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distant kinship moments than traditional methods, which allows us to account for the 

transmission of latent advantages in a detailed intergenerational model. Using Swedish 

registers, we find strong persistence in the latent determinants of status, and a striking 

degree of sorting – to explain the similarity of distant kins, assortative matching must 

be much stronger than previously thought. Latent genetic influences explain little of the 

variance in educational attainment, and sorting occurs primarily in non-genetic factors.
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1 Introduction

The extent to which socioeconomic inequality is passed on across generations has gained

renewed interest in recent years. Apart from the geographic variation in parent-child mo-

bility (e.g. Chetty et al., 2014) and its relation with income inequality (Corak, 2013), re-

searchers have begun to study multigenerational mobility across several generations. This

evidence suggests that mobility is perhaps much lower than previously believed (Clark

2014, Lindahl et al. 2015, Adermon, Lindahl and Palme 2021), contradicting a common

interpretation of conventional parent-child estimates – that the correlation between in-

dividuals in one generation and their ancestors decreases geometrically as we go back in

time, so that after, say, three or four generations the link is already very weak.1

Instead, recent studies suggest a high persistence of socioeconomic status. Using historical

data from various countries and periods, Clark (2014) and Clark et al. (2015) show that

the average status of surnames regresses at a rather slow rate. In data from Florence,

earnings correlate across generations that are six centuries apart (Barone and Mocetti,

2020). Other studies link individuals across multiple generations to directly estimate

multigenerational persistence (Lindahl et al., 2015), or to study the role of grandparents

in the transmission process (Engzell, Mood and Jonsson, 2019). These individual-level

studies likewise find high persistence, if not as high as studies on the surname level.

One problem with this “vertical” approach are the data requirements, as comparable so-

cioeconomic information for more than two generations is difficult to obtain, and formal

education or occupational rankings often vary little among older generations. Moreover,

distant ancestors are rarely observed, so most studies use surnames as a proxy for actual

ancestor links – triggering a lively debate on the informativeness of surname-level evi-

dence. Studies based on direct links avoid this problem but only track the more immedi-

ate ancestors and yield few empirical moments, limiting our ability to distinguish between

competing models of intergenerational transmission (Cavalli-Sforza and Feldman, 1981).

We therefore propose a new approach that does not require information on distant an-

cestors and instead uses "horizontal" information about individuals in the same or close

generations. The underlying idea is simple. Say that we would like to assess the link

1Such interpretations are based on the iteration of parent-child estimates, i.e. the assumption that the
correlation between grandparent and grandchild outcomes is the square of the parent-child correlation,
and thus small. As put by Becker and Tomes (1986), “Almost all earnings advantages and disadvantages
of ancestors are wiped out in three generations. Poverty would not [...] persist for several generations.”
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between grandparents and grandsons, but we do not have data for the former. If instead

we have good data for cousins we can infer the strength of grandparents-grandsons links

by comparing the cousins’ outcomes – within the same data source and at approximately

the same age and time. Thus, horizontal information can overcome the lack of comparable

data across multiple generations.

Moreover, by chain-linking affine kinships we can identify very distant relatives, without

recourse to historical sources. As consanguine (“blood”) kinships, affine (“in-law”) rela-

tions are a function of – and therefore informative about – intergenerational and assortative

processes. But while the identification of distant consanguine kins requires the observation

of distant ancestors (cousins via their shared grandparents, second-degree cousins via their

great-grandparents, and so on), affine kins can be chain-linked from spousal and parental

links irrespective of their degree of separation. In a first step, we identify a person’s sibling.

In a second step, we identify the sibling’s spouse. Implemented once, these steps identify

a sibling-in-law. Implemented twice, the sibling-in-law of the sibling-in-law, and so on.

This approach scales particularly well in large administrative data. Using Swedish registers

that link multiple generations, we chain-link siblings and spouses up to five degrees of

separations, resulting in 141 distinct kinship moments.2 The horizontal approach yields

therefore more comparable, more distant and many more moments than the traditional,

vertical approach. That in turn opens the door for fitting a detailed model that allows for

both direct and latent transmission mechanisms, for assortative matching in observable

and latent advantages, and for asymmetries by gender. Our approach is particularly

informative about the overall strength of transmission processes, but it is less informative

about other important questions, such as the extent to which these processes vary over

time or across groups.

In the first part of the paper, we study the extent to which advantages are passed on across

generations. Our objective here is to quantify the contribution from intergenerational, sib-

ling, and assortative processes, without trying to isolate any particular causal mechanism.

We calibrate our model using educational attainment, but also consider income and height.

We find that latent advantages are more strongly transmitted from parents to children than

suggested by traditional parent-child correlations. Moreover, conditional on their latent

2To our knowledge, these are the most extensive sets of kinship moments that have been compiled so
far. For example, Behrman and Taubman (1989) considered only eight kinship types. Some extended
twin-family studies consider up to 80 types of relatives, but most involve some type of twins, have very
low sample sizes, and capture similarity in behaviors such as smoking instead of socioeconomic outcomes.
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advantages, the education of the parents has only a limited association with the education

of their child (consistent with Holmlund, Lindahl and Plug, 2011).

Particularly striking is the high rate of assortative matching that our data imply. The

kinship correlations in educational attainment decay only slowly across siblings-in-law, by

around one quarter for each additional spousal link. To explain such slow decay, spouses

must share advantages to a far greater extent than indicated by conventional measures of

sorting, such as the spousal correlation in years of schooling. Likewise, siblings must be

more similar in those factors that determine the socioeconomic success of their descendants

than they are in observables: while the sibling correlation in years of schooling is around

0.4, the implied correlation in their latent advantages is nearly twice as large.

These results contribute to different strands of the literature on inequality and intergen-

erational mobility. First, they provide a new perspective on traditional measures of the

importance of family background based on close relatives, such as intergenerational corre-

lations, sibling correlations or measures of equality of opportunity. These measures capture

different aspects and point to different rates of mobility (Björklund and Jäntti, 2019). We

propose a more comprehensive way of capturing background effects based on the compari-

son of many kinship types, which integrates intergenerational and sibling correlations and

suggests that both understate the importance of family background.

Second, we corroborate recent findings based on multigenerational correlations, which sug-

gest that inequality is more persistent than previously thought (e.g., Clark 2014, Lindahl

et al. 2015, Braun and Stuhler 2018, Adermon, Lindahl and Waldenström 2018, and Co-

lagrossi, d’Hombres and Schnepf 2019). Importantly, our approach is very different: it

does not require any information on distant ancestors, or the use of name-based estima-

tors, whose validity have been contested.3 High multigenerational persistence is consistent

with the similarity between horizontal kins that we document here, although we find less

extreme persistence than some name-based studies.4

Third, our study provides a novel perspective on the strength of assortative matching,

which is an important determinant of intergenerational persistence (Ermisch, Francesconi

and Siedler, 2006) and inequality (Fernández and Rogerson, 2001). The literature fo-

3See Chetty et al. (2014), Güell, Rodŕıguez Mora and Solon (2018) and Solon (2018), among others.
4It is also consistent with recent studies of relatives in the horizontal dimension. Hällsten (2014) and

Hällsten and Kolk (2020) estimate the correlations between distant cousins in Sweden. Adermon, Lindahl
and Palme (2021) consider “dynastic human capital” based on a broad set of kinships, including horizontal
kins. Such evidence opens the door for the identification of detailed transmission models, as we show here.
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cuses on educational sorting, and its potential contribution to rising income inequality in

many countries. Our evidence, however, suggest that the extent of sorting in observable

characteristics such as education greatly understates the sorting in latent advantages.

Our approach can be also informative about causal mechanisms, to the extent that different

mechanisms have distinct implications for the correlation pattern between kins. Many

papers estimate the relative importance of nature and nurture by studying different types

of twins or adoptees (Behrman and Taubman 1989, Björklund, Jäntti and Solon 2005).

In contrast, our baseline model decomposes the family background into transferrable and

non-transferrable rather than into genetic and environmental components. The obvious

disadvantage is that we remain largely agnostic about what mechanisms the latent factor

of our model represents. The principal advantage, however, is that it captures inequalities

more comprehensively, as it also captures non-genetic advantages.5

In the second part of the paper, we consider different genetic models to study whether

genetic factors could be one important component of these latent advantages. We first

show that the standard genetic model with phenotypic assortment as used in quantitative

genetics (Crow and Felsenstein, 1968) or assortment on the genotype (Clark, 2021) cannot

fit the kinship correlations in educational attainment. Our data are therefore inconsistent

with a purely genetic interpretation. The observability of a wide range of kinship moments

is critical for this conclusion, as the genetic model can fit a small number of close kins; its

inadequacy becomes apparent only when challenged to fit a more extensive set of kinships.

We then fit an extended model with both genetic and non-genetic latent components.

We find that the genetic pathways of our model explain a much smaller share of the

variance in years of schooling than non-genetic advantages, and that genetic and non-

genetic advantages are transmitted at a similar rate. The former result is consistent with

recent evidence from genome-wide association studies (Okbay and et al. 2016, Lee and

et al. 2018, Papageorge and Thom 2018). The latter result suggests that genetic and

non-genetic factors are difficult to distinguish based on ancestor correlations alone.6 We

can distinguish them here because their pattern deviates more strongly for spouses and

in-laws in horizontal moments.

5We also do not have to deal with the complicated problem of the relationship between genes and
environment. By definition, the non-transferable component captures all the effects that siblings share and
that are not correlated with the transferable components.

6This difficulty has been recognized for a long time in the literature on population genetics. For example,
Cavalli-Sforza and Feldman (1981) noticed that "any variable (other than genotype) that is vertically
transmitted and not measured will very frequently be indistinguishable from genotype" (pp. 287-288).
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2 Theory

Our baseline model deviates in three important aspects from the prior literature. First, we

allow for direct (observable) and latent (unobservable) transmission mechanisms. Second,

we allow for assortative mating along two distinct dimensions, and account for both parents

explicitly. Third, we consider how the strength of the transmission mechanisms vary with

the gender of the child and the parent. In Section 5.2 we extend this model further.

2.1 General Model

Suppose that y is a socioeconomic outcome of interest, such as income or education.

We henceforth identify y with years of schooling, the baseline outcome in our empirical

exercise. We study the link of such variable y between individuals and their ancestors.

Specifically, assume that the outcome y for an individual from generation t is given by

ykt = βkỹkt−1 + zkt + xkt + ukt (1)

where the superscript k stands for male (k = m) and female (k = f). The first component

ỹkt−1 is the weighted average socioeconomic status of parents,

ỹkt−1 = αkyy
m
t−1 + (1− αky)y

f
t−1,

where αky ∈ [0, 1]. The parameters βk and αky capture the direct transmission of parental

on child outcomes, which we allow to be distinct for each parent-child gender combination.

The latent factor zkt captures the unobservable determinants of child outcomes that are

passed from parents to children (see Section 2.2). As the observable determinant, it

depends on the weighted average latent status of the parents z̃kt−1,

zkt = γkz̃kt−1 + ekt + vkt , (2)

where

z̃kt−1 = αkzz
m
t−1 + (1− αkz)z

f
t−1

(3)

and αkz ∈ [0, 1]. The parameters γk and αkz capture the strength of indirect transmission

channels, i.e. factors that impact observable outcomes but that are not directly observed
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themselves. We again allow for distinct pattern across all four parent-child gender com-

binations. Equations (2) and (3) do not necessarily map into one particular (e.g., genetic

or behavioral) mechanism, but may represent a great number of underlying mechanisms.

Such “reduced-form” representations have been common in theoretical work (e.g., Becker

and Tomes, 1986), and we discuss its interpretation in Section 2.5.

The model includes four types of shocks: a white-noise error ukt , a shared sibling component

xkt (shared by siblings of the same gender, correlated across siblings of different gender, and

uncorrelated with the other variables, in particular zkt and ykt−1), a white-noise error term

vkt in the latent factor, and the latent sibling component ekt (shared by same-gender siblings

and potentially correlated for mixed genders).7 Allowing flexibly for shared influences

among siblings that are orthogonal to the parental influences zkt−1 and ykt−1 allows us to

extend our analysis in the horizontal dimension (see Section 2.4).8

We allow for assortative mating both in the observable and latent socioeconomic status.

In particular, we consider the linear projections of zft−1 and yft−1 on zmt−1 and ymt−1,

zft−1 = rmzzz
m
t−1 + rmzyy

m
t−1 + wmt−1 (4)

yft−1 = rmyzz
m
t−1 + rmyyy

m
t−1 + εmt−1 (5)

where wmt−1 and εmt−1 might be correlated but are uncorrelated with zmt−1 and ymt−1. In

Online Appendix A, we show that the coefficients rmsd (s, d = y, z) are functions of the

correlations and standard deviations ρzmym , ρzmzf , ρzmyf , ρymzf , ρymyf , σzm , σzf , σym and

σyf . We also provide the corresponding coefficients from the linear projections of zmt−1

and ymt−1 on zft−1 and yft−1, and show that ρzmym and ρzfyf are functions of the other

parameters through two steady-state equations. We then use these linear projections to

derive each kinship correlation as a function of the model parameters.9

7Our structure is therefore less restrictive than other approaches in the literature. For example, we
do not assume that sibling differences in education are exogenous, as in twin fixed effect estimates of the
effect of parent on child schooling (Holmlund, Lindahl and Plug, 2011). The outcome difference between
siblings A and B in our model equals yA − yB = uA − uB + vA − vB and reflects chance and systematic
differences in latent characteristics (e.g., in abilities).

8Possible sources of the sibling component in the latent factor are random school, peer and neighborhood
effects; but they could also reflect direct effects from the parent, over and above of what can be explained
by their y and z. For example, the parents may by chance read a parenting book on how to better raise
their children (all their children, hence the systematic sibling component).

9In Section K of a document titled “Additional Derivations” (available on the authors’ webpages or
upon request), we show that it is not generally possible to reduce this two-parent model to a one-parent
model without imposing restrictions on either the assortative or the intergenerational process.
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2.2 Direct and Latent Transmission Channels

The theoretical literature has long recognized that part of the transmission process from

parents to children may be inherently unobservable. The latent variable in our model is

close in spirit to Becker and Tomes (1979), who assume that a person’s “endowment”

represent a great variety of cultural and genetic attributes. The distinction between direct

(via observables) and indirect (via latent variables) transmission mechanisms has also

been influential in a literature on cultural transmission in population genetics (e.g., Rice,

Cloninger and Reich 1978, Cavalli-Sforza and Feldman 1981).

Such latent pathways have seen renewed interest due to recent work on multigenerational

transmission, which documents that inequalities appear more persistent than suggested

by traditional parent-child correlations. Studies based on historical records indicate that

inequalities between surnames persist over very long periods (Clark 2014, Barone and

Mocetti 2020). Estimates from direct family links across multiple generations also point

to high persistence (e.g., Lindahl et al. 2015, Dribe and Helgertz 2016, Braun and Stuhler

2018, Long and Ferrie 2018, Neidhöfer and Stockhausen 2019, Colagrossi, d’Hombres and

Schnepf 2019, Hällsten and Kolk 2020).

The existence of latent pathways would explain these findings (Clark 2014, Stuhler 2012).

If the latent variable is comparatively persistent across generations (γk > βk), but explains

only part of the inequality in socioeconomic outcomes (σ2
zk
< σ2

yk
), then the parent-child

correlation may greatly understate the actual transmission of advantages or its variation

across groups, areas, and time. Intuitively, the observable socioeconomic status is only an

imperfect proxy for socioeconomic prospects, a type of “measurement error” that attenu-

ates traditional measures of intergenerational transmission.

Such latent mechanisms may not be the only reason why intergenerational correlations

understate the transmission of advantages. An alternative hypothesis that might generate

similar implications is that the transmission process varies systematically across families.10

We do not take a strong stance on what is the true transmission model. Instead, our

model can be interpreted as a simplified reduced form of an underlying structural model;

an important question is whether it fits the data.

10Indeed, Bingley and Cappellari (2019) and Colagrossi et al. (2020) show that such heterogeneity would
affect the relative size of intergenerational and sibling correlations. High multigenerational persistence
could also be generated by a multi-skill model, in which different types of skills are transmitted at different
rates (“multiplicity”, Stuhler, 2012) or non-Markovian models that allow for “grandparent effects” (Mare,
2011, Anderson, Sheppard and Monden 2018, Engzell, Mood and Jonsson 2019).
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2.3 Assortative Mating

Most intergenerational studies consider a simplified one-parent family structure, in which

the assortative process enters only implicitly. But it is fundamental to understand the

recent multigenerational evidence, as high rates of persistence across generations requires

strong assortative mating (Clark and Diaz-Vidal 2015, Braun and Stuhler 2018). Spousal

correlations in socioeconomic outcomes are typically between 0.4 and 0.6 (e.g., Fernández

and Rogerson 2001, Ermisch, Francesconi and Siedler 2006). But as we show below, there

needs to be far greater sorting between spouses to explain the similarity between distant

kins that we document in this paper. We explain this discrepancy by allowing spouses to

be similar not only in observable but also in unobservable characteristics. Intuitively, their

observed similarity in socioeconomic outcomes (ykt−1) may not reflect the effective degree

of sorting in other characteristics that determine the prospects of their offspring (zkt−1 in

our model). The pattern of dependence between distant kins can therefore be informative

about formerly unknown aspects of the assortative process.

2.4 Horizontal Kinship

Our model is too complex to be identified from inter- or multigenerational moments alone,

which has been the traditional approach. Thus, we make use of “horizontal” moments,

considering relatives in the same generation. Because siblings share influences over and

above parental influence, we allow for shared sibling components in both the observable

outcome y and the latent advantage z. By modeling both assortative and sibling processes,

we can also include siblings-in-law in our analysis.

Compared to multigenerational studies, we do not require information on distant ancestors,

and can measure socioeconomic outcomes at a similar age and time. Most importantly,

the horizontal approach yields a much greater set of empirical moments.11 We distin-

guish several dozen consanguine (“blood”) kinships, but extend our analysis also to affine

(“in-law”) kinships such as siblings-in-law. While they may not descend from a common

ancestor, affine kins have similar informational value as consanguine kins – both are a func-

tion of, and therefore informative about, intergenerational and assortative processes (see

11The advantage of studying distant relatives within the same generation is also emphasized by Hällsten
(2014), Adermon, Lindahl and Palme (2021) [ALP] and Hällsten and Kolk (2020). In comparison to these
studies, we chain-link distant in-laws and use the empirical moments to identify an explicit transmission
model. In Sections 3.2 and 4.3 we compare our methodology and findings to ALP.
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Figure 1: The Chain-linking of Siblings-in-law

GP1 GP2 GP3 GP4

… a a' b b' c c' d

aa bb cc

Notes: Hypothetical family trees across child, parent, and grandparent (GP) generation. Consanguine (affine)
relationships in black solid lines (orange dashed lines).

Online Appendix A).12 Moreover, correlations are non-directional, so alternating between

vertical and horizontal links is conceptually similar to the linking of distant ancestors –

but more feasible.

The key advantage of affine as compared to consanguine relations is that they can be

traced over exceptionally long “distances”. Figure 1 illustrates the logic in hypothetical

family trees across a child, parent, and grandparent (GP) generation. The identification

of distant consanguine kins necessitates the observation of distant ancestors. For example,

the identification of cousins (e.g., aa-bb) requires the observation of their shared grand-

parents (GP2), while the identification of second-degree cousins would require observation

of their great-grandparents, and so on. As a consequence, distant family links are rarely

directly observed, and evidence on mobility in the very long run is instead based on their

probabilistic approximation via surnames (e.g., Clark 2014, Barone and Mocetti, 2020).

In contrast, affine relationships are defined only via spousal and parental links – irrespec-

tive of their degree of separation. In a first step, we identify a person’s spouse (e.g., a-a’ )

via their shared descendant (aa). In a second step, we identify the spouse’s sibling (b)

via their parents (GP2 ). Implemented once, these steps identify a pair of siblings-in-law

(a-b). Implemented twice, we identify the sibling-in-law of the sibling-in-law (a-c), and so

on. In population-wide data one can reiterate these linkages – and therefore the number of

empirical moments – ad infinitum. In this study, we consider all possible kinship types and

gender combinations up to fifth-order affinity relations – resulting in 141 distinct kinship

moments. Chain-linking horizontal kins yields therefore many more, and more distant

moments than a vertical perspective.

12The informational value of non-genetic relatives has been also exploited in population genetics. For
example, it has led to much lower estimates of the heritability of human longevity (Ruby et al., 2018).
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2.5 Interpretation

Our model can be interpreted as a reduced-form representation of the causal effect of

family background, decomposed into its intergenerational and assortative, observable and

latent pathways. Most existing work focuses on simpler descriptive measures, such as

intergenerational or sibling correlations, or specific mechanisms, such as the causal effect

of parent on child education (see Björklund and Salvanes, 2011). In comparison, our ap-

proach has distinct advantages and disadvantages. The obvious disadvantage is that we

remain largely agnostic about the precise mechanisms that the pathways of our model

represent.13 The principal advantage, however, is that it provides a more comprehensive

account of intergenerational transmission.14 For example, our latent factor zkt is a more

comprehensive object than the “genotype” considered in behavioral genetics, as it also cap-

tures non-genetic advantages that affect the next generation. Similar to Ruby et al. (2018),

we quantify the “transferable variance” of an outcome that includes genetic heritability

but also the variance due to inherited socio-cultural factors, as well as the covariance be-

tween the two. While our primary objectives are statistical, we can test if specific causal

pathways such as geographic (im)mobility (Section 4.9) or genetic transmission (Section

5) could explain our results.

3 Data and Calibration

3.1 Swedish Multigenerational Registers

Our sample is based on a random 35% draw of the Swedish population born between 1932

and 1967, as well as their biological parents, siblings and children (see Björklund, Jäntti

and Lindquist 2009, Statistics Sweden 2016). We define kinship based on biological links,

with a man and woman considered to be spouses if they have a child together, irrespectively

of whether they married or cohabitate.15 We match individual characteristics from bi-

13We also remain agnostic on whether the proxy ykt or the latent status zkt represent a better measure
of an individual’s actual socioeconomic status. A recent strand of the literature provides evidence on this
question by aggregating multiple proxies for socioeconomic status, and is complementary to our approach
(Vosters and Nybom 2017, Blundell and Risa 2018, Adermon, Lindahl and Palme, 2021).

14Our approach shares aspects with the literature on siblings correlations, which are a more comprehen-
sive measure of family influences than intergenerational correlations (Jäntti and Jenkins, 2014). However,
sibling correlations still capture only advantages that are directly reflected in child outcomes, while our
approach captures also advantages that are not visible but that affects their prospects.

15Individuals might feature in more than one family if they have children with different partners. Drop-
ping those observations would have only a negligible effect on our estimates as their share is small (6%).
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Table 1: Descriptive Statistics in Swedish Registers

Variable Generation Cohorts Observations Mean Std. Dev. Mean Std. Dev.
Education Child 1966-76 1,026,084 12.35 2.16 12.81 2.12

Parent 1920-62 2,502,869 10.70 3.01 10.60 2.88
Income Child 1958-68 1,062,847 12.30 0.55 11.97 0.50

Parent 1923-53 1,811,895 12.37 0.52 11.82 0.80
Height Child 1974-80 269,475 179.73 6.55

Parent 1951-66 378,686 178.99 6.37

Men Women
Table: Descriptive Statistics in Swedish Registers

Notes: Education is measured as years of education. Income is measured as the logarithm of ten-year average
pre-tax incomes at age 30-39 for children and age 45-54 for parents. Height in cm is observed for men only.

decennial censuses (starting from 1960), official registers, and military enlistment tests.

Our baseline outcome is educational attainment, but we also consider income and body

height. Table 1 shows basic descriptive statistics.

Education. Educational registers were compiled in 1970, 1990, and about every third

year thereafter up to 2007. We consider the highest schooling level recorded across these

years, and translate it into years of education, with seven years for the old compulsory

school being the minimum, and 20 years for a doctoral degree the maximum. As the

data are collected from official registers, they are not subject to non-response problems.16

We measure education up to cohorts born in the mid-1970s, after which the information

becomes less reliable at the top of the attainment distribution.

Income. We observe long income series for the years 1968-2007. We consider total (pre-tax)

income, which is the sum of an individual’s labor (and labor-related) earnings, early-age

pensions, and net income from business and capital realizations, and express all incomes in

2005 prices. To reduce attenuation and life-cycle biases (e.g., Nybom and Stuhler, 2017),

we measure ten-year average incomes at age 30-39 for children and age 45-54 for parents,

considering child cohorts born in 1958-68. To probe the influence of measurement error,

we also estimated our model based on shorter income spans.

Height. We observe height from military enlistment data, which was universal for all men

at the time. Because we observe height only for cohorts born between 1951 and 1980,

we can consider father-child and other vertical correlations only for fathers who were

sufficiently young at the birth of their child (we impose a minimum age of 18 years). This

16In the 1970 Census, we impute 7 years for the (old) primary school, 9 years for (new) compulsory
schooling, 9 years for post-primary school (realskola), 11 years for short high school, 12 years for long high
school, 14 or 16 years for short or long university programs, and 20 years for a PhD. Schooling levels are
recorded in more details in later registers. Educational information in 1970 is missing for those born before
1911 and those who died or emigrated before 1970, but the share of affected observations is small.
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sample restriction is less problematic for height than for other outcomes, as the vertical

correlations vary less with parental age at birth.

Standardizations. Kins can be born in different cohorts and their outcomes being measured

in different years, so we de-mean all outcomes by birth cohort and gender. To reduce the

influence of outliers, income averages are censored at the 1st and 99th percentiles (again by

birth cohort and gender). These standardizations are performed in the full sample, before

selecting specific kinship pairs. In a robustness test we standardized also the variance of

each outcome (i.e., z-scores), which had only negligible effects on our results.

Cohort Selection. Multiple sources of selection need to be taken into account, separately

for each outcome and kinship type (see Online Appendix F). We first select cohorts for

which the outcome is reliably observed, as described above. We then assess which kinship

types can be reliably identified within those cohorts. For example, the identification of

siblings requires observation of their parents, while for the identification of cousins we need

to observe grandparents, and so on. While the match rates of parents and grandparents

are very high, the match rate of great-grandparents is not. We therefore abstain from

kinship types that depend on the identification of great-grandparents, and consider only

outcomes for the two younger generations. To avoid selectivity with respect to the age

difference between kins, we use a broad range of cohorts to measure horizontal moments.

As an exception the range is narrow for cousins, as they have to be identified via their

grandparents. This reduces the age difference and introduces an upward bias in our sample

correlations for cousins (Section 4.6 and Online Appendix F.3).

Linearity. As we summarize the similarity between kins using linear correlations, we

might be concerned whether these linear measures provide a good approximation of the

actual relationship in the data. We thus studied the conditional expectation function

between different types of relatives using binned scatter plots and similar diagnostics. The

expectation of child schooling conditional on parent schooling is approximately linear, but

slightly shallower for low levels of schooling. The conditional expectation is very linear

for distant kinship types. We conclude that linear correlations provide a reasonably good

summary of the statistical associations observed in the data.

Distant chains and duplicate entries. The chains that link distant in-laws may contain

duplicate entries. For example, an individual may be his own second-degree brother-in-law

if two families are connected via more than one spousal link. In principle, duplicate entries
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are a reflection of the assortative process, and should be retained. For example, inequality

might be more persistent if in-law relations “circle” within closed groups defined by ge-

ography, ethnicity, or other characteristics. However, as we observe only a random subset

of the Swedish population, duplicate entries occur at a higher rate. We therefore drop all

chains with duplicate entries, which slightly decreases the more distant correlations.17

Family size. Given our intergenerational focus, we restrict our sample to individuals who

have at least one child. However, we need to decide how to weight large compared to

small families, because fertility might vary with socioeconomic status (it varies little in

our sample) and kinship correlations might vary with family size (for example, spousal

correlations are slightly larger in large families).18 While this choice arises in all intergener-

ational studies, it could be more important here as the number of kinship pairs per family

varies more strongly for distant than for close kins (e.g., it varies more for cousins than

siblings). We therefore considered three different sets of weights, ranging from uniform

to proportional to the number of kinship pairs per family (see Donner, 1986). However,

the sample correlations are not very sensitive to this choice.19 We picked an intermediate

scheme, weighting each family by the square root of their number of distinct pairs.

3.2 Estimation and Calibration

Since we can directly estimate σym and σyf from the data, we have 20 unknown parameters,

v =
{
βm,γm,σzm,σxm,β

f,γf,σzf,σxf,ρxmxf,ρzmzf,ρymyf,ρzmyf,ρymzf,α
m
y ,α

m
z ,α

f
y ,α

f
z ,σem,σef,ρemef

}
,

and therefore we need at least 20 correlations between relatives of different kinship.20 We

calibrate the parameters by solving the following minimization problem,

Minv∈F
∑

i∈C
pi(ρi − ρi)2, (6)

17For example, it decreases the third degree sibling-in-law correlations by around 5%.
18A family or “cluster” is defined by the most recent common ancestor for biological kins, or by the linking

spouse for in-laws. We do not study heterogeneity by family arrangement (e.g., divorce or cohabitation).
19The correlation between the set of sample moments estimated under the two most extreme weighting

schemes is greater than 0.99.
20In Online Appendix B.2, we provide explicit identification results for a restricted version of our baseline

model. The restrictions hold approximately in our application. We have also performed simulation exercises
to verify that the parameters of the baseline model can be recovered from the set of kinship correlations
used in our empirical application.
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where v is the set of parameters, ρi are the theoretical correlations (which are a function

of v, as derived in the Online Appendix A), ρi the empirical correlations, pi the weight

given to each term, F is the set of feasible values for the unknown parameters, and C

denotes the set of correlations.21 In most cases we give the same weight to all correlations

so that pi = 1 for all i ∈ C, but the results are very similar if we weight each moment by

the number of families used to calculate the sample correlation.

Our approach relates conceptually to an instrumental variable strategy in which a more

distant relative’s outcome is used as an instrument for the parent’s outcome in the parent-

child regression. Lindahl et al. (2015), Braun and Stuhler (2018), Neidhöfer and Stock-

hausen (2019) and Colagrossi, d’Hombres and Schnepf (2019) instrument parent with

grandparent outcomes, while Adermon, Lindahl and Palme (2021) instead consider ex-

tended family members in the parent generation (such as aunts and uncles, their spouses,

or parents’ cousins). This instrumental variable estimator corresponds to the ratio be-

tween two kinship moments, one more distant than the other (e.g, the ratio between the

grandparent-child and parent-child covariances).

While we also compare close and distant kins, our approach differs in two ways from

the instrumental variable approach. First, identification is indirect rather than direct.

The parameters of a simple intergenerational model can be directly mapped into the IV

estimator, and we show such direct identification for a restricted version of our model

in Online Appendix B.2.22 However, this direct mapping between the IV estimator and

model parameters breaks down in richer models, and our baseline model cannot be solved

analytically. In such more general models, the IV estimator maps into an amalgam of

multiple model parameters, and is more difficult to interpret.23

21We cannot estimate the parameters by GMM as in Abowd and Card (1989) because the units of
analysis, families, are not well defined. Moreover, most individuals will belong to different families and
therefore the sample units will not be independent (see Appendix E). We have used Mathematica 11.3
to solve the minimization problem (code available upon request). We have used the Simulated Annealing
algorithm, which is a stochastic function minimizer. We have used a minimum of 10,000 random starting
points from the set of feasible values F . In most exercises, and in particular in our benchmark case, we
reach the same minimum for most of the starting points, so that we are confident to have found a global
minimum. We also tried other algorithms for constrained global optimization (Nelder-Mead, Differential
Evolution and Random Search) and never found a different global minimum.

22For example, in a restricted model with no direct effect (β = 0) and assortative mating only in the latent
factor z, the assortative mating parameter can be identified from the covariance ratio of the spouse of the
sibling-in-law to the sibling-in-law (or the ratio of the uncle in law to the uncle), while the intergenerational
process can be identified from the covariance ratio of the spouse of the uncle to the sibling-in-law.

23Adermon, Lindahl and Palme (2021) provide conditions under which the IV estimator can be inter-
preted as an upper bound of the total influence of members of the extended family. Similarly, we can
use our transmission model to derive conditions under which the IV estimator maps into a parameter of
interest (see Online Appendix B.2).
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Table 2: List of Kinship Types

group name class # moments
a-a' Spouses consanguine, horizontal 1       
a'-b Siblings consanguine, horizontal 3       
aa-bb Cousins consanguine, horizontal 10       
aa-a  Parent-child consanguine, vertical 4       
aa-b  Uncle/aunt-child consanguine, horizontal & vertical 8       
a-b Siblings-in-law (degree 1) affine, horizontal 4       
a-b' Spouse of sib-in-law (degree 1) affine, horizontal 3       
a'-c Sibling of sib-in-law (degree 1) affine, horizontal 4       
aa–b'  Child-sibling in law (degree 1) affine, horizontal & vertical 8       
a-c Siblings-in-law (degree 2) affine, horizontal 8       
… … …
a-d Siblings-in-law (degree 3) affine, horizontal 16       
… … … …

Table: List of Kinship Types

Notes: The number of distinct moments within each kinship type is determined by the potential set of gender
combinations (such as brother-brother, sister-sister, and brother-sister). See Figure 1 for definition of kinship types.

Second, we consider many kinship moments simultaneously (105 moments in our baseline

calibration) while the IV approach is based on only two moments. Apart from a gain in

efficiency, this allows us to assess the quality of our predictions. While the IV approach can

be used to estimate a simple intergenerational model, it is not informative about whether

that model provides reasonable predictions that fit the data. In contrast, we will test

whether our model replicates the transmission pattern across many different types of kins,

including those that have not been used to fit the model. We believe our intergenerational

model is the first to fit a wide array of consanguine and affine kinships.

4 Estimation Results

In this section, we report our baseline results, considering years of schooling as our depen-

dent variable. Table 2 provides a partial list of the kinship types, as well as the number of

moments within each group. Considering siblings-in-law up to five degrees of separation,

we observe 141 distinct moments. The formulas for each of them as a function of the

model parameters are presented in Online Appendix A.

4.1 Sample Moments

Table 3 reports the sample correlation in years of schooling for each kinship moment. The

moments are sorted by kinship type, from closely related to more distant kins. The first
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columns report the number of pairs and sample correlations. The sample correlations in

years of schooling span between one-half for close kins, such as spouses or brothers, to

only a fraction of that for the most distant kinship types. Owing to the large number

of observations, all correlations are precisely estimated.24 As far as they overlap, they

appear consistent with estimates from the previous literature.25

4.2 Calibrated Moments

In our baseline calibration, we include siblings-in-law up to three degrees of separation but

do not include cousins or higher-order in-laws (see Section 4.6). With these restrictions,

our baseline calibration is based on 105 distinct kinships, grouped into fourteen different

kinship types. We calibrate the model as described in Section 3, and report the predicted

moments and their percentage deviation to the observed moments in the final columns of

Table 3. Moments that were not included in the calibration are printed in italics.

Figure 2 illustrates the in-sample fit graphically, by plotting sample moments (orange) and

predicted moments from the calibrated model (blue dots). The model explains the data

well, for both vertical and horizontal moments, and for both consanguine (“blood”) and

affine (“in-law”) kinships. In percentage terms, the out-of-sample fit is worst for cousins

and extremely distant in-laws. We return to those issues below. The mean absolute error

across all moments used in the calibration (across all moments) is 2.5% (7.2%). These

results suggest that it is possible to fit the pattern of inequality across very different

kinship types, using a parsimonious model with a limited set of transmission pathways.

4.3 Intergenerational Transmission

Table 4 summarizes our baseline findings. Panel A reports the calibrated parameters for

the intergeneration or “vertical” components of our model as well as the implied autocorre-

lation to parents or paternal ancestors. As motivated in Section 2.2, we distinguish between

the direct transmission of advantages in our outcome of interest (i.e., educational attain-

ment), and the transmission of latent advantages that contribute to the socioeconomic

24For the moment with the smallest number of observations (female cousins) the standard error is 0.0036.
25For example, Björklund, Jäntti and Lindquist (2009) report that the correlation in years of schooling

between brothers in Sweden is slightly below 0.5 (cf. 0.43 in our sample). Hällsten (2014) estimates that
the corresponding correlation for cousins is about 0.15, which fits our model predictions but is below our
own sample correlation. We return to this contrast below.
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Table 3: Sample and Predicted Moments in Swedish Registers

name # pairs sample ρ pred. ρ % error group # name # pairs sample ρ pred. ρ % error
I 1 Spouses 413,062 0.491 0.489 -0.3   …
II 2 Brothers 387,028 0.432 0.431 -0.3   XII 72 MF-FM-MF 299,602 0.138 0.135 -2.2   
a'-b 3 Sisters 431,698 0.416 0.416 0.2   73 FM-MF-MF 273,809 0.126 0.124 -1.4   

4 Brother-Sister 800,127 0.375 0.376 0.4   XIII 74 M←MF-MF-MF 160,726 0.102 0.098 -3.5   
III 5 Father-Son 396,304 0.380 0.381 0.2   aa-c' 75 M←MF-MF-FM 174,261 0.103 0.106 3.4   
aa-a 6 Father-Daughter 376,255 0.321 0.321 0.1   76 M←MF-FM-MF 158,401 0.107 0.109 1.9   

7 Mother-Son 422,374 0.366 0.367 0.2   77 M←MF-FM-FM 160,105 0.106 0.106 0.3   
8 Mother-Daughter 400,337 0.347 0.349 0.5   78 M←FM-MF-MF 147,949 0.102 0.103 0.9   

IV 9 Brothers in-law (MF-M) 602,262 0.302 0.296 -2.1   79 M←FM-MF-FM 156,876 0.103 0.111 7.9   
a-b 10 Brother-Sister in-law (FM-M) 578,269 0.296 0.304 2.7   80 M←FM-FM-MF 133,588 0.104 0.103 -1.0   

11 Brother-Sister in-law (MF-F) 650,127 0.298 0.307 3.0   81 M←FM-FM-FM 131,756 0.101 0.101 -0.5   
12 Sisters in-law (FM-F) 596,540 0.278 0.277 -0.2   82 F←MF-MF-MF 152,751 0.087 0.086 -0.1   

V 13 Nephew-Uncle (BF) 280,067 0.254 0.249 -1.7   83 F←MF-MF-FM 165,828 0.091 0.093 3.1   
aa-b 14 Niece-Uncle (BF) 266,289 0.218 0.220 1.2   84 F←MF-FM-MF 151,100 0.094 0.095 1.7   

15 Nephew-Uncle (BM) 312,019 0.241 0.238 -1.2   85 F←MF-FM-FM 153,065 0.089 0.093 4.9   
16 Niece-Uncle (BM) 295,580 0.209 0.210 0.5   86 F←FM-MF-MF 140,585 0.093 0.092 -1.1   
17 Nephew-Aunt (SF) 285,618 0.234 0.229 -2.1   87 F←FM-MF-FM 150,162 0.097 0.099 2.9   
18 Niece-Aunt (SF) 270,325 0.217 0.203 -6.7   88 F←FM-FM-MF 126,129 0.093 0.092 -1.2   
19 Nephew-Aunt (SM) 333,141 0.251 0.245 -2.3   89 F←FM-FM-FM 124,968 0.085 0.090 5.3   
20 Niece-Aunt (SM) 316,625 0.234 0.218 -7.0   XIV 90 M←MF-MF-MF→M 84,025 0.094 0.082 -13.4   

VI 21 Spouse of Sib-in-law (MF-FM) 252,232 0.252 0.246 -2.2   aa-cc 91 M←MF-MF-FM→M 100,261 0.101 0.086 -15.2   
a-b' 22 Spouse of Sib-in-law (FM-MF) 226,795 0.229 0.232 1.1   92 M←MF-FM-MF→M 93,237 0.105 0.090 -13.9   

23 Spouse of Sib-in-law (MF-MF) 464,081 0.222 0.227 1.9   93 M←FM-MF-MF→M 80,486 0.097 0.085 -12.0   
VII 24 Nephew-Aunt in-law (BF) 231,767 0.192 0.192 -0.3   94 M←MF-MF-MF→F 79,690 0.087 0.073 -16.7   
aa-b' 25 Niece-Aunt in-law (BF) 221,287 0.172 0.171 -0.8   95 M←MF-MF-FM→F 95,733 0.094 0.076 -19.9   

26 Nephew-Aunt in-law (BM) 254,534 0.187 0.183 -2.2   96 M←MF-FM-MF→F 89,364 0.093 0.080 -13.6   
27 Niece-Aunt in-law (BM) 241,873 0.164 0.161 -2.0   97 M←MF-FM-FM→F 95,020 0.095 0.075 -20.4   
28 Nephew-Uncle in-law (SF) 227,403 0.190 0.188 -1.5   98 M←FM-MF-MF→F 76,514 0.095 0.076 -20.0   
29 Niece-Uncle in-law (SF) 215,068 0.163 0.167 2.2   99 M←FM-MF-FM→F 89,054 0.088 0.079 -9.8   
30 Nephew-Uncle in-law (SM) 264,524 0.197 0.198 0.8   100 M←FM-FM-MF→F 77,332 0.094 0.076 -19.0   
31 Niece-Uncle in-law (SM) 251,782 0.171 0.175 2.1   101 M←FM-FM-FM→F 80,067 0.082 0.072 -12.9   

VIII 32 Male Cousins (BF) 70,137 0.208 0.159 -23.8   102 F←MF-MF-MF→F 76,344 0.080 0.064 -20.3   
aa-bb 33 Male Cousins (SM) 82,049 0.215 0.160 -25.4   103 F←MF-MF-FM→F 91,080 0.090 0.066 -26.6   

34 Male Cousins  (SF) 156,747 0.202 0.152 -24.8   104 F←MF-FM-MF→F 84,736 0.092 0.070 -23.4   
35 Female Cousins (BF) 63,032 0.169 0.126 -25.5   105 F←FM-MF-MF→F 72,410 0.082 0.068 -17.4   
36 Female Cousins (SM) 73,649 0.197 0.124 -37.0   XV 106 F-MF-MF-M 288,374 0.103 0.103 -0.2   
37 Female Cousins (SF) 140,522 0.177 0.118 -33.2   a'-d 107 F-MF-MF-F 312,703 0.102 0.105 3.5   
38 Male-Female Cousins  (BF) 144,100 0.179 0.141 -20.9   108 F-MF-FM-M 311,795 0.111 0.113 1.4   
39 Male-Female Cousins  (SM) 170,577 0.196 0.141 -28.2   109 F-MF-FM-F 162,928 0.099 0.104 5.4   
40 Male-Female Cousins  (BM) 148,691 0.179 0.133 -25.5   110 F-FM-MF-M 308,163 0.116 0.115 -1.5   
41 Male-Female Cousins  (SF) 148,631 0.184 0.135 -26.5   111 F-FM-MF-F 166,250 0.121 0.117 -2.6   

IX 42 F-MF-M 461,883 0.185 0.191 3.5   112 F-FM-FM-M 304,684 0.114 0.114 0.3   
a'-c 43 F-MF-F 500,448 0.192 0.196 1.8   113 M-MF-MF-M 278,416 0.117 0.111 -4.9   

44 F-FM-M 481,006 0.207 0.212 2.6   114 M-MF-FM-M 149,478 0.131 0.122 -7.0   
45 M-MF-M 447,263 0.208 0.207 -0.6   115 M-FM-MF-M 143,733 0.115 0.112 -2.2   

X 46 MF-MF-M 362,409 0.156 0.157 0.8   XVI 116 MF-MF-MF-M 230,313 0.087 0.085 -2.5   
a-c 47 MF-MF-F 393,579 0.156 0.161 3.4   a-d 117 MF-MF-MF-F 251,223 0.087 0.087 0.2   

48 MF-FM-M 375,442 0.179 0.173 -3.4   118 MF-MF-FM-M 248,811 0.097 0.093 -4.0   
49 MF-FM-F 391,389 0.158 0.160 1.2   119 MF-MF-FM-F 259,925 0.083 0.086 3.0   
50 FM-MF-M 353,470 0.160 0.161 0.8   120 MF-FM-MF-M 245,814 0.104 0.094 -9.7   
51 FM-MF-F 378,720 0.164 0.165 0.5   121 MF-FM-MF-F 265,220 0.101 0.096 -4.5   
52 FM-FM-M 341,316 0.157 0.160 2.1   122 MF-FM-FM-M 241,998 0.099 0.093 -6.0   
53 FM-FM-F 351,350 0.148 0.148 0.0   123 MF-FM-FM-F 248,449 0.084 0.086 1.7   

XI 54 M←MF-MF-M 202,632 0.119 0.127 6.7   124 FM-MF-MF-M 224,873 0.091 0.087 -5.1   
aa-c 55 M←MF-MF-F 219,007 0.129 0.130 1.1   125 FM-MF-MF-F 246,186 0.092 0.089 -3.9   

56 M←MF-FM-M 192,819 0.134 0.140 4.6   126 FM-MF-FM-M 237,791 0.100 0.095 -5.1   
57 M←MF-FM-F 199,811 0.129 0.129 -0.3   127 FM-MF-FM-F 247,495 0.088 0.088 0.0   
58 M←FM-MF-M 183,670 0.125 0.133 6.2   128 FM-FM-MF-M 223,661 0.086 0.087 0.3   
59 M←FM-MF-F 196,631 0.132 0.136 3.6   129 FM-FM-MF-F 240,328 0.094 0.089 -5.8   
60 M←FM-FM-M 160,857 0.132 0.132 0.6   130 FM-FM-FM-M 213,155 0.091 0.086 -5.5   
61 M←FM-FM-F 164,528 0.122 0.122 -0.2   131 FM-FM-FM-F 220,553 0.084 0.079 -4.9   
62 F←MF-MF-M 192,818 0.104 0.112 7.1   XVII 132 MF-MF-MF-MF 176,790 0.071 0.066 -8.3   
63 F←MF-MF-F 208,008 0.114 0.114 0.2   a-d' 133 MF-MF-MF-FM 199,041 0.075 0.071 -6.0   
64 F←MF-FM-M 183,929 0.116 0.123 6.1   XVIII 134 MF-MF-MF-MF-M 153,057 0.047 0.046 -3.3   
65 F←MF-FM-F 191,177 0.112 0.113 1.2   a-e 135 FM-FM-FM-FM-F 144,976 0.054 0.043 -20.1   
66 F←FM-MF-M 175,507 0.110 0.119 8.0   XIX 136 MF-MF-MF-MF-MF 117,473 0.047 0.035 -25.5   
67 F←FM-MF-F 187,178 0.121 0.122 0.5   a-e' 137 MF-MF-MF-MF-FM 135,096 0.042 0.038 -9.9   
68 F←FM-FM-M 151,606 0.112 0.118 5.5   XX 138 MF-MF-MF-MF-MF-M 106,844 0.031 0.025 -21.9   
69 F←FM-FM-F 155,658 0.113 0.109 -3.7   a-f 139 FM-FM-FM-FM-FM-F 100,871 0.043 0.023 -46.5   

XII 70 MF-MF-MF 278,938 0.122 0.122 -0.5   XXI 140 82,523 0.032 0.019 -40.0   
a-c' 71 MF-MF-FM 310,160 0.132 0.132 -0.6   a-f' 141 96,840 0.027 0.021 -24.4   

group    #

MF-MF-MF-MF-MF-MF
MF-MF-MF-MF-MF-FM

Table: Sample and Predicted Moments in Swedish Registers

Kinship Data Calibration Kinship Data Calibration

Notes: M/F indicate gender, MF or FM are spouses, - indicates a sibling link and → indicates a parent-child
link. Other abbreviations are BF=Brother of the father, BM=Brother of the mother, SF=Sister of the father and
SM=Sister of the mother. Moments printed in italics were not used in the calibration. The sample correlations for
cousins are subject to limitations discussed in Section 4.6.
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Figure 2: Baseline Fit in Swedish Registers
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Notes: See Table 3 for the corresponding list of kinship moments.

success of future descendants. With β̂m = 0.14 and β̂f = 0.13, the direct transmission

channel contributes very little to the overall transmission of status from one generation to

the next. Accordingly, only 1-2% of the variation in offspring education is explained by

parental education (see Panel D).26

Instead, the transmission of advantages occurs predominantly via the latent factor, as

measured by the parameters γk. We find γ̂m = 0.66 and γ̂f = 0.57, implying that the set

of unobserved advantages that this factor represents are much more strongly transmitted

from parents to their children than educational attainment itself.27 Moreover, this latent

factor explains up to 45% of the variance in child education (cf. σ2
zk/σ

2
yk).

