𝑒𝑒)2𝑁𝑁
𝑖𝑖=1 /∑ (𝑦𝑦𝑙𝑙 − 𝑦𝑦𝑙𝑙� )2𝑁𝑁

𝑖𝑖=1                                                                                                (3.14) 

where 𝑦𝑦𝑙𝑙  and 𝑦𝑦𝑙𝑙�  are the target value (i.e., TSMP-G2A wtda) and the average of the target values, 

respectively. The 𝑦𝑦𝑒𝑒 is the estimated value (i.e., the network output, hereafter named LSTM wtda). 𝑁𝑁 is the 

number of time steps in the given time series. 

 

Figure 3.3: A generic workflow to construct the LSTM networks at individual pixels. The blue dashed lines with arrows 
represent data transmission paths.  

To save computational resources, we constructed the LSTM networks locally at a limited number of pixels, 

which were randomly selected in each PRUDENCE region. Chapter 2 found that yearly averaged wtd 

considerably affected the test performance of the LSTM networks with pra as input, and for increasing wtd, 

the networks tended to behave poorly. Hence, during the analyses of the network results (presented in 

Section 3.3), we separated the selected pixels in each PRUDENCE region into the wtd categories C1 to C3 

based on their wtd values. 
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Figure 3.4: Box plots of test NSE scores achieved by the LSTM networks of E1 and E2: E1.1: pra; E1.2: ETa; E1.3: θa; 
E1.4: pra and ETa; E1.5: pra and θa; E1.6: ETa and θa; E1.7: pra, ETa and θa; E2.1: pra, θa and SWEscaled; E2.2: pra, θa at 
the selected pixels and adjacent pixels; and E2.3: pra, θa at the selected pixels close to rivers and rsa at the adjacent 
pixels. (a) – (h) show the comparison of the box plots at the selected pixels belonging to the wtd categories C1 to C3 in 
each PRUDENCE region. The box plots show the ranges of the NSE scores from the first quartile to the third quartile; 
the red lines indicate the medians of the NSE scores; and the upper and lower ends represent the maximum and 
minimum values of the NSE scores, respectively. The medians of the NSE scores obtained by the LSTM networks of 
E1.5 are marked with red stars. The box plots for E1 and E2 are separated by gray dotted lines. 
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Figure 3.5: Box plots of test RMSEs achieved by the LSTM networks of E1 and E2. (a) – (h) show the comparison of 
the box plots at the selected pixels belonging to the wtd categories C1 to C3 in each PRUDENCE region. The labels 
have the same definitions as Figure 3.4, but for RMSEs. 
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3.3 Results 

3.3.1 Test performance of the LSTM networks in the different experiments 

We aimed to identify the LSTM networks with the best test performance in the designed experiments in 

handling previously unobserved data. Figures 3.4 and 3.5 illustrate the box plots of the test NSE scores and 

RMSEs achieved by the LSTM networks in the different experiments at the selected pixels belonging to the 

wtd categories C1 to C3 in each PRUDENCE region, respectively. For a better visualization, we set negative 

NSE scores to zero in Figure 3.4. The medians of the test NSE scores and RMSEs achieved in different 

experiments for C1 to C3 in each PRUDENCE region are listed in Table B.1. 

The LSTM networks of E1.5 (marked with red stars in Figures 3.4 and 3.5) achieved the optimal test 

performance not only in E1 but also in all the designed experiments, which used pra and θa as input. They 

obtained the test scores as follows: median NSE of 76%-95% for C1, 0%-58% for C2, and 0%-14% for C3; 

and median RMSEs of 0.17-0.30 for C1, 0.32-0.60 for C2, and 0.36-0.94 for C3. The evaluation metrics 

were significantly improved compared to those obtained by the LSTM networks employed in Chapter 2, 

particularly for C1 (with a 20%-66% increase in median NSE and a 0.19-0.30 decrease in median RMSEs), 

which is the major wtd category in Europe. Over Europe, the LSTM networks of E1.5 showed good test 

performance with a test NSE score ≥ 50% at most selected pixels (Figure 3.6). In addition, Table 3.4 gives 

close to or over half of the selected pixels with a test NSE score ≥ 50% in the PRUDENCE regions for the 

LSTM networks of E1.5, constituting an increase of 8% to 22% compared to Chapter 2. The highly improved 

wtda estimates by including θa as input suggest that θa plays an important role in explaining GW dynamics 

over Europe. One possible reason for that is, compared with pra and ETa, θa provides more information 

about subsurface hydrological processes, such as vegetation influence, soil heterogeneity and, thus, varying 

infiltration and recharge rates. Because θa and wtda are measures of agricultural drought and GW drought, 

respectively, the substantial contribution of θa to wtda also suggests the close connection between 

agricultural drought and GW drought over Europe.  

In E2.1, no noticeable improvement was detected in the test NSE scores and RMSEs especially in SC and 

AL that have large SWE (see Figures 3.4 and 3.5) by adding SWEscaled as additional input to the LSTM 

networks of E1.5, implying little additional contribution of snow accumulation to the estimation of wtda over 

Europe. This seems to be inconsistent with the conclusion of Chapter 2 that SWE strongly affects the quality 

of wtda estimates. However, the discrepancy can be explained by the fact that θ is partly replenished by 

snow water and thus θa already includes information about SWE. 

In Figures 3.4 and 3.5, we found that only the test NSE scores and RMSEs for the wtd categories C2 and 

C3 (wtd > 3.0 m) were partially improved by adding anomalies available at neighboring pixels as input to 

the LSTM networks of E1.5 (i.e., E2.2 and E2.3). It indicates the lateral GW exchange mainly influences 

GW dynamics in deep aquifers. The improvement was small (< 0.1 for median RMSEs) for C2 and C3, and 

the network test performance was generally degraded for C1 to which more than half of the pixels over 
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Europe belong, and thus, the LSTM networks of E2.2 and E2.3 are expected to gain worse test performance 

compared to the LSTM networks of E1.5 at the European scale. 

In general, Figures 3.4 and 3.5 show the decrease in network test performance with increasing average wtd 

(from C1 to C3), manifested in the smaller medians of test NSE scores and larger medians of test RMSEs, 

which is in good agreement with the finding in Chapter 2. Moreover, we also found only small contributions 

of ETa to the estimation of wtda at the European scale compared to other drought-related input variables 

reflected in the worst test performance in E1.2 (ETa). 

 
Figure 3.6: Map of test NSE scores achieved by the LSTM networks of E1.5 (pra and θa) in the PRUDENCE regions. 

Table 3.4: Percentages of the selected pixels with a test NSE score ≥ 50% in the PRUDENCE regions [%] for the LSTM 
networks of E1.5. 

SC BI ME EA FR AL IP MD 
37.90 50.10 64.49 50.60 65.74 61.99 44.50 44.90 

 

3.3.2 European water table depth anomaly map in 2015 reproduced by the results 
of the optimal LSTM networks 

In 2015, large parts of the European continent were affected by an extreme summer heatwave, causing 

severe drought (Van Loon et al., 2017). Here, based on the results of the optimal LSTM networks (E1.5: pra 

and θa), we reproduced the European wtda map derived from the TSMP-G2A data set for August 2015 

(Figure 3.7), which was one of the driest months in 2015. The study month is in the testing period, and thus, 

the networks have not seen the data during training. Nevertheless, the reproduced map is in good 

agreement with the original map (Figure 3.7) concerning drought severity through a visual inspection. Both 

show the spatially heterogeneous distribution of wtda over Europe, including the strong GW anomalies (wtda 

≥ 1.5) in ME, EA, and AL and the very wet conditions (wtda ≤ -1.5) in SC and BI, which is consistent with 

previous studies (e.g., Dong et al., 2016; Van Lanen et al., 2016; Van Loon et al., 2017). Moreover, the 
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optimal LSTM networks successfully detected ~41% of strong drought events (wtda ≥ 1.5) and ~29% of 

extreme drought events (wtda ≥ 2) at the European scale in August 2015, outperforming the original LSTM 

networks proposed in Chapter 2 (E1.1, Figure B.2b) with the hit rates only ~15% for strong drought events 

and ~3% for extreme drought events.  

 

Figure 3.7: European wtda maps for August 2015 (i.e., in the testing period) derived from (a) the TSMP-G2A data set 
and (b) the results from the LSTM networks of E1.5 (pra and θa). 

 

Figure 3.8: Results of wavelet coherence analysis on the regionally averaged wtda time series for the wtd categories 
C1 to C3 in ME, which were derived from the TSMP-G2A data set and the results of the LSTM networks of: (a) E1.1: 
pra; and (b) E1.5: pra and θa. The training, validation and testing periods are separated by gray dashed lines.  

3.3.3 Wavelet coherence analysis on regionally averaged water table depth 
anomaly time series in ME 

The significantly improved test performance of the LSTM networks of E1.5 is attributed to information 

contained in θa for estimating certain frequency components of wtda. Therefore, here we conducted wavelet 

coherence analysis on the regionally averaged wtda time series for the wtd categories C1 to C3 in ME 

(Figure 3.8), which were derived from the TSMP-G2A data set and the LSTM network results in E1.1 and 
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E1.5. We focused on the areas within the black dashed lines to eliminate edge effects and to gain a better 

understanding of the contribution of θa on the explanation of GW anomalies in the time-frequency domain.  

By introducing θa as additional input, the coherence between the regionally averaged wtda time series was 

significant improved at periods between 2 and 8 months, especially for the wtd categories C1 and C2, 

revealing the larger contribution of θa to explain GW dynamics at the monthly and seasonal cycles compared 

to pra. Moreover, in Figure 3.8b, most phase shifts at periods between 2 and 8 months are zero for the wtd 

categories C1, suggesting almost no time lag between the estimated and target regionally averaged wtda 

time series in shallow aquifers of ME. The similar conclusions can also be drawn from the results of wavelet 

coherence analysis in other PRUDENCE regions, which are shown in Figures B.3-B.9. 

3.4 Discussion 

The scarcity of wtd observations complicates GW monitoring and requires alternative methods to quantify 

or predict wtda. The pra is the most common proxy of wtda, mainly due to the close connection between 

meteorological and GW droughts and the easy access to global precipitation data. This study, however, 

showed the limits of merely using pra and/or ETa data to estimate wtda over Europe. Similar conclusions 

were also drawn by e.g., Kumar et al. (2016) and Uddameri et al. (2019), who compared the performance 

of SPI over extended time scales to quantify GW drought with the Standardized Groundwater level Index. 

