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ABSTRACT

IZA DP No. 15390 JUNE 2022

Combining Survey and Geospatial Data 
Can Significantly Improve Gender-
Disaggregated Estimates of Labor Market 
Outcomes
Better understanding the geography of women’s labor market outcomes within countries 

is important to inform targeted efforts to increase women’s economic empowerment. 

This paper assesses the extent to which a method that combines simulated survey data 

from urban areas in Mexico with broadly available geospatial indicators from Google Earth 

Engine and OpenStreetMap can significantly improve estimates of labor force participation 

and unemployment rates. Incorporating geospatial information substantially increases the 

accuracy of male and female labor force participation and unemployment rates at the state 

level, reducing mean absolute deviation by 50 to 62 percent for labor force participation 

and 25 to 52 percent for unemployment. Small area estimation using a nested error 

conditional random effect model also greatly improves municipal estimates of labor force 

participation, as the mean absolute error falls by approximately half, while the mean 

squared error falls by almost 75 percent when holding coverage rates constant. In contrast, 

the results for municipal unemployment rate estimates are not reliable because values of 

unemployment rates are low and therefore poorly suited for linear models. The municipal 

results hold in repeated simulations of alternative samples. Models utilizing Basic Geo-

Statistical Area (AGEB)–level auxiliary information generate more accurate predictions than 

area-level models specified using the same auxiliary data. Overall, integrating survey data 

and publicly available geospatial indicators is feasible and can greatly improve state-level 

estimates of male and female labor force participation and unemployment rates, as well as 

municipal estimates of male and female labor force participation.
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1. Introduction 
 
Low female labor force participation can be an important barrier to economic growth. In Mexico, 
for example, wRPHQ¶V�ODERU�IRUFH�SDUWLFLSDWLRQ�is considerably lower than that of men and is also 
low in comparison to other countries. The female labor force participation rate was just 45 percent 
in 2019, compared to 77 percent for men, a gap of 32 percentage points. In the OECD, only Turkey 
and Italy have a lower rate of female labor force participation, while in LAC only Guatemala has 
a lower value than Mexico. This has important economic impacts. A recent World Bank analysis 
suggests that if women participated at the same rate as men, per capita income could be as much 
as 22 percent higher (Inchauste et al., 2021). The same analysis suggests that if Mexico could 
implement policies to increase the female labor force participation rate by 0.6 percentage points a 
year ± in line with that observed in Spain, Ireland, and Chile ± this would help eliminate the gender 
gap in labor force participation and increase economic growth by 0.4 percent a year, highlighting 
how increases in female labor force participation are not just an output of the development process, 
but a driver of it, as well.   
 
Trends in female labor force participation are determined by several key factors, including the 
UHODWLRQVKLS�EHWZHHQ�KRXVHKROGV¶�HFRQRPLF�FRQGLWLRQV�DQG�IHPDOH�SDUWLFLSDWLRQ��WKH�VXSSO\�DQG�
demand for jobs deemed appropriate for more educated women, national growth strategies, and 
occupational gender segregation (Klasen, 2018). To better understand from a spatial perspective 
how policy can address these factors, it is useful to understand where pockets of low rates of female 
labor participation exist. However, most labor force surveys can only provide adequate estimates 
for larger areas of DJJUHJDWLRQ��0H[LFR¶V�ODERU�IRUFH�VXUYH\�LV�QR�H[FHSWLRQ��DV�LW�can only provide 
estimates for urban and rural areas within states, as well as for select larger municipalities. Since 
Mexico has 32 states and 2,450 municipalities, reliable estimates of labor force participation ± for 
both women and men ± at the level of the municipality could greatly inform the geographic 
targeting of education, labor market programs, and other measures designed to improve female 
labor force participation. This is also true of other developing countries.  
 
Small area estimation is a branch of statistics that combines survey data with richer auxiliary data 
to generate more precise and accurate estimates of statistics. It has frequently been applied to 
measures of poverty and labor market outcomes. An extensive literature has documented that 
auxiliary data, typically taken from census or other administrative sources, can improve estimates 
of labor force participation and unemployment (Esteban et al., 2020, Chambers et al., 2016, López-
Vizcaino et al., 2015, Ugarte et al., 2009, Molina et al., 2007, Datta et al, 1999). This literature 
employs a variety of methods, including hierarchical Bayes, empirical Best Predictors, and 
multinomial logit mixed models, as well as area level models. Intuitively, small area estimation 
DOORZV� VXUYH\V� WR� ³ERUURZ� VWUHQJWK´� IURP� DX[LOLDUy data that is more geographically 
comprehensive, and therefore covers unsampled areas. Combining the survey data with model 
predictions for unsampled areas, derived from the auxiliary data, makes the estimates more 
accurate and precise. In addition, by modeling the average relationship between the survey and 
auxiliary data across the entire sample, small area estimation can help correct sampling error even 
in sampled areas. This method can therefore produce more precise estimates for geographic levels, 
such as Mexican municipalities, where the labor force survey is too small to generate reliable 
estimates. 
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$W�WKH�VDPH�WLPH��WKH�UDSLG�SUROLIHUDWLRQ�RI�SXEOLFO\�DYDLODEOH�³ELJ�GDWD´�IURP�VDWHOOLWH�DQG�FURZG-
sourcing applications has made geographically comprehensive data freely available, while survey 
enumeration area geocoordinates or administrative shapefiles required to link surveys to geospatial 
data are also becoming increasingly available. These developments have sparked a burgeoning 
literature ± ably reviewed in Burke (2021), McBride et al. (2021), and World Bank (2021) ± on 
the use of satellite imagery for economic measurement. Most early work has focused on the ability 
of geospatial data to predict agricultural yields and crops (Erciulescu et al., 2019, Lobell et al., 
2020), household asset wealth and poverty (Jean et al., 2016, Yeh et al., 2020 Steele et al., 2017, 
Engstrom et al., 2021), and population (Wardrop et al.., 2020, Engstrom et al., 2020).  
 
This is the first paper to our knowledge that explores whether combining survey data with 
geospatial indicators can be used for the purposes of improving estimates of labor market outcomes, 
such as female and male labor force participation and unemployment, through small area 
estimation. Demonstrating that this methodology works is important, as many developing 
countries do not have the requisite data traditionally used for small area estimation, such as up-to-
date censuses or detailed administrative data. We show that the incorporation of geospatial data ± 
which is available across the globe ± is a feasible alternative when preferred sources of auxiliary 
data are not available. 
 
This paper also contributes to the ongoing discussion over the proper methods for combining 
survey and geospatial data for the purpose of prediction. Some analysts take an explicitly Bayesian 
approach (Steele et al., 2017, Pokhriyal and Jacques, 2017, Erciulescu et al., 2019), while others 
employ an empirical best predictor model (Battese Harter and Fuller, 1988 Masaki et al., 2020).  
 
We undertake this exercise in the context of Mexico, which has publicly available data that makes 
our approach feasible. We focus on three separate levels of aggregation: the state, the municipality, 
and the AGEB (Área Geoestadistica Básica, i.e. the Basic Geo-Statistical Area). Importantly, the 
census data has AGEB-level identifiers for all urban AGEBs in the country. This allows us to 
match geospatial data to AGEBs. In addition, we simulate a random sample from the census before 
implementing our preferred small area estimation approach. The use of census data allows us to 
FRPSDUH�WKH�UHVXOWLQJ�HVWLPDWHV�WR�WKH�³WUXWK�´�GHULYHd from the census data itself. This type of data 
is rarely available in developing countries and, as such, Mexico is the perfect context in which to 
apply our approach.  
 
It is important to note that our results on unemployment and labor force participation differ from 
official rates in two key ways. First, we include only urban AGEBs due to data limitations. Second, 
we are using census data, not a labor force survey, so the instruments differ. For example, the age 
range for which employment questions are asked differs across the instruments. However, despite 
these differences in the instruments, the underlying concepts of labor force participation and 
unemployment in the census and labor force survey are similar. There is therefore no reason to 
believe that the findings on the benefits of incorporating geospatial data would not apply to the 
official definitions as well.  
 
This paper implements a sub-area model, which is essentially a unit-level model in which the unit 
is taken to be the AGEB. In particular, we specify a weighted empirical best predictor model, with 
conditional random effects specified at the municipality level in our main results. Municipal 
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predictions are then generated by taking the population-weighted mean of the AGEB-level 
predictions.1 This approach leverages AGEB-level data, which leads to more accurate and efficient 
estimates than area-level models specified at the municipal level and requires minor modifications 
of publicly available software to generate point estimates and confidence intervals.2  
 
Six main findings emerge:  
 

1. Combining survey and geospatial data substantially improves the precision and 
accuracy of state-level estimates of both labor force participation (LFP) and 
unemployment rates. Estimated mean absolute deviation falls by approximately 62 and 
50 percent for female and male participation rates, respectively, and by approximately 
52 and 25 percent for female and male unemployment rates. 

2. When considering municipal estimates of labor force participation rates, incorporating 
geospatial data significantly improves accuracy and greatly improves precision. In 
estimates from repeated simulations, estimated mean absolute deviation falls by about 
43 percent for women and 53 percent for men, and rank correlation increases by 0.13 
for women and 0.11 for men. After adjusting direct survey estimates to equalize 
coverage rates, estimated mean squared error for male and female LFP falls by a factor 
of more than four.  

3. Because unemployment rates are very low, municipal estimates of unemployment rates 
based on a linear model are not reliable. Although estimated mean absolute deviation 
falls for both man and women, relative bias is high, rank correlation falls significantly 
for women and the estimates exhibit little variation. 

4. Accuracy is substantially lower in out-of-sample municipalities than sampled 
municipalities.  

5. When using a sample that simulates fully enumerating sampled AGEBs, small area 
estimates offer very minor improvements on direct survey estimates. 

6. A model specified at the AGEB level generates more accurate estimates than one 
specified at the municipal level. The improvement due to using AGEB rather than 
municipal variation is much larger for male LFP, which is harder to predict, than for 
female LFP.   
 

In short, the results support the use of augmenting survey data with geospatial data when estimating 
state-level statistics and when estimating municipality-level female and male labor force 
participation rates. When estimating municipal unemployment rates, however, the estimates are 
not reliable because the sample contains insufficient information to train a linear model. In 
particular, the sample contains no unemployed men in 44 percent of municipalities and no 
employed women in 68 percent of municipalities. Modeling unemployment rates using a linear 
model is problematic in this setting, highlighting the usefulness of software that can conveniently 
estimate and apply a wider range of non-linear empirical best predictor models.  