Our results here are broadly consistent with findings from alternative methods. First,

they are consistent with recent multigenerational studies, which find that kinship corre-

lations decline more slowly across generations than a simple iteration of the parent-child

correlation would suggest (Lindahl et al. 2015, Braun and Stuhler 2018). For example,

26Accordingly, the relative weights of mothers and fathers αmy and αfy are not consequential.
27The parameter γ captures the influence of both parents. As also reported in Panel A, the implied

correlations between the latent factors of the child and the father or mother are slightly lower because of
imperfect assortative mating between spouses (ρzmzf < 1).
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Table 4: Calibrated Parameters in Swedish Registers (Years of Schooling)

Panel A : Intergenerational Processes
β m β f σ2zf
0.144 0.129 1.559
α ym α yf α zf σ2um σ2uf
0.389 0.018

Ancestor correlations in y and z:
Father-Son Fr.-Daughter Mother-Son Mother-Daughter

 in z  0.586
Father-Son Grandfr.-Son GGrandfr.-Son GGGrandfr-Son

 in y  0.381
 in z  0.586

Panel B : Sibling Processes
σ2xm
0.180

Sibling correlations in y and z:
Brothers Sisters Mixed Brothers Sisters Mixed

 in y  0.431 0.711
Panel C : Assortative Processes
rmzz rmzy rfyy
0.662 -0.008 0.249

Spousal correlations in y and z:
ρ ymyf ρ zmzf

0.489 0.754
Panel D : Variance Decomposition of y

male  1.5% 43.1%
female  1.6% 41.6%

0.344 0.201 0.118

16.1%
12.9%

7.5%
5.7%

25.1%
20.2%

3.9%
5.5%

14.1%
15.9%

0.601 0.526 0.508

0.209 0.121 0.071

0.825

2.072

2.333

4.465

0.712 0.625
σ2ef σemef

0.696 0.143 0.747
rfyz

0.113 0.661

ρ ymzf ρ zmyf

0.539 0.580

rmyz rmyy rfzz rfzy

0.416 0.376  in z  0.677

0.244 0.068 0.657
σ2xf σxmxf σ2em

0.660 0.775 1.975

0.566 4.648
α zm

Table: Calibrated Parameters in Swedish Registers (Years of Schooling)

γ m γ f σ2ym σ2yf σ2zm
0.664

ezt�1

1

eyt�1

1
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1

cov(ỹt�1, z̃t�1)

�ỹz̃

1

cov(ỹt�1, z̃t�1)

�ỹz̃

�ỹt�1z̃t�1

et

1

cov(ỹt�1, z̃t�1)

�ỹz̃

�ỹt�1z̃t�1

et

⌃ỹ,z̃

⌃ỹ,z̃,x,e

1

cov(ỹt�1, z̃t�1)

�ỹz̃

�ỹt�1z̃t�1

et

⌃ỹ,z̃

⌃ỹ,z̃,x,e

1

Notes: Panels A and B report parameter estimates and implied ancestor and sibling correlations in educational
attainment y and latent advantages z. The parameters β and σ2

y capture the direct transmission and variance of y;

γ and σ2
z the transmission and variance of z; and σ2

x and σ2
e shared sibling influences in y and z; see equations (1)-(3)

for details. Panel C reports the coefficients from the linear projections (4) and (5) of zk and yk for k = f,m on their
spouse’s z and y and the implied spousal correlations. Panel D decomposes σ2

y into the components explained by
the parents’ y (ỹt−1) and z (z̃t−1) and their covariance (σỹz̃), and the sibling components in y (xt) and z (et); Σỹz̃
and Σỹ,z̃,x̃,ẽ are the total percentages explained by the parents and the close family (parental and shared sibling
influences), respectively. Based on the kinship correlations reported in Table 3.

the great-grandfather and grandfather-son correlations as predicted by our baseline model

(0.121 and 0.209, Panel A of Table 4) are similar to direct estimates from a Swedish data

set by Lindahl et al. (0.113 and 0.226, their Table A3). The predictions deviate more

for grandparent-daughter pairs, but are still within the confidence intervals of the direct

estimates. This similarity is notable, as higher-order autocorrelations across three or more

generations were not targeted by our calibration.

Second, our findings are in line with recent name-based evidence, which suggests that

the average status of surnames regresses more slowly to the mean than individual status
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(Clark, 2014). Within our model, this pattern is explained by the fact that relatives are

more similar in their latent endowments z than they are in their observable status y, such

that averaging across distant relatives distills a more concentrated measure of those latent

endowments. While our data do not contain surnames, we can illustrate this implication

using direct family links. As shown in Online Appendix G.1, we find a much higher

intergenerational correlation in family average as compared to individual outcomes.

Finally, we compare our results to estimates by Adermon, Lindahl and Palme (2021)

[ALP], who use a similar “horizontal” data structure but a different methodology, directly

regressing child human capital (years of schooling or grade point average) on observable

characteristics in the extended family. Their baseline estimates suggest that 17.2% of the

variation in child education can be explained by educational outcomes in the extended

family, increasing to 20.2% when incorporating information on income and social stratifi-

cation.28 In comparison, our estimates imply that parental background determines 20.2%

(females) or 25.1% (males) of the variation in educational attainment (see Σỹ,z̃ in Panel

D in Table 4).29 Our estimates are therefore slightly larger than the baseline estimates in

ALP, in line with their argument that those baseline estimates represent a lower bound,

as human capital can only be imperfectly measured in the data (see Section 2 in ALP).

Our approach abstracts from this measurement issue by quantifying the importance of

family background indirectly, and therefore yields larger estimates. It shares similarities

with an instrumental variable (IV) approach, in which a distant kin is used to instrument

for the parent’s outcome in a parent-child regression (see Section 3.2). ALP complement

their baseline estimates by using horizontal kins in the parent generation as instruments

(Section 5 in ALP). In a simplified version of our model, their IV approach identifies the

effect of family background on latent advantages z (rather than its effect on education y,

see Online Appendix B.2). While explaining up to 25.1% of the variation in y, we find

that parental background explains more than 36% of the variation in z.30

28See Table 1 in ALP. Rather than the R2, ALP focus on the sum of regression coefficients as their
preferred estimator. This sum of coefficients represents the effect of raising the schooling of all extended
kins by one standard deviation. In contrast to the R2, it abstracts from the actual covariance between kins
(see Appendix A.3 in ALP). It therefore represents the effect of a particular change in family background,
irrespectively of how likely that change is given the observed covariance between kins (e.g., it might be
unlikely that all kins have high schooling if that covariance is low). Because our estimates are based on
fitting that covariance they relate to the R2 rather than the sum of coefficients.

29These estimates do not yet account for shared sibling influences that are orthogonal to parental ad-
vantages encapsulated in ỹt−1 and z̃t−1 (see next Section).

30The variance share of zkt explained by z̃t−1 equals
(
γk

)2 V ar(αk
zz

m
t−1+(1−αk

z )z
f
t−1)

V ar(zkt )
, estimated to be 36.0%

for men and 36.8% for women. We therefore find that parental background has a similar effect on the
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The key advantage of our findings here compared to previous studies is that they are based

on an explicit intergenerational and assortative model. We can therefore derive specific

predictions for all kinship moments from our model (as in Table 3) and test whether those

predictions fit the data. We provide additional evidence on model fit below. Moreover, we

can quantify not only the overall importance of family background, but also decompose this

overall effect into intergenerational, sibling and assortative processes. Such decompositions

are necessary to understand certain aspects of intergenerational transmission, such as the

degree to which status differences persist between families.31

4.4 Siblings and Horizontal Transmission

Our model allows for common shocks among siblings, over and above their shared exposure

to parental advantages ykt−1 and zkt−1. We find that siblings share both observable and

latent advantages, as summarized in Panels B and D of Table 4. The shared sibling

component in the observable outcome xkt explains about 5% and the shared component

in the latent factor ekt about 15% of the variation in years of schooling (see Panel D).

Moreover, ekt explains between 30 and 45% of the variation in the latent factor itself.

Siblings share, therefore, important influences over and above what can be accounted

for by parental characteristics. This finding is consistent with the literature on sibling

correlations, which has shown that siblings share many additional influences that are

orthogonal to the observed socioeconomic status of parents (see Jäntti and Jenkins 2014,

and Section 2.4). However, our results provide a richer characterization of this process. In

particular, they suggest that most of the advantages that siblings share are not reflected

in observables such as education or income.

Intuitively, while the correlation in their observables is fairly high, siblings must be sub-

stantially more similar to explain why kinship correlations decay so slowly across siblings-

in-law. Depending on gender, the implied correlation between the latent status of siblings

ranges between 0.68 and 0.82, which is more than 50% higher than the sibling correlation

in years of education (Panel B of Table 4).32 These correlations correspond to variance

latent advantages of male and female children, but a larger effect on the education of male children.
31To see that this is the case, note that if sorting is random (i.e., ρzmzf = 0) then status differences

are not very persistent even if child outcomes are perfectly determined by family background (e.g., γ = 1
and σ2

y = σ2
z). Estimates of the overall importance of family background in itself are therefore not fully

informative about the persistence of status differences across generations.
32The correlation between the latent status of siblings appears therefore as high as the correlation
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shares, so shared environmental and family influences explain between 41.6% and 43.1%

of the variation in education y (see Σỹ,z̃,x,e in Panel D), but between 67.7% and 82.5% of

the variation in latent advantages z that determine the prospects of the next generation.

Our findings therefore imply that sibling correlations – traditionally viewed as a particu-

larly comprehensive measure (Jäntti and Jenkins, 2014) – still understate the importance

of family influences. They also support the view that empirical studies have understated

inequality of opportunity, as many childhood circumstances are not directly observed in

the data (Roemer and Trannoy, 2016; Hufe et al., 2017).

4.5 Assortative Mating

The spousal correlation in years of schooling is one-half in our data (see Table 3), in line

with prior evidence from Sweden and other countries (Raaum et al., 2007). But while

the similarity of spouses in observable characteristics is well quantified, our model also

accounts for assortative mating in unobservable determinants of child outcomes. The

results are reported in Panel C of Table 4. In the projection of zft−1 and yft−1 on zmt−1 and

ymt−1, the latent status of the female zft−1 is predominantly explained by the latent status

of the spouse (rmzz), while his education has no additional predictive power (rmzy). However,

his education does have some predictive power for her educational attainment (rmyy), over

and above what can be explained by his latent factor (rmyz). The corresponding projection

coefficients for males are similar. These results suggest that the spousal correlation in

schooling is predominantly a by-product of sorting in latent characteristics.

A key parameter for understanding the transmission of socioeconomic inequalities across

generations is thus the degree of assortative mating in latent advantages. By comparing

the correlations between close and more distant kins, our approach offers an estimate of

that parameter. The spousal correlations implied by the parametrization of our model are

reported in the last block in Panel C of Table 4. The first entry is the calibrated spousal

correlation in education, which at ρymyf = 0.49 is very similar to its sample counterpart.

At ρzmzf = 0.75, the implied spousal correlation in z is substantially higher. Intuitively,

while the spousal correlation in educational attainment is high, it is far too low to explain

the slow decay of kinship correlations between distant relatives observed in our data.

between the educational attainment of “identical” (monozygotic) twins. This observation suggests that
non-genetic latent advantages are an important determinant of educational attainment. We decompose
latent into genetic and non-genetic advantages in Section 5.
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Spouses must therefore be much more similar in those factors that determine the prospects

of their children than they are in educational or other observable characteristics. The

observation that the implied correlation in latent advantages is as high for spouses as for

siblings may further suggest that those advantages primarily reflect non-genetic rather

than genetic advantages, a hypothesis that we study further in Section 5.

4.6 Fit and Robustness

We can use the comparatively large set of empirical moments to study the robustness of

our model fit. In a first robustness exercise, we drop two thirds of our baseline moments

(kinship groups X and higher), reducing the set from 105 to 35 moments. Because we drop

all distant kins, this exercise also tests our model’s capability to extrapolate distant kinship

correlations from closer kins. Our parameter estimates remain quite stable. Figure 3 plots

the out-of-sample fit for the 70 excluded correlations. The calibrated model predicts a

diverse set of moments not included in the calibration, including vertical, horizontal and

distant kinships. Our baseline results are therefore robust to the choice of moments, as

well as to various issues related to the measurement of those moments.33

However, our model does not provide a good fit for two kinship types, cousins and very

distant in-laws. Our baseline calibration understates the correlation between cousins by

around 25%, and the correlations for in-laws of four or more degrees of separation by an

even larger amount (although the deviations are small in absolute value). These gaps close

only partially if we directly target those moments in the calibration. Further examination

suggests that the gap for cousins reflects primarily a measurement problem, while the gap

for distant kinship correlations appears to reflect a limitation of our model.

Because they are identified via their shared grandparents, we draw cousins from a narrower

and more recent range of cohorts (to avoid selection issues with respect to the parent or

grandparent age; see Section F in the Online Appendix). This causes two issues. The

33Sampling variation is negligible and not a major concern. Measurement error in the outcome variable
would have only limited effects as well. Classical measurement error would decrease all kinship correlations
by the same proportion, which would have no effect on the parameter estimates if β = 0 (as the parameter
are then identified as ratios of correlations) and only small effects on our baseline results with β 6= 0 (see
Appendix J.4). Instead, we are concerned about a conceptual mismatch between the population that we
sample from and its theoretical counterpart (e.g., due to variation in kinship correlations over time). We
perform three different tests (see Online Appendix E), studying the behavior of the objective function
around the minimum, and showing that our results and predictions are robust to small perturbations in
the parameter estimates or empirical correlations.
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Figure 3: Out-of-Sample Fit in Swedish Registers
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first is that the moments that we wish to explain may vary over time (see Atkinson and

Jenkins, 1984). Indeed, the cousin correlations for earlier cohorts are lower and more

similar to estimates reported by Hällsten (2014).34 Second, kinship correlations decrease

with the age gap between kins, suggesting that the cousin correlation is upward biased

in our sample (as the underlying cohort range is narrower than for other moments). As

shown in Online Appendix F.3, this upward bias explains half of the gap between the

theoretical and sample correlations for cousins. While we do not include cousins in our

calibration, including them has only negligible effects on our parameter estimates.

In contrast, our model’s tendency to understate the most distant kinship correlations (cf.

in-laws of 4th or 5th degrees of separation in Table 4) cannot be due to their variability

over time. The time trends for siblings-in-law – which can be estimated for a wide range of

cohorts – appear quite stable. Instead, we might understate the similarity of very distant

kins because our model accounts for only a single latent factor. Typically, the latent factor

is thought to summarize the influence of many transmission channels, such as cultural,

genetic, or social determinants (Becker and Tomes 1986). However, some determinants

may have higher rates of persistence than others, and those with the strongest persistence

will explain a greater share of the most distant kinship correlations.35 A model with a

single latent factor may therefore still understate the similarity of very distant kins.

34We estimated the time trends in the kinship correlations using a two-step procedure, see Section F
in the Online Appendix. Hällsten (2014) estimates a cousin correlation of 0.15, which is similar to the
predicted cousin correlations from our calibrated model.

35Stuhler (2012) argues that this “multiplicity” of transmission mechanisms is one explanation why
multigenerational correlations do not decay as quickly as a model with a single factor would suggest.
Models with persistent group membership can be seen as the extreme case of this argument. For example,
Becker and Tomes (1986) include group dummies to account for the persistence of racial gaps.
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4.7 Restricted Models

One may ask whether our model could be simplified without significantly reducing its

ability to explain the transmission of socioeconomic inequality. Figure 4 provides evidence

on this question. We first consider a restricted model without “direct” sorting and trans-

mission of educational attainment (i.e., imposing βm = βf = 0 and setting the coefficients

of ymt−1 in the linear projections (4) and (5) to zero), for which we show identification

in Online Appendix B.2.36 This restricted model explains the data nearly as well (see

Figure 4a), consistent with the observation that the direct transmission channels are not

important in our benchmark (explaining less than 2% of the variation in y). However, it

understates the spousal correlation in educational attainment.

In contrast, it is crucial to allow for the transmission of latent advantages, as the restric-

tion γm = γf = 0 results in a very poor fit (see Figure 4b). With this restriction, the

intergenerational transmission has to be captured by direct mechanisms instead (we find

βm = 0.61 and βf = 0.54). While some kinship correlations are understated (such as the

spousal correlation, moment group I), others are greatly overstated. It is also important

to account for shared influences among siblings. The fit of a restricted model in which

all sibling components have zero variance (σ2
xm = σ2

xf
= σ2

em = σ2
ef

= 0) is much worse

than the fit of the benchmark model (see Figure 4c). The sibling correlations (group

II) are heavily understated, as siblings share distinct influences over and above the av-

erage intergenerational transmission. The correlations for distant siblings-in-law are also

understated, as they depend on the similarity of siblings.

Finally, we assume that assortative mating occurs exclusively in the observed outcome, as

has been the standard choice in the literature. Specifically, this means that the coefficients

of zmt−1 in the linear projections (4) and (5) are restricted to zero. With this more restrictive

assortative process, the model does not explain the data well (see Figure 4d). The spousal

correlation is overstated by 45% (0.71, outside of the plot area). The sibling (group II)

and sibling-in-law (group IV) correlations are substantially understated, while the distant

in-law correlations are overstated. The assortative mating in latent advantages is therefore

crucial to understand the pattern of socioeconomic inequality across kins.

In sum, these results suggest that all components of our model matter, except of the

36The key parameter estimates of this restricted model are γm = 0.719, γf = 0.628, σ2
zm = 2.742,

σ2
zf = 2.509 and ρzmzf = 0.802. The implied ancestor correlations in y and z are slightly higher than in

our baseline calibration.

25



Figure 4: Restricted Models
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(b) No latent transmission (γ = 0)
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(c) No shared sibling component
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(d) Assortative mating only in observables

direct transmission and sorting in y. We nevertheless retain these pathways in our model

because they are considered in other work, and might matter more for other outcomes

(as we test below). The latent pathways are key components of the model. Based on our

results, it seems doubtful that models that do not account for latent intergenerational and

assortative processes (or similar forms of unobserved heterogeneity) could fit the pattern

of socioeconomic inequality across kins. This finding is based on the observation of many

kinship moments. As we show below, it is much harder to discriminate between different

models based on the narrow set of moments typically used in the literature.

4.8 Other Outcomes and Other Samples

Income. Education is the key mediator for socioeconomic status in standard models in

economics and sociology (see Goldthorpe 2014). Still, its transmission may follow distinct

patterns that may not generalize to other measures. To study this question, we calibrate

our model using income as a more direct measure of economic advantages. Our primary
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measure is the logarithm of ten-year averages of annual total pre-tax income, centered

around age 35 for children and age 45 for parents (see Section 3.1). We use the same

105 moments as in our baseline calibration for education. As shown in Online Appendix

G, the calibrated model explains the data well, providing a close fit to both vertical and

horizontal moments, and both consanguine and affine relationships.37 The results have to

be interpreted with caution, because women’s labor force participation is lower and their

income therefore a noisier measure of “potential income” compared to men. If this was

just due to pure noise, our model could account for it, and we would just obtain that the

latent factor explains a lower share of the variance of income for females than for males (as

our results suggest). However, the relation between women’s potential and actual income

is likely more complicated, as labor supply decisions may interact within households.

Our approach delivers some interesting results. First, the latent determinants of income are

more strongly transmitted than income itself across all three dimensions (intergenerational,

sibling and assortative), for men and women. Second, we find a very large assortment in

the latent factor (ρ̂zmzf = 0.80) compared to the assortment in observables (ρ̂ymyf = 0.12):

even though spousal correlations in income are very small, the determinants of income must

be very strongly correlated to explain that the sibling-in-law correlations are not much

smaller than the sibling correlations. Third, the implied father-son correlation in the latent

factor is lower for income than for education, suggesting that those factors that determine

educational attainment are more strongly transmitted between generations than those that

determine income.38 Fourth, we find strong gender symmetry in the transmission of those

latent determinants of income, even though the observed correlations in income involving

mothers or daughters are very small compared to those involving fathers and males.39

Spanish data. To illustrate its feasibility in settings with scarcer data, we also apply

our approach to a sample from the 2001 Spanish Census (INE, 2001). In contrast to

the Swedish registers, our Spanish sample is limited to a single region (Cantabria) and

lacks family links. To recover kinships, we exploit that children in Spain inherit surnames

from both their parents, allowing us to track both maternal and paternal lines with a

37Alternative income definitions yield similar results, but the variance shares explained by the latent
factor z and the sibling component x increase in the quality of the income measure (i.e., are about twice
as large when using 10-year averages instead of annual incomes).

38Our finding of a small direct effect of parental income (βk) is consistent with evidence that the causal
effect of parental income is not large, except for low-income families (Loeken, Mogstad and Wiswall, 2012).

39This result follows from the observed symmetry across extended kins. For example, uncles and nephews
show very similar correlations irrespectively of whether the uncle is the brother of the mother or the father.
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Figure 5: Actual vs. Placebo Kins
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comparatively high match rate of around 36%. We find that the pattern of inequality

transmission in Spain is qualitatively similar (see Online Appendix H), but at around 0.9

the implied spousal correlation in the latent factor is even higher than in Sweden.

4.9 Causal Pathways: Geography

The latent variable z in our model may represent a great variety of causal pathways. One

hypothesis is that the similarity in socioeconomic status of distant kins can be partially

explained by their location. To quantify the contribution of geography, we reestimate

each of our 141 kinship moments but replace the actual kin with another person from

the same municipality (and birth year).40 These “placebo kins” capture to what extent

location could explain the correlation patterns between kins. Figure 5 compares the sample

correlations for actual kins (blue dots) with the corresponding correlations for placebo kins

(orange dots). The placebo correlations are always positive, suggesting that geography

does matter. However, geography explains only a small fraction of the correlations between

kins (on average, less than 5%). While location is one plausible component of the latent

factor, it is not an important one.

40We observe the municipality of residence in 5-year intervals, and define an individual’s location based
on the observation that falls into the age range 15-19.
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5 Modeling Genetic and Non-Genetic Pathways

Our objective so far was to quantify how strongly advantages are transmitted from one

generation to the next, while remaining agnostic about the specific causal mechanisms

that the intergenerational and assortative components of our model represent. However,

our approach can be used to distinguish between different mechanisms, to the extent that

they have specific statistical implications about the correlation pattern across kins. For

instance, although we do not observe genes, we can study whether genetic transmission

mechanisms could contribute to the high persistence in latent advantages that we observed.

We first illustrate that our model nests the standard model of genetic transmission with

assortative mating, and test if this genetic model can explain the kinship pattern in edu-

cational attainment (Section 5.1). We then generalize our baseline model to separate the

contribution from genetic and non-genetic latent pathways (Section 5.2).

5.1 A Standard Model from Quantitative Genetics

In the standard model in quantitative genetics, the observed outcome or “phenotype” is

determined by genetic and environmental factors. The role of genes in vertical transmission

is clear: each individual receives half of its genetic contribution from the father and the

other half from the mother. In the simplest form, the model assumes that genetic and

environmental factors contribute additively to the phenotype, i.e., do not interact and

are uncorrelated. The role of genes in the horizontal dimension is less obvious, but the

standard assumption is that assortative mating is based on similarity in the phenotype.41

This genetic model is nested in our general model by imposing three sets of restrictions.

First, the parental outcome (phenotype) does not have any direct association with the

child outcome (imposing the restrictions βk = 0, k = f,m). Second, because the latent

factor represents genes, it is transmitted from parents to children as

zkt =
zmt−1 + zft−1

2
+ vkt (7)

where vkt is uncorrelated across relatives and to zmt−1 and zft−1 (imposing γk = 1, αkz =

0.5, and σ2
ek

= 0, k = f,m). Finally, assortative mating occurs only in the outcome

41In Online Appendix C we obtain formulas for the correlations between relatives that coincide with the
ones in, for example, Crow and Felsenstein (1968).
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Figure 6: Model Fit (Standard Genetic Model, Education)

(a) Using 105 Moments
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(phenotype) y, such that the coefficients of zm in the linear projections of yf and zf on

the spousal ym and zm are zero. As a consequence, ρzmyf , ρymzf and ρzmzf are functions

of ρymyf and some of the other parameters of the model. This genetic model has only five

parameters, which account for the share of variance in the phenotype explained by the

genotype (i.e. heritability, σ2
zm = σ2

zf
= σ2

z), the environmental effects shared by siblings

(σ2
xm , σ2

xf
and σxmxf ), and the assortative mating in the phenotype (ρymyf ).

While the assumption of phenotypic assortment has been standard in quantitative genetics,

recent work implies that the similarity between spouses’ genetic propensity for education

is greater than would be implied by phenotypic assortment (Robinson et al. 2017). Clark

(2021) proposes a variant in which assortative mating occurs in the genotype z rather

than the phenotype y, demonstrating the fit of this model in data from England from the

mid-eighteen century. We also consider this alternative genetic model below.

The Standard Genetic Model and Education. We calibrate the model for years of

schooling, using the same 105 kinships as used for calibration of our baseline model. Figure

6a illustrates the in-sample fit, to be compared against the fit of our baseline model (Figure

2). The standard genetic model with assortative mating in the phenotype y (dark blue

dots) fits substantially worse, overstating kinship correlations within the nuclear family

while understating those for more distant relatives. Its in-sample mean prediction error

is 24.3%, compared to 2.5% for our baseline model. The fit of the genetic model with

assortative mating in the genotype z (light blue dots) is only slightly better.

Our findings are therefore inconsistent with a purely genetic interpretation. We base this
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rejection on a simple statistical observation – the genetic model is not able to provide

a close in-sample fit to the distribution of educational advantages across kins. However,

this observation is not necessarily inconsistent with the view that genes are one of the

decisive factors in the transmission from parents to their children. Instead, we reject

the standard genetic model from quantitative genetics, in particular the assumption that

assortative mating occurs only on the phenotype. Spouses must be far more similar in the

determinants of socioeconomic success than is reflected in their educational attainment.

This finding is based on the observation of distant siblings-in-law – intuitively, the failure

of assortative assumptions becomes more evident in distant kinship correlations that are

a function of multiple assortative matches. In contrast, the genetic model appears to

perform well when fitting a restricted set of correlations that includes only close kins. To

illustrate this point, we recalibrate the standard genetic model with phenotype mating

using only sibling correlations (group II in Table 3), parent-child correlations (group III),

and nephew/niece/uncle/aunt correlations (group V). As shown in Figure 6b, the genetic

model provides an excellent in-sample fit for those 15 close kinships. However, it provides

an extremely bad fit to all other moments. To evaluate transmission models based on their

fit, researchers need to observe a wide range of sufficiently distant kinship correlations.42

The Standard Genetic Model and Height. That the standard genetic model cannot

fit the kinship pattern in educational advantages is not a mechanical consequence of the

model having comparatively few parameters. To demonstrate this, we also calibrate the

genetic model for body height. Because genes are known to be the primary source of

variation in height, a genetic model should provide a reasonably good fit. We show in

Section G.4 in the Online Appendix that this is the case, although a genetic model with

phenotypic assortment cannot explain why the kinship correlations in height remain non-

negligible for distant siblings-in-law.

5.2 Extended Model with Two Latent Factors

Although the objective of our study is not to decipher the elements that make up the

latent variable z, it may be useful to try to quantify which part is composed of genetic

42Most research to date has been based on even narrower set of kinship correlations than the 15 moments
used in this example. Prior work may therefore not have had enough “power” to distinguish different
transmission models based on their statistical properties. Ruby et al. (2018) make a similar point with
respect to estimation of the heritability of human longevity.
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factors and which is based on cultural or environmental factors. Thus, we now decompose

the latent factor zkt into a genetic factor zG,kt , and a socio-cultural or “cultural” factor zC,kt ,

which captures all cultural and environmental factors that are transmitted but which are

not genetic. The outcome y for an individual from generation t and gender k is given by

ykt = βkỹkt−1 + zG,kt + zC,kt + xkt + ukt (8)

We model the genetic factor following the standard model of genetic inheritance with as-

sortative mating used in Quantitative Genetics (Crow and Felsenstein, 1968). The genetic

factor of the child, zG,kt , depends on the father zG,mt−1 as well as on the mother zG,ft−1 , as in

equation (7). We do not need to impose the condition that is often assumed in quanti-

tative genetics that the “environments” of parents and offspring are independent, since

the latent variable zC,kt captures such shared environment.43 The cultural factor, zC,kt ,

depends on the father’s zC,mt−1 and the mother’s zC,ft−1, as zkt in our baseline model. The

remaining elements are also defined analogously.

We assume assortative mating occurs in both schooling and the cultural factor, but there is

no direct sorting in the genetic factor (i.e., the coefficients of zG,mt−1 in the linear projections

of zG,ft−1 , z
C,f
t−1 and yft−1 on zG,mt−1 , z

C,m
t−1 and ymt−1 are zero).44 However, the spousal correlation

in the genetic factor is not restricted to be zero. While our assumed structure of sorting

is not the same, it shares similarities with recent work in genetics allowing for “secondary

assortment” (Robinson et al., 2017), as we allow for matching in a non-genetic latent factor

that is distinct from the genotype or phenotype.

While the model initially depends on the 15 correlations between the elements of the

43We also allow for a possible correlation between the environments of siblings. In quantitative genetics
it is common to assume that the covariance of the genetic contribution and the environment is zero. In
our case, if we see zC,kt as part of the environment, such covariance does not need to be zero; however, in
our calibration, it turns out to be basically zero. Another difference is that we only consider an “additive”
genetic component and leave out the “dominance” contribution. Thus, we estimate the so-called weak
heritability. The dominance contribution, which is shared by siblings, would be picked up by our variable
x (if of positive magnitude). The model does not allow for non-additive gene-environment interactions, a
restriction shared by most classical heritability statistics (see Feldman and Ramachandran, 2018).

44Rice, Cloninger and Reich (1978) and Cloninger, Rice and Reich (1979) used Wright’s work (Wright,
1921) on path analysis to develop a series of theoretical model very much related to our model here. In
particular, they allow for assortative mating, gender differences and genetic and cultural transmission. As
in our model, these authors assume that assortative mating does not occur directly in genes. Truett et al.
(1994) and Eaves et al. (1999) apply those models on extended twin-family data. The main differences with
our model are that they do not consider both types of assortative mating, do not allow for a direct effect
of parent status on the child status, and most of the correlations involved some type of twin. Moreover,
they study personality and social attitudes instead of socioeconomic outcomes, based on samples that are
much smaller than the ones we consider here.
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Table 5: Calibrated Parameters in Swedish Registers (Education, Two Factor Model)

Panel A : Intergenerational Processes
β m β f σ2zcf σ2zg
0.116 0.100 1.347 0.316
α ym α yf α zf σ2um σ2uf
0.448 0.003

Within-person correlations in y and z:
ρ yzc ρ yzg ρ zczg

male  0.667
female  0.594

Ancestor correlations in y and z:
Father-Son Fr.-Daughter Mother-Son Mother-Daughter

 in zc  0.576
 in zg  0.513

 in zc+zg  0.582
Father-Son Grandfr.-Son GGrandfr.-Son GGGrandfr-Son

 in y  0.379
 in zc+zg  0.582

Panel B : Sibling Processes
σ2xm
0.120

Sibling correlations in zc and zg:
Brothers Sisters Mixed Brothers Sisters Mixed

 in zc  0.754  in zg  0.513
Panel C : Assortative Processes
ρ ymyf ρ ymzcf ρ ymzgf ρ zcmyf ρ zcmzcf ρ zcmzgf ρ zgmyf ρ zgmzcf ρ zgmzgf

0.491 0.514 0.049 0.025
Panel D : Variance Decomposition of y

male  1.0% 14.6% 43.1%
female  1.0% 16.3% 41.5%

0.546

0.340
0.1210.209

0.577 0.659 2.058 2.319

0.527
0.513
0.533 0.507

0.304 0.034
0.304 0.034

0.513
0.585

0.580
0.513

σ2xf σxmxf σ2em

0.099 0.546 0.695

0.898 0.785

10.8% 6.0%
13.8% 7.6%

3.6%
3.5%

Table: Calibrated Parameters in Swedish Registers (Education, Two Factor Model)

α zm

γ m γ f σ2ym σ2yf σ2zcm
0.690 0.587 4.648 4.465 1.753

21.4%
2.6%
3.9%

0.082 0.083

0.173 0.000 0.681 0.729

25.9%

0.199
0.071
0.116

σemef

0.513 0.513

0.652
σ2ef

eyt�1

1

xt

1

cov(ỹt�1, z̃t�1)

�ỹz̃

1

cov(ỹt�1, z̃t�1)

�ỹz̃

�ỹt�1z̃t�1

et

1

cov(ỹt�1, z̃t�1)

�ỹz̃

�ỹt�1z̃t�1

et

⌃ỹ,z̃

⌃ỹ,z̃,x,e

1

cov(ỹt�1, z̃t�1)

�ỹz̃

�ỹt�1z̃t�1

et

⌃ỹ,z̃

⌃ỹ,z̃,x,e

1

cov(ỹt�1, z̃t�1)

�ỹz̃g

�ỹt�1z̃t�1

z̃C
t�1

⌃ỹ,z̃

⌃ỹ,z̃,x,e

1

cov(ỹt�1, z̃t�1)

�ỹz̃g

�ỹt�1z̃t�1

z̃G
t�1

⌃ỹ,z̃

⌃ỹ,z̃,x,e

1

Notes: Panels A and B report parameter estimates and implied ancestor and sibling correlations from calibration
of the extended model with genetic and non-genetic latent factors (zG and zC). The parameters β and σ2

y capture

the direct transmission and variance of y; γ and σ2
zc the transmission and variance of zC ; σ2

zg the variance of zG;

and σ2
x and σ2

e shared sibling influences in y and zC ; see equations (2)-(3) and (7)-(8) for details. Panel C reports
the coefficients from the linear projections (4) and (5) of zk and yk for k = f,m on their spouse’s z and y and the
implied spousal correlations. Panel D decomposes σ2

y into the components explained by the parents’ y (ỹt−1), zC

(z̃Ct−1), zG (z̃Gt−1) and their covariances (σỹz̃), and the sibling components in y (xt) and z (et); Σỹ,z̃ and Σỹ,z̃,x̃,ẽ
are the total percentages explained by the parents and the close family (parental and shared sibling influences),
respectively. Based on the kinship correlations reported in Table 3.

set (zG,mt−1 , z
C,m
t−1 , y

m
t−1, z

G,f
t−1 , z

C,f
t−1, y

f
t−1), we show in Online Appendix D that in steady state,

there are only four free correlations, ρzC,mzC,f , ρzC,myf , ρymzC,f and ρymyf , as the remaining

ones are functions of these four and the other parameters of the model. Then, the two-

factor model has only one more parameter than the benchmark, the variance of the genetic

factor σ2
zG

, which is equal for both genders.

We calibrate this extended model using the 105 correlations of our baseline specification.45

45The fit is very good, which is not surprising, since the fit was already very good for our benchmark
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The estimated parameters are presented in Table 5. The general picture is similar to the

benchmark specification. Indirect transmission through the cultural factor is much more

important than the direct transmission channel. The sibling correlation in the cultural

factor is much bigger than in the observed outcome. Assortative mating takes place mainly

in the cultural factor. Educational attainment is correlated between spouses because it is

correlated with their respective “cultural” latent factor.

The interesting part of this exercise is to asses the relative contribution of the genetic

and non-genetic factors to the variance in years of schooling.46 We find that the cultural

factor explains 38% of the variance of the observed outcome for males and 30% for females

(σ2
zck/σ

2
yk for k = m, f), whereas the "heritability", i.e. the share of the variance explained

by genetic factors, is only 7% (σ2
zg/σ

2
yk). This estimated heritability is slightly below

recent evidence from genome-wide association studies (GWAS) based on direct genetic

information. For instance, Lee and et al. (2018), using a sample of more than a million

individuals, find that polygenic scores explain between 11−13% of the variance in years of

schooling.47 To address a potential upward bias from the correlation of polygenic scores

with environmental factors, researchers use within-family designs that exploit random

variation of actual around the expected genetic relatedness.48 These estimates tend to be

smaller, but much of the relationship between polygenic scores and educational attainment

remains (Papageorge and Thom, 2018).

Estimates from GWA studies are much lower than those found in the behavioral genetics

literature comparing different types of twins or adoptees (Björklund, Lindahl and Plug,

2006), which estimates that genes explain between 30 and 40% of the variance in years of

schooling (Branigan, McCallum and Freese, 2013). This difference between the traditional

twin-based estimates and the more direct evidence from GWA studies is sometimes called

“missing heritability” (see Golan, Lander and Rosset, 2014). Some authors consider that

model. As in the benchmark case, the out-of-sample predictions are also good.
46We measure the outcomes for biological parents, irrespectively of divorce or other changes in family

structure. Our estimates therefore quantify the genetic and non-genetic influences of biological parents
and might miss additional non-genetic contribution of non-biological parents.

47Applied to the Health and Retirement Study, the same polygenic score explains between 4.5 − 9.7%
of the variance in schooling (Papageorge and Thom, 2018). The predictive power of PGS increases with
sample size, but Cesarini and Visscher (2017) argue that recent studies based on millions of observations
(such as Lee and et al., 2018) come close to the theoretical upper bound of the approach.

48Estimates from GWA studies capture only additive effects of certain single-nucleotide polymorphisms,
and might therefore represent a lower bound of the genetic contribution (Selzam et al. 2017). On the
other hand, they may be biased upward by the correlation of polygenic scores with environmental factors
(Domingue et al., 2018). The distinction between environmental and genetic factors may not be sharp. For
example, environmental factors may itself be partly determined by the genetic endowments of the parents
(“genetic nurture”, Kong et al. 2018).
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those high values are a consequence of the variance analysis used and the lack of a correct

recognition of a non-genetic transmission of many cultural traits in twin studies.49 Thus,

Feldman and Ramachandran (2018) claim that the results obtained from twins studies are

not the standards relative to which other variance analyses should be compared.

In particular, the twin approach is sensitive to assumptions on the degree of assortative

mating, which cannot be well estimated in traditional data with only close kins. Ruby

et al. (2018) illustrate this point by using large-scale ancestry information from the Ances-

try.com repository to estimate the heritability of human longevity. While their estimates

based on close genetic relatives agree with the prior literature, estimates based on more

distant relatives suggest that assortative mating in longevity is much stronger, and its

heritability therefore much weaker. By linking distant kins in administrative data, we can

gain similar insights for socioeconomic outcomes that are of more direct interest in the

social sciences. It is also interesting that we find a close to zero correlation between the

latent genetic and cultural factors (ρzCzG = 0.03). If we see the cultural factor as part of

the socioeconomic environment provided by parents, our findings are in accordance with

Papageorge and Thom (2018), who show that the relationship between polygenic scores

and the socioeconomic status of the family is also very small. Another interesting result is

the low degree of assortative mating in the genetic factor that we find, ρzG,mzG,f = 0.025,

which is also consistent with estimates from recent GWA studies, like Robinson et al.

(2017) who find a degree of genetic assortment between 0% and 6% or Domingue et al.

(2014) whose estimates vary between 2% and 4.5%.

Splitting the unobservable factor into genetic and non-genetic components has no con-

sequences for the implied long-run correlations. The correlations with grandparents,

great-grand-parents and great-great-grandparents in education or the total latent factor

(zkt = zG,kt + zC,kt ) are nearly identical to those obtained from the benchmark model. This

observation relates to the argument that distant vertical correlations are not informative

about the relative contribution of genetic and non-genetic pathways to status persistence

– their transmission patterns are statistically too similar to be distinguishable from a

vertical perspective alone. Instead, they are very distinct in the horizontal dimension.

49Twin studies are subject to a number of conceptual issues, including that (i) gene-environment inter-
actions are not captured by the linear model used, (ii) the overall effect of genes may not add up linearly
(e.g., dominance of alleles or epistasis, dominance of genes), (iii) the environment may be different for
twins or adoptees than for other sibling types (Goldberger, 1979), and (iv) there might be less variability
in the phenotype among families with twins or adoptees.
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6 Conclusions

We have proposed a new approach to estimate intergenerational mobility and assortative

mating. While sharing conceptual similarities with prior work on the correlation between

relatives in quantitative genetics and economics (e.g., Behrman and Taubman, 1989), it

deviates in two key aspects. First, our primary interest is in the overall extent to which

advantages are transmitted from one generation to the next, less in the nature-nurture de-

bate at the heart of prior work. We thus do not need to deal with the complicated relation

between genes and environment (Goldberger, 1979), and instead capture both. Second,

we exploit administrative registers to chain-link “horizontal” relatives, such as distant

siblings-in-law. This horizontal approach has many advantages compared to the conven-

tional “vertical” approach. It does not require the observation of distant ancestors, and

socioeconomic outcomes can be measured within a single data source, at approximately the

same age and time. Most importantly, the horizontal yields many more kinship moments

than the vertical approach.

