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ABSTRACT
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Genetic and Socioeconomic Achievement 
Gaps in Elementary School
Socioeconomic (SES) gaps in academic achievement are well documented. We show that 

a very similar gap exists with respect to genetic differences measured by a polygenic score 

(PGS) for educational attainment. The genetic gap increases during elementary school, 

but only among the low SES children. Consequently, the high PGS children experience the 

largest achievement growth over the school years, even if they are born in socioeconomic 

disadvantage. While the SES gaps are partly due to selection into different environments, 

the high PGS children are simply better at extracting resources from a given environment 

because of higher conscientiousness and other predispositions.
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1 Introduction

Individuals di↵er in terms of their skills and abilities (cognitive and non-cognitive), and

such variation explains a substantial part of the variation in later socioeconomic outcomes

(Carneiro, Crawford, and Goodman, 2007; Kautz et al., 2014). In particular, whether chil-

dren are born into families of high or low socioeconomic status (SES) is associated with

large disparities in parental investments, which in turn has implications for a range of skills

and economic preferences (Falk et al., 2021). Therefore, skill gaps tend to open up in early

childhood, persist throughout life, and often increase during the school years (Heckman and

Mosso, 2014).

While di↵erent childhood environments are an important cause of inequality, children also

di↵er with respect to their innate ability to learn in a given environment. Such di↵erences

can be traced back to di↵erences in genetic endowments (Plomin and von Stumm, 2018).

It is well established that genes matter for a range of socioeconomic outcomes. Decades of

twin studies have shown that practically all skills and traits are to some extent heritable

(Polderman et al., 2015). More recently, advances in molecular biology have made it feasible

to actually measure genetic variation at the molecular level. This has led to a number of

studies showing that, just like environmental di↵erences, di↵erences in genetic endowments

translate into di↵erences in childhood skills, achievement in school, educational attainment,

income and eventually wealth at retirement (Ward et al., 2014; Belsky et al., 2016; Cesarini

and Visscher, 2017; Papageorge and Thom, 2019). It has also been shown that genetic skill

gaps increase gradually during early childhood, partly because parental investments reinforce

initial skill di↵erences (Houmark, Ronda, and Rosholm, 2020).

While we know that both socioeconomic and genetic di↵erences lead to inequality in

skills and achievement, we know much less about the interrelation between these two types of

(dis)advantage. Are genes and family SES independent determinants of child skill formation,

or are they overlapping to the extent that the distinction is of no practical importance for the

study of socioeconomic inequality? If they represent di↵erent channels, do they also work

through di↵erent mechanisms? To the best of our knowledge, no research has answered

these questions. And if the channels are not independent, what kind of interaction do we see

between genes and SES? A few studies have found a positive gene-environment interaction

for educational achievement and other outcomes later in life (Papageorge and Thom, 2019;

Ronda et al., 2021). However, little is known about how this interaction emerges and whether

it is stable or changes over the life course.

In this paper, we focus on the years of elementary schooling. While the childhood en-

vironment in the beginning of life is almost entirely determined by parents, this naturally
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changes as children grow older. Di↵erent forms of childcare arrangements in early childhood

may contribute, but generally, it is not until children enter the main educational system that

parents cease to be the main providers of investments in the child’s cognitive development.

This shift could potentially change the dynamic relationship between genes, environments

and skills. First, parents and schools may di↵er in their (explicit or implicit) preferences.

For example, it could be that parents are more concerned with fostering the development of

children that appear to be more talented1, while schools are more concerned with preventing

low-achieving children from falling too far behind. The opposite scenario is likewise conceiv-

able. Second, entering school may alter the distribution of resources for investments. For

example, children from disadvantaged homes may suddenly receive investments of the same

quality as their peers from more resourceful homes, although the extent to which such an

equalization of investments happens depends on the extent to which there is selection into

schools of di↵erent quality.

We study variation in academic achievement throughout Danish elementary schools using

a sample of individuals that have been genotyped as part of the iPSYCH study (Pedersen

et al., 2018). This data can be linked with detailed register data, meaning that we can follow

the children over time and obtain a range of di↵erent information. In this paper, we choose

to focus on the period from 2nd to 8th grade (approximately age 9 to 15) because this allows

us to measure achievement biannually using a standardized achievement test administered

to all pupils enrolled in public Danish schools.

We document a strikingly similar growing achievement gap with respect to genetic en-

dowments and socioeconomic status. Both gaps are associated with significant di↵erences in

achievement already in 2nd grade, and both gaps increase from 2nd to 8th grade. Although

the two gaps are strikingly similar and partly overlap, we show that genes and SES represent

two distinct and mostly independent sources of inequality. Children of high SES parents

perform better in standardized tests partly because they enjoy more favorable environments

throughout childhood by selecting into better neighborhoods and better schools. On the

other hand, genetic endowments do not a↵ect achievement through such selection. Genes

are nevertheless important determinants of achievement, and their importance only increases

throughout the school years.

When considering the influence of SES and genes simultaneously, we discover an im-

portant interaction: While genes are more strongly associated with 2nd grade achievement

1
That children with high genetic potential receive more investments is not necessarily a result of parental

preferences. It may be that these children actively seek out interactions with parents that foster cognitive

development. This is known as active gene-environment correlation, as opposed to reactive gene-environment

correlation where the parents are the initiators (Plomin, DeFries, and Loehlin, 1977).
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among the high SES children, the increase in the importance of genes from 2nd to 8th grade

is mostly driven by the low SES children. This shows that favorable genetic endowments can

eventually lead to high achievement even in the face of socioeconomic disadvantage through-

out childhood. At the same time, genetic and socioeconomic disadvantages compound such

that children growing up in disadvantageous environments and with lower genetic scores

tend to increasingly lag behind their peers as they progress through elementary school.

We provide a potential explanation for the strong influence exerted by genes on achieve-

ment. Genetic advantage is not related to selection into better schools, nor to lower school

absence or any other objective school investment measures. However, the genetic endow-

ments related to achievement also lead to children having higher levels of conscientiousness

and a better experience of the school learning environment. Hence, the genetic channel is not

independent of the environment, but the relationship is not one of selection but one of extrac-

tion, with certain genetic endowments making individuals better able to extract resources

from the environment. When growing up in relatively disadvantaged families, this limits

the amount of resources that can be extracted, leading to an unexploited potential among

part of the low SES population. But when continuously exposed to relatively high-quality

public Danish elementary schools, these children are nevertheless able to partly overcome

their initial disadvantage.

2 Measuring genetic e↵ects

That genes matter for a variety of socioeconomic outcomes has been demonstrated empir-

ically by decades of research within behavioural genetics. First, a long range of twin and

adoption studies have sought to compare the relative importance of genetic and environ-

mental factors. In twin studies, the observation that monozygotic twins are more similar

than dizygotic twins with respect to almost any outcome is evidence for the importance of

hereditary factors (Polderman et al., 2015). Similarly, adoption studies show that for many

psychological outcomes (e.g., skills and personality), adopted children are more similar to

their biological parents than to their adoptive parents, confirming the important role of

genetic factors (Plomin et al., 1997; Bouchard and Loehlin, 2001).

While this literature has been an important first step for research into genetic e↵ects

within the social sciences, its indirect approach relies on several assumptions, e.g. about the

genetic relationship between parents (mother and father or biological and adoptive parents),

which may bias these estimates of heritability. Moreover, by only comparing the relative

share of variance in an outcome that can be traced back to either genes or the environment,
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this approach is ill-equipped to understanding the di↵erent ways that nature and nurture

may interact in human development. Consequently, these results are generally uninformative

about social policy (Goldberger, 1979; Manski, 2011).

Recent advances in molecular biology have paved the way for a new research agenda to

emerge. As improvements in technology have substantially reduced costs, it has become

feasible for social studies to include measures of genetic endowments at the molecular level

for large samples of individuals. To study the e↵ect of genes directly, the common approach

within this new literature is to summarize all of an individual’s genetic endowments in a so-

called polygenic score (PGS). The PGS is outcome-specific. In the present paper, we use a

PGS for educational attainment (EA). The EA PGS is a linear combination of each distinct

genetic endowment, weighted by the empirical association between EA and that genetic

endowment at each genetic site (for more conceptual details on genetics, see Appendix A).

