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1 Introduction

In cases of non-compliance with a prescribed treatment, estimates of causal effects typically rely

on instrumental variables (Athey and Imbens, 2017). However, this approach requires participa-

tion in a program to be correctly measured, which is not the case in many applications. We review

articles published between 1996 and 2022 and find 54 reportings of treatment misclassification in

most fields of applied economics.1 Strikingly, studies evaluating the benefits of a program find or

estimate a median misclassification rate of 27%. Misreporting is common in research on educa-

tional attainment, participation in specific training courses, and insurance possession.2 Because the

misclassification of a binary treatment is nonclassical, evaluating the benefits of a program using

standard techniques can be severely biased (Kreider, 2010; Millimet, 2011).

We study the identification and estimation of program benefits when both non-compliance and

misclassification of a binary treatment variable are present. We focus on non-differential misclas-

sification errors that (after conditioning on the true treatment status) are uncorrelated with the

outcomes. Our method identifies program benefits in cases of random and nonrandom missing

treatment observations, as well as generally mismeasured treatment, whether these cases are due to

recording mistakes, imperfect compliance, poor recollection, or incomplete awareness of the treat-

ment(s) received. Recent scholarship addresses the problem of non-differential misclassification

of binary treatment variables. Calvi, Lewbel, and Tommasi (2021) propose a novel instrumental

variables (IV) approach to identify the average causal effect on compliers. Their estimator, the

mismeasured robust local average treatment effect (MR-LATE), requires two binary proxies for the

same treatment, which can be constructed using estimated treatments, different sources of treat-

ment status, or multiple or repeated treatment measures. The flexibility and simplicity of MR-LATE

makes it potentially easier for practitioners to adopt than alternative solutions that have been pro-

posed in the literature (e.g., Battistin et al., 2014; Yanagi, 2018; DiTraglia and García-Jimeno, 2019;

Kasahara and Shimotsu, 2021).3

We focus on the IV estimand that captures the average causal effect on compliers (Imbens and

Angrist, 1994). We begin by clarifying the consequences of dropping or imputing observations with

missing or unclear treatment statuses, which is common in applied studies with misreported pro-

gram participation. Second, we develop an IV method that researchers can use to identify the true

heterogeneous treatment effects. Through this process, we generalize the MR-LATE approach by in-

corporating discrete or multiple-discrete IVs and targeting the weighted average of LATEs (WLATE).

Such a generalization is important because more than half of the empirical papers using IVs pub-

lished in top journals in the last 20 years use multiple instrumental variables (Mogstad et al., 2020b).
1See Table A1 in the Appendix for the complete list.
2Meyer et al. (2015) also supported this qualitative result, showing that the “desire to shorten the time spent on the interview, the stigma

of program participation, the sensitivity of income information, or changes in the characteristics of those who receive transfers” all drive
misreporting of program participation and that it is an increasing problem for social scientists (p. 219).

3More specifically, point identification of our target parameter(s) is achieved assuming resurvey data (Battistin et al., 2014), two instru-
mental variables (Yanagi, 2018), homogeneous treatment effects (DiTraglia and García-Jimeno, 2019), or a covariate satisfying an exclusion
restriction from the misclassification (Kasahara and Shimotsu, 2021). A different line of research addresses the more general case of differential
misclassification (e.g., Kreider et al., 2012; Nguimkeu et al., 2018; Ura, 2018; Jiang and Ding, 2020; Tommasi and Zhang, 2020).

2



We provide sufficient conditions on the misclassification rates under which the MR-LATE ensures

point identification or set identification results. As a further extension, we show how to apply

MR-LATE in a discrete treatment setting (Angrist and Imbens, 1995). Third, we complement the

MR-LATE approach by providing a novel inferential procedure that is suitable for many applications

with a general data dependence structure, including heteroskedasticity and clustering. Finally, we

develop a new Stata command, , that implements the proposed method and use it to re-

assess the return on education in the United Kingdom (UK).

Our method has three potential applications in the context of treatment non-compliance and

non-differential misclassification. First, it can be used as the primary identification strategy in stud-

ies when it is certain that the available treatment measurement(s) are unreliable. In particular, it

can be used regardless of whether the misclassification is due to the treatment being missing at ran-

dom, missing not at random, or generally mismeasured. Second, it can be adopted as the primary

robustness check when practitioners doubt the accuracy of the treatment variable. Third, practi-

tioners can use it to assess the sensitivity of a program’s benefits to different hypothetical values

or external information on the extent of misclassification. Although it is motivated by the program

evaluation literature, our method may not necessarily apply to evaluating a particular program;

nevertheless, it is useful whenever researchers aim to study the causal effect of an endogenous

treatment variable that suffers from measurement errors.

This paper also contributes to a long-standing tradition in the program evaluation literature ad-

dressing the problem of misclassification in the treatment variable (e.g., Angrist and Krueger, 1999;

Bound et al., 2001; Card, 2001; Black et al., 2003; Hernandez et al., 2007; Molinari, 2008, 2010)).

In the context of homogeneous treatment effects, papers studying the effects of an exogenous and

mismeasured binary treatment using IV techniques include Aigner (1973), Bollinger (1996), Kane

et al. (1999) and Black et al. (2000). Under more general conditions, Klepper (1988) provides

bounds on average treatment effects with multiple misclassified treatments. In the framework of

heterogeneous treatment effects, studies addressing treatment misclassification include Mahajan

(2006), Lewbel (2007), and Hu (2008). They provide point-identification results for average treat-

ment effects in instances where the treatment is assumed to be exogenous and instruments are

adopted to deal with treatment misclassification.

With respect to the above literature, we develop our approach using the standard LATE structure.

This is meaningful because, as Imbens (2014) explains, “under weak conditions” the LATE (or the

WLATE) “may be the only relevant information that is credibly identifiable.” Similarly, Mogstad et al.

(2018) note that it “is of intrinsic interest when the instrument itself represents an intervention, like

a policy change or a randomized control trial”. In situations where the causal effect among those

who comply might not be the effect of interest, the LATE (or WLATE) could be used to extrapolate

to more general causal effects (e.g., Heckman et al., 2006). Our method can also be viewed as an

alternative to Acerenza et al. (2021) and Possebom (2021) who study treatment misclassification

via the marginal treatment effect approach.

The remainder of this paper proceeds as follows. Section 2 shows the limits of some common
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practices in applied works and reviews the MR-LATE approach for a binary instrument. Section 3

generalizes the MR-LATE to cases with discrete or multiple discrete instrument(s) and provides the

asymptotic results. Whereas, simulations, guidance for practitioners and an empirical illustration

using our new command appear in Section 4. Section 5 concludes. Proofs and additional

materials are in the Appendix.

2 Treatment Misclassification and the MR-LATE Approach

We start motivating the paper by looking at a simple setting of a binary treatment and a binary

instrument. We describe the consequences of some common cases of treatment misclassification.

Then, we review the key idea of the MR-LATE approach introduced by Calvi, Lewbel, and Tommasi

(2021), and applied in Tommasi (2019), which addresses the problem of treatment misclassification

in this simple setting. This is a natural starting point because later we generalize the approach to

other settings and develop a novel inferential procedure.

Let D be a binary treatment variable and Z be a binary instrument. Denote by D0 and D1 the

two binary potential treatments. Then we have D = Z D1 + (1 � Z)D0 and the outcome can be

defined as Y = DY1 + (1� D)Y0, where Y1 and Y0 are the two potential outcomes. In case of non-

compliance with prescribed treatment, if there is no treatment misclassification, the Imbens and

Angrist (1994)’s local average treatment effect (LATE) is identified by the standard IV estimand:

↵IV =
Cov (Y, Z)
Cov (D, Z)

= E[Y1 � Y0|C] (1)

where C = {D0 = 0, D1 = 1} denotes the sub-population of compliers. To identify program benefits

in case of non-compliance, we just need to observe Y , D, and Z , and apply 2SLS. However, in

many studies of program evaluation, we cannot observe the true treatment D for some observations.

Suppose the self-reported answer P to a survey question of program participation is available, which

reveals incomplete information about the true treatment status. For example, P = 1 if an individual

reports “treated”, P = �1 if “not treated”, and P = 0 if the record is missing (equivalently, the

individual reports “do not know”).

Case 1: Missing Treatment Observations at Random. Consider the scenario where the

self-reported treatment statuses are correct for P = 1 or P = �1, but the treatment observations

with P = 0 are missing at random. This is the case of recording mistakes where (P = 0)? (Y, D, Z).
We can set the observable treatment indicator T = 1 if P = 1, and T = 0 if P = �1. Then, the

LATE estimand can be identified if one simply discards all the observations missing at random and

conduct the standard 2SLS using the sub-sample with P 6= 0:

↵1 =
Cov(Y, Z |P 6= 0)
Cov(T, Z |P 6= 0)

=
Cov(Y, Z |P 6= 0)
Cov(D, Z |P 6= 0)

=
Cov(Y, Z)
Cov(D, Z)

= E[Y1 � Y0|C]. (2)

This is because, dropping the observations with P = 0, neither changes the underlying distribution

4



of the population, nor introduces measurement errors in the observed treatment indicator.

Case 2: Missing Treatment Observations Not at Random. In practice, missing treatment

observations are often not at random: (P = 0) 6? (Y, D, Z). For example, when individuals are

asked to report their educational qualifications, the missing or uncertain responses (“do not know”)

may occur with a higher probability for those who have undertaken some schooling but they are

not sure if it counts as a qualification, than those who have never done so. In this case, dropping

observations with missing treatment would bias the estimation. When imputing the treatment is

not possible, one could simply regard the missing or uncertain responses as untreated and construct

a treatment indicator T = 1 if P = 1 and T = 0 if P = {�1,0}. Then, one would implement the

2SLS estimation using T :

↵2 =
Cov(Y, Z)
Cov(T, Z)

=
E[Y |Z = 1]�E[Y |Z = 0]
E[T |Z = 1]�E[T |Z = 0]

=
E[Y1 � Y0|C]

p1 � p0
, (3)

where p1 = E[T |D = 1, C] and p0 = E[T |D = 0, C] describe the measurement accuracy. However,

since 0 |p1�p0| 1, the estimand ↵2 would be inflated (in absolute value) by the misclassification

error, resulting in a biased approach.

Suppose the self-reported treatment statuses are correct when P = 1 or P = �1. In such cases,

the MR-LATE approach can be used to overcome the problem of missing treatment observations

when P = 0 are missing not at random. Construct two binary variables T a = 1[P = 1], and

0 otherwise, and T b = 1[P = �1], and 0 otherwise. T a never mistakes the true untreated as

treated and 1� T b never mistakes the true treated as untreated. Under the key assumption of non-

differential misclassification, E[Y |D, P, C] = E[Y |D, C], it can be shown that the MR-LATE estimand

⇢ point identifies the LATE:

⇢ =
Cov (T aY, Z)
Cov (T a, Z)

�
Cov

�
T bY, Z

�

Cov (T b, Z)
= E[Y1 � Y0|C]. (4)

Intuitively, the MR-LATE estimand is the difference between two IV estimands of Y T a on T a and of

Y T b on T b, both using Z as instrument. By the construction of T a and T b, ⇢ is closely linked to the

local average response function (Abadie, 2003). See Appendix A.1 for a more detailed discussion.

Case 3: Generally Mismeasured Treatment. Consider the more general scenario where also

the self-reported treatment statuses P = 1 and P = �1 might suffer from misclassification. This is

the case, for example, when the binary treatment, such as educational qualification, is constructed

by researchers based on years of schooling, but the years are potentially reported with errors. Im-

plementing the naïve 2SLS estimation ignoring the measurement errors as in (3) would be again a

biased approach.

Fortunately, in many applications, the treatment is usually either completely unknown or mid-

dling for some people, whereas for others the treatment is highly likely or highly unlikely. That is,

the observable treatment is still informative about the actual treatment. If so, then the MR-LATE

5



approach is useful to reduce the estimation bias. Set T a = 1 only for everyone with high probability

of being treated, and set T b = 1 only for those with low probability of being treated. For example,

we can define T a = 1[P = 1] and T b = 1[P = �1]. If, with relatively small chances, T a mistakes the

true untreated as treated and 1� T b mistakes the true treated as untreated, the MR-LATE estimand

⇢ can be shown to be less biased than the naïve estimand in (3):

|⇢ �↵IV |< |↵2 �↵IV |.

The three cases above nest each other, Case 1 ✓ Case 2 ✓ Case 3, therefore the MR-LATE esti-

mand can also be used to point identify the LATE in the first case of missing treatment observations

at random. Importantly, the MR-LATE is applicable to reduce estimation bias in other settings when-

ever individuals’ observed information can help sorting them into groups with high (T a = 1) and

low (T b = 1) probabilities of being actually treated. For instance, when multiple treatment prox-

ies agree with each other, or when one discrete/continuous treatment proxy takes its largest or

smallest values. For those with unknown or middling probabilities, the practictioner can simply set

T a = T b = 0.

3 Generalizing the MR-LATE Approach

This section proceeds in four acts. First, we introduce the target estimand and assumptions. Second,

we generalize the MR-LATE approach to allow for general cases where the instrument(s) can be

discrete or multiple-discrete. Third, we develop a novel inferential procedure. Finally, we extend

the MR-LATE to accommodate covariates and a discrete treatment.

3.1 Setup

Consider a general model setup where D denotes the true binary treatment variable and Z 2 ⌦Z =
{z0, z1, ..., zK} is a h⇥ 1 vector of discrete instruments with zk 2 Rh. Let ⇡k = Pr(Z = zk). Denote

Dk, for k = 0, 1, ..., K , as potential treatments for Z = zk. By definition,

D =
KX

k=0

1[Z = zk]Dk,

where 1[·] stands for the indicator function. Let Pr(zk) = E(D|Z = zk) be the propensity score.

Then, the outcome of interest is

Y = DY1 + (1� D)Y0,

with Yd the potential outcome for possible realization d of D. A known function g : ⌦Z 7! R can be

used to exploit the multiple instruments. We may simply set g(z) = Pr(z). Let us introduce some

basic assumptions.

