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Abstract

Virtual materials design attempts to use computational methods to discover new
materials with superior properties within the vast space of all conceivable materials.
Density-functional theory (DFT) is central to this field, enabling scientists to predict
material properties from first principles, i.e. without relying on external parameters
or experimental values. While standard DFT is capable of predicting many materials
with satisfying accuracy, it struggles with some properties such as details of the elec-
tronic structure or certain material classes, e.g. materials exhibiting strongly corre-
lated electrons. This has created a need for methods with greater predictive power.
One such class of methods are hybrid exchange-correlation functionals which com-
bine the exact Hartree-Fock exchange with local exchange-correlation functionals,
resulting in highly accurate predictions for many insulating or semiconductor ma-
terials. However, the computational cost of hybrid functionals increases rapidly
with system size and limits their application to small systems. This thesis aims to
solve the computational challenge posed by hybrid functionals in large systems by
utilizing the massive computational power of today’s supercomputers.

This thesis presents the improved implementation of hybrid exchange-correlation
functionals in FLEUR, an all-electron full-potential linearized augmented planewave
code. The improved CPU and a new GPU implementations allow users to make effi-
cient use of modern compute nodes and a highly-scalable MPI implementation dis-
tributes calculations with a single k̂-point to 3000 cores or 64 GPUs and far beyond
that for calculations with multiple k̂-points. This work promotes hybrid functionals
to systems with hundreds of atoms, opening up their application to many new ma-
terial classes and properties. We demonstrate the power of this algorithm by apply-
ing it to garnets, a class of complex magnetic materials with large unit-cells, which
have promising applications in fields such as spintronics or quantum computing.
Garnets are rare-earth oxides that exhibit strongly correlated electrons in localized
3d- or 4f -states, making the combination of hybrid functionals and FLAPW ideally
suited to investigate these materials. After benchmarking our method against other
highly predictive methods and experimental results using yttrium iron garnet as
a reference system, we shift our focus the rare-earth-iron garnets gadolinium iron
garnet and thulium iron garnet. For these materials we perform the first-ever hy-
brid exchange-correlation functional calculations of their electronic structure and
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magnetic moments, establishing the predictive power of the hybrid functionals in
FLEUR for large complex magnets.
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Zusammenfassung

Virtuelles Materialdesign versucht mithilfe computergestützter Methoden neue Ma-
terialien mit überlegenen Eigenschaften innerhalb des riesigen Raums aller denkbaren
Materialien zu entdecken. Zentral in diesem Bereich ist die Methode der Dichte-
funktionaltheorie (DFT) die es Wissenschaftlern ermöglicht Materialeigenschaften
aus ersten Prinzipien vorherzusagen, dass heisst ohne sich auf externe Parameter
oder experimentelle Werte zu beziehen. Obwohl Standard-DFT in der Lage ist
viele Materialien mit zufriedenstellender Genauigkeit vorherzusagen, hat sie Prob-
leme mit einigen Eigenschaften wie etwa Details der elektronischen Struktur oder
bestimmten Materialklassen, wie etwa Materialien mit stark korrelierten Elektro-
nen. Dies hat einen Bedarf an Methoden mit grösserer Vorhersagekraft geschaffen.
Eine Klasse von solchen Methoden sind hybride Austauschkorrelationsfunktionale,
die den exakten Hartree-Fock-Austausch mit lokalen Austauschkorrelationsfunk-
tionalen kombinieren, was zu hochgenauen Vorhersagen für viele Isolatoren oder
Halbleitermaterialien führt. Der Rechenaufwand hybrider Funktionale nimmt je-
doch schnell mit der Systemgrösse zu und beschränkt ihre Anwendung auf kleine
Systeme. Diese Arbeit zielt darauf ab, das Problem des massiven Rechenaufwands
von Hybridfunktionalen in grossen Systemen zu lösen, indem die enorme Rechen-
leistung heutiger Supercomputer genutzt wird.

Diese Dissertation präsentiert eine verbesserte Implementierung hybrider Austauschko-
rrelationsfunktionale in FLEUR, einem Programm das die full-potential linearized
augmented planewave (FLAPW)Methode auf alle Elektronen anwendet. Die verbesserte
CPU und eine neue GPU-Implementierung ermöglicht Wissenschaftlern die effiziente
Nutzung moderner Rechenknoten und eine hochskalierbare MPI Implementierung
verteilt Berechnungen mit einem einzigen k̂-Punkt auf 3000 Kerne oder 64 GPUs
und weit darüber hinaus für Berechnungen mit mehreren k̂-Punkten. Diese Arbeit
ermöglicht Berechnungen mit Hybridfunktionale in Systemen mit Hunderten von
Atomen und erlaubt ihre Anwendung in vielen neuen Materialklassen. Wir demon-
strieren die Leistungsfähigkeit dieses Algorithmus, indem wir ihn auf Granate an-
wenden, eine Klasse komplexer magnetischer Materialien mit grossen Elementarzellen,
die vielversprechende Anwendungen in Bereichen wie Spintronik oder Quanten-
computern haben. Granate sind Oxide die seltene Erden enthalten welche, stark
korrelierte Elektronen in lokalisierten 3d- oder 4f -Zuständen aufweisen, wodurch
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die Kombination von Hybridfunktionalen und FLAPW ideal für die Untersuchung
dieser Materialien geeignet ist. Nachdem wir unsere Methode mit anderen vorher-
sagestarken Methoden und experimentellen Ergebnissen mit Yttrium-Eisen-Granat
als Referenzsystem verglichen haben, verlagern wir unseren Fokus auf die Eisen-
Granate mit seltenen Erden: Gadolinium-Eisen-Granat und Thulium-Eisen-Granat.
Für diese Materialien führen wir die allerersten Hybrid-Funktionalrechnungen ihrer
elektronischen Struktur und magnetischen Momente durch und demonstrieren so
die Vorhersagekraft der Hybridfunktionale in FLEUR für grosse komplexe Mag-
nete.
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Introduction 1
Materials science aims to understand and predict material properties more and
more accurately, so that new sophisticated materials can be discovered to drive
innovation in the domains that rely on them. While materials science has been
around for millennia, it was only at the beginning of the last century that the arrival
of quantum mechanics enabled the exact description of the microscopic properties
in materials. However, the cost of calculating the exact solution to the Schrödinger
equation grows exponentially with the size of the system and is therefore limited
to very small systems. This problem was addressed rigorously by Hohenberg, Kohn
and Sham [5, 6] in the 1960s, with the development of density functional theory
(DFT). DFT replaces the 3N -dimensional wave function as the central quantity with
the 3-dimensional ground-state density and thereby reduces the exponential compu-
tational cost to a polynomial one. While DFT is in principle exact, a key ingredient,
the so-called exchange-correlation energy, has no known analytical expression. The
approximations used for this term determine the accuracy with which material prop-
erties can be predicted. While the most commonly used approximations, the local
density approximation (LDA) and the generalized gradient approximation (GGA)
can predict certain properties with a high precision at a very low computational
cost, they fail to predict some essential electronic properties [7].

Despite this, DFT has been amazingly successful. In 2020 alone almost 19.000
papers have been published that reference density functional theory in their title
or abstract. Additionally, DFT is increasingly being used in the context of high-
throughput calculations, where hundreds of thousands of material candidates are
screened using automated workflows [8–10]. However, all of these calculations
are limited to material classes and properties for which the underlying exchange-
correlation functionals have a good predictive power. In order to enhance these
calculations with materials classes and properties for which LDA and GGA fail, it
is necessary to rely on more accurate methods producing high quality results. One
class of accurate methods are the hybrid exchange-correlation functionals which
are particularly suited to predicting electronic properties such as the band gap,
the degree of charge localization and the polarization in materials with a stronger
electron correlation [11–15].
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Hybrid exchange-correlation functionals mix an orbital dependent exact exchange
with the accurate correlation of other approximations, such as LDA or GGA. Their
reliance on the orbital dependent exact exchange makes them computationally con-
siderably more expensive than LDA or GGA. While an LDA or a GGA calculation
grows with the 3rd power of the number of atoms, a hybrid exchange-correlation
functional calculation typically grows with the 4th power of the number of atoms.
Additionally, the computational cost of a hybrid calculation grows quadratically
with the number of k̂-points used to sample the Brillouin zone, whereas for an LDA
or a GGA calculation it only grows linearly. This large computational cost has pro-
hibited precise predictions for systems with large unit cells, including a number
of interesting material classes such as garnets [16, 17] or materials of interest for
solid-state batteries [18]. Additionally, investigations which rely on supercell cal-
culations, such as the effects of defects in the crystal structure or alloyed materials
have also been out of reach for these highly accurate methods.

There is an abundance of methods that implement hybrid functionals and DFT in
general. Gaussian basis sets [19] are commonly used in quantum chemistry and
the projector augmented wave (PAW) method [20] has been widely adopted for
periodic systems. Even basis-set-free methods, relying on real-space grids, have
been proposed [21]. In this thesis, however, we will focus on the full-potential
augmented-plane-wave (FLAPW) method as it is implemented in the open-source
code FLEUR [@22]. Unlike for example PAW, the FLAPW method treats all elec-
trons explicitly and does not employ any approximations to represent the potential
or density. It is therefore well suited for a wide range of systems, including systems
containing heavy atoms that exhibit a lot of d- and f -states. It is considered the
most accurate DFT method and has been used as a benchmark for other methods
and codes [23].

While there have been significant advances in bringing hybrid functionals to sys-
tems with hundreds of atoms in other methods, such as the PAW [24, 25], hybrid
functionals within FLAPW have been constrained to very small systems [26–28].
The aim of this thesis is to enable FLEUR’s hybrid functional implementation to
run on the world’s most advanced supercomputers and use their immense compu-
tational power to investigate these large and interesting systems.

Utilizing modern supercomputers has become increasingly challenging. While the
rapid miniaturization of transistors has provided developers with a stream of ever
better performing CPUs for many decades, nowadays the most advanced supercom-
puters rely on specialized hardware, so-called accelerators, to deliver the majority
of their computational power. In June 2017 three of the top ten supercomputers
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relied on accelerators [@29], now only four years later it is twice as many [@30].
Therefore, as part of this thesis we created not only a scalable CPU implementation
of the hybrid functionals, but also a GPU version that makes use of these modern
accelerators. Furthermore, it seems that the diversity of hardware used in high-
performance computing is increasing. While the processor market was dominated
by Intel just a few years ago, now AMD has a considerable market share, the fastest
computer in the world relies on ARM [@30], and the European Processor Initiative
is exploring the use of the open RISC-V architecture in their accelerators [@31]. In
order to be prepared for this plethora of architectures we paid particular attention
to writing code easily adaptable to new, unknown architectures.

Building on the work previously done on hybrid functionals in the FLAPW basis
and in FLEUR specifically [27, 28, 32, 33], we analyzed the performance of this
legacy implementation and its bottlenecks and explored algorithmic improvements
needed to calculate hundreds of atoms with the accuracy that FLAPW and hybrid
functionals offer. Achieving a good performance on a supercomputer can be split
into two main tasks. First, the hardware of single node has to be used efficiently,
regardless of whether the node has one or more CPUs or a number of additional
GPUs; and second, the communication between nodes has to be orchestrated in
such a way that the communication itself does not become a bottleneck limiting the
speed of the calculation.

In order to solve the first task we expressed the most computationally costly rou-
tines in terms of large standard math problems, such as matrix multiplication or
Fourier transformations. This approach has two advantages over custom code. First,
the libraries provided for these standard problems are tuned with an immense ef-
fort that is far beyond the scope of any PhD thesis and therefore their performance
is excellent. Second, each hardware platform has libraries specifically optimized
for it, therefore we do not need to re-optimize FLEUR for new upcoming platforms.
For parts of the code that do not fall within the mold of a standard math problem
we created custom code for the intra-node parallelization. For the parallelization
on CPU systems we used OpenMP and for the offloading to GPUs we used the Ope-
nACC framework. We perform a detailed investigation of the performance achieved
on single nodes as well as the performance of a single GPU. We measure the scalabil-
ity of the code with an increasing number of cores and investigate its performance
on different GPU generations. For the most computationally demanding routines
we create a so-called roofline model, which compares the performance of certain
code parts to the theoretical maximum for a given hardware.
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For the second task, creating an efficient inter-node communication scheme, we
designed three independent levels of parallelism, which enable us to distribute the
large computational problem posed by the hybrid functionals to thousands of nodes.
This mechanism allows us to distribute the problem over different k̂- and q̂-points
as well as over different occupied bands. We measure the scalability of this commu-
nication pattern on SuperMUC-NG, calculating systems with almost 200 atoms in
the unit cell. Additionally, we perform similar tests for the GPU implementation on
Jureca DC.

Finally, we use our algorithm to investigate a number of large complex magnets.
Yttrium iron garnet (YIG) has emerged as a key material for a number of fields,
such as magnonics, spin transport or quantum computing [34–36]. Due to its large
primitive unit cell, containing 80 atoms, its electronic structure has only recently
been calculated accurately [37]. In YIG, like in other garnets, the iron atoms appear
in two kinds of environments: its oxygen nearest neighbours are either arranged in
a tetrahedron or an octahedron. Using the accurate treatment of the iron 3d-states
provided by FLEUR’s hybrid exchange-correlation functionals, we investigate the ef-
fect of these environments. We predict a number of key material parameters for YIG
and compare them to a series of PBE+U calculations performed in FLEUR as well
as QSGW [37], another method known for accurate predictions of the electronic
structure.

Lastly, we shift our focus to a related class of materials, the so-called rare-earth-iron
garnets which share the same structure as YIG but the Yttrium is replaced with a
rare-earth atom from the lanthanide series. We investigate Gadolinium iron garnet
and Thulium iron garnet, which have applications as Faraday rotators in optical
communication [38] and spintronics [39]. For these materials we perform the first
known accurate calculations of the electronic structure. We predict their magnetic
moments as well as provide the first accurate predictions of their band gaps.

This thesis is organized as follows. Chapter 2 gives an introduction to density func-
tional theory and focuses on the hybrid exchange-correlation functionals at the
heart of this thesis. In Chapter 3 the FLAPW method is presented and the mixed-
product basis, an extension of the LAPW basis necessary to calculate the exact ex-
change, is derived. Chapter 4 specifies the changes made in order to tune the
single node performance of the hybrid functional calculations. Afterwards, a de-
tailed analysis of the resulting performance is presented. In Chapter 5 the same is
done for the intra-node scalability. First we present the algorithms used to scale the
calculation of the exact exchange to thousands of nodes and then we analyze their
performance. In Chapter 6 we apply this algorithm to the three garnets discussed
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above. Finally, in Chapter 7 we reflect on the achievements of this work and the
remaining challenges.
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Density functional theory 2
2.1 Introduction

The advent of quantum mechanics in the early twentieth century facilitated the the-
oretical prediction of atomic systems with an accuracy never seen before [40, 41].
However, it soon became obvious that calculating exact solutions to the Schrödinger
equation is not practically feasible. Even today’s computational power is insufficient
to calculate the exact solution for any quantum mechanical system of meaningful
size.

In this chapter we introduce the many-body Hamiltonian and discuss problems with
obtaining an exact solution to it. Then wemotivate the so-called Born-Oppenheimer
approximation [42] and introduce the frameworks at the foundation of density
functional theory (DFT) [5, 6]. Finally, we shift our focus to the different classes of
exchange-correlation potentials used in DFT. We provide an overview of the most
commonly used local potential types and take a deeper dive into the non-local hy-
brid exchange-correlation functionals at the heart of this thesis. As a matter of
simplicity we assume that the spin channels are degenerate throughout this chap-
ter.

The first section of this chapter, discussing fundamental concepts of density func-
tional theory is going to follow along the lines of previous introductions [32, 43–
46].

2.1.1 Born-Oppenheimer approximation

The ground-state of a system of electrons and nuclei can be accurately described by
the time-independent Schrödinger equation

H |Ψ⟩ = E |Ψ⟩ , (2.1)
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where |Ψ⟩ is the many-body wave function and the Hamiltonian H is defined as

H = −
Nelec∑
i

∇i
2

2︸ ︷︷ ︸
Te

−
Natom∑
α

∇α
2

2mα︸ ︷︷ ︸
Ti

+
Nelec∑
i,j
i ̸=j

1
2∥r̂i − r̂j∥︸ ︷︷ ︸

Vee

+
Natom∑
α,β
α̸=β

ZαZβ

2∥τ̂α − τ̂β∥︸ ︷︷ ︸
Vii

−
Nelec∑
i

Natom∑
α

Zα

∥r̂i − τ̂α∥︸ ︷︷ ︸
Vei

.

(2.2)
Throughout this thesis we will use atomic units (e = me = ℏ = 1) as defined by
Hartree [47]. In Eq. 2.2 the Latin letters i and j label the electrons, while the
Greek letters α and β label the nuclei. Nelec and Natom indicate the total number
of electrons and nuclei, while r̂i and τ̂α denote their positions. Zα and mα are the
charge and mass of the nuclei.

The first two terms of the Hamiltonian Te and Ti describe the kinetic energy of
the electrons and nuclei, while the last three terms Vee, Vii and Vei represent the
coulomb interaction among electrons, among the nuclei and lastly between elec-
trons and nuclei.

Since the nuclei are at a minimum three orders of magnitude heavier than the elec-
trons, the movement of the nuclei is much slower and appears frozen compared to
that of the electrons. This is due to the fact that the same forces act on the electrons
and nuclei, but the moment of inertia of the electrons is lower and therefore they
experience greater accelerations. Hence, we assume that the nuclei are stationary
on the time scale of the electrons. This effective decoupling of the movement of the
electrons and nuclei is called the Born-Oppenheimer approximation [42].

By neglecting the kinetic energy of the nuclei Ti and assuming that the nuclei are
frozen we can express Eq. 2.2 as a Hamiltonian, where the nuclei only appear as
part of the external potential

HBO = Te + Vee + Vext, (2.3)

where

Vext = −
Nelec∑
i

Natom∑
α

Zα

∥r̂i − τ̂α∥
+ Vii. (2.4)

Eq. 2.3 represents a big simplification compared to the original many-body Hamilto-
nian, but the solution to Eq. 2.3 still is a 3Nelec-dimensional function

∣∣Ψ (r̂1, ..., r̂Nelec

)〉
,

making it impossible to store, let alone to calculate, the solution to this equation
even for very moderate values of Nelec.
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The storage space requirement of the many-body wave function, growing exponen-
tially with the number of electrons, makes a practical application of this approach
unfeasible even if we assume the most optimistic future computational develop-
ments, as Walter Kohn pointed out in his Nobel lecture in 1999 [48]. In the next
two sections we will introduce an auxiliary problem of independent particles, that
in principle will share the charge density and total energy of the many-body sys-
tem and thus eliminates the problem of 3Nelec-dimensional many-body wave func-
tions.

2.1.2 Hohenberg-Kohn Theorem

The idea at the heart of density functional theory is to substitute the ground-state
many-body wave function with the many-body charge density

n(r̂) = ⟨Ψ|
∑
i

δ(r̂ − r̂i)|Ψ⟩ (2.5)

as the fundamental quantity of any calculation. The Hohenberg-Kohn theorems [5]
put this idea on a solid theoretical foundation. They state that

1. The ground-state density n0 uniquely determines the external potential Vext
up to a constant shift

Vext(r̂) = Vext[n0](r̂). (2.6)

Therefore, the ground-state wave function and all observables are also func-
tionals of the ground-state density.