Thus:

pgsEA
i =

SX

s=1

�EA
s gis, (1)

i.e., the EA PGS of individual i is a linear combination of the individual’s genetic en-

dowments, gis, weighted by the so-called GWAS regression coe�cients, �EA
s . These weights

are derived from a genome-wide association study, which follows an exploratory approach

where the outcome of interest is regressed on each individual endowment. We use an EA

PGS based on the most recent GWAS for EA by Lee et al. (2018), which includes 1.1 million

individuals. Because the influence of each endowment will be very small, measurement error

is important, and reducing it requires a large samples. As sample sizes have increased, so

has the explanatory power of the PGS, and the present EA PGS explains around 11 percent

of the variation in educational attainment in the GWAS sample. This score is thus our

best estimate of the variation in propensity for educational attainment that can currently

be explained by an individual’s genetic endowments Lee et al. (2018).

Polygenic scores for EA have been shown to be predictive of not just educational at-

tainment itself, but a range of socio-economic outcomes both pre- and post-educational

attainment. These include childhood skills and school achievement as well as earnings and

wealth (also after controlling for EA) (Ward et al., 2014; Belsky et al., 2016; Papageorge and

Thom, 2019). It is not surprising that the EA PGS predicts a range of life outcomes. Many

of the skills that are important for educational attainment will naturally also be relevant for

these other outcomes. Importantly, this also means that the EA PGS will include a com-

bination of genetic endowments important for both cognitive and non-cognitive skills. The
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returns to genes have also been shown to depend on the context. Such a gene-by-environment

interaction is found by (Papageorge and Thom, 2019), who consider heterogeneity by child-

hood socio-economic status (SES) and find that the EA PGS is more predictive of college

graduation for high-SES children.

However, the genetic e↵ects estimated by these studies include more than the e↵ect of

an individual’s own genes. Parental genes determine child genes, and this causes the PGS

of the child and its parents to be correlated. If parental genes also a↵ect the child’s EA in

other ways, such as through an e↵ect on the home environment, this will partly be captured

by the child’s EA PGS. This family genetic e↵ect has been shown to be important in its own

right for the EA PGS (Kong et al., 2018).

To estimate the independent e↵ect of an individual’s genes and take full advantage of

the natural experiment created by the inheritance process, it is necessary to eliminate the

confounding e↵ect of parental genes. Conditional on parental genes, variation in the individ-

ual’s genes is exogenous. One way to exploit this is to use genetic variation between siblings.

Because the di↵erence in the PGS between two full siblings will be independent of parental

genes, this family fixed e↵ects approach isolates the e↵ect that is due to di↵erences in the

siblings’ own genes. This approach has previously been used by, e.g., Ronda et al. (2021),

who find a positive interaction e↵ect between genes and SES on educational attainment.

A similar approach is to directly control for parental genes. This approach is used by

Houmark, Ronda, and Rosholm (2020), who study childhood cognitive development and

confirm that the family genetics e↵ect is important and comparable in magnitude to the

direct genetic e↵ect. However, they also show that the family genetics channel is completely

mediated by observable family characteristics, in particular, parental education. This sug-

gests that simply controlling for some set of family SES variables is su�cient to isolate the

e↵ect of the child’s own genes.

Houmark, Ronda, and Rosholm (2020) also document that part of the e↵ect of the child’s

EA PGS works through parental investments, as parents invest more in children with a higher

genetic propensity for education, thereby augmenting existing skill gaps. This e↵ect, and

the fact that genetic endowments also make some children better at learning new skills

conditional on their current stock of skills, cause the e↵ect of genes to materialize gradually

over the first seven years of the child’s life. An open question is whether this pattern continues

as children grow older, or whether the e↵ect of genes stabilizes during elementary school.

Since the e↵ect of genes depend on how investments are allocated, a di↵erent pattern may

emerge as investments shift from being mainly determined by parents to being to a larger

extent removed from the childhood home, i.e., happening in the school environment.
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Another empirical challenge that pertains to studying genetic e↵ects dynamically is to

obtain repeated measures of the same outcome. In Houmark, Ronda, and Rosholm (2020),

this is circumvented by incorporating a variety of child development measures into a dynamic

factor model that identifies latent child skills and controls for measurement error. In the

present paper, we are able to overcome the challenge directly because we are able to link

genetic data to data on standardized reading tests taken in various grades through elementary

school. This provides us with an outcome that is designed to measure the same underlying

skills in di↵erent grade levels. Thus, we can interpret any change in the estimated genetic

e↵ects over time as being due to the dynamic properties of the genetic e↵ects themselves,

rather than being simply an artifact of how the skills are measured. In the next section, we

describe the data used for this purpose in more detail.

3 Data

3.1 The iPSYCH sample

”The Lundbeck Foundation Initiative for Integrative Psychiatric Research”- iPSYCH - is a

Danish national project aimed at understanding how interaction between hereditary factors

and the environment causes mental disorders. The project has established a large case-

cohort sample (iPSYCH2012) for which DNA has been extracted from neonatal blood spot

samples from the Danish National Biobank. The original sample included 86,189 genotyped

individuals, but was later expanded to 146,591 individuals (iPSYCH2015), born between

1981 and 2008. 93,608 of the individuals make up a selected sample with at least one

psychiatric diagnosis, while the remaining individuals are a randomly and representative

control sample (Pedersen et al., 2018).2

The iPSYCH sample can be matched to the Danish administrative population registries,

which contain longitudinal information on a range of socioeconomic outcomes for the full

population. This allows us to follow the individuals in our sample throughout elementary

school, and at the same time include a rich set of background variables in the analysis.

3.2 The Danish national tests

We begin by discussing the main outcome of interest, as its availability has implications for

the sampling strategy.

2
We rely on the whole sampele for our main empirical analysis, but also test for robustness of our key

results to using only the representative sample in Section 5.4.
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In 2010, a new mandatory test system was introduced in all Danish public schools in order

to obtain a standardized way of evaluating academic performance, both at the individual

and the national level. The tests are IT-based and adaptive, with the test score being

determined only from the answers the student selects on a computer. The questions are

automatically adjusted in di�culty, such that if the student answers a question correctly,

the next question will be slightly more di�cult. Using a Rasch model algorithm, the standard

error of measurement is computed throughout the test, and the test may only be terminated

once this error is below a certain threshold3.

The students are tested in seven di↵erent subjects at various times throughout school,

starting from 2nd grade, where the children are 8-9 years old. We focus on the reading tests,

as these are the most frequent, taking place in grades 2, 4, 6 and 8. The tests consist of

three di↵erent ”profile areas”; text comprehension, language comprehension and decoding.

We create a summary score over the three areas, as is often done for assessment. This is done

by first standardizing the score for each profile area by school year. The final reading score

is the average of the three profile area scores and standardized again to having mean zero a

standard deviation of one. In a similar fashion, we also consider the tests in mathematics,

although these are only carried out in grades 3 and 6 and, from 2018, grade 8.

Even though the tests are designed to measure specific language skills, which are usually

thought of as components of cognitive ability, doing well in the tests likely also depends on

non-cognitive skills such as conscientiousness. The same is true for educational attainment,

although this is a more general outcome. Thus, it is plausible that all of the skills that are

relevant for the tests we consider are also relevant for educational attainment in general and

hence will be picked up by the EA PGS. Indeed, such test scores are arguably direct precur-

sors to actual educational attainment. Importantly, the nature of the tests (standardized and

repeated) allows us to investigate the changing importance of genes during the elementary

school years.

3.3 Sample selection and descriptive statistics

Because our main outcome only becomes available from 2010, we can only use the latest

cohorts in the iPSYCH sample. Our main sample includes all individuals of European

descent4 who complete at least one test, which may happen between 2nd and 8th grade. This

3
This feature helps to alleviate the concern that skills may be less precisely estimated at early ages.

4
The European descendants make up 88.9% of the full sample. This selection on ancestry is necessary

because the GWAS that we use is performed on European descendants only. This is a major issue of equity

in the genetics literature that we hope future research will address (for a discussion on this, see Martin et al.