One potential reason is that the occurrence of GW drought depends not only on the precipitation and 

temperature anomalies but also on the antecedent water storage (Van Lanen et al., 2016). Therefore, 

including ground-based information such as θa significantly improved the network results in the presented 

study. In addition, similar to precipitation, θ data is available from e.g., remotely sensed observations and 

reanalysis products, which removes the barriers to using θa as input for estimating wtda in real world 

applications. 

The 2015 European summer heatwave started in June and resulted in peak temperatures in early July 

(Dong et al., 2016). Because most aquifers in Europe are shallow (with simulated wtd ≤ 3m), a rapid GW 

response was noticed, and the GW drought was already severe in several parts of Europe in August 2015. 

Although the impact of the GW drought continued until the end of 2015 (not shown here), its affected area 

was much smaller than the meteorological drought in the same year (Dong et al., 2016; Van Lanen et al., 

2016). This indicates that not all meteorological droughts will evolve into GW droughts, and thus simply 

considering precipitation information is not enough to quantify GW drought, which is consistent with our 

previous observation. Moreover, the locations with GW drought coincided well with those with vegetation 

stress presented in Van Lanen et al. (2016), which also confirms the usefulness of θ information in the 

estimation of GW anomalies. 

The wavelet coherence analysis helped to explain the added value of θa as input in the estimation of wtda 

from the time-frequency perspective. Considering θa consistently increased the coherence between 
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regionally averaged TSMP-G2A and LSTM wtda time series at periods between 2 and 8 months. This 

reflects the systematic contribution of θa to the explanation of GW anomalies. 

Temporal Convolutional Networks (Yan et al., 2020) and Transformers (Vaswani et al., 2017) may constitute 

alternatives to the LSTM networks proposed here, which have been shown to outperform LSTM networks 

in handling long time series. The estimation of GW anomalies in deep aquifers may benefit from the 

application of these methods. Yet, in the simulations, most aquifers in Europe have yearly averaged wtd 

value ≤ 3m, in which the response of wtda to hydrometeorological variables is expected to be relatively fast. 

Therefore, the improvement achieved by these methods may be not significant compared to LSTM networks. 

3.5 Summary and conclusions 

In this study, we conducted several experiments to investigate the impacts of additional input variable 

combinations in the LSTM networks proposed in Chapter 2 to improve monthly wtda estimates at individual 

pixels in eight hydrometeorologically different regions over Europe (i.e., PRUDENCE regions). Except for 

the original input variable pra, we introduced ETa, θa, SWEscaled, and anomalies at adjacent pixels (e.g., rsa, 

see Table 3.2) as optional input variables to the LSTM networks. All assessments were based on anomalies 

derived from the TSMP-G2A data set, which contains daily integrated hydrologic simulation results over the 

European continent.  

Because NSE scores and RMSEs only provide limited information on the network performance, we also 

applied wavelet coherence analysis to investigate the contribution of the input variable(s) to explain GW 

anomalies over Europe in the time-frequency domain.  

The optimal LSTM networks were found with pra and θa as input. Considering θa strongly improved the 

network test performance particularly in the areas with wtd ≤ 3 m (i.e., the major wtd category), suggesting 

that θa plays a significant role in the estimation of wtda over Europe. Because θa is related to agricultural 

drought and wtda shows the degree of GW drought, we conclude that a strong link exists between 

agricultural drought and GW drought on the European continent. The proposed LSTM networks can 

generate good results in shallow aquifers but may fail in deep aquifers. Therefore, one should be careful to 

use such networks in areas with large wtd. 

We recognize that the network performance was limited by the relatively small amount of available training 

data, the simplified tuning of hyperparameters, and the application of simulation data (i.e., the TSMP-G2A 

data set) for evaluation. The biases of the TSMP-G2A data set mainly come from uncalibrated parameters 

and neglect of human impacts (Furusho-Percot et al., 2019). Nevertheless, due to the good agreement of 

the TSMP-G2A data set with hydrological observational datasets, we argue that the methodology is useful 

in determining the optimal input variable combination for the estimation of wtda over Europe. Our study 

highlights the benefit in combining θ information with precipitation information to estimate wtda over Europe. 

The input of the LSTM networks should have valid values continuous in time. In the future, the indirect 
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method based on the optimal LSTM networks may be transferred to real-time monitoring of GW drought at 

the European scale using remotely sensed surface θ observations from e.g., the SMOS (Kerr et al., 2010) 

and SMAP (Entekhabi et al., 2010) missions and precipitation observations from e.g., the GPM (Hou et al., 

2014) and TRMM (Huffman et al., 2007) missions. Similarly, also some numerical weather prediction models 

provide the necessary variables, e.g., the ECMWF Integrated Forecasting System with assimilated ASCAT 

(MetOp Advanced SCATerometer) θ data (Aires et al., 2021). 
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Abstract 

The main challenge of pan-European groundwater (GW) monitoring is the lack of collated water table depth 

(wtd) observations. Combining Long Short-Term Memory (LSTM) networks and transfer learning (TL), we 

propose an AI-based methodology LSTM-TL to produce reliable wtd anomaly (wtda) estimates at the 

European scale in the absence of consistent wtd observational data sets. With substantially reduced 

computational cost, LSTM-TL obtained wtda estimates in good agreement with in-situ wtda measurements 

from approximately 2,600 European GW monitoring wells, showing r ≥ 0.5, RMSE ≤ 1.0 and KGE ≥ 0.3 at 

about or more than half of the pixels. Based on the reconstructed long-term European monthly wtda data 

from the early 1980s to the near present, we provided the first estimate of seasonal wtda trends in different 

parts of Europe, which facilitates the understanding of historical GW dynamics in Europe. 
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4.1 Introduction 

Groundwater (GW) is the dominant source of drinking water in Europe, with about 75% of European Union 

residents relying on GW for their water supply, and recognized as an important contributor to industry (e.g., 

cooling water) and agriculture (irrigation) (European Commission, 2008). In addition, GW plays a critical role 

in sustaining surface water bodies, adapting to climate variability and supporting biodiversity (van der Gun, 

2020). In recent years, however, Europe has experienced several severe summer droughts and heat waves 

(e.g., Fink et al., 2004; Stahl et al., 2016; Van Lanen et al., 2016; Bastos et al., 2020; Boergens et al., 2020), 

affecting all compartments of the water cycle. Droughts often affect large areas across national boundaries 

(Brauns et al., 2020). High ambient atmospheric temperature, continuous precipitation deficits, and large 

evapotranspiration losses translate into delayed and attenuated soil moisture (θ) deficits, which 

subsequently reduce GW recharge and increase water table depths (wtd) and ultimately, cause low 

streamflow or dried-up rivers (Tallaksen et al., 2009; Van Loon, 2015; Hellwig et al., 2020). More frequent 

and severe droughts anticipated in future changing climate will exacerbate the vulnerability of European 

GW systems, emphasizing the necessity of GW monitoring in European GW management (Guerreiro et al., 

2018; Ault, 2020). 

The major challenge for pan-European GW monitoring is the scarcity of collated wtd observations, which is 

attributed to the large spatial gaps and temporal inconsistency in the wtd measurement network (Brauns et 

al., 2020). Sparse wtd measurements pose difficulties in understanding GW dynamics at the continental 

scale and limit insight into extreme events (e.g., droughts) and their impacts on GW over Europe. To 

overcome the challenge, standardized meteorological drought indices over extended time scales and 

terrestrial water storage anomalies derived from the Gravity Recovery and Climate Experiment (GRACE) 

satellite observations have been widely used to predict and quantify GW anomalies (e.g., Bloomfield and 

Marchant, 2013; Kumar et al., 2016; Van Loon et al., 2017; Boergens et al., 2020). However, their reliability 

is often questioned, especially in small watersheds, mainly due to the unrealistic assumption about the linear 

translation of changes in meteorological signals (e.g., precipitation) into GW anomalies or the coarse spatial 

resolution (0.5°, about 55 km) of the GRACE observations (Kumar et al., 2016; Van Loon et al., 2017). 

Physically-based numerical models enable a realistic representation of processes in the terrestrial water 

and energy cycles. While they may provide more accurate GW anomaly estimates than the above methods, 

the models require extensive physical background knowledge and become too time and computationally 

demanding to be applied for high-resolution long-term simulations at larger scales (Wunsch et al., 2018; 

Hauswirth et al., 2021). Therefore, in this study, a methodology is proposed that offers reliable high-

resolution long-term estimates of wtd anomalies (wtda) at the European scale with low computational cost, 

which allows effective and efficient GW monitoring over Europe. 

With the emergence of deep learning (DL), increase in computational power, and availability of large 

datasets, the application of artificial intelligence (AI) has again been attracting considerable attention across 

scientific disciplines, including hydrological sciences. AI can produce hydrological predictions as accurately 
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as physically-based numerical models with much less background knowledge and computational cost 

(Govindaraju, 2000; Shen, 2018). As a subset of AI, DL techniques such as Long Short-Term Memory 

(LSTM) networks have achieved great success in predicting GW changes in previous studies (e.g., J. Zhang 

et al., 2018; Hauswirth et al., 2021; Vu et al., 2021). Specifically, LSTM networks are able to detect long-

short-term dependencies between GW anomalies and input hydrometeorological forcings without explicitly 

defining the time lag, thereby simplifying the data preprocessing process (Hochreiter and Schmidhuber, 

1997; Gers et al., 2000). In the field of hydrology, such DL techniques are generally trained using a 

supervised training algorithm with a supplementary teacher signal (here wtda observations, wtda,o) to guide 

the training process, as shown in Figure 4.1a. As a result, it is challenging to implement DL techniques to 

estimate wtda without sufficient wtda,o used for training. 

Transfer learning (TL), which is a machine learning technique (belonging to the broad field of AI) that applies 

the knowledge gained in a data-rich domain into a related data-scarce domain, can address the issue of 

sparse wtda observations to train DL techniques (Tan et al., 2018). The increased knowledge often 

significantly improves network performance in the data-scarce domain and/or accelerates computing 

progress (Goodfellow et al, 2017c), and thus, TL has become very popular in image classification (e.g., 

Quattoni et al., 2008; Lu et al., 2015; Lee et al., 2017) and natural language processing tasks (e.g., Lu et 

al., 2015). A recent study (Ma et al., 2021) transferring hydrological parameters across continents has also 

demonstrated the usefulness of TL in improving hydrological predictions. In contrast with sparse in-situ 

wtda,o (the data-scarce domain), anomalies derived from modeling results, such as modeled wtda (wtda,m), 

are spatiotemporally continuous throughout the European continent and can be regarded as a data-rich 

domain. Modeling results from physically-based numerical models may contain the realistic relationship 

between wtda and input hydrometeorological variables, and thus, are used for knowledge transfer. 

