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Abstract

Overconfidence is one of the most ubiquitous cognitive bias. There is copious

evidence of overconfidence being relevant in a diverse set of economic domains.

In this paper, we relate the recent concept of cognitive uncertainty with over-

confidence. Cognitive uncertainty represents a decision maker’s uncertainty

about her action optimality. We present a simple model of overconfidence

based on the concept of cognitive uncertainty. The model relates the concepts

theoretically and generates testable predictions. We propose an experimental

paradigm to cleanly identify such theoretical relationships. In particular, we

focus on overplacement and we find that, as predicted, cognitive uncertainty

is inversely related to overplacement. Exogenously manipulating cognitive

uncertainty through compound choices, we are able to show a causal rela-

tionship with overplacement. Evidence on these relationships allows to link

overplacement with other behavioral anomalies explained through cognitive

uncertainty.
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1 Introduction
Uncertainty undeniably plays a central role in the economics literature, as it permeates

every aspect of economic decision-making, such as stock market investments, innovation

decisions, consumption choices, and many more. However, most of the economics literature

focuses on uncertainty stemming from the environment, that is external uncertainty. An

example of decision making under this kind of uncertainty may be booking a holiday to

Paris: Linda would like the weather to be sunny while she visits the city, so she considers

factors that impact the chance of any given day to be rainy when picking the dates for the

trip; hence, the uncertainty is generated by factors external to the decision-maker.

On the other hand, a recent and growing branch of literature started focusing on the uncer-

tainty that is not originated by environmental conditions but from the cognitive processes

involved in undertaking a decision. Woodford (2020) provides a review of key ideas from

psychophysics, with a focus on economic applications of what is defined as imprecision.

Khaw, Li, and Woodford (2017) and Gabaix (2019) both propose a theoretical framework

where some form of cognitive noise is generated when a decision-maker undertakes any

decision. The idea is that this noise is not rooted in an imperfectly observable environ-

ment but possibly caused by the complexity of the problem in the process of elaborating

the inputs and providing an answer. Building on previous works, Enke and Graeber (2021)

(EG henceforth) define the concept of cognitive uncertainty (CU henceforth) as an agent’s

uncertainty about own’s action optimality: the decision-maker is aware of the existence of

the cognitive noise, which impairs her ability to take the optimal decision, and is hence un-

certain whether the action she picked is the optimal one. In other words, agents are aware

that they may commit mistakes and they hold doubts about having done the right choice.

Very importantly, EG employ this concept to unify several boundedly rational behaviors

documented in the literature and provide experimental evidence of the role of cognitive un-

certainty in moderating such behaviors. This paper aims to extend this process, establishing

a link between cognitive uncertainty and overconfidence,1 with a focus on overplacement,2

both theoretically and empirically.

The relevance of overconfidence in economic decision-making is well established. Notable

examples are Malmendier and Tate’s (2005) paper, in which the authors show how overcon-

fidence induces CEOs to undertake sub-optimal investment decisions, or Barber and Odean

1Although it is possible to argue that both internal and external uncertainty play a role in

giving rise to overconfidence, we focus on how internal uncertainty, through CU, contributes to the

phenomenon.
2As Moore and Healy (2008) argue, what is commonly defined as overconfidence comprises

different constructs, which is wiser to treat separately. In Section 2.2 this point is laid out more

extensively.
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(2001), who show how overconfidence (related to gender) may lead to excess trading on

the stock market, with a negative impact on returns. In the words of Kahneman (2011),

overconfidence is “[...] the most significant of the cognitive biases”. A series of papers in

economics, part of the literature on ego-based utility and motivated beliefs,3 investigates

the structure and the causes of overconfidence. This literature identifies the cause of over-

confidence in the fact that positive self-assessments increase agents’ utilities. Nonetheless,

explanations of overconfidence based on motivated reasoning leave out some unsolved puz-

zles and relevant questions. For example, it is not clear how overconfidence is related to

other cognitive biases, how overconfidence can persist over time in the presence of feed-

back4 or how overconfidence emerges in not ego-relevant contexts. This suggests that the

mechanism behind overconfidence in economic decision-making is still unclear. We aim to,

partially, shed light on these aspects, making use of the concept of CU, focusing on over-

placement. Overplacement and CU are inversely related. For example, an individual who is

highly uncertain about the optimality of her own action will tend to place herself relatively

lower, with respect to a less cognitively uncertain individual. Crucially, a form of internal

uncertainty is conceptually necessary to rationalize overconfidence-related phenomena: to

make self-assessment mistakes, an agent must be uncertain about the optimality of her

choice. We use the concept of cognitive uncertainty to justify and formalize this idea.

This paper brings about two key contributions. First, we show how overconfidence, and more

extensively under/overplacement, is generated in a cognitive uncertainty framework. This is

intended as a step to merge the overlapping parts of the economic literature on imprecision

and overconfidence. Second, the model delivers a set of predictions about the impact of CU

on two different overplacement measures. We test these predictions experimentally. Our

results show that CU and overplacement are negatively related. Also, we manipulate CU

experimentally using compound choices, showing the existence of a causal link between CU

and overplacement. As a third, minor, contribution, we document a relationship between

placement measures and the shape of probability weighting, which, to our knowledge, has

not been explored before. The model presented in this paper, jointly with EG’s results, can

account for this preliminary evidence.

We conduct an experiment built on the ”balls-and-urns” workhorse paradigm (see Ben-

jamin, 2019) to collect evidence of a causal relationship between overplacement and CU.

Participants are introduced two fictitious urns and told that one of the two has been picked

with some probability. Each urn contains a different number of blue and red balls and, after

observing a draw of one or two balls, participants state their probability guess about each

3See Bénabou (2015) and Bénabou and Tirole (2016) for reviews.
4On this latter, also the role of memory has been studied, both theoretically (e.g. Bénabou and

Tirole (2002)) and empirically (e.g. Huffman, Raymond, and Shvets (2021) or Zimmermann (2020)).
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urn. Before formulating the guess we elicit an absolute placement measure, asking them

a guess about their rank on a scale from 1 to 100. After the guess, they observe another

participant’s answer to the same problem and provide a relative placement guess (proba-

bility of having performed better than the other participant). To identify a causal role of

CU we follow EG, introducing ambiguity in half of the tasks, presenting the diagnosticity

parameter of the problem (number of blue balls in each urn) as a random variable. We

interpret this as an exogenous manipulation of CU.

We have two main findings. First, placement and overplacement decrease in CU, that is

more cognitive uncertain participants tend to place themselves lower and are less likely

to wrongly place themselves higher, relative to other participants. This finding is robust

across different measures of placement and overplacement. Second, more cognitively uncer-

tain participants are more likely to change their answers and to a greater extent. These

findings are consistent with a formal model of overplacement built on EG’s model of CU.

In the model, agents are not sure about the optimality of their actions and the level of

uncertainty about their actions’ optimality, that is CU, regulates the extent to which they

are under/overconfident.

Besides contributing to the literature on overconfidence and imprecision, this paper further

contributes to the economic literature on observational learning, through the structure of

our experimental paradigm. Weizsäcker’s (2010) metastudy on social learning shows how

individuals fail to effectively learn from others when this would imply to contradict their

own initial choice, even if it would be optimal to do so. This evidence can be seen as a form

of underreaction to new signals, which is prevalent in social learning experimental contexts.

Several other works document this and describe it as a form of overconfidence (e.g. Nöth

and Weber (2003); Celen and Kariv (2004); Goeree, Rogers, Palfrey, and McKelvey (2007);

and De Filippis, Guarino, Jehiel, and Kitagawa (2017)). On the other hand, the psychology

literature offers several instances of underconfidence in diverse tasks (Burson, Larrick, and

Klayman (2006); Kruger and Dunning (2009); Krueger and Oakes Mueller (2002); Moore

and Small (2007)), with the mechanism regulating the presence of over or underconfidence

not being clear. Cognitive uncertainty may provide this regulating mechanism, along with

a theoretical foundation for that.

The remainder of the paper is organized as follows. Section 2, establishes the theoretical link

between CU and overconfidence frameworks, showing to what extent they are equivalent

and which insights can the cognitive uncertainty perspective provide. The key predictions

of the model are tested in an experimental setting with financially incentivized decisions.

The experimental design is described in Section 3 and the analyses and results in Section

4. Section 5 concludes.
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2 Theoretical Framework
In this section, we first briefly introduce EG framework of CU. Afterwards, we show the

link between CU and overplacement in a simple formal setting, which allows to formulate

testable empirical hypotheses.

2.1 Cognitive Uncertainty

The model developed in this section builds on EG illustration of choice under CU, where

the decision-maker behaves as if she was facing a signal extraction problem, with the noise

being internally generated.