(2017)).
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includes 40,136 individuals born between 1994 and 2008 for whom we observe a total of 87,917

reading test outcomes. Of these individuals, 24,062 are from the iPSYCH psychiatric case

sample, while the remaining 16,074 are randomly selected controls. In the results section, we

show that our main findings are robust to using only the controls. We also utilize a smaller

sample consisting of families where we observe the outcome for at least two full siblings.

This allows us to interpret variation in the PGS as exogenous. The sibling sample includes

2,705 individuals (2,013 cases and 692 controls).

Table 1 displays summary statistics for child birth characteristics and family background

characteristics for the di↵erent samples. The family characteristics are measured over the

first eight years of the child’s life, which is the period up until 2nd grade where the first

outcome is observed. They include the log of average family income, maternal and paternal

years of education, whether the mother and father has ever received a psychiatric diagnoses,

and the fraction of time that the family has been intact (parents not divorced).

Unsurprisingly, the control sample is positively selected compared to the full sample.

Their parents have somewhat longer educations, are less likely to have a psychiatric diagnosis

and more likely to remain together. The children in the sibling sample, on the other hand,

have generally similar family backgrounds as the children in the main sample, particularly

with respect to income and education. The exception is that the siblings are more likely

to be from families with psychiatric diagnoses, which is natural, given the over-sampling

of psychiatric cases, which is correlated between siblings. Overall, given that we observe

relatively weak selection, and it goes in di↵erent directions, if we observe the same pattern

across samples it is likely representative of a more general pattern.

3.4 Socioeconomic status

By socioeconomic status (SES), we understand the socioeconomic qualities manifested in

the home that the child is born into. Various family background characteristics may be

informative about the home environment. In particular, it is well established that parental

education and income is positively associated with parental investments and the quality of

the childhood environment more broadly, and hence, matter for child development (Bradley

and Corwyn, 2002; Bornstein et al., 2003). Measures of parental education and income

have therefore traditionally been used to capture di↵erences in family SES and childhood

(dis)advantage. Following this tradition, we create an SES index by ranking all families in

terms of their average income and education, taking the average of this and standardizing it

to have mean zero and a standard deviation of one within our sample. This measure is used

in the analysis as a proxy for home quality to investigate achievement gaps with respect to
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di↵erent childhood home environments.

3.5 Polygenic scores

The measure we use to capture variation in the genetic propensity for education is the EA

PGS. As noted in Equation 1, the EA PGS is constructed from all individual endowments

based on the weights from the most recent GWAS on educational attainment (Lee et al.,

2018). The study uses a combined sample of 1.1 million individuals of which, importantly,

the iPSYCH sample is not part. Like the SES index, the EA PGS is standardized to have

mean zero and a standard deviation of one within our main sample.

Because genetic endowments are a random draw from the parental genetic pool for each

birth, we do not expect the EA PGS to be correlated with gender, birth order or birth year.

Any such relationship would be due to selection. This could arise, for example, if the EA

PGS of the first born child a↵ects the probability of having a second child. Fortunately, all

of these correlations are below 0.01. We include these variables in all regressions as they may

increase precision, and if they induce a small change in the estimates, it is an adjustment

for selection.

Contrarily, we expect the polygenic score to be moderately correlated with the parental

characteristics. Not surprisingly, the EA PGS is most strongly correlated with maternal and

paternal years of education (r = 0.26). Parents who have a strong genetic propensity for

education end up with higher education, and they pass on their genetic endowments to their

children. Therefore, we expect that controlling for these family characteristics will reduce

the association between the child’s EA PGS and the outcome of interest through eliminating

this family genetics channel.

Figure 1 illustrates how the distribution of the child’s EA PGS changes across our sum-

mary proxy for the home environment, the parents’ SES rank. Although children of high-SES

parents tend to have higher polygenic scores, there exists a large overlap of children with

similar PGS who are at opposite ends of the SES scale. In other words, it is far from being

the case that children with high genetic potential are also necessarily born into families with

favorable socioeconomic characteristics or vice-versa. Thus, there is ample variation which

can be used to study how genes interact with the childhood environment.

Figure 2 illustrates a related, but maybe more surprising point. The figure plots the

distribution of the EA PGS of later born children by the decile of their first born sibling’s

EA PGS. Even though the polygenic scores of full siblings are the same in expectation, there

is large variation in the extent to which each child inherits the genes that are associated with

educational attainment. While children with higher scores naturally tend to have siblings
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with higher scores as well, there are also children with high scores who have siblings with

scores in the bottom decile of the distribution, and vice versa. And it is not uncommon for

the within-family di↵erence in EA PGS to have a magnitude of one standard deviation or

more - in fact, this is the case for more than one fourth of all sibling pairs. Hence, being

born to the same parents far from entails that one is born with similar genetic endowments.

3.6 School environment

We use three measures to capture di↵erences in school environment. First, from the absence

registries, we obtain the total fraction of school days that each individual has been absent.

We include all absence regardless of the reason given. Second, from the education registries,

we obtain information on the age at which each individual starts in 1st grade. While the

default school starting age is determined by date of birth, parents have some discretion in

choosing an earlier or later starting age if preferred.

Finally, to capture variation in school quality, we follow the approach of Gensowski et al.

(2020) and exploit information on teachers. Using the Danish population, institution and

workplace registries, we are able to link individual teachers to schools. We then obtain the

following teacher characteristics: High school grade point average (GPA), age, experience,

tenure, fraction of the year on sick leave, and fraction of the previous ten years spent un-

employed. For each school, we calculate the average teacher characteristics by year and use

them to predict the national test scores obtained at each school in a given year. The pre-

dicted test scores are then used to create a summary measure ranking each school in terms

of teacher quality.

3.7 School experiences

Finally, we also exploit data from the compulsory national school well-being surveys. Imple-

mented in 2015, this annual questionnaire is given to all elementary school children and asks

about various aspects of their well-being and their school life. From the items, we construct

six overall measures of school experience, see Table 6. We follow Niclasen, Keilow, and Obel

(2018), who propose a four-factor structure capturing learning self-e�cacy, school connect-

edness, learning environment and classroom management. We then also follow Andersen

et al. (2020), who show that some of the items included in the self-e�cacy factor can be

used to measure conscientiousness. Conscientiousness is a non-cognitive skill that is strongly

related to academic achievement through being, e.g., self-disciplined and hard-working. It

is thus captured by questions relating to the ability to concentrate on a task and manage
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commitments.

We instead term the first overall factor ”academic thriving”. This is then decomposed

into two sub-factors, namely conscientiousness and achievement, with the latter including

questions asking specifically about how well the child is doing academically. The second over-

all factor, school connectedness, is the measure most directly related to well-being, while also

reflecting a sense of belonging and emotional stability (feeling safe and accepted). The third

factor, learning environment, captures whether the teaching and the environment is experi-

enced as motivating and the quality of the student-teacher interactions. Finally, classroom

management captures the extent to which the classroom is conducive to learning in terms of

the teacher’s presence and ability to display authority in the class.

4 Estimation

To estimate the achievement gaps, we perform a series of regressions linking the reading test

scores to the PGS and various controls (including SES). Our baseline model is described by

the following equation:

✓̂ijt = �jtPGSi + �jtZi + µijt (2)

where ✓̂ijt is the test score of individual i in subject j in grade t, PGSi is the EA PGS

of each individual, and µijt is a random error term. Zi includes a set of individual-specific

covariates. These always include dummies for year of birth, gender and birth order as well

as the first ten ancestry genomic principal components. The latter are always added to

estimations using polygenic scores to account for potential population stratification bias.

To consider the PGS and the SES gaps simultaneously, we include the SES index in Zi.

In some cases, we also include a wider set of controls and fixed e↵ects to more fully control for

the e↵ect of the childhood environment. These include family controls for parental income

and, for each parent, number of years of education and an indicator for ever receiving a

psychiatric diagnosis, as well as the fraction of time the parents have been cohabiting up

until the child is in 2nd grade. Broader controls also include the school quality index described

in Section 3.6, as well as fixed e↵ects at the municipality and school levels.

