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ABSTRACT

IZA DP No. 15380 JUNE 2022

A Model of Errors in BMI Based on Self-
Reported and Measured Anthropometrics 
with Evidence from Brazilian Data*

The economics of obesity literature implicitly assumes that measured anthropometrics are 

error-free and they are often treated as a gold standard when compared to self-reported 

data. We use factor mixture models to analyse and characterize measurement error in both 

self-reported and measured anthropometrics with national representative data from the 

2013 National Health Survey in Brazil. Indeed, a small but statistically significant fraction 

of measured anthropometrics are attributed to data-recording errors. The estimated mean 

body weight (height) for those cases that are subject to error is 10% higher (2.9% lower) 

than the estimated mean of latent true body weight (height). As they are imprecisely 

measured and due to individual’s reporting behaviour, only between 10% and 24% of 

our self-reported anthropometrics are free from any measurement error. Post-estimation 

analysis allows us to calculate hybrid anthropometric predictions that best approximate the 

true body weight and height distribution. BMI distributions based on the hybrid measures 

are close to those based on measured data, while BMI based on self-reported data under-

estimates the true BMI distribution. Analysis of regression models for health care utilization 

shows little differences between the relationship with BMI when it is based on measured 

data or on our hybrid BMI measure, however some differences are observed when both are 

compared to BMI based on self-reported data.
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1. Introduction 

 

Obesity is a strong predictor of overall mortality (Li et al., 2021; Prospective Studies 

Collaboration et al., 2009) and an important risk factor for several noncommunicable 

diseases such as cardiovascular diseases, diabetes, musculoskeletal disorder, and some 

cancers (Lin et al. 2020). A large literature has explored the economic and social 

ramifications of obesity, such as poorer labour market outcomes, increased health care 

utilization and associated public health costs (e.g., Cawley, 2004; Cawley, 2015; Rooth, 

2009). Moreover, studies have investigated and measured socioeconomic inequalities in 

obesity (e.g., Bilger et al., 2017; Davillas and Benzeval, 2016; Zhang and Wang, 2004). 

Many studies in the economics of obesity literature and beyond are based on self-

reported body weight and height, that are used to calculate the Body Mass Index (BMI). 

Given recent advances in data collection for large scale social science surveys, there are 

some studies that allow for measured anthropometrics instead (e.g., Cawley, 2015; Cawley 

et al., 2015; Davillas and Jones, 2021; Gil and Mora, 2011). Studies that analyse 

measurement error in anthropometric data typically compare self-reports and measured 

anthropometric data (e.g., Davillas and Jones, 2021; Gil and Mora, 2011; 2·1HLOO� DQG�
Sweetman, 2013). These raise concerns regarding measurement error in self-reported 

anthropometric data and its potential implications for research when BMI is based on 

self-reported data as opposed to measured anthropometrics. These studies argue that 

measurement error in BMI based on self-reports is non-classical and is associated with 

LQGLYLGXDO·V�VRFLRHFRQRPLF�FKDUDFWHULVWLFV� �&DZOH\�HW�DO�������; Gil and Mora, 2011) as 

well as with within-KRXVHKROG�SHHUV·�WUXH�%0,��'DYLOODV�DQG�-RQHV�������� 
Self-reported anthropometric data is a likely source of measurement error, but an 

assumption of this literature is often that measured anthropometric data is error-free. 

However, the accuracy of measured anthropometrics may be affected by other sources of 

non-sampling errors. For instance, recent evidence has documented the influence of 

interviewers on reliability of measured and self-reported body height data in different 

surveys (e.g., Finn and Ranchhod, 2017; Olbrich et al., 2021). Potential sources of 

measurement error in measured anthropometric data are relevant to both unintentional 

(such as accidental recording errors) and intentional (i.e., fabricating parts of the 

measurement or even conducting measurements without the intended respondent) 

recording errors that may affect the measurement of anthropometrics (e.g., Finn and 

Ranchhod, 2017; Groves, 2005; Olbrich et al., 2022). It has been argued that often 

interviewers have an incentive to shorten interviews to increase their hourly wage (more 
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so in the case of skipping/fabricating time consuming measurements). This behaviour may 

not be easy to detect if they visited the household and conducted (part) of the interview 

(Olbrich et al., 2022). More broadly, the literature has discussed the presence of 

measurement error in more objectively measured nurse-collected and blood-based health 

data (Davillas and Pudney, 2020a, 2020b). These studies use latent variable models to 

account for measurement error, but they do not aim to explicitly model measurement error 

or to explore its potential implications for econometric models. Overall, there is limited 

analysis and modelling of the extent of measurement error in measured anthropometrics 

in existing research. 

Our paper contributes to the literature in various ways. We model potential 

measurement error in both self-reported and measured anthropometrics (i.e., body weight 

and body height). We use data from the 2013 National Health Survey (Pesquisa Nacional 

GH�6D~GH ² 2013 PNS) of Brazil, which is a nationally representative dataset that allows 

for measured and self-reported data on body weight and height to be collected from the 

same individuals within the span of a household interview. In Brazil, obesity has 

systematically increased since the 2010s, with one in every five adults experiencing 

obesity (Trianca et al., 2020). Projections of the obesity-related costs in Brazil show that 

the annual health care costs may double from 2010 ($5.8 billion) to 2050 ($10.1 billion) ɔ�
a total health care cost of $330 billion over 40 years (Rtveladze et al., 2013). As such, 

obesity is an important public health concern for Brazil. 

To analyse measurement error in the Brazilian data we use a factor mixture model, 

initially proposed by Kapteyn and Ypma (2007); this Kapteyn and Ypma (KY) factor 

mixture model is applied and extended by Jenkins and Rios-Avila (2020) and Jenkins and 

Rios-Avila (2021a, 2021b) to analyse measurement error in self-reported and 

administrative income data. To the best of our knowledge, the KY factor mixture model 

has not been used to analyse measurement error in both self-reported and measured 

anthropometric data. Unlike the existing literature, that assumes no measurement error 

in measured body weight and height data, our analysis allows us to model different types 

of errors in both self-reported and measured anthropometrics. Specifically, we test the 

hypothesis that measured anthropometrics encompass data-recording errors. Moreover, 

the self-reported anthropometric data are assumed to be subject to a wider set of 

measurement errors. These include the precision of the scale for the self-reported data, 

which are only recorded as whole numbers (in cm or Kg), non-classical mean-reverting 

errors, and any other type of remaining errors.  
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Our analysis also allows us to estimate the probability of the occurrence of each 

type of measurement error in both self-reported and measured data. Of particular 

interest, given that measured anthropometric data are often implicitly considered as 

error-free (e.g., Cawley, 2015; Davillas and Jones, 2021; Gil and Mora, 2011), our results 

suggest that a small but systematic fraction of measured anthropometrics contain data 

recording errors. Turning to self-reported weight and height, the estimated probability 

that the self-reported anthropometrics equal the true body weight and height (i.e., they 

are free from any measurement error) are relatively low at about 10% and 24%, 

respectively.  