Consider an agent with quadratic utility function:

u(a, x) = −1

2
(a−Bx)2. (1)

Clearly, the optimal action would then be a∗ = Bx. However, the agent is affected by

cognitive noise and behaves as if the state variable x was not observed deterministically,

but only through a noisy signal s = x+ ε, with ε ∼ N (0, σ2
ε). The noise term ε is the noise

perceived by the agent and may also not correspond to the true cognitive noise, denoted

by ε̃. Assuming the agent holds a prior x ∼ N (x0, σ
2
x) about the state, the optimal action

would be a∗(s) = Bλs + B(1 − λ)x0, with the agent’s uncertainty about her own action

optimality reflected by

a∗(x | s) ∼ N (Bλs+B(1− λ)x0, B
2(1− λ)σ2

x), (2)

with λ =
σ2
x

σ2
x+σ2

ε
. Hence, cognitive uncertainty (σCU ) is defined as the standard deviation of

the above probability distribution: the agent’s uncertainty about her optimal action. Note

that the normality assumption is imposed for simplicity, but the general idea would hold

also for different prior and cognitive noise distributions: the agent’s internal uncertainty

induces a distribution on the space of possible answers, with a certain degree of dispersion

that is her cognitive uncertainty.

The theoretical contribution of this paper, strictly related to the empirical investigation, is

twofold: linking CU and overplacement and representing an observational learning process

in this framework. In the Appendix, we also briefly present MH’s benchmark model of

overconfidence, showing how a CU-based model of overconfidence can generate equivalent

predictions and arguing how a CU-based model may provide additional insights.
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2.2 Cognitive Uncertainty and Overconfidence

A series of works5 highlights the distinction among three different concepts of overconfi-

dence: overestimation, overprecision, and overplacement. In this literature, it is also stressed

how, even though often confused in the vernacular, these phenomena are distinct in their

causes and in the conditions under which they manifest. In line with this branch of lit-

erature, we present a model that stresses formally the differences in the constructs and

their causes. More specifically, we present a model that focuses on nesting overplacement

within the CU framework. Note that this does not mean that the model cannot reproduce

established results concerning overprecision6 or overestimation: as shown in the Appendix,

MH’s results can be reproduced within this framework, under some assumptions. In what

follows, we work out a link between the concepts of CU and overplacement, which is also

the main object of the empirical investigation.

2.2.1 Cognitive Uncertainty and Overplacement

Overplacement is defined as an excessive belief in being better than others. In MH’s paper,

the phenomenon is studied in a very specific informational setting: the agent has her own

performance revealed and has to assess whether it is higher or lower than an ”average”

agent. Formally, this means that, having observed her performance, she updates her belief

about the mean of the performance distribution, being able to assess the relative goodness of

her performance. However, thinking about single tasks, instead of aggregated performance,

allows us to study the problem from a different perspective.

Consider an agent, part of a measure one set of cognitive uncertain agents, having provided

her best answer to a given task. Given her prior x and her signal s, she will hold some belief

about her action optimality, following (2). We assume that it is common knowledge that all

5Originating in MH. See also Moore and Schatz (2017).
6There is a clear relation between the concept of CU and overprecision: the first is a necessary

but not sufficient condition for the other to emerge. An individual may be affected by cognitive noise

and be aware of that, being uncertain about the optimality of her choice, but will not necessarily

exhibit overprecision. The latter may emerge only if the perceived cognitive noise is lower than

the actual one. If an agent’s perceived cognitive noise is less disperse than his actual noise, he

will overestimate his performance and the precision of his answer, that is, underestimate his CU.

Cognitive uncertainty may hence constitute a building block for a formal model of overprecision.

Additionally, it is interesting how this perspective provides a rationale for the phenomenon of

overprecision to emerge. Agents are affected by some form of cognitive noise, of which they are

aware, but their perception does not necessarily correspond to the actual process generating the

noise.
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agents have identical preferences, described by a simplified version of (1):

u(a, x) = −1

2
(x− a)2, (3)

which implies that the optimal action corresponds to the state itself a∗ = x. This change

does not affect the interpretation of the model in any way but simplifies the notation. Also,

any order-preserving transformation would not change the results. Moreover, we assume

that agents being cognitive uncertain is common knowledge.

If an agent, say i, can observe the action undertaken by another agent, call him j, then the

expectation about the placement can be defined as the probability that j is worse off, from

i’s perspective:

Definition 1. Given preferences defined by (1) and some belief distribution on the space of

action, the relative placement of agent i, with action a∗
i , with respect to agent j, with action

a∗
j , is:

Placementi(a
∗
i , a

∗
j ) = P (u(a∗

j , x) < u(a∗
i , x)).

Agent i holds some beliefs about the potential optimal actions, with a∗
i being the mode

(and the mean, under normality) of such distribution. Given that agent i observes another

agent’s action, she will be able to assess, according to her own beliefs, the probability that

agent j performed better than she did. This expression can be interpreted as a continuous

answer to the question ”Did you perform better than agent j?”. This definition is a building

block to construct i’s overall ranking measure.

Definition 2. Let Gi(a) be some CdF representing i’s beliefs about other agents’ actions.

Then agent’s i expected ranking is:

Ranki(a
∗
i ) = EGi [Placement(a∗

i , a
∗
j )]

Given the definition above, agent i would need to know the distribution of answers

provided by other agents, or to hold some belief about that, to be able to form expectations

about other agents’ actions and hence about her overall placement.

This assumption is not unrealistic in many applied frameworks. Two examples are a firm

setting prices and being able to observe prices set by other firms on a similar product, or a

financial market investor observing other agents’ decisions of buying or selling certain assets.

Moreover, for the results to hold, the distribution does not have to be correct, mirroring

the actual distribution of agents’ actions. It is just necessary that, when assessing her own

ranking, i holds some beliefs about other agents’ actions.

Given the preferences described by (3), it follows that a∗ = x, that is a∗ and x may be used

interchangeably. In this setting it is possible to state the following, all of which is proven in

the Appendix:
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Proposition 1. Consider a measure one set of cognitive uncertain agents, with preferences

defined by (3), and some agent i, with beliefs a∗ ∼ N (a∗
i , σ

2
CU ). Then, for any CdF Gi(·),

describing agent’s i beliefs about other agents’ actions such that Ranki(·) is well defined, it

holds that:

i) Placementi(a
∗
i , a

∗
j ) =

1− Fa∗
i
(
a∗
i +a∗

j

2
) if a∗

j < a∗
i

Fa∗
i
(
a∗
i +a∗

j

2
) if a∗

j ≥ a∗
i

,

ii) Placementi(a
∗
i ) is decreasing in cognitive uncertainty for all a∗

j ,

iii) Ranki(a
∗
i ) is decreasing in cognitive uncertainty,

with Fa∗
i
(·) being the CdF representing i’s beliefs about the optimal action.

a *
i

a *
j

CU = 1
CU = 0.7

Figure 1: Distribution of beliefs about the optimal action a∗ for different levels of

CU. The areas represent 1− Placement(a∗i , a
∗
j ) for both beliefs.

The first point of the proposition characterizes i’s relative placement, under this set of

assumptions. As shown in the proof, this characterization is an immediate consequence of

the distributional assumption and of the quadratic preferences, which formalize an intuitive

basic structure: an agents performs better than another if her answer is closer (in a classic

Euclidean sense) to the optimal action a∗. Then, the first point of the proposition represents

the probability of this event happening, given i’s beliefs about the optimal action a∗. Figure 1

shows this same intuition graphically. The shaded areas represent (1−Placementi(a
∗
i , a

∗
j )),

for the case of a∗
j < a∗

i , for two different levels of σCU . The blue area, representing the
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higher CU case, is larger, implying that the agent with the higher CU places herself rela-

tively lower.

The second point of the proposition states that the placement of an agent decreases in her

cognitive uncertainty and, consequentially, also the overall expected ranking (third point).

As uncertainty increases, probability mass is shifted away from a∗
i , the mean of the dis-

tribution, towards the tails. Hence, the agent will deem values far from her chosen action

more likely to be optimal, decreasing her expected rank.

This result establishes a direct link between cognitive uncertainty and overplacement. An

interesting aspect of this result is that it does not depend on beliefs about other agents’

actions, as the impact of CU on overplacement does not vary with different specifications

of Gi(·). Also, the result in the second point of the Proposition relies on the fact that

Placementi(·, ·) is also increasing in σCU , meaning that the same logic applies for a frame-

work where the agent observes another agent’s action.

2.2.2 Persistence

It is possible to model the agent to hold invariant beliefs or to allow for her to update after

observing a∗
j . In the first case Fa∗

i
(·) would be the same CDF prior to observing a∗

j . In the

other case, for agent i to be able to update her beliefs, she would have to formulate an

assumption about agent’s j cognitive uncertainty, denoted by σ−i.

The updated belief about the optimal action would then be:

a∗ ∼ N
(

σ2
−i

σ2
−i + σ2

CU

a∗
i +

σ2
CU

σ2
−i + σ2

CU

a∗
j ,

σ2
CUσ

2
−i

σ2
−i + σ2

CU

)
. (4)

In both cases (static or dynamic beliefs) the results from Proposition 1 hold. However, the

expression in (4) can be employed to analyze a potential source of overplacement persistence.