As explained, the child’s genetic endowments are determined by parental genes, which are

in turn correlated with the environment. The child’s genetic endowments are only exogenous

conditional on parental genetic endowments. However, as shown in Houmark, Ronda, and
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Rosholm (2020), such family genetic e↵ects are more or less completely mediated by di↵er-

ences in family characteristics, in particular, by parental education. Hence, when including

the full set of family controls, we should obtain a good approximation of the direct influence

of the child’s own genes.

In addition, we also employ a superior strategy for identifying the independent e↵ect

of the child’s genes. This is done by estimating Equation 2 on a sample of siblings who

are both observed taking a specific reading test. By then adding fixed e↵ects at the family

level, this model estimates the genetic achievement gap using only within-family variation.

Because the siblings share the same parents, any di↵erence in their genetic endowments is

random. This specification thus fully exploits the natural experiment created by the genetic

inheritance process. However, as it comes at the cost of much lower power, it serves primarily

as a robustness check of our main results.

In addition to estimating the genetic achievement gap at a particular grade level, we are

also interested in whether the gap changes significantly over time. Therefore, we additionally

apply the following specification (for both the between- and the within-families model, here

shown only for the former), where we pool the test scores in reading over all grade levels:

✓̂i = �0ti + �1PGSi + �2PGSi · ti + �Zi + µi (3)

This increases precision and makes �1 and �2 directly interpretable as estimates of e↵ect

of the child’s genes close to school entry5 and the linear approximation of how this genetic

e↵ect changes throughout elementary school.

5 Results

5.1 The SES and the PGS achievement gap

We begin by illustrating the raw achievement gaps by children with di↵erent genetic endow-

ments and from families with di↵erent socioeconomic backgrounds. We do so by plotting the

average reading test scores for each quintile of the PGS/SES distribution over time. This

graphical evidence is shown in Figure 3. We see that there are significant gaps in achievement

with respect to both genes and SES. In fact, the two gaps look strikingly similar. In both

cases, the children in the top quintile score on average around 0.7 standard deviations higher

on the 2nd grade reading tests than the children in the bottom quintile. And over time,

5
As we do not observe skills right at school entry, the interpretation of �1 as the genetic e↵ect at school

entry requires that the interaction e↵ect is extrapolated somewhat outside the interval covered by the data.
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the gaps increase to more than 0.8. This shows that both the PGS and the SES measure

captures significant determinants of inequality in achievement.

Are we simply putting di↵erent names on the same variation? To answer this question,

we include the two measures separately and in combination in a regression predicting 8th

grade achievement. The estimates are displayed in Table 2. Columns 1 and 2 replicate the

finding that the magnitudes of the SES and PGS gaps are strikingly similar. A one standard

deviation increase in either is associated with a 0.3 standard deviation increase in the 8th

grade reading test score, and either measure by itself explains 8.0% of the total variance in

test scores. In column 3, including both predictors simultaneously reveals that, although

they overlap, the gaps are mostly independent. Holding SES fixed, a 1 SD increase in the

PGS still leads to a 0.23 SD increase in 8th grade achievement (and vice-versa). The share

of the total variance in test scores explained also increases by more than 50 percent when

including both measures rather than only one or the other. This shows that the SES and

PGS gaps are not simply two sides of the same coin.

Even if making separate contributions to the observed inequality in achievement, SES

and PGS di↵erences may still work through similar channels. One possibility is that genetic

and socioeconomic advantage leads to selection into more favorable environments. We test

this in Table 2 columns 4-7 by incrementally adding a set of controls or fixed e↵ects capturing

some aspect of the environment. We start with the broadest aspect, adding fixed e↵ects at

the municipality level in column 4. If, for example, highly educated parents tend to live

in certain municipalities, which in turn are more conducive to child academic development,

this would explain part of the SES achievement gap. The same may be true for the PGS

gap, if such selection happens on genetic potential. In Table 2, column 4, we see that both

achievement gaps shrink somewhat after adding the fixed e↵ects, but the SES gap shrinks

substantially more.

Next, we control for the measure of school quality described in Section 3.6. School quality

may constitute another selection mechanism. For example, children whose genes cause them

to show early potential for education may be more likely to attend better schools later on.

However, as shown in Table 2, column 5, we see no evidence of this, as the EA PGS-coe�cient

is completely una↵ected by controlling for school quality. On the other hand, the SES gap

again shrinks significantly. This shows that part of the reason why di↵erences in family

SES translates into di↵erences in child achievement is through selection into better schools.

In column 6, we also add fixed e↵ects at the school level to eliminate all between-school

variation. This again has a large impact on the SES coe�cient but only a small impact on

the PGS coe�cient.
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Finally, in column 7, we add the additional family controls described in Section (excluding

education and income, which make up the SES measure). This also has some e↵ect on the

SES gap, but no e↵ect on the PGS gap. Overall, we see that the 8th grade SES achievement

gap shrinks by 25% when adding the full set of potential mediators. At the same time,

the PGS achievement gap shrinks by only 4%. This result reveals that a major reason

why an advantageous family environment is beneficial is that it tends to be accompanied

by a favorable childhood environment more broadly. On the other hand, having a genetic

advantage is only very weakly associated with the broader environment captured by these

mediating variables.

5.2 Interactions with the PGS achievement gap

Next, we move on to considering the relationship between the EA PGS and test scores

in more detail. First, we consider the change in the genetic gap over time, and then, we

consider how this pattern varies across SES. In Table 3, we start by showing how the genetic

achievement gap develops through grades 2-8. Panel A displays the coe�cients from the

baseline model, which only controls for sex, birth year, birth order and the first ten principal

components of the genetic matrix (to control for population stratification). The estimates

echo the graphical representation, with the major part of the PGS gap being present already

in 2th grade, although the inequality in achievement increases further between grades 2 and

8, with most of the increase happening during the earlier years. In Panel B, we then show

that this pattern is still present when we control for the full set of family controls. This

suggests that initial di↵erences in genetic endowments only become more important over

time for explaining variation in academic achievement.

Although the family controls should capture most of the association between genes and

achievement that is not directly related to the child’s own genes, there may still be con-

founding influences of the environment included in the estimates. To perform a stronger test

of whether the pattern we observe is actually due to di↵erences in child genes, we estimate

the within-families model described in Section 5.1 using siblings. These estimates, displayed

in Table 3, Panel C, show that the pattern of increasing importance of child genes over time

is still present. In fact, it becomes even more pronounced, although the confidence intervals

are wide. Importantly, the within-families model does not reject any of the coe�cients from

Panel B and confirms that there is a significant increase over time in the e↵ect of the PGS

on the reading test scores. The estimates in Table 3 thus altogether confirm the graphical

evidence that there are significant genetic achievement gaps, and that the gaps only increase

during elementary school.
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Next, we consider whether the genetic gap di↵ers depending on the childhood environ-

ment. In Table 4, we therefore estimate the initial gap and the increase in the gap over time

separately for children from low and high SES families. For simplification, we describe the

increase over time by its linear approximation. The estimates reveal a strong heterogeneity

in the evolution of the genetic gaps during elementary school: The increase in the importance

of genes with grade is completely driven by low SES children. Their PGS matters less for

reading achievement initially, but the e↵ect increases gradually, while for the high SES chil-

dren, the e↵ect is initially large and stays at this level throughout the period. This finding

does not change when we add the family controls or school fixed e↵ects to the regressions. In

Appendix Table B1, we show, first, that the di↵erence across SES is highly significant when

estimating this jointly in a three-way interaction with the PGS and the grade level (colums

1-3). Second, we show that the estimates we obtain using the within-families model are also

consistent with this pattern (columns 4-5).

While di↵erences in genetic endowments are thus initially reinforced by a favorable child-

hood environment, it appears that schooling compensates to some extent for childhood

disadvantage, as the children with a high PGS over time come to realise this potential. This

shows the importance of genetic inheritance, as favorable endowments allow some children to

do well despite exposure to unfavorable environments throughout childhood (i.e., at home,

in the neighborhood, and in school). At the same time, substantial SES gaps remain. This

also implies that the children who are disadvantaged both genetically and socioeconomically

become worse and worse o↵ during elementary school relative to their peers.