   
 

 
1 While this is in spirit similar to the sub-area model proposed in Torabi and Rao (2018), the approach outlined in 
that paper is difficult to implement using publicly available software.   
2 Code is available from the authors upon request. 
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2. Data and Methodology 
a. Census and Survey Data 
 
The primary source of data on labor market outcomes is the 2020 Census of Population and 
Housing, carried out in March 2020 by the Mexican National Institute of Statistics, Geography, 
and Informatics (INEGI).3 The census was collected the month before the COVID-19 pandemic 
led to widespread shutdowns. INEGI publishes census statistics publicly at different geographic 
levels, with the lowest level being the Área Geoestadistica Básica (AGEB). INEGI publishes 
aggregate statistics only for urban AGEBs.  We use these to generate municipality statistics that 
are weighted by the population of urban AGEBs. Because only urban AGEBs are included in the 
analysis, the results in this paper pertain to urban state and municipality-level rates. Urban AGEBs 
total to around 96.4 millioQ�SHRSOH��RU�PRUH�WKDQ�����RI�0H[LFR¶V�HVWLPDWHG�������PLOOLRQ�SHRSOH�  
 
We are primarily interested in examining the feasibility and effectiveness of combining geospatial 
data with survey data to improve municipal estimates of labor force participation rates and 
unemployment rates, separately for women and men. We also examine the ability of the procedure 
to improve state-level estimates of these four labor market outcomes. We restrict the analysis to 
urban AGEBs in order to utilize the census data as a credible benchmark against which to assess 
the performance of the small area estimates.  
 
From the available urban census data, we construct a data set with six different variables: the total 
number of women in the labor force, the total number of women employed, the total number of 
women 12 years or older, plus the same three variables for men.4  Since this is census data, we 
take these values to be the true values for each AGEB. We then randomly sample AGEBs from 
the full set of urban AGEBs to form a pseudo survey. We select AGEBs with probability 
proportional to size within states, which serve as the strata. We then choose the number of AGEBs 
per stratum (state) using VDPSOH�VL]HV�VLPLODU�WR�,1(*,¶V�ODERU�IRUFH�VXUYH\V.5 Like INEGI, we 
assume an average of 2.7 people 12 years of age and older per household when selecting AGEBs.6 
Out of 50,942 AGEBs with non-missing geospatial auxiliary features, 7,642 ± or 15.0 percent ± 
are included in the pseudo sample. 
 
After selecting AGEBs, we simulate sampling individuals within each selected AGEB. The census 
data indicate the number of men and women the number of people 12+ living in each AGEB, as 
well as the number of people 12+ who are active labor force participants as well as the number 
employed. Since being employed is conditional on being in the labor force, we can use this 
information to simulate a sample of men and women within each AGEB based on these variables. 
We essentially construct the total population and randomly select 40 individuals within each 
AGEB ± or all individuals if there are fewer than 40 men and women 12+ in the AGEB. These are 
then be used to construct gender-specific labor force participation and unemployment rates in the 
sample. 

 
3 The data are available online here. 
4 The labor data are collected for those 12 years of age and older, hence why we use 12+ as our population. 
5 More information is available here. One difference between our methodology and theirs ± apart from the fact that 
we do not have access to actual enumeration areas ± is that INEGI also includes some larger municipalities as strata. 
For simplicity, we only use states. 
6 7KLV�QXPEHU�FRPHV�IURP�,1(*,¶V�ODERU�IRUFH�VXUYH\�PHWKRGRORJ\�PDQXDO�LQ�IRRWQRWH�5. 

http://en.www.inegi.org.mx/programas/ccpv/2020/#:~:text=With%20the%202020%20Census%2C%20the,to%20the%20Pre%2DHispanic%20Era
https://worldbankgroup-my.sharepoint.com/Users/Josh/Downloads/(https:/www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/702825190613.pdf
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Fehler! Verweisquelle konnte nicht gefunden werden.presents summary statistics for the 7,642 
AGEBs in the sample, covering 1,034 municipalities. The first column presents statistics for the 
sample ± for both women and men ± while the second column presents actual AGEB population 
values from the census. Two striking  facts emerge from the table. First, labor force participation 
for women is considerably lower than for men, both in the sample and in the population. Second, 
the number of unemployed (labor force minus employed) is very low across both columns. For 
example, in the sample the implied unemployment rate is less than 1 percent for women and less 
than 3 percent for men. The fact that the unemployment rate is close to zero makes it far more 
challenging to predict unemployment rates than labor force participation using a linear model in 
this sample. We return to this point below. 
 

 
Table 1 - Mean number of individuals across AGEBs  

 (1) (2) 
 Sample Population 
Female   

Total 20.73 693.07 
In labor force 10.62 356.04 
Employed 10.48 351.09 
Unemployed  0.14 4.94 

Male   
Total 19.23 640.56 
In labor force 14.54 482.42 
Employed 14.21 471.19 
Unemployed  0.33 11.23 

Number of AGEBs 7,733 45,250 
Number of municipalities   1,072 1,619 

 
 

 
Figure 1 - Appearance in Sample: AGEBs and Municipalities 
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Fehler! Verweisquelle konnte nicht gefunden werden. shows the AGEBs and municipalities 
that appear in the main sample. Panel A shows AGEBs, with individual AGEBs colored based on 
ZKHWKHU�WKH\�DUH�LQ�WKH�HVWLPDWLRQ�VDPSOH��³<HV´���DUH�QRW�LQ�RXU estimation sample but are urban 
�³1R´���RU� DUH� UXUDO�$*(%V� that are not considered in the analysis �³1RW� LQ� UHVXOWV´���3DQHO�%�
shows the same, but for municipalities. Specifically, a municipality is coded as included in the 
sample if at least one AGEB within that municipality is contained in the sample. As such, a 
municipality in our sample could have a relatively small proportion of its total population actually 
included in our sample. There are 1,641 municipalities that contain at least one urban-AGEB with 
non-missing data. Of these, 1,034 ± or 63.0 percent ± have at least one AGEB in the sample. 
 
 
b. Auxiliary geospatial data  
 
Auxiliary data is drawn from two sources: Google Earth Engine, and Open StreetMap, utilizing 
the 2020 shapefile of urban AGEBs provided by INEGI. These sources were largely selected 
because they are publicly available, cover a large portion of the world, and convenient to obtain. 
However, both contain a large number of candidate predictors that could be plausibly correlated 
with spatial patterns in labor force participation. From Google Earth engine, we extracted summary 
statistics by AGEB from six datasets: Nitrogen Dioxide from Sentinel 5P, Normalized Difference 
Vegetation Index (NDVI) from the Sentinel 2 Multi-spectral Instrument, Nighttime lights from 
VIIRS, estimated population from WorldPop, land cover classifications from the Copernicus 
dynamic land cover map, and the year of development, as proxied for by the change in pixels from 
pervious to impervious surfaces (Gong et al., 2020).  All summary statistics were taken over March 
2020, except for land cover, which pertains to the period between January and December 2019. 
 
From Open StreetMap, indicators were obtained representing the total length and number of 
highways in each AGEB. Two measures of road length were calculated: The first is the total length 
of the portions of highways contained within the AGEB, and the second is the total length of all 
highways that intersect the AGEB, including the portions of the road outside the AGEBs. In 
addition, the total counts of open StreetMap amenities and points of interest, such as hospitals, 
offices, schools, churches, and so on, were calculated for each AGEB. A final auxiliary variable, 
besides the Open StreetMap indicators, is the total area of the AGEB of the AGEB in sq km, which 
was calculated directly from the AGEB level shapefile provided publicly by INEGI.  For each 
auxiliary variable, municipal variables were constructed by taking either population-weighted 
averages or simple sums (for counts and area) of the AGEB values.   
 
 
c. Model selection  
 
Variables for prediction were selected using the LASSO (Least Absolute Selection and Shrinkage 
Operator), with the penalty chosen to minimize the Bayesian Information Criteria (BIC) (Zhang et 
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al., 2010).7 LASSO models were fitted separately to four dependent variables. These are the 
transformed versions of the four labor market outcomes, AGEB male or female labor force 
participation and unemployment rates, using the arcsine transformation. The candidate predictors 
included in the LASSO model include all of the AGEB and municipal level geospatial auxiliary 
data described in the last section, as well as dummy variables for states. The state dummies were 
included with no penalty, and were included to both improve the model and to prioritize the 
selection of variables that predict variation in the labor market outcomes within states.  
 

 
d. Model estimation  
 
We begin by constructing two separate estimates of LFP and unemployment in Mexico: 
 

1. Direct estimates using only the pseudo survey of sampled AGEBs, which can only be 
constructed for in-sample municipalities.  

2. Small area estimates using the pseudo survey of sampled AGEBs and the auxiliary 
geospatial data, which can be constructed for all municipalities, both in and out of sample.  

 
These estimates are compared with the full census results along several different dimensions to 
assess their accuracy, as discussed below. 

To generate the small area estimates for municipalities, we utilize a standard nested error model at 
the AGEB level (Battese, Harter, and Fuller, 1988, Jiang and Lahiri, 2006, Molina and Rao, 2010). 
The transformed version of the labor market outcome at the AGEB level is modeled as a linear 
function of geospatial auxiliary variables. The dependent variable was transformed using an 
arcsine transformation, a common transformation for proportions bounded between zero and one.  

 The model used to generate municipal estimates is specified as follows:  

(1) 
ሺݕ௦௠௔ሻ ൌ ܺ௦௠௔ߚଵ൅ܺ௦௠ߚଶ ൅ ܺ௦ߚଷ ൅ ߭௦௠ ൅  ,௦௠௔, V ��«�6�m ��«�Ms; a ��«�Asmݑ

where G(ݕ௦௠௔ሻ denotes the arcsine of one of the four estimated labor market outcomes (male and 
female LFP, and male and female unemployment rate) of AGEB a within municipality m and state 
s, derived from the sample. The model is assumed to hold for the full population of AGEBs 
although it is estimated using the sample. Xsma is a vector of geospatial auxiliary variables specified 
at the AGEB level, while Xsm is a vector of geospatial auxiliary variables aggregated to the 
municipal level. Xs  is a vector of state dummy variables.�E�, E�, and E��are vectors of regression 
coefficients, ߭௦௠�������������������������������������௩ଶ�ǡߪ�� ���� is a set of municipality 
conditional random effects.  ݑ௦௠௔̱ܰሺͲǡ  ௨ଶሻ is a residual error term. As noted above, the set ofߪ
predictor variables was selected using the BIC-minimizing lasso procedure from the full set of 
candidate variables,  with the full set of state dummies Xs included with no penalty.   

For the model used to generate estimates for states, the specification is similar, except that the 
conditional random effect is omitted from the model:  

 
7 The BIC was based on the unpenalized regression of selected variables rather than the penalized regression, and 
when estimating the lasso, standard errors were clustered at the municipality level.  