Post-estimation analysis allows us to generate a set of predictions of the 

distribution of the true latent weight and height data that combine information from both 

self-reported and measured anthropometrics. Based on reliability and mean square errors 

estimated using simulated out of the sample predictions, we select the best performing 

prediction of true latent weight and height distributions. After choosing our preferred 

prediction, our sample data are used to compute body weight and height measures that 

approximate the true values; these are then used to calculate our proxy of the true BMI 

distribution.  

Finally, we compare the distributions of BMI using self-reported, measured and 

our proxy of true BMI; the latter is very close to the distribution of BMI based on measured 

anthropometrics, while the BMI based on self-reported data under-estimates the true 

BMI distribution. In addition, we provide evidence to explore the potential implications 

of the measurement error in both self-reported and measured anthropometrics for 

economics research; we compare results when each of the self-reported, measured and 

hybrid BMI measures are used as explanatory variables in linear regression models for 

the frequency of hospital admissions in the past 12 months. We find little difference in 

the results between the hybrid BMI measure and the one based on measured 

anthropometrics.  

The rest of the paper is organized as follows. Section 2 present the methods used 

in our study to analyse measurement error in both self-reported and measured 

anthropometric data. Our data source and descriptive statistics are presented in Section 

3. The results of our analysis, post-estimation predictions and a preliminary analysis of 

the potential implications on measurement error in both self-reported and measured 

anthropometrics for economic research are presented in Section 4. Section 5 concludes 

and provides a summary of our findings.  
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2. Methods 

 

To model the relationship between measured and self-reported anthropometrics we adapt 

the factor mixture model initially proposed by Kapteyn and Ypma (2007). This model has 

been applied and extended by Jenkins and Rios-Avila (2020) and Jenkins and Rios-Avila 

(2021a, 2021b) to analyse measurement error in income data. For the needs of this study, 

we employ the KY model to model measurement error in both self-reported and measured 

anthropometric data, on weight and height, using the 2013 National Health Survey of 

Brazil.  

 We assume that the true values of each anthropometric measure (weight and 

height) for an individual ݅ ሺߦ௜ሻ are unobserved, but we can observe both measured ሺݎ௜ሻ and 

self-reported ሺݏ௜ሻ anthropometrics. In the case of measured anthropometrics, we assume 

that the distribution of each anthropometric measure is a mixture of two types of 

observation: 

 

௜ݎ ൌ ൜���
௥ߨ������������������������௜ߦ

௜�����������������ሺͳߞ���� െ ௥ሻߨ
                                                              (1) 

 

where, measured anthropometrics ሺݎ௜ሻ equals the true value with probability ߨ௥ (case R1)1. 

However, measured anthropometrics may be not equal to the true value for certain 

respondents with probability ͳ െ  ௜ሻ isߞ௥ (case R2); thus, an error-ridden measure ሺߨ

observed in this case. Recording errors (either unintentional or intentional) are assumed 

to be the source of measurement error here. Intentional errors by interviewers (i.e., 

fabricating parts of the interview) may be a source of error here which is  hard to separate 

from unintentional interviewer errors. It has been argued that there are significant 

incentives for interviewers to skip parts of interviews that may be more time consuming 

(as with the measurement of anthropometrics) or even fabricate the measurement of 

anthropometrics (Finn and Ranchhod, 2017; Olbrich et al., 2022). In the spirit of the KY 

factor mixture model, this erroneous anthropometric measure, which is incorrectly 

attributed to individual ݅,  is denoted by ߞ௜. The true values and those with recording 

errors are both assumed to be independently and identically normally distributed: 

 
1 An implicit assumption here is that the true values have the same precision as the measured 
values; in our case, this implies an accuracy of one decimal point as measured anthropometric data 
(in cm for height and Kg for weight) are recorded to the first decimal point. In contrast the self-
reported measures are reported as whole numbers.  
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కǡߤ௜̱ܰ൫ߦ కߪ
ଶ൯, ߞ௜̱ܰ൫ߤ఍ǡ  ௜ is a mixture ofݎ ఍ଶ൯; this implies that the marginal distribution ofߪ

two normals. Given the type of errors that are captured byߞ�௜, as described above, we 

assume that there is no correlation between ߦ௜ and ߞ௜2. The assumption that the erroneous 

measurements are uncorrelated with the true values contributes to the identification of 

the full model as it implies that these measurements are also uncorrelated with the self-

reported anthropometrics. 

 Each of our self-reported anthropometrics (i.e., weight and height) are assumed to 

be a mixture of three types of observation: 

 

௜ݏ ൌ ቐ������
௦ߨ������������������������������������������������௜ߦ

௜ߦ������������� ൅ ௜ߟ ൅ ௜ߦ൫ߩ െ క൯������������������������������ሺͳߤ െ ௦ሻሺͳߨ െ ఠሻߨ
௜ߟ�௜൅ߦ ൅ ௜ߦ൫ߩ െ క൯ߤ ൅ ߱௜����������������������ሺͳ െ ఠߨ௦ሻߨ

   (2) 

 

Specifically, we assume that each of our self-reported anthropometrics ሺݏ௜ሻ equals the true 

latent value ሺߦ௜ሻ with probability ߨ௦ (case S1). The self-reported values are recorded as 

integer values so this case only applies when the true value is a whole number3. Otherwise 

(cases S2 and S3), there must be some imprecision in ݏ௜ due the scale of measurement. 