Consequently, we can characterize the transmission of socioeconomic inequalities in more

detail than what has been possible previously. In particular, we account for latent path-

ways in each of the intergenerational, sibling and assortative components of the trans-

mission process, motivated by recent multigenerational studies (e.g., Clark 2014, Lindahl

et al. 2015). We find strong persistence not only in the intergenerational, but also in

the sibling and assortative processes. Conventional measures based on observable charac-

teristics greatly understate the extent to which latent advantages correlate between kins.

For example, sibling correlations (known to be a comparatively comprehensive measure

of family background; Jäntti and Jenkins, 2014), still understate – by about 50% – the

similarity of siblings in latent advantages that determine the socioeconomic prospects of

their descendants.

Most striking is the degree of assortative matching that our data imply. Combined with

large-scale administrative data, our approach allows us to track distant siblings-in-law.

Because they are separated by many spousal links, it becomes quite apparent if a model

cannot fit the assortative process in latent or observable characteristics. Our data suggests

an extremely high degree of assortative matching, even in a country as egalitarian as

Sweden, with the spousal correlation in latent advantages estimated to be around 0.75 –

implying far greater sorting between spouses than indicated by previous studies.
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The observation of both consanguine (“blood”) and distant affine (“in-law”) relatives

allowed us to also contribute to the nature vs. nurture debate, distinguishing the role

of genetic and non-genetic mechanisms in the second part of our paper. We show that

a standard genetic model cannot fit the kinship pattern in educational advantages. The

observation of a large set of kinship moments is key for this conclusion. The genetic model

appears to explain the transmission process well when considering a small set of vertical

moments, but fails to explain the remarkable similarity of distant siblings-in-law.

Genetic and non-genetic pathways are difficult to distinguish because they can generate a

similar statistical pattern in the intergenerational dimension. In contrast, their assortative

pattern turns out to be very distinct. The horizontal approach can, therefore, be used

to decompose genetic from non-genetic mechanisms. Calibrating an extended two-factor

model, we show that genetic and non-genetic latent factors are transmitted at a similar

rate, with about 7% of the variation in years of schooling being explained by variation

in latent genetic factors. However, the similarity of spouses is nearly exclusively due to

non-genetic factors. Remarkably, our estimates of the heritability of education are in line

with recent findings from behavioral genetics, even though our approach is very different.

Our study illustrates the potential of linking horizontal kins in administrative registers.

However, our implementation is subject to some limitations. One problem for the estima-

tion of distributional models is that the moments may not be in a steady-state equilibrium

(Atkinson and Jenkins 1984). Because horizontal kins can be observed at a similar time,

our approach is arguably less sensitive to this issue than a vertical approach based on

distant ancestors. Still, consideration of the off-steady state dynamics would be useful.

Another limitation is that we do not model fertility. Again this is standard in the litera-

ture, but it might be a concern here because the existence of a sibling-in-law depends on

the existence of a sibling – skewing the sample towards larger families with lower socioe-

conomic status. This bias appears small in our setting, but an explicit consideration of

fertility could be fruitful for future work. Finally, one might ask whether non-linearities

in the transmission process, such as heterogeneity across families (Bingley and Cappellari,

2019), might contribute to the correlation pattern between distant kins.

The aggregate statistics and program codes underlying this article are available in Zenodo,

at https://doi.org/10.5281/zenodo.6840611.
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Neidhöfer, Guido, and Maximilian Stockhausen. 2019. “Dynastic Inequality Com-

pared: Multigenerational Mobility in the United States, the United Kingdom, and Ger-

many.” Review of Income and Wealth, 65(2): 383–414.

Nybom, Martin, and Jan Stuhler. 2017. “Biases in Standard Measures of Intergen-

erational Income Dependence.” Journal of Human Resources, 52(3): 800–825.

Okbay, Aysu, and et al. 2016. “Genome-wide Association Study Identifies 74 Loci

Associated with Educational Attainment.” Nature, 533: 539 EP –.

Papageorge, Nicholas W, and Kevin Thom. 2018. “Genes, Education, and Labor

Market Outcomes: Evidence from the Health and Retirement Study.” NBER.

Raaum, O., B. Bratsberg, K. Røed, E. Österbacka, T.V. Eriksson, M. Jäntti,
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A The General Model

We assume that the value of the outcome y for an individual from generation t is given by

ykt = βkỹkt−1 + zkt + xkt + ukt (A.1)

where the superscript k = m stands for males and k = f for females. We assume that

ỹkt−1 = αkyy
m
t−1 + (1− αky)yft−1

and the socioeconomic status of the child, zkt , depends on the father zmt−1 as well as on the mother zft−1

zkt = γkz̃kt−1 + ekt + vkt

z̃kt−1 = αkzz
m
t−1 + (1− αkz)zft−1

(A.2)

Regarding the shocks, we assume that xkt and ekt are shared by all siblings of the same gender, can be

correlated across siblings of different gender and are uncorrelated to each other and with the other variables

(in particular with zkt−1 and ylt−1, l = m, f). Finally ukt and vkt are white-noise errors.

We assume throughout the appendix that the economy is in the steady state, and therefore all the parameters

and the moments of all the variables are time invariant. We provide more detailed versions of the following

derivations in a document titled “Additional Derivations”, which is available on the authors’ webpages (or

upon request).

A.1 Assortative mating process

We assume there is assortative mating both in years of schooling and in socioeconomic status (see Behrman

and Rosenzweig, 2002, for a related model with assortative mating in two dimensions). In particular we

consider the linear projections of zft−1 and yft−1 on zmt−1 and ymt−1:

zft−1 = rmzzz
m
t−1 + rmzyy

m
t−1 + wmt−1

yft−1 = rmyzz
m
t−1 + rmyyy

m
t−1 + εmt−1

where wmt−1 and εmt−1 might be correlated but are uncorrelated with zmt−1 and ymt−1.

The coefficients of the linear projections depend on the correlations ρzmym , ρzmzf , ρzmyf , ρymzf and ρymyf ,

as well as on the standard deviations of zkt−1 and ykt−1, k = m, f :

rmzz =
1

(1− ρ2zmym)

σzf

σzm
(ρzmzf − ρzmymρymzf )

rmzy =
1

(1− ρ2zmym)

σzf

σym
(ρymzf − ρzmymρzmzf )

1



rmyz =
1

(1− ρ2zmym)

σyf

σzm
(ρzmyf − ρzmymρymyf )

rmyy =
1

(1− ρ2zmym)

σyf

σym
(ρymyf − ρzmymρzmyf )

We use these matching functions to write years of schooling, ykt , and social status, zkt , as a function of father’s

years of schooling, ymt−1, and social status zmt−1. We can write (A.2) as

zkt = Gkzmz
m
t−1 +Gkymy

m
t−1 + gkmω

m
t−1 + ekt + vkt

where

Gkzm = γk(αkz + (1− αkz)rmzz)

Gkym = γk(1− αkz)rmzy

gkm = γk(1− αkz)

and (A.1) as

ykt = Bkymy
m
t−1 +Bkzmz

m
t−1 + bkmε

m
t−1 + gkmω

m
t−1 + ekt + vkt + xkt + ukt

where

Bkym = βk
(
αky + (1− αky)rmyy

)
+Gkym

Bkzm = βk(1− αky)rmyz +Gkzm

bkm = βk(1− αky)

All these expressions will be used to compute correlations between relatives that are related through their

fathers. However, when we consider relatives that are related through their mothers, we need to find ex-

pressions for ykt and zkt as functions of mother’s years of schooling, yft−1, and social status zft−1. These

expressions are provided in a document titled “Additional Derivations” available on the authors’ webpages

(or upon request).

A.2 Steady state assumption

As mentioned above, we assume that the second order moments of all variables are time invariant. This

steady state assumption implies that ρzmym and ρzfyf depend on the remaining parameters of the model

trough the following equations:

(1− βmαmy γmαmz )ρzmym − βm(1− αmy )γm(1− αmz )
σzf

σzm

σyf

σym
ρzfyf

=
σzm

σym
+ βmαmy γ

m(1− αmz )
σzf

σzm
ρymzf + βm(1− αmy )γmαmz

σyf

σym
ρzmyf

2



−βf (1− αfy)γf (1− αfz )
σzm

σzf

σym

σyf
ρzmym + (1− βfαfyγfαfz )ρzfyf

=
σzf

σyf
+ βfαfyγ

f (1− αfz )
σzm

σzf
ρzmyf + βf (1− αfy)γfαfz

σym

σyf
ρymzf

We then have that the model has 20 parameters γk, βk, αkz , α
k
y , σ

2
zk , σ

2
xk , σ

2
ek , k = m, f , and σxmxf , σemef ,

ρzmzf , ρymzf , ρzmyf and ρymyf .

A.3 Covariances

A.3.1 Main covariances

We use the notation in Figure 1 to denote individuals with different degrees of kinship. We first compute

the main covariances (husband-wife, parent-child and siblings). Then, the covariances for other relatives are

obtained recursively.

Husband and wife a− a′

We have to compute the covariance between "a" and "a′". Let n = m, f be the gender of a and n′ = m, f

the gender of the a′.

Cov(ya,nt−1, y
a′,n′

t−1 ) = σymσyf ρymyf

Parent–child aa− a′

We have to compute the covariances between "aa" and "a′". Let n′ = m, f be the gender of a′ and n∗ = m, f

the gender of the aa. We project aa on a′ (his/her father or mother) who has gender n′

Cov(yaa,n
∗

t , ya
′,n′

t−1 ) = Bn
∗

yn′σ
2
yn′ +Bn

∗
zn′σzn′σyn′ρzn′yn′

Siblings a′ − b

We have to compute the covariances between "a′" and "b". Let n′ = m, f be the gender of a′ and l = m, f

the gender of the b. We project a′ and b on their father or mother GP2 who has gender k

Cov(y
a′,n′

t−1 , y
b,l
t−1)= Bn

′
ykB

l
ykσ

2
yk+Bn

′
zkB

l
zkσ

2
zk+

(
Bn
′

ykB
l
zk+Bn

′
zkB

l
yk

)
σzn′σyn′ρzn′yn′+g

n′
k g

l
kσ

2
wk+bn

′

k b
l
kσ

2
εk+σen′el

+
(
bn
′
k g

l
k+gn

′
k b

l
k

)
Cov(ε

n′

t−1, ω
n′
t−1)+σxn′xl

A.3.2 Other covariances

Before we obtain the remaining covariances for different degrees of kinship we compute the linear projections

of za
′,n′

t−1 and ya
′,n′

t−1 on zb,lt−1 and yb,lt−1, n′, l = m, f, where a′ and b are siblings

za
′,n′

t−1 = rn
′,l
zz z

b,l
t−1 + rn

′,l
zy y

b,l
t−1 + wb,lt−1

ya
′,n′

t−1 = rn
′,l
yz z

b,l
t−1 + rn

′,l
yy y

b,l
t−1 + εb,lt−1

3



where wb,lt−1 and εb,lt−1 might be correlated but are uncorrelated with zb,lt−1 and yb,lt−1 and

rn
′,l
zz =

1

σ2
zl
σ2
yl
− σ2

zlyl

(
σ2
ylσza′,n′zb,l − σzlylσza′,n′yb,l

)

rn
′,l
zy =

1

σ2
zl
σ2
yl
− σ2

zlyl

(
σ2
zlσza′,n′yb,l − σzlylσza′,n′zb,l

)

rn
′,l
yz =

1

σ2
zl
σ2
yl
− σ2

zlyl

(
σ2
ylσya′,n′zb,l − σzlylσya′,n′yb,l

)

rn
′,l
yy =

1

σ2
zl
σ2
yl
− σ2

zlyl

(
σ2
zlσya′,n′yb,l − σzlylσya′,n′zb,l

)

Notice that error terms, wb,lt−1 and εb,lt−1, are likely to be correlated with the latent factor and the outcome of

a, the spouse of a′, and also with error terms of the linear projections of a′ on a. However, since we use these

linear projections to find the correlation with in-law relatives of b, what is relevant is whether wb,lt−1 and εb,lt−1

are correlated with zb
′,l
t−1 and yb

′,l
t−1, where b′ is the spouse of b. Since these error terms are not correlated with

zb,lt−1 and yb,lt−1, and we are assuming that the assortative mating is in z and y, they are not correlated with

zb
′,l
t−1 and yb

′,l
t−1 either.

Consanguine relatives ("blood")

Vertical covariances

Uncle/aunt (siblings of the parents) aa− b

We have to compute the covariances between "aa" and "b". Let n∗ = m, f be the gender of aa and l = m, f

the gender of the b. We project aa on a′ (his/her father or mother) who has gender n′

Cov(yaa,n
∗

t , yb,lt−1) = Bn
∗
′ Cov(za

′,n′

t−1 , y
b,l
t−1) +Bn

∗
yn′Cov(ya

′,n′

t−1 , y
b,l
t−1)

where a′ and b are siblings.

Horizontal covariances

Cousins aa− bb

We have to compute the covariances between "aa" and "bb". Let n∗ = m, f be the gender of aa and l∗ = m, f

the gender of the bb. We project bb on b (his/her father or mother) who has gender l

Cov(yaa,n
∗

t , ybb,l
∗

t ) = Bl
∗
zlCov(yaa,n

∗

t , zb,lt−1) +Bl
∗
ylCov(yaa,n

∗

t , yb,lt−1)

where b is the uncle/aunt of aa.

Affinity relatives ("in-law")

Vertical covariances

4



Spouse of the uncle/aunt (spouses of the siblings of the parents) aa− b′

We have to compute the covariances between "aa" and "b′". Let n∗ = m, f be the gender of aa and l′ = m, f

the gender of the b′. We project b′ on his/her spouse b who has gender l

Cov(yaa,n
∗

t , yb
′,l′

t−1 ) = rlyzCov(yaa,n
∗

t , zb,lt−1) + rlyyCov(yaa,n
∗

t , yb,lt−1)

where b is uncle/aunt of aa.

Siblings of the siblings in law of the parents aa− c

We have to compute the covariances between "aa" and "c". Let n∗ = m, f be the gender of aa and o = m, f

the gender of the c. We project c on his/her sibling b′ who has gender l′

Cov(yaa,n
∗

t , yc,ot−1) = ro,l
′

yz Cov(yaa,n
∗

t , zb
′,l′

t−1 ) + ro,l
′

yy Cov(yaa,n
∗

t , yb
′,l′

t−1 )

where b′ is the spouse of the uncle/aunt of aa. We can recursively compute the covariances for the spouses

of the siblings in law of the parents and the siblings of the siblings in law of the parents of any degree.

Horizontal covariances

Siblings in law a− b

We have to compute the covariances between "a" and "b". Let n = m, f be the gender of a and l = m, f the

gender of the b. We project a on his/her spouse a′ who has gender n′

Cov(ya,nt−1, y
b,l
t−1) = rn

′
yzCov(za

′,n′

t−1 , y
b,l
t−1) + rn

′
yyCov(ya

′,n′

t−1 , y
b,l
t−1)

where a′ and b are siblings.

Spouse of the siblings in law a− b′

We have to compute the covariances between "a" and "b′". Let n = m, f be the gender of a and l′ = m, f

the gender of the b′. We project b′ on his/her spouse b who has gender l

Cov(ya,nt−1, y
b′,l′

t−1 ) = rlyzCov(ya,nt−1, z
b,l
t−1) + rlyyCov(ya,nt−1, y

b,l
t−1)

where a and b are siblings in law.

Sibling of the sibling in law a′ − c

We have to compute the covariances between "a′" and "c". Let n′ = m, f be the gender of a′ and o = m, f

the gender of the c. We project a′ on his/her sibling b who has gender l

Cov(ya
′,n′

t−1 , y
c,o
t−1) = rn

′,l
yz Cov(zb,lt−1, y

c,o
t−1) + rn

′,l
yy Cov(yb,lt−1, y

c,o
t−1)

where b and c are siblings in law. We can recursively compute the covariances for siblings in law, spouses of

the siblings in law and siblings of the siblings in law of any degree.

5



Cousins in law aa− cc

We have to compute the covariances between "aa" and "cc". Let n∗ = m, f be the gender of aa and o∗ = m, f

the gender of the cc. We project cc on c (his/her father or mother) who has gender o

Cov(yaa,n
∗

t , ycc,o
∗

t ) = Bo
∗
zoCov(yaa,n

∗

t , zc,ot−1) +Bo
∗
yoCov(yaa,n

∗

t , yc,ot−1)

where c is the sibling of the sibling in law of the father/mother of aa. We can recursively compute the

covariances for cousins in law of any degree.

B No Direct Effect and Assortative Mating Only in z

We next consider a latent factor model with no direct effect (β = 0) and assortative mating only in z (i.e. we

assume that the coefficients of ymt−1 in the linear projections of zft−1 and yft−1 on zmt−1 and ymt−1 are zero). This

model is less general than the previous one but it has the advantage that we can show how the parameters

are identified. Imposing these restrictions in the General Model, we find that outcome ykt and the latent

factor zkt for an individual from generation t can be written as

ykt = Gkzmz
m
t−1 + gkmω

m
t−1 + ekt + xkt + vkt + ukt

zkt = Gkzmz
m
t−1 + gkmω

m
t−1 + ekt + vkt

where

Gkzm = γk(αkz + (1− αkz)
σzf

σzm
ρzmzf )

gkm = γk(1− αkz)

All these expressions will be used to compute correlations between relatives that are related through their

fathers. However, when we consider relatives that are related through their mothers, we need to find expres-

sions for ykt and zkt as functions of mother’s years of schooling, yft−1, and social status zft−1. These expressions,

together with a detailed derivation of all the formulas in this appendix, are provided in a document titled

“Additional Derivations”, which is available on the authors’ webpages (or upon request).

B.1 Correlations

We now impose the restrictions derived from this model to the formulas for the covariances that we derive in

Online Appendix A and compute the correlations for different degrees of kinship. We denote the correlations

by ρi,n−j,l, where i and j denote the corresponding relatives, and n and l are the genders of i and j respectively
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Husband and wife a− a′

ρa−a′ =
σzf

σyf

σzm

σym
ρzfzm

Parent–child aa− a′

ρaa,n∗−a′,n′ = Gn
∗
zn′

σzn∗

σyn∗

σzn′

σyn′

Grandparent–child aaa− a′

ρaaa,n∗∗−a′,n′ = Gn
∗∗
zn′ ρaa,n∗−a′,n′

Siblings a′ − b

ρa′,n′−b,l = Gn
′
zkG

l
zk

σzk

σyn′

σzk

σyl
+ gn

′
k g

l
k

σwk

σyn′

σwk

σyl
+

σen′el

σyn′σyl
+

σxn′xl

σyn′σyl

Uncle/aunt (siblings of the parents) aa− b

ρaa,n∗−b,l = Gn
∗
zn′

σyn′

σyn∗

(
Gn
′
zkG

l
zk

σzk

σyn′

σzk

σyl
+ gn

′
k g

l
k

σwk

σyn′

σwk

σyl
+

σen′el

σyn′σyl

)

Cousins aa− bb

ρaa,n∗−b,l∗ = Gl
∗
zl

σyl

σyl∗
ρaa,n∗−b,l

Spouse of the uncle/aunt (spouses of the siblings of the parents) aa− b’

ρaa,n∗−b′,l′ =
σzl′

σzl
ρzmzf

σyl

σ
yl
′
ρaa,n∗−b,l

Siblings in law a− b or a′ − b′

ρa,n−b,l =
σzn

σzn′
ρzmzf

σyn′

σyn

(
Gn
′
zkG

l
zk

σzk

σyn′

σzk

σyl
+ gn

′
k g

l
k

σwk

σyn′

σwk

σyl
+

σen′el

σyn′σyl

)

ρa′,n′−b′,l′ =
σzl′

σzl
ρzmzf

σyl

σyl′

(
Gn
′
zkG

l
zk

σzk

σyn′

σzk

σyl
+ gn

′
k g

l
k

σwk

σyn′

σwk

σyl
+

σen′el

σyn′σyl

)

Spouse of the siblings in law a− b′

ρa,n−b′,l′ =
σzl′

σzl
ρzmzf

σyl

σyl′
ρa,n−b,l

B.2 Identification

Our baseline model cannot be solved analytically, that is we cannot write the parameters of the model as

functions of the correlations between different types of relatives. However, to provide some intuition about

how the parameters are identified, we show identification in this restricted model with no direct effect (β = 0)
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and assortative mating occurring only in the latent factor z (i.e. we assume that the coefficients of ymt−1 in

the linear projections of zft−1 and yft−1 on zmt−1 and ymt−1 are zero).

Assortative process. First, note that the ratio of the spouse of the sibling in law to the sibling in law (or the

ratio of the uncle in law to the uncle) identifies

ρa,n−b′,l′

ρa,n−b,l
=
ρaa,n∗−b′,l′

ρaa,n∗−b,l
= ρzmzf

σzl′/σyl′

σzl/σyl
(B.1)

Moreover, σym and σyf are observable. Notice that the ratio on the left-hand side corresponds to an instru-

mental variable regression in which the outcome of the spouse b in the spousal regression b′−b is instrumented

with the outcome of the spouse’s sibling in law a (or the spouse’s nephew or niece aa). This IV regression

effectively swaps the correlations in equation (B.1) for covariances and therefore identifies ρzmzf
σ
zl
′

σ
zl

. Then,

if there are no gender asymmetries in the variances, that is, if σyf = σym and σzf = σzm , the IV regression

estimates the assortative parameter ρzmzf .

The IV approach therefore needs to be based on sufficiently distant in-laws. In particular, notice that the

ratio of sibling in law to sibling does not identify the assortative parameter, i.e. the spouse’s sibling a′ is not

a valid instrument for the spouse b in the spousal regression b− b′. The reason is that the sibling component

xt is shared by siblings but not by spouses or other in-laws. For the identification of the assortative process,

we therefore need to “break” the sibling link by comparing kinship moments that are sufficiently distant.

In the general model with potential gender asymmetries, we can use the product of the ratios of the corre-

lations with the brother in law and his wife (l = m and l′ = f) and with the sister in law and his husband

(l = f and l′ = m) to identify the assortative mating parameter, ρzmzf ,

ρa,n−b′,f
ρa,n−b,m

ρa,n−b′,m
ρa,n−b,f

= ρ2zmzf

The assortative mating parameter can also be identified from the product of the ratios of the correlations

with uncle and his wife (l = m and l′ = f) and aunt and his husband (l = f and l′ = m). In contrast,

standardizing the outcome variable by gender would not fully abstract from gender asymmetries. As is clear

from equation (B.1), the estimates would be still biased by the gender difference in the variance share of the

latent variable,
σ
zl
′ /σ

yl′

σ
zl
/σ

yl
.

Intergenerational process (considering extended kins in the parent generation). Next, we can identify the

reduced-form intergenerational transmission parameters, Gn
∗
zn′ , n

′, n∗ = m, f , from the ratio of the spouse of

the uncle to the sibling in law,
ρaa,n∗−b′,l′

ρa′,n′−b′,l′
= Gn

∗
zn′

σyn′

σyn∗

Notice that this ratio corresponds to the instrumental variable regression in which the outcome of the parent

a′ in the parent-child regression aa− a′ is instrumented with the outcome of the parent’s sibling in law b′ (or

the parent’s own parent, see below).

As for the assortative process, researchers need to consider sufficiently distant relatives in order to abstract
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from sibling links and to isolate the intergenerational process. In particular, notice that we cannot use the

ratio of uncle to siblings to identify the intergenerational parameters because x is shared by siblings but is

not transmitted to their descendants. Accordingly, the corresponding IV approach in which the outcome of

the parent a′ is instrumented with the parent’s sibling b (i.e., the child’s aunt or uncle) is biased.

Intergenerational process (considering grandparents). Alternatively, one can identify the strength of the

intergenerational process from multigenerational data across three generations (as in Lindahl et al., 2015,

or Braun and Stuhler, 2018). In our simplified model, the ratio between the grandparent-child and the

parent-child correlations identifies
ρaaa,n∗∗−a′,n′

ρaa,n∗−a′,n′
= Gn

∗∗
zn′ ,

The reduced-form intergenerational transmission parameter Gn
∗∗
zn′ depends in turn on the strength of the

intergenerational transmission γk, the assortative parameter ρzmzf , and gender-specific weights. The corre-

sponding IV approach of using the outcome of the grandparent a′ as an instrument for the parent aa in the

parent-child regression aaa−aa swaps these correlations with covariances, and therefore identifies Gn
∗∗
zn′

σyn∗∗
σyn∗ .

Once the Gn
∗
zn′ , n

′, n∗ = m, f are identified, we can identify the share of the variances of yf and ym explained

by the latent factor,
σ2

zn
′

σ2

yn′
, n′ = m, f from the parent child correlations

σ2
zn′

σ2
yn

=
ρaa,n∗−a′,n′

Gn
′
zn′

Next, using the definition of Gn
∗
zn′ for different gender combinations, we have that

γkαkz =
Gkzm −Gkzf

σ
zf

σzm
ρzmzf

1− ρ2
zmzf

γk = Gkzf − γkαkz
(
σzm

σzf
ρzmzf − 1

)

and we can identify γk and αkz , k = m, f. If there are no gender asymmetries, that is if γf = γm = γ,

αf = αm = 1
2 , σyf = σym and σzf = σzm , the reduced form intergenerational transmission parameters are

all equal to γ
2 (1 + ρzmzf ) and we can identify the pure intergenerational transmission parameter, γ, by

γ =
2
ρaa−b′
ρa′−b′

1 +
ρa−b′
ρa−b

=
2ρaa−b′

ρa−b + ρa−b′

Next, using the eight uncles correlations for different gender combinations (n∗, l, k = m, f)

ρaa,n∗−b,l = Gn
∗
zn′

σyn′

σyn∗

(
Gn
′
zkG

l
zk

σzk

σyn′

σzk

σyl
+ gn

′
k g

l
k

σwk

σyn′

σwk

σyl
+

σen′el

σyn′σyl

)

we can identify σ2
en′
, n′ = m, f and σemef . Finally from the three siblings correlations for different gender
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combinations

ρa′,n′−b,l = Gn
′
zkG

l
zk

σzk

σyn′

σzk

σyl
+ gn

′
k g

l
k

σwk

σyn′

σwk

σyl
+

σen′el

σyn′σyl
+

σxn′xl

σyn′σyl

we can identify σ2
xn′ , n

′ = m, f and σxmxf .

C The Genetic Model

The genetic model is nested in our general model by imposing the following restrictions:

• There is no a direct effect of parents outcome on children outcome (βk = 0, k = f,m), and hence

ykt = zkt + xkt + ukt

Then Cov(ykt , z
k
t ) = σ2

z and ρzkyk = σz/σyk .

• The latent factor is genetic and therefore it is transmitted from parents to children as

zkt =
zmt−1 + zft−1

2
+ vkt

where vkt is uncorrelated across relatives and to zmt−1 and zft−1 (γk = 1 and σ2
ek

= 0, k = f,m).

• The share of the variance explained by the latent factor is equal across genders (σ2
zk = σ2

z , k = f,m)

• There is assortative mating only in the observed outcome y (ρzmyf , ρymzf and ρzmzf are functions of

ρymyf and some of the other parameters of the model).

The genetic model has only 5 parameters: σ2
z , σ

2
xm , σ2

xf , σxmxf , ρymyf .

C.1 Assortative mating process

Under the assumption of assortative mating only in y, the coefficients of the linear projections of zft−1 and

yft−1 on zmt−1 and ymt−1 and zmt−1 and ymt−1 on zft−1 and yft−1are

rmzz = rmyz = rfzz = rfyz = 0

rmzy = rfzy =
σz
σym

ρymzf =
σ2
z

σyfσym
ρymyf

rmyy =
σyf

σym
ρymyf

rfzy =
σz
σyf

ρzmyf
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We can write zkt and ykt as a function of the father

zkt = Gkzmz
m
t−1 +Gkymy

m
t−1 + gkmω

m
t−1 + vkt

where

Gkzm =
1

2
, Gkym =

1

2

σ2
z

σymσyf
ρymyf , gkm =

1

2

and

ykt = Gkymy
m
t−1 +Gkzmz

m
t−1 + gkmω

m
t−1 + vkt + xkt + ukt

These expressions will be used to compute correlations between relatives that are related through their fathers.

However, when we consider relatives that are related through their mothers, we need to find expressions for

ykt and zkt as functions of mother’s years of schooling, yft−1, and social status zft−1. These expressions are

provided in a document titled “Additional Derivations” available on the authors’ webpages (or upon request).

C.2 Covariances

C.2.1 Main covariances

We use the notation in Figure 1 to denote individuals with different degrees of kinship. We first compute

the main covariances (husband-wife, parent-child and siblings). Then, the covariances for other relatives are

obtained recursively.

Husband and wife a− a′

We have to compute the covariance between "a" and "a′". Let n′ = m, f be the gender of a′ and n = m, f

the gender of the a.

Cov(ya,nt−1, y
a′,n′

t−1 ) = σymσyf ρymyf

Parent–child aa− a′

We have to compute the covariance between "aa" and "a′". Let n′ = m, f be the gender of a′ and n∗ = m, f

the gender of the aa. We project aa on a′ (his/her father or mother) who has gender n′ and we denote by n

the gender of the spouse of a′

Cov(yaa,n
∗

t , ya
′,n′

t−1 ) =
1

2

(
σyn′

σyn
ρymyf + 1

)
σ2
zn′

Siblings a′ − b

We have to compute the covariance between "a′" and "b". Let n′ = m, f be the gender of a′ and l = m, f

the gender of the b. We project a′ and b on their father (or mother) GP2 who has gender k, and we denote
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by k′ the gender of the mother (or the father)

Cov(ya
′,n′

t−1 , y
b,l
t−1) =

1

2

(
σ2
z

σymσyf
ρymyf + 1

)
σ2
z + σxmxf

C.2.2 Other covariances

Vertical covariances

Uncle/aunt (siblings of the parents) aa− b

We have to compute the covariances between "aa" and "b". Let n∗ = m, f be the gender of aa and l = m, f

the gender of the b. We project aa on a′ (his/her father or mother) who has gender n′

Cov(yaa,n
∗

t , yb,lt−1) =
1

4

(
σ2
z

σymσyf
ρymyf + 1

)2

σ2
z +

1

2

σ2
z

σymσyf
ρymyfσxmxf

where a′ and b are siblings.

Horizontal covariances

Cousins aa− bb

We have to compute the covariances between "aa" and "bb". Let n∗ = m, f be the gender of aa and l∗ = m, f

the gender of the ay. We project bb on b (his/her father or mother) who has gender l

Cov(yaa,n
∗

t , ybb,l
∗

t ) =
1

8

(
σ2
z

σymσyf
ρymyf + 1

)3

σ2
z +

1

4

(
σ2
z

σymσyf
ρymyf

)2

σxmxf

where b is the uncle/aunt of aa.

We provide the derivations for distant consanguine and affine covariances in a document titled “Additional

Derivations”, which is available on the authors’ webpages (or upon request).

D The General Model with Two Unobservable Factors

We assume that the value of the output y for an individual from generation t is given by

ykt = βkỹkt−1 + zG,kt + zC,kt + xkt + ukt (D.1)

where the superscript k stands for males (k = m) and for females (k = f). We assume that

ỹkt−1 = αkyy
m
t−1 + (1− αky)yft−1
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zG,kt and zC,kt are two unobservable factors. The genetic factor of the child, zG,kt , depends on the father zG,mt−1

as well as on the mother zG,ft−1

zG,kt =
zG,mt−1 + zG,ft−1

2
+ vG,kt (D.2)

The cultural factor of the child, zC,kt , also depends on the father zC,mt−1 as well as on the mother zC,ft−1

zC,kt = γkz̃kt−1 + eC,kt + vC,kt

z̃kt−1 = αkzz
C,m
t−1 + (1− αkz)zC,ft−1

(D.3)

Regarding the shocks in model (D.1), we assume that xkt , and eC,kt are shared by all siblings of the same

gender, can be correlated across siblings of different gender and are uncorrelated with the other variables (in

particular with zG,kt , zC,kt and yt−1). Finally ukt , v
G,k
t and vC,kt are individual’s white-noise error terms.

D.1 Assortative mating process

We assume there is assortative mating both in years of schooling and in the cultural factor. In particular we

consider the linear projections of zG,ft−1 , z
C,f
t−1 and yft−1 on zG,mt−1 , z

C,m
t−1 and ymt−1:

zG,ft−1 = rmzGzG zG,mt−1 + rmzGzC zC,mt−1 + rmzGy y
m
t−1 + wG,mt−1

zC,ft−1 = rmzCzG zG,mt−1 + rmzCzC zC,mt−1 + rmzCy y
m
t−1 + wC,mt−1

yft−1 = rmyzG zG,mt−1 + rmyzC zC,mt−1 + rmyy y
m
t−1 + εmt−1

The coefficients of the linear projections depend on 15 correlations, ρzG,mzC,m , ρzG,mym , ρzC,mym , ρzG,fzC,f ,

ρzG,fyf , ρzC,fyf , ρzG,mzG,f , ρzG,mzC,f , ρzG,my,f , ρzC,mzG,f , ρzC,mzC,f , ρzC,my,f , ρymzG,f , ρymzC,f and ρymyf , as

well as on the standard deviations of zG,kt−1, zC,kt−1 and ykt−1, k = m, f . However, since we assume there is no

assortative mating in the genetic factor, we have that rmzGzG = rmzCzG = rmyzG = 0, which implies

ρzG,mzG,f =

(
ρzG,mymρzC,mym − ρzG,mzC,m

)
ρzC,mzG,f +

(
ρzG,mzC,mρzC,mym − ρzG,mym

)
ρymzG,f

ρ2
zC,mym

− 1
(D.4)

ρzG,mzC,f =

(
ρzG,mymρzC,mym − ρzG,mzC,m

)
ρzC,mzC,f +

(
ρzG,mzC,mρzC,mym − ρzG,mym

)
ρymzC,f

ρ2
zC,mym

− 1

ρzG,myf =

(
ρzG,mymρzC,mym − ρzG,mzC,m

)
ρzC,myf +

(
ρzG,mzC,mρzC,mym − ρzG,mym

)
ρymyf

ρ2
zC,mym

− 1

which reduces the number of free correlations to 12. The remaining coefficients are:

rmzGzC =
1

(1− ρ2
zC,mym

)

σzG,f

σzC,m

(ρzC,mzG,f − ρzC,mymρymzG,f )

rmzGy =
1

(1− ρ2
zC,mym

)

σzG,f

σym
(ρymzG,f − ρzC,mymρzC,mzG,f )
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rmzCzC =
1

(1− ρ2
zC,mym

)

σzC,f

σzC,m

(ρzC,mzC,f − ρzC,mymρymzC,f )

rmzCy =
1

(1− ρ2
zC,mym

)

σzC,f

σym
(ρymzC,f − ρzC,mymρzC,mzC,f )

rmyzC =
1

(1− ρ2
zC,mym

)

σyf

σzC,m

(ρzC,myf − ρzC,mymρymyf )

rmyy =
1

(1− ρ2
zC,mym

)

σyf

σym
(ρymyf − ρzC,mymρzC,myf )

We use these matching functions to write the genetic factor, zG,kt , the cultural factor, zC,kt , and years of

schooling, ykt , as a function of father’s genetic factor, zG,mt−1 , cultural factor, zC,mt−1 , and years of schooling,

ymt−1. We write (D.2) as

zG,kt = Gkzgmz
G,m
t−1 +Gkzmz

C,m
t−1 +Gkymy

m
t−1 + gkmw

G,m
t−1 + vG,kt

where

Gkzgm =
1

2
, Gkzm =

1

2
rmzGzC , Gkym =

1

2
rmzGy , gkm =

1

2
,

(D.3) as

zC,kt = Ckzmz
C,m
t−1 + Ckymy

m
t−1 + ckmω

C,m
t−1 + eC,kt + vC,kt

where

Ckzm = γk(αkz + (1− αkz)rmzCzC )

Ckym = γk(1− αkz)rmzCy

ckm = γk(1− αkz)

and (D.1) as

ykt = Bkzgmz
G,m
t−1 +Bkzmz

C,m
t−1 +Bkymy

m
t−1 + gkmw

G,m
t−1 + ckmω

C,m
t−1 + bkmε

m
t−1

+ eG,kt + eC,kt + xkt + vG,kt + vC,kt + ukt

where

Bkzgm =
1

2

Bkzm = βk(1− αky)rmyzC +
1

2
rmzGzC + Ckzm

Bkym = βk
(
αky + (1− αky)rmyy

)
+

1

2
rmzGy + Ckym

bkm = βk(1− αky)

14



These expressions will be used to compute correlations between relatives who are related through their fathers.

However, when we consider relatives that are related through their mothers, we need to find expressions for

ykt and zkt as functions of mother’s years of schooling, yft−1, and social status zft−1. These expressions are

provided in a document titled “Additional Derivations” available on the authors’ webpages (or upon request).

D.2 Steady state assumption

We assume that the second order moments of all variables are time invariant. This steady state assumption

implies that ρzC,mzG,m , ρzC,mym , ρzG,mym , ρzC,fzG,f , ρzC,fyf , and ρzG,fyf depend on the remaining parameters

of the model through the following equations:

(
1− γmαmz

1

2

)
ρzG,mzC,m−γm(1−αmz )

1

2

σzC,f

σzC,m

σzG,f

σzG,m

ρzC,fzG,f = γmαmz
1

2

σzG,f

σzG,m

ρzC,mzG,f +γm(1−αmz )
1

2

σzC,f

σzC,m

ρzG,mzC,f

(
1− 1

2
γf
(
1− αfz

))
ρzG,fzC,f−1

2
γfαfz

σzC,m

σzC,f

σzG,m

σzG,f

ρzG,mzC,m =
1

2
γf
(
1− αfz

) σzG,m

σzG,f

ρzG,mzC,f +
1

2
γfαfz

σzC,m

σzC,f

ρzC,mzG,f

(
1− 1

2
βmαmy

)
ρzG,mym −

1

2
βm(1− αmy )

σyf

σym

σzG,f

σzG,m

ρzG,fyf

=
σzC,m

σym
ρzG,mzC,m +

1

2
βmαmy

σzG,f

σzG,m

ρymzG,f +
1

2
βm(1− αmy )

σyf

σym
ρzG,myf +

σzG,m

σym

(
1− 1

2
βf
(
1− αfy

))
ρzG,fyf −

1

2
βfαfy

σym

σyf

σzG,m

σzG,f

ρzG,mym

=
σzC,f

σyf
ρzG,fzC,f +

1

2
βf
(
1− αfy

) σzG,m

σzG,f

ρyfzG,m +
1

2
βfαfy

σym

σyf
ρzG,fym +

σzG,f

σyf

(
1− βmαmy γmαmz

)
ρzC,mym − βm(1− αmy )γm(1− αmz )

σzC,f

σzC,m

σyf

σym
ρzC,fyf

=
σzG,m

σym
ρzG,mzC,m + βmαmy γ

m(1− αmz )
σzC,f

σzC,m

ρymzC,f + βm(1− αmy )γmαmz
σyf

σym
ρzC,myf +

σzC,m

σym

(
1− βf

(
1− αfy

)
γfαfz

)
ρzC,fyf − βfαfyγfαfz

σzC,m

σzC,f

σym

σyf
ρzC,mym

=
σzG,f

σyf
ρzG,fzC,f + βf

(
1− αfy

)
γfαfz

σzC,m

σzC,f

ρyfzC,m + βfαfyγ
f
(
1− αfz

) σym
σyf

ρzC,fym +
σzC,f

σyf

The six equations for the steady state reduce the number of free correlations to four: ρzC,mzC,f , ρzC,myf ,

ρymzC,f , and ρymyf . Then, this model has 21 parameters: βk, γk, σzG,k , σzC,k , σ2
xk , σ

2
eC,k , α

k
y , α

k
z , k = m, f,

σxmxf , σeC,meC,f , ρzC,mzC,f , ρzC,myf , ρymzC,f , and ρymyf , just one parameter more than the one factor model.

15



D.3 Main covariances

We first compute the main covariances (husband-wife, parent-child and siblings). Then, the covariances for

other relatives are obtained recursively. We again use the notation in Figure 1 to denote individuals with

different degrees of kinship.

Husband and wife a− a′

We have to compute the covariance between "a" and "a′". Let n′ = m, f be the gender of "a′" and n = f,m

the gender of "a",

Cov(ya,nt−1, y
a′,n′

t−1 ) = σymσyf ρymyf

Parent–child aa− a′

We have to compute the covariance between "aa" and "a′". Let n′ = m, f be the gender of a′ and n∗ = f,m

the gender of aa. We project aa on a′ (his/her father or mother).

Cov(yaa,n
∗

t , ya
′,n′

t−1 ) = Bn
∗

zgn′Cov(zG,a
′,n′

t−1 , ya
′,n′

t−1 ) +Bn
∗

zn′Cov(zC,a
′,n′

t−1 , ya
′,n′

t−1 ) +Bn
∗

yn′σ
2
yn′

Siblings a′ − b

We have to compute the covariance between "a′" and "b". Let n′, l = m, f be the genders of the siblings.

We can compute the covariances projecting on the father (k = m) or on the mother (k = f).

Cov(ya
′,n′

t , y
b,l

t ) = Bn
′

zgkB
l
zgkσ

2

zG,k +Bn
′

zkB
l
zkσ

2

zC,k +Bn
′

ykB
l
ykσ

2

yk
+
(
Bn
′

zgkB
l
zk +Bn

′
zkB

l
zgk

)
Cov(zG,a

′,k
t−1 ,zC,a

′,k
t−1 )

+
(
Bn
′

zgkB
l
yk +Bn

′
ykB

l
zgk

)
cov(zG,a

′,k
t−1 ,ya

′,k
t−1 ) +

(
Bn
′

zkB
l
yk +Bn

′
ykB

l
zk

)
Cov(zC,a

′,k
t−1 ,ya

′,k
t−1 ) + bn

′
k b

l
kσ

2
εk

+ gn
′

k g
l
kσ

2
wG,k+cn

′
k c

l
kσ

2
wC,k +

(
gn
′

k c
l
k + cn

′
k g

l
k

)
Cov(ωG,kt−1, ω

C,k
t−1)+

(
bn
′
k g

l
k + gn

′
k b

l
k

)
Cov(ωG,kt−1, ε

m
t−1)

+
(
bn
′
k c

l
k + cn

′
k b

l
k

)
Cov(ωc,kt−1, ε

m
t−1) + σeC,n′eC,l + σxn′xl

D.4 Other covariances

Before we obtain the remaining covariances for different degrees of kinship we compute the linear projections

of zG,a
′,n′

t−1 , zC,a
′,n′

t−1 and ya
′,n′

t−1 on zG,b,lt−1 , z
C,b,l
t−1 and yb,lt−1, n′, l = m, f, where a′ and b are siblings.

zG,a
′,n′

t−1 = rn
′,l
zGzG

zG,b,lt−1 + rn
′,l
zGzC

zC,b,lt−1 + rn
′,l
zGy

yb,lt−1 + wG,n
′,l

t−1

zC,a
′,n′

t−1 = rn
′,l
zCzG

zG,b,lt−1 + rn
′,l
zCzC

zC,b,lt−1 + rn
′,l
zCy

yb,lt−1 + wC,n
′,l

t−1

ya
′,n′

t−1 = rn
′,l
yzG

zG,b,lt−1 + rn
′,l
yzC

zC,b,lt−1 + rn
′,l
yy y

b,l
t−1 + εn

′,l
t−1
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where wG,n
′,l

t−1 , wC,n
′,l

t−1 and εn
′,l
t−1 might be correlated but are uncorrelated with zG,b,lt−1 , z

C,b,l
t−1 and yb,lt−1. We have




rn
′,l
zGzG

rn
′,l
zGzC

rn
′,l
zGy

rn
′,l
zCzG

rn
′,l
zCzC

rn
′,l
zCy

rn
′,l
yzG

rn
′,l
yzC

rn
′,l
yy




′

=




σ2
zG,l σzG,lzC,l σzG,lyl

σzG,lzC,l σ2
zC,l σzC,lyl

σzG,lyl σzC,lyl σ2
yl




−1


σzG,b,lzG,a′,n′ σzG,b,lzC,a′,n′ σzG,b,lya′,n′

σzC,b,lzG,a′,n′ σzC,b,lzC,a′,n′ σzC,b,lya′,n′

σyb,lzG,a′,n′ σyb,lzC,a′,n′ σyb,lya′,n′




Consanguine relatives ("blood")

Vertical covariances

Uncle/aunt (siblings of the parents) aa− b

We have to compute the covariances between "aa" and "b". Let n∗ = m, f be the gender of aa and l = m, f

the gender of b. We project aa on a′ (his/her father or mother) who has gender n′

Cov(yaa,n
∗

t , yb,lt−1) = Bn
∗

zgn′Cov(zG,a
′,n′

t−1 , yb,lt−1) +Bn
∗

zn′Cov(zC,a
′,n′

t−1 , yb,lt−1) +Bn
∗

yn′Cov(ya
′,n′

t−1 , y
b,l
t−1)

where a′ and b are siblings.