Assumption 3.1. Y , D and Z satisfy the standard Imbens and Angrist (1994) LATE assumptions:
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(i) (Y1, Y0, {Dk}Kk=0, Z) are i.i.d. and have finite first and second moments;

(ii) (Unconfoundedness) Z ? (Y1, Y0, {Dk}Kk=0) and E(D|Z = z) is a nontrivial function of z;

(iii) (First stage) Cov(D, g(Z)) 6= 0;

(iv) (Monotonicity) For any zl , zw 2 ⌦Z, with probability one, either Dl � Dw for all individuals,

or Dl  Dw for all individuals. Furthermore, for all zl , zw 2 ⌦Z, either Pr(zl)  Pr(zw) implies

g(zl) g(zw), or Pr(zl) Pr(zw) implies g(zl)� g(zw).

Note that when there are more than one instrument, the monotonicity condition in (iv) requires

the homogeneity of treatment choice behavior (Mogstad et al., 2020a,b). Given Assumption 3.1,

the instrumental variable estimand can be expressed as a weighted average of LATEs:

↵IV =
Cov(Y, g(Z))
Cov(D, g(Z))

=
E[(Y �E(Y ))(g(Z)�E[g(Z)])]
E[(D�E(D))(g(Z)�E[g(Z)])] =

KX

k=1

�IV
k ↵k,k�1,

where ↵k,k�1 = E[Y1 � Y0|Ck] is the LATE for compliers Ck = {Dk = 1, Dk�1 = 0} whose treat-

ment status is changed due to the change in the instrument from zk�1 to zk, the weight �IV
k =

Pr(Ck)
PK

l=k(g(zl)�E[g(Z)])⇡lPK
m=1 Pr(Cm)

PK
l=m(g(zl)�E[g(Z)])⇡l

are nonnegative and
PK

k=1 �
IV
k = 1.

Suppose the actual treatment D is unobservable and a potentially misclassified treatment indi-

cator T is available, which could come from a treatment proxy or self-reported treatment status. By

definition, we have

T = DT1 + (1� D)T0,

where T0 and T1 can be interpreted as indicators of false positive and false negative misclassification.

If T0 = 1, then a true untreated D = 0 is misclassified as treated (false positive), and if T1 = 0, then

a true treated D = 1 is misclassified as untreated (false negative). In a extreme case, where T0 = 0

and T1 = 1, the true treatment D = T is not misclassified. Denote

p1,k = E[T1|Ck] and p0,k = E[T0|Ck],

where p1,k is the probability that treated compliers Ck would have their treatment correctly indicated

by T , while p0,k is the probability that untreated compliers Ck would be mistakenly indicated as

treated by T .

Assumption 3.2. The treatment indicator T is such that the following conditions are satisfied:

(i) (Extended unconfoundedness) Z ? (Y1, Y0, {Dk}Kk=0, T1, T0);

(ii) (Extended first stage) Cov(T, g(Z)) 6= 0.

Assumption 3.2 extends the unconfoundedness of the instrument Z in the presence of treatment

misclassification. In addition, it also ensures that the observed treatment indicator contains relevant
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information regarding the true treatment status which is a minimal relevance condition to guarantee

meaningful estimation.

Under Assumptions 3.1 and 3.2, Tommasi and Zhang (2020) show that naïvely computing the

IV estimand using the proxy T in place of D leads to a new parameter:

↵Mis =
Cov(Y, g(Z))
Cov(T, g(Z))

=
E[(Y �E(Y ))(g(Z)�E[g(Z)])]
E[(T �E(T ))(g(Z)�E[g(Z)])] =

KX

k=1

�Mis
k ↵k,k�1,

where �Mis
k = Pr(Ck)

PK
l=k(g(zl)�E[g(Z)])⇡lPK

m=1(p1,m�p0,m)Pr(Cm)
PK

l=m(g(zl)�E[g(Z)])⇡l
could be positive or negative depending on the

degree of misclassification. The relationship between ↵Mis and ↵IV can be characterized as

↵IV = ⇠↵Mis, with ⇠=
KX

k=1

�IV
k (p1,k � p0,k) and 0< |⇠| 1. (5)

If the treatment is misclassified, ⇠ 6= 1, hence |↵IV | < |↵Mis| and ↵IV is not identifiable by the

standard IV approach.

In empirical settings, the parameter ⇠ is useful for assessing the sensitivity of the standard IV

approach with respect to the treatment misclassification. Intuitively, ⇠ can be rewritten as

⇠= 1� wn � wp, (6)

where wn =
PK

l=k �
IV
k (1� p1,k) is the average probability of treated individuals misclassified as un-

treated (false negative) and wp =
PK

l=k �
IV
k p0,k is the average probability of untreated individuals

misclassified as treated (false positive). The bias in ↵Mis is ↵Mis � ↵IV = (1/⇠� 1)⇥ ↵IV . If there

is no misclassification (wn = wp = 0), ⇠ = 1 and ↵Mis collapses to ↵IV . If misclassification worsens

(wn > 0, wp > 0), the value of ⇠ falls and the bias in ↵Mis becomes severe. When 0 < ⇠ < 1, ↵Mis

and ↵IV are of the same sign. The breakdown point at which ↵Mis and ↵IV starts to have opposite

signs is when ⇠ turns negative. In practice, if possible values of the average probabilities of false

positive and/or false negative are available, for example, from validation studies or external infor-

mation, then they can be used to compute the bias of the naïve estimation ignoring the treatment

misclassification.

3.2 Main Results

Assume we observe two different indicators T a and T b for each latent treatment status, D = 1

and D = 0, respectively. For the moment, one can think of these two variables being built upon two

different (binary) proxies, two repeated measurements, or an estimated treatment propensity, of the

same underlying true treatment variable. Later we provide some examples to precisely illustrate

the construction of T a and T b. Let

T a = DT a
1 + (1� D)T a

0 , T b = DT b
1 + (1� D)T b

0 ,
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where T a
d and T b

d with d 2 {0,1} are the misclassification indicators associated with T a and T b,

respectively. For j = a, b, denote

� j =
Cov(Y T j, g(Z))
Cov(T j, g(Z))

, � j
k =
E[Y T j|Z = zk]�E[Y T j|Z = zk�1]
E[T j|Z = zk]�E[T j|Z = zk�1]

.

Note that the idea of the MR-LATE method is to employ �a
k and �b

k to approximate the local average

response functions E[Y1|Ck] and E[Y0|Ck] (Abadie, 2003), respectively:

E[Y1|Ck] =
E[Y D|Z = zk]�E[Y D|Z = 0]
E[D|Z = zk]�E[D|Z = zk�1]

,

E[Y0|Ck] =
E[Y (1� D)|Z = zk]�E[Y (1� D)|Z = zk�1]
E[(1� D)|Z = zk]�E[(1� D)|Z = zk�1]

.

In addition, we aim to use �a and �b for the approximation of

Cov(Y D, g(Z))
Cov(D, g(Z))

and
Cov(Y (1� D), g(Z))

Cov(1� D, g(Z))
, respectively,

so that the difference between them gives the IV estimand ↵IV . The estimand � j stands for IV

estimand of Y T j on T j using g(Z) as an instrument. Besides, � j
k is similarly defined for subgroup

Ck. We introduce the following key assumptions on T j, with j = a, b, for the identification of ↵IV

in our general setting.

Assumption 3.3. For j = a, b and k = 1,2, ..., K, we have

(i) (Non-differential misclassification) E[Y |T j, D, Ck] = E[Y |D, Ck];

(ii) (Homogeneous misclassification) E
⇥
T j|D, Ck

⇤
= E[T j|D].

Assumption 3.3-(i) is similar to the non-differential misclassification assumption of, e.g., Lewbel

(2007), Hu (2008) and Battistin and Sianesi (2011), and is weaker than Assumption 2-(ii) of Calvi,

Lewbel, and Tommasi (2021). It says that, for compliers Ck, given the actual treatment status D,

the proxies T a and T b contain no extra information about the mean of the outcome. Whereas,

Assumption 3.3-(ii) requires that, conditional on the actual treatment D, the potential treatments

(Dk, Dk�1) do not contain information that may affect the proxy T j. Put it differently, this assumption

is satisfied if, for any individuals, e.g., a complier, an always taker, and a never taker, their treatment

misclassification probabilities are the same if they are both treated or untreated.

The non-differential and homogeneous misclassification in Assumption 3.3 make it clear that

two types of measurement errors are allowed. The first type is missing (or misreporting) at random.

That is, errors that are independent of observed and unobserved variables, especially independent

of the true treatment status. For example, suppose for j = a, b,

T j = D(1� " j) + (1� D)" j, with " j 2 {0, 1} and " j ? (Y1, Y0, {Dk}Kk=0, Z),
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where, as an example, if T a is a proxy for D = 1, "a = 1 simultaneously indicates the false negative

misclassification for a true treated and also the false positive misclassification for a true untreated.

In this example, the misclassification error " j is a random error, and the misclassification rate of

a true treated, Pr(T j = 0|D = 1), is the same as the misclassification rate of a true untreated,

Pr(T j = 1|D = 0), which are both equal to Pr(" j = 1).
The second type of error includes those missing (or misreporting) not at random. That is, the

misreporting behavior may depend on the actual treatment status. For example, individuals who

have undertaken some job-related training may be more likely to under-report than those who have

never done so, due to incomplete awareness. In this case, suppose, for j = a, b,

T j = DT j
1 + (1� D)T j

0 , with T j
1 , T j

0 2 {0, 1} and (T j
1 , T j

0)? (Y1, Y0, {Dk}Kk=0, Z),

where, if, as an example, T a is a proxy for D = 1, then 1� T a
1 and T a

0 separately indicate the false

negative and false positive misclassification, and do not necessarily follow the same distribution:

the probability of false negative, Pr(T a
1 = 0|D = 1), and the probability of false positive, Pr(T a

0 =
1|D = 0), can be different. Other examples for the second type of error may include recording

mistakes, imperfect compliance or information poorly recalled.

For j = a, b and k = 1, 2, ..., K , let p j
1,k = E[T

j
1 |Ck] and p j

0,k = E[T
j

0 |Ck]. Lemma 3.1 below

shows that the homogeneous misclassification assumption leads to invariant misclassification prob-

abilities for all complier groups.

Lemma 3.1. Under Assumption 3.3-(ii), there exist two constants 0  p j
1, p j

0  1, such that p j
1,k = p j

1

and p j
0,k = p j

0 for j = a, b and all k = 1,2, ..., K.

Proof of Lemma 3.1. See Appendix A.2.1.

Denote q j
k =

p j
1,k

p j
1,k�p j

0,k
for k = 1, 2, ..., K and qa = pa

1/(p
a
1 � pa

0) and qb = pb
1/(p

b
1 � pb

0), which are

defined only if p j
1,k � p j

0,k 6= 0 and p j
1 � p j

0 6= 0, respectively.

Theorem 3.1. Let Assumptions 3.1, 3.2 and 3.3-(i) hold. We have that for k = 1, 2, ..., K,

�a
k ��b

k = (q
a
k � qb

k)E[Y1 � Y0|Ck] = (qa
k � qb

k)↵k,k�1.

If we further assume Assumption 3.3-(ii), then

⇢ = �a ��b = (qa � qb)↵IV .

Proof of Theorem 3.1. See Appendix A.2.2.

Theorem 3.1 generalizes the MR-LATE method of Calvi, Lewbel, and Tommasi (2021) to cases

with discrete and multiple-discrete instrument(s). It shows that each LATE is a linear combination

of (�a
k,�b

k) of the same complier group, and the IV estimand ↵IV is a linear combination of (�a,�b).
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3.3 Treatment Misclassification and the MR-LATE in General Settings

Consider the general setting with discrete or multiple-discrete instrument(s). Similarly to the dis-

cussion in Section 2, the MR-LATE approach can be used either to point identify the target parameter,

↵IV , or as a bias reduction method. We establish its usefulness for both the case of missing treatment

observations and generally mismeasured treatment.

Missing Treatment Observations (Case 1 and 2). Suppose some individuals’ treatment

statuses are missing, either at random or not at random, while others can be correctly observed. In

this case we can construct two indicators, T a = D and T b = 1� D, if the treatment is observed and

we set them to be zero if we are missing treatment information. Hence, both indicators contain one-

sided misclassification error. T a may mistake a true treated as untreated, but it would not mistake

true untreated as treated. Conversely, 1� T b only has the opposite kind of measurement error, as

it may mistake true untreated as treated, but it would not mistake true treated as untreated. The

following assumption summarizes the above paragraph.

Assumption 3.4. (One Type of Misclassification Error) Under Assumption 3.3-(ii), further assume that

pa
0 = pb

1 = 0, and pa
1 > 0, pb

0 > 0.

Assumption 3.5 is an analog of the standard no defiers assumption in the treatment effect liter-

ature. The latter indicates that certain combinations of D and Z never occur. The former requires

a zero probability of certain combinations of D and T a, and of D and T b. If a data set justifies

Assumption 3.5, Theorem 3.1 has some straightforward implications.

Corollary 3.1 (Point Identification). Let Assumptions 3.1 to 3.5 hold for T a and T b. Then, we have

�a
k ��b

k = ↵k,k�1, and ⇢ = �a ��b = ↵IV .

The Corollary above presents the point identification result for LATEs and IV estimand ↵IV using

the MR-LATE approach in the presence of discrete or multiple discrete instrument(s). Note that

missing at random may not be easy to verify in practice. Since missing at random is a special case

of missing not at random, the generalized MR-LATE can be a reliable alternative to the method of

dropping or imputing missing treatment observations.

Generally Mismeasured Treatment (Case 3). The one type of misclassification error as-

sumption is powerful for point identifying the parameter of interest. However, it may not hold in

some applications with generally mismeasured treatment. Fortunately, even if available information

cannot guarantee Assumption 3.5, it is still possible to use MR-LATE to set identify ↵IV .

Corollary 3.2 (Set Identification). Let Assumptions 3.1 to 3.3 hold for T a and T b. If qa � qb > 0,

then ⇢ signs ↵IV . If qa � qb � 1, then ↵IV lies between zero and ⇢.