 

9 
 

ሺʹሻ�
ሺݕ௦௠௔ሻ ൌ ଶߚ௦௠ݔଵ൅ߚ௦௠௔ݔ ൅ ܺ௦ߚଷ ൅  .௦௠௔, V ��«�6�P ��«�Ms; a ��«�Asmݑ

The state-level effect ߭௦ is omitted because of the inclusion of a full set of state dummy variables 
Xs as independent variables. This mechanically causes the estimated variance of ߭௦ to be zero, due 
to the lack of variation across states in the residual after controlling for state dummies, which 
effectively drops ߭௦ from the model. In other words, the state-level estimates are generated from 
what is essentially a fixed effect estimator instead of a conditional random effect estimator. This 
is possible when generating state-level estimates, but not municipal level estimates, because the 
survey is sufficiently large to estimate state level results precisely.8   

To generate the small area point estimates, the procedure simulates 100 draws from a normal 
distribution for both the random error term ݑ௦௠௔ and the area effect ߭௦௠ (or ߭௦ for the state level 
estimates) for each AGEB j. These estimates are then back-transformed, averaged across 
simulations, and finally aggregated across AGEBs to generate municipal or state-level estimates.  
When aggregating across AGEBs, we weight using estimated population from WorldPop.9 Mean 
squared error estimates are obtained from a parametric bootstrap procedure, as proposed by 
Gonzalez-Manteiga et al.(2007) and implemented in the R EMDI package (Kreutzmann et al., 
2018), based on the theory developed by Butar (1997) and Butar and Lahiri (2003). 

When estimating the parameters of models (1) and (2), observations are weighted using normalized 
inverse probability weights, using the weighting method implemented in the R nlme package 
(Pinheiro, et al., 2021). Because each municipality is given equal weight when evaluating the 
estimates, it is necessary to normalize the weights to avoid giving too much weight to more 
populous municipalities in the sample estimation. 10  We therefore normalize the weights by 
dividing the inverse probability of selection by the mean inverse probability of selection for the 
municipality, as follows:  

௦ܹ௠௔ ൌ
గೞ೘ೌ

షభ

భ
ಿ೘

σ గೞ೘ೌషభ
ಿ೘
ೌసభ

  where ܰ௠  is the number of AGEBs contained in the sample for 

municipality m and ߨ௦௠௔  is the probability of AGEB a being included in the sample.11  This 
normalizes the sum of the weights in each municipality to equal the number of sample observations, 
which is one recommended method for normalizing weights when estimating conditional random 

 
8 The same software package was used to estimate both municipal and state level results. We experimented with 
omitting state-level dummies and the results were worse.  
9 Using estimated population from WorldPop has the added benefit of being applicable to other contexts. While 
ǁĞ�ŚĂǀĞ�ĐĞŶƐƵƐ�ŝŶĨŽƌŵĂƚŝŽŶ�ƚŚĂƚ�ǁŽƵůĚ�ĂůůŽǁ�ƵƐ�ƚŽ�ĂŐŐƌĞŐĂƚĞ�ƵƐŝŶŐ�ĂƌŐƵĂďůǇ�ŵŽƌĞ�͞ĐŽƌƌĞĐƚ͟�ĚĂƚĂ͕�ƚhis would not 
be possible in other contexts in which census data is missing or out of date. For this reason, we drop any AGEBs 
with an estimated population of zero. Only 0.6 percent of AGEBs are dropped.  
10 For some policy contexts, it may be desirable to give greater weight to more populous municipalities when 
evaluating the accuracy of estimates, but in this analysis, we limit consideration to the case where each municipal 
estimate is given equal weight when evaluating the performance of the estimates as a whole.   
11 We construct the sampling weight as the inverse of the probability of selection, using the formula for sampling 
with replacement, as an approximation for the actual probability of sampling based on our sampling strategy. In 

particular, the probability of selection is approximated as ߨ௜௝ ൌ ͳ െ ቀͳ െ ௉௢௣ೞ೘ೌ
௉௢௣೟೚೟ೌ೗

ቁ
ே

, where popsma = population of 

AGEB a, poptotal = total national population and ܰ ൌ ݉݅݊ሺͶͲǡ   .௦௠௔ሻ, the number of individuals in the sample݌݋ܲ
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effects models. 12  Below, as a robustness check, we show that giving equal weight to each 
municipality worsens the predictions.  

Finally, we ignore heteroscedasticity in the dependent variable, which is the average AGEB labor 
market outcome taken from the sample. A sample of 40 individuals was taken from each AGEB, 
except for the few cases where AGEBs contain fewer than 40 working aged persons, which implies 
that heteroscedasticity is not a first order concern when estimating labor force participation rates. 
Different rates of labor force participation across sample AGEBs will affect the number of labor 
force participants used to calculate unemployment rates from the sample, but we do not adjust for 
this source of heteroscedasticity.13     

Population counts for each AGEB taken from the 2020 census were used as population weights 
when aggregating AGEBs to municipal estimates. We used a modified version 2.0 of the EMDI 
package in R, modified to incorporate sample and population weights, to estimate the model 
(Kreutzmann et al., 2018).14  

 

e. Evaluating the estimates  

 

To evaluate the estimates, we compare each estimate to the population values from the 2020 census. 
We calculate the following statistics to compare these four separate estimation methods: 
 

x Estimated mean squared error. For the direct estimates, this is assumed to be equal to the 
estimated variance of the mean, estimated using the Horwitz-Thompson approximation.15 
For the small area estimates, MSE estimates were generated using the parametric bootstrap 
procedure.  

x The median estimated relative standard error across municipalities, where the relative 
standard error for each municipality is defined as the square root of the estimated mean 
squared error divided by the point estimate.   

x Coverage rate: This is the share of municipalities for which the actual census value falls 
within the 95% confidence interval generated by the estimate.   

 
12 See Rabe-Hesketh and Skondral (2006). In conditional random effect models, unlike in standard random effect 
models, multiplying the weights by a constant affects the parameter estimates.     
13 This is partly because the high number of municipalities in the sample with zero unemployment is a more serious 
issue than heteroscedasticity when estimating unemployment rates.  
14 The number of simulations and bootstraps, L and B, were each set to equal 100. The weighting strategy relies on 
passing through the specified weights to the lme function in the R nlme package that estimates the conditional 
random effect model (Pinheiro et al., 2020). In addition, we take a weighted mean instead of a simple mean when 
aggregating point estimates for AGEBs to generates estimates for municipalities. In the latter case, the aggregation 
weights are the population of the AGEBs.   
15 We use the Horvitz-Thompson approximation of the variance described in Molina and Marhuenda (2015), in 
which the variance of the sample mean for municipality m is estimated as:  

 ෠ܸቀ തܻ෠௠ቁ ൌ σ ௠௜ሺͳݓ െ ௠௜ݕ௠௜ሻݓ
ଶே೘

௜ୀଵ    

Where m is a particular municipality, i is an individual within municipality m, Nm is the number of relevant 
individuals in the municipality, w is the inverse probability sample weight, and ymi is the binary outcome variable 
(participation or unemployment) for individual i.    
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x Estimated relative bias: This is the deviation of the estimate from its true value, expressed 
in percentage terms relative to the true value.   

x Estimated mean absolute error: This is the absolute value of the difference between the 
estimated rate and the actual census rate. 

x Estimated correlations with census value: This is a simple correlation between a point 
estimate and the census value and is a measure of the accuracy of the prediction.  

x Estimated rank correlations with census value: This is the spearman rank correlation 
between a point estimate and the census value, a measure of the accuracy of the predicted 
rank.    

 
Estimated in this context refers to the fact that these statistics are estimated using one sample. In 
each case, statistics are calculated giving equal weight to each municipality. All comparisons 
between direct survey estimates and the small area estimates are restricted to in-sample 
municipalities. This makes for more accurate comparisons, since the direct estimates only pertain 
to these municipalities. Later, we also show how results for out-of-sample municipalities compare 
with results for sampled municipalities. 
 
f. Repeated simulations  
 
A concern with drawing inferences about the performance from one sample is that any particular 
sample may not be representative. Since we construct this sample using a synthetic population, we 
can simulate the performance of the estimators across multiple samples. We therefore simulate 
100 separate samples and calculate point estimates ± for both direct estimates and small area 
estimates ± for each of these samples. These are our preferred measure of the accuracy of small 
area estimates and direct estimates. However, due to computing time considerations, we do not 
perform a parametric bootstrap to calculate mean squared error in the simulation.16 Therefore, our 
estimate of the efficiency gain due to small area estimation comes from only one sample.  
 
g. Second-stage sample size  

 
As noted above, a key issue with respect to modeling unemployment rates is that the indicator is 
very close to zero in Urban Mexico, especially for women. In our sample, for instance, female 
unemployment is less than 1.5 percent. However, our sample size for each AGEB is only 40 and 
around half of those are women, for just 20 women per AGEB. Additionally, labor force 
participation is about 50 percent, meaning that unemployment is necessarily calculated from a 
sample of sometimes as small as just 10 women. With an average unemployment rate of less than 
1.5 percent, the great majority of these AGEBs have an estimated unemployment rate of zero.17 
The same is true for men.  
 

 
16 Drawing the sample, calculating the estimates, and performing the parametric bootstrap takes around two hours 
for a single sample. Since we simulate 100 different samples, this would take more than eight full days to estimate 
MSE across all simulations. Instead, we opt to calculate just point estimates ʹ which takes only around 20 minutes 
for a single sample ʹ and compare the performance of the point estimates. 
17 For male unemployment, approximately 72 percent of AGEBs have a direct estimate of zero. For female 
unemployment, it is 87 percent. 
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The low unemployment rates in the population lead to two issues. First, the estimated R2 of the 
model is very low, meaning that the linear model predicts little of the variation in unemployment 
rates in the sample. This is not surprising, given the large amount of sampling error in the AGEB-
level unemployment rates in the simple random sample. This does not rule out the possibility that 
the small area estimates improve on the direct estimates.18 In this case, however, the large share of 
sample municipalities with zero unemployment also downwardly biases the variance estimate of 
the municipal conditional random effect. This in turn leads the predictions to give too much weight 
to inaccurate predictions from the model, relative to the sample, which in turn generates inaccurate 
estimates.    
 
The most direct approach to this problem would be to implement a non-linear model such as a 
two-part model (Belotti et al., 2015), although doing so in an empirical best framework with 
existing software is not straightforward. However, increasing the size of the second stage of the 
sample may mitigate this issue by reducing the number of municipalities with zero unemployment 
in the sample.19 As a robustness check, we calculate small area estimates using a hypothetical full 
enumeration of sampled AGEBs. In other words, we use the actual census value of the labor market 
outcomes in each selected AGEB to estimate the model. In many developing countries, it is not 
uncommon to perform a full listing of all households in selected enumeration areas before drawing 
the second stage sample. It may therefore be feasible to collect data on low-probability events like 
unemployment from all adults in selected enumeration areas, as part of a listing exercise. 
 
 
 
3. Results 
 

A. Model diagnostics  
 
Before comparing results against the full census, we check the characteristics of the models 
themselves. Table 2 shows the number variables selected, the R2 values of the regression, and a 
variety of other model diagnostics for the lasso and post-lasso results for all four outcome 
variables. The first panel presents the results for the state-level estimates, while the second and 
third panels present results for the municipality-level results. Marginal R2 represents 
the variance explained by the auxiliary variables, while conditional R2 represents the variance 
explained by both the auxiliary variables and the conditional random effect. The R2 values for the 
simple random sample that generates municipal level estimates are generally lower than individual 
level models, particularly for modeling unemployment.20 However, the conditional R2 of the 
female LFP model is significantly higher, at approximately 0.3, and EBP models can perform well 
even in cases when the available covariates are not strong predictors (Marhuenda et al, 2017). 
 