Here, we propose an AI-based methodology that integrates LSTM networks with TL, LSTM-TL, to estimate 

monthly wtda at the continental scale in order to facilitate pan-European GW monitoring. The methodology 

(illustrated in Figure 4.1b) uses monthly precipitation and θ anomalies (pra and θa) as input, which have 

observations and modeling results available at large scales, and relies on the close connection between 

GW and other compartments in the water cycle to produce wtda estimates. Firstly, the LSTM networks are 

trained at individual pixels on published modeling results (Furusho-Percot et al., 2019) from an uncalibrated 

fully coupled atmospheric-land-surface-groundwater modeling system (i.e., the Terrestrial Systems 

Modeling Platform, TSMP). Secondly, without additional training, the LSTM networks trained in the previous 

step are utilized to estimate wtda based on pra and θa from common observational datasets (pra,o and θa,o), 

thereby transferring the modeled input-output relationship (𝑓𝑓𝑚𝑚) to the observation-based estimation. The 

implementation of LSTM-TL is based on two assumptions, that is, (i) 𝑓𝑓𝑚𝑚 agrees well with the observed input-

output relationship (𝑓𝑓𝑜𝑜); and (ii) the internal LSTM networks successfully capture 𝑓𝑓𝑚𝑚 during training, and the 

learned relationship is labeled as 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚.  
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Figure 4.1: Comparison between the traditional way of constructing LSTM networks and LSTM-TL. (a) Tranditional way 
of constructing LSTM networks. LSTM networks are trained on observations, and their output is labeled as wtda,lstm(o). 
(b) Schematic of LSTM-TL workflow to estimate wtda at individual pixels over Europe. Firstly, LSTM networks are trained 
on modeling results, and the output in this step is labeled as wtda,lstm(m). Secondly, without additional training, the trained 
LSTM networks in the previous step are utilized to produce wtda estimates based on pra,o and θa,o, and the final output 
of LSTM-TL is labeled as wtda,lstm-tl. In this way, the modeled relationship between wtda and input hydrometeorological 
variables learned by the LSTM networks (i.e., 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚) is transferred to the observation-based estimation for wtda. 

LSTM-TL has three salient characteristics. First, the methodology is independent of wtda,o to estimate wtda, 

which allows its usage in large regions even without wtd observations. Second, the methodology can 

produce longer-term wtda estimates than modeling data used for training, and the time length of the obtained 

wtda estimates depends on input pra,o and θa,o. This is useful for reconstructing historical wtda and predicting 

future wtda at the continental scale. Third, once the internal LSTM networks are successfully trained, the 

methodology can be used without additional training, and thus, requires small computational cost to 

generate new wtda estimates. 

In this work, we evaluated the obtained wtda estimates by LSTM-TL (wtda,lstm-tl) with collated in-situ wtda,o 

from approximately 2,600 European GW monitoring wells (Figure 4.2) in order to explore the reliability of 

LSTM-TL. Using pra,o and θa,o from various observational datasets as input to LSTM-TL, we reconstructed 

monthly wtda data at the European scale from the early 1980s to the near present and investigated GW 

changes over Europe in recent drought years. Finally, seasonal wtda trends were derived for different 

European regions from the reconstructed data. To the best of our knowledge, these trends are shown for 

the first time. 
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Figure 4.2: Yearly averaged wtda,o [-] over the European continent from 01/1996 to 12/2016. Black circles mark the 
locations of 2,604 GW monitoring wells, at which wtd observations were collected. Areas bounded by black polygons 
show eight PRUDENCE regions (i.e., SC - Scandinavia; BI - British Isles; ME - Mid-Europe; EA - Eastern Europe; FR - 
France; AL - Alps; IP - Iberian Peninsula; MD - Mediterranean). 

4.2 Methods 

4.2.1 LSTM-TL 

The study proposes LSTM-TL to estimate wtda at individual pixels over Europe in the absence of collated 

wtd measurements, thereby mitigating the negative impact of sparse measurements on European GW 

management. The methodology combines LSTM networks and TL. LSTM networks are utilized to capture 

the time-varying and time-lagged relationship between wtda and input hydrometeorological variables, while 

TL is applied to transfer the modeled input-output relationship (i.e., 𝑓𝑓𝑚𝑚) to the observation-based estimation 

of wtda. Here we select pra and θa as input, due to the large-scale availability of remotely sensed 

observations and reanalysis products. At pixels without θa,m information, pra is the only input variable. Figure 

4.1b illustrates the workflow of LSTM-TL, encompassing two steps, i.e., training the internal LSTM networks 

on modeling results and estimating wtda based on pra,o, θa,o (observations) and 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚(the relationship learned 

by the internal LSTM networks, assuming 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚 ≈ 𝑓𝑓𝑚𝑚). The reader is referred to Chapters 2 and 3 for detailed 

information on the training, validation and testing processes of the internal LSTM networks. Once the 

internal LSTM networks are successfully trained, LSTM-TL can be repeatedly employed to generate new 

wtda data without additional training, which further saves computational resources. The time length of the 

obtained wtda estimates (wtda,lstm-tl) is consistent with input pra,o and θa,o. 

Using 192 Intel Xeon 24-core AVX512 CPUs in parallel, it took LSTM-TL about 32 hours to complete the 

training of the internal LSTM networks at individual pixels over Europe. After successfully training of the 

LSTM networks, LSTM-TL generated wtda,lstm-tl at the European scale on two 24-core CPUs in about two 



 
Chapter 4    Advancing AI-based pan-European groundwater monitoring 

 

65 
 

hours. However, to produce wtda estimates at similar temporal and spatial scales, it usually requires 

physically-based numerical models running on more CPUs for weeks or even months. 

4.2.2 Datasets 

All anomalies here are relative to the 1996-2012 period (i.e., the training period of the LSTM networks in 

LSTM-TL), to avoid future information from leaking into the LSTM networks during training. The wtda was 

computed by Eq. (4.1) for each calendar month and pixel individually to ensure the spatial comparability 

and to account for the seasonality. The calculation of pra and θa is similar to wtda. 

𝑤𝑤𝑡𝑡𝑑𝑑𝑢𝑢 = (𝑤𝑤𝑡𝑡𝑑𝑑𝑚𝑚 − 𝑤𝑤𝑡𝑡𝑑𝑑𝑢𝑢𝑣𝑣)/𝑤𝑤𝑡𝑡𝑑𝑑𝑙𝑙𝑠𝑠,                                               (4.1)  

where  𝑤𝑤𝑡𝑡𝑑𝑑𝑚𝑚 is the monthly data of wtd, 𝑤𝑤𝑡𝑡𝑑𝑑𝑢𝑢𝑣𝑣 is the climatological average of 𝑤𝑤𝑡𝑡𝑑𝑑𝑚𝑚 (i.e., averages of 𝑤𝑤𝑡𝑡𝑑𝑑𝑚𝑚 

in January, February, …, December), and 𝑤𝑤𝑡𝑡𝑑𝑑𝑙𝑙𝑠𝑠 is the climatological standard deviation of 𝑤𝑤𝑡𝑡𝑑𝑑𝑚𝑚. 

The monthly pra,m, θa,m and wtda,m were derived from published modeling results of TSMP from 1996 to 

2016, with a spatial resolution of 0.11° (Furusho-Percot et al., 2019). The current version (v1.1) of TSMP 

constitutes the numerical weather prediction model of COnsortium for Small-scale MOdeling (COSMO), 

v5.01, the National Center for Atmospheric Research (NCAR) Community Land Model (CLM), v3.5, and the 

3D surface–subsurface hydrologic model ParFlow, v3.2, which are externally coupled by the Ocean 

Atmosphere Sea Ice Soil Model Coupling Toolkit (OASIS3–MCT) coupler (Gasper et al., 2014; Shrestha et 

al., 2014). Therefore, it closes the terrestrial water and energy cycle from GW via the land surface to the top 

of the atmosphere (Keune et al, 2016), which is unique.  

The monthly pra,o were derived from the ERA5 bias-corrected “Rainfall flux” and “Snowfall flux” data, the 

COSMO-REA6 “TOT_PRECIP” data and the ERA5-Land “Total precipitation” data at the individual pixel 

level, and the monthly θa,o were obtained from the ERA5-Land “Volumetric soil water layer 1” data (i.e., 

volume of soil water at 0-7 cm below the land surface) and the GLEAM v3.5a “SMsurf” at the individual pixel 

level. The ERA5 bias-corrected dataset is a global-scale hourly reanalysis product with a spatial resolution 

of 0.5°, ranging from 1979 to 2019 (Muñoz Sabater, 2021a). The ERA5 bias-corrected precipitation data 

(“Rainfall flux” + “Snowfall flux”) at hourly time steps have a mean absolute error < 0.15 mm h-1 across all 

13 FLUXNET2015 sites, superior to its previous version (i.e., the WFDEI dataset, “WATCH Forcing Data 

methodology applied to ERA-Interim reanalysis data”) (Cucchi et al., 2020). The COSMO-REA6 dataset is 

a Europe-scale hourly reanalysis product with a spatial resolution of 0.055°, ranging from 1995 to August 

2019. The COSMO-REA6 “TOT_PRECIP” data reproduces the diurnal cycle of precipitation intensities at > 

1,000 weather stations across Germany for summer and winter. The probability distributions of 3 h 

aggregated precipitation sums from the COSMO-REA6 data and in-situ measurements agree well, e.g., in 

terms of the integrated quadratic distance (Bollmeyer et al., 2015). The ERA5-Land dataset is a global-scale 

hourly reanalysis product including θ with a spatial resolution of 0.1°, ranging from 1981 to May 2021 (Muñoz 

Sabater, 2021b). The GLEAM v3.5a dataset is a global-scale daily θ reanalysis product with a spatial 
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resolution of 0.25°, ranging from 1980 to 2020 (Miralles et al.,2011; Martens et al., 2017). The ERA5-Land 

and GLEAM θ data both agree well with in-situ measurements from > 800 sensors located primarily in the 

USA and Europe demonstrated in an intercomparison of 18 θ products (Beck et al., 2021). Before calculating 

anomalies, all input observational datasets were re-gridded to 0.11° × 0.11° via the first-order conservative 

interpolation method (Jones, 1999). 

The monthly wtda,o were derived from consecutive monthly wtd measurements at 2,604 GW monitoring 

wells (Figure 4.2) in Europe from 1996 to 2016. The wtd measurements were obtained either from web 

services or by request from governmental authorities; detailed information is provided in Table C.1. The 

0.11 ° gridded wtda,o data used for evaluation were estimated by averaging wtda.o from all the wells that lie 

within the same 0.11° pixels. The number of wells within each 0.11° pixel varies from 1 to 49, with a median 

value of 2 (Figure C.1). The pixels are unevenly distributed in eight hydrometeorologically different regions 

over Europe (named PRUDENCE regions) (Christensen and Christensen, 2007), and their numbers are 

provided in Table C.2. The yearly averaged wtda,o generally ranged from -0.5 to 0.5 at individual pixels for 

the 1996-2016 period, as illustrated in Figure 4.2. 