A sufficient condition for qa � qb � 1 is pa
1 > pa

0 and pb
0 > pb

1, which relaxes the one type of

misclassification error pa
0 = pb

1 = 0 but still requires T a and T b to be informative about the actual

11



treatment status. Specifically, pa
1 > pa

0 states that the share of true treated in T a, Pr(T a = 1|D = 1),
is larger than the share of misclassified true untreated, Pr(T a = 1|D = 0). Analogously, pb

0 > pb
1 says

that the share of true untreated in T b, Pr(T b = 1|D = 0), is larger than the share of misclassified

true treated, Pr(T a = 1|D = 1). Note that the same arguments can be applied to describe the

relationship of qa
k , qb

k with the LATE, ↵k,k�1.

Given Corollary 3.3, we can show that under mild conditions, the MR-LATE estimand ⇢ is less

biased (in absolute value) than ↵Mis. Since two treatment indicators T a and T b are available, when

comparing the bias, we consider T = rT a + (1� r)T b with r 2 {0, 1}. Then, we have

↵Mis �↵IV =


1
r(pa

1 � pa
0) + (1� r)(pb

0 � pb
1)
� 1

�
↵IV , and ⇢ �↵IV =


pa

0

pa
1 � pa

0
+

pb
1

pb
0 � pb

1

�
↵IV .

Corollary 3.3 (Bias Reduction). Let Assumptions 3.1 to 3.3 hold for T a and T b. Assume pa
1 > pa

0

and pb
0 > pb

1 . If

pa
0 + pb

1 <

✓
1

max{pa
1 � pa

0, pb
0 � pb

1}
� 1

◆
min{pa

1 � pa
0, pb

0 � pb
1},

then |⇢ �↵IV | < |↵Mis �↵IV | where ↵Mis can be based on either T a or T b.

Proof of Corollary 3.3. See Corollary 4 in Calvi, Lewbel, and Tommasi (2021).

Essentially, Corollary 3.3 provides an upper bound for the summation of misclassification proba-

bilities in the two indicators, pa
0+pb

1, so that the bias of ⇢ is smaller than that of the naïve estimand.

Note that T a and T b are constructed in such a way to ensure small chances of the undesirable mis-

classification. Therefore, such a condition is easily satisfied and MR-LATE can be applied in many

empirical studies as a powerful bias reduction approach.

3.4 Inference

Denote by Wi = {Yi, T a
i , T b

i , Zi}ni=1 the observations for individuals i = 1, . . . , n. To estimate ⇢, we

need to conduct two IV regressions. First, the regression of Yi T a
i on T a

i and a constant using g(Zi)
as an instrument gives us �̂a

n. Second, following the same procedure using Yi T b
i and T b

i , we obtain

�̂b
n. We assume the function g(Z) = g(Z;✓ ) is known up to an unknown parameter ✓ 2 Rd✓ , and

g(Z) can be estimated as ĝ(Zi) := g(Z; ✓̂n). Formally, let ⇢̂n = �̂a
n � �̂b

n, and for j 2 {a, b}, where

�̂ j
n =

Pn
i=1 ĝ(Zi)(Yi T

j
i � Y T

j
n)Pn

i=1 ĝ(Zi)(T
j

i � T
j
n)

, Y T
j
n =

1
n

nX

i=1

Yi T
j

i and T
j
n =

1
n

nX

i=1

T j
i .

Define � j = E[Yi T
j

i ]�� jE[T j
i ] with j = a, b. Denote ⌘ = (✓ 0,�a,�b,�a,�b)0 2 Rd⌘ and let ⇢0 be the

true value of ⇢. Let 0k⇥k0 be a k⇥ k0 matrix of zeros.
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Theorem 3.2. Under Assumptions 3.1 and 3.2, we have

p
n(⇢̂n �⇢0)

d!N
�
0,�H�1⌃H�10�0

�
,

where denote � = (01⇥d✓ , 0, 0, 1,�1), H = E
î
@ h(Wi;⌘0)
@ ⌘0

ó
a d⌘⇥d⌘ matrix, ⌃ =Var

î
1p
n

Pn
i=1 h(Wi;⌘0)

ó
,

and h(Wi;⌘) is a d⌘ ⇥ 1 vector defined in the proof of this theorem.

Proof of Theorem 3.2. See Appendix A.2.3.

A consistent estimator of the matrix H is Ĥn =
1
n

Pn
i=1

@ h(Wi;⌘̂n)
@ ⌘0 . Denote a n⇥ d⌘ matrix hn(⌘) =

(h(W1;⌘), ..., h(Wn;⌘))0 and let G be an n⇥ n matrix capturing the dependence structure of all the

observations {Wi}ni=1. Then a consistent estimator of the matrix ⌃ can be expressed as

⌃̂n =
1
n

hn(⌘̂n)0Ghn(⌘̂n). (7)

For i.i.d. samples, it is clear that G is an identity matrix and ⌃̂n =
1
n

Pn
i=1 h(Wi; ⌘̂n)h(Wi; ⌘̂n)0. By

using the expression in (7), it is also straightforward to generalize the i.i.d. setting to allow for

more general dependence structure of samples and to compute robust standard errors of ⇢̂n. For

example, suppose there are C clusters g = 1, ..., C , and samples in different clusters are independent

but they are dependent of each other within clusters. Then, G can be set as a block-diagonal where

the blocks are matrices of ones and the off-diagonal entries are zeros. By construction, ⌃̂n in (7)

gives an consistent estimator for the clustered covariance matrix of 1p
n

Pn
i=1 h(Wi;⌘0). To deal with

more general data correlation and heteroskedasticity, we can estimate ⌃ by adopting Newey and

West (1987) approach and the structure of G need to be adjusted accordingly.

3.5 Adding Covariates

Recall that the MR-LATE’s estimand, ⇢, is a difference between two IV estimands. Hence, if co-

variates affect the model linearly, ⇢ can be equivalently computed via including X as additional

regressors in the IV regression. Much as in Hu (2008), once explanatory variables are taken into

account, we allow the measurement error to be correlated with covariates. Formally, we require

Assumption 3.3 to change as follows:

Assumption 3.5. For j = a, b and k = 1,2, ..., K, we have

(i) (Non-differential misclassification with covariates) E[Y |T j, D, Ck, X ] = E[Y |D, Ck, X ];

(ii) (Homogeneous misclassification with covariates) E
⇥
T j|D, Ck, X

⇤
= E[T j|D, X ].

Under Assumption 3.1, 3.2 and 3.5, all our main results still hold by conditioning on set of

covariates X .
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3.6 Discrete Treatment Variable

Thus far, we have considered a binary treatment framework. The key insight is that, when the true

treatment is binary, we only need two binary proxies to compute ⇢ (one for D = 1 and the other

for D = 0). In principle, the same idea can be applied to study the incremental returns to a discrete

treatment variable (Angrist and Imbens, 1995). Nevertheless, the analysis needs to be adjusted, as

it requires taking into account the potential misclassification in all the treatment levels. Based on

the full set of results presented in Appendix A.3, we obtain that, when the true treatment is discrete,

one would require one binary proxy for each realization of D. Hence, it is easy to recognize that, in a

discrete treatment framework with misclassification, the sufficient conditions for point identification

are much stricter than those required in the binary treatment case. This is why we prefer to leave

it out of the main text.

4 Simulations and Applications

This section is organized in three parts. First, we illustrate our identification strategy and its finite

sample performance by Monte Carlo simulations. Second, we provide some practical guidance on

how to implement our method. Third, we reassess the returns to education in the U.K.

4.1 Monte Carlo Simulations

Consider the following data generating process (DGP):

Y0 = 0.5+ X +O+ V0,

Y1 = 1.5+ X +O+ V1,

Y = DY1 + (1� D)Y0,

where X ⇠ N (0, 0.5) is a random covariate, O is an unobservable omitted variable, and V0 and V1

are standard normal random errors. The true effect ↵IV = 1. The unobserved true treatment D is

generated by

D = 1[�0 + �1Z + �2X + VD � 0].

The error terms V0 and V1 are mutually independent and (V0, V1)0 ? (O, VD, Z). We set �0 = �2,

�1 = {1, 1.5} (instrument strength) and �2 = 1. The randomly generated discrete instrument Z

takes values in a finite set ⌦Z = {0,1, 2} with probabilities ⇡0 = 0.4,⇡1 = 0.4,⇡2 = 0.2, and VD is

the error term of D that is correlated with the omitted variable O:
ñ

O

VD

ô
⇠N

Çñ
0

0

ô
,

ñ
1 �0.5

�0.5 1

ôå
.

Suppose that (Y, Z , P, X ) is observable, where P 2 {1, 0,�1} can be thought of as a self-reported
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treatment status and reveals partial information about the true treatment D. For example, P = 1 if

“treated”, P = 0 if “do not remember” or missing value, and P = �1 if “untreated”. Generate

P = DP1 � (1� D)P0, (8)

with Pd 2 {�1,0, 1} the unobserved potential reporting quality associated with treatment status

D = d. Then, P0 and P1 take value 1 for correct reporting, 0 for unclear reporting, and �1 for

opposite reporting. Denote by �(·) the CDF of the standard normal distribution. We generate P1

and P0 as follows:

P1 =

8
>><
>>:

1, if 1� pa
1  �(U1)

0, if pb
1  �(U1)< 1� pa

1

�1, if �(U1)< pb
1

, and P0 =

8
>><
>>:

1, if 1� pb
0  �(U0)

0, if pa
0  �(U0)< 1� pb

0

�1, if �(U0)< pa
0

,

with pa
0  1� pb

0, pb
1  1� pa

1, and unobservables (U1, U0) are jointly normal:

ñ
U1

U0

ô
⇠N

Çñ
0

0

ô
,

ñ
1 0.5

0.5 1

ôå
.

The DGP for P0 and P1 indicate that the unclear or missing responses (P = 0) are not at random,

if Pr(P = 0|D = 1) 6=Pr(P = 0|D = 0). Figure 1 provides a graphical illustration of the data

generating process for P1 and P0. Based on Equation (8), P = 1 either because D = 1 and the

individual correctly reports (P1 = 1), or because D = 0 and the individual misreports (P0 = �1).

Furthermore, P = 0 either because D = 1 and the individual misreports being treated (P1 = 0),

or because D = 0 and the individual misreports being untreated (P0 = 0). Finally, P = �1 either

because D = 1 and the individual misreports her treatment status (P1 = �1), or because D = 0 and

the individual correctly reports her treatment status (P0 = 1).

We generate two treatment proxies T a = 1[P = 1] and T b = 1[P = �1], which can be generated

equivalently as follows:

T a = DT a
1 + (1� D)T a

0 , where T a
0 = 1[�(U0)< pa

0], T a
1 = 1[�(U1)� 1� pa

1],

T b = DT b
1 + (1� D)T b

0 , where T b
0 = 1[�(U0)� 1� pb

0], T b
1 = 1[�(U1)< pb

1].

We set pa
1 = 0.7, pb

0 = 0.9, which mimic the situation where treated individuals are more likely to

be unclear about and misreport their treatment status compared to the untreated.4 We generate

random samples of size n = {500, 1, 000, 2, 000} and replications M = 5,000 times. We compare

the performance of several methods using ordinary least squares (OLS) and two-stage least squares

(2SLS): (1) Infeasible OLS, which is the OLS of Y on the true treatment D; (2) Infeasible 2SLS,

which is the 2SLS of Y on D using Z as an instrument; (3) Feasible OLS, which is the OLS of
4The choice of pa

1 and pb
0 aims to be realistic. The qualitative results of the analysis do not change for different choices of these parameters.

Specifically, in this example, 70% of true treated respond to be treated and 90% of true untreated respond to be untreated.
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Figure 1: Graphic Illustration DGP for P0 and P1

0 pb1 1-pa1
1

(U1)

-1

0

1

P 1

0 pa0 1-pb0
1

(U0)

-1

0

1

P 0

Notes: P1 and P0 stand for unobserved potential reporting quality of true treatment status and true control status, respectively. As the figure
shows, true treated individuals correctly report to be treated (P1 = 1) if 1� pa

1  �(U1); they incorrectly report to be untreated (P1 = �1) if
�(U1)< pb

1 ; and they report an ambiguous treatment status (P1 = 0) if pb
1  �(U1)< 1� pa

1. The same logic applies for P0.

Y on the observable proxy T a; (4) Feasible 2SLS (replace), which is the 2SLS of Y on T a using

Z as an instrument and replacing unclear or missing treatment observations to zero; (5) Feasible

2SLS (drop), which is the 2SLS of Y on T a using Z as an instrument by dropping samples with

T a = T b = 0 (or equivalently dropping samples with P = 0); and (6) ⇢ = �a � �b, which is the

MR-LATE approach.

Let us consider three DGP designs for pa
0, pb

1 and (U1, U0, O). In the first DGP design, we set

pa
0 = 0 and pb

1 = 0 to ensure that there is only one type of misclassification error. In addition,

we generate random (U1, U0) independent of all other variables, indicating non-differential and

homogeneous misreporting. In this case, samples with P = 0 are not missing at random because

Pr(P = 0|D = 1) = 1�pa
1�pb

1 is not the same as Pr(P = 0|D = 0) = 1�pa
0�pb

0. Under this scenario,

⇢ = �a ��b point identifies ↵IV .