 
18 dŚŝƐ�ŝƐ�ĐŽƵŶƚĞƌŝŶƚƵŝƚŝǀĞ�ďƵƚ�ĨŽůůŽǁƐ�ĨƌŽŵ�^ƚĞŝŶ͛Ɛ�ƉĂƌĂĚŽǆ͘�^ƚĞŝŶ͛Ɛ�ƉĂƌĂĚŽǆ�ŝŵƉůŝĞƐ�ƚŚĂƚ�Ă�ƐŚƌŝŶŬĂŐĞ�ĞƐƚŝŵĂƚŽƌ�ƚŚĂƚ�
takes a weighted average of direct survey estimates for subpopulations and the grand mean, when there are three 
or more subpopulations, can substantially improve predictions for the subpopulations (Stein, 1964, Efron and 
Morris, 1977). This is also consistent with Marhuendra et al.(2017), who note that EB estimates can perform well 
even in cases where the available covariates are not strong.  
19 The problem can also be fixed by using a non-linear estimator such as a two-part model (Belotti et al., 2015).  
20 R2s may increase after adjusting for sampling error (Li and Lahiri, 2018). 
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Appendix Table A1 shows the actual post-lasso model coefficients for the random sample results. 
In general, areas that are more urban on average are associated with higher female LFP, as mean 
vegetation intensity is negatively associated with participation, while the correlation is positive for 
the number of residential roads and street crossings. Consistent with this, areas that have been 
urbanized more recently, as indicated by the mean year of switching to impervious surfaces, have 
lower participation rates all else equal. Furthermore, smaller municipalities (by area), many of 
which are in Southern Mexico, are correlated with lower female labor force participation all else 
equal.  
 
The relationship between other indicators of urban density and female labor force participation is 
more complex, however. Areas that are more heterogeneous in terms of vegetation intensity, such 
as the suburbs, are other things equal associated with higher labor force participation. The 
relationship between night-time lights and female LFP is another example. The median value of 
nighttime lights is positively associated with female LFP while the mean value is negatively 
associated, although the latter is not statistically significant. This nonetheless suggesting that 
AGEBs with a large number of very bright pixels, perhaps due to the presence of highways, have 
lower female labor force participation rates.  
 
Some of the infrastructure variables are more easily interpretable, as well, but these are rarely 
significant. The number of schools is significantly positively correlated with higher male LFP but 
does not show up for any of the other three indicators. 
 
Appendix Table A2 decomposes model R2 across different categories of variables. The latter 
shows that the determinants of male and female LFP differ significantly. For example, the 
geographic size of the AGEB and municipality, nighttime light luminosity, the mean of the 
vegetation index, the number of different points of interest recorded in Open StreetMap, and the 
year that pixels changed to being an impervious surface are important predictors of female LFP. 
Municipal area is positively associated with female LFP, which makes sense in the Mexican 
context because many of the smaller municipalities are located in the poorer south of the country 
where female LFP tends to be lower. Median nighttime luminosity in the municipality is positively 
associated with female LFP, consistent with nighttime lights indicating economic activity. Mean 
nighttime lights in the municipality, which conditional on median is a measure of right-skewness 
or inequality in luminosity, is negatively associated with LFP. This is consistent with women in 
more developed areas being able to afford not to work. Areas with a greater concentration of 
vegetation, as proxied by mean NDVI, have lower female LFP, perhaps also reflecting greater 
wealth in suburban areas with more vegetation. The correlates of male LFP are more difficult to 
interpret. The share of bare land in the municipality is positively and significantly correlated with 
male LFP, as is the number of untagged highway points, and the latter may be positively correlated 
with economic activity. 
 

Table 2 - Model diagnostics by dependent variable and sample type  
 Female 

LFP  
Male 
LFP  

Female 
Unemp 

Male 
Unemp 

State - Simple Random Sample within Selected AGEBs 
Number of (non-state) variables selected 41 22 19 10 

Marginal R2   0.127 0.061 0.025 0.028 
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Of which due to state dummies  0.055 0.018 0.017 0.022 
Conditional R2  0.127 0.061 0.025 0.028 

Skewness of state effect N/A N/A N/A N/A 
Kurtosis of state effect N/A N/A N/A N/A 

Estimated variance of state effect N/A N/A N/A N/A 
Estimated household residual N/A N/A N/A N/A 

Ratio of estimated state effect variance to total 
variance N/A N/A N/A N/A 

     
Municipality - Simple Random Sample within Selected AGEBs 

Number of (non-state) variables selected 41 22 19 10 
Marginal R2   0.132 0.071 0.038 0.032 

Of which due to state dummies  0.055 0.018 0.017 0.022 
Conditional R2  0.293 0.170 0.132 0.077 

Skewness of municipal effect -0.102 0.222 4.047 1.011 
Kurtosis of municipal effect 4.840 6.168 36.395 5.679 

Estimated variance of municipal effect 0.004 0.002 0.0013 0.0008 
Estimated household residual 0.017 0.017 0.012 0.017 

Ratio of estimated municipal effect variance to 
total variance 0.186 0.107 0.098  0.046 

     
Municipality - Full Enumeration of Selected AGEBs 

Number of (non-state) variables selected 33 26 28 39 
Marginal R2   0.277 0.224 0.164 0.158 

Of which due to state dummies  0.113 0.060 0.082 0.100 
Conditional R2  0.597 0.451 0.467 0.525 

Skewness of municipal effect -0.610 -0.394 2.460 1.613 
Kurtosis of municipal effect 6.128 4.779 24.136 12.472 

Estimated variance of municipal effect 0.004 0.001 0.0011 0.0015 
Estimated variance of household residual 0.005 0.003 0.0020 0.0020 

Ratio of estimated municipal effect variance to 
total variance 0.442 0.292 0.363 0.436 

     
Number of AGEBs  7,733 7,733 7,733 7,733 
Number of municipalities  1,072 1,072 1,072 1,072 
Dependent variable was transformed using arcsine transformation. 

 
 
We focus here on the municipality-level diagnostics. The marginal R2 values are generally low for 
the simple random sample, especially for unemployment rates. The low R2 does not necessarily 
mean that the small area estimates do not improve on the direct estimates. The smaller the sample 
and the greater the heterogeneity in outcomes across AGEBs, the more likely a small area 
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estimation model is to improve upon sample estimates.21 However, the low R2 does raise concerns 
about biased estimates at the tails of the distribution, especially when estimating unemployment 
rates using the simple random sample. We expect that the combination of low marginal and 
conditional R2 may lead to particularly inaccurate estimates for male and female unemployment 
rates when using the simple random sample. Model predictions for labor force participation using 
the simple random sample look significantly better for LFP than for unemployment, however, 
especially for women where the marginal and conditional R2 values are 0.132 and 0.293 (as 
opposed to men where the same R2 values are 0.071 and 0.17). The ratio of the estimated variance 
of the area effect to total variance is  0.19 for female participation and 0.11 for male participation, 
while the corresponding ratio for unemployment is about 0.1 for women and about 0.05 for men.   
 
Using the full enumeration sample, not surprisingly, dramatically improves the prediction models. 
Marginal R2 rises to about 0.27 for female LFP and 0.22 for men, and to approximately 0.16 for 
unemployment rates. The ratio of the variance of the estimated area effect to total variance ranges 
from 30 to 44 percent, depending on the indicator. Compared with the models developed using the 
simple random sample, more weight is given to the sample, which more accurately reflects 
municipal outcomes when sample AGEBs are fully enumerated.  The higher R2s of the models 
reflects the elimination of the considerable noise in the sample data, which drove down the R2s of 
the models estimated using the simple random sample.    
 
Finally, Appendix  
  

 
21 For example, suppose as in this case that the sample covers 15 percent of the enumeration areas. Even a model 
that explains 10 percent of the variation in the remaining 85 percent of the population contributes at least the 
additional 8.5 percent of the total variation in the population not captured by the sample, in addition to any 
improvement in the estimates for sampled areas due to averaging samples with model predictions.     
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Figure A2 - Quantile-quantile plots of residuals using full enumeration sample 
 

Male LFP Female LFP 

    
Male unemployment Female unemployment 

  
  

  shows quantile-quantile plots for both components of the residuals, which is useful to check 
whether they appear to be normally distributed as assumed. The residuals are highly non-normal 
in most cases, except for the random area effect for male and female LFP. The non-normal random 
effects for unemployment, as well as non-normality in the household error terms may contribute 
to biased estimates of outcomes and uncertainty, which we will assess by comparing the small area 
estimates with the census. Future research can explore alternative transformations, such as the rank 
transformation used in Masaki et al.(2020), that might help achieve a more normal distribution.    
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B. State-Level Results  
 
We first consider estimates at the state level, the level at which the survey is considered to be 
representative. We present the seven statistics listed in section 2.e, separately for direct and small 
area estimates, in Table 3.  
 
The results are striking: Even though the direct estimates are considered to be reliable at the state 
level, we see large improvements in all seven statistics, across all four indicators, when 
incorporating geospatial data. The estimated mean squared error is smaller, the estimated 
correlation with the full-census benchmark increases, and the estimated absolute deviation from 
the benchmark decreases. Median relative bias declines for all outcomes. Coverage rates improve, 
sometimes dramatically. The estimates of unemployment rates improve on the direct estimates on 
most dimensions, even though the R2 of some models is low. Because the outcomes measured in 
the sample contain a large amount of random measurement error, even models with low R2 can 
contribute significant amounts of additional information and improve the estimates.    
 
 

Table 3 - State-level Results  
 (1) (2) (3) (4) 
 Male LFP Female 

LFP 
Male 

Unemp 
Female 
Unemp 

Average estimated mean 
squared error (x1,000) 

    

Direct 0.3787 0.1983 0.0067 0.0031 
SAE 0.0899 0.1263 0.0055 0.0021 

Average estimated mean 
squared error (x1,000) 
with equalized coverage rates 

    

  Direct 0.4048 1.2653 0.0555 0.0105 
  SAE 0.0898 0.1264 0.0055 0.0021 
Coverage rate     

Direct 0.8750 0.7188 0.5625 0.5000 
SAE 0.9375 1.0000 0.9062 0.6875 

Estimated mean absolute error     
Direct 0.0179 0.0193 0.0048 0.0032 
SAE 0.0088 0.0073 0.0023 0.0024 

Median estimated relative bias     
Direct 2.1164 -3.0573 -10.7269 -12.3980 
SAE -0.0757 -0.4322 1.5223 15.1544 

Estimated rank correlation     
Direct 0.5652 0.7933 0.7911 0.6635 
SAE 0.7185 0.9498 0.8867 0.7529 

Estimated Pearson correlation     
Direct 0.6048 0.8141 0.7528 0.6506 
SAE 0.7614 0.9583 0.8698 0.5467 

States 32 32 32 32 
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All figures represent unweighted averages or correlation across states. Equalized coverage rates refer to 
multiplying the estimated MSE of the direct estimates for each state by a constant to achieve the same 
coverage rate as the small area estimates. Rank or Pearson correlation is the unweighted rank or Pearson 
correlation between the estimated value and the actual state value. The absolute deviation is the absolute 
value of the difference between the estimate and the actual state value. Relative bias is 100 times the 
estimated minus the actual state value, divided by the actual state value.  