2. The functional for the total energy is minimized by the ground-state density
with the constraint that the number of electrons is kept fixed. So that

E0 = E[n0] ≤ E[n] ∀n such that
∫
n(r̂)d3r =

∫
n0(r̂) d3r = Nelec (2.7)

and
E[n0] < E[n] ∀ n ̸= n0. (2.8)

Therefore, the ground-state density can be found by minimizing the total en-
ergy functional.

For a proof of these theorems the reader is referred to the literature [5, 43, 44].
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2.1.3 Kohn-Sham System

The Hohenberg-Kohn theorems tell us that we can use the ground-state density to
calculate every observable and that we get the ground-state density by minimizing
the total energy functional

E[n] = F [n] +
∫
Vext(r̂)n(r̂) d3r, (2.9)

where the functional F , the so-called universal functional,

F [n] = min
n[Ψ]

⟨Ψ|T + Vee|Ψ⟩ (2.10)

is the same regardless of the external potential. This alone however, is of limited
practical application, since no analytical expression of this functional is known.

In their famous paper [6] Kohn and Sham suggest to split this functional into three
terms

F [n] = Te[n] + UH[n] + Exc[n], (2.11)

where Te is the kinetic energy of non-interacting electrons, UH is the coulomb en-
ergy and Exc[n] is the so-called exchange-correlation functional. The coulomb en-
ergy UH is defined as

UH[n] =
1
2

∫
n(r̂)n(r̂′)
∥r̂ − r̂′∥

d3rd3r′. (2.12)

Exc describes all the exchange and correlation interactions, that are not part of Te
or UH and is therefore implicitly defined by Eq. 2.11

Exc := F [n]− Te[n]− UH[n]. (2.13)

While we just presented the exact expression for UH and we present an expression
for Te late in this section, no analytic expression for Exc is known and a long list
of approximations to it have been proposed [1–4, 49–52]. One class of approxi-
mations are the so-called hybrid functionals, the speedy calculation of which is the
topic of this thesis. Section 2.2 gives an overview of the different types of exchange-
correlation functionals and Section 2.4 gives a more detailed introduction into hy-
brid functionals.

Splitting the universal functional F like this leads to very good results, because the
contributions of Te and UH, which are calculated exactly, are quite large so that
only the comparatively small, but important, Exc needs to be approximated [53,
p. 37].
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For UH we already presented an explicit expression in Eq. 2.12 and here we derive
an expression for Te. This expression however is not directly dependent on the
density, but instead relies on a set of non-interacting wave functions, called Kohn-
Sham orbitals, that construct the density

n(r̂) = 2
Nocc∑
i=1

ϕ∗i (r̂)ϕi(r̂), (2.14)

where Nocc is the number of occupied states. We refer to the full set of Kohn-Sham
orbitals as K := {ϕ1, ..., ϕNocc}. The factor of two is added to account for the two
degenerate spin channels. We can use this orbital dependent expression to derive
the kinetic energy as

Te [K[n]] = −2
Nocc∑
i=1

ϕ∗i (r̂)∇2ϕi(r̂) d3r. (2.15)

Introducing the Kohn-Sham orbitals makes solving our many-body problem consid-
erably more complicated, because unlike UH[n] orExc[n], the kinetic energy Te[K[n]]
now depends on the Kohn-Sham orbitals, which in turn depend on on the density
indirectly.

Since we now have to minimize Te[K[n]] with respect to the wave function instead
of the density, we have to replace the constraint on the number of electrons with a
constraint to normalize the wave functions∫

ϕ∗i (r̂)ϕi(r̂) d3r = 1 ∀i. (2.16)

We enforce this constraint through a Lagrange multiplier εi and minimize the to-
tal energy by taking the functional derivative to obtain the so-called Kohn-Sham
equations [

−∇2 + Veff(r̂)
]
ϕi(r̂) = εiϕi(r̂), (2.17)

which have the form of the Schrödinger equation for a single particle in the effective
potential

Veff(r̂) = Vext(r̂) + VH(r̂) + Vxc(r̂). (2.18)

By havingNelec single-particle wave functions, rather than a single many-body wave
function for Nelec particles we have reduced the storage requirement from an expo-
nential O((Nbas)Nelec) to an effortless O(Nelec · Nbas), where Nbas is the number of
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basis functions. This reduction in storage needed enables the calculation of systems
with thousands of atoms [54]. In Eq. 2.17 we use the Hartree potential

VH[n](r̂) =
∫

n(r̂′)
∥r̂ − r̂′∥

d3r′ (2.19)

and the exchange-correlation potential

Vxc[n] =
δExc[n]
δn

. (2.20)

With Vxc[n] and VH[n] depending on the charge density n(r̂) (Eq. 2.20, Eq. 2.19),
which in turn depends on the Kohn-Sham orbitals ϕi (Eq. 2.14), which then again
depend on Vxc[n] and VH[n] (Eq. 2.17) we have created a self-consistency problem.
The correct charge density will generate a potential, which reproduces the same
density by applying it to the Kohn-Sham equations. All charge densities that do not
fulfill this criterion are not solutions of the Kohn-Sham equations. Section 2.5 is
going to introduce how we obtain a solution to this self-consistency problem.

Lastly we need to point out that while the density of the Kohn-Sham system is
identical to that of the many-body system, the Kohn-Sham orbitals ϕi have limited
physical meaning. While there is no obvious connection to the many-body wave
function the Kohn-Sham orbitals have shown to be remarkably useful: Their band
structure for example often reproduces experimental measurements surprisingly
well.

2.2 Exchange-Correlation functionals

In Eq. 2.13 we defined Exc, but no exact expression is known and we therefore
need to find an appropriate approximation for it. While Exc might only be a small
contribution to the total energy it encapsulates a lot of the most interesting physics
such as the Pauli principle or screening effects. Additionally, if we consider the
Coulomb energy in Eq. 2.12 for the case of a single electron is becomes obvious
that UH introduces a nonphysical coulomb repulsion of a single electron with itself.
Hence, a self-interaction correction should also be part of the exchange-correlation
functional Exc.

In this section we attempt to shine light on the nature of Exc. First we introduce
a series of exchange-correlation functional classes and discuss the performance of
their most commonly used proponents. Then we discuss the coupling constant
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integration, a method that does not generate an applicable functional but instead
furthers our understanding of the exchange-correlation functional and motivates
the construction of hybrid exchange-correlation functionals. This section regarding
the exchange-correlation functionals follows along the lines of [32, 33, 53].

Discussing the accuracy of any exchange-correlation functional is tricky a endeavor,
since the performance of an exchange-correlation functional is usually measured
by taking a set of systems and comparing a number of quantities, such as forma-
tion energies, lattice constants, bulk modulus or band gaps to experimental results.
While this can give an indication about the performance of a certain exchange-
correlation functional for a specific property, this kind of analysis heavily depends
on the choice of the set of materials. Therefore, the performance statements in this
chapter should be treated as rough indications rather than absolute truth.

2.2.1 Local Density Approximation (LDA)

This thesis deals with two kinds of approximations to Exc: Local and non-local
exchange correlation potentials, where the local type has the typical form

Eloc
xc [n] =

∫
n(r̂) ϵxc (n(r̂),∇n(r̂), χ1(r̂), ..., χn(r̂)) d3r, (2.21)

where χi(r̂) can be any quantity that is only evaluated at r̂. In this form the
exchange-correlation energy density ϵxc only depends on quantities at r̂, hence the
name local exchange-correlation potential. The most simple approximation of this
kind is the so-called local density approximation (LDA), which only relies on the
charge density n(r̂). In the LDA ϵxc is calculated for a set of homogeneous electron
gases of different densities and then ϵHEGxc (n(r̂)) is used according to the local den-
sity at r̂. For the exchange we can derive an exact expression in a homogeneous
electron gas

ϵHEGx (n(r̂)) = −3 3√3π2n
4π

, (2.22)

whereas the correlation is obtained by fitting a function to quantum Monte-Carlo
calculations of a homogeneous electron gas [55]. While there is a number of
parametrizations [56–59], they all describe the same functional and therefore the
choice of the parametrization does not effect the DFT calculation in a meaningful
way.

Despite being a seemingly crude approximation the LDA has been quite successful
in solid state physics, often correctly predicting structural parameters within a few
percent. However, the LDA systematically underestimates the lattice constant for
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example in the test set used by [60] a mean relative error (MRE) of -1.3% and mean
absolute relative error (MARE) of 1.3% was reported. Other properties such as the
band gap are much harder to predict using a LDA. Here the LDA underestimates
the band gap with a MRE of -58% and a MARE of 58% in the set of materials used
by [61]. Additionally transfer energies between orbitals with different l-quantum
numbers are quite inaccurate [62].

2.2.2 Including gradients

While the LDA works reasonably well for a number of systems it is still a little
crude in the sense that it neglects all non-homogenous components of the density.
This approximation does not represent systems with rapidly changing densities well.
The most obvious way to remedy this is to include the gradient of the density∇n(r̂)
into the exchange-correlation functional [63]

EGEA
xc [n] =

∫
n(r̂) ϵLDAxc (n(r̂)) d3r +

∫
Cxc(n(r̂))

|∇n|2

n4/3
, (2.23)

whereCxc(n(r̂)) is the prefactor of second-order term gradient expansion of exchange-
correlation energy [64]. The first-order term is simply the exchange-correlation
energy used in a LDA. However, this so-called gradient expansion approximation
(GEA) is much less accurate than the LDA [64].

Formal properties of exchange-correlation functionals

To understand why the LDA outperforms the GEA although it undoubtedly contains
more information about the system we need to consider a few constraints that we
know a true physical system to have. While 17 of these constraints are known [4]
we will only introduce a few of them.

Consider a parameter γ > 0, with which we scale our wave function

Ψγ(r̂1, ...r̂N ) = γ
3N/2 Ψ(γr̂1, ...γr̂N ) (2.24)

uniformly. This scaling satisfies both the normalization

⟨Ψγ |Ψγ⟩ = ⟨Ψ|Ψ⟩ = 1 (2.25)
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constraint and it conserves the number of electrons

nγ(r̂) = n(r̂) = Nelec. (2.26)

It can be shown that under this transformation a number of identities hold true [53,
65]

UH[nγ ] = γ UH[n] (2.27)

Te[nγ ] = γ2 Te[n] (2.28)

Ex[nγ ] = γ Ex[n] (2.29)

lim
γ→∞

Ex[nγ ]
Exc[nγ ]

→ 1 (2.30)

lim
γ→∞

Ec[nγ ] → constant (2.31)

and similarly we can define a non-uniform scaling

nxγ(x, y, z) = γ n(γ x, y, z) (2.32)

which leads to constraints like

lim
γ→∞

Te[nxγ ] →
∫ |∇n|2

8n
d3r (2.33)

lim
γ→∞

Ex[nxγ ] → constant (2.34)

lim
γ→∞

Ec[nxγ ] → constant. (2.35)

Since the LDA is based on a real physical system (the homogeneous electron gas)
it inherently satisfies all of these constraints. This is not the case for the GEA. GEA
does not satisfy the constraints on Ec (Eq. 2.31, Eq. 2.35) nor the non-uniform
constraint on Ex in Eq. 2.34. Therefore, the LDA often outperforms the GEA for
calculations of physical systems, despite being constructed with less information.

Generalized gradient approximation

To improve upon the accuracy of LDA we therefore need the generalized gradient
approximation (GGA), which has a more general form of

EGGA
xc [n] =

∫
n(r̂)ϵGGAxc (n(r̂),∇n(r̂)). (2.36)
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Using this higher degree of freedom, functional developers could suggest non-
empirical GGAs that fulfil more of the constraints than the GEA such as the widely
used PBE [2]. While empirical exchange-correlation functionals which determine
these parameters through experimental fitting are more commonly used for specific
scientific domains.

Commonly used GGA functionals such as PBE [2] and its solid-state variant PBEsol [50]
improve on the accuracy of LDA with a MRE/MAE of 1.05%/1.18% (PBE) and -
0.17%/0.67% (PBEsol) for the lattice constant with the testsets used in [60]. PBE
tends to slightly overestimate the lattice constant, while the band gap is still un-
derestimated by quite a lot with a MRE of -53% and a MARE of 53% for PBE in
[61].

2.2.3 MetaGGA

In 1998, two years after the publication of the PBE functional, Becke noted that
the degrees of freedom within GGAs were insufficient and “...that further accuracy
will not be won by continued tinkering with GGA parametrizations, but that new
beyond-GGA directions need to be investigated.” [66]

The question arises how one can go beyond GGA and an obvious choice might be
to use the Laplacian of the density ∇2n, but this quantity can cause challenging
numerical problems in the calculation of the potential ∇2 (∂ϵxc/∂∇2n) [67]. Becke
suggests [66, 68] that one should rather use the closely related occupied kinetic
energy density

τ = 1
2

Nocc∑
i

|∇Ψi(r̂)|2 (2.37)

and a series of MetaGGA exchange-correlation functionals, that rely on this quan-
tity have been suggested [4, 69]. Most notably the SCAN functional which ad-
heres to all 17 known constraints and which reduces the errors to 0.3% (MRE) and
0.6% (MARE) for the lattice constant the test set used by F. Tran et al [70] and
-43% (MRE) / 43% (MARE) for the band gaps of the systems used in [71].

As a way to gain familiarity with the FLEUR code I created an interface to the LibXC
library [72], which includes support for MetaGGAs in the exchange-correlation en-
ergy, but not the potential. An implementation of MetaGGA potentials would in-
volve much bigger refactoring of our code, since the kinetic energy density τ is not
density-, but orbital-dependent and therefore would require an implementation of
the optimised effective potential method (OEP) [73, 74].
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While we were able to verify our implementation of the SCAN functional with a
few reference systems, numerical problems persist. We believe this has two root
causes. Firstly, numerical problems with the SCAN functional are not unique to our
implementation, but instead have been extensively discussed in the literature [75–
78]. Secondly, we also notice numerical problems with LibXC if we compare their
PBE implementation to our native implementation. While for some systems the
agreement is excellent, we discovered that numerical problems often occur in ar-
eas of very low density and in areas very close to the core, where we rely on a
relativistic Hamiltonian. While MetaGGAs seem like a good path towards greater
accuracy, their performance in some key material classes, such as transition metal
magnets [79] or alkali metals [80] is still being investigated.

2.2.4 Exact exchange

While the local exchange-correlation functionals in the previous sections deliver
reasonable results and they are very quick to evaluate, there is no reason to believe
that the true exchange-correlation functional is of the local type given in Eq. 2.21.
This section introduces an exchange-correlation functional, that attempts to achieve
greater accuracy by breaking with the local restriction. Hence, we call this a non-
local exchange-correlation potential.

We can further decompose the exchange-correlation energy into an exchange and
a correlation part

Exc[n] = Ex[n] + Ec[n]. (2.38)

We define Ex[n] similarly to the exchange used in the Hartree-Fock formalism

EHF
x = −1

2

Nocc∑
i,j

∫ ∫ ϕ∗i (r̂)ϕ∗j (r̂′)ϕj(r̂)ϕi(r̂′)
∥r̂ − r̂′∥

dr̂dr̂′ (2.39)

as
Eexact

x [n] = ⟨ΦKS|Vee|ΦKS⟩ − UH[n], (2.40)

where |ΦKS⟩ is the product of the Kohn-Sham orbitals and we have simply applied
the Kohn-Sham orbitals to Eq. 2.39. This expression differs from the exchange used
for Hartree-Fock calculations only by the fact that the Kohn-Sham wave function
are used here, rather than the Hartree-Fock wave functions. In special cases where
the Kohn-Sham and the Hartree-Fock wave functions are the same, this expression
yields the same exchange energy. We refer to this quantity as the exact exchange. In
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practice the numerical differences between the Hartree-Fock exchange energy and
the exact exchange energy in a Kohn-Sham system are minor [81].

Combining Eq. 2.10 and Eq. 2.11 yields

⟨ΦKS|T + Vee|ΦKS⟩ = Te[n] + UH[n] + Ex[n], (2.41)

which in the case of a single electron (Vee = 0, T = Te) this turns into

Ex[n] = −UH[n], (2.42)

meaning that the exact exchange derived in Eq. 2.40 and its potential Vx[n](r̂) =
δE

δn(r̂) correctly cancel out the self-interaction of the Hartree potential for a single
electron.

With an exact expression for Ex this leaves the correlation energy as the difference
between the total energy of the true physical system and the Kohn-Sham total en-
ergy

Ec[n] = F [n]− (Te[n] + UH[n] + Ex[n] ) (2.43)

= ⟨Ψ|T + Vee|Ψ⟩ − ⟨ΦKS|T + Vee|ΦKS⟩ . (2.44)

While it is possible to perform the exact exchange calculations in FLEUR and in
DFT in general, it suffers the same drawbacks as Hartree-Fock calculations do. The
neglect of correlation leads to inaccurate results. In the following sections we there-
fore try to shine some light on Exc as a whole by introducing the coupling constant
integration method.

2.3 Coupling constant integration

Since we were able to derive the exact exchange in Eq. 2.40 only Ec remains un-
known. Eq. 2.44 provides a definition, but it is not useful for practical calculations,
since it relies on the unknown universal potential F [n]. In this section we are go-
ing to try to use the so-called coupling-constant integration or adiabatic-connection
method to investigate the nature of Exc and therefore Ec.

Consider a set of Hamiltonians where we use a parameter 0 ≤ λ ≤ 1 to tune the
electron-electron interaction

Hλ = T + λVee + V λ. (2.45)
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Here we adjust V λ such that the ground-state density n(r̂) for each system is the
same, which is possible due to the Hohenberg-Kohn theorems. In the extreme cases
for λ = 0 the potential V λ will simply turn into the effective Kohn-Sham potential
with the Kohn-Sham wave function |ΦKS⟩, while for λ = 1 the potential V λ is the
external potential for the real physical system with the wave function |Ψ⟩.

Now we combine Eq. 2.40 and Eq. 2.44 to get

Exc[n] (2.46)

= Ex[n] + Ec[n] (2.47)

= ⟨ΦKS|Vee|ΦKS⟩ − UH[n] + ⟨Ψ|T + Vee|Ψ⟩ − ⟨ΦKS|T + Vee|ΦKS⟩ (2.48)

= ⟨Ψ|T + Vee|Ψ⟩ − ⟨ΦKS|T |ΦKS⟩ − UH[n] (2.49)

(2.50)

and as previously introduced we can reinterpret the Kohn-Sham and the real poten-
tial as the cases for λ = 0 and λ = 1 giving us

=
〈
Ψλ
∣∣∣T + λVee

∣∣∣Ψλ
〉 ∣∣∣∣

λ=1
−
〈
Ψλ
∣∣∣T + λVee

∣∣∣Ψλ
〉 ∣∣∣∣

λ=0
− UH[n] (2.51)

=
∫ 1

0
dλ

d

dλ

〈
Ψλ
∣∣∣T + λVee

∣∣∣Ψλ
〉
− UH[n] (2.52)

using the Hellmann-Feynman theorem [82, 83] we get

Exc[n] =
∫ 1

0
dλ
dEλ

xc

dλ
=
∫ 1

0
dλ
[ 〈

Ψλ
∣∣∣Vee

∣∣∣Ψλ
〉
− UH[n]

]
. (2.53)

Here, only λ = 0 (the Kohn-Sham system) and λ = 1 (the real physical system) have
meaning. All intermediate systems are only mathematical constructs. Eq. 2.53 gives
us yet another exact expression for Exc[n], that we can not calculate analytically, but
it will prove useful in order to motivate the ansatz for the hybrid functionals in the
next section.