Panel (a) of Table 1 reports the simulation results for the scenario with �1 = 1 when all the

sufficient conditions required by MR-LATE are satisfied (first design). As one can see, MR-LATE

outperforms the other three feasible methods, as the bias and standard deviation of ⇢ are much

closer to those of the infeasible 2SLS. Panel (b) reports the same set of results using a stronger

instrumental variable (�1 = 1.5). Comparing the results between Panel (a) and (b), one can see

that, as expected, a stronger instrument improves further the finite sample performance of MR-

LATE. For the Feasible 2SLS (drop) method, its bias is larger than that of our MR-LATE method, and
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Table 1: Binary Treatment with Non-differential Misclassification (True ↵IV = 1)

Infeasible Feasible
(1) (2) (3) (4) (5) (5)
OLS 2SLS OLS 2SLS 2SLS ⇢ = �a ��b

(replace) (drop) (MR-LATE)

Panel (a): �1 = 1

n=500

Mean 0.319 1.010 0.292 1.457 1.118 1.016
Bias -0.681 0.010 -0.708 0.457 0.118 0.016
S.D. 0.164 0.391 0.190 0.582 0.493 0.435
MSE 0.491 0.153 0.538 0.547 0.257 0.190

n=1,000

Mean 0.319 1.003 0.292 1.438 1.103 1.005
Bias -0.681 0.003 -0.708 0.438 0.103 0.005
S.D. 0.115 0.274 0.132 0.407 0.346 0.306
MSE 0.477 0.075 0.519 0.357 0.130 0.094

n=2,000

Mean 0.320 1.002 0.292 1.436 1.101 1.003
Bias -0.680 0.002 -0.708 0.436 0.101 0.003
S.D. 0.081 0.194 0.092 0.287 0.242 0.215
MSE 0.469 0.038 0.510 0.273 0.069 0.046

Panel (b): �1 = 1.5

n=500

Mean 0.494 1.007 0.429 1.444 1.054 1.008
Bias -0.506 0.007 -0.571 0.444 0.054 0.008
S.D. 0.140 0.227 0.158 0.343 0.273 0.259
MSE 0.276 0.052 0.351 0.315 0.077 0.067

n=1000

Mean 0.491 1.000 0.428 1.431 1.048 1.003
Bias -0.509 0.000 -0.572 0.431 0.048 0.003
S.D. 0.098 0.158 0.108 0.236 0.189 0.179
MSE 0.268 0.025 0.339 0.241 0.038 0.032

n=2000

Mean 0.493 1.000 0.425 1.430 1.044 0.999
Bias -0.507 0.000 -0.575 0.430 0.044 -0.001
S.D. 0.070 0.114 0.078 0.170 0.136 0.130
MSE 0.262 0.013 0.336 0.214 0.021 0.017

Notes: The table reports the simulation results when all the sufficient conditions required by MR-LATE are satisfied (first design).
In each simulation, the true value ↵IV = 1. Results are based on 5,000 replications. In Panel (a), �1 = 1. In Panel (b), the
instrument is stronger as �1 = 1.5. We compare the performance of several methods: (1) Infeasible OLS, which is the OLS of Y
on the true treatment D; (2) Infeasible 2SLS, which is the 2SLS of Y on D using Z as an instrument; (3) Feasible OLS, which is
the OLS of Y on the observable proxy T a; (4) Feasible 2SLS (replace), which is the 2SLS of Y on T a using Z as an instrument and
replacing unclear or missing treatment observations to zero; (5) Feasible 2SLS (drop), which is the 2SLS of Y on T a using Z as an
instrument by dropping samples with T a = T b = 0 (or equivalently dropping samples with P = 0); and (6) ⇢ = �a ��b, which is
the MR-LATE approach.
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the decrease in the bias is negligible as the sample size increases. This is because the unclear or

missing treatment observations are not missing at random. Therefore, our method is preferable to

the Feasible 2SLS (drop) in this case.

Figure 2: Feasible Estimators under the Violation of Assumptions (�1 = 1, n= 2, 000)

(a) Violation of No False Positive
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(b) Violation of Non-differential and Homogeneous Misclassification
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Notes: This figure plots the results of the feasible estimators for ↵IV under instrument strength �1 = 1 and sample size n = 2,000: OLS, 2SLS
(replace), 2SLS (drop), and ⇢ = �a � �b. The true value of ↵IV = 1 is the red dash-dotted lines, and the average 95% confidence intervals of
each method are in blue line with * as the mean of the estimates over 5,000 simulations. Plots in panel (a) are under the violation of the no
false positive assumption (pa

0 � 0), while keeping pb
1 = 0 and the non-differential and homogeneous misclassification assumptions. Plots in

panel (b) are under the violation of both non-differential and homogeneous misclassification assumptions (⇢O,U � 0 which is the correlation
between (O, U1) and (O, U0)), while keeping pa

0 = pb
1 = 0.

In the next two DGP designs, we wish to check the robustness of our point identification strat-

egy. Hence, we study the performance of the four feasible methods when some of the sufficient

conditions for the point identification in Section 3 are violated. First, as aforementioned, the con-

dition pa
0 = pb

1 = 0 is quite restrictive and hard to verify in practice. Hence, we proceed by allowing

pa
0 2 {0.05, 0.1}, that is, we relax the no false positive assumption, while keeping pb

1 = 0 and the

independence (U1, U0)0?O (second design). Second, we maintain pa
0 = pb

1 = 0, but relax both the

non-differential and homogeneous misclassification assumptions by generating (U1, U0, O)0 jointly
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from a normal distribution with ⇢O,U=Corr(O, U1) =Corr(O, U0) 2 {0.1,0.3} (third design). As

before, we compare the results for different values of �1.

Figure 3: Feasible Estimators under Violation of Assumptions (�1 = 1.5, n= 2,000)

(a) Violation of No False Positive
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Notes: This figure plots the results of the feasible estimators for ↵IV under instrument strength �1 = 1.5 and sample size n= 2, 000: OLS, 2SLS
(replace), 2SLS (drop), and ⇢ = �a � �b. The true value of ↵IV = 1 is the red dash-dotted lines, and the average 95% confidence intervals of
each method are in blue line with * as the mean of the estimates over 5,000 simulations. Plots in panel (a) are under the violation of the no
false positive assumption (pa

0 � 0), while keeping pb
1 = 0 and the non-differential and homogeneous misclassification assumptions. Plots in

panel (b) are under the violation of both non-differential and homogeneous misclassification assumptions (⇢O,U � 0 which is the correlation
between (O, U1) and (O, U0)), while keeping pa

0 = pb
1 = 0.

Figure 2 displays the results of these two robustness checks. Panel (a) plots the estimation

results of the four feasible methods under the violation of the “no false positive” assumption. We

can see that the bias (in absolute value) and the standard deviation of ⇢ are less than those of other

feasible methods. In addition, the 95% confidence intervals of ⇢ contain the true value ↵IV = 1

when the “no false positive” assumption is violated. Moreover, results in Panel (b) demonstrate

that the performance of ⇢, as a bias reduction method, is also quite robust to the violation of

the assumptions of non-differential and homogeneous misclassification error. The estimates of ⇢

give smaller bias and standard deviation compared to other feasible methods in all the settings.
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Figure 3 reports the same results using a stronger instrument (�1 = 1.5). As one can see, MR-

LATE with stronger instrument(s) is more robust to the failure of the sufficient conditions for point

identification of ↵IV .

4.2 Practical Guidance

The MR-LATE estimator can be applied to a variety of contexts. Consider estimating the benefits of

attaining any academic qualification, compared to leaving school without any formal qualifications,

using some available IVs. The actual treatment D takes value one if an individual completes the

academic program and zero otherwise. If D was correctly observed, under the conditions listed

in Assumption 3.1, the Imbens and Angrist (1994)’s weighted average of local average treatment

effects would be identified by the standard IV estimand ↵IV . However, due to the growing concern

regarding the quality of self-reported data, the researcher may suspect that the treatment D is

measured with error and the standard IV approach is not appropriate in this case. In order to show

how to implement MR-LATE, we consider four examples and illustrate how one should construct

the proxies T a and T b in each scenario.

Example 1. The first example mimics a context where, instead of D, we can observe one

answer P to a survey question, where P takes three values {1, 0,�1} (i.e. treated, unclear or miss-

ing value, untreated) and reveals some information about the true treatment D. This is the same

situation described in Section 2. In this context, one can define T a = 1 if P = 1 (T a = 0 otherwise),

and T b = 1 if P = �1 (T b = 0 otherwise). Given T a and T b, if observations having P = 1 and

P = �1 are not misclassified, the MR-LATE will correctly identify and consistently estimate the true

parameter. Alternatively, if some of the observations with P = 1 or P = �1 are also misclassified,

MR-LATE is biased but it can still provide a significantly less biased estimate of the target parameter

relative to the standard IV estimation.

Example 2. In the second example, consider a context where the practitioner has, for each

individual, two binary survey questions, P j 2 {0, 1} with j = {1,2}, of the same unobserved true

treatment status D. Using the example of a study on returns to education, these could be two

separate questions in the same questionnaire, or two different sources of information, such as self-

reported education levels and transcript records from the schools. For example: a direct question

to each individual, such as “Did you finish your O level in high school?”, where the answers are

yes (P1 = 1) or no (P1 = 0); and, at the same time, a direct question to the school, such as “Did

the student complete her (his) O level in high school?”, where the answers are again yes (P2 = 1)

or no (P2 = 0). In this context, one can define T a = 1 if P1 = P2 = 1 (T a = 0 otherwise), and

T b = 1 if P1 = P2 = 0 (T b = 0 otherwise). As in Example 1, if observations having P1 = P2 = 1

are all actually treated and P1 = P2 = 0 are all actually not treated, the MR-LATE will correctly

identify and consistently estimate the true parameter. Alternatively, if some of the observations are

also misclassified, the estimator will provide a better approximation of the target parameter.
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Example 3. The third example mimics a context where the practitioner has, for each individ-

ual, two repeated measurements of qualification that are self-reported by the individual at different

time points, denoted by P j with j = {1,2} (the superscript j now would index time). Then, both

P1 and P2 are proxies for the unobserved treatment variable D . For example, in different years,

we ask the same individuals: “Did you finish your O level in high school?”, where the answers are

again yes (P j = 1) or no (P j = 0). The practitioner can define T a and T b in the same way as in

Example 2.

Example 4. In the last example, we discuss a situation where the practitioner has, for each

individual, more than two measures of the same unobserved treatment variable D based on differ-

ent sources, or more than two repeated answers to the same survey question. This example would

probably fit better a common health-related application with multiple 0-1 survey responses, indi-

cating the absence or presence of a condition. In this case, the practitioner can define T a = 1 ifPm
j=1 P j = m and T b = 1 if

Pm
j=1 P j = 0 with m the number of survey questions.

4.3 Returns to Education in the UK

The National Child Development Survey (NCDS) is particularly suited to illustrate the use of MR-

LATE. Researchers at the Centre for Longitudinal Studies at the University College London have

been following the lives of more than 17,000 people born in England, Scotland, or Wales since

they were born in a single week of March 1958. We use a version of the dataset constructed by

Battistin and Sianesi (2011) and Battistin et al. (2014). Our main outcome variable is real gross

hourly wages at age 33. To avoid issues of selection into employment, we restrict our sample to

men employed in the formal workforce in 1991.

Binary Treatment. Application of MR-LATE to study the returns to education requires either

multiple measurements of educational attainment (as in Example 2, 3 or 4 in Section 4.2) or one

measurement of educational attainment that can have three values (as in Example 1 in Section 4.2).

The NCDS data has the former: self-reported attainment collected in 1981, when individuals were

23, and in 1991; and, for academic O-level qualifications achieved by age 20, a report in the official

files of the schools they attended when aged 16. Thus, we construct T a = 1 if both the self-reported

measure in 1981 and school reports agree that the individual did obtain an O-level qualification,

and 0 otherwise, and T b = 1 if both sources agree that they did not obtain the qualification, and 0

otherwise.

Discrete Instrument. NCDS included a combined, dichotomous measure of parental interest

in participants’ education based on the assessment of the child’s teacher when they were 7 along with

detailed family variables and the type of school the child was attending at the age of 16 (Blundell

et al., 2005). Parental interest was equal to 0 if the teacher judged both parents as having "some" or

“little” interest in their child’s education and 1 if, according to the child’s teacher, the parents were

“very” or “overly” interested. We take this measure and combine it with a common proxy of mother’s
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bargaining power in the family. Power equals 0 if the mother is equally or less educated than the

father and 1 if she has more education. The interaction of parental interest with mother’s bargaining

power according to the difference in education between parents yields a discrete instrument and

will illustrate the performance of our estimator. If parental interest and power are both 1, Z = 2.

If parental interest is 1 and power is 0, or parental interest is 0 and power is 1, Z = 1. If power is

0 and parental interest is 0, the discrete instrument takes the value Z = 0. Appendix A.5 provides

detailed summary statistics for the variables we employ.

Sensitivity of program benefits. Before proceeding to the main results, we show how the

MR-LATE approach can be used by practitioners to assess the sensitivity of program benefits based

on different hypothetical values or external information of the extent of misclassification. Given

the available information regarding treatment misclassification probabilities, a researcher can use

Equation (6) to approximate the possible level of biases of the benefits of O-level qualifications. In

our setting, Battistin et al. (2014) estimate that the extent of correct classification in the education

attainment in this sample is between 82-86.8% (Table 3, p.144). Recall, ↵IV = ⇠↵Mis and ⇠ =
1�wp �wn, where wp is the average percentage of false positive and wn is the average percentage

of false negative. We use this information to set wn + wp ⇡ 13.2-18%, which means that, without

accounting for treatment misclassification, the estimated treatment effect would be likely biased

(upward) by approximately wn+wp

1�wn�wp = 15-22%.

Results. For illustration, we use the school reports and the self-reports from 1981. Our es-

timates of the average wage return to any academic qualification are derived using five different

methods and two sets of control variables. They are shown in Table 2. Column (1) reports the

OLS estimates using only self-reported qualification as the treatment variable. Here we ignore the

problems of both endogeneity and misclassification. Column (2) provides the naïve 2SLS estimates

using the same treatment variable. Here we exploit the discrete instrument defined earlier. Results

indicate that our discrete instrument is an important determinant of acquiring academic qualifica-

tions, even conditional on a rich set of observables (the first-stage F-test statistic is 55). Obtaining

an O-level qualification increases wages by roughly 54%, a statistically significant effect. Once we

include the full set of covariates, the effect is 44%. While the estimator accounts for treatment effect

endogeneity, it ignores the potential misclassification and thus it is biased.

Columns (3) and (4) display the average wage return using the other two (replace and drop)

2SLS approaches described in Section 2. First, we replace with zero the treatment status of all the

observations where the measurements of the academic qualification are discordant, which corre-

sponds to the 2SLS (replace) in Monte Carlo simulations. Column (3) reports the 2SLS estimates.