 
 
Table A3 in the appendix presents a robustness check which calculates state-level results by 
aggregating municipality-level estimates up. The key difference between those results and the ones 
presented in this section are that the ones in Table 3 are estimated at the state level, without a 
random effect. The estimates in Table A3 are generally slightly worse than or similar to those in 
Table 3, with the possible exception of one accuracy indicator for male unemployment. The results 
in Table A3 give no empirical basis to prefer a method that aggregates the municipal estimates 
with a random effect to one that estimates state results directly without a random effect. The latter 
has the advantage of being much simpler to estimate, particularly when it comes to measures of 
uncertainty. 
 
 

C. Municipal-level estimates for sampled municipalities.  
 
We now turn to municipality-level statistics, which the survey is not designed to estimate reliably. 
All reported estimates in this section pertain to in-sample municipalities only, so that the direct 
and SAE estimators are compared over the same municipalities. We begin by comparing measures 
of uncertainty for direct estimates and small area estimates. We present these results for all four 
labor market statistics in Table 4. The estimated mean squared error is always substantially smaller 
for the small area estimates than the direct estimates. This difference is largest ± in percentage 
terms ± for male labor force participation, where the estimated mean squared error is around a third 
as large as the direct estimate, roughly equivalent to effectively tripling the size of the sample.   
 
The second row reports coverage rates, which is the share of municipalities for which the true 
census value is within 1.96 standard errors of the point estimate. Despite the smaller estimated 
mean squared error for the small area estimates, the coverage rates are also higher, again across all 
four indicators.  For female labor force participation in particular, there is a significant increase in 
coverage rates from 87 to 98 percent in the small area estimates. This suggests that uncertainty for 
the direct estimates is underestimated and uncertainty for the small area estimates may be slightly 
overestimated. Therefore, for reach of the four indicators, we multiply the MSE of the municipal 
direct estimates by a constant greater than one to  replicate the coverage rate of the small area 
estimates. When coverage rates are equalized in this way, the estimated MSE falls by a factor of 
four to five for labor force participation.22  
 

Table 4 - Measures of Uncertainty and Coverage for Municipal Estimates 
 (1) (2) (3) (4) 
 Male  Female Male Female 

 
22 Coverage rates cannot be equalized for unemployment rates because of the large share of direct estimates that 
are zero.  
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LFP LFP Unemp Unemp 
Average estimated mean 
squared error (x1,000) 

    

Direct  9.329 5.494 0.288 0.161 
SAE  3.331 4.991 0.179 0.093 

Average estimated mean 
squared error (x1,000) with 
equalized coverage rates 

    

   Direct  13.895 24.116 N/A N/A 
   SAE  3.340 5.042 0.179 0.094 
Median estimated relative SE     

Direct  0.122 0.156 N/A N/A 
SAE  0.068 0.143 0.480 0.494 

Coverage rate     
Direct  0.971 0.853 0.409 0.215 
SAE  0.988 0.990 0.952 0.976 

In-sample municipalities 1,072 1,072 1,072 1,072 
Only in-sample municipalities are included. The coverage rate is equal to one in a given municipality if the 
actual census value is within the calculated confidence interval (point estimates +/- 1.96 times the standard 
error). MSE with equalized coverage rates refer to MSEs after multiplying the estimated variance of the 
direct estimates by a constant to match the coverage rate of the small area estimates. Relative SE is missing 
for unemployment due to the large number of zeros in the direct estimates. 

 
 
We note that both male and female unemployment rates are not normally distributed in our sample, 
even after transforming them, due to the mass at zero. The empirical best predictor method used 
here assumes a normal distribution. This may contribute to uncertainty if anything being slightly 
overestimated, as indicated by coverage rates that lie between 95 and 99 percent.    
 
We next present statistics intended to measure the accuracy of the estimates, relative to results in 
the full census. We start with estimated relative bias and absolute deviation in Table 5. These two 
measures differ along two key dimensions: The former is both relative, in the sense that it gives 
deviations from low true values greater weight than deviations from high true values, and 
directional, in the sense that negative and positive bias will cancel out. Estimated absolute 
deviation on the other hand is both measured in absolute terms and uses an absolute value and is 
therefore non-directional. It is also important in both cases to distinguish means from medians. 
Small (census) values of unemployment can lead to very large estimates of relative bias, since the 
bias formula contains the true value in the denominator.23 For most policy applications relating to 
targeting, relative bias may be a misleading measure of accuracy for unemployment rates. This is 
because relative bias gives absolute discrepancies greater weight in municipalities with low true 
rates, which does not necessarily correspond to the objective of allocating resources to minimize 
unemployment.  
 

 
23 For example, the smallest non-zero value for female unemployment is 0.0006349. An estimated unemployment 
rate of 0.005 would lead to a bias value of 688.  
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For labor force participation, both estimated mean and median relative bias is modestly higher in 
the SAE estimates participation than in the direct estimates, though median relative bias is under 
1 percent in both cases.  For unemployment rates, estimated mean relative bias is much higher, 
reflecting the lack of explanatory power of the unemployment models, which in turn leads to large 
relative bias in areas where true unemployment rates are low. However, when it comes to absolute 
deviation the SAE estimates outperform the direct estimates by a substantial margin, for both LFP 
and unemployment. For female LFP, for example, the SAE procedure reduces estimated mean 
absolute error by about 45 percent, from 0.069 to 0.039, and for female unemployment rates the 
estimated absolute deviation falls by over half.  
 
To get a further sense of the accuracy of the estimates, the bottom rows of the table report estimated 
rank and Pearson correlations. For the labor force participation estimates, the small area estimation 
increases rank correlation by 0.11 points for men, and by 0.13 points for women, from 0.59 to 0.73. 
For Pearson correlations the improvement is slightly smaller, 0.08 points for men and 0.11 points 
for women, but still sizeable.  When it comes to the unemployment rate estimates, the estimated 
rank correlations also show improvements when comparing the SAE estimates to the direct 
estimates, increasing by 0.9 for men and 0.6 for women (from an admittedly low level). However, 
the estimated Pearson correlations show a marked decline, falling by 0.22 for men and 0.065 for 
women. This again reflects errors at the left and right tails of the true unemployment rate 
distribution, which the model does a very poor job of predicting.  
 
 

Table 5 - Measures of Accuracy for Municipal Estimates 
 (1) (2) (3) (4) 
 Male 

LFP 
Female 

LFP 
Male 

Unemp 
Female 
Unemp 

 Mean 
(median) 

Mean 
(median) 

Mean 
(median) 

Mean 
(median) 

Estimated Relative Bias 
Direct  0.039 -1.017 -4.363 26.429 
 (0.306) (-1.288) (-59.069) (-100.000) 
SAE -0.507 1.423 30.732 99.948 
 (-0.622) (-0.726) (9.651) (40.522) 

Estimated mean absolute 
error 

    

Direct  0.061 0.071 0.022 0.017 
 (0.046) (0.054) (0.015) (0.009) 
SAE 0.028 0.040 0.009 0.006 
 (0.022) (0.028) (0.006) (0.005) 

Estimated Rank correlation     
Direct 0.471 0.623 0.363 0.324 
SAE 0.541 0.750 0.497 0.264 

Estimated Pearson 
correlation 

    

Direct 0.493 0.659 0.418 0.385 
SAE 0.553 0.770 0.415 0.614 
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In-sample municipalities 1,072 1,072 1,072 1,072 
Only in-sample municipalities are included. Reported statistics are unweighted means, medians (in 
parentheses), or correlations across municipalities. Relative Bias is defined as 100 times the deviation 
of the estimated value and the true value divided by the true value. Rank or Pearson correlation is the 
unweighted rank or Pearson correlation between the estimated value and the actual municipal value. 

 
 
 
The direct estimates of unemployment actually show negative estimated relative bias. This is likely 
driven by the fact that most AGEBs with a true unemployment rate of 1 percent are likely to have 
a sample with an unemployment rate of zero, leading to a consistent underestimate of the true rate. 
This is clear in Figure 2, which plots bias for male and female unemployment. Values of -100 
indicate estimates of zero for unemployment. The direct estimates cluster disproportionately at this 
lower bound, indicating a large number of zeros. Although this averages out somewhat over 
municipalities (and different draws, which we return to below), the estimates for a single 
municipality are often well off the mark. The figure shows that the small area estimates clearly 
reduce the estimated mean absolute deviation over the direct estimates for all four indicators, 
especially for small municipalities, despite high mean bias values for unemployment rates.  
 
Overall, comparing results in sampled municipalities shows that the small area estimation 
procedure substantially improves the precision and accuracy of the estimates for labor force 
participation.  
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Figure 2 ± Estimated bias for unemployment 

 
 

D. Out-of-sample municipalities  
 

The comparisons in the previous section examined direct estimates and small area estimates for 
sampled municipalities, but did not address whether out-of-sample predictions are accurate. We 
first compare selected statistics of these out-of-sample municipalities with the in-sample direct 
estimates. We present unweighted summary statistics of the estimated MSE, coverage rate,  
estimated absolute deviation, and estimated rank and Pearson correlation in Table 6.  
 
 

Table 6 - In-sample direct estimates vs. out-of-sample small area estimates  
 (1) (2) (3) (4) 
 Male LFP Female LFP Male  

Unemp 
Female 
Unemp 

Average estimated mean 
squared error (x1,000) 

    

Direct (in sample only) 9.329 5.494 0.288 0.161 
SAE (in sample only)  3.331 4.991 0.179 0.093 
SAE (out of sample only) 6.736 10.458 0.379 0.202 
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Coverage rate     
Direct (in sample only) 0.971 0.853 0.409 0.215 
SAE (in sample only)  0.988 0.990 0.952 0.976 
SAE (out of sample only) 0.974 0.956 0.940 0.979 

Estimated mean absolute error     
Direct (in sample only) 0.061 0.071 0.022 0.017 
SAE (in sample only)  0.028 0.040 0.009 0.006 
SAE (out of sample only) 0.046 0.073 0.013 0.009 

Estimated rank correlation     
Direct (in sample only) 0.471 0.623 0.363 0.324 
SAE (in sample only)  0.541 0.750 0.497 0.264 
SAE (out of sample only) 0.225 0.312 0.309 0.207 

Estimated Pearson correlation     
Direct (in sample only) 0.493 0.659 0.418 0.385 
SAE (in sample only)  0.553 0.770 0.415 0.614 
SAE (out of sample only) 0.164 0.298 0.163 0.131 

In-sample municipalities 1,072 1,072 1,072 1,072 
Out-of-sample municipalities 569 569 569 569 
Coverage rate is equal to one if the true census value is within 1.96 standard errors of the point estimate.  