5.3 Mediators of the PGS achievement gap

So far, we have shown that both genetic and socioeconomic advantage during childhood

translates into higher academic achievement. We have also shown that a favorable child-

hood environment is associated with a favorable environment throughout childhood; in other

words, the SES gap works partly through selection into better neighborhoods, better schools

etc. The same is not true for the PGS gap. This leaves the question of why genetic endow-

ments exert such a strong influence on academic achievement. In this section, we present

some suggestive evidence on potential mechanisms.

While the PGS achievement gap does not appear to be mediated by selection into di↵erent

environments in general, it could still influence achievement through investments at a more

individual level. In Table 5, Panel A, we investigate how the PGS relates to the set of

schooling investments that may vary by individual. In columns 1, 3 and 5, we see that

children with a higher EA PGS tend to have lower school absence, earlier school starting
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age and attend higher quality schools. However, this may simply reflect that the high

PGS children are more often from high SES families. Indeed, when we estimate the causal

relationship between EA PGS and the school investments using the within-families model,

there is no association with either of the outcomes. This again rules out that the PGS

gaps are mediated by school investments, even if the investments considered are under more

individual control. For example, it is not because they have less school absence that the high

PGS children have higher achievement.

So far, we have shown that the genetic achievement gap is practically orthogonal to a

range of di↵erent characteristics of the environment. We now consider outcomes relating to

the child’s subjective experiences instead. We do so by using the items from the national

well-being survey as explained in Section 3.7. The full set of items for each measure is listed

in Table 6.

In Table 5, Panel B, we see the relationship between the EA PGS and the first factor,

academic thriving, as well as its two sub-components, achievement and conscientiousness.

Not surprisingly, there is a strong association between the EA PGS and each outcome in the

between-families model (columns 1, 3 and 5). But, perhaps surprisingly, the association is

even stronger for conscientiousness than for achievement. Crucially, we see that the associ-

ations are all robust to adding the family fixed e↵ects - in fact, they all increase somewhat

in the within-families model. This reveals a direct relationship between the PGS and the

survey items: Children with higher PGS tend to have higher test scores, and they also feel

more successful academically. They are also more conscientious, and this non-cognitive skill

gap is almost as large as the achievement gap6.

In Table 5, Panel C, we investigate the associations between the PGS and the other

three well-being factors. While not as strong as for the academic factor, we also see a

significant positive association between the PGS and each of the other factors in the between-

families model. Again, the point estimates are also of a similar magnitude in the within-

families model, although we can only point to a significant relationship between the PGS

and the learning environment. This implies that the genetic endowments that lead to higher

academic achievement also lead to the children being more motivated (e.g., finding the

lessons more exciting), and to at least a subjective experience of receiving more teacher

support. These results reveal that the genetic achievement gap overlaps with genetic gaps

in conscientiousness, academic motivation and the quality of student-teacher interactions.

6
It is very possible that higher SES also contributes independently to, e.g., higher conscientiousness. We

cannot test this directly because there is no within-family variation in SES.
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5.4 Robustness

In this section, we show that the main findings are robust to other choices regarding the

sample selection process and the measurements. First, to include as many observations as

possible, our main sample uses all the test scores that are available for the specific cohorts.

Hence, we do not necessarily observe the same individuals taking all the tests. As a result,

individuals for whom we observe the outcome in 8th grade will on average be born earlier

than individuals for whom we observe 2nd grade test scores. Although we control for year of

birth in all regressions, it is possible that the increasing association between genes and test

scores is due to compositional changes in the sample.

Table B2 reveals that this is not the case. We still observe a significant increase in the

association between the EA PGS and test scores from 2nd to 8th grade, from 0.222 to 0.276,

i.e., a 0.054 increase over six grade levels, very similar to the 0.056 increase in Table 3.

Furthermore, when adding family controls, all the coe�cients shrink by around 30 percent,

which is again very similar to the findings for the main sample. Hence, the genetic gaps do

grow over time, also when we follow the same children throughout elementary school.

Another potential concern is that our main estimation sample, because of the original

purpose of the iPSYCH study, over-samples psychiatric cases. However, the main findings

are also similar if we use only the control part of the sample, i.e., the individuals that are

randomly selected from the full population. Table B3 shows the associations between the

EA PGS and each of the test outcomes. By comparing these estimates to those from Table

3, we again see that the associations between the polygenic scores and the test scores are

similar in magnitude, and in both cases the associations increase over time. We also see

that, again, between one fourth and one third of the association disappears once we control

for the family background characteristics.

Finally, we focus on achievement tests in reading because they are the most frequent.

But if our findings stem from the development of some more foundational skills, they should

extend to other skill measures. Indeed, we observe the same pattern of increasing gaps with

respect to achievement in mathematics, as shown in Table B4. This is again true also when

controlling for family characteristics and when including family fixed e↵ects7. Interestingly,

these results also suggest that the genetic e↵ects are in general even larger for math than

for reading.

7
The sample size is much smaller in grade 8 because this test was only introduced in 2018. We only

include it in Panel A and B as the sample is too small to give meaningful results in the fixed e↵ects model.
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6 Discussion

In this paper, we show that although genetic and socioeconomic di↵erences can be used to

predict very similar gaps in academic achievement during elementary school, genetic and

socioeconomic advantage make up two distinct but related causes of inequality. Being born

into a favorable childhood environment is associated with more high-quality parental invest-

ments, and the environment experienced outside the childhood home only tends to reinforce

such initial di↵erences through di↵erent neighborhood quality, school quality, etc. Varia-

tion in genetic endowments has also been shown to be reinforced by parental investments

(Houmark, Ronda, and Rosholm, 2020), but as we show in this paper, the link between

genes and achievement is unrelated to selection into more favorable environments outside of

the home. The reason that we nevertheless observe that genes only become more important

throughout the school years is that they make individuals able to extract more resources

from the environments that they find themselves in. This is true regardless of the quality of

this environment, though children growing up in low SES families are not able to fully ex-

ploit their potential. When exposed to the high-quality Danish school system, however, their

genetic potential is realized in spite of their earlier disadvantage because of the resources

they reap through their psychological predispositions for learning, for example, higher con-

scientiousness. But childhood SES still exerts a lasting influence on achievement, and the

children who are disadvantaged on both accounts face di�cult odds in school.

Our results relate to several literatures. For one thing, they reveal that the apparent

stability of the achievement gap throughout childhood is at least partly illusional. In partic-

ular, the skill formation literature emphasises the importance of the early childhood (Cunha

and Heckman, 2007), partly because skill gaps between low- and high-SES children tend to

be present both at the beginning and the end of the school years. This may suggest that

schooling has little impact on inequality in ability (Heckman, 2008). Our results show that

such conclusions may not be warranted, as there is significant reshu✏ing going on within the

skill distribution. However, these gradual changes appear random until the children’s genetic

endowments are taken into account. Thus, neglect of genetic e↵ects may actually cause one

to underestimate the e↵ects of schooling. This highlights how genes and the environment

are closely interrelated, and how the existence of genetic e↵ects do not imply a lesser role

for investments in skill formation.

Because of this interrelation, genetic e↵ects can manifest somewhat counter-intuitively.

Since genetic endowments are realised before the start of life, it is tempting to think that

genetic di↵erences should be prominent early in life, while they should wane over time as

environmental influences accumulate. In fact, our results suggest that, if anything, the
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opposite is the case. Although genes are already predictive of achievement in 2nd grade,

the gap in test scores that can be attributed to genetic di↵erences is smaller than the SES

gap. In 8th grade, on the other hand, we find that, while SES has neither become more

nor less predictive of achievement (controlling for child genes), genes have become much

more predictive. These results suggest that it is in fact genetic, rather than environmental,

e↵ects that accumulate over time8. The increasing importance of genes echoes early studies

in behavioral genetics showing that adopted children tend to become more similar to their

biological parents as they grow older (Plomin et al., 1997). It also extends recent findings

that genetic e↵ects increase gradually during early childhood (ages 0-7) (Houmark, Ronda,

and Rosholm, 2020).