A long-standing puzzle in the literature is the persistence of overconfidence over time, even

in the presence of repeated feedback.7 A prominent explanation for this phenomenon has

been motivated beliefs. In these models, positive self-assessments enter positively inside

agents’ utilities, under some constraints or costs as to prevent generating infinitely inflated

beliefs.8 The general idea is that an individual biases his beliefs upwards, as he enjoys

holding a positive view of himself, even if this generates (costly) sub-optimal behavior. As

compelling as this narrative is, there are arguably frameworks where it may not fit. The

motivated beliefs narrative is based on the fact that individuals value a good performance

7See, among others, Huffman, Raymond, and Shvets (2021) and Zimmermann (2020).
8This literature stems from Bénabou and Tirole’s (2002) seminal paper proposing an economic

theory of prosocial behavior. See also Köszegi (2006) for a theoretical formulation of utility theory

including ego-relevant features. See Bénabou (2015) and Bénabou and Tirole (2016) for literature

reviews.
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in the task, which may not be the case for neutral tasks or for tasks that people regret

participating in. In a series of experiments, Logg, Haran, and Moore (2018) find stronger

evidence for a cognitive-based explanation for overconfidence, with the role of motivation

being related to vague measures and tasks. Expression 4 suggests an alternative, though not

exclusive, way by which persistent overplacement may arise: keeping other factors constant,

an agent with a higher assessment of σ−i will hold more conservative beliefs towards her

initial guess, resulting in a higher persistence of overplacement. In other words, an agent

who underestimates others excessively, would be able to keep, over time, excessively high

beliefs about her own action optimality.

Figure 2 represents this idea graphically. Agents starting with the same (incorrect) prior,

that is with the same belief about the optimal action and the same level of cognitive

uncertainty, observing the same action a∗
j , will have different learning paths, for different

levels of σ−i: the agent with a larger assessment of σ−i will hold a higher and more persistent

belief about his placement over time. Similarly, Figure 3 shows a one-period cross-section

of the process shown in Figure 2: holding prior fixed, the agent with the highest assessment

of σ−i will hold a posterior such that his placement is higher. The fact that the agent with

a larger σ−i has a larger CU after updating9, is more than compensated by the fact that

the new optimal action is closer to the observed action a∗
j . The figure compares placement

functions for two different levels of σ−i, showing the location of the midpoint a∗
i +a∗

j

2
for

both. This intuition is formalized with the following (proven in Appendix B.2):

Proposition 2. Consider two agents, iH and iL, with identical priors regarding the optimal

action a∗ ∼ N (a∗
i , σ

2
CU ), but with σ−i,H > σ−i,L. Let a∗

j be some action by agent j observed

by both, and let a∗
iK

, for K ∈ {L,H} be the posterior mean, after having observed a∗
j . Then,

PlacementiH (a∗
iH

, a∗
j ) > PlacementiL(a

∗
iL
, a∗

j ).

Hence, an agent with a higher assessment of σ−i, will in general be more subject to

overplacement. The following empirical hypotheses follow from the set of results collected

throughout this section:

Hypotheses

1. Placement decreases in σCU and increases in σ−i.

2. Ranking decreases in σCU .

3. Reaction to others’ actions/information increases in σCU and decreases in σ−i.

9Note that the variance of both agents, after updating their beliefs, is σCUσ−i

σCU+σ−i
, given their

assessment of σ−i.
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In what follows we describe the experimental design, define empirical measures for theoret-

ical quantities, and finally present our analysis strategy and results.

0 5 10 15 20 25 30 35 40 45 50
Periods

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Pl
ac

em
en

t

i = 0.7
i = 1
i = 1.5

Figure 2: Placement dynamics for different levels of σ−i. All agents start from an

identical belief about a∗ and observe the same action a∗j and differ only in the level

of σ−i.
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Figure 3: Placement functions: one-period belief updating for different levels of σ−i.

Midpoints are the optimal action according to each agent in that period.

3 Experimental Design
The main goal of the experimental design is to test the relationship between cognitive un-

certainty and overplacement. More specifically, we aim to test the hypotheses formulated

in the previous section.

The experiment is organized into two main blocks: a set of belief updating tasks and a

final survey. Each belief updating task is constructed following Benjamin’s (2019) review,

similarly to EG. Participants undergo a classic ”balls-and-urns” task, in which they are

presented with two hypothetical urns, each containing blue and red balls, in different pro-

portions. After observing a draw of one or more balls, their goal is to provide their best

guess of the probability of the draw coming from one of the two urns. Participants are also

endowed with a prior probability of either one of the two urns being picked before observing

the draw. They are informed that the computer draws a card from a 100 cards deck. Each

card is labeled as either one of the two urns. Based on the drawn card, the computer per-

forms the second draw of one or two balls from the selected urn. Moreover, participants are

informed about the proportions of the cards in the deck.10 More formally, participants are

10For further details about the exact experimental instructions one may refer to Appendix C.1.
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provided with the number of ”A cards” in the deck, A = 100 · P (A), as well as the number

of blue balls in urn A, B = 100 ·P (blue | A), with the number of blue balls in urn B always

set as its complement, that is 100 · P (blue | B) = 100 − B. The parameter space, which is

unknown to participants, is A ∈ {30, 50, 70} and B ∈ {70, 90}. Finally, the possible signals

are s ∈ {blue, red, blue − blue, red − red, blue − red, red − blue}, with the probability of s

being a single ball draw set to 50%.11

Figure 4 represents the task timeline graphically. The green boxes represent the financially

incentivized decisions12. Participants are presented with a balls and urns task with a given

parameters specification and formulate their guess. They are also asked to provide a guess

about their overall ranking in the task. Afterward, they observe an answer to an identical

task provided by another participant and may change their previous guess. Additionally,

they are asked to assess their placement relative to that participant and the level of cog-

nitive uncertainty of the other participant when providing the observed answer (σ−i). The

key outcomes of interest are the placement measures and the participant deviation from the

initial answer, if any such deviation occurs. The steps are repeated for different specifica-

tions of the belief elicitation task. The same participant goes through several sessions of the

task, each with a different parameters specification. Also, as explained in more detail in the

next subsection, half of the sessions would have B, the diagnosticity parameter, expressed as

a random variable. These choices are referred to as compound choices. Participants undergo

each of the possible 6 parameter specifications. For compound choices the parameters are

intended in expectations.

Clearly, there is a significant intersection with EG in terms of experimental structure. The

key differences are represented by rank and placement elicitations and by the additional

steps after CU elicitation, namely: a subject is shown another subject’s answer, elicitation

about the other subject’s CU, and the answer adjustment step. Combining the belief updat-

ing task as carried out in EG with these additional steps, represents the novel contribution

of this paper from the experimental point of view.

11For more details about the structure and the implementation of the random draws see Appendix

D.
12For details on how financial incentives are implemented see Appendix C.4
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Figure 4: Experimental task timeline.

3.1 Compound Choices

Besides establishing that CU and placement measures are correlated as expected, we are

interested in establishing a causal relationship. To do so, we introduce compound choices,

as done in EG.

Participants undergo 6 sessions, as described in the previous subsection and shown in Figure

4. In the last 3 sessions, the diagnosticity parameter of the belief updating problem (B) is

presented as a random variable instead of a number. As EG show, introducing compound

choices this way is arguably equivalent to manipulate CU, hence helping to establish a

causal link between CU and overplacement. To this respect, it should be noted that, to our

knowledge, only one work studying the impact of ambiguity on overconfidence is present

in the literature (Brenner, Izhakian, and Sade, 2015). However, the evidence presented in

the paper is based on a different concept and manipulation of ambiguity. For this reason,

in interpreting the results, we assume that variations in placement measures and answers

adjustment, in a compound choice framework, would be channeled through the exogenous

variation in cognitive uncertainty. To cleanly identify the effect of the manipulation, partic-

ipants are shown another participant’s answer to an equivalent (reduced) problem without

compound parameters. It is stressed that the correct answer for the differently formulated

problem is the same. The aim is to keep all other factors constant, compared to the previ-

ous condition, including the subject’s beliefs about other subject’s CU: knowing that only

her problem is posed in a compound way, the participant should have relatively, but not

absolutely, more trust in the observed answer. This condition is implemented intervening

on points 1 and 5 of the experiment timeline. A different example is provided in point 1,

comparing the new compound task with the previous task. In point 5 subjects are pro-

vided with an answer from an equivalent, non-compound task. A preliminary study has

been run to collect a sufficiently large pool of answers for the belief updating task. This

study excluded the learning component of the belief updating task since the aim was only

to gather answers to be used in the next phase of the study. The answers shown in phase

5 of the belief updating task are randomly drawn from the pool of answers gathered in the
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preliminary study, conditioning on parameters specification and signals realization.

3.2 CU Elicitation

A key measure in the experiment is the one for cognitive uncertainty. In this, we follow

closely EG. Figures 5 and 6 show screenshots from an example task. The only way our

elicitation differs from Enke and Graeber operationalization of CU is that we set the

uncertainty to grow moving the slider from left to right.

Referring to their work, this operationalization of participants uncertainty has a simplicity

advantage over confidence intervals elicitation. This is because participants do not have to

understand the concept of confidence intervals13 and think about probability in answering

the question about cognitive uncertainty. Similarly, eliciting full probability distributions

over (range of) outcomes is more complex and require the subjects to have a certain degree

of understanding of probability theory.

Figure 5: Example of Cognitive Uncertainty Elicitation Pre Click

13Confidence interval being a proper measure for eliciting participants perceived precision has

been widely debated in the literature. Enke and Graeber (2021) also conducted a calibration exper-

iment using confidence intervals, noting how changing the confidence level does not impact much

intervals wideness. This was already noted by Alpert and Raiffa (1982), who started this literature.