Horizontal covariances

Cousins aa− bb

We have to compute the covariances between "aa" and "bb". Let n∗ = m, f be the gender of aa and l∗ = m, f

the gender of the bb. We project bb on b (his/her father or mother) who has gender l

Cov(yaa,n
∗

t , ybb,l
∗

t ) = Bl
∗
zglCov(yaa,n

∗

t , zG,b,lt−1 ) +Bl
∗
zlCov(yaa,n

∗

t , zC,b,lt−1 ) +Bl
∗
ylCov(yaa,n

∗

t , yb,lt−1)

where b is the uncle/aunt of aa.

Affinity relatives ("in-law")

Vertical covariances

Spouse of the uncle/aunt (spouses of the siblings of the parents) aa− b′

We have to compute the covariances between "aa" and "b′". Let n∗ = m, f be the gender of aa and l′ = m, f

the gender of the b′. We project b′ on his/her spouse b

Cov(yaa,n
∗

t , yb
′,l′

t−1 ) = rlyzGCov(yaa,n
∗

t , zG,b,lt−1 ) + rlyzCCov(yaa,n
∗

t , zC,b,lt−1 ) + rlyyCov(yaa,n
∗

t , yb,lt−1)

where b is uncle/aunt of aa.

Siblings of the siblings in law of the parents aa− c

We have to compute the covariances between "aa" and "c". Let n∗ = m, f be the gender of aa and o = m, f
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the gender of the c. We project c on his/her sibling b′

Cov(yaa,n
∗

t , yc,ot−1) = ro,l
′

yzG
Cov(yaa,n

∗

t , zG,b
′,l′

t−1 ) + ro,l
′

yzC
Cov(yaa,n

∗

t , zC,b
′,l′

t−1 ) + ro,l
′

yy Cov(yaa,n
∗

t , yb
′,l′

t−1 )

where y is the spouse of the uncle/aunt of aa.

Horizontal covariances

Siblings in law a− b

We have to compute the covariances between "a" and "b". Let n = m, f be the gender of a and l = m, f the

gender of the b. We project a on his/her spouse a′ with gender n′ = f,m

Cov(ya,nt−1, y
b,l
t−1) = rn

′

yzGCov(zG,a
′,n′

t−1 , yb,lt−1) + rn
′

yzCCov(zC,a
′,n′

t−1 , yb,lt−1) + rn
′
yyCov(ya

′,n′

t−1 , y
b,l
t−1)

where a′ and b are siblings.

Spouse of the siblings in law a− b′

We have to compute the covariances between "a" and "b′". Let n = m, f be the gender of a and l′ = m, f

the gender of the b′. We project b′ on his/her spouse b

Cov(ya,nt , yb
′,l′

t−1 ) = rlyzGCov(ya,nt , zG,b,lt−1 ) + rlyzCCov(ya,nt , zC,b,lt−1 ) + rlyyCov(ya,nt , yb,lt−1)

where a and b are siblings in law.

Sibling of the sibling in law a′ − c

We have to compute the covariances between "a′" and "c". Let n′ = m, f be the gender of a′ and o = m, f

the gender of the c. We project a′ on his/her sibling b who has gender l

Cov(ya
′,n′

t−1 , y
c,o
t−1) = rn

′,l
yzG

Cov(zG,b,lt−1 , y
c,o
t−1) + rn

′,l
yzC

Cov(zC,b,lt−1 , y
c,o
t−1) + rn

′,l
yy Cov(yb,lt−1, y

c,o
t−1)

where b and c are siblings in law.

Cousins in law aa− cc

We have to compute the covariances between "aa" and "cc". Let n∗ = m, f be the gender of aa and o∗ = m, f

the gender of the cc. We project cc on c (his/her father or mother) who has gender o

Cov(yaa,n
∗

t , ycc,o
∗

t ) = Bo
∗
zgoCov(yaa,n

∗

t , zG,b,ot−1 ) +Bo
∗
zoCov(yaa,n

∗

t , zC,b,ot−1 ) +Bo
∗
yoCov(yaa,n

∗

t , yb,ot−1)

where c is the sibling in law of the uncle/aunt of aa.
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Table E.1: Sensitivity of Main Parameters to Perturbations of Empirical Moments

Original Mean St.dev Min P05 P25 Median P75 P95 Max IQR

σ2
zm 2.072 1.963 0.196 1.156 1.578 1.853 1.997 2.099 2.235 2.463 0.246
σ2
zf

1.559 1.455 0.187 1.019 1.141 1.309 1.475 1.596 1.740 1.973 0.288

ρzmzf 0.754 0.725 0.049 0.563 0.638 0.690 0.732 0.762 0.795 0.843 0.072
ρzmyf 0.580 0.570 0.017 0.476 0.535 0.563 0.574 0.582 0.590 0.601 0.019

ρymzf 0.539 0.527 0.025 0.480 0.487 0.507 0.529 0.546 0.564 0.591 0.039

ρymyf 0.489 0.489 0.007 0.476 0.478 0.483 0.489 0.495 0.500 0.502 0.012

γm 0.664 0.663 0.015 0.603 0.637 0.652 0.663 0.673 0.687 0.712 0.021
γf 0.566 0.564 0.015 0.513 0.539 0.554 0.564 0.575 0.588 0.613 0.021
βm 0.144 0.162 0.034 0.071 0.114 0.138 0.158 0.182 0.229 0.304 0.044
βf 0.129 0.146 0.028 0.088 0.110 0.125 0.139 0.162 0.203 0.259 0.037
σ2
xm 0.180 0.177 0.037 0.029 0.115 0.149 0.177 0.205 0.235 0.283 0.056
σ2
xm 0.244 0.247 0.034 0.151 0.193 0.221 0.247 0.273 0.301 0.363 0.052
σxmxf 0.068 0.064 0.031 0.000 0.016 0.041 0.064 0.087 0.114 0.153 0.046
σ2
em 0.657 0.675 0.035 0.582 0.627 0.650 0.670 0.694 0.740 0.847 0.043
σ2
ef

0.712 0.720 0.023 0.636 0.687 0.705 0.718 0.733 0.761 0.831 0.028

σemef 0.625 0.642 0.029 0.564 0.603 0.622 0.637 0.657 0.698 0.778 0.036
αzm 0.660 0.643 0.052 0.424 0.554 0.607 0.644 0.679 0.727 0.812 0.072
αym 0.389 0.407 0.083 0.000 0.254 0.358 0.417 0.468 0.525 0.649 0.110
αzf 0.775 0.748 0.054 0.517 0.648 0.716 0.755 0.787 0.826 0.906 0.072
αyf 0.018 0.081 0.102 0.000 0.000 0.000 0.000 0.163 0.279 0.398 0.163

E Robustness Checks

We cannot estimate the parameters by GMM following Abowd and Card (1989) because the units

of analysis (families) are not well defined. Moreover, most individuals will belong to different

families and therefore the sample units will not be independent, as illustrated in the following

example. Using the notation in the Figure 1, consider family a composed by a, a′ (spouse of a),

aa (son of a and a′), b (sibling of a′ and sibling-in-law of a), b′ (spouse of b and spouse of the

sibling-in-law of a), bb (nephew of a′ and nephew-in-law of a), and so on up to siblings-in-law of

degree 5 of a. Now consider family d composed by d (who also belongs to family a because d is

the sibling-in-law of degree 3 of a), d′ (the spouse of d and also part of family a), dd (son of d

and d′ who is not a member of family a since we are not considering nephews-in-law of degree 2),

the siblings-in-law up to degree 2 of d (who are also members of family a), and the more distant

in-laws of d that are not part of family a since we only consider siblings-in -law up to degree 5.

As this example shows there is an overlap of some family members across families and therefore,

families are not independent.

Since we cannot estimate the parameters by GMM, we cannot obtain standard errors. Instead,

we perform a simulation exercise to check how robust our results are. We independently perturb

each of the 105 empirical correlations used in the benchmark specification, and obtain the cali-
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Table E.2: Sensitivity of Long-run and Sibling Correlations to Perturbation of Empirical Moments

Long-run correlations Sibling correlations
y (male) y (female) z (male) z (female) y z

Parent 0.381 0.349 0.586 0.508 Brothers 0.431 0.677
Mean 0.381 0.349 0.574 0.499 Mean 0.432 0.699
Std. dev. 0.005 0.005 0.022 0.018 Std. dev. 0.006 0.039

Grandparent 0.209 0.163 0.343 0.263 Sisters 0.416 0.825
Mean 0.204 0.161 0.331 0.255 Mean 0.416 0.868
Std. dev. 0.010 0.004 0.024 0.016 Std. dev. 0.006 0.080

Ggrandparent 0.121 0.082 0.201 0.137 Brother-sister 0.376 0.711
Mean 0.116 0.080 0.191 0.131 Mean 0.376 0.742
Std. dev. 0.010 0.004 0.020 0.012 Std. dev. 0.005 0.050

GGgrandparent 0.071 0.043 0.118 0.071
Mean 0.067 0.041 0.110 0.067
Std. dev. 0.008 0.003 0.015 0.008

brated parameters for this artificial economy.50 We repeat this exercise 10,000 times and compute

descriptive statistics for each parameter. The results are presented in Table E.1. The mean and

the median are very close to the calibrated parameters from the original correlations and both

standard deviations and interquartile ranges are small. The general picture is very similar in all

the simulations. The direct transmission channels captured by βm and βf play a minor role. The

transmission of advantages occurs instead predominantly via the latent factor, with γm ranging

from 0.60 to 0.71 and γf from 0.51 to 0.62, both much larger than the corresponding β. Assortative

mating occurs mainly in the latent factor.

Next, for each of the simulations we compute the implied correlation of the male (female) child

and his or her ancestors on the male (female) line, both in the observable outcome and in the

underlying latent factor. The results are presented in Table E.2. The average long-run correlations

are similar to those implied by the original correlations and the standard deviations are very

small. The kinship correlations decline more slowly with the distance between kins than a simple

iteration of the parent-child correlation would suggest. In the right panel of Table E.2 we report

the corresponding simulations for the sibling correlations. For all gender combinations, the average

sibling correlations are very similar to the one based on the original correlations, and we always

find that the correlation in the latent status is much stronger than in the observed outcome.

Finally, we study whether the objective function appears well-behaved. Consider the calibrated

vector of parameters, v∗ ∈ R20, for the benchmark case (Table 4). We construct 50 sets, Ri ∈

R20 , i = 1, 2, ..., 50, each of them farther away from the zero vector than the previous one.

50Specifically, we multiply each correlation by a random draw from a uniform distribution in interval
[0.975,1.025]. We have also performed an exercise sampling the correlations from a 99% confidence interval
based on asymptotic standard errors of the correlations. The results are similar and available upon request.
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Figure E.1: Curvature of the Objective Function
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Namely, let Ri = {p ∈ R20 : 0.001 × i < ‖p‖ ≤ 0.001 × (i + 1)}, i=2, 3, ...,50, and R1 = {p ∈

R20 : ‖p‖ ≤ 0.001}. Notice these sets are concentric rings and they do not overlap. For each of

these 50 sets we randomly draw 200,000 points, vij , and define v∗ij = v∗ + vij . Notice that the

v∗ij are perturbations of v∗ that are farther away from v∗ the larger i is. Next, for each vector

v∗ij , i = 1, ..20, j = 1, ...200000 we compute the value of the objective function. Let denote by

mi the minimum value and by µi the mean value the objective function takes over the vectors

v∗ij , j = 1, ...200000. Figure E.1 plots the results. As expected, the value of mi increases smoothly

with the distance from the global minimum v∗. The values of µi are also almost always increasing.
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F Cohort Selection and Age Differences

F.1 Cohort distribution

Figure F.1: Distribution of Birth Cohorts (Sweden, Education)
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Notes: The figure plots the histogram of sampled birth cohorts for six example moments. (kinship ID in parentheses).

Multiple selection issues need to be taken into account when selecting sub-samples for each kinship

moment. We first select cohorts for which the outcome is reliably observed, as described in Section

3.1. We then assess which kinship types can be reliably identified within those cohorts. For example,

the identification of siblings requires observation of their parents, while for the identification of

cousins we need to observe grandparents, and so on. In principle, our data contain family links

up to four generations. We can match at least one biological parent for 97.5% of children born

in 1966-76, the cohorts we consider for vertical moments in our main analysis. The match rate of

grandparents is lower, but still above 88%.

However, we are much less likely to observe great-grandparents if a parent or grandparent had their

child at a comparatively old age, which could introduce a selection bias in our estimates (see also

Hällsten 2014). We therefore abstain from kinship types that depend on the identification of great-

grandparents, such as second-degree cousins. We further minimize selectivity concerning the age

difference between kins. For example, parent-child correlations tend to be lower for young parents,

for whom the age difference to their children is small. We avoid this problem by considering a
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range of child cohorts that is sufficiently narrow, such that their parents and their outcomes are

observed irrespective of parental age-at-birth.

Close horizontal moments, such as sibling and spousal correlations, vary little with the age differ-

ence between kins. However, the issue becomes more severe for cousins and very distant in-law

moments, because the age difference between kins tends to increase with the degree of separation

– e.g., siblings tend to be more closely spaced than cousins. We avoid this problem by considering

a broad range of cohort for all horizontal moments. The exception however are cousins. The

identification of cousins requires the identification of grandparents, which can be reliably observed

only for parents born after 1932 (see Hällsten 2014 for a detailed discussion of the identification of

cousins in the Swedish registers). We therefore consider cousins born between 1966 and 1976. Sam-

pling earlier cohorts would introduce selectivity with respect to parental age at birth. However,

restricting our analysis to cohorts 1966-76 restricts the possible age difference between cousins,

which leads to a downward bias in our sample correlations for cousins (see Appendix F.3).

A final issue is that intergenerational and assortative processes may vary across birth cohorts,

(see Section 4.6). We address this issue in two ways. First, we select similar cohort ranges for

different kinship types, as far as possible given the other constraints mentioned above. Second, we

examine if kinship correlations vary over birth cohorts. As described in Section F.2, the kinship

correlations in education remain quite stable in our analysis period. Most problematic are trends in

the cousin correlation, because the requirement to identify grandparents forces us to consider more

recent birth cohorts (such that grandparents are observed irrespective of parental age-at-birth).

We return to this issue below.

Figure F.1 illustrates the distribution of birth cohorts for six example moments. Sub-figures (a)-(c)

show the histograms for brothers, male cousins, and father-son pairs. The sample of siblings is

restricted to individuals born between 1932 (the first cohort for which parents and therefore siblings

are linked) and 1976 (the last cohort before right-censoring in years of schooling becomes apparent).

We further restrict the sample to those who had a child until the end of our sampling range in

2003, to increase comparability with other kinship moments that are subject to this restriction

by definition. We impose the same sampling restrictions for all other “horizontal” moments. As

already discussed, we are forced to draw a narrower cohort range for cousins (sub-figure b). For

comparability, we sample the same cohort range for all other vertical kins, such as the father-son

correlation (sub-figure c). Sub-figures (d)-(f) show the corresponding histograms for brothers-in-

law of first, second and third degree of separation. The cohort distribution of the brothers-in-law

(blue) is shifted to the right relative to the index person (green) because the considered brother-in-

law is the husband of the sister, and husbands are on average older than their wives. Comparison

between (d)-(f) illustrates that this age gap increases with each degree of separation (i.e., with each

linkage of female spouses). To avoid selectivity issues from the interaction between such systematic

and kinship-specific age shifts and the fixed sampling windows, it is essential to consider a wide
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Figure F.2: Mobility Trends over Cohorts (Sweden, Education)
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Notes: The figure plots the estimated kinship correlation separately for each birth cohort for six example moments
(kinship ID in parentheses). The size of each circle is proportional to the number of observations. The birth cohorts
as indicated on the x-axis are defined for one side of each kinship pair (e.g. for the son in sub-figure b) and remain
unrestricted for the paired observation (e.g. the father).

cohort range for in-laws, as we do here.

F.2 Cohort trends

Kinship moments are defined over different cohorts, and may, therefore, be sensitive to shifts in the

outcome distribution or other trends across cohorts. Because we can measure outcomes within the

same data source and in the same periods, our approach should be less sensitive to this issue than

the traditional multigenerational approach. We have nevertheless studied the non-stationarity of

the outcome and kinship distributions, and standardized the outcome to minimize its consequences.

Each outcome variable is demeaned by birth cohort and gender. Further standardizations of the

variance (by constructing z-scores for each cohort and gender) had only negligible effects on our

results. Shifts in the marginal distribution of educational outcomes are therefore not our primary

concern. A more severe issue is that kinship correlations may not be stable across cohorts. To study

those trends, we estimated each of our 141 kinship moments separately for each birth cohort. We

find that most kinship correlations are quite stable. For illustration, Figure F.2 plots the kinship

correlation in years of schooling for the same six example moments that we also considered in

Section F.1. The kinship correlations for brother, male cousin and father-son pairs (subfigures a-c)
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are quite stable, as are the kinship correlations for brothers-in-law of different degree of separation

(sub-figures d-f). The cohort variation tends to be a bit more pronounced for moments involving

females, but remain small within our sampling window. We conclude that the kinship correlations

in education are sufficiently stable within the generation and range of cohorts in which they can be

directly estimated. However, kinship moments may vary more substantially between generations.

In particular, we estimate the cousin correlations in a narrow band of cohorts born between 1966

and 1976, and they might vary more substantially for cohorts born in the 1940s or 50s. We discuss

this difficulty of fitting cousin correlations in the main text. The mobility trends are also more

pronounced for the kinship correlations in income, in particular for pairings that involve female

kins. As we acknowledge in the manuscript, such non-stationarity is a fundamental problem for the

estimation of any distributional model. While our “horizontal” approach is arguably less affected

than the “vertical” approach, accounting for non-stationarity remains a central objective for future

work.

F.3 The age differences between cousins

Because the identification of cousins requires the identification of grandparents, the cohort range

for cousins is narrower than for other kinship moments considered in our analysis. This restriction

in the age difference leads to a downward bias in our estimated cousin correlation. To show this,

we first study how their age difference is distributed in an unrestricted sample, for which we link

cousins irrespectively of whether their education can be observed. We consider cousin pairs for

which one of the cousins was born in either 1970 or 1980 (with the cohort of the second cousin

unrestricted). The mean age difference is around 8 and the standard deviation around 6 for both

cohorts. In contrast, the mean age difference is less than 3.5 years in our baseline sample, which

contains cousins born in 1966-76 (with this restriction applying to both cousins in a cousin pair).

This restriction in our baseline sample matters because kinship correlations tend to decrease with

the age difference between kins (even after standardizing outcomes by birth year). These gradients

are typically quite shallow for other kinship types, but are pronounced for cousins. To show this,

we plot in Figure F.3 the estimated cousin correlation separately for each possible age difference in

our baseline sample (blue line). We pool male and female cousins for this exercise. While the cousin

correlation is nearly 0.19 for cousins born in the same year, it falls below 0.16 for cousins spaced

10 years apart. In the data, we cannot observe cousins spaced further apart without running into

selection issues related to the measurement of schooling outcomes (for cohorts born after 1976) or

the observability of grandparents (for cohorts born before 1966).

25



Figure F.3: The Cousin Correlation and Age Differences Between Cousins
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Notes: The figure plots the observed cousin correlation in years of schooling for cousin pairs with the age difference
as indicated on the x-axis (blue line) and the predicted cousin correlation for larger age gaps based on a quadratic
extrapolation (red line). Cohorts 1966-76, pooled sample including male and female cousins.

However, we can exploit that the cousin correlation is a relatively smooth function of the age

difference, and the fact that we know the distribution of age differences in unrestricted samples

(as discussed above). We first estimate a linear regression of the estimated cousin correlation by

age (the blue dots in Figure F.3) on a quadratic in the age difference between cousins, to use the

estimated model to predict the cousin correlation for larger age gaps (red line). We then construct

a weighted average correlation by combing the age-specific predictions with weights equal to the

relative density of cousins at each age point in the unrestricted sample. Finally, we compare the

weighted correlations as observed in our baseline sample (the blue line) and the weighted correlation

as extrapolated for an unrestricted sample (red line). While the weighted cousin correlation in our

sample is 0.182 (pooled males and females cousins), the predicted correlation over the unrestricted

age range is 0.160, about 14% smaller.

These results imply that the restricted age range explains about half of the gap between the raw

sample correlations for cousins and the theoretical predictions from our model (see Section 4.6).

For consistency we nevertheless report the raw sample correlations for cousins in our results tables.
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Table G.1: Intergenerational Correlation in Individual vs. Family-average Education

Family size
restriction

Individual Family Placebo
family

(1) (2) (3)

Baseline 0.387 0.439 0.387
≥ 2 0.397 0.506 0.388
≥ 3 0.398 0.557 0.382
≥ 4 0.401 0.600 0.383
≥ 5 0.404 0.635 0.405

Notes: The table reports the father-son correlation for years of schooling in column (1), for the average years
of schooling among fathers/uncles and sons/nephews in column (2), and for the average among placebo pairs in
column (3). Placebo pairs are based on randomly reshuffled identifiers for parental grandfathers. Row 1 is based on
N = 294, 758 father-son pairs. Subsequent rows restrict the sample to larger families with the indicated minimum
number of sons/nephews, with the last row based on N = 10, 556.

G Additional Results: Swedish Registers

G.1 Relation to name-based estimates

Our results are broadly consistent with the observation that socioeconomic status regresses more

slowly to the mean on the surname than on the individual level (Clark, 2014). In this section,

we provide evidence that makes this link more explicit. While our data do not contain surnames,

we can average educational outcomes within a family using observed family links. For example,

we can average the status of brothers in the parent generation (i.e., fathers and uncles) and their

children (i.e., sons and nephews), and compare the correlation of these average measures to the

correlation in individual outcomes. This is not the same as considering surnames, as we average

across a small group of close relatives instead of averaging across everyone sharing a surname, but

the approach is similar in spirit. The resulting estimates are reported in Table G.1.

For comparison, column (1) reports the individual-level correlations between years of schooling of

fathers and sons. Because our analysis here requires us to restrict the sample to father-child pairs for

which grandparents (and therefore uncles and nephews) are observed, the baseline estimate differs

slightly from the father-child correlation reported in our paper (0.38 vs. 0.39). Column (2) reports

the corresponding correlation when averaging across fathers and uncles in the parent generation

and sons/nephews in the child generation (our substitute for averaging “within surnames”). The

correlation increases slightly, from 0.39 vs. 0.44. Of course, most families consist of only few

members. To yield estimates that are more comparable to surname-based studies we restrict our

sample to larger families with an increasingly larger number of members in the child generation.

While conditioning on larger families is selective, this selectivity does not affect the individual-

level father-child correlation by much, as shown in column (1). However, the correlation based on

surname averages increases strongly, and is as large as 0.64 once we condition on families with 5

or more sons and nephews.
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The pattern in column (2) of Table G.1 is in line with the our fitted baseline model (derivation

available upon request), and with the interpretation that the averaging across relatives increases

the signal-to-noise ratio of education as a measure of latent advantages. Note that the increase

across rows in column (2) is not a mechanical result from averaging across groups. As shown

in Column (3), if we instead consider random groupings by randomly reshuffling the identifiers

for grandparents, the correlation does not increase when averaging across placebo relatives. The

intuition for this result is that the kinship correlations increase only if we average across individuals

who are more similar to each other in their underlying “signal” (the latent variable in our model)

than they are in their observable outcome (educational attainment). This is apparently true for

relatives, but not for random sets of individuals.

G.2 The baseline model and income

Figure G.1: Sample and Predicted Moments (Income)
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Notes: See Table G.2 for the corresponding list of kinship moments.

We consider income as a potentially more direct measure of socioeconomic origins and desti-

nations.51 Because the Swedish registers track income profiles over nearly six decades, we can

construct high-quality measures of income for both the parent and child generation. As detailed

in Section 3.1 we measure income as the logarithm of ten-year averages of annual income centered

51Income has been the primary measure of socioeconomic status in the economic literature, while so-
ciological research has focused more on education and occupation. This division is becoming less sharp,
however, and occupational and educational measures are common in comparative, historical and multigen-
erational studies.
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total pre-tax around age 35 for children and age 45 for parents.52 As for education, we observe 141

distinct correlations, classified into 21 kinship types. Table G.2 reports the sample size and sample

correlations for a subset of those 141 moments.53 The correlations are systematically lower for

mixed or female than for male pairs. This pattern is consistent with the observation that women

were less likely to participate in the labor force, in particular for the parent generation in our

sample.54 We base our calibration on the same 105 moments that we use also in our baseline cali-

bration for Sweden, which includes siblings-in-law up to three degrees of separation (group XVI).

We plot those moments in Figure G.1, and report all moments in Table G.2. As for education,

the calibrated model explains the data well, providing a close fit to both vertical and horizontal

moments, and for both direct and affinity relationships. The model also replicates the asymmetric

transmission pattern across genders. As for education, we understate the correlation for cousins

and very distant siblings-in-law.

Table G.3 reports the parameters of the calibrated model for income, separately by intergenera-

tional (Panel A), sibling (Panel B), and assortative processes (Panel C). The findings vary only

mildly with the chosen income definition (ten-year, five-year and annual incomes, rank or log

incomes), and are qualitatively similar to our benchmark calibration for years of schooling. The la-

tent advantages are more strongly transmitted than income itself, in each of the intergenerational,

sibling and assortative processes. However, they are not as strongly transmitted as for the case of

education. The latent determinants of income appear more persistent in the horizontal dimension.

The sibling correlation in the latent factor varies around between 0.6 and 0.8, and the shared

sibling components in the observable and the latent factor explain a large share of the similarity

between siblings (Panel B of Table G.3). The shared sibling component in the observable is far

more important than the direct transmission of income from parents to children, which explains

only 2% of the variation in income for males and less for females (see Panel D of Table G.3). The

spousal correlation in log income is only 0.12, consistent with endogenous labor supply decisions at

the household level.55 However, the implied spousal correlation in the latent factor is 0.8. (Panel

C of Table G.3). This estimate is similar as for the case of years of schooling. We, therefore, find

again that spouses are much more similar in the determinants of future economic success than they

are in observable characteristics.

52For robustness we also considered shorter averages (five-year and annual), and Spearman rank corre-
lations instead of log-linear Pearson correlations. We consider individual income, and therefore abstract
from the effect of assortative mating on household income (see Holmlund, 2022).

53Our estimates for intergenerational and sibling correlations in income are broadly in line with prior
evidence for Sweden. Estimates based on longer income spans or adjusted for measurement error are larger,
see Nybom and Stuhler (2017).

54We do not account explicitly for labor supply decisions. However, our model allows for gender differ-
ences in all its components, and for the transmission of other advantages apart from income in intergener-
ational and assortative processes. It is an empirical question if that model provides sufficient flexibility to
fit kinship correlations for a comparatively complex outcome such as income.

55Indeed, Holmlund (2022) shows that the spousal correlation in “potential” earnings based on the level
and field of education are much larger.
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Table G.2: Estimated and Calibrated Moments in Swedish Registers (Income)

name # pairs sample ρ pred. ρ % error group # name # pairs sample ρ pred. ρ % error
I 1 Spouses 412,735 0.122 0.121 -1.1   …
II 2 Brothers 200,803 0.238 0.240 1.1   72 MF-FM-MF 154,974 0.041 0.045 11.0   
a'-b 3 Sisters 217,722 0.144 0.144 0.4   73 FM-MF-MF 119,219 0.033 0.030 -10.1   

4 Brother-Sister 408,331 0.122 0.123 0.2   XIII 74 M←MF-MF-MF 83,216 0.020 0.023 15.8   
III 5 Father-Son 388,190 0.227 0.228 0.4   aa-c' 75 M←MF-MF-FM 108,087 0.035 0.034 -0.8   
aa-a 6 Father-Daughter 366,590 0.147 0.147 0.0   76 M←MF-FM-MF 83,133 0.021 0.025 19.6   

7 Mother-Son 446,039 0.082 0.082 0.4   77 M←MF-FM-FM 94,984 0.037 0.034 -6.4   
8 Mother-Daughter 422,142 0.096 0.096 0.8   78 M←FM-MF-MF 62,612 0.014 0.025 69.8   

IV 9 Brothers in-law (MF-M) 339,682 0.143 0.138 -3.3   79 M←FM-MF-FM 78,556 0.035 0.037 5.1   
a-b 10 Brother-Sister in-law (FM-M) 296,051 0.090 0.099 10.8   80 M←FM-FM-MF 56,750 0.027 0.025 -7.5   

11 Brother-Sister in-law (MF-F) 362,169 0.089 0.095 5.8   81 M←FM-FM-FM 62,983 0.043 0.033 -22.3   
12 Sisters in-law (FM-F) 301,464 0.079 0.063 -19.9   82 F←MF-MF-MF 78,128 0.013 0.017 30.0   

V 13 Nephew-Uncle (BF) 149,817 0.106 0.092 -12.7   83 F←MF-MF-FM 102,222 0.029 0.026 -8.8   
aa-b 14 Niece-Uncle (BF) 142,096 0.074 0.071 -3.4   84 F←MF-FM-MF 79,019 0.018 0.019 5.8   

15 Nephew-Uncle (BM) 201,393 0.090 0.078 -13.6   85 F←MF-FM-FM 90,190 0.022 0.026 17.3   
16 Niece-Uncle (BM) 190,299 0.060 0.060 0.1   86 F←FM-MF-MF 59,524 0.023 0.020 -13.2   
17 Nephew-Aunt (SF) 152,065 0.048 0.054 12.0   87 F←FM-MF-FM 75,079 0.024 0.030 22.2   
18 Niece-Aunt (SF) 142,912 0.047 0.043 -9.8   88 F←FM-FM-MF 53,001 0.021 0.020 -7.2   
19 Nephew-Aunt (SM) 217,131 0.049 0.054 10.1   89 F←FM-FM-FM 59,009 0.019 0.027 36.5   
20 Niece-Aunt (SM) 205,748 0.054 0.044 -18.7   XIV 90 M←MF-MF-MF→M 41,300 0.017 0.019 8.5  

VI 21 Spouse of Sib-in-law (MF-FM) 156,164 0.119 0.118 -0.9   aa-cc 91 M←MF-MF-FM→M 61,036 0.025 0.019 -22.5  
a-b' 22 Spouse of Sib-in-law (FM-MF) 112,873 0.072 0.057 -20.8   92 M←MF-FM-MF→M 45,581 0.027 0.021 -21.9  

23 Spouse of Sib-in-law (MF-MF) 251,377 0.074 0.078 4.2   93 M←FM-MF-MF→M 31,435 0.033 0.020 -39.3  
VII 24 Nephew-Aunt in-law (BF) 120,226 0.030 0.047 56.0   94 M←MF-MF-MF→F 38,113 0.022 0.015 -32.9  
aa-b' 25 Niece-Aunt in-law (BF) 114,422 0.034 0.038 11.8   95 M←MF-MF-FM→F 58,304 0.022 0.015 -31.7  

26 Nephew-Aunt in-law (BM) 158,116 0.034 0.044 29.8   96 M←MF-FM-MF→F 43,614 0.030 0.017 -44.5  
27 Niece-Aunt in-law (BM) 149,645 0.030 0.033 9.8   97 M←MF-FM-FM→F 57,298 0.028 0.015 -46.5  
28 Nephew-Uncle in-law (SF) 124,725 0.070 0.064 -8.0   98 M←FM-MF-MF→F 29,951 0.017 0.016 -3.1  
29 Niece-Uncle in-law (SF) 117,191 0.051 0.051 0.6   99 M←FM-MF-FM→F 43,353 0.007 0.016 130.9  
30 Nephew-Uncle in-law (SM) 179,624 0.068 0.066 -2.1   100 M←FM-FM-MF→F 30,120 0.026 0.016 -38.8  
31 Niece-Uncle in-law (SM) 170,499 0.052 0.051 -3.0   101 M←FM-FM-FM→F 38,840 0.022 0.014 -34.1  

VIII 32 Male Cousins (BF) 36,543 0.077 0.040 -47.4  102 F←MF-MF-MF→F 36,226 0.010 0.011 18.7  
aa-bb 33 Male Cousins (SM) 62,125 0.072 0.037 -48.5  103 F←MF-MF-FM→F 54,841 0.019 0.011 -39.2  

34 Male Cousins  (SF) 93,329 0.067 0.036 -46.0  104 F←MF-FM-MF→F 41,223 0.024 0.013 -46.9  
35 Female Cousins (BF) 32,984 0.036 0.025 -30.1  105 F←FM-MF-MF→F 28,318 0.014 0.013 -7.2  
36 Female Cousins (SM) 55,675 0.045 0.022 -50.8  XV 106 F-MF-MF-M 133,431 0.024 0.030 24.3   
37 Female Cousins (SF) 82,310 0.034 0.022 -34.1  a'-d 107 F-MF-MF-F 143,881 0.027 0.021 -20.2   
38 Male-Female Cousins  (BF) 70,834 0.044 0.032 -27.8  108 F-MF-FM-M 156,686 0.032 0.034 7.2   
39 Male-Female Cousins  (SM) 122,876 0.049 0.029 -41.4  109 F-MF-FM-F 80,788 0.020 0.021 3.4   
40 Male-Female Cousins  (BM) 88,467 0.044 0.028 -36.4  110 F-FM-MF-M 136,695 0.038 0.034 -10.8   
41 Male-Female Cousins  (SF) 87,582 0.036 0.029 -19.0  111 F-FM-MF-F 73,466 0.026 0.024 -9.5   

IX 42 F-MF-M 223,084 0.051 0.059 14.0   112 F-FM-FM-M 140,818 0.036 0.034 -5.8   
a'-c 43 F-MF-F 238,392 0.042 0.041 -2.9   113 M-MF-MF-M 129,638 0.050 0.049 -2.2   

44 F-FM-M 232,232 0.059 0.066 11.6   114 M-MF-FM-M 76,528 0.057 0.054 -4.0   
45 M-MF-M 217,877 0.095 0.094 -0.9   115 M-FM-MF-M 63,988 0.050 0.049 -1.8   

X 46 MF-MF-M 190,450 0.063 0.072 14.5   XVI 116 MF-MF-MF-M 115,877 0.036 0.037 4.4   
a-c 47 MF-MF-F 204,255 0.046 0.050 8.7   a-d 117 MF-MF-MF-F 125,068 0.029 0.026 -9.6   

48 MF-FM-M 207,353 0.078 0.080 2.9   118 MF-MF-FM-M 139,577 0.047 0.041 -12.3   
49 MF-FM-F 213,663 0.048 0.050 3.8   119 MF-MF-FM-F 143,320 0.028 0.026 -7.4   
50 FM-MF-M 163,588 0.046 0.053 16.2   120 MF-FM-MF-M 123,894 0.048 0.042 -13.8   
51 FM-MF-F 173,923 0.039 0.037 -6.0   121 MF-FM-MF-F 133,139 0.032 0.029 -8.1   
52 FM-FM-M 157,713 0.055 0.053 -3.3   122 MF-FM-FM-M 131,608 0.047 0.041 -12.6   
53 FM-FM-F 160,923 0.033 0.033 -0.9   123 MF-FM-FM-F 134,253 0.029 0.026 -10.5   

XI 54 M←MF-MF-M 113,118 0.037 0.040 9.6   124 FM-MF-MF-M 97,448 0.027 0.027 3.4   
aa-c 55 M←MF-MF-F 121,696 0.029 0.028 -3.7   125 FM-MF-MF-F 105,868 0.025 0.019 -21.8   

56 M←MF-FM-M 108,145 0.045 0.045 -0.4   126 FM-MF-FM-M 113,190 0.031 0.031 -1.3   
57 M←MF-FM-F 111,238 0.023 0.028 20.7   127 FM-MF-FM-F 115,798 0.022 0.019 -13.3   
58 M←FM-MF-M 84,217 0.040 0.044 10.3   128 FM-FM-MF-M 92,992 0.027 0.027 1.7   
59 M←FM-MF-F 89,595 0.027 0.031 11.9   129 FM-FM-MF-F 99,601 0.020 0.019 -4.4   
60 M←FM-FM-M 73,134 0.046 0.044 -4.8   130 FM-FM-FM-M 92,574 0.033 0.027 -17.5   
61 M←FM-FM-F 74,708 0.021 0.027 26.9   131 FM-FM-FM-F 95,272 0.026 0.017 -34.6   
62 F←MF-MF-M 106,389 0.026 0.031 17.4   XVII 132 MF-MF-MF-MF 82,420 0.022 0.021 -4.6  
63 F←MF-MF-F 114,915 0.020 0.022 11.0   a-d' 133 MF-MF-MF-FM 116,816 0.034 0.032 -7.6  
64 F←MF-FM-M 102,747 0.032 0.035 8.8   XVIII 134 MF-MF-MF-MF-M 75,822 0.026 0.019 -26.4  
65 F←MF-FM-F 105,813 0.025 0.022 -13.7   a-e 135 FM-FM-FM-FM-F 61,230 0.018 0.009 -51.1  
66 F←FM-MF-M 79,920 0.034 0.035 1.4   XIX 136 MF-MF-MF-MF-MF 53,670 0.025 0.011 -57.0  
67 F←FM-MF-F 85,898 0.026 0.024 -4.8   a-e' 137 MF-MF-MF-MF-FM 79,620 0.026 0.016 -38.1  
68 F←FM-FM-M 68,471 0.038 0.035 -8.6   XX 138 MF-MF-MF-MF-MF-M 53,098 0.015 0.010 -32.1  
69 F←FM-FM-F 69,793 0.019 0.022 11.6   a-f 139 FM-FM-FM-FM-FM-F 42,278 0.003 0.005 39.3  

XII 70 MF-MF-MF 137,086 0.040 0.040 1.2   XXI 140 37,586 0.009 0.006 -40.3  
a-c' 71 MF-MF-FM 185,967 0.058 0.061 5.6   a-f' 141 57,789 0.023 0.009 -62.4  

group    #

MF-MF-MF-MF-MF-MF
MF-MF-MF-MF-MF-FM

Table: Sample and Predicted Moments in Swedish Registers (Income)

Kinship Data Calibration Kinship Data Calibration

Notes: M/F indicate gender, MF or FM are spouses, - indicates a sibling link and → indicates a parent-child
link. Other abbreviations are BF=Brother of the father, BM=Brother of the mother, SF=Sister of the father and
SM=Sister of the mother. Moments printed in italics were not used in the calibration.
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Table G.3: Calibrated Parameters in Swedish Registers (Income)

Panel A : Intergenerational Processes
β m β f σ2zf
0.144 0.103 0.027
α ym α yf α zf σ2um σ2uf
1.000 0.640

Ancestor correlations in y and z:
Father-Son Fr.-Daughter Mother-Son Mother-Daughter

 in z  0.354
Father-Son Grandfr.-Son GGrandfr.-Son GGGrandfr-Son

 in y  0.228
 in z  0.354

Panel B : Sibling Processes
σ2xm
0.014

Sibling correlations in y and z:
Brothers Sisters Mixed Brothers Sisters Mixed

 in y  0.240 0.645
Panel C : Assortative Processes
rmzz rmzy rfyy
0.517 0.026 -0.043

Spousal correlations in y and z:
ρ ymyf ρ zmzf

0.121 0.803
Panel D : Variance Decomposition of y

male  2.1% 24.0%
female  0.7% 14.4%

α zm

Table: Calibrated Parameters in Swedish Registers (Income)

γ m γ f σ2ym σ2yf σ2zm
0.615 0.423 0.304 0.248 0.058

σemef

0.407

σ2xf σxmxf σ2em σ2ef

0.068 0.239 0.217 0.202

ρ ymzf ρ zmyf

rmyz rmyy rfzz rfzy

 in z  0.144 0.123 0.774

0.423 0.441

0.065
0.129

0.021
0.046

0.007
0.016

0.014 0.000 0.035 0.011 0.018

0.603

0.569 -0.007 1.187 -0.005 1.532
rfyz

0.442 0.272

3.4%
2.2%

2.4%
1.4%

7.9%
4.3%

4.7%
5.7%

11.4%
4.3%
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Notes: Panels A and B report parameter estimates and implied ancestor and sibling correlations in log income y
and latent advantages z. The parameters β and σ2

y capture the direct transmission and variance of y; γ and σ2
z

the transmission and variance of z; and σ2
x and σ2

e shared sibling influences in y and z; see equations (1)-(3) for
details. Panel C reports the coefficients from the linear projections (4) and (5) of zk and yk for k = f,m on their
spouse’s z and y and the implied spousal correlations. Panel D decomposes σ2

y into the components explained by
the parents’ y (ỹt−1) and z (z̃t−1) and their covariance (σỹz̃), and the sibling components in y (xt) and z (et); Σỹz̃
and Σỹ,z̃,x̃,ẽ are the total percentages explained by the parents and the close family (parental and shared sibling
influences), respectively. Based on the kinship correlations reported in Table G.2.

In sum, these estimates confirm that our qualitative findings extend to socioeconomic outcomes

other than educational attainment. However, the strength of the vertical transmission processes

vary. One interpretation is that different factors influence different aspects of socioeconomic status,

and that some factors have higher persistence than others. The recent multigenerational literature

is not very informative about this question, because income is not or not well observed in historical

sources. Our “horizontal” approach does not face such constraints and can, therefore, be used to

study transmission across a broader set of outcomes. Our evidence suggests that those factors that

determine educational attainment are more strongly transmitted from one generation to the next

than those factors that influence earnings.
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G.3 The baseline model and height

Table G.4: Estimated and Calibrated Moments in Swedish Registers (Height)

name # pairs  ρ general genetic group # name # pairs  ρ general genetic
I 1 Spouses External 0.270 0.270 0.291 …
II 2 Brothers 112,549  0.522 0.522 0.526 56 M←MF-FM-M 37,029  0.053 0.053 0.044

3 Sisters External 0.535 0.536 0.541 58 M←FM-MF-M 43,068  0.047 0.054 0.040
4 Brother-Sister 0.456 0.484 60 M←FM-FM-M 29,437  0.059 0.058 0.043

III 5 Father-Son 46,441  0.483 0.487 0.483 XII 71 MF-MF-FM 39,288  0.023 0.032 0.006
6 Father-Daughter 0.217 0.483 XIII 75 M←MF-MF-FM 29,311  0.017 0.028 0.013
7 Mother-Son 0.608 0.483 77 M←MF-FM-FM 21,488  0.022 0.028 0.012
8 Mother-Daughter 0.729 0.483 79 M←FM-MF-FM 26,207  0.037 0.038 0.013

IV 9 Brothers in-law (MF-M) 135,006  0.111 0.115 0.141 81 M←FM-FM-FM 16,828  0.033 0.035 0.012
10 Brother-Sister in-law (FM-M) 0.196 0.153 XIV 90 M←MF-MF-MF→M 24,274  0.025 0.034 0.023
11 Brother-Sister in-law (MF-F) 0.159 0.158 91 M←MF-MF-FM→M 27,032  0.043 0.031 0.023
12 Sisters in-law (FM-F) 0.292 0.141 92 M←MF-FM-MF→M 27,089  0.040 0.038 0.024

V 13 Nephew-Uncle (BF) 52,618  0.260 0.268 0.285 93 M←FM-MF-MF→M 25,681  0.036 0.044 0.023
… XV 113 M-MF-MF-M 50,330  0.041 0.035 0.010
15 Nephew-Uncle (BM) 66,270  0.289 0.293 0.280 114 M-MF-FM-M 25,234  0.042 0.042 0.013

VI 21 Spouse of Sib. in-law (MF) 44,034  0.067 0.053 0.046 115 M-FM-MF-M 29,208  0.031 0.030 0.010
VII 28 Nephew-Uncle in-law (SF) 28,901  0.077 0.075 0.082 XVI 116 MF-MF-MF-M 30,183  0.025 0.026 0.003

30 Nephew-Uncle in-law (SM) 39,634  0.073 0.077 0.084 118 MF-MF-FM-M 30,538  0.026 0.031 0.003
VIII 32 Male Cousins (BF) 21,153  0.160 0.148 0.170 120 MF-FM-MF-M 36,879  0.032 0.026 0.003

33 Male Cousins (SM) 21,937  0.188 0.188 0.170 122 MF-FM-FM-M 33,478  0.025 0.031 0.003
34 Male Cousins (SF) 45,689  0.167 0.152 0.169 XVII 133 MF-MF-MF-FM 19,846  0.016 0.024 0.001

IX 45 M-MF-M 99,219  0.074 0.078 0.074 XVIII 134 MF-MF-MF-MF-M 16,980  0.020 0.020 0.000
X 46 MF-MF-M 59,544  0.039 0.039 0.020 XIX 137 MF-MF-MF-MF-FM 11,286  0.009 0.019 0.000

48 MF-FM-M 63,798  0.053 0.046 0.024 XX 138 MF-MF-MF-MF-MF-M 10,309  0.015 0.016 0.000
XI 54 M←MF-MF-M 46,771  0.048 0.046 0.040 XXI 141 6,873  0.044 0.015 0.000MF-MF-MF-MF-MF-FM

group    #

Table: Estimated and Calibrated Moments in Swedish Registers (Height)

Kinship Data Calibration Kinship Data Calibration

Notes: Kinship correlations from Swedish registers. See Table 3 for notation.