Our results also relate directly to Ronda et al. (2021), who also use the iPSYCH sample

to study gene-environment interactions. Our finding that the PGS becomes more important

among the low SES children is seemingly at odds with their finding that the relation between

educational attainment and the EA PGS is attenuated by family SES, such that the e↵ect

of the EA PGS on educational attainment is lower in low-SES families than in high-SES

families, leading to a lost potential. This apparent contradiction may have to do with the

fact, mentioned by Landersø and Heckman (2017), that the low level of income inequality

in Denmark makes incentives to undertake education relatively weak. If the incentives are

particularly weak for children from low-SES families, it could explain the di↵erence. This

could also be related to other factors becoming more important when transitioning into the

next level of the educational system, e.g., norms and traditions as well as role models and

knowledge in the family of the educational system. This is a very interesting avenue for

future research, as it is crucial to sustain the gains achieved in elementary school into the

subsequent levels of the educational system to fully unlock the potential of all children.
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7 Tables and Figures

Table 1: Summary statistics

Main sample Control sample Sibling sample

Birth characteristics
EA PGS -0.015 0.054 -0.017

(1.003) (0.992) (1.004)
Female 0.419 0.487 0.384

(0.493) (0.500) (0.487)
Birth order 1.712 1.736 1.813

(0.737) (0.740) (0.728)

Family background
Family income 12.946 12.978 12.963

(0.637) (0.802) (0.469)
Years of education (mother) 13.120 13.503 13.091

(2.366) (2.359) (2.360)
Years of education (father) 12.986 13.320 12.948

(2.358) (2.371) (2.346)
Any diagnosis (mother) 0.089 0.059 0.147

(0.285) (0.235) (0.354)
Any diagnosis (father) 0.056 0.039 0.091

(0.229) (0.193) (0.288)
Family intact 0.847 0.895 0.890

(0.269) (0.221) (0.211)
SES rank 0.492 0.551 0.489

(0.289) (0.282) (0.286)

N 40,136 16,074 2,705

Notes: This table reports means and standard deviations of child birth characteristics and family

background characteristics for the di↵erent estimation samples.
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Figure 1: Distribution of the child’s EA PGS by the parents’ SES rank

�
�

�
�

�
�

�
�

�
��

6(
6�
UD
QN
�G
HF
LOH

�� �� �� �� � � � � �
($�3*6

Notes: This figure plots the density of the child’s standardized EA PGS, separately for each decile

of the parental SES rank.
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Figure 2: Siblings: Distribution of EA PGS
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Notes: This figure plots the density of the standardized EA PGS of later born siblings, separately

for each decile of the EA PGS of the earliest born sibling.
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Figure 3: Separate achievement gaps
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(a) PGS achievement gap
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(b) SES achievement gap

Notes: These figures plot the average reading test scores from grade 2 to 8 for each quintile of the

PGS and SES distributions, respectively.

Table 2: EA PGS, SES and School Achievement

(1) (2) (3) (4) (5) (6) (7)
Test subject: 8th grade reading

EA PGS 0.301 0.231 0.226 0.226 0.221 0.221
(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

SES 0.307 0.235 0.222 0.204 0.181 0.176
(0.007) (0.007) (0.007) (0.007) (0.008) (0.008)

Municipality F.E. ( ) ( ) ( ) (X) (X) (X) (X)
School Quality ( ) ( ) ( ) ( ) (X) (X) (X)
School F.E. ( ) ( ) ( ) ( ) ( ) (X) (X)
Additional Controls ( ) ( ) ( ) ( ) ( ) ( ) (X)

R2 0.080 0.080 0.123 0.137 0.139 0.218 0.218
N 25,076

Notes: This table reports parameter estimates from regressions used to link the EA PGS and the

SES index to test scores in 8th grade reading. In columns 1-3, we add the PGS and SES separately

in combination. In columns 4-7, we include additional controls and fixed e↵ects (F.E.). Standard

errors are reported in parenthesis.
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Table 3: EA PGS and School Achievement over time

(1) (2) (3) (4)
Test subject: Reading
Grade: 2nd 4th 6th 8th

Panel A:

EA PGS 0.245 0.282 0.294 0.301
(0.008) (0.007) (0.006) (0.006)

Family Controls ( ) ( ) ( ) ( )
Family F.E. ( ) ( ) ( ) ( )

N 16,040 21,390 25,411 25,076

Panel B:

EA PGS 0.169 0.198 0.210 0.221
(0.008) (0.007) (0.007) (0.007)

Family Controls (X) (X) (X) (X)
Family F.E. ( ) ( ) ( ) ( )

N 16,040 21,390 25,411 25,076

Panel C:

EA PGS 0.051 0.133 0.234 0.285
(0.080) (0.057) (0.048) (0.056)

Family Controls ( ) ( ) ( ) ( )
Family F.E. (X) (X) (X) (X)

N 743 1,058 1,345 1,290

Notes: This table reports parameter estimates from regressions used to link the EA PGS to test

scores in reading at di↵erent grade levels. For each outcome, we regress the test score on the

EA PGS, controlling for indicators for birth year, gender, birth order and the first ten principal

components of the genetics matrix. In Panel B, we add controls for family income, maternal and

paternal education, indicators for maternal and paternal psychiatric diagnoses and the fraction of

time before 2nd grade that the child’s parents have been cohabiting. In Panel C, we instead add

fixed e↵ects (F.E.) at the family level, estimating the model using only sibling pairs. Standard

errors are reported in parenthesis.
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Table 4: EA PGS and School Achievement by SES

(1) (2) (3) (4) (5) (6)
Family background: Low SES High SES

Grade -0.008 -0.009 0.003 0.003 0.003 0.011
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

EA PGS 0.166 0.135 0.132 0.226 0.175 0.173
(0.014) (0.014) (0.015) (0.012) (0.012) (0.013)

EA PGS x Grade 0.014 0.014 0.013 0.001 0.003 0.002
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Family Controls ( ) (X) (X) ( ) (X) (X)
School F.E. ( ) ( ) (X) ( ) ( ) (X)

N 42,644 45,273

Notes: This table reports parameter estimates from regressions used to link the EA PGS to test

scores in reading over time using the between-families model. We regress the test outcome on the

EA PGS and EA PGS interacted with grade level, controlling for indicators for birth year, gender,

birth order and the first ten principal components of the genetics matrix. We do this separately

for low SES (columns 1-3) and high SES (columns 4-6), defined by being below/above the median

on the SES index. In columns 2 and 5, we add controls for family income, maternal and paternal

education, indicators for maternal and paternal psychiatric diagnoses and the fraction of time

before 2nd grade that the child’s parents have been cohabiting. In columns 3 and 6, we further

add fixed e↵ects (F.E.) at the school level. Standard errors are reported in parenthesis.
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Table 5: EA PGS and Other School Outcomes

(1) (2) (3) (4) (5) (6)
Outcome: School absence School starting age School quality

Panel A:

EA PGS -0.007*** -0.001 -0.018*** 0.001 0.016*** 0.001
(0.000) (0.002) (0.004) (0.042) (0.001) (0.005)

Family F.E. ( ) (X) ( ) (X) ( ) (X)
N 206,427 20,383 12,189 1,096 169,366 16,236

Outcome: Academic thriving Achievement Conscientiousness

Panel B:

EA PGS 0.108*** 0.127*** 0.102*** 0.118*** 0.146*** 0.163***
(0.004) (0.036) (0.005) (0.038) (0.006) (0.054)

Family F.E. ( ) (X) ( ) (X) ( ) (X)
N 50,065 4,930 49,994 4,923 49,964 4,918

Outcome: Connectedness Environment Management

Panel C:

EA PGS 0.037*** 0.049 0.026*** 0.066** 0.045*** 0.037
(0.005) (0.040) (0.004) (0.030) (0.004) (0.037)

Family F.E. ( ) (X) ( ) (X) ( ) (X)
N 50,139 4,938 50,046 4,935 49,946 4,924

Notes: This table reports parameter estimates from regressions used to link the EA PGS to various

other school outcomes. Each outcome is regressed on the EA PGS, controlling for indicators for

birth year, gender, birth order and the first ten principal components of the genetics matrix. In

columns 2, 4 and 6, we run the regressions using only sibling pairs, and also include fixed e↵ects

(F.E.) at the family level. Standard errors are clustered at the individual level and reported in

parenthesis.
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Table 6: Well-being survey measures

Factor 1: Academic thriving

Achievement

What do your teachers think of your progress in school?
Do you succeed in learning what you want in school?
How often can you find a solution to problems, if you try hard enough?
I do well in school, academically
If something is di�cult for me during class, I can do something about it myself to move on

Conscientiousness

How often can you manage the things you set your mind to?
Can you concentrate during lessons?
If I am interrupted during class, I can quickly concentrate again

Factor 2: School connectedness

Do you like your school?
Do you like your class?
Do you feel lonely?
I feel that I belong at this school
Most of the students in my class are kind and helpful
Other students accept me as I am
How often do you feel safe at school?