For an extensive review of this problem see Logg, Haran, and Moore (2018).
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Figure 6: Example of Cognitive Uncertainty Elicitation After Click

3.3 Rank and Placement Elicitation

As illustrated in Figure 4 rank is elicited following participants probability guess. More

specifically, participants are asked to provide their guess about their overall ranking in that

specific task, right after providing their probability guess. Figure 7 provides an example.

Figure 7: Example of Rank Elicitation
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For what concerns placement, participants were first shown the answer of another par-

ticipant in an identical task and then asked how likely it was that they performed better

than that participant. Figure 8 provides an screenshot from the experiment.

Figure 8: Example of Placement Elicitation

3.4 Logistics

The experiment’s participants were recruited using Amazon Mechanical Turk platform

(MTurk). Attention checks were put into place to ensure data quality.

We ran a preliminary data collection, in which a total of 176 participants were recruited.

Of those, 71 were screened-out, either because they answered incorrectly at least one of the

comprehension questions14 or because they failed the attention check put within the tasks.

Hence, a total of 105 participants were kept. The answers of these participants have been

used as a pool to draw from in the actual study. The attention check was a guessing task

framed in a way such that either urn A or urn B was correct with probability 1. If par-

ticipants did not answer correctly to that task they were screened-out.15 The preliminary

study took approximately 19 minutes to complete on average. Participants who successfully

completed it received, on average, 4.97 USD.

A total of 422 participants were recruited to take part in the study, with 198 being screened

14The comprehension questions used in the preliminary study are almost the same to the ones

used for the non-compound part of the main study, reported in Appendix C.2. The preliminary

study contained an additional question ensuring that participants understood what the probability

of the sure event is.
15For more details on the attention check and on structural differences between preliminary and

the main study see Appendix C.5.
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out for failing to answer correctly comprehension questions, leaving a sample of N = 224

participants. Participants were paid 0.5 USD for accepting the task on MTurk and an addi-

tional 4.5 USD upon completion. Additionally, they could earn up to a 3 USD bonus, which

was determined as previously described.

The study took an average of 23 minutes to complete. Participants who completed the study

received, on average, 6.62 USD.

4 Analysis and Results
In this section, we illustrate our data analysis strategy and results. Each of the main results

corresponds to one of the previously formulated hypotheses. Moreover, we run additional

analyses on two different measures of overplacement and report preliminary evidence on

how CU may mediate the relationship between overplacement and probability weighting.

4.1 Hypothesis 1: Placement

Figure 9 provides an overview of the distribution of Placement, respectively for a high and

low level of CU. The groups are determined by taking the median level of CU in the whole

sample as a threshold. The figure provides preliminary evidence in line with hypothesis 1:

comparing the two distributions, the Low CU group exhibits more mass on the right end of

the domain, suggesting that participants with low levels of CU tended to place themselves

higher compared to the participants in the High CU group.
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Figure 9: Placement distribution for High/Low CU groups. Groups are determined

using median CU as a threshold.

To perform a more rigorous analysis, we estimate the following equation:

Placementi = α+ β1CUi + β2Icompound +

K∑
k∈K

βkXk,i + εi, (5)

with Icompound being an indicator for compound choices and K the set of control variables

(e.g. survey variables, session fixed effects). The main coefficients of interest are β1 and β2.

The first can be interpreted as the estimated average marginal effect of CU on placement.

β2 is interpreted as the effect of manipulating CU through compound choices.16

Table 1 provides coefficients from linear estimates of elicited placement. Columns (1) and

16For this interpretation to be valid, it must hold that: (i) CU is significantly higher for compound

choices and (ii) any effect of compound choices on placement level is due to variation in CU or

σ−i. The second point is argued in detail in the previous section. The core idea is that, to our

knowledge, there is no theory relating compound choices to overplacement (or overconfidence in

general). Concerning the first point, we find that compound choices increase CU by 17% on average.

Figures E.1 and E.2, reported in the Appendix, present this finding graphically. Figure E.1 shows

how the distribution of CU changes between compound and baseline choices. Mass is shifted towards

higher levels of CU for compound choices, although this change is not sharp. Figure E.2 represents

a t-test at the 95% confidence level, comparing the average normalized CU for compound and

non-compound choices. Based on this evidence, we conclude that compound choices represent an

effective manipulation of CU and that β2 may be interpreted as suggested.
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(2) report the results of regressing placement only on CU and the manipulation dummy,17

respectively. Column (3) provides estimates of β1 and β2, estimated together, without ad-

ditional control variables. Columns (4) and (5) separately add sessions fixed effects and

demographic controls.18 Finally, column (6) estimates full equation 5, including also the

absolute distance between the participant’s first guess and the shown answer from another

participant (|a∗
i − a∗

j |).

This analysis shows that CU has a significant effect on elicited placement, in line with hy-

pothesis 1. The compound manipulation allows us to interpret at least part of this effect

causally. In addition, the variation in 1 if compound choice coefficient from column (2)

to column (3) suggests exactly that part of the effect of the manipulation is explained by

the variation in CU: when adding CU to the specification the coefficient of the compound

choices dummy decreases in absolute value. Interestingly, |a∗
i −a∗

j | coefficient is positive and

significant: when a participant observes an answer from another participant that is more

distant from her initial answer, she will be more likely to place herself higher. This result

is consistent with the model proposed in Section 2, in which Placementi(·) is increasing in

|a∗
i −a∗

j |.19 Hypothesis 1 also conjectures an effect of σ−i on placement. To test this, we add

σ−i to equation 5. The results of the estimation are reported in Table 2. Columns (1)-(6)

of Table 2 perfectly correspond to Table 1 columns, with σ−i added to each specification.

The estimated effect of σ−i is positive, as hypothesized, and significant, for each of the 6

specifications. Two additional aspects are worth noting. First, comparing column (2) from

Table 1 and 2, it is possible to observe that, as for CU, introducing σ−i in the estimation

model decreases the compound choices coefficient, suggesting that part of the estimated ef-

fect of the dummy is to be attributed to σ−i. Second, in column (3) of Table 2, the dummy

coefficient decreases drastically in absolute value and the model R2 is doubled (compared

to the same column in the previous table). These elements suggest that both CU and σ−i

are relevant in assessing placement and that they should be considered jointly, as doing so

sharply increases the model explanatory power. Moreover, this suggests that the effect of

the compound choices manipulation is channeled through both CU and σ−i.

17This variable assumed the value of 1 if the observation corresponds to a compound choice.
18These comprise age and participant’s education level.
19Note that the number of observations for column (6) is 1218, instead of 1224. This is to

be attributed to a technical problem by which it was not possible to keep track of which of the

other participant’s answers (a∗j ) was shown to that participant. Hence, in all estimations including

|a∗i − a∗j |, the 6 observations from that participant are dropped.
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Dependent variable: placement

(1) (2) (3) (4) (5) (6)

CU -1.023∗∗∗ -0.954∗∗∗ -0.952∗∗∗ -0.944∗∗∗ -0.915∗∗∗

(0.189) (0.191) (0.191) (0.186) (0.176)

1 if compound choice -10.593∗∗∗ -9.099∗∗∗ -9.102∗∗∗ -9.114∗∗∗ -9.487∗∗∗

(1.472) (1.446) (1.447) (1.444) (1.411)

|a∗i − a∗j | 0.381∗∗∗

(0.054)

Session FE 0.424 0.453

(0.702) (0.689)

Demographic Controls 7 7 7 7 3 3

Observations 1,224 1,224 1,224 1,224 1,224 1,218

R2 0.070 0.037 0.097 0.097 0.100 0.154

Notes. OLS estimates, robust standard errors are clustered at the subject level. The depen-

dent variable is a subject’s placement level, that is the elicited probability of performing

better than another subject whose action is observed. ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01

Table 1: Effect of CU on placement
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Dependent variable: placement

(1) (2) (3) (4) (5) (6)

CU -1.513∗∗∗ -1.437∗∗∗ -1.435∗∗∗ -1.424∗∗∗ -1.333∗∗∗

(0.158) (0.160) (0.160) (0.157) (0.157)

σ−i 1.323∗∗∗ 0.692∗∗∗ 1.241∗∗∗ 1.242∗∗∗ 1.234∗∗∗ 1.045∗∗∗

(0.143) (0.158) (0.144) (0.144) (0.146) (0.143)

1 if compound choice -9.274∗∗∗ -5.976∗∗∗ -5.979∗∗∗ -6.011∗∗∗ -6.691∗∗∗

(1.427) (1.377) (1.377) (1.376) (1.355)

|a∗i − a∗j | 0.266∗∗∗

(0.052)

Session FE 0.507 0.535

(0.670) (0.669)

Demographic Controls 7 7 7 7 3 3

Observations 1,224 1,224 1,224 1,224 1,224 1,218

R2 0.174 0.069 0.185 0.185 0.187 0.211

Notes. OLS estimates, robust standard errors are clustered at the subject level. The depen-

dent variable is a subject’s placement level, that is the elicited probability of performing

better than another subject whose action is observed. ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01

Table 2: Effect of CU and σ−i on placement
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4.2 Hypothesis 2: Rank

Similarly to what we showed for placement, Figure 10 depicts how rank distribution differs

for High/Low CU levels. In this case, the cut between the two distributions is less sharp,

but the Low CU group exhibits more mass on the left,20 as hypothesis 2 would imply.
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Figure 10: Rank distribution for high/low CU. Groups are determined using median

CU as a threshold.