 
 
There are several patterns to note. First, looking at estimated mean squared error, estimates for 
non-sampled municipalities are approximately half as precise as those from sampled municipalities, 
and - except for male LFPs - are less precise than the direct estimates for sampled municipalities. 
Second, for unemployment rates, the coverage rate is markedly better for the out-of-sample small 
area estimates relative to the direct estimates. Third, small area estimates are far less accurate out 
of sample than in-sample. For example, for female LFP estimated absolute deviation is 
approximately twice as large and correlations are nearly twice as low for out-of-sample 
municipalities compared with in-sample municipalities. Comparisons between survey-based in-
sample municipalities and out-of-sample small area estimates are more mixed. With the exception 
of female LFP, out-of-sample estimates have slightly lower estimated mean absolute deviation 
than in-sample survey estimates, but far lower correlations.  
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Figure 3 - In sample SAE, out of sample SAE, and direct estimates 

 
Figure 3 presents kernel density graphs of deviations from the true value for three separate 
estimates: in-sample SAE, out-of-sample SAE, and direct estimates (which are only available in-
sample). We see the tendency of direct estimates to underestimate the true outcome for 
unemployment, due to the large number of municipalities with zero unemployment in the sample. 
The out-of-sample estimates appear to be reasonable when compared to the direct estimates, which 
are in sample. The in-sample small area estimates clearly perform better than either of the other 
estimates for LFP, but the difference is less stark between in-sample and out-of-sample SAE for 
unemployment, especially for female unemployment. Overall, small area estimates for sampled 
municipalities are far more precise and accurate than both out-of-sample predictions and direct 
survey estimates.   
 
 
 

E. Full enumeration of sampled AGEBs 
 
As discussed above, a key issue complicating the prediction of unemployment is that 
unemployment rates in urban Mexico are very low. As a result, the sample contains a large number 
of municipalities with no unemployed persons, which adversely affects the accuracy of both the 
direct estimates and small area estimates. The large number of zeroes makes it difficult to predict 
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variation in unemployment rates, and also leads the small area estimation procedure to 
underestimate the variance of the municipal random effect, which in turn gives these inaccurate 
predictions more weight relative to the survey data in generating the estimates. Therefore, the small 
area estimates for unemployment suffer from high levels of relative bias and are more weakly 
correlated with the census values than the direct estimates.    
 
While a non-linear estimation model might improve these estimates, a natural question is whether 
larger samples might improve the small area estimates for unemployment. This ties into a larger 
question about the potential benefits of expanding the second stage of samples when combining 
survey data with alternative data sources. To shed some light on this question, we repeat the small 
area estimation exercise after simulating a sample in which every household in selected AGEBs is 
included in the sample. This will reduce measurement error in the dependent variable, which 
substantially improves the quality of the predictions (Lobell et al., 2021, Engstrom et al., 2021). 
The exercise in intended to provide an upper bound estimate of the impact of expanding the second 
stage of the sample. But since listing exercises are common parts of household surveys in many 
developing countries, it may be possible to include selected questions as part of the listing exercise.  
The full enumeration results also shed light on the potential benefits of expanding the second stage 
of samples when combining survey data with alternative data sources.  
 
 
 

Table 7 - Sample of sampled AGEBs vs. full enumeration of sampled AGEBs  
 (1) (2) (3) (4) 
 Male LFP Female LFP Male  

Unemp 
Female 
Unemp 

Panel A: All municipalities 
Average estimated mean 
squared error (x1,000) 

    

Random sample SAE 4.512 6.887 0.248 0.131 
Full enumeration SAE 1.306 3.450 0.147 0.049 

Coverage rate     
Random sample SAE 0.983 0.978 0.948 0.977 
Full enumeration SAE 0.951 0.943 0.941 0.960 

Estimated relative bias 
(median) 

    

Random sample SAE -0.759 -0.816 9.858 56.367 
Full enumeration SAE -0.510 -0.275 8.363 12.187 

Estimated mean absolute 
error 

    

Random sample SAE 0.034 0.051 0.010 0.007 
Full enumeration SAE 0.026 0.042 0.008 0.004 

Estimated rank Correlation 
Random sample SAE 0.436 0.659 0.426 0.241 
Full enumeration SAE 0.673 0.748 0.633 0.599 
     

Panel B: In-sample municipalities 
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Average estimated mean 
squared error (x1,000) 

    

Random sample SAE 3.331 4.991 0.179 0.093 
Full enumeration SAE 0.869 2.014 0.084 0.033 
Full enumeration direct 0.240 0.510 0.043 0.045 

Coverage rate     
Random sample SAE 0.988 0.990 0.952 0.976 
Full enumeration SAE 0.970 0.966 0.953 0.965 
Full enumeration direct 0.543 0.538 0.537 0.547 

Estimated median relative 
bias 

    

Random sample SAE -0.622 -0.726 9.651 40.522 
Full enumeration SAE -0.491 -0.325 7.281 10.281 
Full enumeration direct -0.041 0.000 0.000 -0.186 

Estimated mean absolute error 
Random sample SAE 0.028 0.040 0.009 0.006 
Full enumeration SAE 0.017 0.026 0.006 0.003 
Full enumeration direct 0.019 0.030 0.006 0.004 

Estimated rank correlation     
Random sample SAE 0.541 0.750 0.497 0.264 
Full enumeration SAE 0.819 0.866 0.805 0.741 
Full enumeration direct 0.830 0.852 0.808 0.722 

 
 
 
Table 7 - Sample of sampled AGEBs vs. full enumeration of sampled AGEBs Table 7 presents 
summary statistics comparing the sample SAE and full enumeration SAE, as well as the direct 
estimates using the full enumeration of sampled AGEBs. Panel A compares across all 
municipalities, while Panel B compares only across in-sample municipalities.  Not surprisingly, 
both the small area estimates and the direct estimates using the full enumeration sample perform 
much better than the small area estimates using the smaller, more typical, sampling strategy. The 
main finding from this exercise, however, is that the small area estimation only slightly improves 
on the direct estimates in this case, except for the coverage rate because uncertainty is estimated 
more accurately. For example, for female LFP, the small area estimates only reduces absolute 
deviation by 0.3 pp, from 2.9 to 2.6 pp, and only improves rank correlation from 0.86 to 0.875. 
For other indicators, the benefit of SAE when the second stage of the sample is fully enumerated 
is even smaller.  
 
Figure 4 compares the accuracy of the random sample and full enumeration small area estimates, 
relative to the full census. The blue dots clearly demonstrate that the random sample SAE 
predictions for unemployment are close to the overall average, due to the poor predictive power of 
the unemployment models. In contrast, the orange dots representing the full enumeration 
unemployment results exhibit far more variation and better track the true rate, as do the LFP results 
for the random sample. This reflects the absence of variation available in the smaller sample to 
train an accurate model when predicting unemployment rates.     
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Figure 4 - Sample vs. Full Enumeration Small Area Estimates 

 
 
 
To sum up, the results show that in most cases the use of this publicly available set of geospatial 
data improves estimates of labor force statistics in the context of urban Mexico. This improvement 
is seen at the state level ± the level at which the pseudo survey is reliable, as well as at the 
municipality level, a level at which the pseudo survey is not considered to be reliable. In addition, 
small area estimation also generates synthetic predictions for non-sampled municipalities, 
although these are about half as accurate as the estimates for in-sample municipalities, when 
looking at estimated mean absolute deviation and correlation. When considering in-sample 
estimates for municipal unemployment obtained from the simple random sample, small area 
estimates do not always perform well. In this case, the estimated simple correlations between the 
small area estimates and the full census are markedly lower than those for direct estimates. Because 
true unemployment rates are close to zero and the sample is small, the simple random sample does 
not contain sufficient information to generate accurately municipal unemployment estimates with 
a linear mixed model. This is in part because the method gives too much weight to the inaccurate 
model predictions vis-à-vis the sample.24   
 

 
24 This is not an issue for the state level estimates because even though the model is not predictive, it includes state-
level fixed effects which effectively incorporates the sample data into the estimates.   
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4. Robustness checks  
   
 

A. Design-based simulations 
 
The results in the previous section use just a single sample to compare results from two estimators: 
a direct estimator, using just survey results, and a small area estimator, which uses auxiliary 
information to improve the accuracy and precision of the survey results. However, it is difficult to 
come to a firm conclusion when using just a single sample. Therefore, we simulate the small area 
estimates 100 times, using 100 different samples and calculating 100 different point estimates for 
direct and small area estimates. We do not calculate MSE on each simulation due to computing 
limitations.  
 
 

Table 8 - Simulation results for municipal estimates 
 (1) (2) (3) (4) 
 Male LFP Female LFP Male 

Unemp 
Female 
Unemp 

 mean mean mean mean 
 (median) (median) (median) (median) 
Simulated relative bias 

Direct  0.186 -0.222 0.128 1.451 
 (0.534) (-0.302) (-58.406) (-100.000) 
SAE -0.274 1.755 35.627 71.286 
 (-0.656) (-0.561) (11.734) (24.950) 

Simulated mean absolute 
error 

    

Direct  0.060 0.070 0.023 0.015 
SAE 0.028 0.040 0.009 0.005 

Simulated rank correlation     
Direct  0.443 0.614 0.366 0.361 
SAE 0.555 0.742 0.449 0.389 

Rank correlations are the average rank correlations across the 100 simulations. 
 
 
Table 8 presents three separate statistics ± bias, absolute deviation from the census value, and the 
correlation with the true value ± for direct estimates and small area estimates. Simulated mean and 
median bias is quite small for both direct estimates and small area estimates for LFP, with the 
highest rate being 2 percent mean bias for female LFP. The means are always higher than the 
medians, especially for the small area estimates for unemployment, as very low base rates can lead 
to very high values in some simulations. 
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In terms of mean absolute error, small area estimates perform markedly better. For LFP, simulated 
mean absolute error for the small area estimates is between 30 and 50 percent smaller than the 
direct estimates. For unemployment, the difference is even starker;  
IRU�ERWK�PDOH�DQG�IHPDOH�XQHPSOR\PHQW��WKH�VPDOO�DUHD�HVWLPDWH¶V�simulated absolute deviation is 
OHVV�WKDQ�KDOI�WKH�VL]H�RI�WKH�GLUHFW�HVWLPDWH¶V�DEVROXWH�GHYLDWLRQ��7KH�VWDQGDUG�GHYLDWLRQ�DFURVV�
simulations is also markedly lower for SAE, across all four outcomes, with the difference again 
largest for unemployment. Finally, rank correlations are about 0.1 higher for the small area 
estimates than the direct estimates for LFP, 0.08 higher for male unemployment, and about the 
same for female unemployment.   
 
 

 
Figure 5 - In sample SAE, out of sample SAE, and direct estimates  

Deviation from truth across 100 simulations 

 

 
Figure 5 plots the deviations from census values across all the simulations. Both male and female 
unemployment have a mass below zero for the direct estimates, implying an underestimate of the 
actual value. Moreover, there is a long right tail for the direct estimate. This is even more 
pronounced in smaller municipalities, for whom the sample size tends to be much smaller (since 
fewer AGEBs are selected in each simulation). Figure 6 plots the same kernel density estimates, 
except only for municipalities below the median adult (12+) population. The underestimate for 
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unemployment is more pronounced here, with very little mass at zero, a large mass below zero, 
and a long right tail. 
 