This imprecision, reflecting the different ways in which respondents may round their 

responses to whole numbers along with random noise in the self-reports, is captured by 

the error term ߟ௜. This error is independent of the true value ሺߦ௜ሻ. In addition, as in the 

KY factor model, we allow for the possibility of non-classical mean-reverting (or mean-

diverging) error (survey measurement error, which is captured by term ߩ൫ߦ௜ െ క൯Ǥߤ 4 The 

second case (S2), which allows for both of these sources of error, occurs with probability 

ሺͳ െ ௦ሻሺͳߨ െ ఠሻ. The third case (S3), which occurs with probability ሺͳߨ െ  ௪, adds aߨ௦ሻߨ

third source of measurement error ሺ߱௜ሻ to allow for additional random noise that may 

occur in some observations who make additional errors in their self-assessments of height 

 
2 Even in the case of fabricated interviews or when anthropometric measurement are not conducted 
for the intended respondent (as described above), this may be a strong assumption in the case that 
quality control takes place, where the self-reported values are compared to the measured values 
(or other quality control checks took place) to define excess measurement error cases in the 
measured anthropometric data. However, there is no such quality control undertaken in the 
dataset used in our analysis (as well as in many other multipurpose social science datasets that 
collect anthropometrics).   
3 Self-reported anthropometrics are collected as integer values (cm for height and Kg for weight), 
while the corresponding measured values are measured to one decimal point. In those cases where 
the respondent provided a non-integer value of their self-reported body weight and/or height (for 
example 61.5Kg), the interviewer recorded an integer value (such as 61Kg or 62Kg).  
4 Mean reversion ሺߩ ൏ �Ͳሻ means that respondents with high (low) values of true anthropometric 
measures, relative to the true mean, tend to under-report (over-report) their body weight and 
height in self-reports; the opposite is the case for mean divergence ሺߩ ൐ �Ͳሻ. 
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or weight.  The measurement errors are both assumed to be independently and identically 

normally distributed: ߟ௜̱ܰ൫ߤఎǡ ఠǡߤఎଶ൯, and ߱௜̱ܰሺߪ   .ఠଶሻߪ

The full KY model defines a mixture of six latent classes that correspond to the 

combination of cases R1 or R2 with S1, S2 or S3. Table 1 describes all the potential latent 

classes. For instance, the class 1 (R1, S1) consists of error-free self-reported (S1) and 

measured (R1) data and occurs with probability ߨ௥ߨ௦. The full model is a mixture of the 

six bivariate normal distributions for the observed outcome pairs (ݎ௜, ݏ௜), each with 

different means and covariance matrices (see Jenkins and Rios-Avila,2020,2021a and 

Kapteyn and Ypma,2007 for full details).  

The parameter estimates (for Eqs. 1 and 2.) are obtained by maximizing the model 

log-likelihood (see Kapteyn and Ypma, 2007, Appendix B), with identification relying on 

the existence RI�WKH�´FRPSOHWHO\�ODEHOOHGµ�JURXS that contains observations with error-free 

anthropometrics (class 1: R1-S1). Parameters ߤక and ߪక
ଶ are identified from these 

´FRPSOHWHly ODEHOOHGµ� REVHUYDWLRQV and this contributes to identification of the other 

unknown parameters from the mixture of normals implied by the model specification (see 

Kapteyn and Ypma (2007) for further details on identification). Kapteyn and Ypma (2007) 

provide the expressions for the probability density functions and the associated log-

likelihood function. Employing Jenkins and Rios-Avila·V (2021c) user-written Stata 

command, we fit the full Kapteyn and Ypma (2007) model by maximum likelihood, 

assuming that the sample likelihood function is a finite mixture of latent class 

distributions. Our analysis is done separately for each of our anthropometric measures, 

i.e., for weight and height.5  

As a post-estimation exercise, we generate predictions of the distribution of the 

true latent weight and height (e.g., Meijer et al., 2012). In line with Jenkins and Rios-

Avila (2021b), we employ the most reliable prediction among all the potential hybrid 

measures of weight and height and then calculate BMI as weight (in Kg) over the square 

of height (in metres). We compare the distributions of hybrid, self-reported, and measured 

BMI. In addition, we provide some evidence to explore the implications of the 

measurement error in both self-reported and measured anthropometrics for empirical 

research; we compare results when each of the self-reported, measured and hybrid BMI 

 
5 As we have no information about interviewer characteristics to parameterise measurement error 
in measured anthropometrics and given the existing evidence that interviewer characteristics may 
not only affect measurement error in measured but also in self-reported anthropometrics (see 
Olbrich et al., 2022), we decided not to include covariates in our analysis. This is in line with the 
existing literature that uses KY models to model measurement error in self-reported and 
administrative income data (Jenkins and Rios-Avila, 2020; 2021a).  
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measures are used as explanatory variables. If measurement error is non-classical, i.e., 

systematically associated with the measured values, it may cause bias in regression 

models that use anthropometrics as a regressor, even in the case where instrumental 

variable analysis is employed to deal with endogeneity or errors-in-variables (Cawley et 

al., 2015; 2·1HLOO�DQG�6ZHHWPDQ�����3). 

 

Table 1: Groups (latent classes) in mixture model of self-reported and measured 
anthropometrics.  

 

Groups ሺ࢏ሻ Types Probability ൫࢐࣊൯ 
1 R1,S1 ߨ௥ߨ௦ 
2 R1,S2 ߨ௥ሺͳ െ ௦ሻሺͳߨ െ  ௪ሻߨ
3 R1,S3 ߨ௥ሺͳ െ  ఠߨ௦ሻߨ
4 R2,S1 ሺͳ െ  ௦ߨ௥ሻߨ
5 R2,S2 ሺͳ െ ௥ሻሺͳߨ െ ௦ሻሺͳߨ െ  ఠሻߨ
6 R2,S3 ሺͳ െ ௥ሻሺͳߨ െ  ఠߨ௦ሻߨ

 

 

3. Data  

 

Data on self-reported and measured anthropometrics are extracted from the 2013 

National Health Survey of Brazil (3HVTXLVD�1DFLRQDO�GH�6D~GH ² 2013 PNS).6 This is a 

cross-sectional, nationally representative dataset for all Brazilian states and geographic 

regions. The survey focuses on access and use of health care services, population health 

conditions, and surveillance of chronic non-communicable diseases and their associated 

risk factors. The 2013 PNS collects demographics and socioeconomic characteristics of all 

household members. For each household, a randomly selected household member aged 18 

or older is chosen for their body weight and height to be measured along with self-reports 

of the same anthropometrics. This results in a working sample of 37,335 PNS 

respondents, men and non-pregnant women aged 20 or older, with valid self-reported and 

measured weight and height data. We focus on adults (aged 20+) to avoid any puberty-

related changes in body-size.  