We perform an econometric analysis, estimating an equation equivalent to equation

5, with the exception of the dependent variable being rank, instead of placement, that

is the expected placement without observing other participants answers. The results of

the estimation procedure are reported in Table 3. Both the estimated effects of CU and

of compound choices are positive and significant, for all specifications. Similar to what

we note for placement, it is possible to see that the compound choice dummy coefficient

decreases comparing columns (2) and (3). This reinforces the interpretation of compound

choice serving as a manipulation for CU.

20Note that the way rank is operationalized implies that a higher value for the variable is in-

terpreted as a lower probability of being better-off. For example, a participant that assumes to be

ranked 10th expects to be better off than a participant who assumes to be ranked 15th.
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Dependent variable: rank

(1) (2) (3) (4) (5) (6)

CU 0.734∗∗∗ 0.713∗∗∗ 0.713∗∗∗ 0.754∗∗∗ 0.754∗∗∗

(0.219) (0.221) (0.221) (0.219) (0.219)

1 if compound choice 3.892∗∗∗ 2.775∗∗∗ 2.775∗∗∗ 2.711∗∗∗ 2.711∗∗∗

(1.075) (1.030) (1.031) (1.036) (1.036)

Session FE 0.010 0.024

(0.573) (0.576)

Demographic Controls 7 7 7 7 3 3

Observations 1,224 1,224 1,224 1,224 1,224 1,224

R2 0.036 0.005 0.039 0.039 0.052 0.052

Notes. OLS estimates, robust standard errors are clustered at the subject level. The depen-

dent variable is a subject’s rank level, that is the elicited expected ranking in the current

task, from 1 (first) to 100 (last). ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01

Table 3: Effect of CU on rank
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4.3 Hypothesis 3: Answer Adjustment

The third hypothesis is not directly related to overplacement measures, but to how CU

and σ−i are related to participants’ reactions after observing another participant’s answer.

Although not the main goal of the paper, this represents a further way to test the proposed

model.

We take as a dependent variable the absolute difference between the probability guess

provided in the first part of the task and the guess provided after observing the other

participant’s answer. Importantly, only 243 observations out of 1224 have non-zero answer

adjustments. This raises concerns of OLS estimates being driven by the observations in

which no adjustment took place. For this reason, we employed two approaches in testing

hypothesis 3: OLS and probit estimation.

We first analyze the effect of CU and σ−i on answer adjustment estimating the following

using OLS:

ans_adj = α+ β1CUi + β2Icompound + β3σ−i +

K∑
k∈K

βkXk,i + εi. (6)

The results of the estimation are reported in Table 4. Afterward, we estimated a probit

model using the same variables of equation 6. Table 5 reports the estimates of this exercise.

Overall, OLS estimates are in line with our hypothesis: answer adjustments increase with

CU and decrease with σ−i, on average. In the full specification, the magnitude of the

estimated effect of σ−i is approximately 25% larger than that of CU. This is the opposite

for the case of placement, in which the estimated effect of CU is approximately 22% larger.

Concerning probit estimates, it is interesting to see how CU is highly significant only in the

full specification of the model, unlike σ−i, which is always significant. This indicates that

variation in CU impacts the estimated probability of adjusting the answer less than σ−i.

Hence, when not considering the magnitude of the adjustment, as in the OLS case, but only

the probability of the adjustment taking place, CU has less impact. This may be interpreted

as follows: once a participant decides to adjust her answer, her level of cognitive uncertainty

matters to determine how much she will deviate from her initial answer. However, CU is

less impactful concerning the decision of changing the answer or not.
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Dependent variable: answer adjustment

(1) (2) (3) (4)

CU 0.187∗∗∗ 0.155∗∗∗ 0.195∗∗∗

(0.036) (0.037) (0.035)

σ−i -0.187∗∗∗ -0.153∗∗∗ -0.243∗∗∗

(0.040) (0.039) (0.048)

1 if compound choice 3.042∗∗∗ 2.508∗∗∗ 2.043∗∗∗

(0.447) (0.425) (0.360)

|a∗i − a∗j | 0.137∗∗∗

(0.032)

Session FE -0.193

(0.221)

Demographic Controls 7 7 7 3

Observations 1,224 1,224 1,224 1,218

R2 0.040 0.040 0.066 0.155

Notes. OLS estimates, robust standard errors are clustered at the subject level. The depen-

dent variable is a subject’s answer adjustment, that is the absolute difference between the

first and the second choice in the probability guessing task. ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01

Table 4: Effect of CU and σ−i on answer adjustment
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Dependent variable: answer adjustment probability

(1) (2) (3) (4)

CU 0.010∗ 0.008 0.038∗∗∗

(0.005) (0.006) (0.007)

σ−i -0.089∗∗∗ -0.090∗∗∗ -0.062∗∗∗

(0.007) (0.007) (0.008)

1 if compound choice -0.513∗∗∗ 0.084 0.559∗∗∗

(0.053) (0.073) (0.089)

|a∗i − a∗j | 0.008∗∗∗

(0.003)

Session FE -0.212∗∗∗

(0.047)

Demographic Controls 7 7 7 3

Observations 1,224 1,224 1,224 1,218

Notes. Probit estimates, robust standard errors are clustered at the subject level. The

dependent variable is a subject’s answer adjustment probability, that is an indicator for the

subject having changed answer after observing another participant’s answer. ∗p < 0.1,∗∗ p <

0.05,∗∗∗ p < 0.01

Table 5: Effect of CU and σ−i on answer adjustment probability
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4.4 Overplacement

In the previous sections, we studied how the empirical hypotheses descending from the

model met with our experimental data. The hypotheses concerned how placement (and

ranking) varied with CU and σ−i, but not how those impacted overplacement. This is be-

cause, in our theoretical framework, to state if and how much overplacement takes place,

it is necessary to formulate additional assumptions about the structure of the cognitive

noise.21 However, given that an increase in CU (σ−i) decreases (increases) placement, it

will impact overplacement both on the extensive margin (whether a participant overplaces

herself or not) and on the intensive margin (the extent to which a participant overplaces

herself).

We run two additional analyses to test this hypothesis, that is assessing the effect of CU and

σ−i on overplacement. The two analyses correspond to two different measures we propose,

corresponding to the extensive and intensive margin of overplacement. Both measures are

constructed using the placement decision of participants after observing the other partici-

pant’s answer. The first measure is a dichotomic variable, taking the value of 1 if the partici-

pant overplaced herself and 0 otherwise. A participant i, with answer a∗
i and observed answer

a∗
j , overplaced herself if her placement decision was above 50% and |a∗ − a∗

i | > |a∗ − a∗
j |. In

other words, a participant overplaced herself if she stated that it was more likely to have

performed better than the other participant when she did not. Table 6 reports the results of

running a probit regression on this measure of overplacement, which can be interpreted as

overplacement probability. The four specifications are the same as the ones in the previous

sections. Both CU and compound choices have a highly significant effect on overplacement

probability. On the other hand, σ−i seems to have either no effect or a quite small one. This

suggests that beliefs in other participant’s cognitive uncertainty play no role in determining

whether someone will overplace herself or not.

21More specifically, it would be necessary to assume how the variance of the cognitive noise is

distributed among agents.
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Dependent variable: overplacement probability

(1) (2) (3) (4)

CU -0.063∗∗∗ -0.051∗∗∗ -0.031∗∗∗

(0.006) (0.006) (0.007)

σ−i 0.004 0.005 0.011∗

(0.005) (0.005) (0.006)

1 if compound choice -0.832∗∗∗ -0.367∗∗∗ -0.211∗∗

(0.058) (0.072) (0.082)

|a∗i − a∗j | 0.015∗∗∗

(0.002)

Session FE -0.082∗

(0.043)

Demographic Controls 7 7 7 3

Observations 1,224 1,224 1,224 1,218

Notes. Probit estimates, robust standard errors are clustered at the subject level. The

dependent variable is a subject’s overplacement probability, that is an indicator for the

subject assessing her probability of performing better than the other subject higher than

0.5 and having performed worse. ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01

Table 6: Effect of CU and σ−i on overplacement probability
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It is important to note, that this first measure does not take into account two relevant

factors. First, individuals who exhibit underplacement are codified in the same way as

the ones who correctly place themselves, i.e. with a 0. Secondly, this measure does not

consider the magnitude of overplacement (or underplacement) for those who do overplace

(underplace) themselves. To make up for these limitations, we build a second measure of

overplacement. The measure is built in two steps. We first codify underplacement in our

variable. Similarly to overplacement, a participant underplaced herself if she performed

better than the other participant, but thought she did not. This is first codified with a -1,

opposed to a 1 for overplacement. To address the second concern, we weigh all observations

that exhibit underplacement or overplacement by their distance from 50%. This way we

differentiate participants by overplacement (underplacement) level. To clarify, consider two

participants who overplaced themselves: if one answered 90% and the other 60%, the first

would be ”overplacing herself more” in our measure. Table 7 reports the results of regressing

this measure of overplacement on our variables of interest. CU, σ−i and compound choice

dummy are significant in all specifications and their sign in line with the model. Hence, the

evidence suggests that cognitive uncertainty plays a role in regulating both the probability

of overplacement and the extent of such overplacement.
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Dependent variable: weighted overplacement

(1) (2) (3) (4)

CU -0.595∗∗∗ -0.574∗∗∗ -0.459∗∗∗

(0.116) (0.118) (0.113)

σ−i 0.615∗∗∗ 0.592∗∗∗ 0.378∗∗∗

(0.113) (0.115) (0.106)

1 if compound choice -3.681∗∗∗ -1.653 -2.596∗∗

(1.241) (1.265) (1.253)

|a∗i − a∗j | 0.291∗∗∗

(0.043)

Session FE 0.381

(0.602)

Demographic Controls 7 7 7 3

Observations 1,224 1,224 1,224 1,218

R2 0.055 0.008 0.056 0.113

Notes. OLS estimates, robust standard errors are clustered at the subject level. The de-

pendent variable is a subject’s weighted overplacement. For details on how the measure is

constructed see Section 4.4. ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01

Table 7: Effect of CU and σ−i on weighted overplacement
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4.5 Relation to Posterior Compression

In their work, EG document how CU can account empirically for a series of previously

unrelated and well-established empirical regularities. One of such regularities is an inverse

S-shaped relationship between Bayesian posteriors and posterior beliefs reported by partici-

pants in classic ”balls-and-urns” tasks. In line with the evidence of the rest of the paper, EG

show how participants with high levels of CU exhibit a more pronounced inverse S-shaped

pattern. In other words, participants with lower levels of CU report priors that are closer

to the Bayesian benchmark.