 

 
Figure 6 - In sample SAE, out of sample SAE, and direct estimates 

Municipalities below median population 

 
We present one final graph to better understand the variability in the direct and small area estimates 
across simulations. Figure 7 plots each municipality across the x axis. The y axis is the deviation 
from truth, with the bars showing the range (maximum value to minimum value) across the 100 
simulations for each municipality. The results are stark; the range for direct estimates are markedly 
larger than for small area estimates. This is especially true for unemployment, with most 
municipalities having some very large deviations in the direct estimates, but very few showing 
similar deviations with the small area estimates. 
 
It is worth noting that there do appear to be some municipalities that are consistently estimated 
poorly by the small area estimation. For both male and female LFP, we see a few municipalities 
that are always overestimated. This of course does not happen with the direct estimates, which are 
a random sample and thus generally cross zero. 
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Figure 7 - Range of deviation from truth across simulations 

 

A natural question is whether we can say anything about the characteristics of the municipalities 
for which predictions are overestimated. One obvious characteristic is population. We look at 
municipalities for which the minimum deviation is above 0.1, meaning that the entirety of the 
range lies quite a bit above zero and that we are consistently overestimating LFP for these 
municipalities. For male LFP, there are 33 such municipalities. The average number of adults in 
these 33 municipalities is 3,223. This is in stark contrast to the other municipalities, with a mean 
of 49,618 adults. Similarly, for female LFP, there are 83 such municipalities, with a mean adult 
population of 3,898, compared to a mean of 51,071 for the municipalities that are more accurately 
estimated. 
 
It seems that municipalities with less accurate predictions are, on average, much smaller 
municipalities. Moreover, if we look at simple unweighted correlations, smaller municipalities are 
also less accurately predicted in general across the simulations. For example, the correlation 
between the small area estimates for male LFP and the actual census value for municipalities above 
the median adult population is 0.560, while the correlation for municipalities below the median is 
just 0.317. We see similar differences for female LFP (0.677 vs. 0.532), male unemployment 
(0.399 vs. 0.157), and female unemployment (0.286 vs. 0.040). If we weight by the relevant 
population value, the differences are even larger. 
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One interesting area of future research will be to determine whether these smaller municipalities 
are simply more idiosyncratic and, thus, harder to predict, or whether they differ structurally in 
observables ways. If the latter is true, different types of data or methods might improve 
estimation for the smallest municipalities. In other words, is it possible to improve the estimation 
of these municipalities, or are there simply weaker systematic relationships between geospatial 
data and labor market statistics for these areas? 
 

B. Area-level model  
 
An alternative method for combining survey data and geospatial data is to obtain municipal 
estimates is an area-level model (Fay and Herriot, 1979). This method is convenient and well-
known, but suffers from a few limitations in this context. The main shortcoming is that it requires 
aggregating the auxiliary data to the municipal level, which discards variation across AGEBs 
within municipalities. In addition, the method faces challenges to accurately generate estimates of 
municipal variance, which is an important input into the model. This is particularly true when there 
is a significant number of zero values, as is the case for  unemployment rates in this context.  
 
To better understand whether these potential limitations are important in practice, we examine the 
results of two area-level modeling exercises. Fay-Herriot models can either be assumed to be linear 
models or the dependent variable can be transformed prior to estimation. For ratios such as labor 
force participation and unemployment rates, it is common to transform the variable using an 
arcsine transformation (Halbmeier et al, 2019). Use of such a transformation adds additional 
complexity to the procedure, but ensures that predicted participation or unemployment rates lie 
between zero and one. In addition, using the arcsine transformation is more consistent with the 
AGEB-level model discussed above. For these reasons, we use the transformed model as our main 
results, but display the results of a linear model in Table A4.  
 
We select a model for each outcome by applying LASSO to the full set of municipal candidate 
geospatial variables, again selecting lambda to minimize BIC. When using the arcsine 
transformation, the dependent variable is the survey-weighted estimate of the transformed mean 
outcome variable of interest in each municipality. When using the linear model, no 
transformation is applied prior to the LASSO. We then calculate the sampling variance of each 
outcome using the Horvitz-Thompson approximation, as recommended by Halbmeier et al 
(2019), and fit the model using the restricted information maximum likelihood RSWLRQ�RI�6WDWD¶V�
fayherriot package. The R2s of the transformed models are quite low: 0.06 and 0.19 for male and 
female LFP, and only 0.10 and 0.06 for male and female unemployment. Even after reducing the 
noise associated with the unemployment measure by aggregating to the municipality level, the 
geospatial variables are weak predictors of unemployment rates and male LFP, although they 
predict cross-municipal variation in female LFP somewhat better.   
 
Table 9 displays the results from the transformed Fay-Herriot (FH) area-level model. 25  We 
estimate the FH using an arcsine transformation of the target variable, just like with the sub-area 

 
25 The table omits MSE because the State fayherriot command used to estimate the FH model does not output 
standard errors. Instead, it outputs confidence intervals derived from a bootstrap procedure. Because the confidence 
intervals are asymmetric, calculation of the MSE is not straightforward. 
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(AGEB-level) model. Across all statistics and labor market indicators -- except one -- the area-
level model performs worse than the sub-area model. The exception is the estimated rank 
correlation for female unemployment, which the AGEB-level model predicts poorly due to the 
large number of zeroes in the unemployment indicator. The area-level model often performs better 
than the direct estimates (with absolute deviation, for example), especially for unemployment. 
Table A4 in the appendix shows the comparison between the transformed and linear Fay-Herriot 
model. The transformed area-level model generates much more accurate estimates of uncertainty 
for unemployment and male LFP than the linear area-level model, as the linear model greatly 
underestimates mean squared error for these indicators, leading to very low coverage rates. 
However, the results on accuracy are mixed. For example, when examining  correlations, the 
arcsine estimates are more accurate for male LFP but less accurate than the linear model for female 
LFP. The results suggest that the linear F-H is preferred to the transformed F-H model in the case 
of female LFP, when the prediction model is better. However, when considering male and female 
LFP, the AGEB-level model generates more accurate estimates than both area-level model 
according to all criteria.  
 
 
 

Table 9 ± Comparison of direct, AGEB-level, and municipal-level (FH) 
 (1) (2) (3) (4) 
 Male  

LFP 
Female 

LFP 
Male 

Unemp 
Female 
Unemp 

Coverage rate 
    

Direct  0.971 0.853 0.409 0.215 
AGEB-level model 0.988 0.990 0.952 0.976 
Transformed area-level model 0.887 0.823 0.804 0.842 
     

Estimated Relative Bias  
(median) 

   

Direct  0.039 -1.017 -4.363 26.429 
 (0.306) (-1.288) (-59.069) (-100.000) 
AGEB-level model -0.507 1.423 30.732 99.948 
 (-0.622) (-0.726) (9.651) (40.522) 
Transformed Area-level model 1.382 4.058 -37.108 -53.035 
 (0.717) (-1.784) (-51.308) (-76.510) 
     

Estimated mean absolute error 
(median) 

    

Direct  0.061 0.071 0.022 0.017 
 (0.046) (0.054) (0.015) (0.009) 
AGEB-level model 0.028 0.040 0.009 0.006 
 (0.022) (0.028) (0.006) (0.005) 
Transformed Area-level model 0.034 0.053 0.015 0.008 
 (0.025) (0.040) (0.010) (0.006) 
     

Estimated rank correlation 
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Direct  0.471 0.623 0.363 0.324 
AGEB-level model 0.541 0.750 0.497 0.264 
Transformed Area-level model 0.444 0.652 0.294 0.373 
     

Estimated Pearson correlation     
Direct  0.493 0.659 0.418 0.385 
AGEB-level model 0.553 0.770 0.415 0.614 
Transformed Area-level model 0.405 0.619 0.209 0.384 

 
 
Table A4 in the appendix also presents a comparison of an area-level model using the transformed 
target variable and an area-level model using a linear (untransformed) model. The transformed 
model generally performs better than the linear model, with the possible exception of some female 
LFP statistics (coverage rates, absolute deviation, and correlations). However, the AGEB-level 
model remains the best choice in this context. 
 
Fehler! Verweisquelle konnte nicht gefunden werden. 
5. Conclusion  
 
This paper considers the extent to which combining simulated sample data with publicly available 
geospatial data improves state and municipal estimates of male and female labor force participation 
and unemployment rates. Results are compared against the full 2020 census. The small area 
estimation procedure greatly improves the accuracy and precision of state level estimates for all 
four indicators, as well as municipal estimates of male and female labor force participation. This 
method can therefore be used to obtain more granular information on municipalities with low LFP, 
which can lead to a better understanding of the causes of low female LFP and potential policies to 
address it.  
 
The method does not work nearly as well for estimating urban unemployment, because the values 
for unemployment rates are very low and zero for many clusters in the sample. In this setting, 
linear mixed models do not perform well. Although rank correlations and mean absolute deviations 
both improve, the simple correlation with the census value falls and mean relative bias is very high. 
In all cases except for one, estimates from a model specified at the AGEB level generate more 
accurate predictions than those obtained from an area-level model, with the lone exception being 
when considering the rank correlation for estimated female unemployment rates. Not surprisingly, 
using a hypothetical enumeration of all households in selected clusters dramatically improves the 
accuracy of the estimates. But in this case the small area estimates offer very minor improvements 
in accuracy and precision over direct estimates from the fully enumerated sample.   
 
Non-linear models such as two-part models may be an appealing alternative for small area 
estimation of low-probability events in a sample. In the two-part model, the first part models the 
probability of a positive unemployment rate and the second part models the unemployment rate 
conditional on a positive rate. This is feasible to incorporate in a small area estimation framework, 
but significant effort would be required to implement it in existing software.   
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Another important area for further work is to continue to experiment with additional forms of 
geographically comprehensive auxiliary data to better predict labor market outcomes. This could 
include, for example, information on building footprints or the presence of different types of 
businesses. New types of geospatial data are being released each year that can be incorporated into 
this type of approach.  
 
There is room for further work on model diagnostics. The results of this study demonstrate that R2 
can be a misleading metric for assessing the usefulness of the model, since even models with 
relatively low R2s can contribute important information to reduce bias in the predictions 
(Marhuenda et al., 2017). At the same time, model R2s are much higher in the full enumeration 
sample, but the small area estimates contribute little additional information. An important research 
agenda for further work is to better understand which diagnostic indicators, in cases where census 
data is not available, can provide a rough assessment of the gains from incorporating geospatial 
data.  
 
Another open question is how optimal sample design changes in the presence of free, predictive 
geospatial data that can be linked to surveys. The evidence presented above indicates that estimates 
for sampled municipalities are substantially more accurate than non-sampled municipalities, 
suggesting that surveys should try to cover all target areas if possible. It is not clear, however, how 
the benefit of small area estimation relates to the sampling structure, and what this implies for 
optimally structuring household surveys.    
 