2.4 Hybrid exchange-correlation functionals

So far we have seen several approaches to approximate Exc. In analogy to Hartree-
Fock calculations we were able to derive an exact expression for Ex, but exact
exchange calculations suffer from notorious overbinding, due to their lack of any
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correlation [81, 84]. The LDA and GGAs are widely used exchange-correlation func-
tionals, that approximate both exchange and correlation. We know however that
the contribution of the exchange to Exc is much larger than that of the correlation
and therefore the question arises if there is a way to utilize the exact exchange
together with the correlation given by the LDA or GGAs.

The naive approach of
Exc = Eexact

x + ELDA/GGA
c (2.54)

has been investigated [85], but it fails in practice. It was only with the work of
Becke [81] that this mixing was put on a firm theoretical foundation and his work
also explains why this naive approach fails.

Recall Eq. 2.53, which we derived through coupling-constant integration as

Exc[n] =
∫ 1

0
dλ
dEλ

xc

dλ
=
∫ 1

0
dλ
[ 〈

Ψλ
∣∣∣Vee

∣∣∣Ψλ
〉
− UH[n]

]
.

As discussed in Section 2.3 we know that the integrand is the effective potential of
the Kohn-Sham system at λ = 0 and the true physical potential at λ = 1. Using
this we can approximate the integrand over the whole range 0 ≤ λ ≤ 1 as a linear
function

dEλ
xc

dλ
= dEλ

xc

dλ

∣∣∣∣
λ=0

+ λ

(
dEλ

xc

dλ

∣∣∣∣
λ=1

− dEλ
xc

dλ

∣∣∣∣
λ=0

)
, (2.55)

which we the can use to evaluate Eq. 2.53 as

Exc =
1
2

[
dEλ

xc

dλ

∣∣∣∣
λ=0

+ dEλ
xc

dλ

∣∣∣∣
λ=1

]
. (2.56)

Here we know the first term is simply the exact-exchange of the non-interacting
Kohn-Sham system and for the latter term we can use the LDA as an approximation,
resulting in

Exc = 1/2
(
Eexact

x + ELDA
xc

)
, (2.57)

for which Becke coined the term half-and-half mixing. This functional is also known
as B3PW91.

Perdew generalized this approach by arguing, that rather than using linear interpo-
lation in Eq. 2.55 any polynomial

Eλ
xc = ELDA/GGA

xc +
(
Ex − ELDA/GGA

x

)
(1− λ)n−1 (2.58)
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could be used to interpolate Eλ
xc between 0 ≤ λ ≤ 1, where the lowest possible n is

chosen, such that
Eλ

xc = c0 + c1 λ+ ...+ cn−1 λ
(n−1) (2.59)

reproduces the λ-dependence of Eλ
xc reasonably well [3]. In this scheme the case

of n = 2 reproduces Beckes approximation (Eq. 2.55), while n = 1 reproduces the
naive approximation of Eq. 2.54, which fails because Eλ

xc = const. is simply too
crude of an approximation for the behaviour of Eλ

xc. Perdew argues, that n = 4 is
the appropriate choice, since fourth-order Møller-Plesset perturbation theory [86]
is the lowest order to give accurate atomization energies. This results in

EPBE0
xc = EPBE

xc + 1/4
(
Eexact

x − EPBE
x

)
, (2.60)

which is the PBE0 [3] hybrid functional. Finally, we should mention the HSE-
functionals [1, 87], where the authors argue that in large periodic systems screen-
ing effects suppress long-range exchange interactions. Therfore, they split the
coulomb interaction into a short-range (SR) and a long-range (LR) part using the
error-function erf(x) and its complement erfc(x) = 1− erf(x)

vcoul =
1
r
= erf(r ω)

r
+ erfc(r ω)

r
= vLRcoul(r) + vSRcoul(r). (2.61)

After discarding the long-range exchange we get the HSE functionals

EHSE
xc = EPBE

xc + 1/4
(
Eexact,SR

x − EPBE,SR
x

)
, (2.62)

where ω is determined by fitting to experimental data. The HSE03 [1] functional
uses ω = 0.15, which was later improved upon with HSE06 [87] by using ω = 0.11.
While disregarding the long-range interactions can speedup the HSE calculations
compared PBE0 calculations with certain basis sets [1], the basis set used by FLEUR
does not allow for this.

2.4.1 Performance of hybrid functionals

Hybrid functionals provide a significant boost in terms of accuracy for certain ma-
terial classes. While they provide a moderate improvement to the accuracy of geo-
metric parameters such as the lattice constant in the tests done in [70, 88] (PBE0:
MRE=0.6, MARE=0.8; HSE06 MARE 0.71), they provide drastically improved pre-
dictions for the band gap. PBE0 overestimates the band gap by a mean error of 0.43
eV and a MARE 45%, while HSE provides a more accurate prediction with a slight
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mean underestimation of 0.23 eV and a MARE of 15% with the test set calculated
in [11].

This strong predictive power of hybrid functionals not only for structural but also for
electronic properties makes them key ingredients for material screening procedures
relying on accurate band gap predictions [89–91].

2.5 Self-consistency cycle

In Section 2.1.3 we saw that the Kohn-Sham equations pose a self-consistency prob-
lem, requiring that the Kohn-Sham orbitals ϕi reproduce the ground-state density
n0 and vice versa. When solving this self-consistency problem in FLEUR we have to
consider two cases. The self-consistency cycles for a local and a non-local exchange-
correlation potential are different.

If we are using a local exchange-correlation potential, FLEUR generates an initial
guess for the charge density n1(r̂) by solving individual DFT problems for each
atom. Then a repeating self-consistent cycle is started with the current charge den-
sity ni. With this density the Kohn-Sham equations are solved resulting in a new
density nnew. The start density for the next iteration ni+1 is then generated by com-
bining nnew with the previous densities ni, ni−1, ..., n1 using one of a selection of
different solvers for self-consistency problems such as straight- [92], Broyden- [93]
or Pulay-mixing [94]. Finally a “charge density distance” ∥ni+1 − ni∥ is calculated
to determine if the calculation is converged and if not the cycle is restarted with
ni+1 as an input. This is sketched in the blue box in Fig. 2.1.

If on the other hand a non-local exchange-correlation potential is used the self-
consistency cycle becomes a little more complicated. Since the time for the calcu-
lation of the non-local potential dwarfs all other parts of a DFT calculation, the
non-local potential is not updated together with the local potential, but instead the
previously described DFT cycle is performed for a fixed non-local potential and the
non-local potential is only updated once the density is converged [27]. In Fig. 2.1
this scheme is indicated as another green cycle around the blue density converging
cycle. The goal of these nested self-consistency cycles is to minimize the number
of iterations in the outer, more expensive cycle. Due to the lack of an initial guess
for the non-local potential, a local potential is used for the first density cycle. Using
the first converged charge density and the corresponding Kohn-Sham orbitals the
non-local potential is calculated and a non-local potential is used in all following
cycles.
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   Self-consistent cycle for fixed Vₙₗʲ

Inital density guess n₁ and Vₙₗ⁰=0 

Calculate potential 
  Veff[nᵢ] = α Vₙₗʲ  + (1-α) Vloc[nᵢ]

calculate new HF potential Vₙₗʲ⁺¹

Vₙₗʲ⁺¹ converged?

End

Yes

No

Solve KS equation

Generate new density:
nᵢ₊₁

nᵢ₊₁ converged?

Yes

No

Fig. 2.1.: The self-consistent DFT cycle for a local potential is contained in the blue box.
This cycle only converges the density. The whole plot indicates the self-consistent
DFT cycle with a non-local potential, with two nested cycles converging the non-
local potential and the density. At the beginning of the cycle we start with a
guess for the density and a purely local potential. Using the density we set up
the effective potential and solve the Kohn-Sham equations to generate a new
density, which we mix with the previous iteration until it converges. Once a
first density is converged we calculate a non-local potential, which we then use
together with the converged density to set up a non-local effective potential and
restart the density cycle. This is repeated until both the density and non-local
potential are converged.
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Fig. 2.2.: The number of iterations in each density converging cycle is shown in a) and in b)
the first density distance is for each of these cycles is shown. The x-axes indicate
the non-local potential iterations performed so far. The underlying calculation is
a silicon system with 3× 3× 3 k̂-points.

Currently the non-local potential in FLEUR does not use a fast mixing scheme such
as Broyden or Pulay, but instead uses a straight mixing with a mixing parameter of
α = 1, i.e. using the newly calculated potential and disregarding all older non-local
potentials. This scheme only requires a single non-local potential to be stored at a
time which is important because the non-local potential requires much more space
than a charge density. The storage size of the charge density grows linearly with
the system size and is independent of the number of k̂-points used. The non-local
potential on the other hand grows quadratically with the system size and linearly
with the number of k̂-points.

The number of iterations required for either cycle can vary widely depending on
the material calculated. In general however, the number of iterations needed to
converge the density decreases with an increasing number of non-local potential
cycles performed. Fig. 2.2 shows this typical behaviour for a silicon calculation.
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Full-Potential linearized
augmented plane-wave
method

3

In order to calculate solutions to the eigenvalue problem posed by the Kohn-Sham
equations we need to express quantities such as the potentials, the density or
the wavefunctions in some appropriate basis. FLEUR relies on the so-called full-
potential linearized augmented plane-wave method (FLAPW) [95], which is among
the most accurate methods known [23]. This accuracy is due to the fact that FLAPW
can represent the potential everywhere without the need for further approxima-
tions. This is in contrast to e.g. plane-wave basis sets, that need to rely on pseudo-
potentials to represent the diverging Coulomb potential close to the nuclei. Here
the accuracy of the method strongly depends on the underlying pseudo-potentials.
FLAPW in contrast allows for first-principles calculations, meaning that the choice
of the exchange-correlation functional is the only free parameter in a FLAPW calcu-
lation.

In this chapter we briefly introduce the LAPW basis and then use it to construct the
so-called mixed product basis, which is essential for the calculation of the non-local
potential. Finally, we present the Coulomb matrix in this basis. This chapter will
follow along the lines of [32, 43].

3.1 LAPW basis

As previously stated plane-wave basis sets are unable to represent the Coulomb
potential Vcoul(r) ∝ −1/r close to the core. This is because accurately representing
this potential in a plane-wave basis set would require such a large number of basis
functions that this treatment is practically not feasible. Therefore, plane-wave basis
sets need to rely on further approximations such as pseudo-potentials. The FLAPW
method solves this problem by splitting the unit cell into two kind of domains: In
spherical regions centered around each nucleus amuffin-tin (MT) orbital basis [96],
relying on the products of spherical harmonics and radial functions is used. In
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between these spheres, in the so-called interstitial (IS), a plane-wave basis, is used.
This is depicted in Figure 3.1.

Fig. 3.1.: The unit cell is divided into two kinds of domains. The interstitial (striped area),
where plane-waves are used as a basis and the muffin-tins (solid areas), where
atomic bases are used. These two domains are matched at the boundaries so that
the overall wave functions are continuous and smooth. Picture: [97]

The basis functions of the LAPW basis are defined as

φσ
k̂Ĝ

(r̂) =


1√
Ω exp

[
i
(
k̂ + Ĝ

)
· r̂
]

if r̂ ∈ IS∑
lm

[
αaσ
lm(k̂, Ĝ)uaσl (∥r̂a∥) + βaσlm(k̂, Ĝ) u̇aσl (∥r̂a∥)

]
Ylm(êa) if r̂ ∈ MTa

,

(3.1)
where k̂ and Ĝ are the Bloch- and reciprocal lattice-vectors. r̂ denotes the position,
while r̂a := r̂−R̂a is the position relative to the center of the muffin-tin and Ω is the
volume of the unit cell. êa = r̂a/∥r̂a∥ is the unit vector in direction of r̂a. The angular
momentum l and magnetic quantum number m are the indices of the spherical
harmonic Ylm. In this chapter we will explicitly denote the spin with σ. u and u̇ are
radial functions, where u is the solution to the radial Schrödinger equation and u̇ is
its energy derivative. In order to shorten Eq. 3.1 we omitted the energy dependence
of uaσl , u̇aσl , αaσ

lm(k̂, Ĝ) and βaσlm(k̂, Ĝ).

In practice we define cutoff parameters Kmax >
∥∥∥k̂ + Ĝ

∥∥∥ and lamax > l to limit the

size of this basis. Since this cutoff is applied to
∥∥∥k̂ + Ĝ

∥∥∥ rather than just to
∥∥∥Ĝ∥∥∥ the

basis set size at each k̂-point might differ slightly.
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Since FLEUR calculates periodic systems, its wave functions need to have the form
of Bloch functions [98]:

ψk̂(r̂) = sk̂(r̂) e
ik̂·r̂, (3.2)

where sk̂(r̂) is a lattice periodic function and k̂ is the so-called wave- or Bloch-
vector. In Eq. 3.1 sk̂(r̂) = 1/

√
Ω exp

(
iĜ · r̂

)
is lattice periodic part in the interstitial,

since the Ĝs are the lattice vectors. The coefficients αaσ
lm(k̂, Ĝ) and βaσlm(k̂, Ĝ) are

chosen such that the wave function at the boundary between the muffin-tins and
the interstitial is continuous and smooth. This choice also ensures, that Bloch’s
theorem holds inside the muffin-tins. The exact choices for these coefficients are
given in [32].

Additionally, we restrict the wave-vectors or k̂-points to the first Brillouin zone. Dif-
ferent k̂-points set up largely independent computational problems, that are only
combined to calculate final properties such as the density or density of states. There-
fore, k̂-points offer an easy and efficient way to parallelize calculations.

With this we can require u to be normalized

⟨u|u⟩ =
∫ RMT

0
u2 r2dr = 1 (3.3)

and can derive u by solving the radial Schrödinger equation[
1
2
∂2

∂r2
+ l(l + 1)

2r2
+ V aσ

eff,0(r)− Eaσ
l

]
r uaσl (r,Eaσ

l ) = 0. (3.4)

u̇ is derived by solving the energy derivative of the radial Schrödinger equation[
−1
2
∂2

∂r2
+ l(l + 1)

2r2
+ V aσ

eff,0(r)− Eaσ
l

]
r u̇aσl (r,Eaσ

l ) = r uaσl (r,Eaσ
l ), (3.5)

where V aσ
eff,0(r) refers to the spherical component of the potential around the center

of MTa. The functions u and u̇ are solved on a logarithmic grid, so that the regions
close to the core are sampled more densely.

By including u as well as its derivative u̇ we can solve the radial Schrödinger equa-
tion (Eq. 3.4) up to first order accuracy with respect to ∆E := E − Eaσ

l

uaσl (r,E) = uaσl (r,Eaσ
l ) + u̇aσl (r,Eaσ

l )∆E +O(∆E2). (3.6)

This first order accuracy is the reason why we refer to this basis as a linearized
augmented plane-wave basis. Unlike the augmented plane-wave basis [99] this
extended basis allows us to choose an energy such that a single Eaσ

l can be used for
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the whole valence band [100]. Therefore, only a single diagonalization is required
for each k̂-point and spin σ, making practical calculations much easier to perform
and faster to run.

Kohn-Sham equations

We use these basis functions to express the n-th Kohn-Sham orbital at a certain
k̂-point as

ϕσ
nk̂
(r̂) =

∥Ĝ+k̂∥<Kmax∑
Ĝ

zσ
Ĝk̂n

φσ
k̂Ĝ

(r̂). (3.7)

Using this expression we can write the Kohn-Sham equations as a linear algebra
problem ∑

Ĝ

[
Hσ

ĜĜ′k̂
− ϵσ

nk̂
Sσ
ĜĜ′k̂

]
zσ
Ĝ′k̂n

= 0, (3.8)

where zσ
Ĝ′k̂n

are the eigenvectors and the Hamiltonian is

Hσ
ĜĜ′k̂

=
∫
Ω
d3r φσ

k̂Ĝ
∗(r̂)

[
−1
2
∇2 + V σ

eff(r̂)
]
φσ
k̂Ĝ′(r̂). (3.9)

Notice, that Eq. 3.8 is not a regular eigenvalue problem, but rather a generalized
eigenvalue problem, since we included an overlap matrix Sσ

ĜĜ′(k̂). While plane-
waves that span the whole unit cell are orthogonal, plane-waves in the LAPW basis
are restricted to the interstitial (c.f. Fig. 3.1) and therefore they have a non-diagonal
overlap matrix

Sσ
ĜĜ′k̂

=
∫
Ω
d3r φσ

k̂Ĝ
∗(r̂)φσ

k̂Ĝ′(r̂), (3.10)

which we need to include into our eigenvalue problem. In practice we can map
the generalized eigenvalue problem to an auxiliary regular eigenvalue problem by
performing a Cholesky decomposition of the overlap matrix:

Hv̂ = εSv̂, (3.11)

Hv̂ = εLL†v̂, (3.12)

L−1HL−†︸ ︷︷ ︸
=:H′

L†v̂︸︷︷︸
=:v̂′

= ε L†v̂︸︷︷︸
v̂′

, (3.13)

H ′v̂′ = ϵ v̂′. (3.14)

Here we perform a back substitution algorithm to solve the system of linear equa-
tions, rather than performing an explicit inversion.
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Core states and local orbitals

Another reason why FLEUR is one of the most accurate DFT codes is that it is an
all-electron code, meaning that all electrons are treated explicitly and we do not rely
on approximations such as frozen cores [101]. However, the LAPW basis functions
introduced in Eq. 3.1 only cover the valence electrons and are not suitable for
the treatment of core electrons, since the wave functions of the core electrons are
orthogonal to the LAPW basis [102].

In FLEUR the core electrons are therefore treated separately from the LAPW basis
and individually for each muffin-tin. This has a few additional benefits. First, it
reduces the size of the basis, enabling faster calculations and second this separate
treatment makes it possible to calculate the core electrons fully relativistic using
the Dirac equation, while the valence electrons can get a more lightweight scalar-
or non-relativistic treatment.

Finally, certain systems can exhibit states that are too low in energy to be suitably
represented by the LAPW basis, but are too high in energy so that their wave func-
tions are not orthogonal to the LAPW basis anymore. For these states FLEUR can
extend the LAPW basis by adding so-called local orbitals (LO) [103]. These are
fully contained within the muffin-tins and are zero in the interstitial.

With this we can define a simplified notation

uaσlp (r) =


uaσl (r) p = 1

u̇aσl (r) p = 2

uaσl (r,Eaσ
LO) p ≥ 3,

(3.15)

where uaσl (r,Eaσ
LO) is the radial function used for the local orbital with energy Eaσ

LO.

3.2 Mixed product basis

Recall the exact exchange introduced in Eq. 2.39, which expressed in terms of Kohn-
Sham orbitals is a six-dimensional integral

EHF
x = −1

2

Nocc∑
i,j

∫ ∫ ϕ∗i (r̂)ϕ∗j (r̂′)ϕj(r̂)ϕi(r̂′)
∥r̂ − r̂′∥

dr̂dr̂′ (3.16)
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However, evaluating this integral numerically in the given form is too costly. To
reduce the algorithmic complexity of this integration we utilize the so-called mixed
product basis (MPB) [104]. This basis is designed to represent products of the
LAPW basis functions. By employing this basis we can reduce the calculation of the
exact exchange from a term involving four Kohn-Sham orbitals to a term involving
two MPB functions. Additionally, by representing products of the LAPW basis more
efficiently we also significantly reduce the number of basis functions needed to
represents these products from O(Nbas

2) to O(Nbas).