In this section we calibrate our baseline model for body height, which we observe from military

enlistment tests that were universal for the male Swedish population (see Section 3.1). Height is

an interesting reference point because it is known to be primarily determined by genes, at least

in populations that are not exposed to famine or undernutrition.56 It is subject to only compar-

atively weak assortative processes, which was one of the reasons why Francis Galton considered

height in his famous work on linear regression (Galton, 1886). Because the transmission of body

height is better understood, the plausibility of our findings is easier to evaluate for height than

for socioeconomic outcomes. Moreover, we observe height only for males, and it is an interesting

question to what extent female outcomes need to be observed to identify our model, including the

assortative and gender-specific processes.

Table G.4 reports the sample correlations. We observe 39 (male) kinship correlations.57 To these

we add the correlation in height between spouses and between sisters from external sources.58 The

predicted moments from the calibrated model are reported in Table G.4, while Figure G.2a plots

the 105 kinship moments that are included in our baseline calibration for educational attainment.

As for education and income, the calibrated model explains our data well, providing a close fit to

56The proportion of the total variation in body height in a population that is due to genetic variation
is estimated to be around 0.8 (Silventoinen, 2003). Accordingly, the correlation in body height is much
higher in biological than foster families, and can be as high as 0.99 for monozygotic twins.

57Because the military enlistments tests cover only birth cohorts born between 1950 and 1980, we observe
fewer observations than for the other outcomes. The moments are however precisely estimated, and in
line with prior evidence. For example, the father-son correlation in height in our sample is 0.48, the same
value as reported by Grönqvist et al. (2017).

58Price and Vandenberg (1980) report a spousal correlation in height of 0.27 for Swedish couples. To
calibrate the correlation in height for sisters, we assume that the gap to the corresponding correlation for
brothers is as large as in Norwegian sources reported in Tambs et al. (1992).
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Table G.5: Calibrated Parameters in Swedish Registers (Height, Baseline Model)

Panel A : Intergenerational Processes
β m β f σ2zf
0.948 0.757 0.001
α ym α yf α zf σ2um σ2uf
0.311 0.019

Ancestor correlations in y and z:
Father-Son Fr.-Daughter Mother-Son Mother-Daughter

 in z  0.731
Father-Son Grandfr.-Son GGrandfr.-Son GGGrandfr-Son

 in y  0.487
 in z  0.731

Panel B : Sibling Processes
σ2xm
0.000

Sibling correlations in y and z:
Brothers Sisters Mixed Brothers Sisters Mixed

 in y  0.522 0.784
Panel C : Assortative Processes
rmzz rmzy rfyy
0.101 -0.008 0.240

Spousal correlations in y and z:
ρ ymyf ρ zmzf

0.270 0.912
Panel D : Variance Decomposition of y

male  61.7% 52.2%
female  55.8% 53.6%

51.8%
53.3%

0.0%
0.3%

0.4%
0.0%

-0.170 -0.541

5.4%
0.1%

-15.3%
-2.7%

0.004 0.000 0.001

-1.775 0.315 7.558 -0.081 -2.501

 in z  

0.688 0.874 0.435 0.464

ρ ymzf ρ zmyf

0.536 0.456

0.672 0.876

0.236
0.532

0.113
0.389

0.053
0.284

0.958

0.579 1.000

σ2xf σxmxf σ2em σ2ef σemef

rmyz rmyy rfzz rfzy rfyz

0.003 0.000

α zm

Table: Calibrated Parameters in Swedish Registers (Height, Baseline Model)

γ m γ f σ2ym σ2yf σ2zm
1.017 0.118 1.000 1.000 0.102
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cov(ỹt�1, z̃t�1)

�ỹz̃
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Notes: Panels A and B report parameter estimates and implied ancestor and sibling correlations in height y and
latent advantages z. The parameters β and σ2

y capture the direct transmission and variance of y; γ and σ2
z the

transmission and variance of z; and σ2
x and σ2

e shared sibling influences in y and z; see equations (1)-(3) for details.
Panel C reports the coefficients from the linear projections (4) and (5) of zk and yk for k = f,m on their spouse’s z
and y and the implied spousal correlations. Panel D decomposes σ2

y into the components explained by the parents’
y (ỹt−1) and z (z̃t−1) and their covariance (σỹz̃), and the sibling components in y (xt) and z (et); Σỹz̃ and Σỹ,z̃,x̃,ẽ
are the total percentages explained by the parents and the close family (parental and shared sibling influences),
respectively. Based on the kinship correlations reported in Table G.4.

both vertical and horizontal moments, and for both direct and affinity relationships. However, in

the absence of direct observations, we appear unable to fit the correlations for female kins – the

calibrated model predicts much larger correlations for distant kinships that involve female than

those that involve male.

Table G.5 reports the estimated parameters. The transmission process for height can be well

approximated by direct transmission channels – observed height explains well the height of descen-

dants and other family members. Despite its strong intergenerational transmission (βm = 0.95 and

βf = 0.76), the father-child and mother-child correlations in height remain modest because the

spousal correlation in height (ρymyf = 0.27) is much smaller than the corresponding spousal cor-

relations in socioeconomic outcomes. The implied spousal correlations in the latent factor is large,
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but less relevant because the latent factor explains hardly any of the variation in the outcome.

G.4 The standard genetic model and height

Figure G.2: Sample and Predicted Moments (Height)

(a) Baseline model

I II III IV V VI VII IX X XI XII XIII XV XVI

Prediction Observed
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(b) Genetic model
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Notes: See Table G.4 for the corresponding list of kinship moments.

Genes are known to be the primary source of variation in height (Silventoinen, 2003). We therefore

study if the standard genetic model described in Section 5.1 can provide a comparatively good fit,

despite having much fewer parameters than our baseline model. We use the same 41 kinship

correlations as for calibration of the baseline model, as described in Section G.3. The sample and

predicted moments are reported in Table G.4. As illustrated in Figure G.2b, the genetic model

provides a worse fit to in-sample moments. However, it fits close relatives such as spouses and

siblings quite well and generates out-of-sample predictions that are more stable within kinship

types than the widely varying predictions of the general model.

Table G.6 summarizes the results.59 The latent factor of the parents z̃t−1 explains about 45.5%

of the variation in height (see Panel D), and a child’s own latent factor zt explains 75%. This

latter estimate is slightly below estimates of the heritability of height from quantitative genetics,

which tend to be around 80% (Silventoinen, 2003). In principle, our approach can capture latent

determinants other than genes, and can therefore be interpreted as an upper bound for heritabil-

ity.60 That our estimates are close to those from the genetic literature suggests therefore that the

parent-child correlation in height is nearly exclusively due to genes, and not other factors. Finally,

the spousal correlation in phenotype height is greater than the spousal correlation in genotype

height (Panel C), consistent with the assumption that assortative mating occurs exclusively on the

phenotype. In contrast, our baseline model allows for spouses to be more similar than indicated

59In contrast to the standard model described above, we allow σ2
ek to be non-zero in the calibration (e.g.

to account for the presence of monozygotic twins in our data). This added flexibility has only a negligible
effect on the results.

60See Ruby et al. (2018) for a similar upper-bound argument for the case of human longevity.
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Table G.6: Calibrated Parameters in Swedish Registers (Height, Genetic Model)

Panel A : Intergenerational Processes
β m β f σ2zf
0.000 0.000 0.748
α ym α yf α zf σ2um σ2uf
0.000 0.000

Ancestor correlations in y and z:
Father-Son Fr.-Daughter Mother-Son Mother-Daughter

 in z  0.609
Father-Son Grandfr.-Son GGrandfr.-Son GGGrandfr-Son

 in y  0.483
 in z  0.609

Panel B : Sibling Processes
σ2xm
0.071

Sibling correlations in y and z:
Brothers Sisters Mixed Brothers Sisters Mixed

 in y  0.526 0.609
Panel C : Assortative Processes
rmzz rmzy rfyy
0.000 0.218 0.291

Spousal correlations in y and z:
ρ ymyf ρ zmzf

0.291 0.218
Panel D : Variance Decomposition of y

male  0.0% 52.6%
female  0.0% 54.1%

α zm

Table: Calibrated Parameters in Swedish Registers (Height, Genetic Model)

γ m γ f σ2ym σ2yf σ2zm
1.000 1.000 1.000 1.000 0.748

σ2ef σemef

0.500 0.500 0.181 0.167

σ2xf σxmxf σ2em
0.085 0.028 0.000

ρ ymzf ρ zmyf

0.000 0.291 0.000

0.609 0.609 0.609

0.294
0.379

0.179
0.231

0.109
0.141

0.218 0.000

0.252 0.252

0.000 0.000

0.541 0.484 0.609 0.609 in z  

rmyz rmyy rfzz rfzy rfyz

7.1%
8.5%

0.0%
0.0%

45.5%
45.5%

0.0%
0.0%

45.5%
45.5%
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�ỹz̃
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Notes: Panels A and B report parameter estimates and implied ancestor and sibling correlations in height y and
latent genetic advantages z. The parameters β and σ2

y capture the direct transmission and variance of y; γ and σ2
z

the transmission and variance of z; and σ2
x and σ2

e shared sibling influences in y and z; see equations (1)-(3) and (7)
for details. Panel C reports the coefficients from the linear projections (4) and (5) of zk and yk for k = f,m on their
spouse’s z and y and the implied spousal correlations. Panel D decomposes σ2

y into the components explained by
the parents’ y (ỹt−1) and z (z̃t−1) and their covariance (σỹz̃), and the sibling components in y (xt) and z (et); Σỹz̃
and Σỹ,z̃,x̃,ẽ are the total percentages explained by the parents and the close family (parental and shared sibling
influences), respectively. Based on the kinship correlations reported in Table G.4.

by their observed outcomes. As a consequence, the genetic and general model yield substantially

different predictions for the distant kinship types in our data (cf. ancestor correlations reported in

Tables G.5 and G.6). In particular, the genetic model with phenotypic assortment cannot explain

why the kinship correlations in height remain non-negligible even for very distant siblings-in-law.

The results are therefore ambiguous. On the one hand, our approach yields parameter estimates

that match well with estimates of the heritability of body height from quantitative genetics. On

the other hand, the standard genetic model cannot explain why body height remains correlated

between the most distant family members in our data. The genetic model fits a narrow set of kinship

moments, but not the full set observed in this study. The potential culprit is the assumption that

assortative mating occurs only in the phenotype. If spouses match on factors other than phenotype
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height, and those other factors have an independent association with genotype height, then the

standard genetic model understates the correlation between relatives – even if the intergenerational

transmission process itself is exclusively due to genetic factors. The advantage of our approach

is that such failures become visible: erroneous assumptions in the assortative process become

noticeable among distant relatives even if they have only negligible implications for the close

kinship correlations that have been studied in the previous literature.

H Additional Results: Spanish Census

We also calibrate our model for Spain, for which the intergenerational evidence has so far been

quite limited (see for example Black and Devereux 2011). Because the available data sources do

not report income for both parents and children, estimates of income mobility are based on a two-

sample instrumental variable approach. The cross-country comparisons of educational mobility

(Hertz et al. 2008, Blanden 2011) do not contain evidence for Spain either.61 We circumvent these

data limitations by using surnames to identify kins in the complete-count 2001 Census from the

Spanish region of Cantabria.62

In contrast to the administrative registers from Sweden, the Census data are limited to a single

cross-section, contain only educational outcomes and names, and lack direct family links to define

kinship – allowing us to illustrate the feasibility of our approach in settings with scarce data. We

exploit that children in Spain inherit surnames from both their parents to recover their family

links. This naming convention allows us to track both maternal and paternal lines, and at around

36%, the match rates are far higher than the rates that have been achieved in Census data from

other countries. As a consequence, we can compare a wide range of kinship correlations between

Spain and Sweden, and distinguish how latent intergenerational, sibling, and assortative processes

compare in the two countries.

H.1 Data

The 2001 population census for Spain, which is available nationwide, does not allow to identify

families unless they are living in the same household. However, for the Spanish region of Cantabria

61Blanden (2011) demonstrates that the ranking of countries in terms of educational mobility and income
mobility is quite similar, with a pair-wise correlation between the two type of measures of around 0.7.
While our evidence pertains to education, it is therefore likely to be informative about the transmission of
economic advantages more generally.

62Other studies use names to consider intergenerational mobility on the surname level. For example,
Collado et al. (2014) study multigenerational mobility in the 19th and the 20th century in Cantabria,
while Güell et al. (2015) study intergenerational mobility in more recent data from Catalonia. In contrast
to these studies, we use names to identify direct family relationships and to estimate individual-level
processes.
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we obtained information on the full name of each person, and we can use this information to

identify parents and children. The Census also reports, among other variables, the gender, age

and educational level of all individuals living in the region (526, 339 persons). We define the t-

generation as all persons born in Cantabria between 1956 and 1976 (71, 479 males and 68, 830

females) and the (t− 1)-generation as their parents.

Matching. Surnames in Spain are passed from parents to children according to the following rule:

A newborn person, regardless of gender, receives two surnames that are kept for life. The first

surname is the father’s first surname and the second the mother’s first surname. This naming

convention allows us to identify fathers and mothers. For each person i in generation t we define

the set of potential parents as all the couples born before 1956 such that the husband first surname

coincides with person i first surname and the wife first surname coincides with person i second

surname. Then, we say that we identify the parents if there is only one couple in the set of potential

parents and the age difference between both parents and the child is at least 16 years. We identify

the parents for 25, 860 males and 24, 610 females, which is approximately 36.2% and 35.8% of the

male and female population, respectively.

To assess how well our strategy to identify parents and children works, we exploit the fact that we

can directly identify parents and children when they live together (without using surnames). We use

this information to estimate the percentage of incorrect matchings derived from our identification

strategy. We identify 51,923 parent-child pairs using the surnames, with 23,694 of these children

co-residing with their (real) parents and 28,229 living in different households. For the sub-sample

of children co-residing with their parents, the percentage of identification mistakes is 6.1%. We

exclude these 1,453 pairs from our sample and the final sample size is 50,470. If the percentage of

incorrect identifications for the sub-sample of parents-child not living together were also 6.1% we

would expect 1,722 mistakes (3.4%) in the total sample.

Once we have identified parents and children, siblings are immediately identified, and when chil-

dren are married we also identify siblings-in-law. Finally, we assume that siblings in the parents’

generation are identified when there are at most four individuals in the over 25 population sharing

the same two surnames. Once siblings in the parent generation are identified, uncles and nephews,

and cousins are immediately identified. Again it is important to estimate how well our strategy to

identify siblings in the parents’ generation works. We cannot directly detect identification mistakes

in the parent generation, but can test the reliability of our approach in the child generation. Specif-

ically, we repeat the exercise to detect identification mistakes in the sample of co-residing children

as described above, but restrict that sample to children with surnames held by between two and

four individuals in the over 25 population. As expected, the percentage of incorrect identifications

is now lower, 2.5%.

Education. We use the information on each individual’s educational attainment and convert it to
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Table H.1: Descriptive Statistics in Spanish Census

Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev
Age 33.61 5.91 35.42 6.16 33.70 5.92 35.50 6.15
Years of schooling 10.53 3.71 9.71 3.64 10.99 3.71 10.11 3.69
Observations 45,61925,860

WomenMen
Table: Descriptive Statistics in Spanish Census

Matched Unmatched Matched Unmatched

44,22024,610

years of schooling following Calero et al. 2007.63 We de-mean years of schooling using gender-

birth-cohort averages. Table H.1 shows some basic descriptive statistics. The matched sample is

almost two years younger than the unmatched one. The reason is that the older a person is, the

more likely the parents are not living together or one of them has died. Since the matched sample

is younger it is also more educated (0.8 more years of schooling than the unmatched sample).

H.2 Estimation results

H.2.1 Sample and calibrated moments

Table H.2 reports the sample correlation in years of schooling for each kinship, sorted from closely

related to more distant kins. The first columns report the number of pairs and sample correlations.

The pairs are weighted inversely by the square root of family size, as described in Section 3. We

observe 65 distinct moments that can be classified into groups from very close kins (such as spouses,

group I) to relatively distant kins (such as second-degree siblings-in-law, group X). Two kinship

types that were not observed in the Swedish data are child-parents in-law (group III-b in Table

H.2) and the Spouse of nephew/niece-uncle/aunt (group VII-b), as its child generation was too

young for this definition to be meaningful. The sample sizes are much smaller than in the Swedish

sources. They are still large enough for precise measurements of kinship types involving siblings

and parents, but become noisy for the more distant types.

The kinship correlations in educational attainment tend to be slightly larger in our Spanish data

than the corresponding moments for Sweden. For example, the brother correlation in years of

schooling in Spain is 0.46, compared to 0.43 for Sweden. The gap is smaller for in-law and vertical

kinships, and inverses for those moments that involve females in the parent generation (such as

the mother-son or aunt-nephew relationships).

In our calibration we include all groups (including III-b and VII-b). We therefore use 65 distinct

63We assign 2 years of education to those who did not complete primary education, 5 years to primary
education, 8 to compulsory education, 10 to vocational training, 12 to secondary education, 15 to sort
university degrees, 17 to long university degrees other than engineering and medicine, 18 for engineers and
medical doctors and 19 for a Ph.D. All our results are robust to other reasonable ways to assign years of
education as, for example, assigning 0 years of education to those who did not complete primary education,
4 years to primary education, 9 to vocational training and 11 to secondary education.
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Table H.2: Sample and Predicted Moments in Spanish Census

name # pairs sample ρ pred. ρ % error group # name # pairs sample ρ pred. ρ % error
I 1 Spouses 24,819  0.543 0.569 4.7   …
II 2 Brothers 11,109  0.464 0.464 0.0   30 Nephew-Uncle in-law (SM) 3,334  0.199 0.205 3.0   
a'-b 3 Sisters 10,316  0.420 0.425 1.2   31 Niece-Uncle in-law (SM) 3,067  0.168 0.183 8.5   

4 Brother-Sister 21,017  0.410 0.414 0.9   VII-b 24-b W-Nephew-Uncle (BF) 1,738  0.220 0.197 -10.1   
III 5 Father-Son 25,860  0.385 0.369 -4.2   aa'-b 25-b H-Niece-Uncle (BF) 1,930  0.192 0.191 -0.1   
aa-a 6 Father-Daughter 24,610  0.335 0.321 -4.3   26-b W-Nephew-Uncle (BM) 1,737  0.213 0.198 -6.9   

7 Mother-Son 25,860  0.323 0.310 -4.2   27-b H-Niece-Uncle (BM) 1,873  0.224 0.210 -6.5   
8 Mother-Daughter 24,610  0.300 0.284 -5.3   28-b W-Nephew-Aunt (SF) 1,537  0.161 0.146 -9.1   

III-b 5-b Son-Father in-law 13,191  0.276 0.262 -4.8   29-b H-Niece-Aunt (SF) 1,746  0.112 0.140 24.3   
aa'-a 6-b Daughter-Father in-law 11,628  0.265 0.280 5.7   30-b W-Nephew-Aunt (SM) 1,559  0.196 0.175 -10.9   

7-b Son-Mother in-law 13,191  0.225 0.245 8.7   31-b H-Niece-Aunt (SM) 1,648  0.176 0.185 4.8   
8-b Daughter-Mother in-law 11,628  0.219 0.236 7.7   VIII 32 Male Cousins (BF) 2,053  0.202 0.200 -1.0   

IV 9 Brothers in-law (MF-M) 12,260  0.281 0.304 8.2   aa-bb 33 Male Cousins (SM) 1,779  0.200 0.214 7.0   
a-b 10 Brother-Sister in-law (FM-M) 11,184  0.300 0.309 3.0   34 Male Cousins (SF) 3,752  0.209 0.189 -9.4   

11 Brother-Sister in-law (MF-F) 12,339  0.296 0.292 -1.2   35 Female Cousins (BF) 1,747  0.145 0.140 -3.5   
12 Sisters in-law (FM-F) 10,743  0.287 0.255 -10.9   36 Female Cousins (SM) 1,523  0.182 0.167 -8.1   

V 13 Nephew-Uncle (BF) 3,787  0.237 0.258 8.6   37 Female Cousins (SF) 3,368  0.188 0.140 -25.4   
aa-b 14 Niece-Uncle (BF) 3,487  0.201 0.219 9.0   38 Male-Female Cousins (BF) 3,817  0.187 0.167 -10.5   

15 Nephew-Uncle (BM) 3,602  0.241 0.257 6.7   39 Male-Female Cousins (SM) 3,364  0.192 0.189 -1.7   
16 Niece-Uncle (BM) 3,337  0.229 0.229 0.2   40 Male-Female Cousins (BM) 3,604  0.191 0.167 -12.6   
17 Nephew-Aunt (SF) 3,452  0.151 0.191 26.8   41 Male-Female Cousins (SF) 3,625  0.172 0.159 -7.8   
18 Niece-Aunt (SF) 3,253  0.140 0.164 16.9   IX 42 F-MF-M 3,045  0.159 0.158 -0.8   
19 Nephew-Aunt (SM) 3,334  0.221 0.227 2.9   a'-c 43 F-MF-F 2,924  0.167 0.147 -11.8   
20 Niece-Aunt (SM) 3,067  0.181 0.204 12.3   44 F-FM-M 3,089  0.176 0.194 10.3   

VI 21 Spouse of Sib. in-law (MF) 4,156  0.272 0.227 -16.5   45 M-MF-M 3,132  0.245 0.212 -13.3   
a-b' 22 Spouse of Sib. in-law (FM) 3,296  0.249 0.221 -11.3   X 46 MF-MF-M 1,966  0.113 0.146 29.4   

23 Spouse of Sib. in-law (MM) 7,061  0.234 0.207 -11.6   a-c 47 MF-MF-F 1,950  0.072 0.133 84.2   
VII 24 Nephew-Aunt in-law (BF) 3,787  0.175 0.201 14.9   48 MF-FM-M 2,009  0.181 0.166 -8.6   
aa-b' 25 Niece-Aunt in-law (BF) 3,487  0.153 0.169 10.8   49 MF-FM-F 1,881  0.121 0.121 0.1   

26 Nephew-Aunt in-law (BM) 3,602  0.172 0.195 13.5   50 FM-MF-M 1,854  0.142 0.165 16.3   
27 Niece-Aunt in-law (BM) 3,337  0.163 0.173 6.1   51 FM-MF-F 1,807  0.134 0.149 11.2   
28 Nephew-Uncle in-law (SF) 3,452  0.192 0.178 -7.6   52 FM-FM-M 1,792  0.185 0.155 -16.1   
29 Niece-Uncle in-law (SF) 3,253  0.136 0.151 11.0   53 FM-FM-F 1,710  0.124 0.112 -9.7   

group    #

Table: Sample and Predicted Moments in Spanish Census

Kinship Data Calibration Kinship Data Calibration

Notes: Kinship correlations from Spanish Census data. See Table 3 for notation.

moments from 12 different kinship types. We calibrate the model as described in Section 3,

and report the predicted moments as well as the percentage deviation between the observed and

predicted moments in Table H.2. Overall, the calibrated model explains the data well. Figure H.1

illustrates the fit graphically, by plotting the sample moments and predicted moments from the

calibrated model. For comparability, we plot the same 105 moments that are also plotted for our

Swedish data in Figure 2. The mean absolute prediction error across all included moments is 9.9%.

The prediction errors are therefore larger than in the Swedish data, consistent with the presence

of sampling error from the smaller sample sizes.

The model however appears to fit the pattern of inequality transmission in Spain across vertical

and horizontal kins, and across both direct and in-law relationships. Given the more restricted set

of moments and number of observations, this conclusion is not as well supported as for the case of

Sweden. Nevertheless, two observations suggest that our results are robust. First, we demonstrated

in the Swedish sample that the full model (including the different channels via which inequalities

are transmitted) could be calibrated from a set of moments that was much more restrictive than

the set available for Spain (see Section 4.6). Second, our findings for Spain appear not too sensitive

to changes in the underlying set of moments or their weights.64

64Because educational attainment for females has been increasing rapidly in our observation period, its
distribution is quite different in the parent and child generation. The main results remain however robust
to excluding some moments that involve females in the parent generation, such as the mother in-law or
aunt. Our results are also robust to dropping distant kinships types for which sample sizes become very
small, or to weight moments by the square root of the sample size (results available upon request).
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Figure H.1: Fit in Spanish Census

I II III IV V VI VII IX X XI XII XIII XV XVI

Prediction Observed

0.0
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0.5

Notes: See Table H.2 for the corresponding list of kinship moments.

H.2.2 Intergenerational transmission

Panel A of Table H.3 reports the calibrated parameters for the intergenerational or “vertical”

transmission in Spain. We again find that the direct transmission channels captured by the pa-

rameter βk contribute very little to the transmission of educational inequalities. At β̂m = 0.03

and β̂f = 0.11 the estimates are close to the corresponding estimates for Sweden. Only about 1%

of the variation in years of schooling is directly explained by parental education (panel D of Table

H.3).

As for Sweden, the transmission of advantages occurs predominantly via the latent factor. At

γ̂m = 0.92 and γ̂f = 0.84, the rate by which this latent factor is transmitted from parents to children

is substantially higher in Spain than in Sweden.65 As a consequence, the implied correlations in

the latent status between parents and children are also much higher (about 30% higher), and decay

more slowly across generations in Spain than in Sweden. For example, the implied correlation in

educational attainment between children and their great-great-grandfathers is more than twice as

large in Spain (0.16 vs. 0.07, Panel A of Tables 4 and H.3).

In sum, these results have three implications. First, the pattern of inequality transmission in Spain

and Sweden are qualitatively similar, with the transmission of advantages occurring predominantly

65The share of variance explained by the latent factor is similar as in Sweden for men, but much lower
for women. One potential explanation for this pattern could be that secular trends in females’ educational
attainment were stronger in Spain, such that less of the total variation in educational attainment is
explained by individual- and family-specific factors.
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Table H.3: Calibrated Parameters in Spanish Census

Panel A : Intergenerational Processes
β m β f σ2zf
0.027 0.111 2.783
α ym α yf α zf σ2um σ2uf
0.746 0.856

Ancestor correlations in y and z:
Father-Son Fr.-Daughter Mother-Son Mother-Daughter

 in z  0.760
Father-Son Grandfr.-Son GGrandfr.-Son GGGrandfr-Son

 in y  0.369
 in z  0.760

Panel B : Sibling Processes
σ2xm
1.648

Sibling correlations in y and z:
Brothers Sisters Mixed Brothers Sisters Mixed

 in y  0.464 0.666
Panel C : Assortative Processes
rmzz rmzy rfyy
0.732 -0.139 0.441

Spousal correlations in y and z:
ρ ymyf ρ zmzf

0.569 0.903
Panel D : Variance Decomposition of y

male  0.1% 46.4%
female  1.1% 42.5%

12.1%
20.0%

4.1%
0.0%

28.3%
16.5%

1.8%
4.8%

30.1%
22.5%

rmyz rmyy rfzz rfzy rfyz

0.425 0.414 0.674 0.784

Table: Calibrated Parameters in Spanish Census

γ m γ f σ2ym σ2yf σ2zm

0.271
0.594

0.205
0.451

0.156
0.343

0.842 13.579 13.213

0.827 0.732 0.883

α zm
0.915 6.525

0.586 0.127 5.159 7.001

σ2ef σemefσ2xf σxmxf σ2em
2.643 2.087 0.001 0.0180.559

1.291 0.083 0.576

0.483 0.549
ρ ymzf ρ zmyf

0.418 0.356

ezt�1

1

eyt�1

1

xt

1

cov(ỹt�1, z̃t�1)

�ỹz̃

1

cov(ỹt�1, z̃t�1)

�ỹz̃

�ỹt�1z̃t�1

et

1

cov(ỹt�1, z̃t�1)

�ỹz̃

�ỹt�1z̃t�1

et

⌃ỹ,z̃

⌃ỹ,z̃,x,e

1

cov(ỹt�1, z̃t�1)

�ỹz̃

�ỹt�1z̃t�1

et

⌃ỹ,z̃

⌃ỹ,z̃,x,e

1

Notes: Panels A and B report parameter estimates and implied ancestor and sibling correlations in educational
attainment y and latent advantages z. The parameters β and σ2

y capture the direct transmission and variance of y;

γ and σ2
z the transmission and variance of z; and σ2

x and σ2
e shared sibling influences in y and z; see equations (1)-(3)

for details. Panel C reports the coefficients from the linear projections (4) and (5) of zk and yk for k = f,m on their
spouse’s z and y and the implied spousal correlations. Panel D decomposes σ2

y into the components explained by
the parents’ y (ỹt−1) and z (z̃t−1) and their covariance (σỹz̃), and the sibling components in y (xt) and z (et); Σỹz̃
and Σỹ,z̃,x̃,ẽ are the total percentages explained by the parents and the close family (parental and shared sibling
influences), respectively. Based on the kinship correlations reported in Table H.2.

via latent variables, with only a minor direct influence of parental education itself. Second, the

stronger transmission of educational inequalities in Spain is explained by stronger transmission in

the latent factor, i.e. is due to fundamental differences in the extent of status transmission. Third,

standard measures understate the difference in mobility rates between Sweden and Spain. While

parent-child and sibling correlations are only slightly larger in Spain, the gap is greater for more

distant relatives.
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H.2.3 Siblings and horizontal transmission

Panel B of Table H.3 summarizes our findings that pertain to siblings, which quantify what siblings

share over and above the average rate of intergenerational transmission discussed in the previous

section. As in the Swedish data, siblings must be far more similar to each other than what is

captured by sibling correlations in years of education. For Spain, the implied correlation in the

latent status between siblings are around 0.7 or higher, about 50% larger than the sibling correlation

in years of education. The similarity in siblings in observable and latent characteristics captured

by xk and ek explains between 15% (brothers and mixed pairs) and 20% (sisters) of the variation

in educational attainment.

The degree to which siblings are subject to common influences is therefore similar in Spain as in

Sweden. However, in Spain, most of this similarity is explained by the shared sibling influences in

the observable outcome (xk), while shared influences in the latent factor (ekt ) are less important.

The variance shares explained by xk are more than three times larger than the corresponding

variance shares for Sweden. One potential explanation could be location-specific shocks and trends:

because siblings grow up in the same area, structural changes in the local provision of schooling

would tend to be reflected in this component. Spain may have experienced more such changes in

our analysis period, which would contribute to the sibling correlation in educational attainment.

Because we lack distant kinships in the Spanish data, it is however difficult to distinguish the two

types of sibling components.

H.2.4 Assortative mating

The calibrated parameter values for both the observed and latent dimensions of assortative mating

in Spain are summarized in Panel C of Table H.3. Spousal correlations in years of schooling are

around 0.54 in our Spanish sources, about 10% higher than the corresponding moment in the

Swedish registers. As was the case for Sweden, the latent status of the mother is predominantly

explained by the latent status of the father, while his educational attainment has no additional

predictive power. However, the father’s education has a substantial association with maternal

education, over and above what can be explained by the father’s latent factor. The corresponding

projection matrix for females is similar.

The implied spousal correlations in the outcome y and the latent factor z are reported in the

last block of Panel C. The first entry is simply the calibrated spousal correlation in educational

attainment, which at ρymyf = 0.57 is similar to its sample counterpart. In contrast, the implied

spousal correlation in the latent factor is substantially higher. At ρzmzf = 0.90, it is also more than

10% higher than the corresponding estimate for Sweden. Our results, therefore, suggest stronger

assortative mating in Spain compared to Sweden – not only in educational attainment, but also
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in the latent determinants of socioeconomic status. Spouses in Spain appear very similar in those

factors that ultimately determine the educational attainment of their descendants.
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I The General Model

We assume that the value of the outcome y for an individual from generation t is given by

ykt = βkỹkt−1 + zkt + xkt + ukt (I.1)

where the superscript k = m stands for males and k = f for females. We assume that

ỹkt−1 = αkyy
m
t−1 + (1− αky)yft−1

and the socioeconomic status of the child, zkt , depends on the father zmt−1 as well as on the mother zft−1

zkt = γkz̃kt−1 + ekt + vkt

z̃kt−1 = αkzz
m
t−1 + (1− αkz)zft−1

(I.2)

Regarding the shocks, we assume that xkt and ekt are shared by all siblings of the same gender, can be

correlated across siblings of different gender and are uncorrelated to each other and with the other variables

(in particular with zkt−1 and ylt−1, l = m, f). Finally ukt and vkt are white-noise errors.

We assume throughout the appendix that the economy is in the steady state, and therefore all the parameters

and the moments of all the variables are time invariant.

I.1 Assortative mating process

We assume there is assortative mating both in years of schooling and in socioeconomic status (see Behrman

and Rosenzweig, 2002, for a related model with assortative mating in two dimensions). In particular we

consider the linear projections of zft−1 and yft−1 on zmt−1 and ymt−1:

zft−1 = rmzzz
m
t−1 + rmzyy

m
t−1 + wmt−1

yft−1 = rmyzz
m
t−1 + rmyyy

m
t−1 + εmt−1

where wmt−1 and εmt−1 might be correlated but are uncorrelated with zmt−1 and ymt−1.

The coefficients of the linear projections depend on the correlations ρzmym , ρzmzf , ρzmyf , ρymzf and ρymyf ,

as well as on the standard deviations of zkt−1 and ykt−1, k = m, f :

rmzz =
1

(1− ρ2zmym)

σzf

σzm
(ρzmzf − ρzmymρymzf )

rmzy =
1

(1− ρ2zmym)

σzf

σym
(ρymzf − ρzmymρzmzf )

rmyz =
1

(1− ρ2zmym)

σyf

σzm
(ρzmyf − ρzmymρymyf )
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rmyy =
1

(1− ρ2zmym)

σyf

σym
(ρymyf − ρzmymρzmyf )

We use these matching functions to write years of schooling, ykt , and social status, zkt , as a function of father’s

years of schooling, ymt−1, and social status zmt−1. We can write (I.2) as

zkt = Gkzmz
m
t−1 +Gkymy

m
t−1 + gkmω

m
t−1 + ekt + vkt

where

Gkzm = γk(αkz + (1− αkz)rmzz)

Gkym = γk(1− αkz)rmzy

gkm = γk(1− αkz)

and (I.1) as

ykt = Bkymy
m
t−1 +Bkzmz

m
t−1 + bkmε

m
t−1 + gkmω

m
t−1 + ekt + vkt + xkt + ukt

where

Bkym = βk
(
αky + (1− αky)rmyy

)
+Gkym

Bkzm = βk(1− αky)rmyz +Gkzm

bkm = βk(1− αky)

All these expressions will be used to compute correlations between relatives that are related through their

fathers. However, when we consider relatives that are related through their mothers, we need to find ex-

pressions for ykt and zkt as functions of mother’s years of schooling, yft−1, and social status zft−1.We then also

consider the linear projections of zmt−1 and ymt−1 on zft−1 and yft−1:

zmt−1 = rfzzz
f
t−1 + rfzyy

f
t−1 + wft−1

ymt−1 = rfyzz
f
t−1 + rfyyy

f
t−1 + εft−1

where wft−1 and εft−1 might be correlated but are uncorrelated with zft−1 and yft−1.

The coefficients of the linear projections depend on ρzfyf , ρzmzf , ρzmyf , ρymzf and ρymyf , as well as on the

standard deviations of zkt−1 and ykt−1, k = m, f :

rfzz =
1

(1− ρ2
zfyf

)

σzm

σzf
(ρzmzf − ρzfyf ρzmyf )

rfzy =
1

(1− ρ2
zfyf

)

σzm

σyf
(ρzmyf − ρzfyf ρzmzf )
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rfyz =
1

(1− ρ2
zfyf

)

σym

σzf
(ρymzf − ρzfyf ρymyf )

rfyy =
1

(1− ρ2
zfyf

)

σym

σyf
(ρymyf − ρzfyf ρymzf )

Using these linear projections, we can write (I.2) as

zkt = Gkzfz
f
t−1 +Gkyfy

f
t−1 + gkfω

f
t−1 + ekt + vkt

where

Gkzf = γk(αkzr
f
zz + (1− αkz))

Gkyf = γkαkzr
f
zy

gkf = γkαkz

and (I.1) as

ykt = Bkyfy
f
t−1 +Bkzfz

f
t−1 + bkfε

f
t−1 + gkfω

f
t−1 + ekt + vkt + xkt + ukt

where

Bkyf = βk
(
αkyr

f
yy + (1− αky)

)
+Gkyf

Bkzf = βkαkyr
f
yz +Gkzf

bkf = βkαky

I.2 Steady state assumption

As mentioned above, we assume that the second order moments of all variables are time invariant. This

steady state assumption implies that ρzmym and ρzfyf depend on the remaining parameters of the model as

shown below.

Cov(ymt , z
m
t ) = Cov(βmỹmt−1 + zmt , z

m
t ) = Cov(βm(αmy y

m
t−1 + (1− αmy )yft−1), γm(αmz z

m
t−1 + (1− αmz )zft−1)) + σ2

zm

= βmαmy γ
mαmz Cov(ymt−1, z

m
t−1) + βmαmy γ

m(1− αmz )Cov(ymt−1, z
f
t−1)

+ βm(1− αmy )γmαmz Cov(yft−1, z
m
t−1) + βm(1− αmy )γm(1− αmz )Cov(yft−1, z

f
t−1) + σ2

zm

Dividing by σzm and σym , we have

ρzmym = βmαmy γ
mαmz ρzmym + βmαmy γ

m(1− αmz )
σzf

σzm
ρymzf

+ βm(1− αmy )γmαmz
σyf

σym
ρzmyf + βm(1− αmy )γm(1− αmz )

σzf

σzm

σyf

σym
ρzfyf +

σzm

σym
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and rearranging

(1− βmαmy γmαmz )ρzmym − βm(1− αmy )γm(1− αmz )
σzf

σzm

σyf

σym
ρzfyf

=
σzm

σym
+ βmαmy γ

m(1− αmz )
σzf

σzm
ρymzf + βm(1− αmy )γmαmz

σyf

σym
ρzmyf

analogously

−βf (1− αfy)γf (1− αfz )
σzm

σzf

σym

σyf
ρzmym + (1− βfαfyγfαfz )ρzfyf

=
σzf

σyf
+ βfαfyγ

f (1− αfz )
σzm

σzf
ρzmyf + βf (1− αfy)γfαfz

σym

σyf
ρymzf

and from these two equations we can solve for ρzmym and ρzfyf as a function of ρymzf , ρzmyf and some other

parameters of the model.

We then have that the model has 20 parameters γk, βk, αkz , α
k
y , σ

2
zk , σ

2
xk , σ

2
ek , k = m, f , and σxmxf , σemef ,

ρzmzf , ρymzf , ρzmyf and ρymyf

I.3 Covariances

I.3.1 Main covariances

We use the notation in Figure 1 to denote individuals with different degrees of kinship. We first compute

the main covariances (husband-wife, parent-child and siblings). Then, the covariances for other relatives are

obtained recursively.

Husband and wife a− a′

We have to compute the covariance between "a" and "a′". Let n′ = m, f be the gender of a′ and n = m, f

the gender of the a.

Cov(ya,nt−1, y
a′,n′

t−1 ) = σymσyf ρymyf

Parent–child aa− a′

We have to compute the covariances between "aa" and "a′". Let n′ = m, f be the gender of a′ and n∗ = m, f

the gender of the aa. We project aa on a′ (his/her father or mother) who has gender n′

Cov(zaa,n
∗

t , za
′,n′

t−1 ) = Cov(Gn
∗
yn′y

n′
t−1 +Gn

∗
zn′z

n′
t−1, z

n′
t−1)

= Gn
∗
yn′σzn′σyn′ρzn′yn′ +Gn

∗
zn′σ

2
zn′

Cov(zaa,n
∗

t , ya
′,n′

t−1 ) = Cov(Gn
∗
yn′y

n′
t−1 +Gn

∗
zn′z

n′
t−1, y

n′
t−1)

= Gn
∗
yn′σ

2
yn′ +Gn

∗
zn′σzn′σyn′ρzn′yn′
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Cov(yaa,n
∗

t , za
′,n′

t−1 ) = Cov(Bn
∗

yn′y
n′
t−1 +Bn

∗
zn′z

n′
t−1, z

n′
t−1)

= Bn
∗

yn′σzn′σyn′ρzn′yn′ +Bkzn′σ
2
zn′

Cov(yaa,n
∗

t , ya
′,n′

t−1 ) = Cov(Bn
∗

yn′y
n′
t−1 +Bn

∗
zn′z

n′
t−1, y

n′
t−1)

= Bn
∗

yn′σ
2
yn′ +Bn

∗
zn′σzn′σyn′ρzn′yn′

Siblings a′ − b

We have to compute the covariances between "a′" and "b". Let n′ = m, f be the gender of a′ and l = m, f

the gender of the b. We project a′ and b on their father or mother GP2 who has gender k

Cov(z
a′,n′

t−1 , z
b,l
t−1) = Cov(Gn

′
yky

GP2,k
t−2 +Gn

′
zkz

GP2,k
t−2 + gn

′
k ω

k
t−2 + ea

′,n′

t−1 , G
l
yky

GP2,k
t−2 +Glzkz

GP2,k
t−2 + glkω

k
t−2 + eb,lt−1)

= Gn
′
ykG

l
ykσ

2
yk+Gn

′
zkG

l
zkσ

2
zk+

(
Gn
′
ykG

l
zk+Gn

′
zkG

l
yk

)
σzn′σyn′ρzn′yn′

+gn
′
k g

l
kσ

2
wk+σen′el

Cov(z
a′,n′

t−1 , y
b,l
t−1) = Cov(Gn

′
yky

GP2,k
t−2 +Gn

′
zkz

GP2,k
t−2 + gn

′
k ω

k
t−2 + ea

′,n′

t−1 , B
l
yky

GP2,k
t−2 +Blzkz

GP2,k
t−2 + blkε

k
t−2 + glkω

k
t−2 + eb,lt−1)

= Gn
′
ykB

l
ykσ

2
yk+Gn

′
zkB

l
zkσ

2
zk+

(
Gn
′
ykB

l
zk+Gn

′
zkB

l
yk

)
σzn′σyn′ρzn′yn′

+gn
′
k g

l
kσ

2
wk+σen′el+g

n′
k b

l
kCov(ε

k
t−1, ω

k
t−1)

Cov(y
a′,n′

t−1 , z
b,l
t−1) = Cov(Bn

′
yky

GP2,k
t−2 +Bn

′
zkz

GP2,k
t−2 + bn

′
k ε

n′
t−2 + gn

′
k ω

k
t−2 + ea

′,n′

t−1 , G
l
yky

GP2,k
t−2 +Glzkz

GP2,k
t−2 + glkω

k
t−2 + eb,lt−1)

= Bn
′
ykG

l
ykσ

2
yk+Bn

′
zkG

l
zkσ

2
zk+

(
Bn
′

ykG
l
zk+Bn

′
zkG

l
yk

)
σzn′σyn′ρzn′yn′

+gn
′
k g

l
kσ

2
wk+σen′el+b

n′

k g
l
kCov(ε

k
t−1, ω

k
t−1)

Cov(y
a′,n′

t−1 , y
b,l
t−1) = Cov(Bn′

yky
GP2,k
t−2 +Bn′

zkz
GP2,k
t−2 +bn

′
k εn

′
t−2+g

n′
k ωk

t−2+e
a′,n′
t−1 +xa′,n′

t−1 ,Bl
yky

GP2,k
t−2 +Bl

zkz
GP2,k
t−2 +blkε

k
t−2+g

l
kω

k
t−2+e

b,l
t−1+x

b,l
t−1)

= Bn
′
ykB

l
ykσ

2
yk+Bn

′
zkB

l
zkσ

2
zk+

(
Bn
′

ykB
l
zk+Bn

′
zkB

l
yk

)
σzn′σyn′ρzn′yn′

+gn
′
k g

l
kσ

2
wk+bn

′

k b
l
kσ

2
εk+σen′el+

(
bn
′
k g

l
k+gn

′
k b

l
k

)
Cov(ε

n′

t−1, ω
n′
t−1)+σxn′xl

I.3.2 Other covariances

Before we obtain the remaining covariances for different degrees of kinship we compute the linear projections

of za
′,n′

t−1 and ya
′,n′

t−1 on zb,lt−1 and yb,lt−1, n′, l = m, f, where a′ and b are siblings

za
′,n′

t−1 = rn
′,l
zz z

b,l
t−1 + rn

′,l
zy y

b,l
t−1 + wb,lt−1

ya
′,n′

t−1 = rn
′,l
yz z

b,l
t−1 + rn

′,l
yy y

b,l
t−1 + εb,lt−1

where wb,lt−1 and εb,lt−1 might be correlated but are uncorrelated with zb,lt−1 and yb,lt−1 and

rn
′,l
zz =

1

σ2
zl
σ2
yl
− σ2

zlyl

(
σ2
ylσza′,n′zb,l − σzlylσza′,n′yb,l

)
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rn
′,l
zy =

1

σ2
zl
σ2
yl
− σ2

zlyl

(
σ2
zlσza′,n′yb,l − σzlylσza′,n′zb,l

)

rn
′,l
yz =

1

σ2
zl
σ2
yl
− σ2

zlyl

(
σ2
ylσya′,n′zb,l − σzlylσya′,n′yb,l

)

rn
′,l
yy =

1

σ2
zl
σ2
yl
− σ2

zlyl

(
σ2
zlσya′,n′yb,l − σzlylσya′,n′zb,l

)

Notice that error terms, wb,lt−1 and εb,lt−1, are likely to be correlated with the latent factor and the outcome of

a, the spouse of a′, and also with error terms of the linear projections of a′ on a. However, since we use these

linear projections to find the correlation with in-law relatives of b, what is relevant is whether wb,lt−1 and εb,lt−1

are correlated with zb
′,l
t−1 and yb

′,l
t−1, where b′ is the spouse of b. Since these error terms are not correlated with

zb,lt−1 and yb,lt−1, and we are assuming that the assortative mating is in z and y, they are not correlated with

zb
′,l
t−1 and yb

′,l
t−1 either.