4.2.3 Evaluation metrics 

In this study, we used the Pearson correlation coefficient (r), root mean square error (RMSE), Nash-Sutcliffe 

efficiency (NSE) and Kling-Gupta efficiency (KGE) as evaluation metrics. The equations to calculate the 

scores of wtda,lstm-tl based on wtda,o are shown below. The scores of other wtda estimates were computed in 

a similar way. The ideal r, RMSE, NSE and KGE of wtda estimates are one, zero, one and one, respectively.  

𝑝𝑝 = ∑(𝑤𝑤𝑙𝑙𝑠𝑠𝑎𝑎,𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙−𝑡𝑡𝑙𝑙−𝑤𝑤𝑙𝑙𝑠𝑠𝑎𝑎,𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙−𝑡𝑡𝑙𝑙������������������)(𝑤𝑤𝑙𝑙𝑠𝑠𝑎𝑎,𝑜𝑜−𝑤𝑤𝑙𝑙𝑠𝑠𝑎𝑎,𝑜𝑜����������)

�∑(𝑤𝑤𝑙𝑙𝑠𝑠𝑎𝑎,𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙−𝑡𝑡𝑙𝑙−𝑤𝑤𝑙𝑙𝑠𝑠𝑎𝑎,𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙−𝑡𝑡𝑙𝑙������������������)2 ∑(𝑤𝑤𝑙𝑙𝑠𝑠𝑎𝑎,𝑜𝑜−𝑤𝑤𝑙𝑙𝑠𝑠𝑎𝑎,𝑜𝑜����������)2
                                                                                                      (4.2) 

𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸 = �∑(𝑤𝑤𝑙𝑙𝑠𝑠𝑎𝑎,𝑜𝑜−𝑤𝑤𝑙𝑙𝑠𝑠𝑎𝑎,𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙−𝑡𝑡𝑙𝑙)2

𝑁𝑁
                                                                                                                        (4.3) 

𝑁𝑁𝑆𝑆𝐸𝐸 = 1 − ∑(𝑤𝑤𝑙𝑙𝑠𝑠𝑎𝑎,𝑜𝑜−𝑤𝑤𝑙𝑙𝑠𝑠𝑎𝑎,𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙−𝑡𝑡𝑙𝑙)2

∑(𝑤𝑤𝑙𝑙𝑠𝑠𝑎𝑎,𝑜𝑜−𝑤𝑤𝑙𝑙𝑠𝑠𝑎𝑎,𝑜𝑜����������)2
                                                                                                                      (4.4) 

𝐾𝐾𝐾𝐾𝐸𝐸 = 1 −�(𝑝𝑝 − 1)2 + (
𝜎𝜎𝑤𝑤𝑡𝑡𝑤𝑤𝑎𝑎,𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙−𝑡𝑡𝑙𝑙

𝜎𝜎𝑤𝑤𝑡𝑡𝑤𝑤𝑎𝑎,𝑜𝑜
− 1)2 + (𝑤𝑤𝑙𝑙𝑠𝑠𝑎𝑎,𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙−𝑡𝑡𝑙𝑙������������������

𝑤𝑤𝑙𝑙𝑠𝑠𝑎𝑎,𝑜𝑜���������� − 1)2                                                                        (4.5) 

where 𝑤𝑤𝑡𝑡𝑑𝑑𝑢𝑢,𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚−𝑙𝑙𝑙𝑙��������������� and 𝜎𝜎𝑤𝑤𝑙𝑙𝑠𝑠𝑎𝑎,𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙−𝑡𝑡𝑙𝑙 are the mean and standard deviation of wtda,lstm-tl, respectively. 𝑤𝑤𝑡𝑡𝑑𝑑𝑢𝑢,𝑜𝑜��������� 

and 𝜎𝜎𝑤𝑤𝑙𝑙𝑠𝑠𝑎𝑎,𝑜𝑜 are the mean and standard deviation of wtda,o, respectively. 𝑁𝑁 is the number of time steps in the 

wtda,lstm-tl and wtda,o time series. 
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Figure 4.3: Performance of LSTM-TL in estimating wtda at pixels with wtda,o. (a)-(d) Maps of r, RMSE, NSE, KGE 
obtained by LSTM-TL at pixels with wtda,o in Europe for the 1996-2016 period. (e) Violin plots show r, RMSE, NSE, KGE 
of wtda,lstm(m), wtda,m, wtda,lstm-tl and wtda,lstm(o) in seven PRUDENCE regions for the 1996-2016 period. The violin plots 
reveal the distribution of scores in each region, and the bold line in each violin plot indicates the regional median of 
scores. (f) Regionally averaged wtda,lstm(m), wtda,m, wtda,lstm-tl, wtda,lstm(o) and wtda,o time series in ME for the 1996-2016 
period. The black dashed line indicates wtda = 0. A long time period with wtda > 0 corresponds to a dry event while a 
long time period with wtda < 0 corresponds to a wet event. 
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4.3 Results 

4.3.1 LSTM-TL performance 

LSTM-TL produced wtda,lstm-tl at the European scale with a spatial resolution of 0.11° (about 12.5 km) from 

01/1996 to 12/2016 based on anomalies from modeling results of TSMP and averaged pra,o and θa,o from 

observational datasets (i.e., ERA5 bias-corrected, COSMO-REA6, ERA5-Land and GLEAM datasets). To 

assess the performance of LSTM-TL, we evaluated the obtained wtda,lstm-tl with 0.11° gridded wtda,o data, 

which were esimated from consecutive monthly wtda,o data at around 2,600 European GW monitoring wells 

(Figure 4.2) from 01/1996 to 12/2016. The evaluation metrics used here are r, RMSE, NSE and KGE. The 

r shows the linear correlation between wtda estimates and wtda,o. RMSE and NSE reflect the goodness of fit 

of LSTM-TL in terms of the magnitude and variance of the error. Since anomalies were investigated here, 

the obtained RMSEs are unbiased. KGE is a simliar metric to NSE, which combines the three components 

of NSE (correlation, variability bias and mean bias) in a more balanced way (Knoben et al., 2019). The long-

term means of wtda and wtda,o are close to zero (per definition) at individual pixels, resulting in a high mean 

bias and ultimately a low and negative KGE, which is flawed. To avoid this, we set the mean bias term in 

the KGE to zero in this study. For pixels with wtda,o, LSTM-TL achieved r ≥ 0.5, RMSE ≤ 1.0, NSE ≥ 0.3 

(NSE ≥ 0.0) and KGE ≥ 0.3 at 42%, 56%, 28% (57%) and 57% of the pixels for the 1996-2016 period, 

respectively (Figures 4.3a-d), showing reliable performance in estimating wtda over Europe. Regional 

differences were observed in the scores (Figure 4.3e). LSTM-TL always obtained the best scores in British 

Isles (BI), with a median r of 0.63, a median RMSE of 0.77, a median NSE of 0.35, and a median KGE of 

0.60, and the worst scores in Mediterranean (MD), with a median r of 0.37, a median RMSE of 1.15, a 

median NSE of -0.05, and a median KGE of 0.29. We focused on the medians of the scores to reduce the 

influence of outliers on the overall performance evaluation. 

We compared wtda,lstm-tl with wtda,lstm(m) (outputs of the LSTM networks using modeling results from TSMP 

as input), wtda,m and wtda,lstm(o) (outputs of the LSTM networks trained on observations) in seven 

PRUDENCE regions in terms of r, RMSE, NSE and KGE (Figure 4.3e), which were derived based on wtda,o. 

The medians of the scores are provided in Table C.3. Eastern Europe (EA) was not considered, which has 

no pixel with wtda,o. In general, the scores of wtda,lstm-tl were improved compared to wtda,lstm(m) and wtda,m. 

The largest improvement was found in SC, with an increase > 0.25 in median r and a decrease > 0.15 in 

median RMSE. The superiority of LSTM-TL in estimating wtda can be attributed to the correction of input 

data with pra,o and θa,o. The improved scores of wtda,lstm-tl indirectly corroborates the realism of TSMP 

simulations in terms of hydrometeorological dynamics, which is consistent with the conclusions of Furusho-

Percot et al. (2019) and Hartick et al. (2021). Similar distributions of the scores of wtda,lstm(m) and wtda,m 

displayed in the violin plots (Figure 4.3e) demonstrate the ability of the LSTM networks to capture 𝑓𝑓𝑚𝑚. The 

wtda,lstm(o) is the only estimate that involved wtda,o in its production, and thus, not surprisingly, received the 

best scores in almost all regions. Differences existed between the scores of wtda,lstm-tl and wtda,lstm(o) but 
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decreased for the period 2015-2016 (i.e., the test period when the LSTM networks were applied to previously 

unobserved data in the training, Figure C.2).  

Mid-Europe (ME, zoomed in Figures 4.2 and 4.3a-d) has the most pixels with wtda,o over Europe, i.e., 592 

out of 681. Both regionally averaged wtda,lstm-tl and wtda,lstm(o) had good agreement with wtda,o in ME (Figure 

4.3f). The KGE of the regionally averaged wtda,lstm-tl is 0.73, only 0.10 lower than that of the regionally 

averaged wtda,lstm(o). This lends confidence in applying LSTM-TL in areas with limited or without wtd 

observations. In addition, the regionally averaged wtda,lstm-tl outperformed wtda,lstm(m) and wtda,m at peaks 

(|wtda,o| > 0.5), obtaining increases of 0.12 and 0.14 in NSE, which reflects the added value of LSTM-TL in 

predicting extreme events such as GW droughts. 

4.3.2 Recent groundwater drought analysis using reconstructed pan-European 
long-term water table depth anomaly data 

The time length of wtda,lstm-tl is determined by input pra,o and θa,o, which allows the generation of wtda,lstm-tl 

beyond the time period of wtda,m used for training (i.e., the 1996-2016 period). As aforementioned, this is an 

advantage of LSTM-TL. Here we adopted LSTM-TL to reconstruct pan-European monthly wtda data RD1-6 

(Table 4.1) from the early 1980s to the near present based on various pra,o and θa,o pairs from observational 

datasets (i.e., pra,o from the ERA5 bias-corrected, COSMO-REA6 and ERA5-Land datasets and θa,o from 

the ERA5-Land and GLEAM datasets). Different input pra,o and θa,o data result in different wtda,lstm-tl data. 