In the MT spheres a product of two basis functions is given as

uaσlp (∥r̂a∥)Y ∗
lm(êa) uaσl′p′(∥r̂a∥)Yl′m′(êa)

=uaσlp (∥r̂a∥)uaσl′p′(∥r̂a∥)
∑

L=|l−l′|,...,|l+l′|
M=−L,...,L

GLM,l′m′,lmYLM (êa), (3.17)

where GLM,l′m′,lm are the Gaunt coefficients, defined as

GLM,l′m′,lm =
∫
YLM (r̂)Yl′m′(r̂)Y ∗

lm(r̂) dΩ. (3.18)

For a given L we define a set of radial functions

Uaσ
LP (∥r̂a∥) = uaσlp (∥r̂a∥)uaσl′p′(∥r̂a∥), (3.19)

where P counts over all p,p’,l and l’, for which the Gaunt coefficients are non-zero.
Notice, that the span of this set lies outside of the space spanned by the set of {uaσlp }.
Since set of Uaσ

LP can be highly linear dependent, we reduce the size of this basis
further by finding a set of orthogonal vectors that span almost the same space.

This is done by employing the procedure described in [105]. First we calculate the
overlap matrix for a given L and a

Oaσσ′
L,PP ′ =

∫
Uaσ
LP U

aσ′
LP ′ r2 dr. (3.20)

We diagonalize this matrix and the set of eigenvectors whose associated eigenvalues
exceed a certain cutoff κ ≈ 10−4 build a minimal orthonormal representation of the
space spanned by the set of Uaσ

LP . We will refer to this set asMa
LP (r̂).

The LAPW basis explicitly depends on the spin σ =↑, ↓. In this new mixed product
basis the LAPW basis functions of both spin channels are mixed together, so that
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the resulting MPB builds a single spin-independent basis. Finally, we can construct
the Bloch functions inside the muffin-tins as

Ma
k̂,LMP

= 1√
N

∑
T

Ma
LP

(∥∥∥r̂a − T̂
∥∥∥)YLM

 r̂a − T̂∥∥∥r̂a − T̂
∥∥∥
 exp

(
ik̂(T + R̂a)

)
, (3.21)

where R̂a denotes the center of the muffin-tin a, while T are the lattice vectors and
N denotes the number of unit cells.

In the interstitial region the construction of the MPB is much simpler: The product
of two plane-waves is still a plane-wave.

Θ(r̂)√
Ω

exp
[
−i
(
k̂ + Ĝ

)
r̂
] Θ(r̂)√

Ω
exp

[
i
(
k̂′ + Ĝ′

)
r̂
]
= Θ(r̂)

Ω
exp

[
i
(
q̂ + Ĝ′′

)
· r̂
]
,

(3.22)
where q̂ = k̂′ − k̂ and Ĝ′′ = Ĝ′ − Ĝ. The step function Θ restricts the plane-waves
to the IS

Θ(r̂) =

1 r̂ ∈ IS

0 r̂ ∈ MT.
(3.23)

Therefore, the normalized MPB in the interstitial region is given as

Mk̂,Ĝ = 1√
NΩ

exp
(
i(k̂ + Ĝ)r̂

)
Θ(r̂), (3.24)

In order to be able to exactly represent the products of the LAPW basis in the IS, we
need to introduce a new cutoff K̃max = 2Kmax+KΘ

cut, where KΘ
cut is the cutoff for the

step function in reciprocal space. In practice lesser values K̃max ≈ 2
3

(
2Kmax +KΘ

cut

)
have proven themselves to deliver accurate results as well.

We combine the MPB in the MT and IS to a single basis, but unlike the LAPW basis,
the MPB is not continuous or smooth at the boundary between the MT and the IS.
While it would be possible to construct a MPB that is smooth and continuous [32],
this is not necessary for the calculation of the non-local potential. This newly con-
structed basis is also not orthogonal, due to the fact the plane-waves don’t extend
over the whole unit cell. Therefore, we calculate the overlap matrix

M∗
k̂,I
OIJ(k̂) =

∫
Ω
M∗

k̂,I
Mk̂,J d3r, (3.25)
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where we use I and J as superindices counting over all MPB functions in the IS
and MT. This non-diagonal overlap matrix slightly complicates the completeness
relation of the mixed product basis to

1 =
∑
J

∑
I

∣∣∣Mk̂,I

〉
O−1

IJ (k̂)︸ ︷︷ ︸
=:
∣∣M̃k̂,I

〉
〈
Mk̂,J

∣∣∣

=
∑
J

∣∣∣M̃k̂,J

〉〈
Mk̂,J

∣∣∣ =∑
J

∣∣∣Mk̂,J

〉〈
M̃k̂,J

∣∣∣ (3.26)

3.2.1 Coulomb matrix

Using this completeness relation we can write the non-local exact exchange from
Eq. 3.16 as

V exact
σ,nn′ (k̂) = −

Nocc∑
n′′

BZ∑
q̂

∑
IJ

〈
ϕσ
nk̂

∣∣∣ϕσ
n′′k̂−q̂

Mq̂,I

〉
CIJ(q̂)

〈
Mq̂,Jϕ

σ
n′′k̂−q̂

∣∣∣ϕσ
n′k̂

〉
, (3.27)

where the Coulomb matrix is

CIJ(q̂) =
∫∫ M̃∗

q̂,I(r̂)M̃q̂,J(r̂)
∥r̂ − r̂′∥

d3rd3r′. (3.28)

The evaluation of Eq. 3.27 is the most time-intensive part of typical hybrid func-
tional calculations. It consists of two major parts:

The calculation of the wave function products in the MPB
〈
ϕσ
nk̂

∣∣∣ϕσ
n′′k̂−q̂

Mq̂,I

〉
is the

most time consuming part. Here the calculation in the interstitial is especially ex-
pensive, because this calculation relies on a large number of fast Fourier transforms
with the large cutoff K̃max. The other time consuming part is the vector-matrix-
vector products between the Coulomb matrix and the wave function products from
the left and the right. In FLEUR the vector-matrix-vector product has been ex-
pressed as a matrix-matrix-matrix-product by stacking the vectors of the MPB into
matrices. Throughout this thesis we refer to this step as the triple matrix product.

Eq. 3.27 dictates a complicated access pattern: While all the k̂-points are in the
irreducible Brillouin zone, this is not true for q̂- or k̂−q̂-points. Their wave functions
are calculated by applying the appropriate rotations to the wave functions of the
equivalent k̂-point inside of the irreducible Brillouin zone. This sampling of the
Brillouin zone at k̂, q̂, and k̂ − q̂, limits the choice of k̂-point meshes to equidistant
meshes, so that every k̂ − q̂ is also on the mesh. Additionally, the Γ-point needs
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to be part of this mesh in order to accurately treat the diverging Coulomb matrix
at q̂ = 0. Lastly, it should be pointed out that by applying appropriate unitary
transformations to the Coulomb matrix it can be made sparse [104]. An example
of the sparsity pattern is shown in Fig. 4.1. This greatly accelerates the calculation
of the triple matrix products.

In the current and the previous chapter we have introduced the formalisms needed
to evaluate and apply hybrid functionals in the LAPW basis. Chapters 4 and Chap-
ter 5 will introduce how this is done in practice for systems containing hundreds of
atoms.
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Node-level performance and
its portability

4

4.1 Introduction

FLEUR is increasingly being using in the context of high-throughput screening calcu-
lations [106] or calculations of very large systems [54]. These types of calculations
require a colossal amount of compute resources and therefore it is essential that
FLEUR uses these resources efficiently. In this chapter we are going to discuss how
we attempt to implement a good performance for FLEURs hybrid functional code on
a single node and after this we are going to presents measurements of the achieved
performance.

Furthermore, it is of little use to accomplish a perfect performance on a single
system at the expense of the performance on other machines. The goal is to have a
code with a strong performance on all major types of machines, regardless whether
it is a laptop or any of the supercomputers available around the world. This goal is
called performance portability.

If you compare the current list of the top 500 supercomputers [@30] with its four
year old predecessor [@29], you will notice that achieving performance portability
has become significantly more difficult. Five years ago 92.8% of systems relied
on Intel CPUs and only 18.2% of systems used an accelerator architecture. On
the current iteration of the list Intels share has shrunk to 86.4%, while the share
of systems using accelerators has grown to 29.4%. Even though the accelerator
market is currently dominated by NVIDIA, this is also likely to change with AMD
supplying accelerators for a number of very large systems in the near future [@107,
@108]. This increasing diversity in hardware makes it increasingly difficult to plan
for a future-proof performance portable code.

Considering this challenge we decided not to tune custom code for specific ma-
chines, but rather to express our code in terms of standard linear algebra and to
rely on linear algebra libraries, such as BLAS and LAPACK. By doing this we can
utilize the performance tuning efforts the vendors have or will put into their linear
algebra libraries. This approach gives us on the one hand highly efficient code and
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on the other it ensures performance portability, since each vendor has to provide
highly efficient libraries for their hardware.

While we managed to replace a lot of custom code with BLAS or LAPACK expres-
sions, not every part of the code can be expressed in terms of linear algebra. In these
code sections we used OpenMP [109] to parallelize code on the CPU. OpenMP is
an established standard for CPU parallization and every major compiler supports
it well. Hence, it seems like a safe assumption to think that OpenMP will still be
supported in a decade or more.

Picking a future-proof framework for accelerator programming is a much more
difficult task. Here only NVIDIA has hardware widely available and therefore many
of the frameworks, such as CUDA, are vendor specific. We decided to implement
the custom GPU kernels using OpenACC. While OpenACC is mainly supported by
NVIDIA the hope is that it only requires little effort to replace one directive based
framework such as OpenACC with another more vendor agnostic framework such
as OpenMP.

4.2 CPU implementation

4.2.1 Employing high-level basic linear algebra routines (BLAS)

One example of a transition from custom code to a standard linear algebra ex-
pression is the final calculation of the exchange matrix. In order to calculate the
exchange matrix the wave function products expressed in the MPB need to be mul-
tiplied from the left and right to the coulomb matrix.

As discussed in Sec. 3.2.1 the coulomb matrix is largely occupied with zeros, except
for a number of smaller blocks along the diagonal, a big block in the bottom right
corner and a few additional very sparse off-diagonal terms. FLEUR makes use of
this sparsity by only storing the big and the small blocks as separate arrays of the
minimal required size. The additional terms are also stored in a sparse scheme, so
that no memory is wasted on storing a large amount of zeros. This has two major
advantages. First the size of the matrix is reduced for communication as well as
storage allowing for larger calculations and second it improves the speed of any
calculation involving the coulomb matrix drastically, since only the big block in the
bottom right corner is significant for the runtime. All other parts have a vanishingly
small runtime compared to it.
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In the legacy implementation the wave function products were applied to the coulomb
matrix a single pair of vectors at a time, whereas in the new implementation the
wave function products are stacked into matrices and then applied to the coulomb
matrix in bulk. This is sketched in Fig. 4.1.

Fig. 4.1.: This graphic sketches the previous and the new method of calculation the ex-
change matrix. While the previous method relied on calculating single matrix
elements, the new method stacks several wave function products into a matrix
and calculates large blocks of the exchange matrix at once.

By replacing a large number of matrix-vector- and dot-products with a single triple
matrix multiplication we shift the parallelization and optimization of overall calcu-
lation from our custom code to a vendor tuned BLAS implementation. The resulting
performance improvement is shown in Fig. 4.2.

We compared these implementations for two cases: First we used the MKL without
any changes on AMD hardware and second we manipulated MKL so that it assumes
it runs on Intel hardware [@110]. In the first case no vectorization is used, while
in the second case AVX2 is used. On a single core without vectorization the new
implementation is only slightly faster than the legacy implementation relying on
matrix-vector products. This improvement is likely due to the better memory access
pattern of a matrix multiplication compared to that of a legacy implementation. The
true advantage of the new implementation is visible for multiple cores. The matrix
vector product is such a short calculation, that the BLAS library gets almost no
speedup by using multiple cores. For the matrix multiplication however the BLAS
library gets much more work at once and can parallelize it very efficiently. Even for
64 cores the matrix multiplication is paralellized with a parallel efficiency of 53%.
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Fig. 4.2.: This graph shows a comparison of four modes to calculate the exchange matrix
for a system KAlCl with 24 atoms. All calculations were done on an AMD EPYC
7742 64-core processor with Intels MKL as a BLAS library. For the solid bars MKL
was used without any changes, so that MKL does not use vectorized routines on
AMD hardware. For the striped bars a trick [@110] was used to suggest to MKL
that it is running on Intel hardware and therefore employs vectorized routines.
Lower is better.

This effect becomes even stronger when the vectorization is used, where even on a
single core the new implementation is more than twice as fast as the legacy one.

This case study shows that our strategy of relying on vendor libraries is correct. The
new implementation not only has a better parallelization, but also makes better use
of the vectorization and cache sizes. The latter two are very hardware specific and
it is therefore difficult to create a single code, that employs them equally well on
many different platforms.

4.2.2 Single node scaling

In order to test the overall performance of our shared-memory parallelization we
performed strong scaling tests for three tests systems on a single AMD EPYC 7742
64 core processor: A KlAlCl sytem with 24 atoms, a GaTeCl system with 44 atoms
and a NaCl supercell with a K defect and with 64 atoms overall. The resulting
speedups and parallel efficiencies are shown in Fig. 4.3, while the absolute times
for a selection of systems is shown in Fig. 4.4.
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For the KAlCl and the GaTeCl system the parallel efficiency is still > 50% for calcu-
lations with 16 OpenMP threads and for the NaKCl system this is still the case with
8 OpenMP threads. In addition to this all systems still experience speedups from 32
to 64 OpenMP threads.

Most parts of the calculation of the non-linear potential show a nice scaling be-
haviour, with the muffin-tin part of the wave function products and the coulomb
matrix setup exhibiting a parallel efficiency of > 50% even for full usage of the CPU.
The triple matrix multiplication also has a strong performance. For the first two sys-
tems in Fig. 4.3 it has a good scalability up to 64 cores, and for the last system it
still scales to 16 cores. Why the wave function products in the interstitial exhibit a
plateau in the speedup will be discussed in the next section.

For a real world calculation the user has to find a balance between the number
of OpenMP threads and MPI processes per node. Experience has shown that the
extreme cases of all OpenMP or all MPI parallelization within a node usually show
a lower parallel efficiency compared to an intermediate setup.

4.2.3 Roofline model

The underlying assumptions for the “ideal” line in Fig. 4.3 are purely based on con-
siderations of the float-point operations (FLOP). In this model we did not consider
other factors such as memory transfer. On modern compute architectures these
assumptions do not represent reality anymore. In this section we will introduce a
model with more realistic assumptions, the so-called roofline model.

The arithmetic intensity describes the ratio of FLOPs per byte of memory transfer. It
can be used to quantify whether a certain routine is limited by memory bandwidth
or whether it is limited by the number of FLOPs per second (FLOPS) a CPU can
execute. An algorithm with a low arithmetic intensity will be limited by the memory
bandwidth without fully utilizing the CPUs compute capabilities. An algorithm
with a high arithmetic intensity on the other hand will be purely be limited by the
number of FLOPS.

The transition between these two limits can be described in the so-called roofline
model. In Fig. 4.5 roofline models are shown for a three-dimensional fast Fourier
transform and for a matrix matrix multiplication. The x-axis indicates the arith-
metic intensity of each algorithm, while the y-axis shows the performance in terms
of FLOPS. Additionally we can see two kinds of limits drawn into this roofline model.
The memory bandwidth limits linearly increase with the arithmetic intensity and
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Fig. 4.3.: Here the strong scaling behaviour with OpenMP on a single AMD EPYC 7742 64
core processor is shown. The overall FLEUR iteration is shown with brown pen-
tagons, while the calculation of the non-local potential is shown in red triangles.
The four remaining lines show the major parts of the non-local potential.
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Fig. 4.4.: These pie charts indicate the absolute times of the most relevant code parts. The
coulomb matrix setup is shown in orange, all other parts are indicated in the
legend. The unit cell size are 24 in the first, 44 in the second and 64 in the third
row. For bigger unit cells the non-hybrid part of FLEUR becomes less significant,
since is only scales with O(natom3), while for large systems the wave function
products become the dominant part of the calculation.
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Fig. 4.5.: These roofline models show the limiting factors for two selected routines during
the calculation of the 24 atom KAlCl system on a single Intel Xeon Platinum 8160
processor using all 24 cores. The roofline was measured using Intel VTune. In a)
the fast Fourier transforms used for the mixed-product basis in the interstitial and
in b) the large matrix-matrix multiplications used for the triple matrix product
are investigated. Clearly, the fast Fourier transforms are limited by the DRAM
bandwidth, while the matrix matrix multiplication is compute bound.

build the “hip” of the roof, if we decide to stick with the roof analogy, while a
vertical ridge line is given by the peak FLOPS of the CPU. These theoretical peak
FLOPS consider all cores of the CPU as well as all vector units. Due to the complex
memory architecture of a CPU with a RAM and three levels of increasingly smaller
and faster caches, there are several lines indicating different memory bandwidth
limits. By measuring the arithmetic intesity and the FLOPS of a certain algorithm
we can use the roofline to determine the factors that limit the execution of this
algorithm.

The roofline model in Fig. 4.5 explains why the wave function products in the
interstitial do not scale as well as the other code parts. In the interstitial the wave
function products are calculated using a fast Fourier transform (c.f. Appendix C),
which has an arithmetic intensity of 0.7 FLOP/byte and is limited by the memory
bandwidth of the main memory as you can see in Fig. 4.5 a).
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Looking at Fig. 4.3 we can see that the speedup of the wave function products in
the interstitial reaches a plateau after eight or more cores are used. This is due to
the limiting memory bandwidth. If we use four or less cores we reduce the peak
performance ridge so much, that this limit is lower than the memory bandwidth
limit at 0.7 FLOP/byte. Once we go to eight or more cores the bandwidth limit is
lower than the peak performance limit and therefore we can not see any further
speedup beyond eight cores.

The matrix multiplication, dominant in the application of the coulomb matrix, on
the other hand has an arithmetic intensity of more than twice that. In Fig. 4.5 b)
you can see that it not restricted by the memory bandwidth, but rather by the peak
performance of the CPU. This is partly because it has a higher arithmetic intensity,
but also because Intel MKLs matrix multiplication is so well optimized, that it is not
bound by either the DRAM bandwidth nor by the L3 cache bandwidth.

Achieving this with the FFTs is more difficult, because there we have to calculate
a large number of small FFTs, unlike the matrix multiplication, where we have a
few very big matrix multiplications. This means the time spent in the routine is too
small to take advantage of the libraries cache optimizations.

4.3 GPU implementation

In addition to the tuning efforts on CPUs discussed in the previous sections we also
created an OpenACC implementation of the hybrid functionals in order to be able
to utilize modern accelerators.

In this chapter we will investigate the performance of this implementation on two
specific accelerators. We will be comparing the performance of a NVIDIA V100-
SXM2 on the CLAIX 2018 [@111] supercomputer or a NVIDIA A100 SXM 40GB on
Jureca DC [@112] with the AMD EPYC 7742 CPU from the previous section. Here
the A100 GPU represents the most high-end data center hardware NVIDIA currently
has to offer and the V100 is the A100s four year old predecessor.

Two key differences distinguish these GPU accelerators from their CPU competitors.
Firstly, they have a much larger number of cores, running at a slightly lower fre-
quency, but overall they deliver a much higher peak performance (19.5 TFLOPS on
A100, 7.8 TFLOPS on V100, compared to 3.48 TFLOPS on the AMD EPYC 7742)
and secondly they utilize a high-bandwidth memory, which outperforms that of the
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CPU(206GB/s spec, 64 GB/s measured) by almost one order of magnitude (V100
900 GB/s, A100 1555 Gb/s).