Second, we drop all the observations where the measurements of the academic qualification are

discordant, which corresponds to the 2SLS (drop) in Monte Carlo simulations. Column (4) reports

the 2SLS estimates. Neither result exceeds the naïve 2SLS estimates in column (2). Column (5)

reports our MR-LATE estimates using the approach described in Section 3. Since both the school

and the self-reports contain measurement errors (Battistin et al., 2014), we cannot rule out the pos-
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Table 2: Empirical illustration

(1) (2) (3) (4) (5)

OLS
2SLS

(naïve)
2SLS

(replace)
2SLS

(drop) MR-LATE

Panel (a): No covariates

Treatment [0,1] 0.328*** 0.541*** 0.527*** 0.496*** 0.487***
(0.016) (0.062) (0.060) (0.059) (0.059)

Observations 2,454 2,454 2,454 2,218 2,454
R-squared 0.186 0.127 0.148 0.187
Controls No No No No No

Panel (b): With covariates

Treatment [0,1] 0.273*** 0.437*** 0.440*** 0.379*** 0.369***
(0.016) (0.113) (0.112) (0.105) (0.108)

Observations 2,454 2,454 2,454 2,218 2,454
R-squared 0.224 0.194 0.204 0.238
Controls Yes Yes Yes Yes Yes

Notes: Dependent variable: Log of wage in 1991. In each specification in Panel (a), we control only for ethnicity and
region. Whereas, in Panel (b) we control also for detailed family background variables when the child was 16 and school
type variables. We report only the coefficients on the treatment. Robust standard errors. *p < 0.10, **p < 0.05, ***p < 0.01.

sibility that T a and T b are still misclassified even for individuals with concordant reports from the

school and themselves. Thus, the one type misclassification Assumption 3.3 may not apply. Rather,

this empirical illustration is an example of Case 3: generally mismeasured treatment. This means

that, while the point estimate is likely biased, it is closer to the true effect than the values reported

in Columns (2), (3), and (4).

5 Conclusion

This paper develops an instrumental variable approach to identify and estimate the weighted aver-

age of local average treatment effects (LATE) of Imbens and Angrist (1994) in a context of endoge-

nous and misclassified treatment. We focus on cases of non-differential misclassification, such as

recording mistakes, imperfect compliance, poor recalling, or incomplete awareness. Since the mis-

classifications are nonclassical, standard instrumental variable techniques are not able to eliminate

the bias.

This paper has three main results. First, we provide sufficient conditions under which the point

identification the effect of the treatment can be achieved. Importantly, we generalize the MR-

LATE approach for binary instrument and binary treatment proposed by Calvi, Lewbel, and Tom-

masi (2021) to incorporate discrete instrument(s) and discrete treatment. Second, we establish the

asymptotic properties of the proposed estimator to infer the parameter of interest. Third, we provide

Monte Carlo simulation studies to explore the finite sample performance of our estimation method
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and to illustrate its practical usefulness. Our proposed method can be applied in any settings where

the accuracy of observable treatment measurement(s) is questionable and a treatment indicator for

each latent treatment level is available. It can be applied as either the leading identification strategy

or the leading robustness check.
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A Appendix

This Appendix is organized as follows. Appendix A.1 shows the connection between MR-LATE and

LARF (the local average response function) introduced by Abadie (2003). Appendix A.2 contains

the proofs of Section 3. Appendix A.3 gives identification and estimation results for the discrete

treatment setting. Appendix A.4 contains all the proofs of Section A.3. Appendix A.5 present addi-

tional tables from the empirical illustration.
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Table A1: Review of Articles

Authors Year Journal Topic Data Year Type of Misclass. False positive False negative
treatment rate (%) (%)

Almada, McCarthy, Tchernis 2016 American Journal of Agricultural Economics SNAP National Longitudinal Survey of Youth 1979 Cohort (NLSY79) 1996-2004 Binary 33 4 29

Acerenza, Ban, Kedagni 2021 Working paper Education Indonesia Family Life Survey (IFLS) 2000 Binary 16 - -

Baker, Stabile, Deri 2004 Journal of Human Resources Health Canadian National Population Health Survey and Ontario Health Insurance Plan 1996-1997 Binary

Cancer
Diabetes
Migraines
Stroke
Asthma

74.5 0.5 74
36.7 0.7 36
55 7 48

49.9 0.9 49
48.7 4.7 44

Battistin, De Nadai, Sianesi 2014 Journal of Econometrics Education National Child Development Survey (NCDS) 1981 & 1991 Binary 37 26 11

Black, Berger, Scott 2000 Journal of the American Statistical Association Health Insurance Upjohn Institute Survey 1993 Binary 20.9 15.4 5.5

Black, Sanders, Taylor 2003 Journal of the American Statistical Association Education post-1991 Current Population Survey (CPS) Binary 9.55 - -

Brachet 2008 Working paper Maternal smoking US Natality 1989-1996 Binary 16.6-35.0 0 16.6-35.0

Card 1996 Econometrica Union Current Population Surveys (CPS) 1987 & 1988 Binary 5.2 2.5 2.7

Card, Hildreth, Shore-Sheppard 2004 Journal of Business & Economic Statistics Medicaid Survey of Income and Program Participation (SIPP) and California’s Medi-Cal Eligibility File 1990-1993 Binary 16 to 17.5 1.3 to 2.8 14.7

Courtemanche, Denteh, Tchernis 2019 Southern Economic Journal Food Security FoodAPS-ADMIN 2012-2013 Binary 20.1 8.4 11.7
FoodAPS-ALERT 19.3 7.8 11.5

Dustmann and van Soest 2001 Review of Economics and Statistics Language German SocioEconomic Panel (GSOEP) 1984–1987, 1989, 1991, and 1993 Discrete 82.3 70 12.3

Hu, Xiao, Zhong 2012 Working paper Education National Longitudinal Study of High School of 1972 (NLS-72) Self-reported Education 1972-1986 Discrete
High School
Some College
Bachelor’s Degree

7.5 7.5 0
9.8 2.8 7
0.4 0 0.4

Johnston, Propper, Shields 2009 Journal of Health Economics Health Health Survey for England (HSE) 1998 & 2003 Binary 90.9 3.7 87.2

Kane, Rouse, Staiger 1999 Working paper Education NLS-72 Self-reported Education 1972-1979 Discrete
High School
Some College
Bachelor’s Degree

6 6 0
7 1 6
5 0 5

Klerman, Ringel, Roth 2005 Working paper Medicaid CPS and Medi-Cal Eligibility Data System 1990-2000 Binary 30 2 28

Kreider and Pepper 2007 Journal of the American Statistical Association Disability Health and Retirement Survey (HRS) and SIPP 1992-1993;1996 Binary

Disability beneficiaries
Claimed no disability
Gainfully employed
No work limitation

10 - -
27 - -
66 - -
78 - -

Kreider, Pepper, Gundersen, Jolliffe 2012 Journal of the American Statistical Association SNAP National Health and Nutrition Examination Survey (NHANES) 2001-2006 Binary 4 0 4

Kreider, Manski, Moeller, Pepper 2015 Health Economics Insurance HRS 2004 & 2006 Binary 6.5 - -

Krueger and Rouse 1998 Journal of Labor Economics Training Survey and administrative data 1991-1994 Binary
Manufacturing Company
Service Company

27 20 7
16 13 3

Meyer and Mittag 2019 Southern Economic Journal Food stamp FoodAPS 2012 Binary 19.5 1.2 18.3

Meyer, Mittag, George 2020 Journal of Human Resources Food stamp
American Community Survey (ACS) 2001 Binary 33.81 0.73 33.08

CPS 2002-2005 Binary 49.82 0.84 48.98
SIPP 2001-2005 Binary 24.46 1.64 22.82

Meyer and Mittag 2019 American Economic Journal: Applied Economics Poverty CPS-ASEC 2008-2011 Binary
SNAP
Public assistant
Housing assistant

45 2 43
63.7 0.7 63
39 3 36

Mitchell 2010 Journal of Marriage and Family Divorce Life Events and Satisfaction Study 1995 Binary 3.6 - -

Possebom 2022 Working paper Crime Justice Court System in the State of São Paulo, Brazil 2010-2017 Binary 4.4 3.5 0.9

Notes: We reviewed articles published between 1996 and 2022 and found 28 articles and 54 reportings of treatment misclassification in most fields of applied economics. The misclassification rate is the sum of
false negative and false positive probabilities.
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Table A2: Review of Articles (continue)

Authors Year Journal Topic Data Year Type of Misclass. False positive False negative
treatment rate (%) (%)

Savoca 2000 Health Services & Outcomes Research Methodology Psychiatric Diseases U.S. National Institute of Mental Health Epidemiological Catchment Area Survey 1980s Binary

Drug abuse
Alcohol abuse
Anti-social personality
Somatization
Panic disorders
Major depression
Agoraphobia
Social phobia
Simple phobia
Obsessive-compulsive disorder

57.1 2.2 54.9
56.4 39.7 16.7
46.6 3.8 42.8
98 0.1 97.9

98.2 0.1 98.1
94.5 0.6 93.9
84.4 1.0 83.4
83 0.6 82.4

99.7 2.9 96.8
97.4 0.6 96.8

Wineman et al. 2020 Journal of Agricultural Economics Agriculture Varietal Monitoring for Realized Productivity and Value in Tanzania Survey 2016-2017 Binary 30 16 14

Wossen et al. 2019 American Journal of Agricultural Economics Productivity Cassava Monitoring Survey 2015-2016 Binary 35 10 25

Wossen et al. 2019 Food Policy Poverty Agricultural Technology Adoption Household Survey 2015-2016 Binary 34 15 19

Notes: This table continues from the previous Table A1.
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A.1 MR-LATE and the Local Average Response Function

We illustrate the link between MR-LATE and the local average response function (LARF) (Abadie,

2003) in the case with binary treatment and binary instrument. Recall that C = {D0 = 0, D1 = 1}
stands for the collection of compliers. We have

E[Y |D, C] = DE[Y1|C] + (1� D)E[Y0|C], (A1)

where the equality is because D = Z given compliers and thus E[Y |D = d, C] = E[Yd |C] for

d 2 {0,1}. If D is observable, Abadie (2003) shows that the LARFs, E[Y1|C] and E[Y0|C], can

be identified by the observable (Y, D, Z):

E[Y |D = 1, C] = E[Y1|C] =
E[Y D|Z = 1]�E[Y D|Z = 0]
E[D|Z = 1]�E[D|Z = 0]

,

E[Y |D = 0, C] = E[Y0|C] =
E[Y (1� D)|Z = 1]�E[Y (1� D)|Z = 0]
E[(1� D)|Z = 1]�E[(1� D)|Z = 0]

.
(A2)

Then, the LATE of Imbens and Angrist (1994) is exactly the difference between the two identifiable

LARFs in (A2).

Now, consider the case where D is not observed. Based on the procedure of MR-LATE, suppose

two binary treatment indicators T a and T b are available satisfying Assumptions 3.1-3.3.5 Given the

observable (Y, T a, T b, Z), one can show that:

�a =
E[Y T a|Z = 1]�E[Y T a|Z = 0]
E[T a|Z = 1]�E[T a|Z = 0]

= qaE[Y1|C] + (1� qa)E[Y0|C],

�b =
E[Y T b|Z = 1]�E[Y T b|Z = 0]
E[T b|Z = 1]�E[T b|Z = 0]

= qbE[Y1|C] + (1� qb)E[Y0|C],
(A3)

where we denote q j = p j
1/(p

j
1 � p j

0) with j = a, b and p j
1 = E[T

j
1 |C], p j

0 = E[T
j

0 |C]. A comparison

between the LARFs in (A2) and �a,�b in (A3) reveals three important connections between MR-

LATE and LARF. Firstly, �a and �b have the same expression with LARF in terms of the conditional

means of the observable variables, via replacing D and 1� D in (A2) with the observable T a and

T b. Thus, �a and �b aim to mimic the two LARFs with observable treatment proxies, capturing the

information in D by T a and in 1� D by T b. Secondly, due to the potential misclassification error in

T a and T b, in general, �a and �b fail to recover the exact LARFs, but provide a linear combination

of them with weights q j and 1� q j (see the right hand side of (A3)). Lastly and most importantly,

MR-LATE is able to point identify the LARFs with well-chosen T a and T b:

�a = E[Y1|C] if qa = 1 and �b = E[Y0|C] if qb = 0.
5For binary instrument, Assumption 3.3-(ii) is not needed.
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Without loss of generality, we rule out the cases where p j
1 � p j

0 = 0. By definition of q j:6

qa = 1, if and only if Pr(T a = D|D = 0, C) = 1,

qb = 0, if and only if Pr(T b = 1� D|D = 1, C) = 1.
(A4)

Under the conditions in (A4), MR-LATE point identifies the LARFs and the LATE.

The connection between �a and �b to the LARFs discussed above thus sheds lights on the point

identification mechanism of the MR-LATE approach. Based on (A4), MR-LATE aims to point iden-

tifies two LARFs by utilizing two treatment proxies satisfying that T a never mistakes the true un-

treated compliers as treated and 1� T b never mistakes the true treated compliers as untreated. In

a special case where D is observed, simply setting T a = D and T b = 1� D ensures desirable point

identification.

6Due to D = Z given compliers p1 = E[T1|C] = Pr(T = 1|D = 1, C), p0 = E[T0|C] = Pr(T = 1|D = 0, C). Then, Pr(T a = D|D = 0, C) =
1 () pa

0 = 0 () qa = 1. Similarly, Pr(T b = 1� D|D = 1, C) = 1 () pb
1 = 0 () qb = 0.

31



A.2 Proofs of Section 3

A.2.1 Proof of Lemma 3.1

Consider p1,k as an example. The proof for p0,k is the same. Given Ck, we have that D = 1[Z = zk].
Due to Assumption 3.2-(i) (extended unconfoundedness), D is independent to T1 given Ck. Then,

p1,k = E[T1|Ck] = E[T1|D = 1, Ck]

= E[T |D = 1, Ck]

= E[T |D = 1], (A5)

where the last equality is due to Assumption 3.2-(ii). Denoting p1 = E[T |D = 1] fulfills the proof.

A.2.2 Proof of Theorem 3.1

First, we show that �a
k � �b

k = (q
a
k � qb

k)E[Y1 � Y0|Ck]. By definition, Y T = [Y0 + D(Y1 � Y0)][T0 +
D(T1 � T0)]. By the virtue of Assumption 3.2-(i) (extended unconfoundedness),

E(Y T |Z = zk)�E(Y T |Z = zk�1)

=E{[Y0 + Dk(Y1 � Y0)][T0 + Dk(T1 � T0)]|Z = zk}
�E{[Y0 + Dk�1(Y1 � Y0)][T0 + Dk�1(T1 � T0)]|Z = zk�1}

=E[Y0T0 + Dk(Y1T1 � Y0T0)]�E[Y0T0 + Dk�1(Y1T1 � Y0T0)]

=E[(Dk � Dk�1)(Y1T1 � Y0T0)]

=E[Y1T1 � Y0T0|Ck]Pr(Ck), (A6)

where the last equality is due to Pr(Dk�Dk�1 = �1) = 0. Replacing Y in the above derivations with

one gives us

E(T |Z = zk)�E(T |Z = zk�1) = E[T1 � T0|Ck]Pr(Ck).