The internal LSTM networks were only trained once on modeling results and then used for data 

reconstruction without additional training.  

Table 4.1: Sources of input pra,o and θa,o data utilized to reconstruct wtda data RD1-6 as well as time periods of RD1-6. 

Reconstructions Data source of input pra,o Data source of input θa,o Time period 
RD1 ERA5 bias-corrected ERA5-Land 01/1981-12/2019 
RD2 ERA5 bias-corrected GLEAM 01/1980-12/2019 
RD3 COSMO-REA6 ERA5-Land 01/1995-08/2019 
RD4 COSMO-REA6 GLEAM 01/1995-08/2019 
RD5 ERA5-Land ERA5-Land 01/1981-05/2021 
RD6 ERA5-Land GLEAM 01/1981-12/2020 

 

Figure 4.4 illustrates the spatial distribution of yearly averaged wtda,lstm-tl over the European continent from 

RD1-6 for 2003, 2015, 2018 and 2019, constituting drought years (Fink et al., 2004; Van Lanen et al., 2016; 

Bastos et al., 2020; Boergens et al., 2020). The spatial distribution presents similar patterns of positive and 

negative wtda,lstm-tl over Europe across all reconstructed data for the investigated years. We found positive 

anomalies (i.e., dry events) in all European regions except Iberian Peninsula (IP) for 2003 and in ME, EA, 

parts of France (FR) and IP for 2015, which agree well with the reported regions affected by meteorological 

droughts (Fink et al., 2004; Van Lanen et al., 2016). During the 2018-2019 period, the central and 

northeastern parts of Europe experienced persistent GW droughts. The GW deficits were triggered by 

extreme spring warming and brightening in May 2018 and further exacerbated during consecutive summer 

heat waves in 2018 and 2019 (Bastos et al., 2020; Boergens et al., 2020; Hari et al., 2020). A recovery of 

GW storage took more than one year in ME, EA and FR (Figure 4.5). In these regions, the strongest impact 
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of GW drought (manifested by the maximum wtda,lstm-tl) was observed in October and November 2018 after 

summer precipitation deficits, reflecting the lagged response of GW to precipitation. 

 
Figure 4.4: Spatial distribution of yearly averaged wtda,lstm-tl over the European continent for the recent drought years 
2003, 2015, 2018 and 2019. The anomalies were calculated from (a) RD1; (b) RD2; (c) RD3; (d) RD4; (e) RD5; and (f) 
RD6. 

 

Figure 4.5: Regionally averaged wtda,lstm-tl from RD1-6 over eight PRUDENCE regions for the 2018-2019 period. The 
black dashed lines indicate wtda = 0. A long time period with wtda > 0 corresponds to a dry event while a long time 
period with wtda < 0 corresponds to a wet event. 
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4.3.3 Seasonal trends of water table depth anomalies in various European regions 

We derived seasonal wtda trends in different PRUDENCE regions by fitting seasonal averaged wtda,lstm-tl 

from the reconstructed data RD1-6 into first-order polynomials y = mx + b. The m is the change rate of wtda 

[y-1], where m > 0 corresponds to a drying tend and m < 0 corresponds to a wetter condition. The Wald test 

(Hauck and Donner, 1977) was utilized to determine the statistical significance of the trends, with 95% as 

the threshold. For verification, we compared seasonal averaged wtda and their trends in ME (i.e., the 

PRUDENCE regions with the most pixels with wtda,o) obtained from RD1-6 and wtda,o for the 1996-2016 

period (Figure 4.6). The seasonal averaged wtda,lstm-tl from RD1-6 showed a good match with wtda,o in ME 

except overestimated values in the Summer-Winter 2002 (a record flood over Europe). Both RD1-6 and 

wtda,o revealed that there was no significant wtda trend in ME for the 1996-2016 period. 

 

Figure 4.6: Seasonal averaged wtda and their trends in ME from RD1-6 and wtda,o for the 1996-2016 period (MAM - 
March, April and May, i.e., spring; JJA - June, July and August, i.e., summer; SON - September, October and November, 
i.e., autumn; DJF - December, January and February, i.e., winter). The bold lines show the seasonal trends of wtda,lstm-

tl in RD1-6 while the bold dashed lines present the seasonal trends of wtda,o. The red, blue and gray trend lines indicate 
a drier GW condition at the 95% significant level, a wetter GW condition at the 95% significant level and no significant 
trend, respectively. The black dashed lines represent wtda = 0. A long time period with wtda > 0 corresponds to a dry 
event while a long time period with wtda < 0 corresponds to a wet event. 

Figure 4.7 maps seasonal wtda trends at the European scale in RD1-6 for the time periods listed in Table 

4.1, with pixels without significant trends masked in gray. Inspecting the maps, ME, EA and FR tended to 

experience intensified GW droughts while parts of MD tended towards a wetter GW pattern during the study 

periods. This finding is basically consistent with the trend pattern observed in the GRACE terrestrial water 

storage data for the 2002-2017 period, that is, a distinct pattern of mid-latitude drying and of high- and low-

latitude wetting (Reager et al., 2016; Tapley et al., 2019). However, the statistical significance of the 

GRACE-observed trend pattern was not assessed. The seasonal wtda trends are strongly influenced by the 

LSTM-TL input pra,o and θa,o. The reconstructed data by LSTM-TL using GLEAM θa,o as input (RD2, RD4 

and RD6, Figures 4.7b, d and f) exhibited more pronounced and coherent wtda trends in four seasons than 

the ones using ERA5-Land θa,o as input (RD1, RD3 and RD5, Figures 4.7a, c and e). The latter showed 

weaker wtda trends in spring and winter. In general, the seasonal wtda trends in the reconstructed data were 

in good agreement with the trends in the LSTM-TL input pra,o and θa,o data used to produce the data (Figures 

C.3-8).  
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Figure 4.7: Seasonal wtda trend maps over Europe (MAM - March, April and May, i.e., spring; JJA - June, July and 
August, i.e., summer; SON - September, October and November, i.e., autumn; DJF - December, January and February, 
i.e., winter). The seasonal wtda trends were derived from (a) RD1; (b) RD2; (c) RD3; (d) RD4; (e) RD5; and (f) RD6. The 
pixels without significant trends are masked in gray. 

4.4 Discussion 

Efficient GW monitoring is essential for European GW management, especially under increasing pressure 

with changing climate. Yet, it is challenging to monitor GW at large scales, mainly due to the lack of wtd 

observations. To address this challenge, here we propose the LSTM-TL methodology, which combines 

LSTM networks and TL, to produce spatiotemporally continuous wtda estimates at the European scale in 

the absence of wtd observations. The core idea of the methodology is to transfer the modeled relationship 

(𝑓𝑓𝑚𝑚) between wtda and input hydrometeorological variables (here pra and θa) to the observation-based 

estimation, in order to provide reliable wtda estimates for regions without wtd observations. The 𝑓𝑓𝑚𝑚  is 

assumed to agree with the observed one (𝑓𝑓𝑜𝑜). Compared with physically-based numerical models, LSTM-

TL requires orders of magnitude less computational resources in generating wtda estimates (i.e., wtda,lstm-tl) 

at the same temporal and spatial scales, thereby facilitating early warning and fast decision making for 

extreme GW events. Based on the European monthly wtda data reconstructed by LSTM-TL, we provided 

the first estimates of seasonal wtda trends in different European regions, which show that central and eastern 

Europe had significant drying trends during the study periods.  



 
Chapter 4    Advancing AI-based pan-European groundwater monitoring 

 

73 
 

Some limitations of the derived LSTM-TL should be recognized. First, in this study, LSTM-TL neglects 

anthropogenic interventions, such as GW pumping, on GW dynamics, because the modeling results used 

for training the internal LSTM networks give a near-natural representation of the water cycle (Furusho-

Percot et al., 2019). Thus, the methodology may underestimate wtda in regions with strong human impacts 

such as IP and MD (de Graaf et al., 2019). Second, while the utilized modeling results guarantee good 

spatial coverage of the European domain, their data are limited at the individual pixel level (< 300 time steps 

for training), which may impair the skill of LSTM-TL in estimating wtda. Improved performance of LSTM-TL 

can be expected as training data increase. Last but not least, we found the LSTM networks in LSTM-TL 

usually had poor test performance in deep aquifers, which might be attributed to the inability to capture very 

long-term dependences between wtda and input hydrometeorological variables. Some alternative DL 

techniques that are superior in time series forecasting can be considered, such as Transformers (Vaswani 

et al., 2017), which can effectively capture dependences within the time steps used for training. 

Despite the above limitations, our results show that LSTM-TL had reasonable performance over Europe 

and may serve as a useful alternative to in-situ wtda,o until collated wtd data sets are available. In addition 

to data reconstruction described in this study, LSTM-TL can be deployed in online GW monitoring, which 

would be useful in European GW management. 
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5.1 Summary and conclusions 

Efficient groundwater (GW) monitoring is indispensable for GW management under today’s changing 

climate and increasing human interventions. Up to date, however, it is still challenging to monitor GW at 

large scales, mainly due to the lack of collated water table depth (wtd) observations. The understanding of 

extreme GW events is often derived from meteorological data (e.g., precipitation), which is insufficient. 

Although alternative methodologies, such as physically-based numerical models, have been used to predict 

and quantify GW changes (see Section 1.3 for details), they are computationally expensive for high-

resolution long-term estimation over large regions. Therefore, this PhD work proposes a novel methodology 

based on advanced machine learning (ML) techniques, i.e., Long Short-Term Memory (LSTM) networks 

and transfer learning (TL), to produce reliable monthly wtd anomaly (wtda) estimates at the European scale 

with low computational cost, which is named LSTM-TL. The core idea of LSTM-TL is to generate wtda 

estimates from closely related hydrometeorological variables that have spatiotemporally continuous 

coverage over Europe. In this work, precipitation and soil moisture anomalies (pra and θa) are selected as 

input. Because of limited wtda observations (wtda,o) available for training, LSTM-TL incorporates established 

knowledge from an uncalibrated physically-based modeling system (i.e., Terrestrial Systems Modeling 

Platform, TSMP) into the internal LSTM networks, assuming that the modeled input-output relationship (𝑓𝑓𝑚𝑚) 

agrees well with the observed (𝑓𝑓𝑜𝑜). The construction of the internal LSTM networks is merely based on the 

TSMP-G2A data set, which encompasses simulation results from TSMP. The steps of developing LSTM-

TL are described in three chapters (Chapters 2 to 4), including exploring the potential of LSTM networks to 

estimate wtda over Europe, optimizing the developed LSTM networks and applying the optimized LSTM 

networks to reality. In the first step, the basic architecture of the LSTM networks in LSTM-TL and the generic 

workflow to train the LSTM networks at individual pixels are established. In the second step, the input 

variables of LSTM-TL are determined. In the final step, LSTM-TL is proposed for real-world applications. All 

the data utilized in this work are from the TSMP-G2A data set, except for the final step involving observations. 