We should note that in addition to differences in the hardware there are also big
differences in the performance of the compilers provided by the vendors. This is
particularly evident in routines that mostly run on the CPU, such as the Coulomb
matrix setup. While Jureca DC, the system running the A100 GPUs, has the same
exact CPUs as our CPU reference machine its setup of the Coulomb matrix is dras-
tically slower as evident in Fig. 4.6. If we compare the CPU-only runtime for this
routine it is about 2.4× faster (KAlCl: Intel→ 15.6s; NVIDIA→ 37.8s) if FLEUR is
compiled with the Intel compiler compared to NVIDIAs Fortran compiler.

The implementation for the GPUs mainly focused on the most time consuming parts
of the non-local potentials: the wave function products and the triple matrix prod-
ucts are entirely performed on the GPU, while for the coulomb matrix setup only a
small part of the calculation is performed on the GPU. One reason for this is, that
the coulomb matrix setup occupies only a small part of the total run time and that
is scales linearly with the number of k̂-points, while the wave function products
and triple matrix product scales quadratically with it. The parts of FLEUR, that
are unrelated to the non-local potential have also been ported to the GPU, but this
effort is not the subject of this thesis and therefore, this chapter neglects the GPU
performance of these parts.

For the port to a GPU architecture we paid particular attention to the data move-
ment between the host and the GPU. While the data movement on the GPU and
even CPU is very fast, the PCIe Gen4 connection between the GPU and the CPU
only has a bandwidth of 64GB/s representing the weakest link in the data moving
chain. Therefore, we tried to minimize the amount of data movement across this
connection. However, a balance has to be found, since leaving all the data on the
GPU during the whole calculation would waste available memory and reduce the
size of the biggest systems we can calculate on a given GPU.

During the calculation of the wave function products we therefore only copy the
relatively small eigenvector matrix to the GPU and then only copy the final result
out to the host. No data movement is required during the calculation, avoiding
potentially throttling data dependencies. The triple matrix products work similarly,
reducing the communication between host and GPU to input and output arrays at
the beginning and end of the routine. Additionally, we created dedicated timers to
measure the data movement between host and GPU. Here we never found that any
significant time was spent on the data transfers.
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Fig. 4.6 the compares the performance for the major parts of the non-local potential
calculation on these two types of GPUs to their CPU counterparts. The runtime
of the coulomb matrix setup fluctuates wildly even though most of its runtime is
spent on the CPU. This is due to the fact, that each of the systems shown have
different underlying CPUs and use different libraries for the linear algebra und
Fourier transforms. However, the speedup experienced for the whole non-local
potential calculation with a single A100 is between 1.8× and 3.9×, depending on
the system size. For the older V100 the speedup was between ≈ 1.0× and 2.6×. In
Table 4.1 the runtime and speedup of the major parts is given explicitly.

System Part CPU [s] V100 [s] A100 [s]
V100
speedup

A100
speedup

KAlCl

sparse matmul 7.34 8.30 3.41 0.88 2.15
Coulomb setup 15.59 61.79 37.79 0.25 0.41
wavef. prod. MT 4.49 2.86 2.14 1.56 2.09
wavef. prod. IS 54.43 9.29 2.06 5.91 26.4

GaTeCl

sparse matmul 263.17 179.89 72.27 1.46 3.64
Coulomb setup 118.87 540.85 315.37 0.22 0.38
wavef. prod. MT 60.34 54.55 42.89 1.11 1.41
wavef. prod. IS 1229.62 91.48 43.01 13.44 28.59

NaKCl

sparse matmul 350.81 308.32 170.26 1.14 1.96
Coulomb setup 192.87 849.77 518.50 0.23 0.37
wavef. prod. MT 111.24 140.98 93.19 0.79 1.19
wavef. prod. IS 2928.41 177.24 89.00 16.52 32.9

Tab. 4.1.: Here the absolute runtimes and the speedups of the GPUs over the CPU imple-
mentation of the four major parts of the non-local potential are given.

Some parts such as the interstitial wave function products experience drastic speedups,
while other parts such as the muffin-tin wave function products might even slow
down in some cases. This is because the very large problem of the interstitial is
easily distributed over a GPU and it benefits from the GPUs high bandwidth mem-
ory, while smaller problems are more difficult to distribute so that a GPU is fully
utilized. However, executing these parts on the GPU, all be it a little slower than on
a CPU, is still much faster than copying the data off the GPU and back in order to
perform the calculation on the CPU. Additionally, these code parts don’t contribute
meaningfully to the overall runtime and we can therefore accept a speedup less
than 1×.

In this section we focused on the performance of a single GPU. Typically a single
node will host multiple GPUs. For example CLAIX [@111] uses two per node (one
per socket) and Jureca DC [@112] has four per node (two per socket). FLEURs
hybrid functionals can utilize multiple GPUs, but this is done using the MPI im-
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plementation, which is the subject of the next chapter. Therefore, the reader is
referred to Chapter 5 for the discussion of multi GPU scaling.

Fig. 4.6.: Here we compare the runtime of the non-local potential calculation of three test
systems on three different architectures. The 24 atom KAlCl, the 44 atom GeTeCl
and the 64 atom NaKCl previously introduced in this chapter are calculated on
three systems: On a AMD EPYC 7742 CPU (cf. Fig. 4.3 and Fig. 4.4), a NVIDIA
V100 and a NVIDIA A100 card.

4.4 Conclusion

In this chapter we discussed the efforts to improve the single node performance of
FLEURs hybrid functional code as part of this thesis. Additionally, we were able
to demonstrate a strong performance on GPUs utilizing tuned external libraries
as well as custom OpenACC code, enabling the code to run on future exascale
machines. Finally, we were able to demonstrate performance portability, showing
that our single code base is capable of efficiently running of vastly different hard-
and software architectures.
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Multi node scalability 5
In the last chapter we demonstrated, that the hybrid functionals in FLEUR can
utilize a single node efficiently, but with this only half the battle is won. In order
to calculate large magnetic systems with a fine k̂-mesh, we need to combine the
compute power of hundreds or thousands of nodes to perform our calculations.
This chapter is going do discuss the MPI algorithm we developed for inter node
communication and its scalability.

5.1 Data flow for non-local potential calculations

The calculation of the non-local potential is the most time consuming part of a
FLEUR calculation with hybrid functionals. This is due to the fact, that it scales with
O
(
natom

4), while the rest of the DFT cycle scales with O
(
natom

3). For small systems
with less than⪅ 10 atoms other parts of the algorithm such as the diagonalization or
potential generation require a significant share of the runtime, while they become
increasingly negligible for larger systems. For large systems with more than fifty
atoms the calculation of the non-local potential becomes computationally dominant.
Since smaller systems don’t need to be calculated on large supercomputers this
chapter is focused on the scaling of the non-local potential.

In Chapter 3 (Eq. 3.27) we presented the expression for the non-local potential in
the FLAPW basis, which was

V exact
σ,nn′ (k̂) = −

Nocc∑
n′′

BZ∑
q̂

∑
IJ

〈
ϕσ
nk̂

∣∣∣ϕσ
n′′k̂−q̂

Mq̂,I

〉
CIJ(q̂)

〈
Mq̂,Jϕ

σ
n′′k̂−q̂

∣∣∣ϕσ
n′k̂

〉
.

This equation dictates quite a complex data flow. The mixed product basis combines
all wave functions at k̂, with the occupied wave functions at k̂ − q̂. The (k̂ − q̂)-
points might be outside of the irreducible Brillouin zone and therefore need to
be mapped on symmetry equivalent points within the irreducible Brillouine zone.
Finally, they are combined with the coulomb matrix for the q̂-point. Due to these
complex requirements, a good communication pattern is key in order to create a
scalable algorithm for the non-local potential.
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The MPI algorithm described in this section is designed to achieve a balance be-
tween a number of different goals. Firstly, rather to than calculate each matrix
element individually we ported the code to rely on large matrix-matrix multiplica-
tions (cf. Chapter 4.2.1). However, in order to calculate large unit cells on com-
puting platforms with limited memory such as accelerators, we need to be able to
adjust the matrix size to be as big as possible but still within memory constraints.
To achieve this we introduced three levels of MPI parallelism that enable us to dis-
tribute the problem among a large number of nodes.

A FLEUR calculation with a purely local potential has two levels of MPI-parallelisim:
Firstly, a parallelization over k̂-points allows different k̂-points to be calculated as
largely independent problems, which makes this parallelization very efficient. Sec-
ondly, each k̂-point problem can be further subdivided, for example into groups of
bands. This subdivision however requires substantially more communication com-
pared to that of the k̂-points.

For non-local potential calculations, we introduced an additional MPI level in order
to be able to distribute the problem to more nodes. Fig. 5.1 depicts the distribution
of the MPI ranks into subgroups for the non-local potential. Similar to the local
potential calculation the highest level of MPI parallelization is between different
largely independent k̂-point problems. The calculation of the non-local potential at
a single k̂-point requires a summation over a set q̂-points. Therefore, the work for
each k̂-point is further divided into k̂q̂-pairs, that are also largely independent with
only a single reduction at the end of the non-local potential calculation. Finally, for
the last MPI level the work within a single k̂q̂-pair is split into groups of occupied
bands. This parallelization requires more communication, but it allows us to limit
the size of the largest matrix to a minimum of nbasis size · ntotal bands which then
has a size on the order of O(natoms

2). Since this matrix has to be stored on a
single node, it turns out to be the bottleneck that determines the largest system we
can calculate on a given computing platform. On SuperMUC-NG we were able to
calculate systems with up to twohundred atoms, even though SuperMUC-NG only
has 90 GB of memory per node.

The complicated symmetries of the extended irreducible brillouin zone determine
the number of q̂-points associated with each k̂-point and their matching. This leads
to an equally complicated requirement for the dataflow. Here we have to distinguish
between two different cases. The eigenvectors for the k̂-points are distributed to a
known set of ranks and each rank needs the full set of eigenvectors for its k̂-points.
For the q̂-points on the other hands only a few eigenvectors are needed on each
rank and their communication pattern is much less predictable.
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Fig. 5.1.: Here an idealized distribution of 60 MPI ranks for a calculation with 5 k̂-points is
shown. Groups of 12 ranks work on each k̂-point, these groups of are subdivided
into 4 groups for each k̂q̂-pair. Finally, the occupied bands of each k̂q̂-pair are
distributed over 3 ranks. In a realistic calculation the k̂-points might not have
the same amount of k̂q̂-pair and the number of occupied bands will also differ
depending on the k̂q̂-pair. If necessary the algorithm will assign more ranks to
certain k̂-points and k̂q̂-pairs in order to balance the computational load between
different ranks.

Hence, we employ two different algorithms for these two cases. The eigenvectors
corresponding to the k̂-kpoints are broadcast directly from the node where they are
stored after the diagonalization to all nodes, that work on this k̂-point. This is very
straightforward and has almost no performance impact.

For the distribution of the eigenvectors corresponding to the q̂-points we rely on
MPIs one-sided communication feature. This is easy to implement and if the code
is changed it requires very little work to adapt it. However, achieving a good per-
formance is not as straightforward. In the next section we describe the problems
associated with one-sided communication and two different approaches how we
achieved good performance.

5.2 Problem with one-sided communication

The performance of the one-sided communication within MPI strongly depends
on its implementation, which creates challenges for the performance portability
of FLEUR. We implemented two different strategies in order to achive good scaling
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performance regardless of the platform FLEUR is executed on and which MPI library
is provided on this platform.

5.2.1 Serialization

Most modern HPC platforms do not support one-sided communication through di-
rect memory access on a hardware level. Therefore, unbeknownst to the developers
MPIs one-sided communication still involves communication from the sender and
receiver. For most MPI implementations, the node that stores the data only can
react to a request, while it is in some routine of the MPI runtime but not if it is
in a unrelated routine, such as a large matrix manipulation calculation. If this is
the case this can lead to an effective serialization of the code, as is shown in the
schematic in Fig. 5.2. After one of the ranks gets all his requests full-filled the rank
will go into a, at times lengthy, calculation without any calls to MPI, so that the
rank can not respond to incoming requests. This leads all other ranks that depend
on data from the rank, which already received its data, to wait. Consequently, in
the worst case the ranks will execute their calculations sequentially. Fig. 5.3 shows
timing data from a calculation where this serialization occurred. In the following
two subsections we will introduce two different solutions to this issue.

Progress thread

The root-cause of the serialization is that, during a lengthy calculation the code will
not have any MPI calls and therefore MPI is not able to respond to any incoming
requests. This can be circumvented by creating a separate thread, that calls the
non-blocking MPI_IPROBE every few hundred milliseconds in an infinite loop. In
FLEUR we implemented a so-called progress thread in C using a separate thread
spun up by pthreads. The disadvantage of a progress thread, is that is requires MPI
to support multi-threading at least to the level MPI_THREAD_MULTIPLE, which is not
available on every supercomputer, such as the GPU machine discussed later in this
chapter.

Barriers

Onmachines, where the MPI library does not support a progress thread MPI barriers
can be used as an alternative. A global MPI barrier is placed after each set of one-
sided communication requests, so that the ranks only start their calculation, after
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Fig. 5.2.: This schematic shows how one-sided communication can cause serialization. In
this scenario both ranks need data from each other. Rank #0 gets its request
fulfilled first and immediately starts a lengthy calculation. During this calculation
rank #0 is not able to respond to rank #1’s request. Rank #1 only gets its
request fulfilled after the calculation on rank #0 is finished. Rank #1 only starts
its calculation after rank #0 is finished, so that the calculations are not run in
parallel, but sequentially.
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Fig. 5.3.: This plot depicts a typical signature of serialization. A test system was calculated
on 64 MPI ranks and the duration of the one-sided communication calls was
measured and plotted as a histogram. The x-axis shows the time that passed
until the one-sided request was answered and the y-axis show how many ranks
fall within a certain time bin. There seem to be three groups, the first group of 27
ranks gets a response to their requests in less than a second, a second group of 24
after 7.5 seconds - 10 seconds and a last group of 15 gets ther requests answered
after more than 16 seconds. This is a very typical signature of the serialization
thas occurs if neither a progress thread or a barrier is used. The second group
only gets their request fulfilled after the first group finishes their calculations of
∼ 8 seconds and the last group another ∼ 8 seconds later.
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every ranks request has been fulfilled. This has a few disadvantages. First of all,
this scheme assumes, that all ranks issue one-sided communication requests almost
at the same time. Luckily this is the case for our algorithm. Secondly, not every
k̂-point has the same amount of q̂-points, which means, that the ranks, that issue
fewer request, need to run through an additional set of "empty" barriers, so that a
deadlock is avoided.

Additionally the barriers will force the code execution to be synchronized, even if
the workload of intermediate steps is distributed unevenly. Therefore, using barri-
ers creates an unnecessary drag on the performance and a progress thread should
be used if possible.

5.2.2 Distributing large arrays

Another issue with the one-sided communication is, that it relies on point-to-point
communication. Due to the symmetry in the unit cell it can happen, that a lot
of ranks need to access the same eigenvector. If this is done using point-to-point
communication, the rank holding the eigenvector would sequentially send it to
each node. This communication pattern is particularly ineffcient for large arrays,
that are distributed to a lot of ranks.

Because each MPI rank needs the full eigenvector matrix for the k̂-point it is work-
ing on, we decided not to rely on the sequential one-sided point-to-point commu-
nication, but rather distribute these large arrays using MPIs collective communica-
tion. For the smaller arrays of the q̂-point, each eigenvector is only used a few times.
Therefore, the cost of using sequential point-to-point communication is much lower
compared to the k̂-points.

5.3 Multi-node scaling

In order to be able to calculate large complex materials with the accuracy, that
hybrid functionals offer, the calculation of the non-local potential needs to be fast,
but more importantly it needs to scale to a lot of computing resources efficiently.
In this section we will discuss the scalability we achieved for the calculation of the
non-local potential using the parallelization scheme discussed above. Every timing
result shown in this section is for a single PBE iteration, followed by a single PBE0
iteration. This is sufficient to show the scaling, since a realistic hybrid calculation
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will just repeatedly calculate these two iteration types in a self-consistent loop (cf.
Fig. 2.1).

5.3.1 Single k̂-point performance

As mentioned previously, we implemented three levels of MPI parallelism. In this
section we will investigate the lowest level of MPI parallelism, the occupied bands,
separately. This is the most difficult level to parallelize because, there are a lot of
inter-dependencies between the different occupied bands of a single k̂q̂-pair. The
parallelization between different q̂-point is easier to scale because it has less depen-
diencies on other q̂-points, while the k̂-points require even less communication with
other k̂-points. After a thorough investigation of the scaling of a single k̂q̂-pair, we
will investigate the scaling of all three MPI levels together.

Strong scaling

The scalability of a HPC applications can be characterized under two different as-
sumptions [113]: strong scaling and weak scaling. Strong scaling describes the scal-
ing for a fixed size problem, while weak scaling deals with a problem that grows
with the computational resources used. First we are going to focus on strong scal-
ing. For strong scaling we investigate how the time to solution decreases for three
different test systems when we add more computational resources. We are going to
use two measures to asses the strong scalability. First we define the speedup as

Sn = Tnmin

Tn
, (5.1)

where Tn is the time to solution on n computational units and Tnmin , is the Tn with
the smallest n. In this chapter a single computational units is going to be either a
full node on CPU systems or a single GPU on systems with accelerators. Usually nmin

is chosen to be 1 but in some cases this is it not feasible for large systems because
of memory or time constraints. In these cases we chose the smallest number of
computes units possible. Assuming perfect strong scalability the time to solution is
inverse proportional to the number of compute units

Tn = Tnmin

n/nmin

. (5.2)
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With this we can calculate the ideal speedup of

Sideal
n = n

nmin
. (5.3)

This however is only a theoretical concept. In real applications algorithmic limita-
tions, communication and startup overhead [113] will cause the real speedup to
be less than ideal. However, we can use the ideal speedup to define the second
measure of scalability the parallel efficiency of our application as

τn = Sn
Sideal
n

. (5.4)

In general we will consider a parallel efficiency of τn ≥ 50% as a threshold for a
good efficiency and as long as additional resources still add to the speedup we con-
sider this to be useful for most scientific applications, even if the parallel efficiency
is lower than 50%.

We measured the scaling of FLEURs hybrid calculations on two different systems:
For CPU based scaling we used SuperMUC-NG, which is a 19 PetaFLOP supercom-
puter consisting of 6480 nodes [@114] where each node has two sockets with a
24-core Intel Xeon Platinum 8174 processor. Here we use two MPI ranks per node.
To investigate GPU based scaling we used Jureca-DCs GPU partition, which has 192
nodes, each of which has two AMD EPYC 7742 processors and four Nvidia A100
accelerators [@112]. On this machine we used one MPI rank per GPU.

Fig. 5.4 shows the strong scaling behaviour of three test systems on SuperMUC-NG,
while Fig. 5.6 show it for the Jureca-DC module. Fig. 5.5 and Fig. 5.7 show the
absolute run times for a few selected calculations. On SuperMUC-NG we tested the
strong scaling upto 256 nodes, while the job restrictions on Jureca DC limited us to
a maximum of 64 GPUs.

For the GPU implementation we ported three major parts of the calculation to the
GPU: The calculation of the wave function products both in the muffin-tins and the
interstitial and the triple matrix multiplication between the coulomb matrix and the
wave function products from both sides. For the setup of the coulomb matrix only
a minor part has been moved to the GPU. All other parts of the non-local potential
calculation are done on the CPU. A detailed discussion of the work done for the
GPUs can be found in Chapter 4.3.