By the fact that D = 1[Z = zk] given Ck, we have E[Yd Td |Ck] = E[Yd |Ck, Td = 1]E[Td |Ck] =
E[Yd |D = d, Ck, Td = 1]E[Td |Ck] = E[Yd |Ck]E[Td |Ck], where the last equality is because of As-

sumption 3.3-(i) and the independence of the instrument. Thus,

�k :=
E(Y T |Z = zk)�E(Y T |Z = zk�1)
E(T |Z = zk)�E(T |Z = zk�1)

=E[qkY1 + (1� qk)Y0|Ck],

and simple calculation leads to �a
k ��b

k = (q
a
k � qb

k)E[Y1 � Y0|Ck].
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Next, we move on to �. The numerator of � can be rewritten as

E[Y T (g(Z)�E[g(Z)])]

=
KX

l=0

E(Y T |Z = zl) (g(zl)�E[g(Z)])⇡l

=
KX

l=0

î
E(Y T |Z = z0) +E(Y T |Z = z1)�E(Y T |Z = z0) + ...

+E(Y T |Z = zl)�E(Y T |Z = zl�1)
ó
(g(zl)�E[g(Z)])⇡l

=
KX

l=0

E(Y T |Z = z0) (g(zl)�E[g(Z)])⇡l

+
KX

l=0

lX

k=1

î
E(Y T |Z = zk)�E(Y T |Z = zk�1)

ó
(g(zl)�E[g(Z)])⇡l

=
KX

k=1

î
E(Y T |Z = zk)�E(Y T |Z = zk�1)

ó KX

l=k

(g(zl)�E[g(Z)])⇡l . (A7)

Substitute (A6) into (A7) and apply Assumption 3.3,

E[Y T (g(Z)�E[g(Z)])] =
KX

k=1

E[Y1T1 � Y0T0|Ck]Pr(Ck)
KX

l=k

(g(zl)�E[g(Z)])⇡l

=
KX

k=1

E[p1,kY1 � p0,kY0|Ck]Pr(Ck)
KX

l=k

(g(zl)�E[g(Z)])⇡l .

The denominator of � can be obtained by replacing Y with one. By Assumption 3.3 (non-differential

misclassification) we have

� =
KX

k=1

(p1,k � p0,k)Pr(Ck)
PK

l=k (g(zl)�E[g(Z)])⇡lPK
m=1(p1,m � p0,m)Pr(Cm)

PK
l=m (g(zl)�E[g(Z)])⇡l

⇥
E
⇥
p1,kY1 � p0,kY0|Ck

⇤

(p1,k � p0,k)

=
KX

k=1

wkE [qkY1 + (1� qk)Y0|Ck] , (A8)

where denote wk =
(p1,k�p0,k)Pr(Ck)

PK
l=k(g(zl)�E[g(Z)])⇡lPK

m=1(p1,m�p0,m)Pr(Cm)
PK

l=m(g(zl)�E[g(Z)])⇡l
, and denote wa

k and wb
k as the wk associated

with T a and T b. Then, by (A8):

⇢ = �a ��b =
KX

k=1

wa
kE

⇥
Y0 + qa

k(Y1 � Y0)|Ck

⇤
�

KX

k=1

wb
kE

⇥
Y0 + qb

k(Y1 � Y0)|Ck

⇤

=
KX

k=1

(wa
k � wb

k)E [Y0|Ck] +
KX

k=1

(wa
kqa

k � wb
kqb

k)E [Y1 � Y0|Ck] . (A9)

It yields from Lemma 3.1 that if Assumption 3.2-(ii) holds, then pa
1,k = pa

1, pa
0,k = pa

0, pb
1,k = pb

1 and
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pb
0,k = pb

0, which implies qa
k = qa, qb

k = qb. In addition, wa
k = wb

k = �
IV
k . Thus, by (A9) we get

⇢ =
KX

k=1

(�IV
k qa � �IV

k qb)E [Y1 � Y0|Ck] = (qa � qb)
KX

k=1

�IV
k E [Y1 � Y0|Ck]

= (qa � qb)↵IV . (A10)

A.2.3 Proof of Theorem 3.2

Recall Wi = (Yi, T a
i , T b

i , Zi) and g(Zi) = g(Zi;✓ ). Suppose that ✓̂n solves a d✓⇥1 vector
Pn

i=1 (Wi;✓ ) =
0 where d✓ is the dimension of ✓ . Assume that there is a unique solution to E[ (W ;✓ )] = 0 and

@E[ (W ;✓ )]/@ ✓ 0 is of full rank. Let ✏ j
i = Yi T

j
i � � j �� j T j

i . Denote a d⌘ ⇥ 1 moment function

h(Wi;⌘) =

2
6666664

 (Wi;✓ )
Yi T a

i � �a ��aT a
i

Yi T b
i � �b ��bT b

i

g(Zi;✓ )(Yi T a
i � �a ��aT a

i )
g(Zi;✓ )(Yi T b

i � �b ��bT b
i )

3
7777775
=

2
6666664

 (Wi;✓ )
✏a

i

✏b
i

g(Zi;✓ )✏a
i

g(Zi;✓ )✏b
i

3
7777775

.

We have that E[h(Wi;⌘0)] = 0, where the last two moment conditions come from the definition of

� j. Then ⌘̂n = (✓̂
0

n, �̂a
n, �̂b

n, �̂a
n, �̂b

n) solves 1
n

Pn
i=1 h(Wi;⌘) = 0. By the mean-value theorem, we have

0=
1
n

nX

i=1

h(Wi; ⌘̂n) =
1
n

nX

i=1

h(Wi;⌘
0) +

1
n

nX

i=1

@ h(Wi; ⌘̃n)
@ ⌘0

(⌘̂n �⌘0),

where ⌘̃n is element-wise between ⌘0 and ⌘̂n. Denote

H =E

@ h(Wi;⌘0)
@ ⌘0

�
= E

0
BBBBBB@

@ (Wi;✓ 0)
@ ✓ 0 0 0 0 0

0 �1 0 �T a
i 0

0 0 �1 0 �T b
i

✏a
i
@ g(Zi;✓ 0)
@ ✓ 0 �g(Zi;✓ 0) 0 �g(Zi;✓ 0)T a

i 0

✏b
i
@ g(Zi;✓ 0)
@ ✓ 0 0 �g(Zi;✓ 0) 0 �g(Zi;✓ 0)T b

i

1
CCCCCCA

.

Since Cov(g(Zi,✓ 0), T a
i ) 6= 0 and Cov(g(Zi,✓ 0), T b

i ) 6= 0, we have that H is invertible. For large

enough sample size n, 1
n

Pn
i=1

@ h(Wi;⌘̃n)
@ ⌘0 is also invertible and we can obtain that

p
n(⌘̂n �⌘0) = �

ñ
1
n

nX

i=1

@ h(Wi; ⌘̃n)
@ ⌘0

ô�1
1p
n

nX

i=1

h(Wi;⌘
0),

Let ⌃ =Var
î

1p
n

Pn
i=1 h(Wi;⌘0)

ó
. Under standard regularity conditions, by central limit theorem

we can show
p

n(⌘̂n � ⌘0)
d! N (0, H�1⌃H�10). By the delta method, the asymptotic variance of

p
n(⇢̂n �⇢0) is �H�1⌃H�10�0, with � = (01⇥d✓ , 0, 0, 1,�1).
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A.3 MR-LATE with a Discrete Treatment Variable: Details

We begin by introducing some notation using a version of the Rubin’s causal model that allows

for variable treatment intensity and discrete or multiple discrete instruments (Angrist and Imbens,

1995). We derive our results without conditioning on covariates X , as everything immediately

extends to conditioning on them.

Model Setup. Let D 2 ⌦D = {0, 1,2, ..., J} be the true discrete treatment variable that affects

the outcome of interest. The instrument Z is defined the same as in Section 3.1. Let the random

variable Dk, for k = 0,1, ..., K , be the potential treatments associated to Z = zk. Denote by Yj the

potential outcome if an individual was assigned to D = j. Then, we can write

D =
KX

k=0

1[Z = zk]Dk, Y =
JX

j=0

1[D = j]Yj.

Assumption A.1. Y , D, and Z satisfy the standard Angrist and Imbens (1995) assumptions:

(i) ({Yj}Jj=0, {Dk}Kk=0, Z) are i.i.d. across all individuals and have finite first and second moments;

(ii) (Unconfoundedness) Z ? ({Yj}Jj=0, {Dk}Kk=0) and E(D|Z = z) is a nontrivial function of z;

(iii) (First stage) Cov(D, g(Z)) 6= 0;

(iv) (Monotonicity) With probability one, either Dl � Dw for all individuals, or Dl  Dw for all

individuals. Furthermore, for all zl , zw 2 ⌦Z, either Pr(zl)  Pr(zw) implies g(zl)  g(zw), or

Pr(zl) Pr(zw) implies g(zl)� g(zw).

True Effect. Under Assumption A.1, the average causal response (ACR) of Angrist and Imbens

(1995) is defined as

�k,k�1 =
E[Y |Z = zk]�E[Y |Z = zk�1]
E[D|Z = zk]�E[D|Z = zk�1]

=
JX

j=1

! jE[Yj � Yj�1|Dk � j > Dk�1],

with ! j =
Pr(Dk� j>Dk�1)PJ
j=1 Pr(Dk� j>Dk�1)

for j = 1, ..., J , where ! j is nonnegative and
PJ

j=1! j = 1. When D is

observed, the IV estimand identifies the weighted average of ACRs (WACR):

� IV =
Cov(Y, g(Z))
Cov(D, g(Z))

=
KX

k=1

µIV
k �k,k�1, (A11)

with µIV
k =

(E[D|Z=zk]�E[D|Z=zk�1])
PK

l=k⇡l(g(zl)�E[g(Z)])PK
m=1(E[D|Z=zm]�E[D|Z=zm�1])

PK
l=m⇡l(g(zl)�E[g(Z)])

where µIV
k is nonnegative and

PK
k=1µ

IV
k = 1.

Mismeasured Effect. Suppose D is unobservable and we can only observe a treatment proxy

T , which may suffer from the misclassification error. Denote by Tj 2 ⌦D the potential observed
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treatment for possible realization D = j. By definition:

T = TD =
JX

j=0

1[D = j]Tj.

Assumption A.2. The treatment proxy T is such that the following conditions are satisfied:

(i) (Extended unconfoundedness) Z ? ({Yj}Jj=0, {Dk}Kk=0, {Tj}Jj=0);

(ii) (Extended first stage) Cov(T, g(Z)) 6= 0.

If we replace D by the proxy T , we obtain a mismeasured IV estimand which is useful to char-

acterize the bias caused by treatment misclassification.

Theorem A.1. Let Assumptions A.1 and A.2 hold. Then, we have

�Mis =
Cov(Y, g(Z))
Cov(T, g(Z))

=
E[(Y �E(Y ))(g(Z)�E[g(Z)])]
E[(T �E(T ))(g(Z)�E[g(Z)])] =

KX

k=1

µMis
k �k,k�1,

with µMis
k = (E[D|Z=zk]�E[D|Z=zk�1])

PK
l=k⇡l(g(zl)�E[g(Z)])PK

m=1(E[T |Z=zm]�E[T |Z=zm�1])
PK

l=m⇡l(g(zl)�E[g(Z)])
.

Proof of Theorem A.1. See Appendix A.4.1.

Thus, the IV estimand �Mis denotes the mismeasured treatment effect that is identifiable if the

misclassification error is ignored. The results above generalizes the earlier result in Tommasi and

Zhang (2020) to settings with discrete treatment intensity. In general, due to misclassification, we

know that �Mis 6= � IV because µMis
k 6= µIV

k .

Relationship between the true and mismeasured effect. We find that a simple relationship

between �Mis and � IV which can be captured by a summary statistics of the weighted average of

misclassification probabilities.

Corollary A.1. Under Assumptions A.1 and A.2, there exists a summary statistic ⇠ such that:

�Mis =
KX

i=1

µIV
k �k,k�1 ⇥

µMis
k

µIV
k

=) � IV = ⇠�Mis (A12)

where the ratio ⇠= µIV
k /µ

Mis
k =

PK
k=1µ

IV
k ⇠k,k�1 is a constant for all k and

⇠k,k�1 :=
E[T |Z = zk]�E[T |Z = zk�1]
E[D|Z = zk]�E[D|Z = zk�1]

=
JX

j=1

! jE[Tj � Tj�1|Dk � j > Dk�1].

Proof of Corollary A.1. See Appendix A.4.2.

The parameter ⇠ is a weighted average of the difference between mismeasured potential ob-

served treatments. Corollary A.1 demonstrates that, when the treatment variable is misclassified,

the magnitude of the bias in �Mis is determined by the factor 1/⇠.
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A.3.1 Point Identification with a Binary IV

Consider a simple case where the instrument is binary. From the results in the main text, we know

that when the true treatment is binary, we only need two binary proxies to point identify ↵IV (one

for D = 1 and the other for D = 0). As a straightforward extension, when the true treatment is

discrete, with J + 1 possible realizations, we require one binary proxy for each realization of D.