 

 

 

 
6 The 2013 National Health Survey of Brazil is publicly available online: 
https://www.ibge.gov.br/estatisticas/sociais/saude/9160-pesquisa-nacional-de-
saude.html?=&t=microdados. 

https://www.ibge.gov.br/estatisticas/sociais/saude/9160-pesquisa-nacional-de-saude.html?=&t=microdados
https://www.ibge.gov.br/estatisticas/sociais/saude/9160-pesquisa-nacional-de-saude.html?=&t=microdados
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3.1 Self-reported and measured body weight and height data  

 

Self-reported body weight and height data are collected as part of the survey 

questionnaire. Measured weight and height are collected twice by a trained survey team 

member at the end of the questionnaire. Weight is measured by a portable digital scale, 

following standard measurement protocols which require that the respondents remove 

their shoes, heavy clothes, accessories, and objects from their pockets (PNS, 2013). 

Following common practice in the literature, when measured health data are used, we 

take the second measurement for weight and height for our base case analysis (e.g., 

Johnston et al., 2009; Davillas and Pudney, 2017). A sensitivity analysis is done using the 

average of the two measures.  

For height, a portable stadiometer is used to measure stature (PNS, 2013). 

Measurement protocols for body height require that the respondent must remove their 

shoes and other accessories, if possible, and keep at least three points of the body on the 

posterior surface of the stadiometer (PNS, 2013).  

Although the standard measurement protocols for weight and height facilitate 

measurement of anthropometric data with limited errors, we cannot rule out the 

possibility of both intentional and unintentional data recording errors relevant to 

potentially fabricated anthropometric measurements.  For example, even the 

methodological notes of our dataset acknowledge and acknowledge the role of the 

interviewer and their competence as a potential source of error in the measured 

anthropometric data (PNS, 2016). It also well documented in the literature that self-

reported data on anthropometrics suffer from potential measurement error (e.g., Cawley 

et al., 2015; Davillas and Jones, 2021). Our analysis allows for modelling of all these 

sources of non-sampling errors in the measured anthropometrics along with measurement 

errors in the self-reported anthropometric data. 

 

3.2 Descriptive statistics 

 

Figure 1 displays the kernel density function for self-reported and measured body weight 

and height, as well as for BMI created from the measured and self-reported 

anthropometrics; they show a high degree of congruence between the measured and self-

reported outcomes. Body height data have approximately normally shaped distributions, 

although right skewed distributions are observed for the case of body weight and BMI. 

This is important as our model assumes normality for the factor distributions and 
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identification of the components of the mixture of normals stems from non-normality in 

the (joint) distribution of observed outcomes. 

 

 

 
Figure 1. Kernel densities: body weight, height, and BMI 

 

 
  

 

 

Descriptive statistics of the self-reported and measured weight and height data as 

well as for BMI measures are presented in Table 2. The mean self-reported weight 

(71.5Kg) is slightly smaller than the mean measured weight (72Kg). Mean self-reported 

height is 0.8cm higher than measured height. Table 2 also shows that the mean absolute 

difference between the self-reported and measured data (expressed in terms of % of the 

measured values) is about 3% for body weight, 1% for height and 4.5% for the derived BMI 

measure.   
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Table 2. Descriptive statistics and difference between measured and self-reported data. 

 Weight (Kg) Height (cm) BMI (Kg/m2) 
Measure Mean SD Mean SD Mean SD 
Self-reported 71.5 14.6 165.2 9.5 26.2 4.7 
Measured 72.0 15.0 164.4 9.5 26.6 4.9 
Raw difference� (measured²self-reported) 0.4 3.8 -0.8 3.7 0.4 1.8 
Absolute difference 2.2 3.1 2.2 3.1 1.2 1.5 
Absolute difference (% measured) 3.1 4.4 1.4 1.9 4.5 5.3 
� The raw difference is calculated as the difference of measured from self-reported data. The 
absolute difference takes the absolute value of this difference.  

 

In line with Figure 1, scatter plots of measured versus self-reported data (Figure 

2) show that there is a positive and high correlation between the self-reported and 

measured anthropometrics. However, there is a far from perfect match given the large 

dispersion of individual observations around the 45-degree line. The greater number of 

observations above the reference line for body weight supports the evidence that people 

tend to under-report their weight in self-reports as opposed to measured body weight data 

(Figure 2a). The reverse is observed for height (Figure 2b). Consequently, our results for 

the derived BMI shows that, for the Brazilian population, BMI is in more cases lower 

when computed from self-reported weight and height data as opposed to measured data 

(Figure 2c).7  

 

Figure 2. Scatter plots: self-reported and measured body weight, height, and BMI. 
 

 

 
7 Specifically, the fraction of respondents that under-report (over-report) their body weight, versus 
WKH�UHOHYDQW�PHDVXUHG�GDWD��LV������������+RZHYHU������������RI�UHVSRQGHQWV·�RYHU-report (under-
report) their height in self-reports as opposed to measured data.  
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4. Results 

 

4.1 Estimates of structural parameters 

 

Table 3 presents the estimates for the KY model. Following Jenkins and Rios-Avila (2020), 

the completely labelled observations are defined as those observations with ȁݎ௜ െ ௜ȁݏ ൑  .ߜ

Our baseline model (Table 3) assumes ߜ ൌ Ͳ, i.e., the completely labelled observations are 

only those with no differences between self-reported and measured values. Under this 

demanding requirement, given the differences in precision of the scales used for measured 

and the self-reported outcomes, the completely labelled cases represent just 10% and 23% 

of our observations for weight and height respectively. Sensitivity analysis is also 

conducted to test the robustness of our results when this requirement is relaxed.  

Table 3 shows that the mean of latent true body weight ൫ߤక൯ is 71.9Kg 

ሺߪ��������������������������క ൌ �ͳͶǤͻሻ. The distribution of the latent true weight has a 

higher mean (by about 0.4Kg) than the mean of self-reported body weight (Table 2); the 

p-value for the difference in means < 0.01. The estimated mean of true body height is 

164.5 cm ሺߪ��������������������������క ൌ �ͻǤͶሻ. This value is lower (by -0.7 cm) than the 

mean of the self-reported height (Table 2).  