On the CPU system the scaling measurements were done before we implemented
the changes described in Chapter B. Therefore, we manually subtracted the run
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Fig. 5.4.: This figure shows the scaling behaviour of systems with a single k̂-point for three
different systems on SuperMUC-NG. The top row shows NaCl supercell with 64
Atoms and a K defect, the middle row a 99-atom FeO supercell and a vacancy
defect and the last row shows a 120-atom GaAs supercell with an Al defect. The
left column shows the speedup, while the right columns shows the corresponding
parallel efficiency. In plots a) and b) you can see that the data point for the triple
matrix multiplication with 32 nodes has a strange behaviour. This seems to be
due to a faulty measurement. In all other calculations of the triple matrix product
the runtime is dominated by the multiplication of the dense block at the bottom
of the coulomb matrix with the MPB from the right. In this specific run the
runtime for this part is reasonable on every MPI rank, but the application of the
left hand side wave function products takes an unreasonably long time on a few
select MPI ranks. While all of the rank supposedly do the same work some of
the ranks only finish after > 8 seconds, while the majority finishes after < 100
milliseconds. The dip in the speedup and efficiency is driven by this artifact. We
believe this to be due to a temporary glitch with the supercomputer.
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Fig. 5.5.: The absolute run times for a subset of calculations shown in Fig. 5.4 are depicted
here. The top row shows the smallest system, a NaCl supercell with 64 atoms
and the bottom row shows the biggest system, a GaAs supercell with 120 atoms.
The left column shows the run time for calculations run on a single node, while
the right shows the run times of the maximum number of nodes. The outer ring
splits the total runtime into four main parts: Calculation of the wave function
products (green), the setup of the coulomb matrix (orange), the triple matrix
product between the wave function products and the coulomb matrix (purple)
and everything unrelated to non-local potential is shown in blue. The inner
circle subdivides the wave function products into an interstitial (darker green)
and muffin-tin part (light green), the triple matrix product into the application
of the sparse block diagonal parts and the large dense block in the interstitial.

time of the routine responsible of subtracting the local exchange-correlation poten-
tial in order to provide the realistic scaling behaviour.

Fig. 5.5 a) and c) show that on a single node the calculation of the wave function
products is computationally dominant requiring ∼ 70% of the total run time. Luck-
ily both routines for the wave function products show a scaling behaviour superior
to most other code parts as is shown in Fig. 5.4. The wave function products in the
interstitial region are depicted as orange squares while they are shown as purple
triangles for in the muffin-tin regions. For the smallest test system with 64 atoms
both routines still have a parallel efficiency of > 50% for 64 nodes or 3072 CPU
cores. In the medium sized tests system of 99 atoms, the muffin-tin wave function
products have a parallel efficiency > 50% even for 256 nodes while it drops to
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∼ 40% for the interstitial setup. For the largest test system both routines have a
parallel efficiency of > 60% even for the full 256 nodes. The observed improved
parallel efficiency with a growing problem size is due to the fact, that the share of
unparallelized code or code with bad scaling shrinks for larger problems. This is
a well known fact of high-performance computing [115]. For larger systems the
triple matrix multiplication between the wave function products from the left, the
sparse coulomb matrix and the wave function products from the right becomes in-
creasingly important. This routine also has a scaling performance with a parallel
efficiency of > 50% for almost all cases.

The setup of the coulomb matrix exhibits the lowest parallel efficiency throughout.
This is due to the fact that the setup of the coulomb matrix is very communication
intensive and that some of its kernels only can be parallelized over loops, that
iterate over short quantities such as the number of atoms or the quantum numbers
l and m. In these cases we can only observe a speedup when nMPI < natoms or
nMPI < nlm. However this scaling behaviour does not cause a significant slow
down of the calculation of the hybrid functionals as a whole. In Fig. 5.5 it is clear
that the calculation of the coulomb matrix is not dominant even for 256 nodes
and in Fig. 5.4 the scaling of the whole FLEUR iteration scales much better than
the setup of the coulomb matrix, further indicating this scaling behaviour is not
dominant. Table 5.1 shows, that regardless of system size the end user can pick a
parallelization such that a reasonable balance between iteration time and parallel
efficiency is achieved.

On the GPU machine the weights of the different routines are shifted. This is partly,
because some routine have been ported to the GPU and are therefore accelerated,
but it is also due to the fact that the code for the CPU sections is generated by a
different compiler and utilizes different libraries. The latter effect is discussed in
detail in Section 4.3.

The scaling on the GPUs is quite different compared to that of the CPUs. The
scalibility of the sparse triple matrix multiplication is nearly perfect with a parallel
efficiency of > 90% through out. The muffin-tin part of the wave function product
scales almost equally well, achieving a parallel efficiency > 80% throughout. We
believe this is due to the fact that here the problem is distributed over 64 GPUs
on 16 nodes, compared to the 256 node maximum on SuperMUC. This has two
advantages. Firstly, with fewer MPIs it is possible to distribute the problem more
evenly. If we assume as an example, that our problem has 300 occupied bands, than
we would split it into 64 groups of 4 and 5 or into 256 groups of 1 or 2 bands. In
the first case some nodes have to spend 20% of their time idling, while in the latter
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Iteration time [s] CPU GPU
Nodes/GPUs 1 64 256 1 16 64
64 NaCl 2145 165 156 2159 363 120
99 FeO 18411 643 490 13508 1024 384
120 GaAs 21718 727 533 13577 1060 375

Tab. 5.1.: Here the time for a single iteration is shown for the three tests systems on dif-
ferent architectures with different numbers of compute resources. Keep in mind
that FeO is a magnetic system and that we need to calculate this system for both
spins, while we only need to calculate it once for NaCl and GaAs.

case some nodes spend 50% of their time idling. Secondly, distributing the problem
over 16 nodes rather than 256 nodes requires less communication, comparable to
that of SuperMUC at 16 nodes where the parallel efficiency equally strong. Here
however we have 2.1×(NaCL), 3.9×(FeO) and 4.6×(GaAs) faster iterations times
on 16 nodes compared to that of SuperMUC with 16 nodes.

5.3.2 k̂-point parallelization

In a realistic calculation with hybrid functionals it is not sufficient to calculate a
single k̂-point and hence only a single k̂q̂-pairs. Depending on the system size
many k̂-points may be required to converge the calculation. This section is going to
focus on the scalability of calculations with multiple k̂-points. Unlike a calculation
with a local potential, which scales O

(
nk̂
)
, a hybrid functional calculation will

scale O
(
nk̂

2) because the exchange matrix is a sum over all q̂-points associated
with a certain k̂-point. In Fig. 5.8 the scaling behaviour of the previously used NaCl
supercell is shown for 6 and 10 k̂-points.

The scaling behaviour of the parallelization over different k̂-points or q̂-points is
excellent as can be seen in Fig. 5.8. Every part except the setup of the coulomb ma-
trix has a parallel efficiency > 80%. This is expected because the k̂q̂-pairs present
fairly independent problems and therefore only need very limited communication.
In the beginning every rank participates in the distribution of the wave functions
through a broadcast and one-sided communication and at the end there is a reduc-
tion of the exchange matrix over all q̂-points within a single k̂-point. There is no
communication among k̂q̂-pairs in between this.

The key to achieving a good parallelization is to pick the number of ranks so that
the k̂q̂-pairs can be distributed evenly. In Fig. 5.8 the number of nodes were delib-
erately chosen to enable an even distribution of the k̂q̂-pairs. However in Fig. 5.8 c)
and Fig. 5.8 d), the system has 10 k̂-points and 205 k̂q̂-pairs. Therefore, an even
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Fig. 5.6.: In these graphs the scaling behaviour for a single k̂-point of same systems as
Fig. 5.4 are plotted for a GPU architecture. The top row shows NaCl supercell
with 64 Atoms and a K defect. The middle row shows a FeO supercell with
99 atoms and a vacancy defect and the last row shows a GaAs supercell with
an Al defect with 120 atoms. In the left column you can see the speedup on a
double logarithmic scale, while the right columns you can find the corresponding
parallel efficiency.
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Fig. 5.7.: This figure shows a selection of the absolute run times from Fig. 5.6. The color
code and the arrangement are the same as in Fig. 5.5. While the parts that were
ported to the GPU such as the wave function products and the sparse triple matrix
multiplication are much faster, the parts that remained on the CPU, such as the
diagonalization or the coulomb matrix setup are much slower due a different
compiler and library set.

distribution over 10 nodes (20 MPI ranks) is not possible. This suboptimal distri-
bution for the calculation with fewer nodes causes the superscalar behaviour in the
speedup and a perceived parallel efficiency of > 100%. For all calculation with
less than 205 nodes some nodes have to calculate more k̂q̂-pairs than others and
therefore some are idling. This effect disappears for calculations with 205 and 410
nodes.

The scaling of the coulomb matrix setup is comparatively poor. This is due to the
fact that this problem only scales with O

(
nk̂
)
and is therefore over-parallelized

when spread over the same amount of resources as the calculation of the non-local
potential. However, this behaviour also causes the run time of the coulomb matrix
setup to become negligible with an increasing number of k̂-points as can be seen in
Fig. 5.9.

Because the number of k̂q̂-pairs grows so rapidly with the number of k̂-points there
only is a band parallization with 40, 80 and 160 nodes for the system with 6 k̂-
points and for the system with 10 k̂-points only for 410 nodes.
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Fig. 5.8.: Here the strong scaling behaviour of multiple k̂-points for a 64 atom NaCl super-
cell with a K defect is shown. The top row shows the strong scaling for 6 k̂-points
and in the bottom row for 10 k̂-points. The number of k̂q̂-pairs is 40 in the top
row and 205 in the bottom row. The super scalar behaviour for 10 k̂-points is
due to the fact, that the 205 k̂q̂-pairs are divided unevenly by number of MPI
ranks.

Combining all three MPI levels gives us an outlook on the scaling potential of this
algorithm. If we were for example to calculate the GaAs system with 120 atoms
and we would use 8 k̂-points we would get 125 k̂q̂-pairs. Fig. 5.4 shows that for
this system a single k̂q̂-pair has a good parallel performance even if distributed
over 64 nodes. Therefore, it is reasonable to assume that the calculation of the
non-local potential for a system with 8 k̂-points would still have good scaling with
64 · 125 = 8000 nodes, which is ∼ 1500 more than the 19 PetaFLOP SuperMUC-NG
has. The expected time per iteration would be the slightly more than it is for a
single k̂q̂-pairs on 64 nodes: 12 minutes 7 seconds.

5.3.3 Weak scaling

While the meaning of strong scaling is very intuitive, it doesn’t necessarily reflect
real life applications. Being able to calculate a system with twenty atoms in a
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Fig. 5.9.: This chart shows the relation of the run times of the main code parts for calcu-
lations with multiple k̂-points. The top row show timings for calculations with
6 k̂-points, the bottom row with 10 k̂-points. The color scheme corresponds to
Fig. 5.5 and Fig. 5.7: The wave function products are green, the coulomb matrix
setup is orange, the triple matrix product is purple and the remaining parts of
FLEUR are summarized in blue.

minute or less does not advance science a lot. Science is advanced by being able
to calculate increasingly bigger and more complex systems in a reasonable time
frame.

Weak scaling deals with the latter. As discussed previously, the computational de-
mand of a hybrid functional calculation scales with

O
(
natom

4
)
. (5.5)

We are going to focus on a single k̂q̂-pair because the number of required k̂-points
reduces with system size but is also highly dependent on other external factors,
such as the symmetries of the system or the quantities calculated. In Fig. 5.10 two
systems, one boron phosphate (BP), and one gallium arsenide (GaAs) were scaled
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Fig. 5.10.: The weak scaling behaviour of FLEURs hybrid functional calculations is shown
for two test systems. In a) a boron phosphate system is scaled into a supercell
and a nitrogen defect is added. In b) the same is done for GaAs. The y-axis
shows the runtime for different code parts, while the lower x-axis shows the
number of nodes used. The upper x-axis shows the number of atoms in that
particular system.

into supercells with a single nitrogen defect. Then they were calculated with the
parallelization chosen such that

nnodes =
(

natoms

min(natoms)

)4
. (5.6)

With ideal weak scaling the run time should be constant regardless of the size
of the unit cell, since the computational cost in Eq. 5.5 is canceled out by the
additional compute resources chosen in Eq. 5.6. In Fig. 5.10 we show, that the
hybrid functionals in FLEUR have a good weak scaling performance. With the BP
supercell the runtime of a full FLEUR run rises 12% above its run time on a single
node and the calculation of the non-local potential rises 20% about the single node
calculation. In the case of GaAs we get similar values a 9% increase for the non-
local potential and a 30% increase for a full iteration.

For both systems the runtime does not monotonously increase as you would ex-
pect for the weak scaling of a simple algorithm performing a single task. In FLEUR
the situation is more complicated. In FLEUR some parts of the code grow with
O
(
natom

3) and others with O
(
natom

4). For larger systems the latter will be domi-
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nant, but in small systems the first take up a significant share of the run time. In
these cases the choice of Eq. 5.6 is not suitable, because the compute resources are
increased faster than the computational complexity. This explains the initial dip in
the runtime in Fig. 5.10.

5.4 Conclusion

In this section we demonstrated the scalibility of FLEURs hybrid functional imple-
mentation. First we used the criterion of strong scaling to show that our algorithm
scales efficiently to a large number of compute units. Later we demonstrated, that
we are capable of performing calculations with a suitable iteration time using weak
scaling. The MPI algorithm used enables a good scalability within as single k̂q̂-pair
as well as over different k̂-points. Taken together this allows us to perform calcu-
lations, that fully utilize state-of-the-art supercomputers efficiently and investigate
interesting materials such as large complex magnets with a high degree of precision.
This ability is key for the emerging field of virtual materials design. A field that at-
tempts to theoretically predict interesting materials by calculating large groups of
candidate materials with increasing accuracy, in order to short cut time consuming
experiments.
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Garnets, their electronic
structure and magnetic
moments

6

Yttrium iron garnet (Y3Fe5O12 or short YIG) is a complex ferrimagnetic insulator
with a number of remarkable applications, such as in magnonics [34], ultra low
temperature physics [116] and quantum computing [36]. This success has sparked
interest in a related class of materials, the so-called rare-earth-iron garnets (RIGs),
where the yttrium atom in the YIG structure is replaced with an element of the
lanthanide series. Here applications range from materials with giant magnetore-
striction [117] to spin Seebeck insulators [118]. Despite great interest in these
materials there is only a limited number of theoretical studies of their electronic
structure. While YIG has been studied with the electronically rather accurate quasi-
particle self-consistent GW (QSGW) [37] method, the whole range of RIG has to
our knowledge only been studied with LDA+U [17, 119]. The hybrid functional
HSE06 [87] has been applied to Bismuth iron garnet, but only with plane-wave
basis sets [120]. This is most likely due to the large unit cells with 160 atoms in
the conventional and 80 atoms in the primitive unit cell.

In correlated materials, the Coulomb repulsion becomes increasingly important and
competes with the kinetic energy, leading to states that are more localized. Lo-
cal exchange-correlation functionals such as LDA or GGA struggle to describe this
phenomenon accurately. LDA+U attempts to rectify this by adding two additional
terms to the exchange-correlation energy

ELDA+U
xc [n(r̂)] = ELDA

xc [n(r̂)] + EHub[nIσmm′ ]− Edc[nIσ], (6.1)

where EHub[nIσmm′ ] adds an repulsive energy U for electrons present at the same
atom and in the same orbital, imitating the treatment of the Coulomb interaction in
the Hubbard model [121], and the so-called double-counting term Edc[nIσ] which
subtracts the contributions contained in both ELDA

xc and EHub. The larger U is cho-
sen, the stronger the localization of the associated states becomes. Additionally, a
parameter J can be introduced to model exchange splitting. While the values for
U and J can be calculated from LDA [122] or RPA [123], they are often chosen
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to match experimental results [17, 124]. Hence, such LDA+U results are not cal-
culated strictly from first principles. In complex solids such as RIGs with Fe atoms
in different environments and rare-earth atoms with 4f electrons more localized
than the 3d orbitals of Fe, the number of parameters and choice of their size quickly
becomes quickly unwieldy. Additionally, the U-parameters are not transferable be-
tween electronic structure methods since the length scale of orbital projection is
different between different methods.

Materials containing elements with strongly localized f -states, such as the rare-
earth elements present in RIGs, are common applications of LDA+U. However,
FLEUR’s hybrid functionals have in the past been used to accurately calculate ex-
actly these kind of system purely from first principles [28]. While the LAPW basis
allows for an accurate description of the localized f -states, hybrid functionals pro-
vide an improved ab-initio prediction of their correlated behaviour. Furthermore,
hybrid functionals have proven to be suited to predict rare-earth oxides in combi-
nation with other codes [125].

Fig. 6.1.: Unit cell of a garnet. Oxygen nuclei are shown in red, while iron atoms are shown
golden inside the blue polyhedra. The rare-earth or yttrium atoms are shown
purple inside the grey dodecahedra. While the yttrium or rare-earth nuclei are
all symmetry equivalent the iron is present in two different environments as
shown in Fig. 6.2. Structure from [126] and plotted with [127].
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The typical unit cell of a garnet is shown in Fig. 6.1. The iron atoms in this structure
have two types of environments. They are either in the centre of an octahedron or a
tetrahedron spanned by neighbouring oxygen atoms. These different iron environ-
ments, depicted in Fig. 6.2, have a strong effect on the electronic structure, which
is discussed in detail later in this chapter. YIG and most RIGs are ferrimagnets,
such that the magnetic moments of the 8 octahedral iron atoms point in the nega-
tive direction of the 12 tetrahedral iron atoms, which, for the RIGs discussed here
are aligned in parallel with the rare-earth elements. Only a very minor magnetic
moment is induced in the yttrium atom.

At the beginning of this chapter we compare the predictions made by a number
of different methods for yttrium iron garnet. First we use PBE, a local exchange-
correlation functional, and then we perform a series of PBE+U calculations for
different value of U and J . Lastly, we calculate this system using PBE0, a hybrid
exchange-correlation functional. We discuss the emerging trends and compare our
results to previous literature work. Afterwards, we shift our focus to two represen-
tative members of the RIGs. We calculate them using PBE as well as our highly-
scalable hybrid exchange-correlation functionals. We compare these results to liter-
ature calculations performed using LDA+U and then we reflect on the differences
and similarities between these RIGs and YIG.

6.0.1 Numerical setup

In previous studies LDA+U was used to describe the Fe 3d-states or the 4f -states
in the lanthanide series. Here however, there is disagreement on what values for
U are appropriate, while Nakamoto et al [17] use a U = 4 eV for the iron 3d-
states to determine structural properties, other studies [124] uses a U = 4.7 eV.
For the rare-earth elements Nakamoto et al [17] suggests a number of values for
U = {0, 4, 6} eV, depending on which rare-earth is used. Given this uncertainty in a
key parameter, it is questionable what predictive power these calculations have.

In order to understand how the choice of the exchange-correlation functional effects
the electronic structure of YIG we calculated the density-of-states (DOS) with PBE,
PBE+U and with PBE0. For PBE+U calculations we used a series of values for
U = {1, 2, 3, 4, 5, 6} eV with J = 0 eV as well as a calculation with U = 5 eV and
J = 2 eV. All calculations were performed on a 2×2×2 k̂-point grid. We confirmed
that the DOS is converged on this grid by comparing the PBE results to results on
a denser k̂-point grid. We use a smearing of σ = 0.136 eV for all DOS calculations
shown in this chapter. The structural information, e.g. the unit cell and the atom
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positions used in this chapter are based on the experimental ones, exhibiting a Ia3̄d-
structure [126, 128, 129]. Unless specified otherwise the muffin-tin radii used in
this chapter are rFe = 2.14 a0, rO = 1.21 a0 and rY/Gd/Tm = 2.8 a0.