Consanguine relatives ("blood")

Vertical covariances

Uncle/aunt (siblings of the parents) aa− b

We have to compute the covariances between "aa" and "b". Let n∗ = m, f be the gender of aa and l = m, f

the gender of the b. We project aa on a′ (his/her father or mother) who has gender n′

Cov(zaa,n
∗

t , zb,lt−1) = Cov(Gn
∗
zn′z

a′,n′

t−1 +Gn
∗
yn′y

a′,n′

t−1 , z
b,l
t−1) = Gn

∗
zn′Cov(za

′,n′

t−1 , z
b,l
t−1) +Gn

∗
yn′Cov(ya

′,n′

t−1 , z
b,l
t−1)

Cov(zaa,n
∗

t , yb,lt−1) = Cov(Gn
∗
zn′z

a′,n′

t−1 +Gn
∗
yn′y

a′,n′

t−1 , y
b,l
t−1) = Gn

∗
zn′Cov(za

′,n′

t−1 , y
b,l
t−1) +Gn

∗
yn′Cov(ya

′,n′

t−1 , y
b,l
t−1)

Cov(yaa,n
∗

t , zb,lt−1) = Cov(Bn
∗

zn′z
a′,n′

t−1 +Bn
∗

yn′y
a′,n′

t−1 , z
b,l
t−1) = Bn

∗
zn′Cov(za

′,n′

t−1 , z
b,l
t−1) +Bn

∗
yn′Cov(ya

′,n′

t−1 , z
b,l
t−1)

Cov(yaa,n
∗

t , yb,lt−1) = Cov(Bn
∗

zn′z
a′,n′

t−1 +Bn
∗

yn′y
a′,n′

t−1 , y
b,l
t−1) = Bn

∗
zn′Cov(za

′,n′

t−1 , y
b,l
t−1) +Bn

∗
yn′Cov(ya

′,n′

t−1 , y
b,l
t−1)

where a′ and b are siblings.

Horizontal covariances

Cousins aa− bb

We have to compute the covariances between "aa" and "bb". Let n∗ = m, f be the gender of aa and l∗ = m, f

the gender of the bb. We project bb on b (his/her father or mother) who has gender l

Cov(zaa,n
∗

t , zbb,l
∗

t ) = Cov(zaa,n
∗

t , Gl
∗
zlz

b,l
t−1 +Gl

∗
yly

b,l
t−1) = Gl

∗
zlCov(zaa,n

∗

t , zb,lt−1) +Gl
∗
ylCov(zaa,n

∗

t , yb,lt−1)

Cov(zaa,n
∗

t , ybb,l
∗

t ) = Cov(zaa,n
∗

t , Bl
∗
zlz

b,l
t−1 +Bl

∗
yly

b,l
t−1) = Bl

∗
zlCov(zaa,n

∗

t , zb,lt−1) +Bl
∗
ylCov(zaa,n

∗

t , yb,lt−1)

Cov(yaa,n
∗

t , zbb,l
∗

t ) = Cov(yaa,n
∗

t , Gl
∗
zlz

b,l
t−1 +Gl

∗
yly

b,l
t−1) = Gl

∗
zlCov(yaa,n

∗

t , zb,lt−1) +Gl
∗
ylCov(yaa,n

∗

t , yb,lt−1)

7



Cov(yaa,n
∗

t , ybb,l
∗

t ) = Cov(yaa,n
∗

t , Bl
∗
zlz

b,l
t−1 +Bl

∗
yly

b,l
t−1) = Bl

∗
zlCov(yaa,n

∗

t , zb,lt−1) +Bl
∗
ylCov(yaa,n

∗

t , yb,lt−1)

where b is the uncle/aunt of aa.

Affinity relatives ("in-law")

Vertical covariances

Spouse of the uncle/aunt (spouses of the siblings of the parents) aa− b′

We have to compute the covariances between "aa" and "b′". Let n∗ = m, f be the gender of aa and l′ = m, f

the gender of the b′. We project b′ on his/her spouse b who has gender l

Cov(zaa,n
∗

t , zb
′,l′

t−1 ) = Cov(zaa,n
∗

t , rlzzz
b,l
t−1 + rlzyy

b,l
t−1) = rlzzCov(zaa,n

∗

t , zb,lt−1) + rlzyCov(zaa,n
∗

t , yb,lt−1)

Cov(zaa,n
∗

t , yb
′,l′

t−1 ) = Cov(zaa,n
∗

t , rlyzz
b,l
t−1 + rlyyy

b,l
t−1) = rlyzCov(zaa,n

∗

t , zb,lt−1) + rlyyCov(zaa,n
∗

t , yb,lt−1)

Cov(yaa,n
∗

t , zb
′,l′

t−1 ) = Cov(yaa,n
∗

t , rlzzz
b,l
t−1 + rlzyy

b,l
t−1) = rlzzCov(yaa,n

∗

t , zb,lt−1) + rlzyCov(yaa,n
∗

t , yb,lt−1)

Cov(yaa,n
∗

t , yb
′,l′

t−1 ) = Cov(yaa,n
∗

t , rlyzz
b,l
t−1 + rlyyy

b,l
t−1) = rlyzCov(yaa,n

∗

t , zb,lt−1) + rlyyCov(yaa,n
∗

t , yb,lt−1)

where b is uncle/aunt of aa.

Siblings of the siblings in law of the parents aa− c

We have to compute the covariances between "aa" and "c". Let n∗ = m, f be the gender of aa and o = m, f

the gender of the c. We project c on his/her sibling b′ who has gender l′

Cov(zaa,n
∗

t , zc,ot−1) = Cov(zaa,n
∗

t , ro,l
′

zz z
b′,l′

t−1 + ro,l
′

zy y
b′,l′

t−1 ) = ro,l
′

zz Cov(zaa,n
∗

t , zb
′,l′

t−1 ) + ro,l
′

zy Cov(zaa,n
∗

t , yb
′,l′

t−1 )

Cov(zaa,n
∗

t , yc,ot−1) = Cov(zaa,n
∗

t , ro,l
′

yz z
b′,l′

t−1 + ro,l
′

yy y
b′,l′

t−1 ) = ro,l
′

yz Cov(zaa,n
∗

t , zb
′,l′

t−1 ) + ro,l
′

yy Cov(zaa,n
∗

t , yb
′,l′

t−1 )

Cov(yaa,n
∗

t , zc,ot−1) = Cov(yaa,n
∗

t , ro,l
′

zz z
b′,l′

t−1 + ro,l
′

zy y
b′,l′

t−1 ) = ro,l
′

zz Cov(yaa,n
∗

t , zb
′,l′

t−1 ) + ro,l
′

zy Cov(yaa,n
∗

t , yb
′,l′

t−1 )

Cov(yaa,n
∗

t , yc,ot−1) = Cov(yaa,n
∗

t , ro,l
′

yz z
b′,l′

t−1 + ro,l
′

yy y
b′,l′

t−1 ) = ro,l
′

yz Cov(yaa,n
∗

t , zb
′,l′

t−1 ) + ro,l
′

yy Cov(yaa,n
∗

t , yb
′,l′

t−1 )

where b′ is the spouse of the uncle/aunt of aa.

We can recursively compute the covariances for the spouses of the siblings in law of the parents and the

siblings of the siblings in law of the parents of any degree.

Horizontal covariances

Siblings in law a− b

We have to compute the covariances between "a" and "b". Let n = m, f be the gender of a and l = m, f the
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gender of the b. We project a on his/her spouse a′ who has gender n′

Cov(za,nt−1, z
b,l
t−1) = Cov(rn

′
zzz

a′,n′

t−1 + rn
′
zyy

a′,n′

t−1 , z
b,l
t−1) = rn

′
zzCov(za

′,n′

t−1 , z
b,l
t−1) + rn

′
zyCov(ya

′,n′

t−1 , z
b,l
t−1)

Cov(za,nt−1, y
b,l
t−1) = Cov(rn

′
zzz

a′,n′

t−1 + rn
′
zyy

a′,n′

t−1 , y
b,l
t−1) = rn

′
zzCov(za

′,n′

t−1 , y
b,l
t−1) + rn

′
zyCov(ya

′,n′

t−1 , y
b,l
t−1)

Cov(ya,nt−1, z
b,l
t−1) = Cov(rn

′
yzz

a′,n′

t−1 + rn
′
yyy

a′,n′

t−1 , z
b,l
t−1) = rn

′
yzCov(za

′,n′

t−1 , z
b,l
t−1) + rn

′
yyCov(ya

′,n′

t−1 , z
b,l
t−1)

Cov(ya,nt−1, y
b,l
t−1) = Cov(rn

′
yzz

a′,n′

t−1 + rn
′
yyy

a′,n′

t−1 , y
b,l
t−1) = rn

′
yzCov(za

′,n′

t−1 , y
b,l
t−1) + rn

′
yyCov(ya

′,n′

t−1 , y
b,l
t−1)

where a′ and b are siblings.

Spouse of the siblings in law a− b′

We have to compute the covariances between "a" and "b′". Let n = m, f be the gender of a and l′ = m, f

the gender of the b′. We project b′ on his/her spouse b

Cov(za,nt−1, z
b′,l′

t−1 ) = Cov(za,nt−1, r
l
zzz

b,l
t−1 + rlzyy

b,l
t−1) = rlzzCov(za,nt−1, z

b,l
t−1) + rlzyCov(za,nt−1, y

b,l
t−1)

Cov(za,nt−1, y
b′,l′

t−1 ) = Cov(za,nt−1, r
l
yzz

b,l
t−1 + rlyyy

b,l
t−1) = rlyzCov(za,nt−1, z

b,l
t−1) + rlyyCov(za,nt−1, y

b,l
t−1)

Cov(ya,nt−1, z
b′,l′

t−1 ) = Cov(ya,nt−1, r
l
zzz

b,l
t−1 + rlzyy

b,l
t−1) = rlzzCov(ya,nt−1, z

b,l
t−1) + rlzyCov(ya,nt−1, y

b,l
t−1)

Cov(ya,nt−1, y
b′,l′

t−1 ) = Cov(ya,nt−1, r
l
yzz

b,l
t−1 + rlyyy

b,l
t−1) = rlyzCov(ya,nt−1, z

b,l
t−1) + rlyyCov(ya,nt−1, y

b,l
t−1)

where a and b are siblings in law.

Sibling of the sibling in law

We have to compute the covariances between "a′" and "c". Let n′ = m, f be the gender of a′ and o = m, f

the gender of the c. We project a′ on his/her sibling b who has gender l

Cov(za
′,n′

t−1 , z
c,o
t−1) = Cov(rn

′,l
zz z

b,l
t−1 + rn

′,l
zy y

b,l
t−1, z

c,o
t−1) = rn

′,l
zz Cov(zb,lt−1, z

c,o
t−1) + rn

′,l
zy Cov(yb,lt−1, z

c,o
t−1)

Cov(za
′,n′

t−1 , y
c,o
t−1) = Cov(rn

′,l
zz z

b,l
t−1 + rn

′,l
zy y

b,l
t−1, y

c,o
t−1) = rn

′,l
zz Cov(zb,lt−1, y

c,o
t−1) + rn

′,l
zy Cov(yb,lt−1, y

c,o
t−1)

Cov(ya
′,n′

t−1 , z
c,o
t−1) = Cov(rn

′,l
yz z

b,l
t−1 + rn

′,l
yy y

b,l
t−1, z

c,o
t−1) = rn

′,l
yz Cov(zb,lt−1, z

c,o
t−1) + rn

′,l
yy Cov(yb,lt−1, z

c,o
t−1)

Cov(ya
′,n′

t−1 , y
c,o
t−1) = Cov(rn

′,l
yz z

b,l
t−1 + rn

′,l
yy y

b,l
t−1, y

c,o
t−1) = rn

′,l
yz Cov(zb,lt−1, y

c,o
t−1) + rn

′,l
yy Cov(yb,lt−1, y

c,o
t−1)

where b and c are siblings in law.

We can recursively compute the covariances for siblings in law, spouses of the siblings in law and siblings of

the siblings in law of any degree.

Cousins in law

We have to compute the covariances between "aa" and "cc". Let n∗ = m, f be the gender of aa and o∗ = m, f

9



the gender of the cc. We project cc on c (his/her father or mother) who has gender o

Cov(zaa,n
∗

t , zcc,o
∗

t ) = Cov(zaa,n
∗

t , Go
∗
zoz

c,o
t−1 +Go

∗
yoy

c,o
t−1) = Go

∗
zoCov(zaa,n

∗

t , zc,ot−1) +Go
∗
yoCov(zaa,n

∗

t , yc,ot−1)

Cov(zaa,n
∗

t , ycc,o
∗

t ) = Cov(zaa,n
∗

t , Bo
∗
zoz

c,o
t−1 +Bo

∗
yoy

c,o
t−1) = Bo

∗
zoCov(zaa,n

∗

t , zc,ot−1) +Bo
∗
yoCov(zaa,n

∗

t , yc,ot−1)

Cov(yaa,n
∗

t , zcc,o
∗

t ) = Cov(yaa,n
∗

t , Go
∗
zoz

c,o
t−1 +Go

∗
yoy

c,o
t−1) = Go

∗
zoCov(yaa,n

∗

t , zc,ot−1) +Go
∗
yoCov(yaa,n

∗

t , yc,ot−1)

Cov(yaa,n
∗

t , ycc,o
∗

t ) = Cov(yaa,n
∗

t , Bo
∗
zoz

c,o
t−1 +Bo

∗
yoy

c,o
t−1) = Bo

∗
zoCov(yaa,n

∗

t , zc,ot−1) +Bo
∗
yoCov(yaa,n

∗

t , yc,ot−1)

where c is the sibling in law of the uncle/aunt of aa. We can recursively compute the covariances for cousins

in law of any degree.

J No Direct Effect and Assortative Mating Only in z

We next consider a latent factor model with no direct effect (β = 0) and assortative mating only in z. This

model is less general than the previous one but it has the advantage that we can show how the parameters

are identified.

We write the outcome y for an individual from generation t as

ykt = zkt + xkt + ukt (J.1)

where the superscript k = m stands for males and k = f for females. We assume that the socioeconomic

status of the child, zkt , depends on the father zmt−1 as well as on the mother zft−1

zkt = γkz̃kt−1 + ekt + vkt

z̃kt−1 = αkzz
m
t−1 + (1− αkz)zft−1

(J.2)

Regarding the shocks, we assume that xkt and ekt are shared by all siblings of the same gender, can be

correlated across siblings of different gender and are uncorrelated to each other and with the other variables

(in particular with zkt−1 and ylt−1, l = m, f). Finally ukt and vkt are white-noise errors.

Notice that from (J.1)

Cov(ykt , z
k
t ) = σ2

zk

J.1 Assortative mating process

We assume there is assortative mating only in z, i.e we assume that the coefficients of ymt−1 in the linear

projections of zft−1 and yft−1on zmt−1 and ymt−1 are zero. This means that we can write zft−1 as

10



zft−1 =
σzf

σzm
ρzmzf z

m
t−1 + wmt−1

where wmt−1 is uncorrelated with zmt−1 and ymt−1, and

yft−1 =
σzf

σzm
ρzmzf z

m
t−1 + wmt−1 + xft−1 + uft−1

We have that

σ2
wm = σ2

zf

(
1− ρ2zmzf

)

We use these matching functions to write years of schooling, ykt , and social status, zkt , as a function of the

father social status zmt−1. We can write (J.2) as

zkt = γk
(
αkzz

m
t−1 + (1− αkz)zft−1

)
+ ekt + vkt

= γk
(
αkzz

m
t−1 + (1− αkz)

(
σzf

σzm
ρzmzf z

m
t−1 + wmt−1

))
+ ekt + vkt

= Gkzmz
m
t−1 + gkmω

m
t−1 + ekt + vkt

where

Gkzm = γk(αkz + (1− αkz)
σzf

σzm
ρzmzf )

gkm = γk(1− αkz)

and (J.1) as

ykt = Gkzmz
m
t−1 + gkmω

m
t−1 + ekt + xkt + vkt + ukt

All these expressions will be used to compute correlations between relatives that are related through their

fathers. However, when we consider relatives that are related through their mothers, we use the expressions

for ykt and zkt as functions of mother

zkt = Gkzfz
f
t−1 + gkfω

f
t−1 + ekt + vkt

where

Gkzf = γk(αkz
σzm

σzf
ρzmzf + (1− αkz))

gkf = γkαkz

and (J.1) as

ykt = Gkzfz
f
t−1 + gkfω

f
t−1 + ekt + xkt + vkt + ukt

We then have that the model has 13 parameters γk, αkz , σ
2
zk , σ

2
xk , σ

2
ek , k = m, f , σxmxf , σemef , ρzmzf .

11



J.2 Covariances

J.2.1 Main covariances

We first compute the main covariances (husband-wife, parent-child and siblings). Then, the covariances for

other relatives are obtained recursively. We again use the notation in Figure 1 to denote individuals with

different degrees of kinship.

Husband and wife a− a′

We have to compute the covariances between "a" and "a′". Let n′ = m, f be the gender of a′ and n = f,m

the gender of a

Cov(ya,nt−1, y
a′,n′

t−1 ) = Cov

(
σzn

σzn′
ρzmzf z

a′,n′

t−1 , y
a′,n′

t−1

)

=
σzn

σzn′
ρzmzfCov(za

′,n′

t−1 , y
a′,n′

t−1 ) =
σzn

σzn′
ρzmzfσ

2
zn′ = σzfσzmρzmzf

Parent–child aa− a′

We have to compute the covariances between "aa" and "a′". Let n∗ = m, f be the gender of aa and n′ = m, f

the gender a′. We project aa on a′ (his/her father or mother).

Cov(zaa,n
∗

t , za
′,n′

t−1 ) = Cov(Gn
∗
zn′z

a′,n′

t−1 , z
a′,n′

t−1 ) = Gn
∗
zn′σ

2
zn′

Cov(zaa,n
∗

t , ya
′,n′

t−1 ) = Cov(Gn
∗
zn′z

a′,n′

t−1 , y
a′,n′

t−1 ) = Gn
∗
zn′σ

2
zn′

Cov(yaa,n
∗

t , za
′,n′

t−1 ) = Cov(Gn
∗
zn′z

a′,n′

t−1 , z
a′,n′

t−1 ) = Gn
∗
zn′σ

2
zn′

Cov(yaa,n
∗

t , ya
′,n′

t−1 ) = Cov(Gn
∗
zn′z

a′,n′

t−1 , y
a′,n′

t−1 ) = Gn
∗
zn′σ

2
zn′

Notice that in this case the four covariances take the same value.

Grandparent–child aaa− a′

We have to compute the covariances between "aaa" and "a′". Let n′ = m, f be the gender of a′ and

n∗∗ = m, f the gender of the aaa. We project aaa on aa (his/her father or mother) who has gender n∗

Cov(zaaa,n
∗∗

t+1 , za
′,n′

t−1 ) = Gn
∗∗
zn∗Cov(zaa,n

∗

t , za
′,n′

t−1 )

Cov(zaaa,n
∗∗

t+1 , ya
′,n′

t−1 ) = Gn
∗∗
zn∗Cov(zaa,n

∗

t , za
′,n′

t−1 )

Cov(yaaa,n
∗∗

t+1 , za
′,n′

t−1 ) = Gn
∗∗
zn∗Cov(zaa,n

∗

t , za
′,n′

t−1 )
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Cov(yaaa,n
∗∗

t+1 , ya
′,n′

t−1 ) = Gn
∗∗
zn∗Cov(zaa,n

∗

t , za
′,n′

t−1 )

Siblings a′ − b

We have to compute the covariance between "a′" and "b". Let n′ = m, f be the gender of a′ and l = m, f

the gender of the b. We project a′ and b on their father or mother GP2 who has gender k

Cov(za
′,n′

t−1 , z
b,l
t−1) = Cov(Gn

′
zkz

GP2,k
t−2 + gn

′
k ω

GP2,k
t−2 + ea

′,n′

t−1 , G
l
zkz

GP2,k
t−2 + glkω

GP2,k
t−2 + eb,lt−1)

= Gn
′
zkG

l
zkσ

2
zk + gn

′
k g

l
kσ

2
wk + σen′el

Cov(za
′,n′

t−1 , y
b,l
t−1) = Cov(Gn

′
zkz

GP2,k
t−2 + gn

′
k ω

GP2,k
t−2 + ea

′,n′

t−1 , G
l
zkz

GP2,k
t−2 + glkω

GP2,k
t−2 + eb,lt−1)

= Gn
′
zkG

l
zkσ

2
zk + gn

′
k g

l
kσ

2
wk + σen′el

Cov(ya
′,n′

t , yb,lt ) = Cov(Gn
′
zkz

GP2,k
t−2 + gn

′
k ω

GP2,k
t−2 + ea

′,n′

t−1 + xa
′,n′

t−1 , G
l
zkz

GP2,k
t−2 + glkω

GP2,k
t−2 + eb,lt−1 + xb,lt−1)

= Gn
′
zkG

l
zkσ

2
zk + gn

′
k g

l
kσ

2
wk + σen′el + σxn′xl

J.2.2 Other covariances

Consanguine relatives ("blood")

Vertical covariances

Uncle/aunt (siblings of the parents) aa− b

We have to compute the covariances between "aa" and "b". Let n∗ = m, f be the gender of aa and l = m, f

the gender of the b. We project aa on a′ (his/her father or mother) who has gender n′

Cov(zaa,n
∗

t , zb,lt−1) = Cov(Gn
∗
zn′z

a′,n′

t−1 , z
b,l
t−1) = Gn

∗
zn′Cov(za

′,n′

t−1 , z
b,l
t−1)

Cov(zaa,n
∗

t , yb,lt−1) = Cov(Gn
∗
zn′z

a′,n′

t−1 , y
b,l
t−1) = Gn

∗
zn′Cov(za

′,n′

t−1 , y
b,l
t−1)

Cov(yaa,n
∗

t , zb,lt−1) = Cov(Gn
∗
zn′z

a′,n′

t−1 , z
b,l
t−1) = Gn

∗
zn′Cov(za

′,n′

t−1 , z
b,l
t−1)

Cov(yaa,n
∗

t , yb,lt−1) = Cov(Gn
∗
zn′z

a′,n′

t−1 , y
b,l
t−1) = Gn

∗
zn′Cov(za

′,n′

t−1 , y
b,l
t−1)

where a′ and b are siblings.

Horizontal covariances

Cousins aa− bb

We have to compute the covariances between "aa" and "bb". Let n∗ = m, f be the gender of aa and l∗ = m, f

the gender of the bb. We project bb on b (his/her father or mother) who has gender l

Cov(zaa,n
∗

t , zbb,l
∗

t ) = Cov(zaa,n
∗

t , Gl
∗
zlz

b,l
t−1) = Gl

∗
zlCov(zaa,n

∗

t , zb,lt−1)

Cov(zaa,n
∗

t , ybb,l
∗

t ) = Cov(zaa,n
∗

t , Gl
∗
zlz

b,l
t−1) = Gl

∗
zlCov(zaa,n

∗

t , zb,lt−1)
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Cov(yaa,n
∗

t , zbb,l
∗

t ) = Cov(yaa,n
∗

t , Gl
∗
zlz

b,l
t−1) = Gl

∗
zlCov(yaa,n

∗

t , zb,lt−1)

Cov(yaa,n
∗

t , ybb,l
∗

t ) = Cov(yaa,n
∗

t , Gl
∗
zlz

b,l
t−1) = Gl

∗
zlCov(yaa,n

∗

t , zb,lt−1)

where b is the uncle/aunt of aa.

Affinity relatives ("in-law")

Vertical covariances

Spouse of the uncle/aunt (spouses of the siblings of the parents) aa− b′

We have to compute the covariances between "aa" and "b′". Let n∗ = m, f be the gender of aa and l′ = m, f

the gender of the b′. We project b′ on his/her spouse b with gender l

Cov(zaa,n
∗

t , zb
′,l′

t−1 ) = Cov(zaa,n
∗

t ,
σzl′

σzl
ρzmzf z

b,l
t−1) =

σzl′

σzl
ρzmzfCov(zaa,n

∗

t , zb,lt−1)

Cov(zaa,n
∗

t , yb
′,l′

t−1 ) = Cov(zaa,n
∗

t ,
σzl′

σzl
ρzmzf z

b,l
t−1) =

σzl′

σzl
ρzmzfCov(zaa,n

∗

t , zb,lt−1)

Cov(yaa,n
∗

t , zb
′,l′

t−1 ) = Cov(yaa,n
∗

t ,
σzl′

σzl
ρzmzf z

b,l
t−1) =

σzl′

σzl
ρzmzfCov(yaa,n

∗

t , zb,lt−1)

Cov(yaa,n
∗

t , yb
′,l′

t−1 ) = Cov(yaa,n
∗

t ,
σzl′

σzl
ρzmzf z

b,l
t−1) =

σzl′

σzl
ρzmzfCov(yaa,n

∗

t , zb,lt−1)

where b is uncle/aunt of aa.

Horizontal covariances

Siblings in law a− b

We have to compute the covariances between a and b. Let n = m, f be the gender of a and l = m, f the

gender of the b. We project a on his/her spouse a′ with gender n′

Cov(za,nt−1, z
b,l
t−1) = Cov

(
σzn

σzn′
ρzmzf z

a′,n′

t−1 , z
b,l
t−1

)
=

σzn

σzn′
ρzmzfCov(za

′,n′

t−1 , z
b,l
t−1)

Cov(za,nt−1, y
b,l
t−1) = Cov

(
σzn

σzn′
ρzmzf z

a′,n′

t−1 , y
b,l
t−1

)
=

σzn

σzn′
ρzmzfCov(za

′,n′

t−1 , y
b,l
t−1)

Cov(ya,nt−1, z
b,l
t−1) = Cov

(
σzn

σzn′
ρzmzf z

a′,n′

t−1 , z
b,l
t−1

)
=

σzn

σzn′
ρzmzfCov(za

′,n′

t−1 , z
b,l
t−1)

Cov(ya,n
′

t−1 , y
b,l
t−1) = Cov

(
σzn

σzn′
ρzmzf z

a′,n′

t−1 , y
b,l
t−1

)
=

σzn

σzn′
ρzmzfCov(za

′,n′

t−1 , y
b,l
t−1)

where a′ and b are siblings.

We now compute the covariances between "a′" and "b′". Let n′ = m, f be the gender of "a′" and l′ = m, f

the gender of the b′. We project b′ on his/her spouse b with gender l

Cov(za
′,n′

t−1 , z
b′,l′

t−1 ) = Cov

(
za
′,n′

t−1 ,
σzl′

σzl
ρzmzf z

b,l
t−1

)
=
σzl′

σzl
ρzmzfCov(za

′,n′

t−1 , z
b,l
t−1)
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Cov(za
′,n′

t−1 , y
b′,l′

t−1 ) = Cov

(
za
′,n′

t−1 ,
σzl′

σzl
ρzmzf z

b,l
t−1

)
=
σzl′

σzl
ρzmzfCov(za

′,n′

t−1 , z
b,l
t−1)

Cov(ya
′,n′

t−1 , z
b′,l′

t−1 ) = Cov

(
ya
′,n′

t−1 ,
σzl′

σzl
ρzmzf z

b,l
t−1

)
=
σzl′

σzl
ρzmzfCov(ya

′,n′

t−1 , z
b,l
t−1)

Cov(ya
′,n′

t−1 , y
b′,l′

t−1 ) = Cov

(
ya
′,n′

t−1 ,
σzl′

σzl
ρzmzf z

b,l
t−1

)
=
σzl′

σzl
ρzmzfCov(ya

′,n′

t−1 , z
b,l
t−1)

where "a′" and "b" are siblings. Notice that since "a′" is the spouse of "a", n = f when n′ = m and viceversa.

Spouse of the siblings in law a− b′

We have to compute the covariances between "a" and "b′". Let n = m, f be the gender of a and l′ = m, f

the gender of the b′. We project b′ on his/her spouse b with gender l

Cov(za,nt−1, z
b′,l′

t−1 ) = Cov(za,nt−1,
σzl′

σzl
ρzmzf z

b,l
t−1) =

σzl′

σzl
ρzmzfCov(za,nt−1, z

b,l
t−1)

Cov(za,nt−1, y
b′,l′

t−1 ) = Cov(za,nt−1,
σzl′

σzl
ρzmzf z

b,l
t−1) =

σzl′

σzl
ρzmzfCov(za,nt−1, z

b,l
t−1)

Cov(ya,nt−1, z
b′,l′

t−1 ) = Cov(ya,nt−1,
σzl′

σzl
ρzmzf z

b,l
t−1) =

σzl′

σzl
ρzmzfCov(ya,nt−1, z

b,l
t−1)

Cov(ya,nt−1, y
b′,l′

t−1 ) = Cov(ya,nt−1,
σzl′

σzl
ρzmzf z

b,l
t−1) =

σzl′

σzl
ρzmzfCov(ya,nt−1, z

b,l
t−1)

where a and b are siblings in law.

J.3 Correlations

We now compute the correlations in y for different degrees of kinship using the formulas for the covariances

we derive above. We denote the correlations by ρi,n−j,l, where i and j denote the corresponding relatives,

and n and l are the genders of i and j respectively

Husband and wife a− a′

ρa−a′ =
σzf

σyf

σzm

σym
ρzfzm

Parent–child aa− a′

ρaa,n∗−a′,n′ = Gn
∗
zn′

σzn∗

σyn∗

σzn′

σyn′

Grandparent–child aaa− a′

ρaaa,n∗∗−a′,n′ = Gn
∗∗
zn′ ρaa,n∗−a′,n′

Siblings a′ − b

ρa′,n′−b,l = Gn
′
zkG

l
zk

σzk

σyn′

σzk

σyl
+ gn

′
k g

l
k

σwk

σyn′

σwk

σyl
+

σen′el

σyn′σyl
+

σxn′xl

σyn′σyl
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Uncle/aunt (siblings of the parents) aa− b

ρaa,n∗−b,l = Gn
∗
zn′

σyn′

σyn∗

(
Gn
′
zkG

l
zk

σzk

σyn′

σzk

σyl
+ gn

′
k g

l
k

σwk

σyn′

σwk

σyl
+

σen′el

σyn′σyl

)
(J.3)

Cousins aa− bb

ρaa,n∗−b,l∗ = Gl
∗
zl

σyl

σyl∗
ρaa,n∗−b,l

Spouse of the uncle/aunt (spouses of the siblings of the parents) aa− b′

ρaa,n∗−b′,l′ =
σzl′

σzl
ρzmzf

σyl

σ
yl
′
ρaa,n∗−b,l (J.4)

Siblings in law a− b or a′ − b′

ρa,n−b,l =
σzn

σzn′
ρzmzf

σyn′

σyn

(
Gn
′
zkG

l
zk

σzk

σyn′

σzk

σyl
+ gn

′
k g

l
k

σwk

σyn′

σwk

σyl
+

σen′el

σyn′σyl

)

ρa′,n′−b′,l′ =
σzl′

σzl
ρzmzf

σyl

σyl′

(
Gn
′
zkG

l
zk

σzk

σyn′

σzk

σyl
+ gn

′
k g

l
k

σwk

σyn′

σwk

σyl
+

σen′el

σyn′σyl

)
(J.5)

Spouse of the siblings in law a− b′

ρa,n−b′,l′ =
σzl′

σzl
ρzmzf

σyl

σyl′
ρa,n−b,l

J.4 Identification

Our baseline model cannot be solved analytically, that is we cannot write the parameters of the model as

functions of the correlations between different types of relatives. However, to provide some intuition about

how the parameters are identified, we show identification in this restricted model with no direct effect (β = 0)

and assortative mating occurring only in the latent factor z (i.e. we assume that the coefficients of ymt−1 in

the linear projections of zft−1 and yft−1 on zmt−1 and ymt−1 are zero).

Assortative process. First, note that the ratio of the spouse of the sibling in law to the sibling in law (or the

ratio of the uncle in law to the uncle) identifies

ρa,n−b′,l′

ρa,n−b,l
=
ρaa,n∗−b′,l′

ρaa,n∗−b,l
= ρzmzf

σzl′/σyl′

σzl/σyl
(J.6)

Moreover, σym and σyf are observable. Notice that the ratio on the left-hand side corresponds to an instru-

mental variable regression in which the outcome of the spouse b in the spousal regression b′−b is instrumented

with the outcome of the spouse’s sibling in law a (or the spouse’s nephew or niece aa). This IV regression

effectively swaps the correlations in equation (J.6) for covariances and therefore identifies ρzmzf
σ
zl
′

σ
zl

. Then,
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if there are no gender asymmetries in the variances, that is, if σyf = σym and σzf = σzm , the IV regression

estimates the assortative parameter ρzmzf .

The IV approach therefore needs to be based on sufficiently distant in-laws. In particular, notice that the

ratio of sibling in law to sibling does not identify the assortative parameter, i.e. the spouse’s sibling a′ is not

a valid instrument for the spouse b in the spousal regression b− b′. The reason is that the sibling component

xt is shared by siblings but not by spouses or other in-laws. For the identification of the assortative process,

we therefore need to “break” the sibling link by comparing kinship moments that are sufficiently distant.

In the general model with potential gender asymmetries, we can use the product of the ratios of the corre-

lations with the brother in law and his wife (l = m and l′ = f) and with the sister in law and his husband

(l = f and l′ = m) to identify the assortative mating parameter, ρzmzf ,

ρa,n−b′,f
ρa,n−b,m

ρa,n−b′,m
ρa,n−b,f

= ρ2zmzf (J.7)

The assortative mating parameter can also be identified from the product of the ratios of the correlations

with uncle and his wife (l = m and l′ = f) and aunt and his husband (l = f and l′ = m). In contrast,

standardizing the outcome variable by gender would not fully abstract from gender asymmetries. As is clear

from equation (J.6), the estimates would be still biased by the gender difference in the variance share of the

latent variable,
σ
zl
′ /σ

yl′

σ
zl
/σ

yl
.

Intergenerational process (considering extended kins in the parent generation). Next, we can identify the

reduced-form intergenerational transmission parameters, Gn
∗
zn′ , n

′, n∗ = m, f , from the ratio of the spouse of

the uncle to the sibling in law,
ρaa,n∗−b′,l′

ρa′,n′−b′,l′
= Gn

∗
zn′

σyn′

σyn∗

Notice that this ratio corresponds to the instrumental variable regression in which the outcome of the parent

a′ in the parent-child regression aa− a′ is instrumented with the outcome of the parent’s sibling in law b′ (or

the parent’s own parent, see below).

As for the assortative process, researchers need to consider sufficiently distant relatives in order to abstract

from sibling links and to isolate the intergenerational process. In particular, notice that we cannot use the

ratio of uncle to siblings to identify the intergenerational parameters because x is shared by siblings but is

not transmitted to their descendants. Accordingly, the corresponding IV approach in which the outcome of

the parent a′ is instrumented with the parent’s sibling b (i.e., the child’s aunt or uncle) is biased.

Intergenerational process (considering grandparents). Alternatively, one can identify the strength of the

intergenerational process from multigenerational data across three generations (as in Lindahl et al., 2015,

or Braun and Stuhler, 2018). In our simplified model, the ratio between the grandparent-child and the

parent-child correlations identifies
ρaaa,n∗∗−a′,n′

ρaa,n∗−a′,n′
= Gn

∗∗
zn′ ,

The reduced-form intergenerational transmission parameter Gn
∗∗
zn′ depends in turn on the strength of the
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intergenerational transmission γk, the assortative parameter ρzmzf , and gender-specific weights. The corre-

sponding IV approach of using the outcome of the grandparent a′ as an instrument for the parent aa in the

parent-child regression aaa−aa swaps these correlations with covariances, and therefore identifies Gn
∗∗
zn′

σyn∗∗
σyn∗ .

Once the Gn
∗
zn′ , n

′, n∗ = m, f are identified, we can identify the share of the variances of yf and ym explained

by the latent factor,
σ2

zn
′

σ2

yn′
, n′ = m, f from the parent child correlations

σ2
zn′

σ2
yn

=
ρaa,n∗−a′,n′

Gn
′
zn′

Next, using the definition of Gn
∗
zn′ for different gender combinations, we have that

γkαkz =
Gkzm −Gkzf

σ
zf

σzm
ρzmzf

1− ρ2
zmzf

γk = Gkzf − γkαkz
(
σzm

σzf
ρzmzf − 1

)

and we can identify γk and αkz , k = m, f. If there are no gender asymmetries, that is if γf = γm = γ,

αf = αm = 1
2 , σyf = σym and σzf = σzm , the reduced form intergenerational transmission parameters are

all equal to γ
2 (1 + ρzmzf ) and we can identify the pure intergenerational transmission parameter, γ, by

γ =
2
ρaa−b′
ρa′−b′

1 +
ρa−b′
ρa−b

=
2ρaa−b′

ρa−b + ρa−b′

Next, using the eight uncles correlations for different gender combinations (n∗, l, k = m, f)

ρaa,n∗−b,l = Gn
∗
zn′

σyn′

σyn∗

(
Gn
′
zkG

l
zk

σzk

σyn′

σzk

σyl
+ gn

′
k g

l
k

σwk

σyn′

σwk

σyl
+

σen′el

σyn′σyl

)

we can identify σ2
en′
, n′ = m, f and σemef . Finally from the three siblings correlations for different gender

combinations

ρa′,n′−b,l = Gn
′
zkG

l
zk

σzk

σyn′

σzk

σyl
+ gn

′
k g

l
k

σwk

σyn′

σwk

σyl
+

σen′el

σyn′σyl
+

σxn′xl

σyn′σyl

we can identify σ2
xn′ , n

′ = m, f and σxmxf .

Notice that, under classical measurement errors, all correlations would decrease in the same proportion and

therefore, since in this model the parameters are identified as ratios of correlations, classical measurement

errors will not bias our estimates. In the general model with βk different from zero, classical measurement

errors can bias the results. However, since our estimated βk are close to zero, we expect that measurement

errors do not affect much the estimates. To confirm this intuition, we have calibrated the parameters of the

general model when we increase all the correlations by 10%. The estimated parameters are very close to our

benchmark estimates (the results are available upon request).
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K The Reduced Form Model

We now study when our general model can be written as a reduced form model where the transmission takes

place only through the male line. We consider the following reduced form model where the outcome y for an

individual from generation t only depends on his father, and is given by

yt = βymt−1 + zt + xt + ut (K.1)

and the socioeconomic status of the child, zt, only depends on the father zmt−1

zt = γzmt−1 + et + vt (K.2)

Substituting (K.2) in (K.1)

yt = βymt−1 + γzmt−1 + et + vt + xt + ut (K.3)

Regarding the shocks, as in the general model, we assume that xt and et are shared by all siblings and are

uncorrelated to each other and with the other variables (in particular with zmt−1 and ymt−1). Finally ut and vt

are white-noise errors.

We can now compare (K.2) and (K.3) with the expression for zkt and ykt as a function of the father obtained

for the general model

zkt = Gkzmz
m
t−1 +Gkymy

m
t−1 + gkmω

m
t−1 + ekt + vkt (K.4)

ykt = Bkymy
m
t−1 +Bkzmz

m
t−1 + bkmε

m
t−1 + gkmω

m
t−1 + ekt + vkt + xkt + ukt (K.5)

where

Gkzm = γk(αkz + (1− αkz)rmzz)

Gkym = γk(1− αkz)rmzy

gkm = γk(1− αkz)

Bkym = βk
(
αky + (1− αky)rmyy

)
+Gkym

Bkzm = βk(1− αky)rmyz +Gkzm

bkm = βk(1− αky)

It is then easy to see that there are two key differences between the two models:

1. The errors in (K.2) are assumed to be orthogonal to ymt−1 and zmt−1, whereas in (K.4), zkt depends on

ymt−1 and therefore, unless Gkym = 0, if we project ymt on zmt−1, the new error will be correlated to ymt−1.

2. In the reduced form model, zmt−1 has the same coefficient in (K.2) and (K.1), whereas in the general
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model, the coefficient of zmt−1 is different in (K.4) and (K.5).

Then, we have that the general model can be written as a reduced form model if and only if the following

two conditions are satisfied

1. Gkym = 0⇐⇒ γk = 0, or αkz = 1 or rmzy = 0

2. Bkzm = Gkzm ⇐⇒ βk = 0, or αky = 1 or rmyz = 0

We then have that the general model can be written as a reduced form model

1. In the trivial case when just the father matters (αkz = αky = 1, or αkz = 1 and βk = 0, or αky = 1 and

γk = 0).

2. When βk = 0 and ymt−1 does not influence zft−1 once the effect of zmt−1 has been netted out (rmzy = 0).

3. When γk = 0 and zmt−1 does not influence yft−1 once the effect of ymt−1 has been netted out (rmyz = 0).

4. When ymt−1 does not influence zft−1 once the effect of zmt−1 has been netted out (rmzy = 0), and zmt−1 does

not influence yft−1 once the effect of ymt−1 has been netted out (rmyz = 0).

Notice that Case 2 corresponds to a latent factor model with assortative mating only in z (this is the model

we consider in Section J) and Case 3 to a direct effect model with assortative mating only in y. In our baseline

specification, our calibrated parameters are close to satisfy the restrictions of Case 2, however, it is worth

mentioning than using only male moments we cannot identify all the parameters. From Subsection J.4, we

know we can identify Gmzm from the ratio of the correlation with the spouse of the aunt to the correlation

with the brother in law

Gmzm =
ρaa,m−b′,m
ρa′,m−b′,m

and using Gmzm and the father son correlation, we can identify
σ2
zm

σ2

ym′
from

σ2
zm

σ2
ym

=
ρaa,m−a′,m

Gmzm

However, as it is shown in Subsection J.4, to identify ρzmzf we need the ratio of the correlation with the

spouse of the aunt to the correlation with the aunt, and the ratio of the correlation with the spouse of the

uncle to the correlation with the uncle, and therefore we need moments involving females. Moreover, to

identify γm and αmz we need to use Gn
∗
zn′ for different gender combinations, that is we again need to use

moments involving females. Finally to identify σ2
em , we need the correlations between nephew and uncle

(brother of the father and brother of the mother), Gmzm and Gmzf and therefore we need female moments

to identify Gmzf . Since we cannot identify σ2
em using only male moments, we cannot identify σ2

xm from the

brothers correlation.
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L The Genetic Model

The genetic model is nested in our general model by imposing the following restrictions:

• There is no a direct effect of parents outcome on children outcome (βk = 0, k = f,m), and hence

ykt = zkt + xkt + ukt

Then Cov(ykt , z
k
t ) = σ2

z and ρzkyk = σz/σyk .