The findings in the three steps are summarized as follows. 

In the first step (presented in Chapter 2), the potential of LSTM networks to estimate wtda at the individual 

pixel level over Europe based on pra was investigated assuming that pra is a useful proxy for wtda. LSTM 

networks were applied because they are superior in exploiting the long-short-term dependencies between 

time sequences, which is expected in the lagged response of wtda to pra. The reproduced wtda maps by the 

LSTM results showed good agreement with the TSMP-G2A wtda maps for drought months in terms of the 

spatial distribution of dry and wet events, demonstrating the ability of LSTM networks to produce reliable 

wtda estimates with respect to the TSMP-G2A data set. The network test performance was significantly 

affected by local factors, including yearly averaged wtd, evapotranspiration (ET), soil moisture (θ), and snow 

water equivalent (SWE). This also resulted in varying network test performance in hydrometeorologically 

different regions over Europe. Cross-wavelet transform (XWT) was conducted to analyze the time-frequency 

patterns in the TSMP-G2A pra and wtda data, and the results confirmed that the inability of the LSTM 
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networks to estimate wtda at some pixels was due to changing temporal patterns in the TSMP-G2A pra-wtda 

relationship during the study period.  

In the second step (presented in Chapter 3), the performance of the developed LSTM networks in the 

previous step was improved via introducing additional input variables. A number of input 

hydrometeorological variables were studied in various experiments, which are pra, ET anomaly (ETa), θa, 

scaled yearly averaged SWE (SWEscaled), and anomalies at adjacent pixels (e.g., river stage anomaly, rsa). 

The LSTM networks with pra and θa as input achieved the most improvement in the wtda estimation at the 

European scale. Considering θa substantially improved the obtained wtda estimates especially in the areas 

with wtd ≤ 3 m (i.e., the major wtd category of Europe), and thus, it is important to integrate ground-based 

information such as θ with meteorological information to predict and quantify GW changes over Europe. As 

θa and wtda are measures of agricultural drought and GW drought, respectively, the considerable 

contribution of θa to the wtda estimation also indicates a close connection between agricultural drought and 

GW drought on the European continent.  

In the final step (presented in Chapter 4), TL was utilized to transfer 𝑓𝑓𝑚𝑚  between wtda and input 

hydrometeorological variables (here pra and θa) to the observation-based estimation of wtda, and LSTM-TL 

was proposed to provide reliable wtda estimates for regions with limited or without wtd observations. The 

methodology constitutes of two steps, that are training the internal LSTM networks on the data derived from 

the TSMP-G2A data set and estimating wtda based on the observed pra and θa (pra,o and θa,o) and the 

relationship learned from the TSMP-G2A data set by the internal LSTM networks (𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚, assuming 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚 ≈

𝑓𝑓𝑚𝑚 ). LSTM-TL obtained wtda estimates in good agreement with in-situ wtda,o at approximately 2,600 

European GW monitoring wells, showing the reliability of the methodology. LSTM-TL can produce wtda 

estimates beyond the time period of the TSMP-G2A data set used for training, where the time period of the 

obtained wtda estimates is determined by input pra,o and θa,o. Using LSTM-TL, monthly pan-European wtda 

data from the early 1980s to the near present were reconstructed based on various pra,o and θa,o pairs. The 

reconstructed wtda data provided the first estimate of seasonal wtda trends in different European regions in 

the past, contributing significantly to the understanding of historical GW dynamics at the continental scale 

over Europe. Compared with physically-based numerical models, LSTM-TL requires orders of magnitude 

less computational resources in estimating wtda at the same temporal and spatial scales, thus advancing 

early warning and fast decision making for extreme GW events. 

The results of this PhD work demonstrate the ability of LSTM networks and LSTM-TL to generate reliable 

wtda estimates at the European scale with appropriate input variables. During the development of LSTM-

TL, the structure of the internal LSTM networks, the processes of constructing the internal LSTM networks, 

the data used to train the internal LSTM networks (here the TSMP-G2A data set) and the input variables of 

LSTM-TL have been determined. Thus, the uncertainties in the obtained wtda estimates by LSTM-TL mainly 

come from input pra,o and θa,o data. While LSTM-TL has been implemented over Europe, it can be transferred 

to other regions in the world by changing the simulation data used to build the internal LSTM networks and 
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adjusting its input variables. This work does not conclude that the role of physically-based numerical models 

in the hydrometeorological sciences can be replaced with ML techniques, which provide important data in 

the absence of ground-based observations, e.g., wtd. The LSTM networks in LSTM-TL are trained on 

simulation results from physically-based numerical models at individual pixels over Europe, and the success 

of LSTM-TL in estimating wtda highlights the advantage of combining ML techniques with knowledge 

contained in physically-based numerical models in hydrological studies.  

5.2 Limitations 

ML-based models are constructed exclusively from data, and thus, their performance is strongly influenced 

by the quality and quantity of the data utilized to build the model. Compared to shallow artificial neural 

networks (ANNs), deep learning (DL) techniques including LSTM networks generally require more data for 

training, due to their more complex and larger architectures. While in this study, the TSMP-G2A data set 

guarantees spatiotemporally continuous coverage over Europe, it provides limited data (< 300 time steps) 

at the individual pixel level for constructing the internal LSTM networks, which may constrain the 

performance of LSTM-TL. The TSMP-G2A data set represents a near-natural climatology of the physical 

states of the terrestrial water and energy cycles, so the impact of human interventions is neglected in the 

current LSTM-TL implementation. The obtained wtda estimates may be biased in regions with intensive 

human activities such as reservoirs and farmlands with GW abstractions and irrigation. As a result of 

anthropogenic warming, recent decades have seen many record-breaking extreme events worldwide 

(Guerreiro et al., 2018), e.g., the European summer heat wave of 2003 (Fink et al., 2004) and the 

consecutive European summer heat waves and droughts of 2018 and 2019 (Boergens et al., 2020). Hence, 

historical observations may not always be a reliable guide for future events, further limiting the predictive 

capacities of LSTM-TL driven completely by historic data.  

Hyperparameter tuning is an important step in the construction of ML-based models. Hyperparameters refer 

to parameters that govern the training process of ML-based models, such as the optimizer and its learning 

rate, initial states of weights and biases, and number of hidden neurons in an ANN. The ranges of 

hyperparameters to be tuned are problem-specific and depend on user’s experience. Tuning a large number 

of hyperparameters is usually computational demanding. Here, to save computational resources, only the 

number of hidden neurons was tuned, ranging from 1 to 100, which may reduce the ability of LSTM-TL to 

estimate wtda.  

The interpretability of a methodology stands for the ability to explain its performance, which is critical in 

hydrological sciences. The use of ML-based models is often criticized for their “black-box-ness”. In 

particular, the behavior of LSTM networks is more difficult to interpret than other ML techniques because of 

the time-varying weights and biases in the linkages between neurons. This is also the case in the presented 

study.  
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ML-based models only address unidirectional cause-effect chains. The LSTM networks utilized in this work 

consider the impact of input hydrometeorological forcings on target wtda, but neglect the reverse influence 

(detailed in Section 1.2). The resultant disagreement between the estimated and observed wtda requires 

further investigation.   

Furthermore, the LSTM networks in LSTM-TL tended to perform poorly in deep aquifers, resulting in less 

reliable wtda estimates. The poor performance may be attributed to the small training data size and simplified 

hyperparameter tuning, and it may also suggest the inability of LSTM networks to exploit very long-term 

dependencies between input and target time sequences.  

While considering the above limitations, LSTM-TL has been shown to generate reliable wtda estimates over 

Europe and may serve as an additional methodology to in-situ wtda,o and time series analyses.. 

5.3 Outlook 

LSTM-TL is useful in practical applications, such as online GW monitoring and GW drought predictions 

based on e.g. medium-range and seasonal weather and soil moisture forecasts. Because of sparse wtd 

observations over large regions, the obtained wtda estimates can be utilized for validation of wtd products. 

Although the methodology has been proposed for estimating wtda over Europe, it can be adapted to other 

regions and ground-based variables that lack large-scale observations. As illustrated by the XWT analysis, 

the poor performance of the LSTM networks at some pixels was induced by changing temporal patterns in 

the TSMP-G2A pra-wtda relationship during the study period. The changing temporal patterns may indicate 

signals of climate change and should be further analyzed.  

In the future, LSTM-TL can be improved in terms of predictive performance and interpretability. Increasing 

training data size and fine-tuning hyperparameters are expected to improve the obtained wtda estimates. 

During hyperparameter tuning, a trade-off should be made between reliable estimates and reasonable 

computational cost. Remotely sensed observations of ground-based variables, such as GRACE terrestrial 

water storage anomalies (Watkins et al., 2015), can be included in LSTM-TL as input to account for human 

impacts on GW dynamics. Additionally, the architecture of the internal LSTM networks can be modified to 

address the two-way feedbacks between wtda and input hydrometeorological variables, which may lead to 

improved wtda estimates. Moreover, Temporal Convolutional Networks (Yan et al., 2020) and Transformers 

(Vaswani et al., 2017) can be substitutes for the internal LSTM networks, which have been shown to 

outperform LSTM networks in long-term time series prediction. 

With the advances in ML/DL, many ML/DL interpretation methods are available for explaining LSTM 

networks' results, e.g., integrated gradients (Sundararajan et al., 2017), contextual decomposition (Murdoch 

et al., 2018) and Layer-wise Relevance Propagation (Arras et al., 2019). A good understanding of the LSTM-

TL behavior will further improve its output. In addition, some more transparent ML/DL techniques can be 

applied. Transformers are also a good option in this context. 
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5.4 Code and data availability 

The python scripts for constructing LSTM networks and LSTM-TL and analyzing results are available online 

at https://icg4geo.icg.kfa-juelich.de/SoftwareTools/GEOEssential/-/tree/master/Scripts_papers. The TSMP-

G2A data set is available online at https://doi.org/10.17616/R31NJMH3 (Furusho-Percot et al., 2019). The 

availability of in-situ wtd measurements utilized in the evaluation of LSTM-TL is stated in Table C.1. The 

input, output and target data of LSTM networks and LSTM-TL related to this work are available online at the 

links listed in Table 5.1. 

Table 5.1: Links of the input, output and target data of LSTM networks and LSTM-TL related to the PhD work. 