Fig. 6.2.: Unlike the yttrium or rare-earth atom, iron atoms appear in two different en-
vironments. In a) the iron atom is positioned at the centre of an octahedron
spanned by oxygen atoms at the corners, while in c) it is surrounded by oxygen
atoms at the corners of a tetrahedron. In d) the environment of the yttrium atom
is shown. In b) the crystal field splitting for Fe in an octahedral environment is
shown on the left and in a tetrahedral environment on the right. The magnitude
of the crystal field splitting in the tetrahedral environment ∆T is ≈ 4

9∆O, assum-
ing equal distances between the iron and oxygen atoms. Structure in a), c) and
d) from [126] and plotted with [127].

6.1 Electronic structure of YIG

As expected, with a value of 0.44 eV, PBE massively underestimates the experimen-
tal band gap of 2.8 eV [130]. However, the experimental value relies on optical
measurements which are not sensitive to all transitions, potentially missing certain
states and thus overestimating the real band gap. The band gap in PBE+U cal-
culations is strongly dependent on the choice of U, where the literature choice of
U = 4 eV gives a band gap of 1.7 eV, while PBE0 predicts slightly better band gap
of 1.83 eV.

In Fig. 6.3 the DOS of YIG is calculated using PBE as an exchange-correlation func-
tional. In this figure, the antiferromagnetic alignment of the iron atoms is visible:
the occupied states associated with the tetrahedral iron atoms are mainly in the
spin-up channel and the unoccupied ones are in the spin-down channel, while for
the octahedral iron atoms the situation is reversed: below the Fermi level the octa-
hedral iron states are mostly in the spin-down channel and above it in the spin-up.
Most states associated with the oxygen atoms are occupied, while the yttrium states
are largely unoccupied. Below the Fermi level the DOS in the interstitial closely fol-
lows the oxygen DOS. Additionally, the DOS associated with both iron types also
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Fig. 6.3.: DOS of YIG calculated with the PBE exchange-correlation function on a 2× 2× 2
k̂-grid with a smearing of σ = 0.136 eV. The occupied atoms for the tetrahedral
iron are mostly in the spin-up channel, while for the octahedral iron they are
mostly in the spin down channel. This leads to the magnetic moments with
opposite signs. The states below the Fermi level associated with the oxygen, the
iron and the interstitial coincide indicating hybridzation between the 2p-states
in the oxygen and the 3d-states in iron. For the unoccupied octahedral iron a
signature of crystal field splitting is visible with a large peak at 1.5 eV and a
smaller one at 2.5 eV.

coincide with the oxygen and interstitial DOS. This indicates that the 2p-states of
the oxygen and the 3d-states of iron hybridize for both iron environments. This anal-
ysis is supported by number of valence electrons found in the different muffin-tin
spheres which are 24.5 and 24.2 electrons for iron atoms in the center of the tetra-
hedral and octhedral environments, respectively, 37.143 electrons in the sphere of
yttrium, an average of 5.7 electrons in the spheres of oxygen and 164.1 electrons
in the interstitial region. For the unoccupied octahedral iron states we can see a
clear signature of crystal field splitting. In crystal field theory, the oxygen atoms
are assumed to be negative charge points, which repel the electrons of the iron. De-
pending on the arrangement of the oxygen atoms around the iron ones, this shifts
the energy of the iron 3d-orbitals differently. In the case of an octahedral oxygen
environment this leads the three t2g-states to shift down and the two eg-states to
shift up as is indicated in Fig. 6.1 b). For the octahedral iron atoms, above the
Fermi level, there are two distinct peaks, with the lower one containing three and
the higher one containing two states, indicating crystal field splitting. For a tetra-
hedral arrangement of the oxygen atoms, crystal field theory predicts the opposite
effect: the e-states are shifted down, while the t2-states are shifted up. This is visi-
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ble at an energy around 2 eV in the spin-down channel, however, the peaks are not
fully separated and still overlap. This might be explained by the fact that the split-
ting for tetrahedral arrangement is typically smaller by a factor of ∼ 4

9 compared
to an octahedral environment with equal distances. In YIG however, the distance
between the iron and the oxygen atoms is 2.0 Å in the octahedral environment,
while it is 1.8 Å in the tetrahedron. In contrast to the octahedral case we do not see
two distinct peaks but rather two groups of smaller peaks for the tetrahedral iron
states. This subsplitting of the t2-states might be explained by interactions with the
second nearest neighbour yttrium atom. While the oxygen atoms at the corners of
the tetrahedron are all the same distance from the iron atom in the centre, this is
not the case for the yttrium atoms in the vicinity, causing the splitting within the t2-
and e-states. For the occupied iron states, crystal field splitting is not visible for ei-
ther iron type. The strong hybridization between the oxygen and iron states causes
the simple picture of distinct orbitals and point charges at the heart of crystal field
theory to break down.

In Fig. 6.4 the DOS of YIG was calculated using PBE+U with J = 0 eV and values
for U between 1 eV and 6 eV. As discussed in the beginning of this chapter larger
U values lead to a stronger localization of the associated states. This is evident for
U values between U = 3 eV and U = 5 eV where the occupied iron states partially
loose their hybridization and localized iron d-states appear below the p-states, while
the 2p-states of the oxygen get pushed towards the Fermi level. With a U = 6 eV
the iron states are localized to an almost atomic-like state around −6 eV. With
increasing U the band gap also grows larger. In Fig. 6.5 we calculated the DOS of
YIG with a J of 2 eV and a U = 5 eV to investigate the effect of exchange interaction
on the different iron environments. However, the resulting DOS is not substantially
different from that seen for U = 3 eV, J = 0 eV, which is the corresponding effective
U ′ = U − J .

In Fig. 6.6 we plotted the band structure of a PBE+U calculation with a U = 4 eV
and J = 0 eV. By examining this band structure we can explain a phenomena visible
in Fig. 6.4, Fig. 6.5 and Fig. 6.7. In these plots the calculated band gap (red area)
seemingly ends before there are any states in DOS. In fact however, if once pays
close attention there is a state visible at the top of the band gap in each of these
figures in the spin-down channel. In the band structure shown in Fig. 6.6 a single
state in the spin-down channel is clearly visible in this energy range. Together
with a state of the opposite spin, this state builds a direct band gap at the Γ-point.
In the energy range of this state the DOS is dominated by contributions from the
tetrahedral iron, the yttrium and the interstitial. The large dispersion of this state
suggest that it is the highly delocalized yttrium 5s-state, which seems to hybridize
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Fig. 6.4.: DOS for YIG calculated with the PBE+U exchange-correlation functional on a
2×2×2 k̂-grid for a series of Us with a smearing of σ = 0.136 eV. With increasing
U the hybridization between the iron and the oxygen atoms is suppressed and
the states associated with iron become very localized.
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Fig. 6.5.: DOS for YIG of a PBE+U calculation with U = 5 eV and J = 2 eV on a 2× 2× 2
k̂-point grid with a smearing of σ = 0.136 eV. The DOS shown is quite similar to
the one seen for U = 3 eV and J = 0 eV in Fig. 6.4.

Fig. 6.6.: Bandstructure calculated with PBE+U using a U of 4 eV and J = 0 eV. A single
spin-down band appears in the region 1 eV ≤ E ≤ 2 eV. A close examination
of the DOS reveals, that this state is a hybridization between second nearest
neighbours of yttrium and the tetrahedral iron.

with the 2p-state of the tetrahedral iron atom, even though these atoms are only
second nearest neighbours. The transition between the d-orbitals at the bottom
of the band gap and the s-orbitals at the top of it is hard to detect using optical
measurements, since it violates the selection rule l− l′ = ±1. A detailed discussion
of the optical transitions in YIG can be found in [131]. This might explain why
the experimentally measured band gap significantly exceeds that of both PBE0 and
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QSGW [130]. The distance between the tetrahedral iron and the oxygen nearest
neighbour is 1.8 Å, the distance between the yttrium atom and its nearest neighbour
oxygen is 2.4 Å and the shortest distance between the yttrium and the tetrahedral
iron is 3.1 Å.

Fig. 6.7.: The DOS of YIG calculated with the hybrid exchange-correlation functional PBE0
on a 2×2×2 k̂-point grid with a smearing of σ = 0.136 eV. While the tetrahedral
iron states (orange) still hybridize, the octahedral iron states (green) below the
fermi level are localized at ∼ −7 eV.

Finally, in Fig. 6.7 we performed a DOS calculation using the hybrid exchange-
correlation functional PBE0. The results are qualitatively different from any of the
PBE or PBE+U results. With PBE0 the two types of iron behave quite differently.
While the tetrahedral iron 3d-states hybridize with the 2p-states of the surrounding
oxygen atoms, the octahedral iron 3d-states are strongly localized around −6.5 eV.
The DOS of the tetrahedral iron states resembles its counterpart calculated using
PBE, while the octahedral iron DOS exhibits much more localized states similar
to the ones seen in calculations with larger U ≥ 4 eV values. This suggests that
using the same Us for the two iron types might not be the correct approach for this
system. The Us model a screened effective Coulomb interaction, which depends on
the electronic environment of the atom. This demonstrates the advantage of a fully
ab-initio method such as the hybrid functionals.

For the unoccupied octahedral iron states the typical signature of crystal field split-
ting is still visible. Between 2 eV and 6 eV there are two distinct peaks in the DOS,
corresponding to the t2g- and eg-states. The unoccupied 3d-states of tetrahedral
iron are also split by the crystal field, with the e-states being lower in energy than
the t2-states. However, while the nearest neighbour environment of the iron atom,
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Fig. 6.8.: Orbital decomposition of the density of states shown in Fig. 6.7. In a) the states
associated with an octahedral iron atom are shown and in b) they are shown for
a tetrahedral iron atom. The y-axis on the left applies to the orbitals given in the
legend at the bottom. The y-axis on the right applies to the black dashed line
indication the DOS for the whole iron atom. In the octahedral case crystal field
splitting is clearly visible for the states above the Fermi level. For the tetrahedral
iron atoms the magnitude of this splitting is weaker (cf. Fig. 6.2) and there is a
further subspliting of the t2- and e-states next-nearest neighbour effects.

namely the oxygen atoms, is equivalent along local x-, y- and z-directions, this is
not the same for the second nearest neighbour, the yttrium. The distance between
the iron and the yttrium is either 3.10 Å or 3.80 Å, depending on the direction. This
lifts the degeneracy of the t2- and e-states, visible in Fig. 6.8. Below the Fermi en-
ergy we see another splitting for the octahedral iron. Here however crystal field
splitting seems not to be the cause, since contrary to typical crystal field splitting
the t2g-states are higher in energy than the eg-states. Additionally, a stronger effect
causing a splitting with a large peak at −7 eV and a minor peak at −8 eV is visi-
ble. Therefore, it seems that crystal field splitting is not the dominating effect for
occupied states in this system. Rather than this the splittings of the occupied states
appear to be driven by different degrees of localization.
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6.1.1 Lattice parameter

In order to quantify the effect of the localization of the octahedral iron states, seen
with PBE0, we compared the lattice constant predicted for YIG by PBE and by PBE0.
This is shown in Fig. 6.9. Both results are very precise and reproduce the experimen-
tal lattice parameter within ≲ 1%. The PBE result is in good agreement with [17].

Fig. 6.9.: The lattice constant for YIG calculated using PBE0 (blue) and PBE (orange) on a
2 × 2 × 2 k̂-point grid. In this plot all muffin-tin radii were reduced by 5%. The
Birch-Murnaghan equation of state is fitted to the data to determine the global
minimum.

For PBE0 we can see a trend towards a slightly larger lattice parameter, overesti-
mating it compared to the experimental lattice by about 0.5%, while PBE underes-
timates the lattice constant by 0.8%. This might be explained with the behaviour
seen in the density of states: with PBE0 the octahedral iron atoms hybridize less
with the oxygen atoms compared to PBE and therefore the bond strength is reduced,
leading to larger lattice parameters.

6.1.2 Magnetic moment

In the introduction we discussed that some of the key applications of YIG rely on
its magnetic properties. Therefore, we want to investigate the precision of predic-
tions for magnetic properties with different exchange-correlation functionals. In
Table 6.1 we compare the magnetic moments predicted for the different iron atom
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types. The magnetization calculated for the oxygen and yttrium atoms is negligi-
ble regardless of the computational method used. The total magnetization per unit
formula was 5µB for every functional. This agreement is expected, since YIG is a
magnetic insulator which constrains the total magnetization per unit cell to integer
values.

Fe tetra. [µB] Fe octa. [µB]
PBE 3.52 −3.64
PBE+U=1 J=0 3.70 −3.85
PBE+U=2 J=0 3.81 −3.96
PBE+U=3 J=0 3.90 −4.06
PBE+U=4 J=0 3.98 −4.13
PBE+U=5 J=0 4.04 −4.19
PBE+U=6 J=0 4.11 −4.25
PBE+U=5 J=2 3.90 −4.05
PBE0 3.83 −4.01
PBE+U [17] 4.10 −4.20
QSGW [37] 3.93 −4.17
exp. R3̄ [16] 3.95 −4.01
exp. Ia3̄d [16] 5.37 −4.11

Tab. 6.1.: The magnetic moments within the different muffin-tins of both Fe types in units
of µB. The experimental results [16] in the Ia3̄d symmetry have been called
into question [37].

Once again the magnetic moment predicted with PBE+U strongly depends on the
choices of U and J . While PBE predicts the magnetic moment of the two iron types
within only 0.5µB of the experimental value, the predictions by PBE0 are remark-
able close to the experimental results for R3̄. If we compare the PBE0-predicted
magnetic moment of the octahedral iron to the one predicted by Barker et al [37]
obtained using QSGW, another highly precise method, we can see that their calcu-
lation predicts a magnetic moment which is ∼ 4% too small, while PBE0 is very
precise. Note however, that the magnetic moment of single atoms is never well
defined: in FLEUR for example we use the magnetic moment within the muffin-
tin and therefore the magnetic moment depends on the choice of muffin-tin radius.
The improved accuracy of PBE0 might be explained by comparing the DOS obtained
by these two methods where QSGW, unlike PBE0, does not predict the localization
of the octahedral iron states. This highly accurate result for the octahedral atoms
supports the localization of the 3d-states seen there with PBE0. The discrepancy
between the QSGW and the hybrid functional DOS might be explained by a QSGW
calculation that converged into a false local minima, but further experimental work
is needed to conclusively determine the electronic structure of this material. The
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experimental values based on the assumption of a Ia3̄d symmetry cause inaccurate
results in the original paper [16] and the method of obtaining this result has been
called into question by others [37].

Our calculations of YIG with PBE0 have shown that our implementation is not only
correct, but also enables us to calculate predictions in a remarkable agreement with
experimental results.

6.2 Rare-Earth-Iron garnets

In this section we investigated two representatives of the rare-earth-iron garnet
group. We chose to examine Gd3Fe5O12 (GdIG) and Tm3Fe5O12 (TmIg) more
closely. We selected these materials, because a lot of interesting experimental [119,
132–136] and even some theoretical work using the FLAPWmethod [119] has been
published for these materials. Additionally, it is currently not possible to combine
hybrid exchange-correlation functionals with spin-orbit coupling (SOC) in FLEUR.
We believe the electronic configuration these elements (cf. Table 6.2) allows for a
fairly accurate description without the need to include SOC into these calculations.
In gadolinium the 4f -states in the spin-down channel are fully occupied and they
therefore are not close to the band gap, so that the splitting of the f -states is less
consequential. Thulium is missing only one electron to full occupation of the 4f -
states, which we hope is close enough to full occupation to allow for a reasonable
description without taking SOC into account.

Element Electronic configuration
Yttrium [Kr] 5s2 4d2

Gadolinium [Xe] 6s2 4f7 5d1

Thulium [Xe] 6s2 4f13

Tab. 6.2.: Electronic configuration of the yttrium, gadolinium and thulium.

6.2.1 Electronic structure

In Fig. 6.10 and Fig. 6.11 we present the density of states for GdIG and TmIG, both
with PBE and PBE0 as an exchange-correlation functional. Reaching numerical
self-consistency (cf. Chapter 2.5) for TmIG was challenging for PBE. We achieved
self-consisting by using a few hundred straight mixing iterations with a low mixing
parameter, followed by a set of Anderson mixing iterations until convergence was
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Fig. 6.10.: DOS of gadolinium iron garnet calculated using PBE in a) and PBE0 in b) on a
2× 2× 2 k̂-point grid. The inset shows the top of the bandgap.

reached. With a converged PBE as a starting density the convergence of PBE0 is
straight forward. This difficult convergence is caused by the metallic behaviour of
TmIG with PBE as a functional. After the non-local potential is included a gap opens
up and all later density convergence cycles do not exhibit this problematic metallic
behaviour. GdIG converged without problems both for PBE and PBE0.

For GdIG the band gap was calculated to be 1.7 eV with PBE0. Literature values
obtained using PBE+U produce a gap of 1.6 eV [17]. For TmIG we also predict a
band gap of 1.7 eV using PBE0. To our knowledge this is the first prediction for
the band gap of TmIG. We are not aware of any experimental results regarding the
band gap in either system.

The electronic structure of these two systems has a few striking similarities with the
ones calculated for YIG. The 3d-states of both types of iron atoms hybridize with the
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Fig. 6.11.: The DOS of thulium iron garnet calculated using PBE in a) and PBE0 in b) on a
2× 2× 2 k̂-point grid. The inset shows the top of the bandgap.

oxygen 2p-states in PBE, while with PBE0 the octahedral iron states localize. This
indicates that the tetrahedral and octahedral oxygen environment of the iron atoms
cause different effective Us at these atoms, further casting doubt on simple PBE+U
predictions for these garnet systems. For the unoccupied octahedral iron states we
can see the typical signature of crystal field splitting and in the tetrahedral case this
signature is weaker.

The additional 4f -states of the rare-earth elements in the spin-up channel are
strongly localized in PBE, while in PBE0 they hybridize with the freed oxygen 2p-
states. As expected Gd has no occupied 4f -states in the spin-down channel, while
the 4f -states of Tm are partially occupied, causing a metallic behaviour in PBE. In
PBE0 the Tm 4f -states are separated by a band gap.
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6.2.2 Magnetic moments

In Table 6.3 the magnetic moments of all atom types are given. For GdIG we predict
a total magnetization per formula unit of 16.0 µB and for TmIG we predict 1.75 µB
for PBE as well as PBE0. Notice, that the formula unit contains 20 atoms, while
the primitive unit cell contains 80. This means, while the magnetic moment per
formula unit is not integer, it is integer per unit cell as you would expect for an
insulator.

The predicted total magnetic moments are in exact agreement with experimental
results for GdIG [137], while they are in good agreement with the experimental
value of 1.2µB for the TmIG. This experimental value would correspond to a total
magnetic moment of 4.8µB for the primitive unit cell. PBE+U shows a tendency to
predict larger magnetizations for almost all atoms: 4.2µB for the octahedral iron,
−4.1µB for the tetrahedral iron, 7.0µB for Gd and 1.9µB for Tm [17].

Fe tetra. Fe octa. Gd/Tm O

Gd3Fe5O12

PBE −3.54 3.69 6.88 −0.06
PBE0 −3.85 4.04 6.94 −0.06
PBE+U [17] −4.1 4.2 7.0 -

Tm3Fe5O12
PBE −3.298 3.59 1.61 −0.04
PBE0 −3.82 4.01 1.93 −0.05
PBE+U [17] −4.1 4.2 1.9 -

Tab. 6.3.: Predicted magnetic moments for each atom type are given in GdIG and TmIG.