• The latent factor is genetic and therefore it is transmitted from parents to children as

zkt =
zmt−1 + zft−1

2
+ vkt

where vkt is uncorrelated across relatives and to zmt−1 and zft−1 (γk = 1 and σ2
ek

= 0, k = f,m).

• The share of the variance explained by the latent factor is equal across genders (σ2
zk = σ2

z , k = f,m)

• There is assortative mating only in the observed outcome y (ρzmyf , ρymzf and ρzmzf are functions of

ρymyf and some of the other parameters of the model).

The genetic model has only 5 parameters: σ2
z , σ

2
xm , σ2

xf , σxmxf , ρymyf .

L.1 Assortative mating process

Under the assumption of assortative mating only in y, the coefficients of the linear projections zft−1 and yft−1

on zmt−1 and ymt−1 are

rmzz =
1

(1− ρ2zmym)

σzf

σzm
(ρzmzf − ρzmymρymzf ) = 0 ⇒ ρzmzf = ρzmymρymzf =

σz
σym

ρymzf

rmzy =
σz
σym

ρymzf

rmyz =
1

(1− ρ2zmym)

σyf

σzm
(ρzmyf − ρzmymρymyf ) = 0 ⇒ ρzmyf = ρzmymρymyf =

σz
σym

ρymyf

rmyy =
σyf

σym
ρymyf

and the coefficients of the linear projections of zmt−1 and ymt−1 on zft−1 and yft−1 are:

rfzz =
1

(1− ρ2
zfyf

)

σzm

σzf
(ρzmzf − ρzfyf ρzmyf ) = 0 ⇒ ρzmzf = ρzfyf ρzmyf =

σz
σyf

ρzmyf =
σ2
z

σyfσym
ρymyf

rfzy =
σz
σyf

ρzmyf

rfyz =
1

(1− ρ2
zfyf

)

σym

σzf
(ρymzf − ρzfyf ρymyf ) = 0 ⇒ ρymzf = ρzfyf ρymyf =

σz
σyf

ρymyf
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rfyy =
σym

σyf
ρymyf

Then, we have that

rmzy = rfzy =
σz
σym

ρymzf =
σ2
z

σyfσym
ρymyf

rmyy =
σyf

σym
ρymyf

rfzy =
σz
σyf

ρzmyf

and

σ2
wm = σ2

z −
(

σ2
z

σymσyf
ρymyf

)2

σ2
ym = σ2

z

(
1− σ2

z

σ2
yf
ρ2ymyf

)

We can write zkt and ykt as a function of the father

zkt = Gkzmz
m
t−1 +Gkymy

m
t−1 + gkmω

m
t−1 + vkt

where

Gkzm =
1

2
, Gkym =

1

2

σ2
z

σymσyf
ρymyf , gkm =

1

2

and

ykt = Gkymy
m
t−1 +Gkzmz

m
t−1 + gkmω

m
t−1 + vkt + xkt + ukt

and we can write zkt and ykt as a function of the mother

zkt = Gkzfz
f
t−1 +Gkyfy

f
t−1 + gkfω

f
t−1 + vkt

where

Gkzf =
1

2
, Gkyf =

1

2

σ2
z

σymσyf
ρymyf , gkf =

1

2

and

ykt = Gkyfy
f
t−1 +Gkzfz

f
t−1 + gkfω

f
t−1 + vkt + xkt + ukt

L.2 Covariances

L.2.1 Main covariances

We use the notation in Figure 1 to denote individuals with different degrees of kinship. We first compute

the main covariances (husband-wife, parent-child and siblings). Then, the covariances for other relatives are

obtained recursively.

Husband and wife a− a′

We have to compute the covariance between "a" and "a′". Let n′ = m, f be the gender of a′ and n = m, f
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the gender of the a.

Cov(ya,nt−1, y
a′,n′

t−1 ) = σymσyf ρymyf

Parent–child aa− a′

We have to compute the covariance between "aa" and "a′". Let n′ = m, f be the gender of a′ and n∗ = m, f

the gender of the aa. We project aa on a′ (his/her father or mother) who has gender n′ and we denote by n

the gender of the spouse of a′

Cov(zaa,n
∗

t , za
′,n′

t−1 ) =
1

2

(
σ2
z

σymσyf
ρymyf + 1

)
σ2
z

Cov(zaa,n
∗

t ya
′,n′

t−1 ) =
1

2

(
σyn′

σyn
ρymyf + 1

)
σ2
zn′

Cov(yaa,n
∗

t , za
′,n′

t−1 ) =
1

2

(
σ2
z

σymσyf
ρymyf + 1

)
σ2
z

Cov(yaa,n
∗

t , ya
′,n′

t−1 ) =
1

2

(
σyn′

σyn
ρymyf + 1

)
σ2
zn′

Siblings a′ − b

We have to compute the covariance between "a′" and "b". Let n′ = m, f be the gender of a′ and l = m, f

the gender of the b. We project a′ and b on their father (or mother) GP2 who has gender k, and we denote

by k′ the gender of the mother (or the father)

Cov(za
′,n′

t−1 , z
b,l
t−1) = Cov(Gn

′
yky

GP2,k
t−2 +Gn

′
zkz

GP2,k
t−2 + gn

′
k ω

GP2,k
t−2 , Glyky

GP2,k
t−2 +Glzkz

GP2,k
t−2 + glkω

GP2,k
t−2 )

=

(
1

2

σ2
z

σymσyf
ρymyf

)2

σ2
yk +

1

4
σ2
z +

1

2

σ2
z

σymσyf
ρymyf +

1

4
σ2
z

(
1− σ2

z

σ2
yk′

ρ2ymyf

)

=
1

2

(
σ2
z

σymσyf
ρymyf + 1

)
σ2
z

Cov(za
′,n′

t−1 , y
b,l
t−1) = Cov(Gn

′
yky

GP2,k
t−2 +Gn

′
zkz

GP2,k
t−2 + gn

′
k ω

GP2,k
t−2 , Glyky

GP2,k
t−2 +Glzkz

GP2,k
t−2 + glkω

GP2,k
t−2 )

=
1

2

(
σ2
z

σymσyf
ρymyf + 1

)
σ2
z

Cov(ya
′,n′

t−1 , z
b,l
t−1) = Cov(Gn

′
yky

GP2,k
t−2 +Gn

′
zkz

GP2,k
t−2 + gn

′
k ω

GP2,k
t−2 , Glyky

GP2,k
t−2 +Glzkz

GP2,k
t−2 + glkω

GP2,k
t−2 )

=
1

2

(
σ2
z

σymσyf
ρymyf + 1

)
σ2
z

Cov(ya
′,n′

t−1 , y
b,l
t−1) = Cov(Gn

′
yky

GP2,k
t−2 +Gn

′
zkz

GP2,k
t−2 + gn

′
k ω

GP2,k
t−2 + xn

′
t−1, G

l
yky

GP2,k
t−2 +Glzkz

GP2,k
t−2 + glkω

GP2,k
t−2 + xlt−1)

=
1

2

(
σ2
z

σymσyf
ρymyf + 1

)
σ2
z + σxmxf

L.2.2 Other covariances

Vertical covariances

Uncle/aunt (siblings of the parents) aa− b

We have to compute the covariances between "aa" and "b". Let n∗ = m, f be the gender of aa and l = m, f
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the gender of the b. We project aa on a′ (his/her father or mother) who has gender n′

Cov(zaa,n
∗

t , zb,lt−1) = Cov(Gn
∗
zn′z

a′,n′

t−1 +Gn
∗
yn′y

a′,n′

t−1 , z
b,l
t−1) =

1

4

(
σ2
z

σymσyf
ρymyf + 1

)2

σ2
z

Cov(zaa,n
∗

t , yb,lt−1) = Cov(Gn
∗
zn′z

a′,n′

t−1 +Gn
∗
yn′y

a′,n′

t−1 , y
b,l
t−1) =

1

4

(
σ2
z

σymσyf
ρymyf + 1

)2

σ2
z

Cov(yaa,n
∗

t , zb,lt−1) = Cov(Bn
∗

znz
a′,n′

t−1 +Bn
∗

yny
a′,n′

t−1 , z
b,l
t−1) =

1

4

(
σ2
z

σymσyf
ρymyf + 1

)2

σ2
z

Cov(yaa,n
∗

t , yb,lt−1) = Cov(Bn
∗

znz
a′,n′

t−1 +Bn
∗

yny
a′,n′

t−1 , y
b,l
t−1) =

1

4

(
σ2
z

σymσyf
ρymyf + 1

)2

σ2
z +

1

2

σ2
z

σymσyf
ρymyfσxmxf

where a′ and b are siblings.

Horizontal covariances

Cousins aa− bb

We have to compute the covariances between "aa" and "bb". Let n∗ = m, f be the gender of aa and l∗ = m, f

the gender of the ay. We project bb on b (his/her father or mother) who has gender l

Cov(zaa,n
∗

t , zbb,l
∗

t ) = Cov(zaa,n
∗

t , Gl
∗
zlz

b,l
t−1 +Gl

∗
yly

b,l
t−1) =

1

8

(
σ2
z

σymσyf
ρymyf + 1

)3

σ2
z

Cov(zaa,n
∗

t , ybb,l
∗

t ) = Cov(zaa,n
∗

t , Bl
∗
zlz

b,l
t−1 +Bl

∗
yly

b,l
t−1) =

1

8

(
σ2
z

σymσyf
ρymyf + 1

)3

σ2
z

Cov(yaa,n
∗

t , zbb,l
∗

t ) = Cov(yaa,n
∗

t , Gl
∗
zlz

b,l
t−1 +Gl

∗
yly

b,l
t−1) =

1

8

(
σ2
z

σymσyf
ρymyf + 1

)3

σ2
z

Cov(yaa,n
∗

t , ybb,l
∗

t ) = Cov(yaa,n
∗

t , Bl
∗
zlz

b,l
t−1 +Bl

∗
yly

b,l
t−1) =

1

8

(
σ2
z

σymσyf
ρymyf + 1

)3

σ2
z +

1

4

(
σ2
z

σymσyf
ρymyf

)2

σxmxf

where b is the uncle/aunt of aa.

L.3 Genetic transmission

Suppose that each person has only one gene with two alleles, A and B. One of the allele is inherited from

the father and the other one from the mother. Let XA and XB be the random variables representing the

potential values each allele may take and suppose that the outcome of interest Y depends on Z = XA +XB

Y = Z + U

where U is mean independent of Z.

We have to compute

E
(
Zt |Zmt−1 = zm, Zft−1 = zf

)

The distribution of the child Zt conditional on the parents Xm
A,t−1 = xmA , Xm

B,t−1 = xmB , Xf
A,t−1 = xfA,
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Xf
B,t−1 = xfB is multinomial with the following probability mass function

Zt =





xmA + xfA, with probability 1
4

xmA + xfB , with probability 1
4

xmB + xfA, with probability 1
4

xmB + xfB , with probability 1
4

Then, the distribution of Zt conditional on Xm
A,t−1 = xmA , Zmt−1 = zm, Xf

A,t−1 = xfA, Zft−1 = zf is also

multinomial, and the probability mass function is

Zt =





xmA + xfA, with probability 1
4

xmA + zf − xfA, with probability 1
4

zm − xmA + xfA, with probability 1
4

zm − xmA + zf − xfA, with probability 1
4

Then,

E
(
Zt |Xm

A,t−1, Z
m
t−1, X

f
A,t−1, Z

f
t−1

)
=

1

4

(
Xm
A,t−1 +Xf

A,t−1

)
+

1

4

(
Xm
A,t−1 + Zft−1 −X

f
A,t−1

)

+
1

4

(
Zmt−1 −Xm

A,t−1 +Xf
A,t−1

) 1

4

(
Zmt−1 −Xm

A,t−1 + Zft−1 −X
f
A,t−1

)

=
1

4
Zft−1 +

1

4
Zmt−1 +

1

4

(
Zmt−1 + Zft−1

)
=

1

2

(
Zmt−1 + Zft−1

)

Since E
(
Zt |Xm

A,t−1, Z
m
t−1, X

f
A,t−1, Z

f
t−1

)
does not depend on Xm

A,t−1 and Xf
A,t−1, using the law of iterated

expectations

E
(
Zt |Zmt−1, Z

f
t−1

)
=

1

2

(
Zmt−1 + Zft−1

)

If we now consider that each person has n genes, each with two alleles, Ai and Bi. For each gene, one

of the allele is inherited from the father and the other one from the mother. Let XAi
and XBi

be the

random variables representing the potential values each allele may take and suppose that the outcome of

interest Y depends on Z =
∑n
i=1 (XAi +XBi) =

∑n
i=1 Zi , where Zi = XAi + XBi . For each gene i, given

Xm
Ai,t−1 = xmAi

, Zmi,t−1 = zmi , Xf
Ai,t−1 = xfAi

, there are 4 possible realizations of the child alleles of gene

i, and therefore 4n possible genomes. Then, the distribution of the child Zt conditional on the parents

Xm
A1,t−1 = xmA1

, Zm1,t−1 = zm1 , Xf
A1,t−1 = xfA1

, Zf1,t−1 = zf1 , ...,Xm
An,t−1 = xmAn

, Zmn,t−1 = zmn , Xf
An,t−1 = xfAn

,
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Zfn,t−1 = zfn is also multinomial, and the probability mass function is

Zt =





(
xmA1

+ xfA1

)
+
(
xmA2

+ xfA2

)
+ ..+

(
xmAn

+ xfAn

)
, with probability 1

4n(
xmA1

+ zf1 − x
f
A1

)
+
(
xmA2

+ xfA2

)
+ ..+

(
xmAn

+ xfAn

)
, with probability 1

4n(
zm1 − xmA1

+ xfA1

)
+
(
xmA2

+ xfA2

)
+ ..+

(
xmAn

+ xfAn

)
, with probability 1

4n(
zm1 − xmA1

+ zf1 − x
f
A1

)
+
(
xmA2

+ xfA2

)
+ ..+

(
xmAn

+ xfAn

)
, with probability 1

4n

...(
zm1 − xmA1

+ zf1 − x
f
A1

)
+
(
zm2 − xmA2

+ zf2 − x
f
A2

)
+ ..+

(
zmn − xmAn

+ zfn − x
f
An

)
, with probability 1

4n

As in the model with just one gene, all the xkAi
cancel when we compute the conditional mean

E
(
Zt |Xm

A1,t−1, Z
m
1,t−1, X

f
A1,t−1, Z

f
1,t−1, ..., X

m
An,t−1, Z

m
n,t−1, X

f
An,t−1, Z

f
n,t−1

)

=
1

2
Zm1,t−1 + ...+

1

2
Zmn,t−1 +

1

2
Zf1,t−1 + ...+

1

2
Zfn,t−1 =

1

2

(
Zmt−1 + Zft−1

)

Then, since the conditional expectation above only depends on Zmt−1 and Zft−1, using the law of iterated

expectations

E
(
Zt |Zmt−1, Z

f
t−1

)
=

1

2

(
Zmt−1 + Zft−1

)

Let us now consider two siblings i and j. We have to compute

E
(
ZitZjt |Zmt−1 = zm, Zft−1 = zf

)

The distribution of ZitZjt conditional on the parents Xm
A,t−1 = xmA , Xm

B,t−1 = xmB , Xf
A,t−1 = xfA, Xf

B,t−1 = xfB

is multinomial with the following probability mass function

ZitZjt =





(
xmA + xfA

)2
, with probability 1

16(
xmA + xfA

)(
xmA + xfB

)
, with probability 1

8(
xmA + xfA

)(
xmB + xfA

)
, with probability 1

8(
xmA + xfA

)(
xmB + xfB

)
, with probability 1

8(
xmA + xfB

)2
, with probability 1

16(
xmA + xfB

)(
xmB + xfA

)
, with probability 1

8(
xmA + xfB

)(
xmB + xfB

)
, with probability 1

8(
xmB + xfA

)2
, with probability 1

16(
xmB + xfA

)(
xmB + xfB

)
, with probability 1

8(
xmB + xfB

)2
, with probability 1

16

Then, the distribution of ZitZjt conditional on Xm
A,t−1 = xmA , Zmt−1 = zm, Xf

A,t−1 = xfA, Zft−1 = zf is also
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multinomial, and the probability mass function is

ZitZjt =





(
xmA + xfA

)2
, with probability 1

16(
xmA + xfA

)(
xmA + zf − xfA

)
, with probability 1

8(
xmA + xfA

)(
zm − xmA + xfA

)
, with probability 1

8(
xmA + xfA

)(
zm − xmA + zf − xfA

)
, with probability 1

8(
xmA + zf − xfA

)2
, with probability 1

16(
xmA + zf − xfA

)(
zm − xmA + xfA

)
, with probability 1

8(
xmA + zf − xfA

)(
zm − xmA + zf − xfA

)
, with probability 1

8(
zm − xmA + xfA

)2
, with probability 1

16(
zm − xmA + xfA

)(
zm − xmA + zf − xfA

)
, with probability 1

8(
zm − xmA + zf − xfA

)2
, with probability 1

16

Then,

E
(
ZitZjt |Xm

A,t−1, Z
m
t−1, X

f
A,t−1, Z

f
t−1

)

=
1

16

(
Xm
A +Xf

A

)((
Xm
A +Xf

A

)
+
(
Xm
A + Zf−Xf

A

)
+
(
Zm−Xm

A +Xf
A

)
+
(
Zm−Xm

A + Zf −Xf
A

))

+
1

16

(
Xm
A + Zf−Xf

A

)((
Xm
A +Xf

A

)
+
(
Xm
A + Zf−Xf

A

)
+
(
Zm−Xm

A +Xf
A

)
+
(
Zm−Xm

A + Zf −Xf
A

))

+
1

16

(
Zm−Xm

A +Xf
A

)((
Xm
A +Xf

A

)
+
(
Xm
A + Zf−Xf

A

)
+
(
Zm−Xm

A +Xf
A

)
+
(
Zm−Xm

A + Zf−Xf
A

))

+
1

16

(
Zm−Xm

A + Zf−Xf
A

)((
Xm
A +Xf

A

)
+
(
Xm
A + Zf−Xf

A

)
+
(
Zm−Xm

A +Xf
A

)
+
(
Zm−Xm

A + Zf−Xf
A

))

=
1

8

(
Xm
A +Xf

A

) (
Zf + Zm

)
+

1

8

(
Xm
A + Zf−Xf

A

) (
Zf + Zm

)

+
1

8

(
Zm−Xm

A +Xf
A

) (
Zf + Zm

)
+

1

8

(
Zm−Xm

A + Zf −Xf
A

) (
Zf + Zm

)

=
1

4

(
Zmt−1 + Zft−1

)2

Since E
(
ZitZjt |Xm

A,t−1, Z
m
t−1, X

f
A,t−1, Z

f
t−1

)
does not depend on Xm

A,t−1 and Xf
A,t−1, using the law of

iterated expectations

E
(
ZitZjt|Zmt−1, Z

f
t−1

)
=

1

4

(
Zmt−1 + Zft−1

)2

We then have that E
(
ZitZjt|Zmt−1, Z

f
t−1

)
= E

(
Zit|Zmt−1, Z

f
t−1

)
E
(
Zjt|Zmt−1, Z

f
t−1

)
and Zit and Zjt are

uncorrelated conditional on Zmt−1, Z
f
t−1. Then, we can write

Zit =
1

2

(
Zmt−1 + Zft−1

)
+ eit

where eit and ejt are uncorrelated across siblings.
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M The General Model with Two Unobservable Factors

We assume that the value of the output y for an individual from generation t is given by

ykt = βkỹkt−1 + zG,kt + zC,kt + xkt + ukt (M.1)

where the superscript k stands for males (k = m) and for females (k = f). We assume that

ỹkt−1 = αkyy
m
t−1 + (1− αky)yft−1

zG,kt and zC,kt are two unobservable factors. The genetic factor of the child, zG,kt , depends on the father zG,mt−1

as well as on the mother zG,ft−1

zG,kt =
zG,mt−1 + zG,ft−1

2
+ vG,kt (M.2)

The cultural factor of the child, zC,kt , also depends on the father zC,mt−1 as well as on the mother zC,ft−1

zC,kt = γkz̃kt−1 + eC,kt + vC,kt

z̃kt−1 = αkzz
C,m
t−1 + (1− αkz)zC,ft−1

(M.3)

Regarding the shocks in model (M.1), we assume that xkt , and eC,kt are shared by all siblings of the same

gender, can be correlated across siblings of different gender and are uncorrelated with the other variables (in

particular with zG,kt , zC,kt and yt−1). Finally ukt , v
G,k
t and vC,kt are individual’s white-noise error terms.

M.1 Assortative mating process

We assume there is assortative mating both in years of schooling and in the cultural factor. In particular we

consider the linear projections of zG,ft−1 , z
C,f
t−1 and yft−1 on zG,mt−1 , z

C,m
t−1 and ymt−1:

zG,ft−1 = rmzGzG zG,mt−1 + rmzGzC zC,mt−1 + rmzGy y
m
t−1 + wG,mt−1

zC,ft−1 = rmzCzG zG,mt−1 + rmzCzC zC,mt−1 + rmzCy y
m
t−1 + wC,mt−1

yft−1 = rmyzG zG,mt−1 + rmyzC zC,mt−1 + rmyy y
m
t−1 + εmt−1

The coefficients of the linear projections depend on 15 correlations, ρzG,mzC,m , ρzG,mym , ρzC,mym , ρzG,fzC,f ,

ρzG,fyf , ρzC,fyf , ρzG,mzG,f , ρzG,mzC,f , ρzG,my,f , ρzC,mzG,f , ρzC,mzC,f , ρzC,my,f , ρymzG,f , ρymzC,f and ρymyf , as

well as on the standard deviations of zG,kt−1, zC,kt−1 and ykt−1, k = m, f . However, since we assume there is no

assortative mating in the genetic factor, we have that rmzGzG = rmzCzG = rmyzG = 0, which implies

ρzG,mzG,f =

(
ρzG,mymρzC,mym − ρzG,mzC,m

)
ρzC,mzG,f +

(
ρzG,mzC,mρzC,mym − ρzG,mym

)
ρymzG,f

ρ2
zC,mym

− 1
(M.4)

28



ρzG,mzC,f =

(
ρzG,mymρzC,mym − ρzG,mzC,m

)
ρzC,mzC,f +

(
ρzG,mzC,mρzC,mym − ρzG,mym

)
ρymzC,f

ρ2
zC,mym

− 1

ρzG,myf =

(
ρzG,mymρzC,mym − ρzG,mzC,m

)
ρzC,myf +

(
ρzG,mzC,mρzC,mym − ρzG,mym

)
ρymyf

ρ2
zC,mym

− 1

which reduces the number of free correlations to 12.

The remaining coefficients are:

rmzGzC =
1

(1− ρ2
zC,mym

)

σzG,f

σzC,m

(ρzC,mzG,f − ρzC,mymρymzG,f )

rmzGy =
1

(1− ρ2
zC,mym

)

σzG,f

σym
(ρymzG,f − ρzC,mymρzC,mzG,f )

rmzCzC =
1

(1− ρ2
zC,mym

)

σzC,f

σzC,m

(ρzC,mzC,f − ρzC,mymρymzC,f )

rmzCy =
1

(1− ρ2
zC,mym

)

σzC,f

σym
(ρymzC,f − ρzC,mymρzC,mzC,f )

rmyzC =
1

(1− ρ2
zC,mym

)

σyf

σzC,m

(ρzC,myf − ρzC,mymρymyf )

rmyy =
1

(1− ρ2
zC,mym

)

σyf

σym
(ρymyf − ρzC,mymρzC,myf )

We use these matching functions to write the genetic factor, zG,kt , the cultural factor, zC,kt , and years of

schooling, ykt , as a function of father’s genetic factor, zG,mt−1 , cultural factor, zC,mt−1 , and years of schooling,

ymt−1. We write (M.2) as

zG,kt =
zG,mt−1 + zG,ft−1

2
+ vG,kt

=
1

2

(
zG,mt−1 + rmzGzCz

C,m
t−1 + rmzGyy

m
t−1 + wG,mt−1

)
+ vG,kt

= Gkzgmz
G,m
t−1 +Gkzmz

C,m
t−1 +Gkymy

m
t−1 + gkmw

G,m
t−1 + vG,kt

where

Gkzgm =
1

2

Gkzm =
1

2
rmzGzC

Gkym =
1

2
rmzGy

gkm =
1

2

(M.3) as

zC,kt = γk
(
αkzz

C,m
t−1 + (1− αkz)zC,ft−1

)
+ eC,kt + vC,kt
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= γk
(
αkzz

C,m
t−1 + (1− αkz)

(
rmzCzCz

C,m
t−1 + rmzCyy

m
t−1 + wC,mt−1

))
+ eC,kt + vC,kt

= Ckzmz
C,m
t−1 + Ckymy

m
t−1 + ckmω

C,m
t−1 + eC,kt + vC,kt

where

Ckzm = γk(αkz + (1− αkz)rmzCzC )

Ckym = γk(1− αkz)rmzCy

ckm = γk(1− αkz)

and (M.1) as

ykt = βk
(
αkyy

m
t−1 + (1− αky)yft−1

)
+ zG,kt + zC,kt + xkt + ukt

ykt = βk
(
αkyy

m
t−1 + (1− αky)yft−1

)
+ zG,kt + zC,kt + xkt + ukt

= βk
(
αkyy

m
t−1 + (1− αky)

(
rmyzCz

C,m
t−1 + rmyyy

m
t−1 + εmt−1

))

1

2
zG,mt−1 +

1

2
rmzGzCz

C,m
t−1 +

1

2
rmzGyy

m
t−1 +

1

2
wG,mt−1 + vG,kt

Ckzmz
C,m
t−1 + Ckymy

m
t−1 + ckmω

C,m
t−1 + eC,kt + vC,kt + xkt + ukt

ykt = Bkzgmz
G,m
t−1 +Bkzmz

C,m
t−1 +Bkymy

m
t−1 + gkmw

G,m
t−1 + ckmω

C,m
t−1 + bkmε

m
t−1

+eG,kt + eC,kt + xkt + vG,kt + vC,kt + ukt

where

Bkzgm =
1

2

Bkzm = βk(1− αky)rmyzC +
1

2
rmzGzC + Ckzm

Bkym = βk
(
αky + (1− αky)rmyy

)
+

1

2
rmzGy + Ckym

bkm = βk(1− αky)

All these expressions will be used to compute correlations between relatives that are related through their

fathers.

Analogously, we can compute the linear projections of zG,mt−1 , z
C,m
t−1 and ymt−1 on zG,ft−1 , z

C,f
t−1 and yft−1. The

assumption of no assortative mating in the genetic factor implies rf
zGzG

= rf
zCzG

= rf
yzG

= 0

ρzG,mzG,f =

(
ρzG,fyf ρzC,fyf − ρzG,fzC,f

)
ρzG,mzC,f +

(
ρzG,fzC,f ρzC,fyf − ρzG,fyf

)
ρzG,myf

ρ2
zC,fyf

− 1
(M.5)
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ρzC,mzG,f =

(
ρzG,fyf ρzC,fyf − ρzG,fzC,f

)
ρzC,mzC,f +

(
ρzG,fzC,f ρzC,fyf − ρzG,fyf

)
ρzC,myf

ρ2
zC,fyf

− 1

ρymzG,f =

(
ρzG,fyf ρzC,fyf − ρzG,fzC,f

)
ρymzC,f +

(
ρzG,fzC,f ρzC,fyf − ρzG,fyf

)
ρymyf

ρ2
zC,fyf

− 1

The definitions of ρzG,mzG,f in (M.4) and (M.5) turn to be identical and therefore the the number of free

correlations is reduced to 10. We can then write the genetic factor, zG,kt , the cultural factor, zC,kt , and years

of schooling, ykt , as a function of mother’s genetic factor, zG,ft−1 , cultural factor, zC,ft−1, and years of schooling,

yft−1.These expressions will be used to compute correlations between relatives that are related through their

mothers.

M.2 Steady state assumption

We assume that the second order moments of all variables are time invariant. This steady state assumption

implies that ρzC,mzG,m , ρzC,mym , ρzG,mym , ρzC,fzG,f , ρzC,fyf , and ρzG,fyf depend on the remaining parameters

of the model as shown below.

We first compute ρzG,mzC,m

Cov(zC,mt , zG,mt ) = Cov

(
γmαmz z

C,m
t−1 + γm(1− αmz )zC,ft−1,

1

2
zG,mt−1 +

1

2
zG,ft−1

)

= γmαmz
1

2
Cov

(
zC,mt−1 , z

G,m
t−1

)
+ γmαmz

1

2
Cov

(
zC,mt−1 , z

G,f
t−1

)

+γm(1− αmz )
1

2
Cov

(
zC,ft−1, z

G,m
t−1

)
+ γm(1− αmz )

1

2
Cov

(
zC,ft−1, z

G,f
t−1

)

and dividing by σzC,m and σzG,m and rearranging we have

(
1− γmαmz

1

2

)
ρzG,mzC,m − γm(1− αmz )

1

2

σzC,f

σzC,m

σzG,f

σzG,m

ρzC,fzG,f

= γmαmz
1

2

σzG,f

σzG,m

ρzC,mzG,f + γm(1− αmz )
1

2

σzC,f

σzC,m

ρzG,mzC,f

analogously we obtain another equation from the steady state assumption on ρzG,fzC,f

(
1− 1

2
γf
(
1− αfz

))
ρzG,fzC,f − 1

2
γfαfz

σzC,m

σzC,f

σzG,m

σzG,f

ρzG,mzC,m

=
1

2
γf
(
1− αfz

) σzG,m

σzG,f

ρzG,mzC,f +
1

2
γfαfz

σzC,m

σzC,f

ρzC,mzG,f

We now compute ρzG,mym

Cov(ymt , z
G,m
t ) = Cov

(
βmỹmt−1 + zG,mt + zC,mt , zG,mt

)
= Cov

(
βmαmy y

m
t−1 + βm(1− αmy )yft−1,

1

2
zG,mt−1 +

1

2
zG,ft−1

)

+σ2
zG,m + Cov

(
zC,mt , zG,mt

)

= βmαmy
1

2
Cov

(
ymt−1, z

G,m
t−1

)
+ βmαmy

1

2
Cov

(
ymt−1, z

G,f
t−1

)
+ βm(1− αmy )

1

2
Cov

(
yft−1, z

G,m
t−1

)
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+βm(1− αmy )
1

2
Cov

(
yft−1, z

G,f
t−1

)
+ σ2

zG,m + Cov
(
zC,mt , zG,mt

)

and dividing by σym and σzG,m and rearranging we have

(
1− 1

2
βmαmy

)
ρzG,mym −

1

2
βm(1− αmy )

σyf

σym

σzG,f

σzG,m

ρzG,fyf

=
σzC,m

σym
ρzG,mzC,m +

1

2
βmαmy

σzG,f

σzG,m

ρymzG,f +
1

2
βm(1− αmy )

σyf

σym
ρzG,myf +

σzG,m

σym

analogously we obtain another equation from the steady state assumption on ρzG,fy,f

(
1− 1

2
βf
(
1− αfy

))
ρzG,fyf −

1

2
βfαfy

σym

σyf

σzG,m

σzG,f

ρzG,mym

=
σzC,f

σyf
ρzG,fzC,f +

1

2
βf
(
1− αfy

) σzG,m

σzG,f

ρyfzG,m +
1

2
βfαfy

σym

σyf
ρzG,fym +

σzG,f

σyf

We finally compute ρzC,mym

Cov(ymt , z
C,m
t ) = Cov(βmỹmt−1 + zG,mt + zC,mt , zC,mt )

= Cov
(
βmαmy y

m
t−1 + βm(1− αmy )yft−1, γ

mαkzz
C,m
t−1 + γm(1− αkz)zC,ft−1

)

+Cov
(
zC,mt , zG,mt

)
+ σ2

zC,m

= βmαmy γ
mαmz Cov

(
ymt−1, z

C,m
t−1

)
+ βmαmy γ

m(1− αkz)Cov
(
ymt−1, z

C,f
t−1

)

+βm(1− αmy )γmαkzCov
(
yft−1, z

C,m
t−1

)

+βm(1− αmy )γm(1− αkz)Cov
(
yft−1, z

C,f
t−1

)
+ Cov

(
zC,mt , zG,mt

)
+ σ2

zC,m

and dividing by σym and σzC,m and rearranging we have

(
1− βmαmy γmαmz

)
ρzC,mym − βm(1− αmy )γm(1− αmz )

σzC,f

σzC,m

σyf

σym
ρzC,fyf

=
σzG,m

σym
ρzG,mzC,m + βmαmy γ

m(1− αmz )
σzC,f

σzC,m

ρymzC,f + βm(1− αmy )γmαmz
σyf

σym
ρzC,myf +

σzC,m

σym

analogously we obtain another equation from the steady state assumption on ρzC,fy,f

(
1− βf

(
1− αfy

)
γfαfz

)
ρzC,fyf − βfαfyγfαfz

σzC,m

σzC,f

σym

σyf
ρzC,mym

=
σzG,f

σyf
ρzG,fzC,f + βf

(
1− αfy

)
γfαfz

σzC,m

σzC,f

ρyfzC,m + βfαfyγ
f
(
1− αfz

) σym
σyf

ρzC,fym +
σzC,f

σyf

The six equations for the steady state reduce the number of free correlations to four: ρzC,mzC,f , ρzC,myf ,

ρymzC,f , and ρymyf . Then, this model has 21 parameters: βk, γk, σzG,k , σzC,k , σ2
xk , σ

2
eC,k , α

k
y , α

k
z , k = m, f,

σxmxf , σeC,meC,f , ρzC,mzC,f , ρzC,myf , ρymzC,f , and ρymyf , just one parameter more than the one factor model.
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M.3 Main covariances

We first compute the main covariances (husband-wife, parent-child and siblings). Then, the covariances for

other relatives are obtained recursively. We again use the notation in Figure 1 to denote individuals with

different degrees of kinship.

Husband and wife a− a′

We have to compute the covariance between "a" and "a′". Let n′ = m, f be the gender of "a′" and n = f,m

the gender of "a"

Cov(ya,nt−1, y
a′,n′

t−1 ) = σymσyf ρymyf

Parent–child aa− a′

We have to compute the covariance between "aa" and "a′". Let n′ = m, f be the gender of a′ and n∗ = f,m

the gender of aa. We project aa on a′ (his/her father or mother).

Cov(zG,aa,n
∗

t , zG,a
′,n′

t−1 ) = Cov(Gn
∗
zgn′z

G,a′,n′

t−1 +Gn
∗
zn′z

C,a′,n′

t−1 +Gn
∗
yn′y

a′,n′

t−1 , z
G,a′,n′

t−1 )

= Gn
∗
zgn′σ

2
zG,n′ +Gn

∗
zn′Cov(zC,a

′,n′

t−1 , zG,a
′,n′

t−1 ) +Gn
∗
yn′Cov(ya

′,n′

t−1 , z
G,a′,n′

t−1 )

Cov(zG,aa,n
∗

t , zC,a
′,n′

t−1 ) = Cov(Gn
∗
zgn′z

G,a′,n′

t−1 +Gn
∗
zn′z

C,a′,n′

t−1 +Gn
∗
yn′y

a′,n′

t−1 , z
C,a′,n′

t−1 )

= Gn
∗
zgn′Cov(zG,a

′,n′

t−1 , zC,a
′,n′

t−1 ) +Gn
∗
zn′σ

2
zC,n′ +Gn

∗
yn′Cov(ya

′,n′

t−1 , z
C,a′,n′

t−1 )

Cov(zG,aa,n
∗

t , ya
′,n′

t−1 ) = Cov(Gn
∗
zgn′z

G,a′,n′

t−1 +Gn
∗
zn′z

C,a′,n′

t−1 +Gn
∗
yn′y

a′,n′

t−1 , y
a′,n′

t−1 )

= Gn
∗
zgn′Cov(zG,a

′,n′

t−1 , ya
′,n′

t−1 ) +Gn
∗
zn′Cov(zC,a

′,n′

t−1 , ya
′,n′

t−1 ) +Gn
∗
yn′σ

2
yn′

Cov(zC,aa,n
∗

t , zG,a
′,n′

t−1 ) = Cov(Cn
∗

zn′z
C,a′,n′

t−1 + Cn
∗

yn′y
a′,n′

t−1 , z
G,a′,n′

t−1 )

= Cn
∗

zn′Cov(zC,a
′,n′

t−1 , zG,a
′,n′

t−1 ) + Cn
∗

yn′Cov(ya
′,n′

t−1 , z
G,a′,n′

t−1 )

Cov(zC,aa,n
∗

t , zC,a
′,n′

t−1 ) = Cov(Cn
∗

zn′z
C,a′,n′

t−1 + Cn
∗

yn′y
a′,n′

t−1 , z
C,a′,n′

t−1 )

= Cn
∗

zn′σ
2
zC,n′ + Cn

∗
yn′Cov(ya

′,n′

t−1 , z
C,a′,n′

t−1 )

Cov(zC,aa,n
∗

t , ya
′,n′

t−1 ) = Cov(Cn
∗

zn′z
C,a′,n′

t−1 + Cn
∗

yn′y
a′,n′

t−1 , y
a′,n′

t−1 )

= Cn
∗

zn′Cov(zC,a
′,n′

t−1 , ya
′,n′

t−1 ) + Cn
∗

yn′σ
2
yn′
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Cov(yaa,n
∗

t , zG,a
′,n′

t−1 ) = Cov(Bn
∗

zgn′z
G,a′,n′

t−1 +Bn
∗

zn′z
C,a′,n′

t−1 +Bn
∗

yn′y
a′,n′

t−1 , z
G,a′,n′

t−1 )

= Bn
∗

zgn′σ
2
zG,n′ +Bn

∗
zn′Cov(zC,a

′,n′

t−1 , zG,a
′,n′

t−1 ) +Bn
∗

yn′Cov(ya
′,n′

t−1 , z
G,a′,n′

t−1 )

Cov(yaa,n
∗

t , zC,a
′,n′

t−1 ) = Cov(Bn
∗

zgn′z
G,a′,n′

t−1 +Bn
∗

zn′z
C,a′,n′

t−1 +Bn
∗

yn′y
a′,n′

t−1 , z
C,a′,n′

t−1 )

= Bn
∗

zgn′Cov(zG,a
′,n′

t−1 , zC,a
′,n′

t−1 ) +Bn
∗

zn′σ
2
zC,n′ +Bn

∗
yn′Cov(ya

′,n′

t−1 , z
C,a′,n′

t−1 )

Cov(yaa,n
∗

t , ya
′,n′

t−1 ) = Cov(Bn
∗

zgn′z
G,a′,n′

t−1 +Bn
∗

zn′z
C,a′,n′

t−1 +Bn
∗

yn′y
a′,n′

t−1 , y
a′,n′

t−1 )

= Bn
∗

zgn′Cov(zG,a
′,n′

t−1 , ya
′,n′

t−1 ) +Bn
∗

zn′Cov(zC,a
′,n′

t−1 , ya
′,n′

t−1 ) +Bn
∗

yn′σ
2
yn′

Siblings a′ − b

We have to compute the covariance between "a′" and "b". Let n′, l = m, f be the genders of the siblings.

We can compute the covariances projecting on the father (k = m) or on the mother (k = f).