Factor 3: Learning environment

Do your teachers help you learn in ways that work?
Lessons make me want to learn more
The teachers are good at supporting and helping me at school when I need it
Do you and your classmates have a say in what the class works on?
The teachers ensure that the students’ ideas are used in class
Are the lessons exciting?
I like the surroundings outside my school
I like the classrooms at my school

Factor 4: Classroom management

If there is noise in the classroom, teachers can quickly establish quietness
Do your teachers show up for classes on time?
Is it easy to hear what the teachers say during lessons?
Is it easy to hear what the other students say during lessons?

Notes: This table reports the individual survey items that are used to construct the outcomes

reported in Table 5.
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Appendix A Genes and socioeconomic outcomes

In this section, we first explain how we think of genetic endowments and genetic inheritance.

We then use a simple conceptual framework to highlight the di↵erent channels through which

genes may a↵ect skill formation.

Appendix A.1 Genetic endowments

The human genome consists of approximately 3 billion DNA base pairs across the 23 chro-

mosome pairs. The base pairs are the fundamental units encoding genetic information, and

a particular sequence of bases at a particular location is called a gene. Genes program cells

to synthesize proteins that serve an abundance of biological functions relevant for particular

inherited traits or attributes. Most of the genome is identical for two random individuals, as

a typical genome di↵ers from the ”reference” genome at only 4-5 million base pair sites. The

smallest unit of genetic variation is a di↵erence in a single DNA base; a single nucleotide

polymorphism (SNP).

Only four di↵erent nucleobases make up a DNA sequence. The bases are adenine (A),

cytosine (C), guanine (G) and thymine (T). A SNP is thus a particular site in the DNA

where the commonly found base is replaced by one of the other three bases. In practice, the

vast majority of SNPs are biallelic, meaning that only two di↵erent bases are observed. For

example, at a specific base site, 95% of individuals have an A while the remaining 5% have

a G instead. There is then a SNP at this specific position, and the observed variants, A and

G, are known as the major (common) and the minor (uncommon) allele for this site.

Thus, for any specific (biallelic) SNP, s, we describe the genetic endowment of individual

i as:

gis 2 {0, 1, 2} (4)

where the value is equal to the number of minor alleles at the specific SNP.

An individual’s genome is a random combination of the genomes of the individual’s par-

ents. One chromosome of each chromosome pair is inherited from each parent. Which of

each chromosome is inherited is truly random as it depends on the orientation of the chro-

mosomes at a specific point in time; analogous to a coin flip. In addition to this random

assortment of chromosomes, additional genetic variation comes about because of chromoso-

mal crossover. This happens with a small probability at any specific site on the chromosome

and causes the chromosomes inherited from the mother and father to be separated at that
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site and recombined with the other chromosome instead. Thus, not only are alleles inherited

independently from each other across chromosomes because of random assortment. As long

as the SNPs are some distance from each other on the chromosome, random crossover makes

the alleles at di↵erent SNPs uncorrelated9.

Thus, the expected value of the genetic endowment at each SNP is given as:

E[gis] = 0.5gfis + 0.5gmis (5)

where gfis is the minor allele frequency for the child’s father at position s, and similarly, gmis
is for the child’s mother. Note that, because one of the two alleles is inherited from each

parent, the process is deterministic when gfis = gmis = 0 or when gfis = gmis = 2. In these cases,

there is no variation in parental genetic endowments at the SNP, and the child will have the

same number of minor alleles as both of the parents. Similarly, if e.g., gfis = 0 and gmis = 2,

it must be that gis = 1. On the other hand, when either gfis = 1 or gmis = 1, i.e. when one

parent has both the major and the minor allele at the SNP, the inheritance process is such

that whether the child gets the major or minor allele is random by nature. This is a truly

natural experiment potentially allowing for the identification of the causal e↵ect of genes on

any outcome.

Appendix A.2 Genes and skill formation

The realisation of individual economic outcomes such as education and earnings depend on

various personal attributes. Traditionally, economists summarized such characteristics as

human capital. Human capital consists of di↵erent kinds of skills or abilities (Cunha et al.,

2006). Hence, skills in the broad sense are all the psychological characteristics that influence

what individuals achieve or how well they perform in a given task, ranging from cognitive

ability (such as IQ) to non-cognitive skills or personality. This means that performance on a

particular task may be considered a measure of particular skills (Heckman and Mosso, 2014).

In the skill formation literature, skills are characterised both by a form of permanence and

impermanence. Skills are impermanent in the sense of being malleable. They are sensitive to

the environment, and can be fostered through human capital investments such as education

(although this sensitivity is often strongly age-dependant). On the other hand, skills at one

period of time exert a permanent influence in the sense that the future stock of skills is

9
SNPs that are close to each other and therefore not independent are said to be in linkage disequilibrium

(LD). When summarizing genetic endowments, one possibility is to disregard SNPs that are in LD with

each other. A preferred method, known as LDpred, allows one to use the information from all SNPs while

accounting for LD (Privé, Arbel, and Vilhjálmsson, 2020)
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partly determined by previous skills. Hence, skills are the product of previous skills and

investments (Cunha and Heckman, 2007).

But while all skills are to some extent malleable, it is becoming evident that all skills

or traits are also to some extent heritable (Polderman et al., 2015). The skill formation

literature also emphasizes that skills are formed by an interaction between genetics and the

environment (Heckman, 2006), but genes have generally only featured in these models indi-

rectly through an initial stock of skills that is said to depend on unobserved genetic influences

(Cunha, Heckman, and Schennach, 2010). However, the possibility to measure individuals’

genetic endowments made feasible by recent scientific advances may inform the skill forma-

tion process further, as shown by Houmark, Ronda, and Rosholm (2020). Extending the

traditional skill formation model to allow for genetic influences thus reveals that, just like

investments, genes exert a continuing influence on skill development through early childhood

(age 0-7 years).

In this paper, we likewise conceptualise skills as being determined by both previous

skills, investments and genes, but we now consider the next stage of childhood, namely when

children enter elementary school. Though skills are multidimensional in nature, for simplicity,

we assume that skills may be described by a uni-dimensional measure. This may reflect one

particular dimension, e.g., cognitive ability or reading skills, or it may reflect a summary of

the various skills that are relevant for educational achievement. Hence, individual i’s stock

of skills develop according to:

✓it+1 = f ✓
t (✓it, I

h
i0, Iit,gi) (6)

where f ✓
t is a function describing how skills are formed by an interaction between previous

skills, home investments during early childhood, later investments of various types, and

the child’s genetic endowments. gi is the vector of all genetic endowments of individual i,

gi = {gi1, ..., giS}. Ihi0 indicates all the characteristics of the early childhood environment

that a↵ects skill development, i.e., socio-economic status (SES) in a broad sense. Thus, to

the extent that early home investments a↵ect skill formation, SES achievement gaps are

captured by:

@f ✓
t (✓it, I

h
i0, Iit,gi)

@Ihi0
(7)
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And the SES achievement gaps are increasing if:

@2f ✓
t (✓it, I

h
i0, Iit,gi)

@Ihi0@t
> 0 (8)

Note that this could happen for various reasons. Early investments may evoke subsequent

home investments or other types of investments at a later time (Iit = {Ihit, ..., I
p
it} ), e.g.

because high-SES children are sent to schools of higher quality. It may also be that early

skills fostered by home investments increase the returns to subsequent investments.

However, all of these e↵ects may also stem from di↵erences in the child’s genetic en-

dowments. That is, the extent to which there are genetic achievement gaps is determined

by:

@f ✓
t (✓it, I

h
i0, Iit,gi)

@gi
and

@2f ✓
t (✓it, I

h
i0, Iit,gi)

@gi@t
(9)

where genes may have an e↵ect through each of the inputs in the skill production function.