Given the observable discrete treatment proxy T 2 ⌦D, we can construct an indicator T (d) for each

treatment level T = d with d 2 ⌦D as

T (d) := 1[T = d] =
JX

j=0

1[D = j]T (d)j , (A13)

where the unobservable binary variable T (d)j := 1[Tj = d] can be understood as an indicator of the

treatment misclassification in the treatment level D = j. Specifically, T (d)j = 1 implies that the true

status D = j can be correctly indicated by T (d), while T (d)j = 0 implies that the true status D = j

cannot be correctly indicated by T (d). Because there are J + 1 possible treatment values, we can

construct {T (d)}Jd=0 indicators based on T . In this case, {T (d)}Jd=0 are extensions of the T a and T b

in Section 3.2. If the treatment is binary, we have J = 1 and {T (d)}Jd=0 = {T a, T b}.
When D is observed with no error, the J+1 treatment indicators can be defined as T (d) = 1[D =

d] so that it is a correct indicator of the event (D = d). In the presence of misclassification, the

treatment proxy T can seldom provide correct information about the realizations of D. Because the

instrument is binary, denote p(d)j,k = E[T
(d)
j |D1 � k > D0] for j, k 2 ⌦D, which is the probability of

T (d) correctly indicating the treatment realization of individuals in subgroup D1 � k > D0, if they

were assigned to D = j. Similarly to the binary treatment setting, define �(d) as

�(d) =
Cov(Y T (d), Z)
Cov(T (d), Z)

. (A14)

Note that the subgroup (D1 � j > D0) for j = 1, 2, ..., J is potentially overlapping with each other

because the change in the instrument can trigger larger than one-unit change in the treatment level.

However, as argued by Angrist and Imbens (1995), the instrument typically would not cause more

than one-unit incremental change in the treatment. Thus, it is reasonable to make this assumption

to ease the illustration.

Assumption A.3. For 8 j 2 {1, 2, ..., J} and for 8d 2 ⌦D, we have

(i) (One-unit incremental change) (D1 � j > D0) is equivalent to (D1 = j, D0 = j � 1);

(ii) (Non-differential misclassification) E[Y |T (d), D, D1 � j > D0] = E[Y |D, D1 � j > D0] for all d;

(iii) (Homogeneous misclassification) E
⇥
T (d)|D, D1, D0

⇤
= E[T (d)|D].

The Assumption A.3-(ii) is in line with the non-differential misclassification. It implies that the

treatment indicator T (d) has no direct effects on the local average response function E[Y |D, D1 �
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j > D0], once the actual treatment D is controlled for. Assumption A.3-(iii) is apparently an analog

of the homogeneous misclassification assumption employed in the binary treatment case. It requires

that conditional on the actual treatment intensity D, the treatment indicator T (d) does not depend

on (D0, D1). Therefore, two types of measurement errors are accommodated by Assumptions A.3:

those random errors that are independently generated, (T (d)0 , T (d)1 ) ? (Y, D, Z), and those errors

that correlated with potential outcomes but only via the actual treatment D.

Theorem A.2. Suppose Assumptions A.1 to A.3 hold. Then we have

�(d) =
JX

j=1

Pr(D1 � j > D0)PJ
k=1(p

(d)
k,k � p(d)k�1,k)Pr(D1 � k > D0)

E[p(d)j, j Yj � p(d)j�1, jYj�1|D1 � j > D0].

Proof of Theorem A.2. See Appendix A.4.3.

To point identify the ACR, we need to introduce more assumptions on the treatment indicator

T (d), as well as on the potential outcomes.

Assumption A.4. For j = 1,2, ..., J � 1 and k > j,

E[Yj|D1 � k > D0] = E[Yj|D1 � j > D0].

In addition, we have E[Y0|D1 � k > D0] = E[Y0|D1 � 1> D0], for all k > 1.

Assumption A.4 means that the conditional mean of the potential outcome Yj is indifferent for

the subgroups D1 � k > D0 and D1 � j > D0, as long as k > j. The mean independence of this sort

does not impose the mean independence across all subgroups. This assumption is needed to show

the point identification of ACR. It is quite strong and may not be testable. Later, we also consider

to relax it and to obtain set identification results. In the following theorem, we demonstrate that

under some conditions that are similar to the one type misclassification assumption in the binary

treatment case, we can point identify an ACR. Denote p(d)0,0 = E[T
(d)
0 |D1 = 0, D0 = 0].

Theorem A.3. Let Assumptions A.1 to A.3 hold.

(i) If there exists a T (J) such that p(J)J ,J 6= 0 and p(J)j, j = 0 for 8 j 6= J, then �(J) = E[YJ |D1 � J > D0].

(ii) If there exists a T (0) such that p(0)0,0 6= 0 and p(0)j, j = 0 for 8 j 6= 0, then �(0) = E[Y0|D1 � 1> D0].

(iii) Further assume Assumption A.4 holds. If there exists a T (d) with d 2 {1, 2, ..., J � 1} such that

p(d)d,d 6= 0 and p(d)j, j = 0 for any j 6= d, then �(d) = E[Yd |D1 � d > D0].

Proof of Theorem A.3. See Appendix A.4.5.

Corollary A.2. For 8 j, j0 2 {0,1, .., J} such that j0 < j, if there exist T ( j) and T ( j
0) as described in

Theorem A.3 (i)-(iii), then �( j) ��( j0) = E[Yj � Yj0|D1 � j > D0].

Proof of Corollary A.2. See Appendix A.4.6.
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A.3.2 Set Identification with a Binary IV

We consider now relaxing Assumption A.4 to achieve set identification using binary IV.

Assumption A.5. E[Yj|D1 � i > D0]� E[Yj|D1 � i0 > D0], for all i, i0, j 2 {0,1, ..., J} and i > i0.

Assumption A.5 above imposes mean dominance restriction among complier subgroups, which

is empirically suitable and may be implied by economic theory. Chen et al. (2018) employ similar

mean stochastic dominance across strata, in binary treatment and binary instrument setting. Here,

we extend it to a discrete treatment framework. The direction of the inequality in Assumption A.5

should be decided based on the case by case study.

In what follows, we use a simple example to explain the set identification.

Corollary A.3. Consider J = 2. Suppose Assumptions A.1 to A.3 and A.5 hold, and assume E[T (1)|Z =
1]�E[T (1)|Z = 0]> 0. If T (0), T (1), and T (2) satisfy the conditions in Theorem A.3, then

�(1) ��(0)  E[Y1 � Y0|D1 � 1> D0],

�(2) ��(1) �max
¶
E[Y2 � Y1|D1 � 2> D0], E[Y2 � Y1|D1 � 1> D0]

©
,

�(2) ��(0) �max
¶
E[Y2 � Y0|D1 � 2> D0], E[Y2 � Y0|D1 � 1> D0]

©
.

Proof of Corollary A.3. See Appendix A.4.8.

A.3.3 Set Identification in the General Case with a Discrete IV

In this section, we provide a set identification result for � IV under more plausible conditions.

Theorem A.4. Let Assumptions A.1 and A.2 hold. If Cov(D, g(Z)) and Cov(T, g(Z)) have the same

sign, then �Mis signs � IV . In addition, assume there exist known constants ⇠ and ⇠ such that ⇠ ⇠ ⇠.

(i) If �Mis � 0, then 0 ⇠�Mis  � IV  ⇠�Mis.

(ii) If �Mis < 0, then ⇠�Mis  � IV  ⇠�Mis < 0.

The proof of Theorem A.4 follows directly from the expression in (A12), therefore omitted.

Compared to the assumptions required by point identification in the previous section, the advan-

tages here are twofold. First, we are able to deal with endogenous and heterogeneous treatment

misclassifications, since no restrictions on the dependence of the misclassification errors to the po-

tential outcomes and the potential treatments, are imposed. Second, we do not require the number

of treatment indicators to be the same with the number of treatment categories, since one treatment

proxy under relatively weak condition suffices the set identification.

A.3.4 Inference

Assume the function g(Z) = g(Z;✓ ) with ✓ 2 Rd✓ which can be estimated as ĝ(Zi) := g(Z; ✓̂n). De-

note �= (�(0),�(1), ...,�(J))0, �(d) = E[Yi T
(d)
i ]��(d)E[T

(d)
i ] and ⌘ = (✓ 0,�(0), ...,�(J),�(0), ...,�(J))0 2
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� with true value ⌘0. Given Wi = {Yi, T (0)i , ..., T (J)i , Zi}ni=1, let

�̂( j)n =

Pn
i=1 ĝ(Zi)(Yi T

( j)
i � Y T

( j)
n )Pn

i=1 ĝ(Zi)(T
( j)
i � T

( j)
n )

, where Y T
( j)
n =

1
n

nX

i=1

Yi T
( j)
i and T

( j)
n =

1
n

nX

i=1

T ( j)i .

Let �̂n = (�̂(0)n , �̂(1)n , ..., �̂(J)n )
0 and �0 to be its true value. Denote by Ik a k ⇥ k identity matrix and

0k⇥k0 a k⇥ k0 matrix of zeros.

Theorem A.5. Under Assumptions A.1 and A.2, we have

p
n(�̂n ��0)

d!N
�
0,�H̃�1⌃̃H̃�10�0

�
,

where denote� = (0(J+1)⇥(d✓+J+1), IJ+1), H̃ = E
î
@ h̃(Wi;⌘0)
@ ⌘0

ó
a d⌘⇥d⌘ matrix, ⌃̃ =Var

î
1p
n

Pn
i=1 h̃(Wi;⌘0)

ó
,

and h̃(Wi;⌘) is a d⌘ ⇥ 1 vector of moment functions defined in the proof of this theorem.

Proof of Theorem A.5. See Appendix A.4.9.

Similar to the discussion in Section 3.4, let h̃n(⌘) = (h̃(W1;⌘), ..., h̃(Wn;⌘))0 and G be a n ⇥ n

matrix that describes the dependence structure of {Wi}ni=1. Then, a consistent estimator of H̃ is
1
n

Pn
i=1

@ h̃(Wi;⌘̂n)
@ ⌘0 and a consistent estimator of the covariance matrix ⌃̃ can be expressed as

ˆ̃⌃ =
1
n

h̃n(⌘̂n)0Gh̃n(⌘̂n). (A15)

When samples are i.i.d., G is an identity matrix and ˆ̃⌃ = 1
n

Pn
i=1 h̃(Wi; ⌘̂n)h̃(Wi; ⌘̂n)0. By setting G to

be a block-diagonal matrix with all the blocks as matrices of ones and zeros in the off-diagonals, ˆ̃⌃

becomes an estimator accounting for clustered standard errors. With more general data correlation

or heteroskedasticity, Newey and West (1987) can be applied via adjusting G accordingly.
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A.4 Proofs of Section A.3

A.4.1 Proof of Theorem A.1

Assumption A.2-(ii) guarantees that the denominator of �Mis is nonzero and thus �Mis is well-

defined. From the proof of Theorem 2 in Angrist and Imbens (1995), we know that

E[Y (g(Z)�E[g(Z)])] =
KX

k=1

î
E(D|Z = zk)�E(D|Z = zk�1)

ó KX

l=k

⇡l (g(zl)�E[g(Z)])�k,k�1,

(A16)

so we only need to consider the denominator of �Mis. We can obtain

E[T (g(Z)�E[g(Z)])]

=
KX

l=0

E
⇥
T
��Z = zl

⇤
(g(zl)�E[g(Z)])⇡l

=
KX

l=0

î
E(T |Z = z0) +E(T |Z = z1)�E(T |Z = z0) + ...

+E(T |Z = zl)�E(T |Z = zl�1)
ó
(g(zl)�E[g(Z)])⇡l

=
KX

l=0

E(T |Z = z0)(g(zl)�E[g(Z)])⇡l +
KX

l=0

lX

k=1

î
E(T |Z = zk)�E(T |Z = zk�1)

ó
(g(zl)�E[g(Z)])⇡l

=
KX

k=1

î
E(T |Z = zk)�E(T |Z = zk�1)

ó KX

l=k

(g(zl)�E[g(Z)])⇡l . (A17)

A.4.2 Proof of Corollary A.1

For 8k, by definitions of µIV
k and µMis

k we have:

µIV
k

µMis
k

=
KX

k=1

⇢
(E[D|Z = zk]�E[D|Z = zk�1])

PK
l=k⇡l (g(zl)�E[g(Z)])PK

m=1[E(D|Z = zk)�E(D|Z = zk�1)]
PK

l=m⇡l (g(zl)�E[g(Z)])

⇥ E[T |Z = zk]�E[T |Z = zk�1]
E[D|Z = zk]�E[D|Z = zk�1]

�

=
KX

k=1

µIV
k ⇥
E[T |Z = zk]�E[T |Z = zk�1]
E[D|Z = zk]�E[D|Z = zk�1]

. (A18)

It is clear that the right hand side is the same for all k. By denoting ⇠ = µIV
k

µMis
k

, we can obtain

�Mis⇠ = � IV . In addition, by similar proof of Theorem 1 in Angrist and Imbens (1995), replacing

Y with T leads to

E[T |Z = zk]�E[T |Z = zk�1]
E[D|Z = zk]�E[D|Z = zk�1]

=
JX

j=1

! jE[Tj � Tj�1|Dk � j > Dk�1]. (A19)
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A.4.3 Proof of Theorem A.2

Let us first consider the numerator of �(d):

Y T (d) = Z
JX

j=0

1[D1 = j]Yj T
(d)
j + (1� Z)

JX

j=0

1[D0 = j]Yj T
(d)
j . (A20)

Applying the arguments in the proof of Theorem 1 in Angrist and Imbens (1995), we can get

E[Y T (d)|Z = 1]�E[Y T (d)|Z = 0]

=
JX

j=1

E[Yj T
(d)
j � Yj�1T (d)j�1|D1 � j > D0]Pr(D1 � j > D0). (A21)

Because by Assumption A.3, (D1 � j > D0) is equivalent to (D1 = j, D0 = j�1) and E[Y |T (d), D, D1 �
j > D0] = E[Y |D, D1 � j > D0] for all d, we have

E[Yj T
(d)
j |D1 � j > D0] = E[Yj T

(d)
j |D1 = j, D0 = j � 1]

= E[Yj T
(d)
j |Z = 1, D1 = j, D0 = j � 1]

= E[Yj T
(d)
j |D = j, D1 = j, D0 = j � 1]

= E[Y T (d)|D = j, D1 = j, D0 = j � 1]

= E
�

T (d)E[Y |T (d), D = j, D1 = j, D0 = j � 1]|D = j, D1 = j, D0 = j � 1
 

= E[T (d)j |D = j, D1 = j, D0 = j � 1]E[Yj|D = j, D1 = j, D0 = j � 1]

= E[T (d)j |D1 = j, D0 = j � 1]E[Yj|D1 = j, D0 = j � 1]

= p(d)j, j E[Yj|D1 � j > D0].