The probability ሺߨ௥ሻ�that measured weight and height reflect the corresponding 

true values is high: 98.6% for weight and 96.7% for height. This indicates that data- 

recording-related errors in measured body weight and height data occur with a low, but 

systematically different from zero, probability ሺͳ െ  ௥ሻ of about 1.4% (p-value < 0.01) andߨ

3.3% (p-value < 0.01), respectively. Error-prone measurement of body weight (due to data 

recording errors) leads to an estimated mean ൫ߤ఍൯ of 78.9Kg for these erroneous 

observations, which is 7Kg (or almost 10%) higher than the estimated mean of true 

weight; data recording error in measured weight is also associated with a higher standard 

deviation ൫ߪ఍ ൌ ͳͻǤͶ൯ compared to the estimated true weight distribution ൫ߪక ൌ ͳͶǤͻ൯. 

Measured body height that is subject to potential data recording error has an estimated 

mean ൫ߤ఍൯ for the erroneous observations of 159.8cm, which is lower than the estimated 

mean of the true height (by about 4.7cm, i.e., 2.9% of the mean of the true height), as well 

as having a lower estimated standard deviation compared to the true height distribution 

఍ߪ) ൌ ͺǤͻ compared to ߪక ൌ ͻǤͶ).  

Turning to self-reported weight and height, the estimated probability ሺߨ௦ሻ�that the 

self-reported anthropometrics equal the true body weight and height (i.e., they are free 
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from any measurement error) are, as expected given the difference in precision of the two 

measures, relatively low at about 10% and 24%, respectively. Table 3 shows that mean 

reversion ሺߩሻ in case of both self-reported body weight and height data is small in 

magnitude (close to zero) although statistically significant at the 1% level. Error due to 

the reporting precision (collected as integer values only) in self-reported body weight and 

height data have mean values ൫ߤఎ൯; of -0.33Kg and 0.4cm for weight and height, 

respectively. The estimated probability of the Case S2 type of observations, 

ሺͳ െ ௦ሻሺͳߨ െ  ,ఠሻ, is about 62% and 44% for weight and height, respectively. Moreoverߨ

Table 3 shows that the probability ሺͳ െ  ఠ that self-reported anthropometric dataߨ௦ሻߨ

contains additional measurement error, Case S3, is about 28% for self-reported weight 

and 31% for self-reported height.  

Table 3 (Panel B) presents estimates of the membership probabilities for the six 

latent classes (as described in Table 1). The first latent class consists of error-free self-

reported (S1) and measured (R1) anthropometric data with a probability of 10% for body 

weight and 23% for height. These correspond to cases where the measured and the self-

reported values equal the same whole number (i.e., cm for height and Kg for weight). The 

probability that there are error-free measured anthropometrics and survey reporting 

error in self-reported anthropometrics is about 61% for weight and 43% for height 

൫ܲݎሺܴ ൌ ͳǡ ܵ ൌ ʹሻ൯Ǥ�The probability of error free measured anthropometrics and additional 

reporting error, corresponding to the third latent class, is 27% for weight and 30% for 

height. Regarding the remaining latent classes, where there are data recording errors in 

measured anthropometrics, we find small probabilities. For instance, the probability that 

weight and height observations contain error in the self-reported data and data recording 

errors in the measured anthropometrics, corresponding to the fifth latent class 

൫ܲݎሺܴ ൌ ʹǡ ܵ ൌ ʹሻ൯, is 0.9% and 1.5% for weight and height, respectively. Overall, these 

results indicate that, although there are non-negligible data recording errors in measured 

body weight and height data (about 7kg and 4.7cm difference on average as compared to 

true body weight and height, respectively), their probability of occurrence is small.    

We conducted a sensitivity analysis, where measured body weight and height data 

are rounded to the nearest integer (Table A1, Appendix); this allows us to have the same 

scale in measured and reported data, but it masks the part of measurement error that is 

attributable to lack of precision in the recording of the self-reported data. There are 

differences in the six latent classes probabilities, reflecting the difference in the proportion 

of completely labelled cases ൫ܲݎሺܴ ൌ ͳǡ ܵ ൌ ͳሻ൯. For instance, the increase in the 

probability of completely labelled cases as opposed to the case of our base case results 
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(from 10% in the base case to 26.3% for the sensitivity analysis for weight; and, from 

23.3% to 32.4% for height), is reflected in the reduction in the latent class probabilities for 

classes two and three (Table 3 vs Table A1).  

Finally, we conducted a sensitivity analysis to explore whether our base-case 

results presented in Table 3 are sensitive to using the average of the two weight and 

height measurements to define measured anthropometrics (for the mixture models). The 

corresponding parameter estimates, and latent class probabilities (Table A2, Appendix) 

are practically identical to those presented in Table 3.   
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Table 3: Estimates of our factor mixture model for body weight and height. 

 
Weight 

(Kg) 
Height 

(cm) 
Panel A: Parameters   

 ***క 71.911*** 164.518ߤ
 (0.077) (0.050)    
 ***క 14.853*** 9.448ߪ
 (0.055) (0.035)    
 ***఍ 78.892*** 159.767ߤ
 (1.099) (0.395)    
 ***఍ 19.395*** 8.895ߪ
 (0.728) (0.261)    

 ***ఎ -0.328*** 0.400ߤ
 (0.014) (0.024)    
 ***ఎ 1.636*** 1.837ߪ
 (0.018) (0.027)    

 ***ఠ -0.333*** 1.185ߤ
 (0.067) (0.070)    

 ***ఠ 5.127*** 4.469ߪ
 (0.085) (0.074)    
 ***௥ 0.986*** 0.967ߨ
 (0.001) (0.002)    
 ***௦ 0.101*** 0.241ߨ
 (0.002) (0.002)    