It may be considered a direct e↵ect if it works either through the current stock of skills, or

conditional on the current stock of skills and investments. That is, because of their genetic

potential, some children will have accumulated a higher stock of skills at a certain point in

time, and that may a↵ect their ability to learn new skills. But genes may also make some

children better at retaining new concepts and learn from their environment regardless of

their current skills and the particular environment they are in.

In addition, genes may have an e↵ect through investments. This is a form of gene-

environment correlation, also known as genetic nurture (Kong et al., 2018). Because of

their genetic endowments, some children may actively seek out environments that are more

conducive to learning (active gene-environment correlation). But the environment may also

change as a response to the child’s genetic endowments, e.g., parents may invest di↵erently

based on the perceived potential of the child (reactive gene-environment correlation) (Plomin,

DeFries, and Loehlin, 1977).

While the di↵erence is theoretically clear, distinguishing between SES gaps and genetic

gaps in achievement may be di�cult in practice. More so because they share an important

determinant: parental genes. As explained, a child’s genetic endowments are determined by

parental genes according to 5. But parental genes may also a↵ect the childhood environment.

Hence, SES achievement gaps may partly be due to genetic di↵erences and vice-versa. Of

course, di↵erences in SES are in general predictive, or at best an imperfect measure of a

causal relationship. If the same is true for genetic gaps, it may not be clear whether the two
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types of inequality are qualitatively di↵erent. However, one may, for example, control for

various aspects of the family background and see if the genetic gaps remain. Furthermore,

if one can control for parental genes, it will be possible to exploit the natural experiment of

genetic inheritance and identify the independent e↵ect of the child’s genes. If the SES and

genetic gaps are not simply explained by the other, this begs the question whether there is

an interaction between the two, i.e.:

@2f ✓
t (✓it, I

h
i0, Iit,gi)

@gi@Ihi0
(10)

and whether this changes over time:

@3f ✓
t (✓it, I

h
i0, Iit,gi)

@gi@Ihi0@t
(11)
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Appendix B Additional results

Table B1: EA PGS, SES and School Achievement

(1) (2) (3) (4) (5)
Test subject: Reading

Grade -0.002 -0.002 0.008 -0.017 -0.017
(0.002) (0.002) (0.002) (0.010) (0.010)

EA PGS 0.111 0.114 0.105 0.115 0.111
(0.020) (0.020) (0.022) (0.143) (0.143)

EA PGS x Grade 0.020 0.020 0.019 0.025 0.025
(0.003) (0.003) (0.004) (0.021) (0.021)

EA PGS x SES 0.099 0.068 0.079 0.034 0.040
(0.032) (0.032) (0.034) (0.220) (0.220)

EA PGS x Grade x SES -0.022 -0.021 -0.019 -0.025 -0.027
(0.006) (0.005) (0.006) (0.033) (0.033)

SES 0.802 0.341 0.261
(0.013) (0.026) (0.033)

Family Controls ( ) (X) (X) ( ) (X)
School F.E. ( ) ( ) (X) ( ) ( )
Family F.E. ( ) ( ) ( ) (X) (X)

R2 0.138 0.144 0.110 0.044 0.046
N 87,917 4,436

Notes: This table reports parameter estimates from regressions used to link the EA PGS to test

scores in reading over time across family SES. We regress the test score on the EA PGS and EA PGS

interacted with grade level as well as SES and SES interacted with each of the EA PGS terms.

We further control for indicators for birth year, gender, birth order and the first ten principal

components of the genetics matrix. Columns 1-3 uses the between-families model and columns 4-5

uses the within-families model. In columns 2, 3 and 5, we add family controls. Further, we add

fixed e↵ects (F.E.) at the school level in column 3 and at the family level in columns 4 and 5.
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Table B2: Balanced Sample: EA PGS and Human Capital Formation in ele-
mentary School

(1) (2) (3) (4)
Test subject: Reading
Grade: 2nd 4th 6th 8th

Panel A:

EA PGS 0.222 0.250 0.276 0.27
(0.013) (0.013) (0.013) (0.013)

Family Controls ( ) ( ) ( ) ( )
Family F.E. ( ) ( ) ( ) ( )

Panel B:

EA PGS 0.153 0.180 0.201 0.201
(0.014) (0.014) (0.013) (0.013)

Family Controls (X) (X) (X) (X)
Family F.E. ( ) ( ) ( ) ( )

N 5,171 5,171 5,171 5,171

Notes: This table reports parameter estimates from regressions used to link the EA PGS to test

scores in reading and mathematics at di↵erent grade levels for the balanced sample. This is

equivalent to Table 3, except that we only include individuals if we observe them taking all of

the tests from grade 2 through 8. For each outcome, we regress the test score on the EA PGS,

controlling for indicators for birth year, gender, birth order and the first ten principal components

of the genetics matrix. In Panel B, we add controls for family income, maternal and paternal

education, indicators for maternal and paternal psychiatric diagnoses and the fraction of time

before 2nd grade that the child’s parents have been cohabiting. Standard errors are reported in

parenthesis.
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Table B3: Control Sample: EA PGS and Human Capital Formation in ele-
mentary School

(1) (2) (3) (4)
Test subject: Reading
Grade: 2nd 4th 6th 8th

Panel A:

EA PGS 0.241 0.261 0.280 0.287
(0.010) (0.009) (0.008) (0.009)

Family Controls ( ) ( ) ( ) ( )
Family F.E. ( ) ( ) ( ) ( )

Panel B:

EA PGS 0.172 0.185 0.204 0.216
(0.011) (0.009) (0.008) (0.009)

Family Controls (X) (X) (X) (X)
Family F.E. ( ) ( ) ( ) ( )

N 7,682 9,674 11,027 10,373

Notes: This table reports parameter estimates from regressions used to link the EA PGS to test

scores in reading and mathematics at di↵erent grade levels for the control sample. This is equivalent

to Table 3, except that we only include individuals if they are part of the representative iPSYCH

subsample. For each outcome, we regress the test score on the EA PGS, controlling for indicators

for birth year, gender, birth order and the first ten principal components of the genetics matrix.

In Panel B, we add controls for family income, maternal and paternal education, indicators for

maternal and paternal psychiatric diagnoses and the fraction of time before 2nd grade that the

child’s parents have been cohabiting. Standard errors are reported in parenthesis.
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Table B4: Mathematics: EA PGS and School Achievement

(1) (2) (3)
Mathematics

Grade: 3rd 6th 8th

Panel A:

EA PGS 0.258 0.298 0.356
(0.008) (0.007) (0.023)

Family Controls ( ) ( ) ( )
Family F.E. ( ) ( ) ( )

N 19,188 25,157 2,155

Panel B:

EA PGS 0.180 0.206 0.249
(0.008) (0.007) (0.023)

Family Controls (X) (X) (X)
Family F.E. ( ) ( ) ( )

N 19,188 25,157 2,155

Panel C:

EA PGS 0.140 0.301
(0.070) (0.058)

Family Controls ( ) ( )
Family F.E. (X) (X)

N 964 1,318

Notes: This table reports parameter estimates from regressions used to link the EA PGS to test

scores at di↵erent grade levels, equivalent to Table 3 except for mathematics instead of reading.

For each outcome, we regress the test score on the EA PGS, controlling for indicators for birth

year, gender, birth order and the first ten principal components of the genetics matrix. In Panel B,

we add controls for family income, maternal and paternal education, indicators for maternal and

paternal psychiatric diagnoses and the fraction of time before 2nd grade that the child’s parents

have been cohabiting. In Panel C, we instead add fixed e↵ects at the family level, estimating the

model using only sibling pairs. Standard errors are reported in parenthesis.

39


	Introduction
	Measuring genetic effects
	Data
	The iPSYCH sample
	The Danish national tests
	Sample selection and descriptive statistics
	Socioeconomic status
	Polygenic scores
	School environment
	School experiences

	Estimation
	Results
	The SES and the PGS achievement gap
	Interactions with the PGS achievement gap
	Mediators of the PGS achievement gap
	Robustness

	Discussion
	Tables and Figures
	Genes and socioeconomic outcomes
	Genetic endowments
	Genes and skill formation

	Additional results