Data Link Used in Chapter(s) 
TSMP-G2A pra and wtda https://doi.org/10.26165/JUELIC

H-DATA/WPRA1F 
Chapters 2, 3 and 4 

TSMP-G2A ETa and SWE https://doi.org/10.26165/JUELIC
H-DATA/AMQ6NI 

Chapters 3 

TSMP-G2A θa https://doi.org/10.26165/JUELIC
H-DATA/AMQ6NI 

Chapters 3 and 4 

The wtda estimates obtained by LSTM networks of E1.1 (see Table 
3.2) 

https://doi.org/10.26165/JUELIC
H-DATA/WPRA1F 

Chapters 2 and 3 

The wtda estimates obtained by LSTM networks of E1.2 to E2.3 (see 
Table 3.2) 

https://doi.org/10.26165/JUELIC
H-DATA/AMQ6NI 

Chapter 3 

Data related to the evaluation of the LSTM-TL performance* https://doi.org/10.26165/JUELIC
H-DATA/ZBLDIR 

Chapter 4 

Reconstructed European monthly wtda data RD1-6 and their input 
pra,o and θa,o data 

https://doi.org/10.26165/JUELIC
H-DATA/ZBLDIR 

Chapter 4 

* Including input pra,o and θa,o, wtda,lstm-tl (wtda estimates from LSTM-TL), wtda,lstm(m) (wtda estimates obtained by LSTM networks using modeling 
results as input) and wtda,lstm(o) (wtda estimates obtained by LSTM networks trained on observations) for the period 1996 to 2016. 

 

https://icg4geo.icg.kfa-juelich.de/SoftwareTools/GEOEssential/-/tree/master/Scripts_papers
https://doi.org/10.17616/R31NJMH3
https://doi.org/10.26165/JUELICH-DATA/WPRA1F
https://doi.org/10.26165/JUELICH-DATA/WPRA1F
https://doi.org/10.26165/JUELICH-DATA/AMQ6NI
https://doi.org/10.26165/JUELICH-DATA/AMQ6NI
https://doi.org/10.26165/JUELICH-DATA/AMQ6NI
https://doi.org/10.26165/JUELICH-DATA/AMQ6NI
https://doi.org/10.26165/JUELICH-DATA/WPRA1F
https://doi.org/10.26165/JUELICH-DATA/WPRA1F
https://doi.org/10.26165/JUELICH-DATA/AMQ6NI
https://doi.org/10.26165/JUELICH-DATA/AMQ6NI
https://doi.org/10.26165/JUELICH-DATA/ZBLDIR
https://doi.org/10.26165/JUELICH-DATA/ZBLDIR
https://doi.org/10.26165/JUELICH-DATA/ZBLDIR
https://doi.org/10.26165/JUELICH-DATA/ZBLDIR
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Appendix A Supplementary material to Chapter 2 

Pseudocode of the LSTM network (displayed in Figure 2.2) 

The pseudocode, shown below, is of the one-hidden-layer LSTM networks illustrated in Figure 2.2, which is 

modified from Gers et al. (2000). Variables were defined in the caption of Figure 2.2. Note that, in order to 

simplify the code, the biases are not shown here. 

RESET all network parameters (i.e., weights, biases and cell states) as listed in Table 2.2 

REPEAT learning loop 

    forward pass 

        for t = 1, 2, … 

           network input to the hidden layer (self-recurrent and from input): 

                input gate: 𝑛𝑛𝑒𝑒𝑡𝑡𝑖𝑖𝑛𝑛(𝑡𝑡) = 𝑤𝑤𝑖𝑖𝑛𝑛𝑥𝑥(𝑡𝑡) + 𝑤𝑤𝑖𝑖𝑛𝑛ℎℎ(𝑡𝑡 − 1) 

                forget gate: 𝑛𝑛𝑒𝑒𝑡𝑡𝑓𝑓𝑜𝑜𝑓𝑓𝑔𝑔𝑒𝑒𝑙𝑙(𝑡𝑡) = 𝑤𝑤𝑓𝑓𝑜𝑜𝑓𝑓𝑔𝑔𝑒𝑒𝑙𝑙𝑥𝑥(𝑡𝑡) + 𝑤𝑤𝑓𝑓𝑜𝑜𝑓𝑓𝑔𝑔𝑒𝑒𝑙𝑙ℎℎ(𝑡𝑡 − 1) 

                output gate: 𝑛𝑛𝑒𝑒𝑡𝑡𝑜𝑜𝑢𝑢𝑙𝑙(𝑡𝑡) = 𝑤𝑤𝑜𝑜𝑢𝑢𝑙𝑙𝑥𝑥(𝑡𝑡) + 𝑤𝑤𝑜𝑜𝑢𝑢𝑙𝑙ℎℎ(𝑡𝑡 − 1) 

                cell: 𝑛𝑛𝑒𝑒𝑡𝑡𝑐𝑐(𝑡𝑡) = 𝑤𝑤𝑐𝑐𝑥𝑥(𝑡𝑡) + 𝑤𝑤𝑐𝑐ℎℎ(𝑡𝑡 − 1) 

           activations in the hidden layer: 

                input gate: 𝑖𝑖(𝑡𝑡) = 𝜎𝜎(𝑛𝑛𝑒𝑒𝑡𝑡𝑖𝑖𝑛𝑛(𝑡𝑡)) 

                forget gate: 𝑓𝑓(𝑡𝑡) = 𝜎𝜎(𝑛𝑛𝑒𝑒𝑡𝑡𝑓𝑓𝑜𝑜𝑓𝑓𝑔𝑔𝑒𝑒𝑙𝑙(𝑡𝑡)) 

                output gate: 𝑜𝑜(𝑡𝑡) = 𝜎𝜎(𝑛𝑛𝑒𝑒𝑡𝑡𝑜𝑜𝑢𝑢𝑙𝑙(𝑡𝑡)) 

                cell’s internal state: 

                𝑐𝑐(0) = 0, 𝑐𝑐(𝑡𝑡) = 𝑓𝑓(𝑡𝑡)𝑐𝑐(𝑡𝑡 − 1) + 𝑖𝑖(𝑡𝑡)𝑔𝑔(𝑡𝑡), where 𝑔𝑔(𝑡𝑡) = tanh(𝑛𝑛𝑒𝑒𝑡𝑡𝑐𝑐(𝑡𝑡)) 

                cell’ s activation: ℎ(𝑡𝑡) = 𝑜𝑜(𝑡𝑡)tanh(𝑐𝑐(𝑡𝑡)) 

           output of the network: 

                𝑛𝑛𝑒𝑒𝑡𝑡(𝑡𝑡) = 𝑤𝑤𝑛𝑛𝑒𝑒𝑙𝑙ℎ(𝑡𝑡), out(t) = net(t) 

    backward pass if error injected 

        for t = n, n-1, … 

           use RMSprop optimization algorithm (Hinton et al., 2012) 

UNTIL validation error begins to drop and number of epochs ≥ 50 
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Additional European water table depth anomaly maps 

 

Figure A.1: European wtda maps for (a) July 2003 (i.e., in the training period) and (b) July 2015 (i.e., in the testing 
period) derived from the TSMP-G2A data set (left) and the results from LSTM networks (right). 
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Figure A.2: European wtda maps for (a) December 2003 (i.e., in the training period) and (b) December 2015 (i.e., in 
the testing period) derived from the TSMP-G2A data set (left) and the results from LSTM networks (right). 
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Results of the cross-wavelet transform (XWT) analysis at additional pixels 

Table A.1: Pixel characteristics in the XWT analysis (pixels 3-4). 

 Performance 

combination 

Region Yearly averaged 

water table 

depth, wtd  

[m] 

Yearly averaged 

evapotranspiration, 

ET  

[mm] 

Yearly averaged 

soil moisture, θ  

[m3 m-3] 

Yearly average 

snow water 

equivalent, SWE 

[mm] 

Pixel 3 C1 FR 1.06 418.39 0.31 0.0 

Pixel 4 C2 IP 6.44 153.92 0.16 0.0 

 Training NSE 

[%] 

Training α  

[%] 

Validation NSE 

[%] 

Validation α [%] Test NSE  

[%] 

Test α 

 [%] 

Pixel 3 84.29 97.89 60.61 98.38 62.22 84.87 

Pixel 4 94.39 99.79 46.87 90.86 -724.90 20.26 

 

 

Figure A.3: TSMP-G2A pra, TSMP-G2A wtda, and LSTM wtda time series (top), as well as cross-wavelet spectra for 
TSMP-G2A pra and wtda series (bottom), at (a) pixel 3 and (b) pixel 4. The lines here have the same definitions as in 
Figure 2.9. 

 

 

 

 

 



 
Appendix 

 

89 
 

Appendix B Supplementary material to Chapter 3 

 
Figure B.1: Regionally averaged pra, ETa, θa and wtda time series for the wtd categories C1 to C3 in different 
PRUDENCE regions. 
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Figure B.2: European wtda maps for August 2015 (i.e., in the testing period) derived from (a) the TSMP-G2A data set 
and (b) the results from the LSTM networks of E1.1 (pra). 

 

Figure B.3: Results of wavelet coherence analysis on the regionally averaged wtda time series for the wtd categories 
C1 to C3 in SC, which were derived from the TSMP-G2A data set and the results of the LSTM networks of: (a) E1.1: 
pra; and (b) E1.5: pra and θa.  
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Figure B.4: Results of wavelet coherence analysis on the regionally averaged wtda time series for the wtd categories 
C1 to C3 in BI, which were derived from the TSMP-G2A data set and the results of the LSTM networks of: (a) E1.1: 
pra; and (b) E1.5: pra and θa. 

 

Figure B.5: Results of wavelet coherence analysis on the regionally averaged wtda time series for the wtd categories 
C1 to C3 in EA, which were derived from the TSMP-G2A data set and the results of the LSTM networks of: (a) E1.1: 
pra; and (b) E1.5: pra and θa.  
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Figure B.6: Results of wavelet coherence analysis on the regionally averaged wtda time series for the wtd categories 
C1 to C3 in FR, which were derived from the TSMP-G2A data set and the results of the LSTM networks of: (a) E1.1: 
pra; and (b) E1.5: pra and θa. 

 

Figure B.7: Results of wavelet coherence analysis on the regionally averaged wtda time series for the wtd categories 
C1 to C3 in AL, which were derived from the TSMP-G2A data set and the results of the LSTM networks of: (a) E1.1: 
pra; and (b) E1.5: pra and θa.  
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Figure B.8: Results of wavelet coherence analysis on the regionally averaged wtda time series for the wtd categories 
C1 to C3 in IP, which were derived from the TSMP-G2A data set and the results of the LSTM networks of: (a) E1.1: pra; 
and (b) E1.5: pra and θa.  