Importantly, it remains to be seen how well the results here will generalize to other contexts. As 
such, it will be important to conduct studies to evaluate the methodology in other settings before 
applying it generally. This is easier said than done, however. In order to validate the methodology, 
it is best to use a census ± or an unusually large survey ±as a measure of ground truth.  Furthermore, 
either the survey or ground truth must have either geolocated enumeration areas or, as in this case, 
highly disaggregated geographic identifiers that can be matched with a shapefile.  
 
A final important issue pertains to the appropriate weighting strategy for the conditional random 
effect models relied upon here and in other small area estimation applications. We make three 
points regarding weights. The first relates to the choice of whether to give equal weight to each 
municipality or to weight by population when evaluating the estimates. We consider only the 
former, as is common in the literature on small area estimation. However, in some policy contexts, 
there is a strong argument that it is more important to generate accurate estimates for more 
populous areas than less populous areas. This is a decision best made based on political rather than 
technical grounds.  
 
Second, properly weighing the estimates of a sub-area model such as this one is not trivial. In this 
case, the weights for each AGEB in the sample were normalized by dividing each weight by its 
municipal average. This ensured that each municipality was given weight proportional to its 
sample size, while appropriately giving more weight to more populous AGEBs within 
municipalities. The latter is important because population weights are used to aggregate AGEB-
level estimates to municipalities. Furthermore, in most sub-area models, it would be beneficial to 
adjust the weights further to correct for heteroscedasticity, to the extent that the number of 
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observations used to construct the sub-area average used as the dependent variable varies across 
observations.  
 
Finally, there are different methods for accounting for weights in conditional random effect models. 
We used a particular method implemented by Pinheiro et al. (2021), although other methods have 
also been proposed and implemented.26 Establishing the pros and cons of different approaches to 
incorporating weights in small area estimation models is an important topic for further research.  
 
  

 
26 See, for example, Skarke and Kreutzmann (2021), who implement the correction for informative sampling 
proposed by Guadaramma et al.(2018).    
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Appendix 
 

Table A1 - Post-lasso regression coefficients for simple random sample models 

 (1) (2) (3) (4) 
 Female 

LFP 
Male 
LFP 

Female 
Unemp 

Male 
Unemp 

 b/se b/se b/se b/se 
Baja California 0.1064** -0.0115 -0.0111 -0.0144 
     
Baja California Sur 0.0495** -0.0263 0.0025 0.0019 
     
Campeche 0.0072 0.0225 0.0040 -0.0065 
     
Coahuila de Zaragoza -0.0318 -0.0515** 0.0031 0.0242* 
     
Colima 0.0654** 0.0122 -0.0088 0.0012 
     
Chiapas 0.0248 0.0239 0.0478** 0.0203 
     
Chihuahua 0.0157 -0.0363** -0.0057 0.0096 
     
Ciudad de México 0.0417 0.0172 -0.0008 -0.0203 
     
Durango -0.0180 -0.0330** -0.0088 0.0380** 
     
Guanajuato 0.0144 -0.0024 -0.0048 0.0104 
     
Guerrero 0.0854** 0.0092 0.0006 0.0108 
     
Hidalgo 0.0439** -0.0085 -0.0020 -0.0099 
     
Jalisco 0.0517** 0.0222 -0.0227** -0.0266* 
     
México -0.0075 -0.0008 -0.0015 0.0060 
     
Michoacán de Ocampo 0.0518** 0.0336* -0.0080 0.0030 
     
Morelos 0.0819** 0.0141 0.0277* 0.0156 
     
Nayarit 0.0994** 0.0113 -0.0115 -0.0163 
     
Nuevo León -0.0037 -0.0123 -0.0073 -0.0003 
     
Oaxaca 0.0917** -0.0013 -0.0108 0.0020 
     
Puebla -0.0005 0.0289* -0.0031 0.0054 



 

 

     
Querétaro 0.0596** 0.0483** -0.0129 0.0058 
     
Quintana Roo 0.0659** 0.0464* 0.0055 -0.0115 
     
San Luis Potosí 0.0318* -0.0109 -0.0032 0.0078 
     
Sinaloa 0.0385 -0.0368* -0.0077 -0.0162 
     
Sonora 0.0463* -0.0466** 0.0012 0.0335* 
     
Tabasco 0.0014 0.0062 0.0153 0.0425* 
     
Tamaulipas 0.0129 -0.0045 0.0089 0.0187 
     
Tlaxcala 0.0222 0.0312* 0.0174 0.0450** 
     
Veracruz 0.0350* 0.0031 0.0070 0.0261* 
     
Yucatán 0.0219 0.0233 -0.0163 -0.0171 
     
Zacatecas -0.0235 -0.0499** -0.0104 0.0241 
     
Share of AGEB classified as cropland -0.0003    
     
Share of AGEB classified as urban -0.0004**    
     
Mean NDVI -0.2772**    
     
Median NO2 57.5187    
     
Number of untagged roads 0.0012    
     
Number of platforms/bus stops 0.0001    
     
Number of residential roads 0.0064*    
     
Number of secondary roads 0.0030 -0.0067**   
     
Number of service roads -0.0009    
     
Number of unclassified roads -0.0025  -0.0004  
     
Length of untagged highways 0.0001    
     
Length of footways 0.0008 -0.0031**  -0.0005 
     



 

 

Length of living streets 0.0011    
     
Length of paths/trails -0.0007 0.0004   
     
Length of primary highways 0.0008   -0.0003 
     
Length of primary link highways 0.0003    
     
Length of tertiary link roads 0.0027    
     
Number of mini roundabouts 0.0122    
     
Number of emergency escape ramps in 
municipality 

-0.0001    

     
Number of roads in municipality 0.0000    
     
Number of trunk roads in municipality 0.0000    
     
Total length of crossings in municipality 0.0009**    
     
Total length of motorways in municipality -0.0000**    
     
Number of untagged highway points in 
municipality 

0.0016 0.0046   

     
Number of crossings in municipality -0.0017    
     
Number of give way signs in municipality -0.0257*    
     
Number of residential highways in municipality 0.0025    
     
Number of townhalls in municipality -0.0032 -0.0037   
     
Number of public marketplaces in municipality -0.0022    
     
Number of places of worship in municipality 0.0067    
     
Number of fountains in municipality 0.0028    
     
Number of miscellaneous companies in 
municipality 

-0.0030    

     
Mean nighttime lights in municipality -0.1097 -0.0013   
     
Median nighttime lights in municipality 0.1446*  0.0031  
     



 

 

Mean year of switch to impervious surface in 
municipality 

-0.0024**    

     
Share of bare land cover in municipality 0.0009 0.0109*   
     
Share of tree land in municipality 0.0019    
     
Standard deviation of vegetation index in 
municipality 

0.4751**    

     
Earliest year of switch to impervious surface in 
municipality 

0.0018 0.0070**   

     
Latest year of switch to impervious surface in 
municipality 

0.0094** 0.0078**  0.0010 

     
Log of geographic area of municipality 0.0121**    
     
Number of steps in municipality  0.0019**   
     
Number of schools in municipality  0.0014**   
     
Number of bus stations in municipality  -0.0395   
     
Median year of switch to impervious surface in 
municipality 

 -0.0029 -0.0020  

     
Share of shrub land in municipality  -0.0006   
     
Minimum nighttime lights in municipality  -0.0006   
     
Number of secondary link roads  -0.0080**   
     
Number of trunk roads  0.0000   
     
Share of urban land in municipality  -0.0006   
     
Std Dev of No2 levels in municipality  -0.0100*   
     
Intercept  -0.0013   
     
Number of observations 7,733 7,733 7,727 7,733 
     
R-squared 0.1258 0.0623 0.0189 0.0220 
     
Dependent variable is transformed rate, transformed using arcsine transformation. * 0.05 ** 0.01  

 



 

 

 
Table A2 ʹ Shapley decompositions of R2: post-lasso regression results 

 
 Female  

LFP 
Male  
LFP 

Female 
Unemp. 

Male 
Unemp. 

State dummies  25.3% 27.1% 62.9% 73.4% 
Area of municipality 11.5%  0.5%  
Land Cover  4.6% 27.3% 7.7% 1.2% 
Vegetation Index 10.2%  0.7% 2.3% 
Night-time lights  11.3% 1.6% 14.0% 14.9% 
Pollution     2.0% 
Year of switching to impervious surface 9.0% 7.7% 2.5% 2.4% 
Population  0.9% 6.2% 1.4%  
Highway counts  5.7% 3.5% 3.9% 2.7% 
Highway lengths  4.2% 7.6% 3.9% 1.6% 
Points of interest counts 9.5% 13.7% 0.4%  
Amenity counts 7.9% 5.4% 2.2%  

 
 
  



 

 

Figure A1 - Quantile-quantile plots of residuals using simple random sample 
 

Male LFP Female LFP 

    
Male unemployment Female unemployment 

    
 

 
  



 

 

Figure A2 - Quantile-quantile plots of residuals using full enumeration sample 
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Table A3 ± Aggregating municipality point estimates to state level 
 (1) (2) (3) (4) 
 Male LFP Female 

LFP 
Male 

Unemp 
Female 
Unemp 

Estimated mean absolute error     
Direct 0.0179 0.0193 0.0048 0.0032 
SAE ± State level 0.0088 0.0073 0.0023 0.0024 
SAE ± Muni aggregation 0.0091 0.0117 0.0023 0.0023 

Median estimated relative bias     
Direct 2.1164 -3.0573 -10.7269 -12.3980 
SAE ± State level -0.0757 -0.4322 1.5223 15.1544 
SAE ± Muni aggregation -0.1279 -1.9771 -0.1216 14.1461 

Estimated rank correlation     
Direct 0.5652 0.7933 0.7911 0.6635 
SAE ± State level 0.7185 0.9498 0.8867 0.7529 
SAE ± Muni aggregation 0.7243 0.9380 0.8904 0.7775 

Estimated Pearson correlation     
Direct 0.6048 0.8141 0.7528 0.6506 
SAE ± State level 0.7614 0.9583 0.8698 0.5467 
SAE ± Muni aggregation 0.7441 0.9506 0.8884 0.5652 

States 32 32 32 32 
 
 

Table A4 ± Fay-Herriot with arcsine transformation 
 (1) (2) (3) (4) 
 Male LFP Female 

LFP 
Male 

Unemp 
Female 
Unemp 

Coverage rates     
F-H linear model 0.396 0.909 0.001 0.174 
F-H arcsine transformation 0.887 0.823 0.804 0.842 

Median relative bias     
F-H linear model 1.435 -6.127 -100.000 -100.000 
F-H arcsine transformation 0.717 -1.784 -51.308 -76.510 

Median absolute deviation     
F-H linear model 0.025 0.039 0.021 0.008 
F-H arcsine transformation 0.025 0.040 0.010 0.006 

Estimated rank correlation     
F-H linear model 0.319 0.723 0.193 0.356 
F-H arcsine transformation 0.444 0.652 0.294 0.373 

Estimated Pearson correlation     
F-H linear model 0.343 0.708 -0.012 0.155 
F-H arcsine transformation 0.405 0.619 0.209 0.384 

 
 
 