In our paper, we postulate and investigate empirically a relationship between CU and over-

placement, using different measures. If a variation in CU impacts both overplacement and

reported posterior compression towards a 50-50 mental default, we would expect to observe

a relationship also between overplacement and CU. We explore this relationship in Figure

11, which reports the relationship between Bayesian posterior and stated posterior, sepa-

rately for participants with a ”High Rank” and a ”Low Rank”. Each marker in the figure

represents the average probability guess by participants for a given Bayesian posterior and

a given rank level. The mean in the ”High Rank” (”Low Rank”) group for each Bayesian

posterior is computed considering participants who rank themselves in the bottom (top) half

of the distribution.22 Figure 11 shows that, on average, ”High Rank” participants exhibit a

more pronounced S-shaped pattern, while ”Low Rank” participants have on average poste-

riors that are flatter towards the 45-degree line, representing the Bayesian benchmark. This

difference is consistent with our findings concerning the relationship between rank and CU.

Participants with higher CU also tend to rank themselves higher (that is rank themselves

worse) and hence we observe this relation between rank and posterior compression. The idea

is that CU regulates both phenomena, which are in turn correlated. To our knowledge, we

are the first to document this kind of relationship, and, relatedly, we are not aware of any

other theory that can account for this relation. However, it is important to stress that this

evidence is extremely preliminary and potentially not robust, as our experimental paradigm

was not designed to identify it. Indeed, running the same type of graphical analysis using

placement as a threshold to generate groups (Figure E.3 is reported in the Appendix) does

not suggest that any relationship between placement and compression. Hence, we believe

that documenting this relationship between rank and compression of reported posterior

corroborates the rest of our findings and their relation with EG’s findings, but further in-

vestigation is required to develop a better understanding of a potential relationship between

overplacement and probability weighting.

22This is because participants who believe to have a top-half performance, would provide a small

number, as the best rank is 1.
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Figure 11: Average reported posteriors for high/low ranks. Groups are determined

using median rank as a threshold. The error bars represent the standard error of the

means. Bayesian posteriors are rounded to the nearest integer. We show only buckets

that contains at least 20 observations.

5 Conclusion
In this paper we propose a model of overconfidence based on the concept of cognitive uncer-

tainty: in the process of solving complex tasks, agents are uncertain about the optimality

of their choice, uncertainty caused by a noisy cognitive process. More specifically, we focus

on the phenomenon of overplacement. We derive an inverse relationship with cognitive un-

certainty and show how persistent overplacement may arise in this framework. Finally, we

show how this relationship holds empirically, through an online experiment, based on belief

updating tasks. The evidence obtained through the experiment suggests that an increase

in cognitive uncertainty induces participants to place themselves lower, relative to other

participants, and to react more strongly to information inferred by observing other partici-

pants’ choices. These results, besides confirming our hypotheses, imply that overplacement,

and overconfidence in general, may be related to other behavioral biases through cogni-

tive uncertainty. We present preliminary evidence of this idea, documenting a relationship

between our placement measures and the shape of probability weighting. We observe that

participants who rank themselves lower exhibit a more compressed probability weighting

function. Investigating if and how cognitive uncertainty modulates the relationship between
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overconfidence and other behavioral anomalies, such as probability weighting, is left to fu-

ture work.

On top of overplacement, we also briefly discussed a new perspective to approach the con-

cept of overprecision, but with a quite shallow contribution. To provide deeper insights, it

would be of particular interest to test empirically the relationship between actual cognitive

noise, cognitive uncertainty, and overprecision. Hence, we believe an operationalization of

actual cognitive noise would represent a relevant step in this investigation. The scope of

the empirical investigation may be broadened, including tasks more traditionally used in

the overconfidence literature. This would strengthen the link with this literature and al-

low to formulate more general claims about the validity of the theory. Finally, extending

the theory to feature discrete action spaces and hence non-Gaussian beliefs may provide

interesting insights, especially when considering discrete applications.
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Appendix A Moore and Healy Model

A.1 Overconfidence

In their seminal paper MH propose a classification, according to which overconfidence can

be split in three sub-phenomena: overestimation, overplacement and overprecision. The

first can be defined as an upward bias in assessing one’s own performances (downward for

underestimation), the second as an inflated belief about one’s relative performance, and

the last as an excessive belief in the fact that one knows the truth.

They also develop a model of overconfidence able to provide a foundation for some

important puzzles in the literature, such as the hard-easy effect in overestimation and the

inconsistency between overestimation and overplacement. We here provide a sketch of the

model and how it accounts for said puzzles.

The problem of assessing one’s performance is modeled as a signal extraction problem:

agent i assumes her performance (in a test) is a realization of a random variable xi = µ+γi,

with µ representing the average performance and γi some (not necessarily) zero-mean noise

term. Hence, xi distribution represents the agent’s prior about her performance.

Once the agent undertakes the test, she receives a signal, a ”gut feeling”, si = xi + ρi

about how she performed in the said test. Once again, it is assumed for ρi to have zero

mean, but no specific distributional assumption is necessary for the main intuition to hold:

when an agent is assessing her performance under this information structure, her updated

belief will be a weighted average of the signal si and µ.

This first element may account for the hard-easy effect: an easy test (si > µ) will induce an

updated belief E[xi | si] ∈ [µ, si], mechanically generating underestimation. The opposite

would hold for hard tests, mechanically generating overestimation.

Before proceeding with the MH model, a remark is due. The fact that the authors model

agents’ performance assessment as a signal extraction problem, implicitly assumes the

existence of a source of uncertainty, from which the noise comes, with two points in

common with the CU model sketched so far. First, this source is, at least partially,

internally generated: the agent is still uncertain about her performance also after taking

the test, with the γ term representing the (cognitive) noise. Assuming that the mapping

from correct answers to performance is not where uncertainty is generated, then the source

must be internal. Second, the agent is aware of the existence of the noise: instead of

taking the signal si at face value, she updates her belief. If the agent was not aware of the

existence of her (cognitive) noise, she would have no reason to act in that sense. Hence,

it is already possible to see how this benchmark model shares, also implicitly, some key

assumptions with the CU model.

MH also show how this model may account for the negative relation between overestimation

and overplacement. For this argument to hold, however, the agent must have a different
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information set. It is now assumed that the agent observes xi and is required to evaluate

how she performed compared to another random test-taker. In other words, the agent

will compute E[µ | xi], the updated expectations about µ, given that she observed the

realization of her performance xi. For an argument similar to the one for overestimation,

an easy test will generate overplacement and a hard test underplacement. For example, an

easy test, that is an higher than expected performance (xi > µ), will mechanically induce

an expected average performance E[µi | xi] ∈ [µi, xi], generating overplacement.

It is worth stressing that MH theory of overconfidence can relate overprecision to

the other two sub-phenomena23, but stays silent as to what may be the mechanism

behind it emerging. In the authors’ words: ”As to the question of when we should

expect overprecision, our theory has little to say.” This represents a first direction in which

modeling overconfidence within a CU framework may be an advantage, as it is clarified later.

A.2 Relating Models

From a mathematical perspective, the two models considered in this Section are very similar

in that both are (Gaussian) signal extraction problems. However, what distinguishes them

is the object of the inference. In one case, the MH model, the agent is trying to assess her

performance in a set of tasks (e.g. a test). In the other, the agent inference concerns the

optimality of her own action. Clearly, the domains are closely related but do not directly

overlap.

To cleanly relate the two domains, a mapping from the action space to the performance

space is needed. The equivalence of the two models will then depend on the properties of

this mapping and the distributional assumptions. Indeed, the equivalence of the two models

is expressed in terms of the resulting distribution on the performance space.

Let A be the set of feasible actions and P the set of possible resulting performances or out-

comes. In principle, both sets are unrestricted and may be dense subsets of the real numbers

as well as natural numbers. In a previous paragraph illustrating the basic structure of CU

model, for example, A = (−∞,+∞). Similarly in Moore and Healy model, P = (−∞,+∞),

even though a discrete space would have probably better suited the test framework of their

example. For coherence and simplicity, we will also assume that the beliefs about actions

or performances can be represented by normally distributed random variables.