 

Figure B.9: Results of wavelet coherence analysis on the regionally averaged wtda time series for the wtd categories 
C1 to C3 in MD, which were derived from the TSMP-G2A data set and the results of the LSTM networks of: (a) E1.1: 
pra; and (b) E1.5: pra and θa.  
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Appendix C Supplementary material to Chapter 4 

 
Figure C.1: Total number of GW monitoring wells located at individual pixels over Europe. The plus sign marks the 
pixel with the most GW monitoring wells (49). 

 

Figure C.2: Violin plots show r, RMSE, NSE, KGE of wtda,lstm(m), wtda,m, wtda,lstm-tl and wtda,lstm(o) in seven PRUDENCE 
regions for the 2015-2016 period (i.e., the test period). The violin plots reveal the distribution of scores in each region, 
and the bold line in each violin plot indicates the regional median of scores. 
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Figure C.3: Seasonal averaged ERA5 bias-corrected pra,o, ERA5-Land θa,o and RD1 wtda,lstm-tl and their trends in eight 
PRUDENCE regions (MAM - March, April and May, i.e., spring; JJA - June, July and August, i.e., summer; SON - 
September, October and November, i.e., autumn; DJF - December, January and February, i.e., winter). The bold lines 
show the seasonal trends of - pra,o (dashed), - θa,o (dotted) and wtda,lstm-tf (solid), where red, blue and gray indicate a 
drier GW condition at the 95% significant level, a wetter GW condition at the 95% significant level and no significant 
trend, respectively. The black dashed lines indicate - pra,o/- θa,o/wtda = 0. A long time period with - pra,o/- θa,o/wtda > 0 
corresponds to a dry event while a long time period with - pra,o/- θa,o/wtda < 0 corresponds to a wet event.  
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Figure C.4: Same as Figure C.3, but for ERA5 bias-corrected pra,o, GLEAM θa,o and RD2 wtda,lstm-tl. 
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Figure C.5: Same as Figure C.3, but for COSMO-REA6 pra,o, ERA5-Land θa,o and RD3 wtda,lstm-tl. 
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Figure C.6: Same as Figure C.3, but for COSMO-REA6 pra,o, GLEAM θa,o and RD4 wtda,lstm-tl. 
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Figure C.7: Same as Figure C.3, but for ERA5-Land pra,o, ERA5-Land θa,o and RD5 wtda,lstm-tl. 
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Figure C.8: Same as Figure C.3, but for ERA5-Land pra,o, GLEAM θa,o and RD6 wtda,lstm-tl. 
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Table C.1: Detailed information of European GW monitoring wells applied in Chapter 4. 

Country/region Source Number of GW 
monitoring wells 

France ADES (https://ades.eaufrance.fr/Recherche/Index/Piezometre?g=6b2839, 
last access: June 2020) 

91 

The Netherlands DINOloket (https://www.dinoloket.nl/en/subsurface-data, last access: June, 
2020) 

83 

The UK British Geological Survey 4 

Sweden Geological Survey of Sweden (SGU) 
(https://apps.sgu.se/kartvisare/kartvisare-grundvattenniva.html, last access: 
September, 2020) 

38 

Germany/Baden-Württemberg Landesanstalt für Umwelt Baden-Württemberg (LUBW) 
(https://udo.lubw.baden-
wuerttemberg.de/public/api/processingChain?ssid=324bd7d5-609d-4e8b-
be1f-
af7e073d56d5&selector=gwMessstellenauswahl.meros%3Ameros_z_gw_
messwerte_uis_gwstand_messstellen_refdb%24ind1.sel, last access: July, 
2020) 

301 

Germany/Bayern Bayerisches Landesamt für Umwelt 
(https://www.gkd.bayern.de/en/groundwater/upper-layer/tables, last 
access: July, 2020) 

87 

Germany/Hessen Hessisches Landesamt für Naturschutz, Umwelt und Geologie 
(http://lgd.hessen.de/mapapps/resources/apps/lgd/index.html?lang=en,last 
access: August, 2020) 

368 

Germany/Mecklenburg 
Vorpommern/ 
Mittleres Mecklenburg 

Staatliches Amt für Landwirtschaft und Umwelt Mittleres Mecklenburg, 
Abteilung 4 Naturschutz, Wasser und Boden  

8 

Germany/Mecklenburg 
Vorpommern/Vorpommern 

Staatliches Amt für Landwirtschaft und Umwelt Vorpommern, Abteilung 4 - 
Naturschutz, Wasser und Boden, Dezernat 44 - Wasserrahmenrichtlinie, 
Gewässerkunde  

17 

Germany/Rheinland-Pfalz Landesamt für Umwelt Rheinland-Pfalz (http://www.gda-
wasser.rlp.de/GDAWasser/client/gisclient/index.html?applicationId=12366&
forcePreventCache=14143139175, last access: August, 2020) 

210 

Germany/Sachsen Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie 
(https://www.umwelt.sachsen.de/umwelt/infosysteme/ida/pages/map/defaul
t/index.xhtml, last access: August, 2020) 

380 

Germany/Sachsen-Anhalt Landesbetrieb für Hochwasserschutz und Wasserwirtschaft des Landes 
Sachsen-Anhalt (LHW) (http://www.lhw.sachsen-anhalt.de\gld-portal, last 
access: August, 2020) 

397 

Germany/Schleswig-Holstein Landesamt für Landwirtschaft, Umwelt und ländliche Räume des Landes 
Schleswig-Holstein 
(http://www.umweltdaten.landsh.de/atlas/script/index.php, last access: 
August, 2020) 

38 

Germany/Hamburg Behörde für Umwelt, Klima, Energie und Agrarwirtschaft (BUKEA) 1 

Germany/Niedersachsen Niedersächsischen Landesdatenbank für wasserwirtschaftliche Daten 
(http://www.wasserdaten.niedersachsen.de)  

581 

 
Table C.2: Numbers of pixels with wtda,o in eight PRUDENCE regions. 

SC BI ME EA FR AL IP MD 
12 3 592 0 27 41 4 2 

  

https://ades.eaufrance.fr/Recherche/Index/Piezometre?g=6b2839
https://www.dinoloket.nl/en/subsurface-data
https://apps.sgu.se/kartvisare/kartvisare-grundvattenniva.html
https://udo.lubw.baden-wuerttemberg.de/public/api/processingChain?ssid=324bd7d5-609d-4e8b-be1f-af7e073d56d5&selector=gwMessstellenauswahl.meros%3Ameros_z_gw_messwerte_uis_gwstand_messstellen_refdb%24ind1.sel
https://udo.lubw.baden-wuerttemberg.de/public/api/processingChain?ssid=324bd7d5-609d-4e8b-be1f-af7e073d56d5&selector=gwMessstellenauswahl.meros%3Ameros_z_gw_messwerte_uis_gwstand_messstellen_refdb%24ind1.sel
https://udo.lubw.baden-wuerttemberg.de/public/api/processingChain?ssid=324bd7d5-609d-4e8b-be1f-af7e073d56d5&selector=gwMessstellenauswahl.meros%3Ameros_z_gw_messwerte_uis_gwstand_messstellen_refdb%24ind1.sel
https://udo.lubw.baden-wuerttemberg.de/public/api/processingChain?ssid=324bd7d5-609d-4e8b-be1f-af7e073d56d5&selector=gwMessstellenauswahl.meros%3Ameros_z_gw_messwerte_uis_gwstand_messstellen_refdb%24ind1.sel
https://udo.lubw.baden-wuerttemberg.de/public/api/processingChain?ssid=324bd7d5-609d-4e8b-be1f-af7e073d56d5&selector=gwMessstellenauswahl.meros%3Ameros_z_gw_messwerte_uis_gwstand_messstellen_refdb%24ind1.sel
https://www.gkd.bayern.de/en/groundwater/upper-layer/tables
http://lgd.hessen.de/mapapps/resources/apps/lgd/index.html?lang=en
http://www.gda-wasser.rlp.de/GDAWasser/client/gisclient/index.html?applicationId=12366&forcePreventCache=14143139175
http://www.gda-wasser.rlp.de/GDAWasser/client/gisclient/index.html?applicationId=12366&forcePreventCache=14143139175
http://www.gda-wasser.rlp.de/GDAWasser/client/gisclient/index.html?applicationId=12366&forcePreventCache=14143139175
https://www.umwelt.sachsen.de/umwelt/infosysteme/ida/pages/map/default/index.xhtml
https://www.umwelt.sachsen.de/umwelt/infosysteme/ida/pages/map/default/index.xhtml
http://www.lhw.sachsen-anhalt.de/gld-portal
http://www.umweltdaten.landsh.de/atlas/script/index.php
http://www.wasserdaten.niedersachsen.de/
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Table C.3: Regional median r, RMSE, NSE and KGE of wtda,lstm(m), wtda,m, wtda,lstm-tl and wtda,lstm(o) in seven PRUDENCE 
regions for the 1996-2016 period. 

  SC BI ME FR AL IP MD 
r [-] wtda,lstm(m) 0.31 0.54 0.28 0.28 0.27 0.40 0.21 

wtda,m 0.24 0.52 0.26 0.25 0.26 0.33 0.21 
wtda,lstm-tl 0.57 0.63 0.44 0.44 0.45 0.45 0.37 
wtda,lstm(o) 0.86 0.78 0.89 0.84 0.89 0.83 0.49 

RMSE [-] wtda,lstm(m) 1.07 0.89 1.10 1.08 1.10 1.02 1.24 
wtda,m 1.28 0.97 1.22 1.29 1.23 1.21 1.39 
wtda,lstm-tl 0.88 0.77 0.97 0.97 0.95 0.98 1.15 
wtda,lstm(o) 0.51 0.61 0.48 0.60 0.49 0.60 1.00 

NSE [-] wtda,lstm(m) -0.21 0.15 -0.18 -0.22 -0.18 -0.01 -0.23 
wtda,m -0.61 -0.01 -0.46 -0.53 -0.45 -0.23 -0.54 
wtda,lstm-tl 0.18 0.35 0.08 0.05 0.12 0.12 -0.05 
wtda,lstm(o) 0.73 0.60 0.77 0.67 0.77 0.62 0.20 

KGE [-] wtda,lstm(m) 0.24 0.53 0.21 0.22 0.18 0.35 0.13 
wtda,m 0.23 0.52 0.25 0.25 0.25 0.33 0.20 
wtda,lstm-tl 0.43 0.60 0.34 0.36 0.34 0.37 0.29 
wtda,lstm(o) 0.76 0.62 0.77 0.69 0.77 0.59 0.16 
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