 ***ఠ 0.306*** 0.414ߨ
 (0.007) (0.011)    
 ***0.037- ***0.024- ߩ
 (0.001) (0.002)    

Panel B: Class probabilities   
ሺܴݎܲ ൌ ͳǡ ܵ ൌ ͳሻ 0.100*** 0.233*** 

 (0.002) (0.002) 
ሺܴݎܲ ൌ ͳǡ ܵ ൌ ʹሻ 0.615*** 0.430*** 

 (0.007) (0.009) 
ሺܴݎܲ ൌ ͳǡ ܵ ൌ ͵ሻ 0.271*** 0.304*** 

 (0.007) (0.008) 
ሺܴݎܲ ൌ ʹǡ ܵ ൌ ͳሻ 0.001*** 0.008*** 

 (0.000) (0.001) 
ሺܴݎܲ ൌ ʹǡ ܵ ൌ ʹሻ 0.009*** 0.015*** 

 (0.001) (0.001) 
ሺܴݎܲ ൌ ʹǡ ܵ ൌ ͵ሻ 0.004*** 0.011*** 

 (0.000) (0.001) 
Log-likelihood -251,431 -234,482 
Observations 37,335 37,335 

Note. The fraction of completely labelled observations (i.e., ȁݎ௜ െ ௜ȁݏ ൌ Ͳ) is 10.0% for body 
weight, and 23.3% for body height. 
*** p<0.01  
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4.2 Post-estimation analysis 

  

Our analysis so far has focused on estimating our structural parameters and 

distinguishing the different types of measurement errors. Following Meijer et al. (2012), 

we take those estimated parameters, presented in Table 3, to FUHDWH� ´K\EULGµ�
anthropometric predictions that combine information from both self-reported and 

measured anthropometrics.8 Specifically, seven ´hybridµ measures to approximate the 

true body weight and height are generated (see Meijer et al., 2012). Predictions 1 to 6 use 

two within-class predictors for ߦ. The first set ߦመ௜
௝, used for predictors 1, 3, and 5 minimize 

the mean square error (MSE), ܧ ቂ൫ߦ௜ െ ௜ߦ
௝൯

ଶ
ȁߦ௜ǡ ݅ א መ௜ߦ,ቃ. The second of set predictorsܬ

௎௝, used 

for predictors 2, 4 and 6 minimize the MSE conditional on ܧ൫ߦ௜ െ ௜ߦ
௎௝ȁ�݅ א ൯ܬ ൌ Ͳ. Predictors 

1 and 2 provide weighted predictions using the unconditional within-class probabilities 

-௝. Predictors 3 and 4 provide weighted predictions using conditional or posterior withinߨ

class probabilities ߨ௝ሺݎ௜ǡ  .௜ሻ. Predictors 5 and 6 use a two-step Bayesian classificationݏ

Finally, the seventh predictor ሺߦ଻௜ሻ is the system-wide predictor that minimizes MSE 

under the assumption of linearity and imposing the condition of unbiasedness. To assess 

the precision of those predictions, we estimate reliability statistics and the MSE.9 These 

reliability statistics and the MSE with respect the seven ´hybridµ measures come from out 

of the sample simulations for body weight and body height data based on estimated 

parameters from Table 3.10 

 Table 4 shows the precision of the VHYHQ�W\SHV�RI�´K\EULGµ�predictions (as described 

above) for body weight using simulations with 1,000 replications; the corresponding 

results for height are shown in Table 5. Our first measure of reliability is analogous to the 

slope coefficient from a (hypothetical) regression of true earnings on the observed earnings 

measure; higher value corresponds to greater reliability and a value greater than one 

indicates mean reversion. Reliability 2 represents the squared correlation between true 

earnings and observed earnings measure. These reliability measures should only be used 

 
8 The user written Stata command ´ky_fitµ allows for predicting the seven ´hybridµ measures 
proposed by Meijer et al. (2012). Table 6 in Jenkins and Rios-Avila (2021c) provides the 
descriptions of the predictors (´hybridµ� RXWFomes), with the corresponding derivation of the 
formulae presented in their appendix. 
9 The mean square error is computed as ܧሺݎ݋ݐܿ݅݀݁ݎ݌ െ ሻଶߦ ൌ ଶݏܽ݅ܤ ൅  Reliability measures .݁ܿ݊ܽ݅ݎܸܽ
are computed as follows: ܴ݈݁ͳሺݎሻ �ൌ ǡߦሺݒ݋ܿ� ሻݏሻ, ܴ݈݁ͳሺݎሺݎܽݒሻȀݎ �ൌ ǡߦሺݒ݋ܿ� ሻݎሻ, ܴ݈݁ʹሺݏሺݎܽݒሻȀݏ �ൌ
ǡߦሺݒ݋ܿ� ሻߦሺݎܽݒሻଶȀሾݎ ή ሻݏሻሿ and ܴ݈݁ʹሺݎሺݎܽݒ �ൌ � ǡߦሺݒ݋ܿ ሻߦሺݎܽݒሻଶȀሾݏ ή  ሻሿ. Further details can be foundݏሺݎܽݒ
in Jenkins and Rios-Avila (2021b). 
10 Simulations are done using the user-ZULWWHQ�6WDWD�FRPPDQG�´N\BVLPµ��)XUWKHU�GHWDLOV�FDQ�EH�
found in Jenkins and Rios-Avila (2021c). 
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to assess how close a given measure is to the relevant true value and should not be 

compared across model specifications. For the case of both body weight and height 

´K\EULGµ� SUHGLFWLRQV�� Dll hybrid measures provide very large reliability coefficients. A 

closer look at Tables 4 and 5 shows that the smallest MSE is found for the weighted 

(conditional) prediction for both anthropometric measures; this indicates that these 

predictors perform better, as shown by the MSE using out of the sample simulations, and, 

thus, the weighted (conditional) prediction is RXU�SUHIHUUHG�´K\EULGµ�SUHGLFWLRQ�IRU�ERWK�
weight and height. 

 

Table 4: Precision of ´K\EULGµ�body weight predictions.  
 Rel1 Rel2 MSE 
Measured body weight ሺݎሻ 0.973 0.959 9.242 
Self-reported body weight ሺݏሻ 0.977 0.956 9.973 
Hybrid body weight predictors    
1. Weighted (unconditional) 0.978 0.964 8.142 
2. Weighted (unconditional) unbiased 0.978 0.964 8.139 
3. Weighted (conditional) 1.000 0.997 0.697 
4. Weighted (conditional) unbiased 1.000 0.997 0.701 
5. Two-stage 0.998 0.996 0.867 
6. Two-stage, unbiased 0.998 0.996 0.869 
7. System-wide linear 1.000 0.978 4.791 

 

Table 5: Precision of ´K\EULGµ�ERG\�height predictions.  
 Rel1 Rel2 MSE 
Measured body height ሺݎሻ 0.962 0.930 6.442 
Self-reported body height ሺݏሻ 0.927 0.901 9.804 
Hybrid body height predictors    
1. Weighted (unconditional) 0.980 0.946 4.881 
2. Weighted (unconditional) unbiased 0.977 0.946 4.872 
3. Weighted (conditional) 1.000 0.985 1.338 
4. Weighted (conditional) unbiased 0.997 0.985 1.355 
5. Two-stage 0.991 0.980 1.828 
6. Two-stage, unbiased 0.989 0.980 1.839 
7. System-wide linear 1.000 0.957 3.838 

  

 

As mentioned above, simulation analysis helps us to identify our preferred 

predictors for the latent true body weight and height. After choosing our preferred 

prediction, our sample data are used to compute the true latent anthropometric measures 

in order to calculate a BMI measure that aims to approximate the true BMI distribution. 