Cov(z
G,a′,n′

t , zG,b,lt ) = G
n′

zgkG
l
zgkσ

2
zG,k+Gn

′
zkG

l
zkσ

2
zC,k+Gn

′
ykG

l
ykσ

2
yk+

(
Gn
′
zgkG

l
zk +Gn

′
zkG

l
zgk

)
Cov(zG,a

′,k
t−1 ,zC,a

′,k
t−1 )

+
(
Gn
′
zgkG

l
yk +Gn

′
ykG

l
zgk

)
Cov(zG,a

′,k
t−1 ,ya

′,k
t−1 )+

(
Gn
′
zkG

l
yk +Gn

′
ykG

l
zk

)
Cov(zC,a

′,k
t−1 ,ya

′,k
t−1 ) + g

n′

k g
l
kσ

2
wG,k

Cov(z
G,a′,n′

t , zC,b,lt ) = Gn
′
zkC

l
zkσ

2

zC,k +Gn
′
ykC

l
ykσ

2

yk
+Gn

′
zgkC

l
zkCov(zG,a

′,k
t−1 ,zC,a

′,k
t−1 ) +Gn

′
zgkC

l
ykCov(zG,a

′,k
t−1 , ya

′,k
t−1 )

+
(
Gn
′
zkC

l
yk +Gn

′
ykC

l
zk

)
Cov(zC,a

′,k
t−1 , ya

′,k
t−1 ) + gn

′
k c

l
kCov(wG,kt−1, ω

C,k
t−1)

Cov(z
G,a′,n′

t , yb,lt ) = Gn
′
zgkB

l
zgkσ

2

zG,k
+Gn

′
zkB

l
zkσ

2

zC,k +Gn
′
ykB

l
ykσ

2

yk
+
(
Gn
′
zgkB

l
zk +Gn

′
zkB

l
zgk

)
Cov(zG,a

′,k
t−1 ,zC,a

′,k
t−1 )

+
(
Gn
′
zgkB

l
yk +Gn

′
ykB

l
zgk

)
Cov(zG,a

′,k
t−1 , ya

′,k
t−1 ) +

(
Gn
′
zkB

l
yk +Gn

′
ykB

l
zk

)
Cov(zC,a

′,k
t−1 , ya

′,k
t−1 )

+gn
′

k g
l
kσ

2

wG,k + gn
′

k c
l
kCov(wG,kt−1, ω

C,k
t−1) + gn

′
k b

l
kCov(wG,kt−1, ε

k
t−1)

Cov(z
C,a′,n′

t , zG,b,lt ) = Cn
′

zkG
l
zkσ

2

zC,k + Cn
′

ykG
l
ykσ

2

yk
+ Cn

′
zkG

l
zgkCov(zG,a

′,k
t−1 ,zC,a

′,k
t−1 ) + Cn

′
ykG

l
zgkCov(zG,a

′,k
t−1 , ya

′,k
t−1 )

+
(
Cn
′

zkG
l
yk + Cn

′
ykG

l
zk

)
(zC,a

′,k
t−1 ,ya

′,k
t−1 ) + cn

′
k g

l
kCov(wG,kt−1, ω

C,k
t−1)

Cov(z
C,a′,n′

t , zC,b,lt ) = cn
′
zkC

l
zkσ

2

zC,k +cn
′
ykC

l
ykσ

2

yk
+
(
Cn
′

zkC
l
yk + Cn

′
ykC

l
zk

)
cov(zC,a

′,k
t−1 ,ya

′,k
t−1 )+cn

′
k c

l
kσ

2

wC,k +σec,n′ec,l

Cov(z
C,a′,n′

t , yb,lt ) = Cn
′

zkB
l
zkσ

2

zC,k + Cn
′

ykB
l
ykσ

2

yk
+ Cn

′
zkB

l
zgkCov(zG,a

′,k
t−1 ,zC,a

′,k
t−1 ) + Cn

′
ykB

l
zgkCov(zG,a

′,k
t−1 ,ya

′,k
t−1 )

+
(
Cn
′

zkB
l
yk + Cn

′
ykB

l
zk

)
cov(zC,a

′,k
t−1 ,ya

′,k
t−1 ) + cn

′
k g

l
kCov(wC,kt−1, ω

G,k
t−1) + cn

′
k c

l
kσ

2

wC,k+cn
′
k b

l
kCov(wC,kt−1, ε

k
t−1) + σec,n′ec,l

Cov(y
a′,n′

t , zG,b,lt ) = Bn
′

zgkG
l
zgkσ

2

zG,k
+Bn

′
zkG

l
zkσ

2

zC,k +Bn
′

ykG
l
ykσ

2

yk
+
(
Bn
′

zgkG
l
zk +Bn

′
zkG

l
zgk

)
Cov(zG,a

′,k
t−1 ,zC,a

′,k
t−1 )

+
(
Bn
′

zgkG
l
yk +Bn

′
ykG

l
zgk

)
Cov(z

G,k
t−1,y

a′,k
t−1 ) +

(
Bn
′

zkG
l
yk +Bn

′
ykG

l
zk

)
Cov(z

C,k
t−1,y

a′,k
t−1 )

+gn
′

mg
l
kσ

2
wG,k + cn

′
k g

l
kCov(wC,mt−1 , ω

G,k
t−1) + bn

′
mg

l
kCov(εmt−1, ω

G,k
t−1)

Cov(ya
′,n′

t , z
C,b,l

t ) = Bn
′

zkC
l
zkσ

2

zC,k +Bn
′

ykC
l
ykσ

2

yk
+Bn

′
zgkC

l
zkCov(zG,a

′,k
t−1 ,zC,a

′,k
t−1 ) +Bn

′
zgkC

l
ykCov(zG,a

′,k
t−1 ,ya

′,k
t−1 )

+
(
Bn
′

zkC
l
yk +Bn

′
ykC

l
zk

)
Cov(zC,a

′,k
t−1 ,ya

′,k
t−1 ) + gn

′
k c

l
kCov(wG,kt−1, ω

C,k
t−1)

+cn
′
k c

l
kσ

2

wC,k+bn
′
k c

l
kCov(εmt−1, ω

C,k
t−1) + σec,n′ec,l
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Cov(ya
′,n′

t , y
b,l

t ) = Bn
′

zgkB
l
zgkσ

2

zG,k
+Bn

′
zkB

l
zkσ

2

zC,k +Bn
′

ykB
l
ykσ

2

yk
+
(
Bn
′

zgkB
l
zk +Bn

′
zkB

l
zgk

)
Cov(zG,a

′,k
t−1 ,zC,a

′,k
t−1 )

+
(
Bn
′

zgkB
l
yk +Bn

′
ykB

l
zgk

)
cov(zG,a

′,k
t−1 ,ya

′,k
t−1 ) +

(
Bn
′

zkB
l
yk +Bn

′
ykB

l
zk

)
cov(zC,a

′,k
t−1 ,ya

′,k
t−1 ) + bn

′
k b

l
kσ

2
εk + gn

′
k g

l
kσ

2
wG,k

+cn
′
k c

l
kσ

2
wC,k +

(
gn
′

k c
l
k + cn

′
k g

l
k

)
Cov(ωG,kt−1, ω

C,k
t−1)+

(
bn
′
k g

l
k + gn

′
k b

l
k

)
Cov(ωG,kt−1, ε

m
t−1)

+
(
bn
′
k c

l
k + cn

′
k b

l
k

)
Cov(ωc,kt−1, ε

m
t−1) + σeC,n′eC,l + σxn′xl

M.4 Other covariances

Before we obtain the remaining covariances for different degrees of kinship we compute the linear projections

of zG,a
′,n′

t−1 , zC,a
′,n′

t−1 and ya
′,n′

t−1 on zG,b,lt−1 , z
C,b,l
t−1 and yb,lt−1, n′, l = m, f, where a′ and b are siblings.

zG,a
′,n′

t−1 = rn
′,l
zGzG

zG,b,lt−1 + rn
′,l
zGzC

zC,b,lt−1 + rn
′,l
zGy

yb,lt−1 + wG,n
′,l

t−1

zC,a
′,n′

t−1 = rn
′,l
zCzG

zG,b,lt−1 + rn
′,l
zCzC

zC,b,lt−1 + rn
′,l
zCy

yb,lt−1 + wC,n
′,l

t−1

ya
′,n′

t−1 = rn
′,l
yzG

zG,b,lt−1 + rn
′,l
yzC

zC,b,lt−1 + rn
′,l
yy y

b,l
t−1 + εn

′,l
t−1

where wG,n
′,l

t−1 , wC,n
′,l

t−1 and εn
′,l
t−1 might be correlated but are uncorrelated with zG,b,lt−1 , z

C,b,l
t−1 and yb,lt−1. We have

that




rn
′,l
zGzG

rn
′,l
zGzC

rn
′,l
zGy

rn
′,l
zCzG

rn
′,l
zCzC

rn
′,l
zCy

rn
′,l
yzG

rn
′,l
yzC

rn
′,l
yy




′

=




σ2
zG,l σzG,lzC,l σzG,lyl

σzG,lzC,l σ2
zC,l σzC,lyl

σzG,lyl σzC,lyl σ2
yl




−1


σzG,b,lzG,a′,n′ σzG,b,lzC,a′,n′ σzG,b,lya′,n′

σzC,b,lzG,a′,n′ σzC,b,lzC,a′,n′ σzC,b,lya′,n′

σyb,lzG,a′,n′ σyb,lzC,a′,n′ σyb,lya′,n′




Consanguine relatives ("blood")

Vertical covariances

Uncle/aunt (siblings of the parents) aa− b

We have to compute the covariances between "aa" and "b". Let n∗ = m, f be the gender of aa and l = m, f

the gender of b. We project aa on a′ (his/her father or mother) who has gender n′

Cov(zG,aa,n
∗

t , zG,b,lt−1 ) = Cov(Gn
∗
zgn′z

G,a′,n′

t−1 +Gn
∗
zn′z

C,a′,n′

t−1 +Gn
∗
yn′y

a′,n′

t−1 , z
G,b,l
t−1 ) =

Gn
∗
zgn′Cov(zG,a

′,n′

t−1 , zG,b,lt−1 ) +Gn
∗
zn′Cov(zC,a

′,n′

t−1 , zG,b,lt−1 ) +Gn
∗
yn′Cov(ya

′,n′

t−1 , z
G,b,l
t−1 )

Cov(zG,aa,n
∗

t , zC,b,lt−1 ) = Cov(Gn
∗
zgn′z

G,a′,n′

t−1 +Gn
∗
zn′z

C,a′,n′

t−1 +Gn
∗
yn′y

a′,n′

t−1 , z
C,b,l
t−1 ) =

Gn
∗
zgn′Cov(zG,a

′,n′

t−1 , zC,b,lt−1 ) +Gn
∗
zn′Cov(zC,a

′,n′

t−1 , zC,b,lt−1 ) +Gn
∗
yn′Cov(ya

′,n′

t−1 , z
C,b,l
t−1 )

Cov(zG,aa,n
∗

t , yb,lt−1) = Cov(Gn
∗
zgn′z

G,a′,n′

t−1 +Gn
∗
zn′z

C,a′,n′

t−1 +Gn
∗
yn′y

a′,n′

t−1 , y
b,l
t−1) =
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Gn
∗
zgn′Cov(zG,a

′,n′

t−1 , yb,lt−1) +Gn
∗
zn′Cov(zC,a

′,n′

t−1 , yb,lt−1) +Gn
∗
yn′Cov(ya

′,n′

t−1 , y
b,l
t−1)

Cov(zC,aa,n
∗

t , zG,b,lt−1 ) = Cov(Cn
∗

zgn′z
G,a′,n′

t−1 + Cn
∗

zn′z
C,a′,n′

t−1 + Cn
∗

yn′y
a′,n′

t−1 , z
G,b,l
t−1 ) =

Cn
∗

zgn′Cov(zG,a
′,n′

t−1 , zG,b,lt−1 ) + Cn
∗

zn′Cov(zC,a
′,n′

t−1 , zG,b,lt−1 ) + Cn
∗

yn′Cov(ya
′,n′

t−1 , z
G,b,l
t−1 )

Cov(zC,aa,n
∗

t , zC,b,lt−1 ) = Cov(Cn
∗

zgn′z
G,a′,n′

t−1 + Cn
∗

zn′z
C,a′,n′

t−1 + Cn
∗

yn′y
a′,n′

t−1 , z
C,b,l
t−1 ) =

Cn
∗

zgn′Cov(zG,a
′,n′

t−1 , zC,b,lt−1 ) + Cn
∗

zn′Cov(zC,a
′,n′

t−1 , zC,b,lt−1 ) + Cn
∗

yn′Cov(ya
′,n′

t−1 , z
C,b,l
t−1 )

Cov(zC,aa,n
∗

t , yb,lt−1) = Cov(Cn
∗

zgn′z
G,a′,n′

t−1 + Cn
∗

zn′z
C,a′,n′

t−1 + Cn
∗

yn′y
a′,n′

t−1 , y
b,l
t−1) =

Cn
∗

zgn′Cov(zG,a
′,n′

t−1 , yb,lt−1) + Cn
∗

zn′Cov(zC,a
′,n′

t−1 , yb,lt−1) + Cn
∗

yn′Cov(ya
′,n′

t−1 , y
b,l
t−1)

Cov(yaa,n
∗

t , zG,b,lt−1 ) = Cov(Bn
∗

zgn′z
G,a′,n′

t−1 +Bn
∗

zn′z
C,a′,n′

t−1 +Bn
∗

yn′y
a′,n′

t−1 , z
G,b,l
t−1 ) =

Bn
∗

zgn′Cov(zG,a
′,n′

t−1 , zG,b,lt−1 ) +Bn
∗

zn′Cov(zC,a
′,n′

t−1 , zG,b,lt−1 ) +Bn
∗

yn′Cov(ya
′,n′

t−1 , z
G,b,l
t−1 )

Cov(yaa,n
∗

t , zC,b,lt−1 ) = Cov(Bn
∗

zgn′z
G,a′,n′

t−1 +Bn
∗

zn′z
C,a′,n′

t−1 +Bn
∗

yn′y
a′,n′

t−1 , z
C,b,l
t−1 ) =

Bn
∗

zgn′Cov(zG,a
′,n′

t−1 , zC,b,lt−1 ) +Bn
∗

zn′Cov(zC,a
′,n′

t−1 , zC,b,lt−1 ) +Bn
∗

yn′Cov(ya
′,n′

t−1 , z
C,b,l
t−1 )

Cov(yaa,n
∗

t , yb,lt−1) = Cov(Bn
∗

zgn′z
G,a′,n′

t−1 +Bn
∗

zn′z
C,a′,n′

t−1 +Bn
∗

yn′y
a′,n′

t−1 , y
b,l
t−1) =

Bn
∗

zgn′Cov(zG,a
′,n′

t−1 , yb,lt−1) +Bn
∗

zn′Cov(zC,a
′,n′

t−1 , yb,lt−1) +Bn
∗

yn′Cov(ya
′,n′

t−1 , y
b,l
t−1)

where a′ and b are siblings.

Horizontal covariances

Cousins aa− bb

We have to compute the covariances between "aa" and "bb". Let n∗ = m, f be the gender of aa and l∗ = m, f

the gender of the bb. We project bb on b (his/her father or mother) who has gender l

Cov(zG,aa,n
∗

t , zG,bb,l
∗

t ) = Cov(zG,aa,n
∗

t , Gl
∗
zglz

G,b,l
t−1 +Gl

∗
zlz

C,b,l
t−1 +Gl

∗
yly

b,l
t−1)

= Gl
∗
zglCov(zG,aa,n

∗

t , zG,b,lt−1 ) +Gl
∗
zlCov(zG,aa,n

∗

t , zC,b,lt−1 ) +Gl
∗
ylCov(zG,aa,n

∗

t , yb,lt−1)

Cov(zG,aa,n
∗

t , zC,bb,l
∗

t ) = Cov(zG,aa,n
∗

t , Cl
∗
zglz

G,b,l
t−1 + Cl

∗
zlz

C,b,l
t−1 + Cl

∗
yly

b,l
t−1)

= Cl
∗
zglCov(zG,aa,n

∗

t , zG,b,lt−1 ) + Cl
∗
zlCov(zG,aa,n

∗

t , zC,b,lt−1 ) + Cl
∗
ylCov(zG,aa,n

∗

t , yb,lt−1)
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Cov(zG,aa,n
∗

t , ybb,l
∗

t ) = Cov(zG,aa,n
∗

t , Bl
∗
zglz

G,b,l
t−1 +Bl

∗
zlz

C,b,l
t−1 +Bl

∗
yly

b,l
t−1)

= Bl
∗
zglCov(zG,aa,n

∗

t , zG,b,lt−1 ) +Bl
∗
zlCov(zG,aa,n

∗

t , zC,b,lt−1 ) +Bl
∗
ylCov(zG,aa,n

∗

t , yb,lt−1)

Cov(zC,aa,n
∗

t , zG,bb,l
∗

t ) = Cov(zC,aa,n
∗

t , Gl
∗
zglz

G,b,l
t−1 +Gl

∗
zlz

C,b,l
t−1 +Gl

∗
yly

b,l
t−1)

= Gl
∗
zglCov(zC,aa,n

∗

t , zG,b,lt−1 ) +Gl
∗
zlCov(zC,aa,n

∗

t , zC,b,lt−1 ) +Gl
∗
ylCov(zC,aa,n

∗

t , yb,lt−1)

Cov(zC,aa,n
∗

t , zC,bb,l
∗

t ) = Cov(zC,aa,n
∗

t , Cl
∗
zglz

G,b,l
t−1 + Cl

∗
zlz

C,b,l
t−1 + Cl

∗
yly

b,l
t−1)

= Cl
∗
zglCov(zC,aa,n

∗

t , zG,b,lt−1 ) + Cl
∗
zlCov(zC,aa,n

∗

t , zC,b,lt−1 ) + Cl
∗
ylCov(zC,aa,n

∗

t , yb,lt−1)

Cov(zC,aa,n
∗

t , ybb,l
∗

t ) = Cov(zC,aa,n
∗

t , Bl
∗
zglz

G,b,l
t−1 +Bl

∗
zlz

C,b,l
t−1 +Bl

∗
yly

b,l
t−1)

= Bl
∗
zglCov(zC,aa,n

∗

t , zG,b,lt−1 ) +Bl
∗
zlCov(zC,aa,n

∗

t , zC,b,lt−1 ) +Bl
∗
ylCov(zC,aa,n

∗

t , yb,lt−1)

Cov(yaa,n
∗

t , zG,bb,l
∗

t ) = Cov(yaa,n
∗

t , Gl
∗
zglz

G,b,l
t−1 +Gl

∗
zlz

C,b,l
t−1 +Gl

∗
yly

b,l
t−1)

= Gl
∗
zglCov(yaa,n

∗

t , zG,b,lt−1 ) +Gl
∗
zlCov(yaa,n

∗

t , zC,b,lt−1 ) +Gl
∗
ylCov(yaa,n

∗

t , yb,lt−1)

Cov(zG,aa,n
∗

t , zC,bb,l
∗

t ) = Cov(yaa,n
∗

t , Cl
∗
zglz

G,b,l
t−1 + Cl

∗
zlz

C,b,l
t−1 + Cl

∗
yly

b,l
t−1)

= Cl
∗
zglCov(yaa,n

∗

t , zG,b,lt−1 ) + Cl
∗
zlCov(yaa,n

∗

t , zC,b,lt−1 ) + Cl
∗
ylCov(yaa,n

∗

t , yb,lt−1)

Cov(yaa,n
∗

t , ybb,l
∗

t ) = Cov(yaa,n
∗

t , Bl
∗
zglz

G,b,l
t−1 +Bl

∗
zlz

C,b,l
t−1 +Bl

∗
yly

b,l
t−1)

= Bl
∗
zglCov(yaa,n

∗

t , zG,b,lt−1 ) +Bl
∗
zlCov(yaa,n

∗

t , zC,b,lt−1 ) +Bl
∗
ylCov(yaa,n

∗

t , yb,lt−1)

where b is the uncle/aunt of aa.

Affinity relatives ("in-law")

Vertical covariances

Spouse of the uncle/aunt (spouses of the siblings of the parents) aa− b′

We have to compute the covariances between "aa" and "b′". Let n∗ = m, f be the gender of aa and l′ = m, f

the gender of the b′. We project b′ on his/her spouse b

Cov(zG,aa,n
∗

t , zG,b
′,l′

t−1 ) = Cov(zG,aa,n
∗

t , rlzGzGz
G,b,l
t−1 + rlzGzCz

C,b,l
t−1 + rlzGyy

b,l
t−1)
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= rlzGzGCov(zG,aa,n
∗

t , zG,b,lt−1 ) + rlzGzCCov(zG,aa,n
∗

t , zC,b,lt−1 ) + rlzGyCov(zG,aa,n
∗

t , yb,lt−1)

Cov(zG,aa,n
∗

t , zC,b
′,l′

t−1 ) = Cov(zG,aa,n
∗

t , rlzCzGz
G,b,l
t−1 + rlzCzCz

C,b,l
t−1 + rlzCyy

b,l
t−1)

= rlzCzGCov(zG,aa,n
∗

t , zG,b,lt−1 ) + rlzCzCCov(zG,aa,n
∗

t , zC,b,lt−1 ) + rlzCyCov(zG,aa,n
∗

t , yb,lt−1)

Cov(zG,aa,n
∗

t , yb
′,l′

t−1 ) = Cov(zG,aa,n
∗

t , rlyzGz
G,b,l
t−1 + rlyzCz

C,b,l
t−1 + rlyyy

b,l
t−1)

= rlyzGCov(zG,aa,n
∗

t , zG,b,lt−1 ) + rlyzCCov(zG,aa,n
∗

t , zC,b,lt−1 ) + rlyyCov(zG,aa,n
∗

t , yb,lt−1)

Cov(zC,aa,n
∗

t , zG,b
′,l′

t−1 ) = Cov(zC,aa,n
∗

t , rlzGzGz
G,b,l
t−1 + rlzGzCz

C,b,l
t−1 + rlzGyy

b,l
t−1)

= rlzGzGCov(zC,aa,n
∗

t , zG,b,lt−1 ) + rlzGzCCov(zC,aa,n
∗

t , zC,b,lt−1 ) + rlzGyCov(zC,aa,n
∗

t , yb,lt−1)

Cov(zC,aa,n
∗

t , zC,b
′,l′

t−1 ) = Cov(zC,aa,n
∗

t , rlzCzGz
G,b,l
t−1 + rlzCzCz

C,b,l
t−1 + rlzCyy

b,l
t−1)

= rlzCzGCov(zC,aa,n
∗

t , zG,b,lt−1 ) + rlzCzCCov(zC,aa,n
∗

t , zC,b,lt−1 ) + rlzCyCov(zC,aa,n
∗

t , yb,lt−1)

Cov(zC,aa,n
∗

t , yb
′,l′

t−1 ) = Cov(zC,aa,n
∗

t , rlyzGz
G,b,l
t−1 + rlyzCz

C,b,l
t−1 + rlyyy

b,l
t−1)

= rlyzGCov(zC,aa,n
∗

t , zG,b,lt−1 ) + rlyzCCov(zC,aa,n
∗

t , zC,b,lt−1 ) + rlyyCov(zC,aa,n
∗

t , yb,lt−1)

Cov(yaa,n
∗

t , zG,b
′,l′

t−1 ) = Cov(yaa,n
∗

t , rlzGzGz
G,b,l
t−1 + rlzGzCz

C,b,l
t−1 + rlzGyy

b,l
t−1)

= rlzGzGCov(yaa,n
∗

t , zG,b,lt−1 ) + rlzGzCCov(yaa,n
∗

t , zC,b,lt−1 ) + rlzGyCov(yaa,n
∗

t , yb,lt−1)

Cov(yaa,n
∗

t , zC,b
′,l′

t−1 ) = Cov(yaa,n
∗

t , rlzCzGz
G,b,l
t−1 + rlzCzCz

C,b,l
t−1 + rlzCyy

b,l
t−1)

= rlzCzGCov(yaa,n
∗

t , zG,b,lt−1 ) + rlzCzCCov(yaa,n
∗

t , zC,b,lt−1 ) + rlzCyCov(yaa,n
∗

t , yb,lt−1)

Cov(yaa,n
∗

t , yb
′,l′

t−1 ) = Cov(yaa,n
∗

t , rlyzGz
G,b,l
t−1 + rlyzCz

C,b,l
t−1 + rlyyy

b,l
t−1)

= rlyzGCov(yaa,n
∗

t , zG,b,lt−1 ) + rlyzCCov(yaa,n
∗

t , zC,b,lt−1 ) + rlyyCov(yaa,n
∗

t , yb,lt−1)

where b is uncle/aunt of aa.

Siblings of the siblings in law of the parents aa− c

We have to compute the covariances between "aa" and "c". Let n∗ = m, f be the gender of aa and o = m, f
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the gender of the c. We project c on his/her sibling b′

Cov(zG,aa,n
∗

t , zG,c,ot−1 ) = Cov(zG,aa,n
∗

t , ro,l
′

zGzG
zG,b

′,l′

t−1 + ro,l
′

zGzC
zC,b

′,l′

t−1 + ro,l
′

zGy
yb
′,l′

t−1 )

= ro,l
′

zGzG
Cov(zG,aa,n

∗

t , zG,b
′,l′

t−1 ) + ro,l
′

zGzC
Cov(zG,aa,n

∗

t , zC,b
′,l′

t−1 ) + ro,l
′

zGy
Cov(zG,aa,n

∗

t , yb
′,l′

t−1 )

Cov(zG,aa,n
∗

t , zC,c,ot−1 ) = Cov(zG,aa,n
∗

t , ro,l
′

zCzG
zG,b

′,l′

t−1 + ro,l
′

zCzC
zC,b

′,l′

t−1 + ro,l
′

zCy
yb
′,l′

t−1 )

= ro,l
′

zCzG
Cov(zG,aa,n

∗

t , zG,b
′,l′

t−1 ) + ro,l
′

zCzC
Cov(zG,aa,n

∗

t , zC,b
′,l′

t−1 ) + ro,l
′

zCy
Cov(zG,aa,n

∗

t , yb
′,l′

t−1 )

Cov(zG,aa,n
∗

t , yc,ot−1) = Cov(zG,aa,n
∗

t , ro,l
′

yzG
zG,b

′,l′

t−1 + ro,l
′

yzC
zC,b

′,l′

t−1 + ro,l
′

yy y
b′,l′

t−1 )

= ro,l
′

yzG
Cov(zG,aa,n

∗

t , zG,b
′,l′

t−1 ) + ro,l
′

yzC
Cov(zG,aa,n

∗

t , zC,b
′,l′

t−1 ) + ro,l
′

yy Cov(zG,aa,n
∗

t , yb
′,l′

t−1 )

Cov(zC,aa,n
∗

t , zG,c,ot−1 ) = Cov(zC,aa,n
∗

t , ro,l
′

zGzG
zG,b

′,l′

t−1 + ro,l
′

zGzC
zC,b

′,l′

t−1 + ro,l
′

zGy
yb
′,l′

t−1 )

= ro,l
′

zGzG
Cov(zC,aa,n

∗

t , zG,b
′,l′

t−1 ) + ro,l
′

zGzC
Cov(zC,aa,n

∗

t , zC,b
′,l′

t−1 ) + ro,l
′

zGy
Cov(zC,aa,n

∗

t , yb
′,l′

t−1 )

Cov(zC,aa,n
∗

t , zC,c,ot−1 ) = Cov(zC,aa,n
∗

t , ro,l
′

zCzG
zG,b

′,l′

t−1 + ro,l
′

zCzC
zC,b

′,l′

t−1 + ro,l
′

zCy
yb
′,l′

t−1 )

= ro,l
′

zCzG
Cov(zC,aa,n

∗

t , zG,b
′,l′

t−1 ) + ro,l
′

zCzC
Cov(zC,aa,n

∗

t , zC,b
′,l′

t−1 ) + ro,l
′

zCy
Cov(zC,aa,n

∗

t , yb
′,l′

t−1 )

Cov(zC,aa,n
∗

t , yc,ot−1) = Cov(zC,aa,n
∗

t , ro,l
′

yzG
zG,b

′,l′

t−1 + ro,l
′

yzC
zC,b

′,l′

t−1 + ro,l
′

yy y
b′,l′

t−1 )

= ro,l
′

yzG
Cov(zC,aa,n

∗

t , zG,b
′,l′

t−1 ) + ro,l
′

yzC
Cov(zC,aa,n

∗

t , zC,b
′,l′

t−1 ) + ro,l
′

yy Cov(zC,aa,n
∗

t , yb
′,l′

t−1 )

Cov(yaa,n
∗

t , zG,c,ot−1 ) = Cov(yaa,n
∗

t , ro,l
′

zGzG
zG,b

′,l′

t−1 + ro,l
′

zGzC
zC,b

′,l′

t−1 + ro,l
′

zGy
yb
′,l′

t−1 )

= ro,l
′

zGzG
Cov(yaa,n

∗

t , zG,b
′,l′

t−1 ) + ro,l
′

zGzC
Cov(yaa,n

∗

t , zC,b
′,l′

t−1 ) + ro,l
′

zGy
Cov(yaa,n

∗

t , yb
′,l′

t−1 )

Cov(yaa,n
∗

t , zC,c,ot−1 ) = Cov(yaa,n
∗

t , ro,l
′

zCzG
zG,b

′,l′

t−1 + ro,l
′

zCzC
zC,b

′,l′

t−1 + ro,l
′

zCy
yb
′,l′

t−1 )

= ro,l
′

zCzG
Cov(yaa,n

∗

t , zG,b
′,l′

t−1 ) + ro,l
′

zCzC
Cov(yaa,n

∗

t , zC,b
′,l′

t−1 ) + ro,l
′

zCy
Cov(yaa,n

∗

t , yb
′,l′

t−1 )

Cov(yaa,n
∗

t , yc,ot−1) = Cov(yaa,n
∗

t , ro,l
′

yzG
zG,b

′,l′

t−1 + ro,l
′

yzC
zC,b

′,l′

t−1 + ro,l
′

yy y
b′,l′

t−1 )

= ro,l
′

yzG
Cov(yaa,n

∗

t , zG,b
′,l′

t−1 ) + ro,l
′

yzC
Cov(yaa,n

∗

t , zC,b
′,l′

t−1 ) + ro,l
′

yy Cov(yaa,n
∗

t , yb
′,l′

t−1 )

where y is the spouse of the uncle/aunt of aa.

We can recursively compute the covariance for spouses of the siblings in law of the parents and siblings of
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the siblings in law of the parents of any degree.

Horizontal covariances

Siblings in law a− b

We have to compute the covariances between "a" and "b". Let n = m, f be the gender of a and l = m, f the

gender of the b. We project a on his/her spouse a′ with gender n′ = f,m

Cov(zG,a,nt−1 , zG,b,lt−1 ) = Cov(rn
′

zGzGz
G,a′,n′

t−1 + rn
′

zGzCz
C,a′,n′

t−1 + rn
′

zGyy
a′,n′

t−1 , z
G,b,l
t−1 )

= rn
′

zGzGCov(zG,a
′,n′

t−1 , zG,b,lt−1 ) + rn
′

zGzCCov(zC,a
′,n′

t−1 , zG,b,lt−1 ) + rn
′

zGyCov(ya
′,n′

t−1 , z
G,b,l
t−1 )

Cov(zG,a,nt−1 , zC,b,lt−1 ) = Cov(rn
′

zGzGz
G,a′,n′

t−1 + rn
′

zGzCz
C,a′,n′

t−1 + rn
′

zGyy
a′,n′

t−1 , z
C,b,l
t−1 )

= rn
′

zGzGCov(zG,a
′,n′

t−1 , zC,b,lt−1 ) + rn
′

zGzCCov(zC,a
′,n′

t−1 , zC,b,lt−1 ) + rn
′

zGyCov(ya
′,n′

t−1 , z
C,b,l
t−1 )

Cov(zG,a,nt−1 , yb,lt−1) = Cov(rn
′

zGzGz
G,a′,n′

t−1 + rn
′

zGzCz
C,a′,n′

t−1 + rn
′

zGyy
a′,n′

t−1 , y
b,l
t−1)

= rn
′

zGzGCov(zG,a
′,n′

t−1 , yb,lt−1) + rn
′

zGzCCov(zC,a
′,n′

t−1 , yb,lt−1) + rn
′

zGyCov(ya
′,n′

t−1 , y
b,l
t−1)

Cov(zC,a,nt−1 , zG,b,lt−1 ) = Cov(rn
′

zCzGz
G,a′,n′

t−1 + rn
′

zCzCz
C,a′,n′

t−1 + rn
′

zCyy
a′,n′

t−1 , z
G,b,l
t−1 )

= rn
′

zCzGCov(zG,a
′,n′

t−1 , zG,b,lt−1 ) + rn
′

zCzCCov(zC,a
′,n′

t−1 , zG,b,lt−1 ) + rn
′

zCyCov(ya
′,n′

t−1 , z
G,b,l
t−1 )

Cov(zC,a,nt−1 , zC,b,lt−1 ) = Cov(rn
′

zCzGz
G,a′,n′

t−1 + rn
′

zCzCz
C,a′,n′

t−1 + rn
′

zCyy
a′,n′

t−1 , z
C,b,l
t−1 )

= rn
′

zCzGCov(zG,a
′,n′

t−1 , zC,b,lt−1 ) + rn
′

zCzCCov(zC,a
′,n′

t−1 , zC,b,lt−1 ) + rn
′

zCyCov(ya
′,n′

t−1 , z
C,b,l
t−1 )

Cov(zC,a,nt−1 , yb,lt−1) = Cov(rn
′

zCzGz
G,a′,n′

t−1 + rn
′

zCzCz
C,a′,n′

t−1 + rn
′

zCyy
a′,n′

t−1 , y
b,l
t−1)

= rn
′

zCzGCov(zG,a
′,n′

t−1 , yb,lt−1) + rn
′

zCzCCov(zC,a
′,n′

t−1 , yb,lt−1) + rn
′

zCyCov(ya
′,n′

t−1 , y
b,l
t−1)

Cov(ya,nt−1, z
G,b,l
t−1 ) = Cov(rn

′

yzGz
G,a′,n′

t−1 + rn
′

yzCz
C,a′,n′

t−1 + rn
′
yyy

a′,n′

t−1 , z
G,b,l
t−1 )

= rn
′

yzGCov(zG,a
′,n′

t−1 , zG,b,lt−1 ) + rn
′

yzCCov(zC,a
′,n′

t−1 , zG,b,lt−1 ) + rn
′
yyCov(ya

′,n′

t−1 , z
G,b,l
t−1 )

Cov(ya,nt−1, z
C,b,l
t−1 ) = Cov(rn

′

yzGz
G,a′,n′

t−1 + rn
′

yzCz
C,a′,n′

t−1 + rn
′
yyy

a′,n′

t−1 , z
C,b,l
t−1 )

= rn
′

yzGCov(zG,a
′,n′

t−1 , zC,b,lt−1 ) + rn
′

yzCCov(zC,a
′,n′

t−1 , zC,b,lt−1 ) + rn
′
yyCov(ya

′,n′

t−1 , z
C,b,l
t−1 )
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Cov(ya,nt−1, y
b,l
t−1) = Cov(rn

′

yzGz
G,a′,n′

t−1 + rn
′

yzCz
C,a′,n′

t−1 + rn
′
yyy

a′,n′

t−1 , y
b,l
t−1)

= rn
′

yzGCov(zG,a
′,n′

t−1 , yb,lt−1) + rn
′

yzCCov(zC,a
′,n′

t−1 , yb,lt−1) + rn
′
yyCov(ya

′,n′

t−1 , y
b,l
t−1)

where a′ and b are siblings.

Spouse of the siblings in law a− b′

We have to compute the covariances between "a" and "b′". Let n = m, f be the gender of a and l′ = m, f

the gender of the b′. We project b′ on his/her spouse b

Cov(zG,a,nt , zG,b
′,l′

t−1 ) = Cov(zG,a,nt , rlzGzGz
G,b,l
t−1 + rlzGzCz

C,b,l
t−1 + rlzGyy

b,l
t−1)

= rlzGzGCov(zG,a,nt , zG,b,lt−1 ) + rlzGzCCov(zG,a,nt , zC,b,lt−1 ) + rlzGyCov(zG,a,nt , yb,lt−1)

Cov(zG,a,nt , zC,b
′,l′

t−1 ) = Cov(zG,a,nt , rlzCzGz
G,b,l
t−1 + rlzCzCz

C,b,l
t−1 + rlzCyy

b,l
t−1)

= rlzCzGCov(zG,a,nt , zG,b,lt−1 ) + rlzCzCCov(zG,a,nt , zC,b,lt−1 ) + rlzCyCov(zG,a,nt , yb,lt−1)

Cov(zG,a,nt , yb
′,l′

t−1 ) = Cov(zG,a,nt , rlyzGz
G,b,l
t−1 + rlyzCz

C,b,l
t−1 + rlyyy

b,l
t−1)

= rlyzGCov(zG,a,nt , zG,b,lt−1 ) + rlyzCCov(zG,a,nt , zC,b,lt−1 ) + rlyyCov(zG,a,nt , yb,lt−1)

Cov(zC,a,nt , zG,b
′,l′

t−1 ) = Cov(zC,a,nt , rlzGzGz
G,b,l
t−1 + rlzGzCz

C,b,l
t−1 + rlzGyy

b,l
t−1)

= rlzGzGCov(zC,a,nt , zG,b,lt−1 ) + rlzGzCCov(zC,a,nt , zC,b,lt−1 ) + rlzGyCov(zC,a,nt , yb,lt−1)

Cov(zC,a,nt , zC,b
′,l′

t−1 ) = Cov(zC,a,nt , rlzCzGz
G,b,l
t−1 + rlzCzCz

C,b,l
t−1 + rlzCyy

b,l
t−1)

= rlzCzGCov(zC,a,nt , zG,b,lt−1 ) + rlzCzCCov(zC,a,nt , zC,b,lt−1 ) + rlzCyCov(zC,a,nt , yb,lt−1)

Cov(zC,a,nt , yb
′,l′

t−1 ) = Cov(zC,a,nt , rlyzGz
G,b,l
t−1 + rlyzCz

C,b,l
t−1 + rlyyy

b,l
t−1)

= rlyzGCov(zC,a,nt , zG,b,lt−1 ) + rlyzCCov(zC,a,nt , zC,b,lt−1 ) + rlyyCov(zC,a,nt , yb,lt−1)

Cov(ya,nt , zG,b
′,l′

t−1 ) = Cov(ya,nt , rlzGzGz
G,b,l
t−1 + rlzGzCz

C,b,l
t−1 + rlzGyy

b,l
t−1)

= rlzGzGCov(ya,nt , zG,b,lt−1 ) + rlzGzCCov(ya,nt , zC,b,lt−1 ) + rlzGyCov(ya,nt , yb,lt−1)

Cov(ya,nt , zC,b
′,l′

t−1 ) = Cov(ya,nt , rlzCzGz
G,b,l
t−1 + rlzCzCz

C,b,l
t−1 + rlzCyy

b,l
t−1)
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= rlzCzGCov(ya,nt , zG,b,lt−1 ) + rlzCzCCov(ya,nt , zC,b,lt−1 ) + rlzCyCov(ya,nt , yb,lt−1)

Cov(ya,nt , yb
′,l′

t−1 ) = Cov(ya,nt , rlyzGz
G,b,l
t−1 + rlyzCz

C,b,l
t−1 + rlyyy

b,l
t−1)

= rlyzGCov(ya,nt , zG,b,lt−1 ) + rlyzCCov(ya,nt , zC,b,lt−1 ) + rlyyCov(ya,nt , yb,lt−1)

where a and b are siblings in law.

Sibling of the sibling in law a′ − c

We have to compute the covariances between "a′" and "c". Let n′ = m, f be the gender of a′ and o = m, f

the gender of the c. We project a′ on his/her sibling b who has gender l

Cov(zG,a
′,n′

t−1 , zG,c,ot−1 ) = Cov(rn
′,l
zGzG

zG,b,lt−1 + rn
′,l
zGzC

zC,b,lt−1 + rn
′,l
zGy

yb,lt−1, z
G,c,o
t−1 )

= rn
′,l
zGzG

Cov(zG,b,lt−1 , z
G,c,o
t−1 ) + rn

′,l
zGzC

Cov(zC,b,lt−1 , z
G,c,o
t−1 ) + rn

′,l
zGy

Cov(yb,lt−1, z
G,c,o
t−1 )

Cov(zG,a
′,n′

t−1 , zC,c,ot−1 ) = Cov(rn
′,l
zGzG

zG,b,lt−1 + rn
′,l
zGzC

zC,b,lt−1 + rn
′,l
zGy

yb,lt−1, z
C,c,o
t−1 )

= rn
′,l
zGzG

Cov(zG,b,lt−1 , z
C,c,o
t−1 ) + rn

′,l
zGzC

Cov(zC,b,lt−1 , z
C,c,o
t−1 ) + rn

′,l
zGy

Cov(yb,lt−1, z
C,c,o
t−1 )

Cov(zG,a
′,n′

t−1 , yc,ot−1) = Cov(rn
′,l
zGzG

zG,b,lt−1 + rn
′,l
zGzC

zC,b,lt−1 + rn
′,l
zGy

yb,lt−1, y
c,o
t−1)

= rn
′,l
zGzG

Cov(zG,b,lt−1 , y
c,o
t−1) + rn

′,l
zGzC

Cov(zC,b,lt−1 , y
c,o
t−1) + rn

′,l
zGy

Cov(yb,lt−1, y
c,o
t−1)

Cov(zC,a
′,n′

t−1 , zG,c,ot−1 ) = Cov(rn
′,l
zCzG

zG,b,lt−1 + rn
′,l
zCzC

zC,b,lt−1 + rn
′,l
zCy

yb,lt−1, z
G,c,o
t−1 )

= rn
′,l
zCzG

Cov(zG,b,lt−1 , z
G,c,o
t−1 ) + rn

′,l
zCzC

Cov(zC,b,lt−1 , z
G,c,o
t−1 ) + rn

′,l
zCy

Cov(yb,lt−1, z
G,c,o
t−1 )

Cov(zC,a
′,n′

t−1 , zC,c,ot−1 ) = Cov(rn
′,l
zCzG

zG,b,lt−1 + rn
′,l
zCzC

zC,b,lt−1 + rn
′,l
zCy

yb,lt−1, z
C,c,o
t−1 )

= rn
′,l
zCzG

Cov(zG,b,lt−1 , z
C,c,o
t−1 ) + rn

′,l
zCzC

Cov(zC,b,lt−1 , z
C,c,o
t−1 ) + rn

′,l
zCy

Cov(yb,lt−1, z
C,c,o
t−1 )

Cov(zC,a
′,n′

t−1 , yc,ot−1) = Cov(rn
′,l
zCzG

zG,b,lt−1 + rn
′,l
zCzC

zC,b,lt−1 + rn
′,l
zCy

yb,lt−1, y
c,o
t−1)

= rn
′,l
zCzG

Cov(zG,b,lt−1 , y
c,o
t−1) + rn

′,l
zCzC

Cov(zC,b,lt−1 , y
c,o
t−1) + rn

′,l
zCy

Cov(yb,lt−1, y
c,o
t−1)

Cov(ya
′,n′

t−1 , z
G,c,o
t−1 ) = Cov(rn

′,l
yzG

zG,b,lt−1 + rn
′,l
yzC

zC,b,lt−1 + rn
′,l
yy y

b,l
t−1, z

G,c,o
t−1 )

= rn
′,l
yzG

Cov(zG,b,lt−1 , z
G,c,o
t−1 ) + rn

′,l
yzC

Cov(zC,b,lt−1 , z
G,c,o
t−1 ) + rn

′,l
yy Cov(yb,lt−1, z

G,c,o
t−1 )

42



Cov(ya
′,n′

t−1 , z
C,c,o
t−1 ) = Cov(rn

′,l
yzG

zG,b,lt−1 + rn
′,l
yzC

zC,b,lt−1 + rn
′,l
yy y

b,l
t−1, z

C,c,o
t−1 )

= rn
′,l
yzG

Cov(zG,b,lt−1 , z
C,c,o
t−1 ) + rn

′,l
yzC

Cov(zC,b,lt−1 , z
C,c,o
t−1 ) + rn

′,l
yy Cov(yb,lt−1, z

C,c,o
t−1 )

Cov(ya
′,n′

t−1 , y
c,o
t−1) = Cov(rn

′,l
yzG

zG,b,lt−1 + rn
′,l
yzC

zC,b,lt−1 + rn
′,l
yy y

b,l
t−1, y

c,o
t−1)

= rn
′,l
yzG

Cov(zG,b,lt−1 , y
c,o
t−1) + rn

′,l
yzC

Cov(zC,b,lt−1 , y
c,o
t−1) + rn

′,l
yy Cov(yb,lt−1, y

c,o
t−1)

where b and c are siblings in law.

We can recursively compute the covariances for siblings in law, spouses of the sibling and siblings of the

siblings of any degree.

Cousins in law aa− cc

We have to compute the covariances between "aa" and "cc". Let n∗ = m, f be the gender of aa and o∗ = m, f

the gender of the cc. We project cc on c (his/her father or mother) who has gender o

Cov(zG,aa,n
∗

t , zG,cc,o
∗

t ) = Cov(zG,aa,n
∗

t , Go
∗
zgoz

G,b,o
t−1 +Go

∗
zoz

C,b,o
t−1 +Go

∗
yoy

b,o
t−1)

= Go
∗
zgoCov(zG,aa,n

∗

t , zG,b,ot−1 ) +Go
∗
zoCov(zG,aa,n

∗

t , zC,b,ot−1 ) +Go
∗
yoCov(zG,aa,n

∗

t , yb,ot−1)

Cov(zG,aa,n
∗

t , zC,cc,o
∗

t ) = Cov(zG,aa,n
∗

t , Co
∗
zgoz

G,b,o
t−1 + Co

∗
zoz

C,b,o
t−1 + Co

∗
yoy

b,o
t−1)

= Co
∗
zgoCov(zG,aa,n

∗

t , zG,b,ot−1 ) + Co
∗
zoCov(zG,aa,n

∗

t , zC,b,ot−1 ) + Co
∗
yoCov(zG,aa,n

∗

t , yb,ot−1)

Cov(zG,aa,n
∗

t , ycc,o
∗

t ) = Cov(zG,aa,n
∗

t , Bo
∗
zgoz

G,b,o
t−1 +Bo

∗
zoz

C,b,o
t−1 +Bo

∗
yoy

b,o
t−1)

= Bo
∗
zgoCov(zG,aa,n

∗

t , zG,b,ot−1 ) +Bo
∗
zoCov(zG,aa,n

∗

t , zC,b,ot−1 ) +Bo
∗
yoCov(zG,aa,n

∗

t , yb,ot−1)

Cov(zC,aa,n
∗

t , zG,cc,o
∗

t ) = Cov(zC,aa,n
∗

t , Go
∗
zgoz

G,b,o
t−1 +Go

∗
zoz

C,b,o
t−1 +Go

∗
yoy

b,o
t−1)

= Go
∗
zgoCov(zC,aa,n

∗

t , zG,b,ot−1 ) +Go
∗
zoCov(zC,aa,n

∗

t , zC,b,ot−1 ) +Go
∗
yoCov(zC,aa,n

∗

t , yb,ot−1)

Cov(zC,aa,n
∗

t , zC,cc,o
∗

t ) = Cov(zC,aa,n
∗

t , Co
∗
zgoz

G,b,o
t−1 + Co

∗
zoz

C,b,o
t−1 + Co

∗
yoy

b,o
t−1)

= Co
∗
zgoCov(zC,aa,n

∗

t , zG,b,ot−1 ) + Co
∗
zoCov(zC,aa,n

∗

t , zC,b,ot−1 ) + Co
∗
yoCov(zC,aa,n

∗

t , yb,ot−1)

Cov(zC,aa,n
∗

t , ycc,o
∗

t ) = Cov(zC,aa,n
∗

t , Bo
∗
zgoz

G,b,o
t−1 +Bo

∗
zoz

C,b,o
t−1 +Bo

∗
yoy

b,o
t−1)

= Bo
∗
zgoCov(zC,aa,n

∗

t , zG,b,ot−1 ) +Bo
∗
zoCov(zC,aa,n

∗

t , zC,b,ot−1 ) +Bo
∗
yoCov(zC,aa,n

∗

t , yb,ot−1)
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Cov(yaa,n
∗

t , zG,cc,o
∗

t ) = Cov(yaa,n
∗

t , Go
∗
zgoz

G,b,o
t−1 +Go

∗
zoz

C,b,o
t−1 +Go

∗
yoy

b,o
t−1)

= Go
∗
zgoCov(yaa,n

∗

t , zG,b,ot−1 ) +Go
∗
zoCov(yaa,n

∗

t , zC,b,ot−1 ) +Go
∗
yoCov(yaa,n

∗

t , yb,ot−1)

Cov(zG,aa,n
∗

t , zC,cc,o
∗

t ) = Cov(yaa,n
∗

t , Co
∗
zgoz

G,b,o
t−1 + Co

∗
zoz

C,b,o
t−1 + Co

∗
yoy

b,o
t−1)

= Co
∗
zgoCov(yaa,n

∗

t , zG,b,ot−1 ) + Co
∗
zoCov(yaa,n

∗

t , zC,b,ot−1 ) + Co
∗
yoCov(yaa,n

∗

t , yb,ot−1)

Cov(yaa,n
∗

t , ycc,o
∗

t ) = Cov(yaa,n
∗

t , Bo
∗
zgoz

G,b,o
t−1 +Bo

∗
zoz

C,b,o
t−1 +Bo

∗
yoy

b,o
t−1)

= Bo
∗
zgoCov(yaa,n

∗

t , zG,b,ot−1 ) +Bo
∗
zoCov(yaa,n

∗

t , zC,b,ot−1 ) +Bo
∗
yoCov(yaa,n

∗

t , yb,ot−1)

where c is the sibling in law of the uncle/aunt of aa. We can recursively compute the covariances for cousins

in law of any degree.
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