Similarly, E[Yj�1T (d)j�1|D1 � j > D0] = E[Yj�1T (d)j�1|Z = 0, D1 = j, D0 = j � 1] = p(d)j�1, jE[Yj�1|D1 � j >

D0]. The expression of the denominator can be easily obtained via replacing Y with one. Thus,

�(d) =
JX

j=1

E[T (d)j Yj � T (d)j�1Yj�1|D1 � j > D0]Pr(D1 � j > D0)
PJ

k=1E[T
(d)
k � T (d)k�1|D1 � k > D0]Pr(D1 � k > D0)

=
JX

j=1

Pr(D1 � j > D0)PJ
k=1(p

(d)
k,k � p(d)k�1,k)Pr(D1 � k > D0)

E[p(d)j, j Yj � p(d)j�1, jYj�1|D1 � j > D0].

Lemma A.1. Under Assumption A.3, we have

E[T (d)j |D1 � j > D0] = E[T (d)j |D1 � j + 1> D0] = E[T (d)|D = j], for j = 1,2, ..., J � 1.

In addition, E[T (d)0 |D1 � 1> D0] = E[T (d)0 |D1 = D0 = 0].
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A.4.4 Proof of Lemma A.1

Given Assumption A.3, (D1 � j > D0) = (D1 = j, D0 = j � 1). Then, for j = 1,2, ..., J � 1,

E[T (d)j |D1 � j > D0] = E[T (d)j |D1 = j, D0 = j � 1]

= E[T (d)j |Z = 1, D1 = j, D0 = j � 1]

= E[T (d)j |D = j, D1 = j, D0 = j � 1]

= E[T (d)|D = j, D1 = j, D0 = j � 1]

= E[T (d)|D = j], (A22)

where the second equality in (A22) is due to the independence of Z in Assumption A.2, and the

third equality is because that D is solely determined by Z given D1, D0. In addition, the last equality

follows from Assumption A.3 (iii). Similarly, we can show that for j = 1, 2, ..., J � 1,

E[T (d)j |D1 � j + 1> D0] = E[T (d)j |Z = 0, D1 = j + 1, D0 = j] = E[T (d)|D = j]. (A23)

The same arguments can show E[T (d)0 |D1 � 1> D0] = E[T (d)0 |D1 = D0 = 0].

A.4.5 Proof of Theorem A.3

Without loss of generality, assume Pr(D1 � j > D0) 6= 0 for all j = 1, ..., J . For d = 0,1, ..., J ,

�(d) =
JX

j=1

Pr(D1 � j > D0)PJ
i=1(p

(d)
i,i � p(d)i�1,i)Pr(D1 � i > D0)

E[p(d)j, j Yj � p(d)j�1, jYj�1|D1 � j > D0].

For its denominator, it can be rewritten as

JX

i=1

(p(d)i,i � p(d)i�1,i)Pr(D1 � i > D0) =� p(d)0,1Pr(D1 � 1> D0) + p(d)J ,J Pr(D1 � J > D0)

+
J�1X

i=1

î
p(d)i,i Pr(D1 � i > D0)� p(d)i,i+1Pr(D1 � i + 1> D0)

ó

=� p(d)0,0Pr(D1 � 1> D0) + p(d)J ,J Pr(D1 � J > D0)

+
J�1X

i=1

p(d)i,i [Pr(D1 � i > D0)� Pr(D1 � i + 1> D0)] , (A24)

where the second equality is by Lemma A.1. Similarly, the numerator of �(d) can be represented as
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JX

j=1

E[p(d)j, j Yj � p(d)j�1, jYj�1|D1 � j > D0]Pr(D1 � j > D0)

=� p(d)0,1E[Y0|D1 � 1> D0]Pr(D1 � 1> D0) + p(d)J ,JE[YJ |D1 � J > D0]Pr(D1 � J > D0)

+
J�1X

j=1

î
p(d)j, j E[Yj|D1 � j > D0]Pr(D1 � j > D0)� p(d)j, j+1E[Yj|D1 � j + 1> D0]Pr(D1 � j + 1> D0)

ó

=� p(d)0,0E[Y0|D1 � 1> D0]Pr(D1 � 1> D0) + p(d)J ,JE[YJ |D1 � J > D0]Pr(D1 � J > D0)

+
J�1X

j=1

p(d)j, j

⇥
E[Yj|D1 � j > D0]Pr(D1 � j > D0)�E[Yj|D1 � j + 1> D0]Pr(D1 � j + 1> D0)

⇤
,

(A25)

where the second equality is by Lemma A.1.

(i) Under condition (a), it yields from (A24) and (A25) that,

�(J) =
Pr(D1 � J > D0)

p(J)J ,JPr(D1 � J > D0)
E[p(J)J ,J YJ |D1 � J > D0] = E[YJ |D1 � J > D0]. (A26)

(ii) By condition (b), (A24) and (A25), we have

�(0) =
Pr(D1 � 1> D0)

p(0)0,0Pr(D1 � 1> D0)
E[p(0)0,0Y0|D1 � 1> D0] = E[Y0|D1 � 1> D0]. (A27)

(iii) Given conditions in (c), it is easy to see

�(d) =
Pr(D1 � d > D0)E[Yd |D1 � d > D0]� Pr(D1 � d + 1> D0)E[Yd |D1 � d + 1> D0]

Pr(D1 � d > D0)� Pr(D1 � d + 1> D0)

=
Pr(D1 � d > D0)� Pr(D1 � d + 1> D0)
Pr(D1 � d > D0)� Pr(D1 � d + 1> D0)

E[Yd |D1 � d > D0]

= E[Yd |D1 � d > D0], (A28)

where the second equality is due to E[Yd |D1 � d + 1 > D0] = E[Yd |D1 � d > D0] by Assumption

A.4.

A.4.6 Proof of Corollary A.2

Given (A26), (A27) and (A28), by Assumption A.4, for j, j0 = 0,1, .., J and j0 < j, if j0 = 0

�( j) ��( j0) = E[Yj|D1 � j > D0]�E[Y0|D1 � 1> D0]

= E[Yj|D1 � j > D0]�E[Y0|D1 � j > D0]

= E[Yj � Yj0|D1 � j > D0].
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Otherwise,

�( j) ��( j0) = E[Yj|D1 � j > D0]�E[Yj0|D1 � j0 > D0]

= E[Yj|D1 � j > D0]�E[Yj0|D1 � j > D0]

= E[Yj � Yj0|D1 � j > D0].

Lemma A.2. Consider J = 2. Under Assumptions A.1 to A.3, suppose there exists a T (1) as in Theorem

A.3 (iii). Then, E[T (1)|Z = 1]�E[T (1)|Z = 0] signs Pr(D1 � 1> D0)� Pr(D1 � 2> D0).

A.4.7 Proof of Lemma A.2

By replacing Y with one in (A21) in the proof of Theorem A.2 and J = 2, we know that

E[T (1)|Z = 1]�E[T (1)|Z = 0]

=E[T (1)1 � T (1)0 |D1 � 1> D0]Pr(D1 � 1> D0) +E[T (1)2 � T (1)1 |D1 � 2> D0]Pr(D1 � 2> D0).

In addition, T (1) satisfying conditions in Theorem A.3 (iii) implies that

E[T (1)1 |D1 � 1> D0] = E[T (1)1 |D1 � 2> D0] = p(1)1,1,

E[T (1)0 |D1 � 1> D0] = E[T (1)2 |D1 � 2> D0] = 0.

Thus, we get E[T (1)|Z = 1] � E[T (1)|Z = 0] = p(1)1,1

î
Pr(D1 � 1 > D0) � Pr(D1 � 2 > D0)

ó
, and

0< p(1)1,1  1 fulfils the proof.

A.4.8 Proof of Corollary A.3

Under J = 2, it follows from the proof of (A28) that

�(1) =
Pr(D1 � 1> D0)E[Y1|D1 � 1> D0]� Pr(D1 � 2> D0)E[Y1|D1 � 2> D0]

Pr(D1 � 1> D0)� Pr(D1 � 2> D0)
.

Given E[T (1)|Z = 1]�E[T (1)|Z = 0]> 0, we have that Pr(D1 � 1> D0)�Pr(D1 � 2> D0)> 0 from

Lemma A.2. Then, Assumption A.5 implies

�(1)  Pr(D1 � 1> D0)E[Y1|D1 � 1> D0]� Pr(D1 � 2> D0)E[Y1|D1 � 1> D0]
Pr(D1 � 1> D0)� Pr(D1 � 2> D0)

= E[Y1|D1 � 1> D0]. (A29)

(ii) For T (1) to T (2) described in Theorem A.3, we have �(0) = E[Y0|D1 � 1 > D0] and �(2) =
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E[Y2|D1 � 2> D0]. Then, from Assumption A.5 and (A29) we have

�(1) ��(0)  E[Y1|D1 � 1> D0]�E[Y0|D1 � 1> D0],

�(2) ��(1) � E[Y2|D1 � 2> D0]�E[Y1|D1 � 1> D0]� E[Y2 � Y1|D1 � 2> D0],

�(2) ��(1) � E[Y2|D1 � 2> D0]�E[Y1|D1 � 1> D0]� E[Y2 � Y1|D1 � 1> D0],

�(2) ��(0) = E[Y2|D1 � 2> D0]�E[Y0|D1 � 1> D0]� E[Y2 � Y0|D1 � 2> D0],

�(2) ��(0) = E[Y2|D1 � 2> D0]�E[Y0|D1 � 1> D0]� E[Y2 � Y0|D1 � 1> D0].

A.4.9 Proof of Theorem A.5

Suppose that ✓̂n solves a d✓ ⇥ 1 vector
Pn

i=1 (Wi;✓ ) = 0 where d✓ is the dimension of ✓ . Assume

that there is a unique solution to E[ (W ;✓ )] = 0 and @E[ (W ;✓ )]/@ ✓ 0 is of full rank. Denote

✏(d)i (⌘) = Yi T
(d)
i � �(d) ��(d)T

(d)
i . Let a d⌘ ⇥ 1 vector h̃(Wi;⌘) be

h̃(Wi;⌘) =

2
666666666664

 (Wi;✓ )
Yi T

(0)
i � �(0) ��(0)T

(0)
i

...

Yi T
(J)
i � �(J) ��(J)T

(J)
i

Zi(Yi T
(0)
i � �(0) ��(0)T

(0)
i )

...

Zi(Yi T
(J)
i � �(J) ��(J)T

(J)
i )

3
777777777775

=

2
666666666664

 (Wi;✓ )
✏(0)i (⌘)

...

✏(J)i (⌘)
Zi✏

(0)
i (⌘)
...

Zi✏
(J)
i (⌘)

3
777777777775

.

We have that E
⇥
h̃(Wi;⌘)

⇤
= 0 holds, where the last J + 1 moment conditions come from the defi-

nition of �(d). Then ⌘̂n = (✓̂
0

n, �̂(0)n , ..., �̂(J)n , �̂(0)n , ..., �̂(J)n ) solves 1
n

Pn
i=1 h̃(Wi;⌘) = 0. Denote a d⌘⇥ d⌘

matrix H̃ = E
î
@ h̃(Wi;⌘0)
@ ⌘0

ó
. Because Cov(g(Zi), T j

i ) 6= 0, H̃ is invertible. By the mean value theorem,

we get

0=
1
n

nX

i=1

h̃(Wi; ⌘̂n) =
1
n

nX

i=1

h̃(Wi;⌘
0) +

1
n

nX

i=1

@ h̃(Wi; ⌘̃n)
@ ⌘0

(⌘̂n �⌘0),

where ⌘̃n is element-by-element between ⌘̂n and ⌘0. For large enough sample size, we know that
1
n

Pn
i=1

@ h̃(Wi;⌘̃n)
@ ⌘0 is invertible. Therefore,

p
n(⌘̂n �⌘0) = �

ñ
1
n

nX

i=1

@ h̃(Wi; ⌘̃n)
@ ⌘0

ô�1
1p
n

nX

i=1

h̃(Wi;⌘
0),

Denote ⌃̃ =Var[ 1p
n

Pn
i=1 h̃(Wi;⌘0)]. Under standard regularity conditions, we can show that

p
n(⌘̂n �⌘0)

d!N (0, H̃�1⌃̃H̃�10).
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Thus, by the delta method, the asymptotic variance of
p

n(�̂n��0) is the lower-right (J+1)⇥(J+1)
block of H̃�1⌃̃H̃�10.

A.5 Returns to Education in the UK: Details

Table A3: Descriptive Statistics

(1) (2) (3) (4)
Mean S.D. Min Max

Key Variables:

Log(wage) 2.06 0.43 0 4
Qualitication, school transcript [0,1] 0.59 0.49 0 1
Qualitication, self-reported in 1981 [0,1] 0.65 0.48 0 1
Qualitication, self-reported in 1991 [0,1] 0.64 0.48 0 1
Parents’ interest in child’s education at age 7 [0,1] 0.44 0.50 0 1
Mother’s education > Father’s education [0,1] 0.22 0.42 0 1

Covariates:

White [0,1] 0.98 0.13 0 1
Comprehensive school [0,1] 0.49 0.50 0 1
Secondary modern school [0,1] 0.16 0.37 0 1
Grammar school [0,1] 0.11 0.31 0 1
Public school [0,1] 0.06 0.23 0 1
Father’s education 7.67 4.62 0 18
Mother’s education 7.76 4.39 0 18
Father’s age 44.10 12.16 0 73
Mother’s age 42.40 9.05 0 62
Professional [0,1] 0.05 0.21 0 1
Intermediate [0,1] 0.15 0.36 0 1
Skilled non-manual [0,1] 0.09 0.28 0 1
Skilled manual [0,1] 0.32 0.47 0 1
Semi’skilled non-manual [0,1] 0.01 0.10 0 1
Semi-skilled manual [0,1] 0.10 0.29 0 1
Unskilled manual [0,1] 0.03 0.16 0 1
Mother is employed [0,1] 0.54 0.50 0 1
Number of siblings 1.72 1.75 0 11
London [0,1] 0.14 0.34 0 1
Wales [0,1] 0.06 0.24 0 1
Scotland [0,1] 0.10 0.31 0 1

Observations 2454
Notes: The table reports the summary statistics of the sample used in our empirical illustration. We use a version of

the dataset constructed by Battistin and Sianesi (2011) and Battistin et al. (2014).
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