Table 6 provides descriptive statistics of this preferred ´K\EULGµ�%0,�PHDVXUH�DQG�WKRVH�
based on self-reported and measured anthropometrics. Overall, WKH�́ K\EULGµ�%0,�PHDVXUH�
and the BMI based on measured data are very close both at the mean and across their 
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distribution. It seems however that at the right tails, the q75 and q90 are slightly lower 

for the ´K\EULGµ� PHDVXUH� as opposed to the BMI based on measured data; the later 

reflected at the inter-quantiles ranges differences (q90-T���� EHWZHHQ� WKH� ´K\EULGµ� DQG�
measured BMI. On the other hand, BMI values that are based on self-reported data are 

always lower at the mean level and across quantiles of the distribution as well as with a 

lower dispersion FRPSDUHG�WR�ERWK�WKH�´K\EULGµ�DQG�WKH�%0,�EDVHG�RQ�PHDVXUHG�GDWD. 

7KHVH�UHVXOWV�VXJJHVW�WKDW�WKH�´K\EULGµ�PHDVXUH�Dpproximating the true BMI is very close 

to the BMI measure based on the measured weight/height data, while BMI measured 

based on self-UHSRUWHG� GDWD� XQGHUHVWLPDWH� WKH� ´WUXHµ� YDOXHV�� This indicates that the 

estimated data recording error in measured anthropometrics does not translate into major 

differences EHWZHHQ�WKH�´K\EULGµ�DQG�WKH�PHDVXUHG�DQWKURSRPHWULFV�DV�D�UHVXOW�RI�WKHLU�
small likelihood of occurrence in our sample. 

 

Table 6. Distributions of BMI EDVHG� RQ� RXU� SUHIHUUHG� ´K\EULGµ� DQWKURSRPHWULF�
predictions and BMI based on self-reported and measured body weight/height data.  

 
Self-reported 

BMI 
Measured 

BMI 
´Hybridµ 

BMI 
Statistics    
Mean 26.158 26.580 26.526 
q10 20.776 20.911 20.936 
q25 22.942 23.147 23.131 
q50 25.510 25.960 25.914 
q75 28.720 29.320 29.237 
q90 32.242 32.941 32.829 
Inter-quantile ranges    

q75 - q25 5.778 6.173 6.106 
q50 - q10 4.735 5.049 4.977 
q90 - q50 6.732 6.981 6.916 
q90 - q10 11.466 12.030 11.893 
 

 

 

4.3 Implications for empirical research using BMI 

 

In this sub-section, we provide evidence to test the sensitivity of econometric analyses 

where BMI is used as an explanatory variable. We compare results in the case that our 

hybrid BMI measure, estimated to proxy the true BMI distribution, with results based on 

self-reported and measured anthropometrics.  

 We estimate linear regression models to measure the association between BMI and 

the frequency of hospital admissions in the last 12 months (Table 7). To facilitate 

interpretation of polynomials in BMI, Figure 3 presents the adjusted predictions at 
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representative values (APRs), i.e., the predicted health care use across selected BMI 

values with all the other variables kept at their mean values (based on the models 

presented in Table 7). As shown in Figure 3, APRs for health care use are close for the 

PHDVXUHG� DQG� WKH� ´K\EULGµ� %0,� DFURVV� their distribution, while they differ from the 

results for the BMI based on self-reported data, especially at the lower (BMI values below 

23.5 kg/m2) and higher tails (BMI values above 37 kg/m2) of the BMI distribution. 

   

Table 7: Linear regression models of healthcare utilization in the last 12 months on BMI 
measures.  
 Self-reported Measured Hybrid 
BMI� -5.994*** -6.281*** -5.991**  
 (2.165) (2.378) (2.374)  
    
BMI squared� 19.951*** 19.791** 18.796**  
 (7.375) (8.096) (8.101) 
    
BMI cubed� -20.484** -19.101** -17.997**  
 (8.137) (8.929) (8.967) 
    
Observations 37,335 37,335 37,335 
� BMI is divided by 100.  
Notes: Standard errors robust to heteroscedasticity in parentheses. Our models account for age, 
gender, ethnicity and geographic region fixed effects.  
** p<0.05, *** p<0.01 
 
 

 

Figure 3:  Predicted health care use across selected BMI values                                     
(based on OLS models in Table 7) 
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4. Conclusion 

 

Comparing self-reported and measured anthropometric data, existing research in the 

economics of obesity literature shows that self-reported data are subject to measurement 

error, which can lead to potential biased estimates in empirical research that relies on 

self-reported anthropometrics (e.g., Cawley, 2015; Cawley et al., 2015; Davillas and Jones, 

������ *LO� DQG� 0RUD�� ������ 2·1HLOO� DQG� 6ZHHWPDQ�� ������� These analyses, however, 

implicitly assume that measured anthropometrics are error-free as they are treated as 

gold standards when compared to self-reported data; therefore, this growing literature 

provides little discussion about the potential measurement errors that the measured 

anthropometrics may entail. The latter is of particular relevance given developments in 

the large-scale social surveys that involve the integration of physical health 

measurements, in addition to traditional self-reported measures, in hope that these 

measures may improve survey measurement of health and eliminate measurement 

errors. To fill this gap in the literature, we use the KY factor mixture model (Kapteyn and 

Ypma, 2007) to analyse and characterize measurement error in both self-reported and 

measured anthropometrics with national representative data from the 2013 National 

Health Survey in Brazil.  