A performance function p : An → P is a mapping from the n-ary Cartesian product of the

action space to the performance space, where n < ∞ is the number of decisions that the

23Precision may be generally thought of as the noise variance, meaning that as precision goes up

(variance goes down) the agent will trust her signal more, increasingly neglecting her prior.
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agent has to undertake. Hence, the framework consists of an agent facing n tasks with the

same action space A, attempting to maximize a quadratic utility function as in equation

(1), where the utility-maximizing action is (possibly) different for each task. The agent’s

aggregate preferences (over the Cartesian product of all actions) can be represented by a

utility function that is the sum of the utilities, or by any order-preserving transformation.

We formulate the following assumption that does not impact the interpretation of the model,

but that buys tractability.

Assumption 1. (linearity) Assume that the performance mapping p : An → P is linear.

In the following result, this is a key assumption, to preserve normality when aggregating the

beliefs about actions to beliefs about performance. Linearity does not change the key inter-

pretation of belief aggregation of the performance function and also presents it in a fairly

intuitive perspective: when assessing beliefs about a phenomenon, an individual ”sums” his

beliefs about the single sub-components of it.

Before stating the main result of the Section, I define the auxiliary concept of consistency:

Definition 3. Consider a set of priors {x0, x1, ..., xn}, signals (or gut feelings)

{s0, s1, ..., sn}, all with same support X. Consider a mapping p : Xn → X and denote

any posterior distribution xi | si with zi. Then {xi, si}ni=1 are said to be consistent with

{x0, s0} under p(·) if the following hold:

i) p(x1, ..., xn) = x0 (priors consistency)

ii) p(s1, ..., sn) = s0 (signals consistency)

iii) p(z1, ..., zn) = z0 (posterior consistency)

The idea behind consistency is that all the elements in the belief updating process are

related through the performance mapping. In principle, it is possible to obtain a given pos-

terior distribution with infinitely many signals and priors. Consistency restrict the focus on

the set of priors, signals and posteriors there are related through the performance mapping.

Having defined consistency we formulate two additional assumptions:

Assumption 2. (dimensionality or solvability) The dimension of the Cartesian product of

the action space is n ≥ 3.

The intuition behind this assumption is that the number of tasks must be large enough

as to be able to satisfy all consistency requirements that are defined above and ensure the

existence of a solution for the system of equations that it induces.

Assumption 3. (sufficient noise) σ2
x0

or σ2
s0 are ”large enough”.

This assumption is made more clear in the proof. Essentially, in solving the polynomial sys-

tem of equations induced by this setting, a lower bound condition arises on some variances,

and hence a lower bound must be imposed on either σ2
x0

or σ2
s0 , to ensure the existence of

positive solutions for the set of {σyi}ni=1 with y ∈ {x, s}. A way to interpret this assump-

tion is that, as the beliefs about the actions are linearly combined into the belief about the
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overall performance, the lower the noise of the performance the smaller is the set of beliefs

about the actions that may have generated it. If the noise is too small the set is reduced to

the empty set.

The following Proposition, which we prove in the next section, characterizes the kind of

performance function for which it is possible to represent the overconfidence model à la

Moore and Healy (2008) with a cognitive uncertainty model.

Proposition 3. Consider the case of normally distributed performance prior x0, gut feeling

s0 and posterior z0. Fix any (linear) performance mapping

p(·) : An ⊆ Rn → P ⊆ R. Then, there exist infinitely many sets triplets {xt, st, zt}nt=1 of

consistent independent priors, signals and induced posteriors.

This result implies that for any given linear performance function and any belief about

performance generated in a framework à la MH, it is possible to find a set of beliefs about

single tasks that induce the same belief about performance. In other words, under the

linearity restriction on the performance function, it is always possible to specify a CU

model that induces the same beliefs on performance. The main implication is that, under

the stated assumptions, all predictions generated under the MH model of overconfidence

can be generated in a CU framework.

Appendix B Proofs

B.1 Proof of Proposition 1

Given how preferences are defined by (3), (2) may be rewritten as:

a∗(x | s) ∼ N (a∗
i , σ

2
CU,i), (B.1)

with a∗
i = λisi + (1− λi)x0,i, that is a∗

i is the optimal action for agent i and λi =
σ2
xi

σ2
xi

+σ2
εi

is i’s shrinkage factor.

Now, fix any a∗
j , j ̸= i, and note that, under preferences described by (3) it holds that

uj(a
∗
j , x) ≤ ui(a

∗
i , x) ⇐⇒ |a∗

j − x| ≥ |a∗
i − x|,

with a∗ = x.

This, in turn, implies that

Placementi(a
∗
i , a

∗
j ) = P (uj(a

∗
j , x) ≤ ui(a

∗
i , x)) = P (|a∗

j − a∗| ≥ |a∗
i − a∗|) =

=

P (a∗ >
a∗
j+a∗

i

2
) if a∗

j < a∗
i

P (a∗ ≤ a∗
j+a∗

i

2
) if a∗

j ≥ a∗
i

=

1− Fa∗(
a∗
i +a∗

j

2
) if a∗

j < a∗
i

Fa∗(
a∗
i +a∗

j

2
) if a∗

j ≥ a∗
i

,
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proving the first point of the proposition.

Note that Fa∗(·) is the CDF of the random variable representing agent’s i beliefs about

the optimal action to undertake. In the remainder of the proof, I assume that agent i does

not update her own beliefs after observing a∗
j , that is the beliefs are distributed as per (9).

Even without this assumption the structure and the conclusion of the proof would remain

unchanged.

For the second point of the proposition there are two cases. I will consider the case of

a∗
i ≤ a∗

j , the other case being specular.

From point one of the Proposition24:

Placementi(a
∗
i , a

∗
j ) = Fa∗(

a∗
i + a∗

j

2
) =

[
1/2 erf

(
x− a∗

i√
2σCU,i

)] a∗
i +a∗

j
2

−∞
=

= 1/2 + 1/2 erf
(

a∗
j − a∗

i

23/2σCU,i

)
,

with erf(z) = 2√
π

∫ z

0
e−t2dt, and the last equality following from the fact that erf(−∞) = −1.

Now, note that

1. erf(z) is monotonically increasing,

2. erf(0) = 0 .

As a∗
i < a∗

j

(1)==⇒ erf
(

a∗
j−a∗

i

23/2σCU,i

)
> 0

(2)=⇒
δerf

(
a∗
j−a∗

i

23/2σCU,i

)
δσCU,i

< 0

=⇒ δP lacementi(a
∗
i ,a

∗
j )

δσCU,i
< 0.

Finally, note that, as Placementi(·) is strictly decreasing in σCU , then, for any Gi(·) such

that
∫
Placementi(a

∗
i , z)dGi(z) exists, then also such integral will be strictly decreasing in

σCU . Hence, Ranki(a
∗
i ) = EGi [Placement(a∗

i , a
∗
j )] =

∫
Placementi(a

∗
i , z)dGi(z) is strictly

decreasing in σCU . □

B.2 Proof of Proposition 2

After observing a∗
j , agent i beliefs can be described by equation 4. For notational conve-

nience, let the expectations and the variance of the updated beliefs be a∗ = αa∗
i +(1−α)a∗

j ,

with α =
σ2
−i

σ2
−i+σ2

CU
, and ς2 respectively.

As shown in Proposition 2,

Placementi(a
∗
i , a

∗
j ) =

1− Fa∗
i
(
a∗
i +a∗

j

2
) if a∗

j < a∗
i

Fa∗
i
(
a∗
i +a∗

j

2
) if a∗

j ≥ a∗
i ,

24For the original treatment and derivation of the error function, see Glaisher (1871).
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which implies that, for the statement to be true, it must hold that
δFa∗ (

a∗+a∗
j

2
)

δσ−i
< 0 if a∗

j < a∗

δFa∗ (
a∗+a∗

j
2

)

δσ−i
> 0 if a∗

j > a∗.

Now, as in the previous Proposition proof, recall that for a normal distribution with mean

µ and variance σ2 it holds that

Fµ,σ = 1/2(1 + erf(
x− µ√

2σ
)).

Substituting µ = a∗ and σ2 = ς2, leads to, after some simplification:

Fa∗,ς = 1/2

[
1 + erf

(
α1/2(a∗

j − a∗
i )

23/2σCU

)]
.

As the error function is monotonically increasing, the sign of the CdF derivative with respect

to σ−i is the same as the sign of erf(·) argument.

Differentiating α1/2(a∗
j−a∗

i )

23/2σCU
with respect to σ−i leads to:[

(σ2
CU + σ2

−i)
1/2 − σ2

−i

(σ2
CU + σ2

−i)
1/2

]
(a∗

j − a∗
i )

23/2σCU
,

which is strictly negative for a∗
j < a∗

i and strictly positive for a∗
j > a∗

j (the placement

function is non-differentiable at a∗
j = a∗

i ). □

B.3 Proof of Proposition 3

First, note that, under linearity of the performance function25 and normality, the consistency

constraints can be rewritten as:

∑n
i=1 αiµxi = µx0∑n
i=1 α

2
iσ

2
xi

= σ2
x0

priors consistency

∑n
i=1 αiµsi = µs0∑n
i=1 α

2
iσ

2
si = σ2

s0

 signal consistency

∑n
i=1 αiµzi = µz0∑n
i=1 α

2
iσ

2
zi = σ2

z0

 posterior consistency

Moreover, since zi is the Bayesian posterior of an agent holding xi as a prior and observing

the signal si, it holds for all i that:

µzi =
σ2
si

σ2
si + σ2

xi

µxi +
σ2
xi

σ2
si + σ2

xi

µsi ,

σ2
zi =

σ2
siσ

2
xi

σ2
si + σ2

xi

.