6.3 Summary

In this chapter we have proven that FLEURs hybrid functionals are capable of pre-
dicting the electronic structure and magnetic properties of yttrium iron garnet with
a high degree of precision. Giving us the confidence to apply our algorithm to more
uncharted systems such as gadolinium iron garnet and thulium iron garnet. While
hybrid functionals enable us to calculate these strongly correlated materials fully
ab-initio this is not possible with LDA+U, however a recently proposed extension
to LDA+U, the so-called LDA+UV method [138, 139], promises to have similar ca-
pability at lower computational cost. Using our hybrid functional implementation
we were able to predict the electronic structure of GdIG, while for TmIG we report
the first ever calculation of the electronic structure and the most accurate prediction
of its magnetic properties so far.

82 Chapter 6 Garnets, their electronic structure and magnetic moments



This shows the potential of the method we have created for this work. Its predic-
tive power and scalability allow for applications beyond the rare-earth-iron garnets
discussed here. The calculations presented in this chapter significantly advance
the understanding of the garnet materials discussed here. Our predicted electronic
structures, specifically for the octahedral iron, significantly deviate from previous
predictions. The improved prediction of the magnetic moment for this specific atom
supports the results obtained using PBE0. However, in order to settle this question
conclusively further experiments are needed.
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Conclusion & Outlook 7
In this thesis we extended the application of density functional theory (DFT), cur-
rently the most successful approach to realistically describe and predict the prop-
erties of solids from the principles of quantum mechanics, towards electronically,
structurally and chemically more complex materials. Throughout the thesis, we
use the FLEUR code, an all-electron implementation of density functional theory
in terms of the full-potential linearized augmented planewave (FLAPW) method
known for its high precision and unbiased results. We have created a scalable
implementation of FLEUR’s hybrid exchange-correlation functionals, capable of uti-
lizing the power of today’s most advanced supercomputers. The number of atoms
that can be treated with this method has been increased by two orders of magni-
tude, enabling FLEUR to calculate materials with unit cell sizes larger than 1nm3

or more than 100 atoms, respectively, – opening up this high-precision method to
the study of complex classes of materials, some of which are envisioned to solve the
most pressing technological issues of our times. The innovations presented in this
thesis thus represent a significant asset to the field of virtual materials design.

In Chapter 1 the reader is given an overview of the challenges currently facing ma-
terials sciences and the opportunities that high-performance computing provides to
address them. This is followed by an introduction to density functional theory in
Chapter 2, while Chapter 3 concludes the introductory remarks of this thesis with a
discussion of the FLAPW method and the mixed-product basis. Chapter 4 discusses
the work performed for the single-node performance of FLEUR’s hybrid functional
implementation. By reformulating the most costly computations as standard math
problems, the corresponding routines can rely on widely available libraries rather
than custom code, giving them an excellent single-node performance and making
the code fairly hardware independent. For routines that are not suitable for this
treatment custom parallel kernels using OpenMP on CPUs and OpenACC on GPUs
were created. The resulting implementation shows an exceptional performance on
both CPUs and on GPUs, both operating close to their theoretical peaks. Chapter 5
shifts the focus to multi-node parallelism and presents a novel parallel algorithm
specifically designed for the calculation of FLEUR’s hybrid exchange-correlation
functionals. The three-level MPI implementation relies on one-sided point-to-point
communication as well as collective communication directives. A major challenge
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of this thesis was the accidental serialization of the one-sided communication. De-
pending on the underlying MPI library this problem was solved either by using a
progress thread or by introducing barriers that artificially synchronize all threads af-
ter each one-sided communication call. The resulting implementation shows a first-
rate scaling behaviour. While the first two levels show hardly any loss of parallel
efficiency, the lowest level scales the work of a single k̂q̂-pair to 64 nodes efficiently.
The combination of these three levels enables FLEUR to distribute hybrid functional
calculations over today’s fastest supercomputers and prepares it for the next gen-
eration of exascale machines. Making good practical use of a supercomputer does
not necessarily mean sending jobs which queue for weeks-on-end and then scale to
every single core which the machine has to offer, but rather that we can efficiently
use significant portions of the machine to investigate interesting and meaningful
systems. To this end FLEUR’s new hybrid functional implementation enables scien-
tists to precisely predict properties of large complex systems containing over one
hundred atoms with a very short iteration time of less than 10 minutes, allowing
them to rapidly review results and build on their findings. In Chapter 6, FLEUR’s
new hybrid functional implementation is applied to a number of iron garnet mate-
rials, a type of synthetic ferrimagnetic materials with garnet crystal structure that
has the chemical composition RE3Fe2(FeO4)3, where RE stands for rare-earth chem-
ical elements or yttrium. We benchmark the predictive power of our code against
theoretical and experimental results in the literature, finding that our predictions
are on par with most accurate calculations published for yttrium iron garnet (YIG).
However, we find details in the electronic structure that differ significantly, such
as the effect of the oxygen environment on the 3d-states of the iron atom. For the
gadolinium and thulium iron garnet we perform the first ever precise calculations
of the electronic structure and confirm a remarkable similarity to YIG.

The present work pushes the accuracy of the description of the electronic properties
of complex solids provided by the combination of hybrid functionals and the FLAPW
method to new scientific domains. This is demonstrated by applying this algorithm
to synthetic rare-earth-iron garnet materials, a key material class with applications
ranging from spintronics to superconducting qubits. The treatment is challenging
as the unit cell contains 80 atoms of localized 2p, 3d and 4f elements partly at
low-symmetry positions exhibiting a ferrimagnetic insulating state. A frequently
pursued conceptual approach amending the treatment of the electronic structure
by several local Coulomb parameters U is unsatisfactory and provides frequently
unsatisfactory results. This work advances the understanding of these systems sig-
nificantly. For yttrium iron garnet we predict, contrary to previous studies, that the
oxygen environment surrounding the iron atoms has a strong effect on the elec-
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tronic structure and is not merely limited to crystal field splitting. We predict that
the 3d-states of the octahedral iron are strongly localized, while the tetrahedral
ones form bonds with the 2p-states of the surrounding oxygen atoms. Our predic-
tions for YIG are in good agreement with experimental results, further supporting
these findings. Furthermore, we performed the most accurate electronic structure
calculations for gadolinium iron garnet and thulium iron garnet, two systems that
had previously only been studied with local exchange-correlation potentials. We
provide the first ever predictions of TmIG’s band gap. For both systems we observe
that the iron atoms in the octahedral and tetrahedral oxygen environments behave
similar to their counter parts in YIG, something also absent from previous studies.

Lastly, it should be pointed out that the applications of this work to the three garnet
systems presented in Chapter 6 open a new vista to the treatment of synthetic gar-
nets, natural garnet minerals and minerals in general. There are numerous garnet
systems with interesting applications such as yttrium aluminium garnet (Y3Al5O12)
which is used in lasers or highly durable LEDs [140, 141]. Additionally garnets
often appear as alloys, such as bismuth-substituted YIG [142], which require even
larger unit cells to calculate. Outside of the garnet group, a number of rare-earth
oxides have key applications inside solid-state [143, 144] or metal-air [145] batter-
ies, both of which promise to improve the range and safety of electric vehicles and
thus accelerate the transition away from fossil fuels. All of these materials have in
common that they are rare-earth oxides with complex electronic properties driven
by large Coulomb interactions due to localized electrons, have large unit cells and
their applications directly depend on the electronic structure. Therefore, FLEUR
equipped with the hybrid exchange-correlation functionals extended by the treat-
ment of the spin-orbit interaction and noncollinear magnetism is the ideal method
to study these materials classes in the future.
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Defining unique eigenvectors A
Applying a lot of changes, like the ones described in Chapter 4 and Chapter 5, to a
large code base like FLEURs requires not only a lot of care, but also suitable tools to
ensure that no new bugs are introduced and old ones are eliminated. In this section
we present a debugging tool that was developed as part of this thesis [@146].

A lot of quantities calculated in FLEUR depend on the eigenvector matrix Z. This
matrix is not uniquely defined, but instead each eigenvector can have a phase and
additionally, for a set of degenerate eigenvalues the corresponding eigenvectors
span the so-called eigenspace. This eigenspace can be represented by infinitely many,
equally correct eigenvectors.

While the physical quantities that FLEUR outputs, such as the density, are inde-
pendent of the choice of this representation, this is not true for intermediate im-
measurable quantities such as the wave functions. Therefore, it can be very time
consuming to locate problems in the code. We might know for sure that the final
quantity is wrong, but for all intermediate results this might be due to the bug we
are trying to find or it might be due to a different representation of the eigenspace.
In this appendix we present an algorithm to transform Z into a unique representa-
tion and therefore eliminate this uncertainty. While this tool was initially develop
for debugging purposes, it also proves useful for other purposes such as wannier
postprocessing [147], which relies on wave functions as an input. In the following
we introduce an algorithm that transforms the eigenvector matrices into a unique
representation.

Consider the following matrix

H =


4.83 −2.85 −0.42
−2.85 3.13 0.31
−0.42 0.31 1.05

 (A.1)
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We diagonalize this hermitian matrix twice. Once by passing the upper triangle to
LAPACK and once by passing the lower triangle to the same routine. Both result in
the same set of eigenvalues {1, 1, 7}, but in very different eigenvector matrices:

VU =


−0.58 0.15 −0.80
−0.80 0.06 0.60
0.14 0.99 0.09

 VL =


0.00 0.60 −0.80
−0.15 0.79 0.60
0.99 0.12 0.09

 (A.2)

Multiplying a unitary matrix to an eigenvector submatrices of degenerate eigenval-
ues transforms it into a different representation of the same eigenspace, without
effecting the orthonormality. Therefore, we are looking for two unitary matrices
QU and QL that transform VU and VL into the same representation.

First we have to identify the groups of degenerate eigenvectors. For this we de-
fine a numerical cutoff ∆ε and we regard all eigenvalues i and j as degenerate if
|εi − εj | < ∆ε.

In our example the first ndeg = 2 eigenvalues are degenerate, while the last one is
not. The eigenvectors are written columns-wise in the matrix. Clearly, the degen-
erate eigenspace in the first two columns has different representations in VU and
VL, while the eigenvector in the last column is the same.

The first step of mapping the different representations onto a common one is to pick
the first ndeg rows in each matrix, which are linearly independent. In our example
the first two rows are linearly independent and therefore the resulting submatrices
are

AU =
(
−0.58 0.15
−0.80 0.06

)
AL =

(
0.00 0.60
−0.15 0.79

)
. (A.3)

For each of these we perform a QR-decomposition, so that A = QR, where Q is
an unitary matrix and R is an upper triangular matrix. We can make this represen-
tation unique, by requiring that the diagonal elements of R are non-negative. The
matrices QL and QU now transform the AL and AU matrices into the same upper
triangular matrix R = RL = RU .

AU = QUR (A.4)

AL = QLR (A.5)

Finally, we use the unitary matrices QL and QU to transform the submatrix of VL

and VU into the unique representation.
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
−0.58 0.15
−0.80 0.06
0.14 0.99


(
−0.97 −0.26
0.26 −0.97

)
︸ ︷︷ ︸

QU

=


0.60 0.00
0.79 0.15
0.12 −0.99

 =: Z′
U


0.00 0.60
−0.15 0.79
0.99 0.12


(
0.00 −1.00
1.00 0.00

)
︸ ︷︷ ︸

QL

=


0.60 0.00
0.79 0.15
0.12 −0.99

 =: Z′
L (A.6)

Notice, that in the right hand side of Eq. A.6 the 2× 2 submatrix above the red line
is R†.

In order to test the accuracy of this method we calculate the difference of the re-
sulting eigenvector representations ∥Z′

U − Z′
L∥2 = 3.4 ·10−16, which is very close to

double precision accuracy. In Table A.1 we performed numerical tests for a 70× 70
matrix with highly degenerate eigenvalues and even in this extreme case the nu-
merical accuracy is below 10−13.

Degree of degeneracy Numerical error ∥Z′
U − Z′

L∥2
3 3.96 · 10−16

5 1.93 · 10−15

7 5.25 · 10−15

9 8.35 · 10−15

11 1.46 · 10−14

13 4.03 · 10−14

15 1.76 · 10−14

Tab. A.1.: The algorithm described in this section has been applied to a 70 × 70 matrix
with highly degenerate eigenvalues. The first columns gives the degree of de-
generacy for a set of eigenvalues and the second columns gives the difference
in the eigenvectors after this algorithm has been applied to a pair of different
representations of this eigenspace.

Lastly, we would like to point out that in the case of a non-degenerate eigenvalue
the phase is uniquely determined by performing this algorithm for the ndeg = 1 spe-
cial case. We thank Christoph Friedrich for the fruitful discussion on this topic.

103





Subtracting the local
exchange

B

In the LAPW basis the Hamiltonian inside the muffin-tins is setup as [46]

HMT
Ĝ′Ĝ

(k̂) =
〈
φk̂Ĝ′

∣∣HMT
∣∣φk̂Ĝ

〉
. (B.1)

This can be split into two parts: the spherical Hamiltonian Hsph and the non-
spherical contributions to the potential Vnonsph

HMT
Ĝ′Ĝ

(k̂) =
〈
φk̂Ĝ′

∣∣Hsph
∣∣φk̂Ĝ

〉︸ ︷︷ ︸
H

sph

Ĝ′Ĝ
(k̂)

+
〈
φk̂Ĝ′

∣∣Vnonsph
∣∣φk̂Ĝ

〉
. (B.2)

If we pull out the α and β coefficients, then Hsph
Ĝ′Ĝ

(k̂) breaks down into four types
of integrals which are straight forward to evaluate, since u and u̇ are designed to
diagonalize the radial Schrödinger equation and its derivative:∫

MTa
ul(∥r̂a∥)Ylm(êa)Hsph

Ĝ′Ĝ
(k̂)ul′(∥r̂a∥)Yl′m′(êa) = δll′δmm′Ea

l (B.3)∫
MTa

ul(∥r̂a∥)Ylm(êa)Hsph
Ĝ′Ĝ

(k̂) u̇l′(∥r̂a∥)Yl′m′(êa) = δll′δmm′ (B.4)∫
MTa

u̇l(∥r̂a∥)Ylm(êa)Hsph
Ĝ′Ĝ

(k̂)ul′(∥r̂a∥)Yl′m′(êa) = 0 (B.5)∫
MTa

u̇l(∥r̂a∥)Ylm(êa)Hsph
Ĝ′Ĝ

(k̂) u̇l′(∥r̂a∥)Yl′m′(êa) =

δll′δmm′Ea
l

∫
MTa

u̇l(∥r̂a∥)Ylm(êa) u̇l′(∥r̂a∥)Yl′m′(êa). (B.6)

Here however, the radial Schrödinger equation used to construct u and u̇ relies
on the local exchange-correlation potential and does not contain any information
about the non-local potential

Hsph = T + V loc
xc + Veff. (B.7)

However, the hybrid exchange-correlation potential has the form

Vhyb
xc = αVexact

x + (1− α)V loc
x + V loc

c . (B.8)
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Here V loc
x and V loc

c are the exchange and correlation parts of the local exchange-
correlation potential. In the case of PBE0 α = 1/4 and the local exchange-correlation
potential is PBE [3].

Therefore, in the case of an hybrid exchange-correlation functional we need to
subtract part of the local exchange from the Hamiltonian and add the corresponding
non-local exchange

HMT
Ĝ′Ĝ

(k̂) =
〈
φk̂Ĝ′

∣∣Hsph
∣∣φk̂Ĝ

〉︸ ︷︷ ︸
H

sph

Ĝ′Ĝ
(k̂)

+
〈
φk̂Ĝ′

∣∣Vnonsph
∣∣φk̂Ĝ

〉

+ α
[ 〈
φk̂Ĝ′

∣∣Vexact
x

∣∣φk̂Ĝ

〉
−
〈
φk̂Ĝ′

∣∣V loc
x

∣∣φk̂Ĝ

〉]
. (B.9)

In FLEUR’s legacy implementation of the hybrid exchange-correlation functionals
this term was explicitly calculated and subtracted from the Hamiltonian. However,
as you can see in Fig. B.1 this routine has a very poor parallel performance. There-
fore, we now calculate this term as a spherical special case using the routine for the
non-spherical potential. This routine has extensive performance tuning work done
to it and therefore has a much better parallel performance.

Fig. B.1.: In a) the speedup for three code parts is shown. In blue the speedup of the
explicit subtraction of Eloc

x is shown and in green and orange FLEURs overall
speedup with and without this routine is shown. In b) the corresponding parallel
efficiencies are shown.

Since these changes were implemented after some of the measurement shown in
Chapter 5 were taken, we manually subtracted the runtime of this routine in all mea-
surement which still contained it. The new way of subtracting the local exchange
has no visible performance impact. I would like to thank Dr. Daniel Wortmann for
implementing this improved way to subtract the local exchange.
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Using fast fourier transforms
to evaluate the mixed-product
basis

C

One of the most time consuming parts of a calculation with a hybrid exchange-
correlation functional is the calculation of the mixed-product basis

〈
ϕσ
nk̂

∣∣∣ϕσ
n′′k̂−q̂

Mq̂,I

〉
,

specifically in the interstitial region. Here the MPB is the real-space product of two
plane waves and a step function(cf. Eq. 3.22). The wave functions are stored in
their reciprocal representation and so is the MPB. An obvious way to calculate the
MPB in the interstitial is to evaluate the convolution explicitly as

∑
Ĝ

z∗σ
Ĝk̂n

z∗σ(Ĝ+Ĝ′)(k̂+q̂)n′ . (C.1)

This approach has a few advantages: using symmetries of the system, we can re-
duce the number of terms calculated to a minimum. Additionally, while the algo-
rithm has a computational complexity of O(Nbas

2), its prefactor is quite small. A
key disadvantage is, that the use of symmetries causes an unpredictable memory
access pattern and therefore a lot of cache misses. Furthermore, this code has a
lot of branches, which makes it difficult to achieve a good performance on GPUs.
Alternatively, we can evaluate this term by employing the convolution theorem

F [f ∗ g] = F [f ] · F [g], (C.2)

where F is the fourier transform operator and ∗ indicates a convolution. We can
rewrite

∑
Ĝ

z∗σ
Ĝk̂n

z∗σ(Ĝ+Ĝ′)(k̂+q̂)n′ (C.3)

=F−1

F
∑

Ĝ

z∗σ
Ĝk̂n

z∗σ(Ĝ+Ĝ′)(k̂+q̂)n′

 (C.4)

=F−1

F
∑

Ĝ

z∗σ
Ĝk̂n

 · F
(
z∗σ(Ĝ+Ĝ′)(k̂+q̂)n′

) , (C.5)
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where F−1 is the inverse Fourier transform. By using this expression we can evalu-
ate the MPB in the interstitial with a computational complexity of O(Nbas log(Nbas))
[148]. While the constant prefactor is larger compared to the direct evaluation, us-
ing Fourier transformations allows rely on highly optimized libraries. In Fig. C.1
the runtime of these two algorithms is compared for a number of systems and the
cross over point for these two algorithms seems to be roughly between 7 and 24
atoms. Since the runtime of hybrid functional calculations with less than fifty atoms

Fig. C.1.: Three systems were calculated using both the direct evaluation of the convolu-
tion and the FFT algorithm. While the constant prefactor of the direct evaluation
is lower than that of the FFT algorithm, the FFT algorithm is faster for large sys-
tems, due to its lower runtime complexity. The speedup of the FFT algorithm
over the explicit evaluation is indicated for each system.

is not dominated by this code part, the Fourier transformation is used to evaluate
the MPB in the interstitial regardless of the system size.
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