25That is p(x1, ..., xn) =
∑n

i=1 αixi for some α1, ..., αn.
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Hence, the posterior consistency conditions can be rewritten as:
∑n

i=1
αi

σ2
xi

+σ2
si

(σ2
siµxi + σ2

xi
µsi) = C,∑n

i=1

α2
iσ

2
xi

σ2
si

σ2
xi

+σ2
si

= D,

with C =
σ2
s0

σ2
s0

+σ2
x0

µx0 +
σ2
x0

σ2
s0

+σ2
x0

µs0 and D = σ2
z0 =

σ2
s0

σ2
x0

σ2
s0

+σ2
x0

.

Hence, proving the statement is equivalent to prove the existence of a set

{µxi , σ
2
si , µsi , σ

2
si}

n
i=1 such that all the consistency constraints hold. In other words, with

n ≥ 3, the aim is to prove the existence of a solution for an underdetermined system of

polynomial equations, with the additional constraints that σ2
xi
, σ2

si > 0 for all i.

Without loss of generality solve the first four constraints with respect to i = 1, which leads

to:

µy1 = µyo −
n∑

i=2

αiµyi , (B.2)

σ2
y1 = σ2

y0 −
n∑

i=2

α2
iσ

2
yi , (B.3)

for y ∈ {x, s}. Clearly, these four conditions have infinitely many solutions. Substituting

into the first posterior consistency condition and isolating (without loss of generality) µx2 ,

after some algebra, leads to:

µx2 =

[
(σx0 −

∑n
i=2 α

2
iσ

2
xi
)(µx0 −

∑n
i=3 αiµxi)

(σs0 −
∑n

i=2 α
2
iσ

2
si) + (σx0 −

∑n
i=2 α

2
iσ

2
xi
)

+
(σs0 −

∑n
i=2 α

2
iσ

2
si)(µs0 −

∑n
i=2 αiµsi)

(σs0 −
∑n

i=2 α
2
iσ

2
si) + (σx0 −

∑n
i=2 α

2
iσ

2
xi
)
− C

]
η,

with η =

(
α2(σx0

−
∑n

i=2 α2
iσ

2
xi

)

(σs0−
∑n

i=2 α2
iσ

2
si

)+(σx0−
∑n

i=2 α2
iσ

2
xi

)
−

α2σ
2
s2

σ2
s2

+σ2
x2

)−1

.

Up to now the only constraint is for the variances to be small enough in order for (11) to

be positive, for which there would be infinitely many solutions.

Solving the last posterior constraint as a function of one of the variances (w.l.o.g. σ2
x2
) leads,

after quite some tedious algebra, to a quadratic equation in σ2
x2

:

aσ4
x2

+ bσ2
x2

+ c = 0, with the coefficients being

a = α2
2σ

2
s1(σ

2
s2 − α2

2βσ
2
s1 − 1),

b = (σ2
x0

−
n∑

i=3

α2
iσ

2
xi
)σ2

s1 + α2
2[σ

2
s2γ − σ2

s1σ
2
s2 + βγσ2

s1 + βγ],

c = γ(σ2
s2 − β(σ2

x0
−

n∑
i=3

α2
iσ

2
xi
),

with β = D −
∑n

i=3 α
2
i

σ2
xi

σ2
si

σ2
xi

+σ2
si

and γ = (σ2
x0

−
∑n

i=3 α
2
iσ

2
xi
)(σ2

s0 −
∑n

i=2 α
2
iσ

2
si). Imposing

σ2
s2 > 1 + α2

2βσ
2
s1 and σ2

s2 < β(σ2
x0

−
∑2

i=3 α
2
iσ

2
xi
) a positive solution exists.

Hence, the algorithm to find a solution in this case would be:

(σ2
x3
, ..., σ2

xn
), (σn

s2 , ..., σ
n
sn) → σ2

s2 → σ2
x2

→

→ (µx2 , ..., µxn), (µs2 , ..., µsn) → µx1 , µs1 .□
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Appendix C Online Experiment Implementation

C.1 Problem Description

The figures below show several screenshots from the experiment. Figure C.1 shows the

introductory instructions for participants, while Figure C.2 a more detailed description

of the belief updating task (the graphical illustration of the task is taken from Enke and

Graeber (2021)). Figures C.3 and C.4 show how the structure of the experiment is illustrated

to participants.

Figure C.1: Experiment Induction 1
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Figure C.2: Experiment Induction 2
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Figure C.3: Experiment Timeline 1
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Figure C.4: Experiment Timeline 2

C.2 Comprehension Check

After receiving the instructions and the task description, the participants undergo four

comprehension questions to assess their understanding of the information provided to them.

If one of the question is answered incorrectly the participant is redirected to an exit screen

and may not proceed with the rest of the experiment.

Below two screenshots of the questions are provided.
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Figure C.5: Comprehension Questions 1
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Figure C.6: Comprehension Questions 2

C.3 Belief Updating Tasks

Figures C.7 and C.8 show the screens of the belief updating task respectively before and

after the participants observe the ball(s) draw.

First, the participants have the chance to observe the parameters of the problem and then

can trigger the computer draw pressing the right arrow. Afterwards the signal is drawn and

they are shown the screen in C.8 and given the chance to answer. Note that they still have

access to the problem parameters scrolling the page upwards.
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Figure C.7: Belief Updating Task Pre Signal

Figure C.8: Belief Updating Task Post Signal
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C.4 Scoring Rule

Subjects are informed that a subset of the tasks will be randomly picked to determine their

final earnings, with earnings for each of the chosen tasks being determined according to a

quadratic, incentive-compatible scoring rule (Hossain and Okui, 2013).

The rule is implemented in a slightly different way, depending on the bonus-relevant task

that is randomly drawn, being it a placement task or a belief updating task. For both

scenarios, the computer draws a random number n ∈ {1, .., 2500}, where the probability

assigned to each draw is the same. Afterwards, depending on the task, the bonus is assigned

if the following is true: P (A)2 > n, if A

P (A)2 ≤ n, if B,

(C.1)

Placement2 > n, if Placement > 50

Placement2 ≤ n, if Placement ≤ 50,

(C.2)

with P (A) being the probability the participant assigned to bag A and A (B) being true if

the bag actually selected by the computer was A (B).

Note that the CU elicitation would not be incentivized in either case, as illustrated in Figure

4. For more details about how the scoring rule is explained to participants, see Figure C.9.
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Figure C.9: Scoring Rule Description to Participants

C.5 Preliminary Study

Some differences characterize the preliminary study, compared to the main design. First,

in the preliminary study, each task stops after CU elicitation. Also, all choices are non-

compound choices. Moreover, each participant must complete 7, instead of 6, tasks to com-

plete the probability guessing section of the study. The additional task is an attention

check.

Participants are informed, within the instructions, that the tasks may contain attention

checks and that failing an attention check would result in being discarded from the study.

The attention check is identical for each participant and consists of a guessing task with a

particular parameter specification and signal. An urn contains 99 blue balls and 1 red ball

and B urn contains 99 red balls and 1 blue ball. The participant is informed that the 2

balls are drawn without replacement. The signal is always of 2 blue balls, implying that the
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probability of A being the correct urn is 1. If a participant failed to answer this correctly,

the observation was excluded from the sample. Figure C.10 shows what the participants

saw when undergoing the attention check.

Concerning attention check, a final difference of the preliminary study is that the experi-

mental instructions explain to participants the difference between the draw with or without

replacement. This is not necessary for the main study, as all draws are performed with

replacement.

Figure C.10: Preliminary Study Attention Check

Appendix D Code Implementation
Figures D.1 and D.2 show how the balls draws are implemented for the experiment, using

JavaScript.

The ”urn_draw” and ”signal_draw” variables are both draws from a standard uniform.

The other three variables are already determined outside the script. Afterward, based on

the uniform draws and on the given parameters, the urn draw (A or B) is determined,

which in turn establishes how to use the parameters and finally which will be the ball(s)

draw shown to the participant. For example, in the first lines of the set of if conditions,

if the uniform draw is below the parameter ”p_a” (an event that has probability P (A))

then the urn is set to A. Then, depending on ”N” and on ”p_a”, the other uniform draw

(”signal_draw”) determines the signal.

53



Figure D.1: Code Implementation of Randomness 1
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Figure D.2: Code Implementation of Randomness 2

Appendix E Results: Additional Details
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Figure E.1: CU distribution for compound/baseline choices
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Figure E.2: T-test on CU means for compound/baseline choices
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Figure E.3: Average reported posteriors for high/low placements. Groups are deter-

mined using median placement as a threshold. The error bars represent the standard

error of the means. Bayesian posteriors are rounded to the nearest integer. We show

only buckets that contains at least 20 observations.
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