We find that a small but statistically significant fraction of measured 

anthropometrics contain data-recording errors. Turning to self-reported weight and 

height, the estimated probability that the self-reported anthropometrics are free from any 

measurement error are, as expected, relatively low at about 10% and 24% for body weight 

and height data. This highlights WKDW�SHRSOH·V�reporting behaviour in combination with 

the lack of precision of the self-reported questionnaires, when it comes to the collection of 

the self-reported data on anthropometrics, may be sources of the observed measurement 

error. For example, it has been argued that HQKDQFLQJ�SHRSOH·V�NQRZOHGJH�RI�WKHLU�H[DFW�
anthropometric values (by monitoring interventions) may indeed improve their ability to 

accurately report their anthropometric values (Sherry et al., 2007).  

Post-estimation analysis and out of the sample simulations allow us to estimate 

hybrid anthropometric predictions that best approximate the true body weight and height 

distribution. Comparisons of the distribution of BMI using self-reported, measured and 

our proxy of true BMI distribution show that the latter is very close to the distribution of 

BMI based on measured anthropometrics; BMI based on self-reported data seems to 

under-estimate the true BMI distribution. We also explore the potential implications of 

the measurement error when BMI based on self-reported or measured anthropometrics is 
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used as explanatory variable in econometric models on health care utilization. We find 

limited differences in our results between BMI based on measured data and our hybrid 

BMI measures, however some differences are observed when both are compared to the 

BMI based on self-reported data. These results are in line with the observed differences 

in the distribution of the different BMI measures and further confirm existing evidence 

suggesting that BMI based on self-reported data may bias econometric results when BMI 

is used as an explanatory variable (e.g., Cawley et al., 2015).  
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Appendix 

Table A1: Estimation of our factor mixture model for body weight and height ² 
measured weight/height data are rounded at the nearest integer. 

Parameter 
Weight 

(kg) 
Height 

(cm) 
 ***క 71.571*** 164.338ߤ
 (0.077) (0.050)    
 ***క 14.883*** 9.459ߪ
 (0.055) (0.035)    
 ***఍ 79.543*** 158.978ߤ
 (1.457) (0.450)    
 ***఍ 20.207*** 8.591ߪ
 (0.949) (0.307)    
 ***ఎ 0.080*** 1.065ߤ
 (0.021) (0.029)    
 ***ఎ 2.287*** 2.306ߪ
 (0.023) (0.037)    

 ***ఠ -0.511*** 0.544ߤ
 (0.101) (0.094)    

 ***ఠ 5.936*** 4.757ߪ
 (0.127) (0.101)    
 ***௥ 0.990*** 0.970ߨ
 (0.001) (0.002)    
 ***௦ 0.265*** 0.334ߨ
 (0.002) (0.003)    

 ***ఠ 0.252*** 0.379ߨ
 (0.009) (0.016)    
 ***0.056- ***0.041- ߩ
 (0.001) (0.002)    

Class probabilities   
ሺܴݎܲ ൌ ͳǡ ܵ ൌ ͳሻ 0.263*** 0.324*** 

 (0.002) (0.002) 
ሺܴݎܲ ൌ ͳǡ ܵ ൌ ʹሻ 0.544*** 0.401*** 

 (0.007) (0.011) 
ሺܴݎܲ ൌ ͳǡ ܵ ൌ ͵ሻ 0.183*** 0.245*** 

 (0.006) (0.011) 
ሺܴݎܲ ൌ ʹǡ ܵ ൌ ͳሻ 0.003*** 0.010*** 

 (0.000) (0.001) 
ሺܴݎܲ ൌ ʹǡ ܵ ൌ ʹሻ 0.005*** 0.012*** 

 (0.001) (0.001) 
ሺܴݎܲ ൌ ʹǡ ܵ ൌ ͵ሻ 0.002*** 0.008*** 

 (0.000) (0.001) 
Log-likelihood -249,954.7 -230,849.5 
Observations 37,335 37,335 

Notes: The fraction of labelled observations (i.e., ȁݎ௜ െ ௜ȁݏ ൌ Ͳ) is 26.3% for weight, and 32.4% 
relative to height. 
*** p<0.01 
 
 
 
 



 2 

Table A2: Estimation of our factor mixture model for body weight and height 
(measured data: average between 1st and 2nd measurement). 

Parameter 
Weight 

(kg) 
Height 

(cm) 
 ***క 71.936*** 164.519ߤ
 (0.077) (0.050)    
 ***క 14.848*** 9.443ߪ
 (0.055) (0.035)    
 ***఍ 79.557*** 159.380ߤ
 (1.208) (0.391)    
 ***఍ 19.751*** 8.716ߪ
 (0.793) (0.260)    
 ***ఎ -0.342*** 0.333ߤ
 (0.014) (0.022)    
 ***ఎ 1.600*** 1.695ߪ
 (0.017) (0.026)    

 ***ఠ -0.351*** 1.216ߤ
 (0.065) (0.064)    

 ***ఠ 5.097*** 4.320ߪ
 (0.082) (0.066)    
 ***௥ 0.988*** 0.967ߨ
 (0.001) (0.002)    
 ***௦ 0.088*** 0.217ߨ
 (0.001) (0.002)    

 ***ఠ 0.309*** 0.437ߨ
 (0.007) (0.011)    
 ***0.032- ***0.023- ߩ
 (0.001) (0.002)    

Class probabilities   
ሺܴݎܲ ൌ ͳǡ ܵ ൌ ͳሻ 0.087*** 0.210*** 

 (0.001) (0.002) 
ሺܴݎܲ ൌ ͳǡ ܵ ൌ ʹሻ 0.622*** 0.426*** 

 (0.007) (0.009) 
ሺܴݎܲ ൌ ͳǡ ܵ ൌ ͵ሻ 0.278*** 0.331*** 

 (0.007) (0.008) 
ሺܴݎܲ ൌ ʹǡ ܵ ൌ ͳሻ 0.001*** 0.007*** 

 (0.000) (0.000) 
ሺܴݎܲ ൌ ʹǡ ܵ ൌ ʹሻ 0.008*** 0.015*** 

 (0.001) (0.001) 
ሺܴݎܲ ൌ ʹǡ ܵ ൌ ͵ሻ 0.004*** 0.011*** 

 (0.000) (0.001) 
Log-likelihood -250,889.2 -234,764.3 
Observations 37,335 37,335 

Notes: Robust standard errors to heteroscedasticity in parentheses. The fraction of labelled 
observations (i.e., ȁݎ௜ െ ௜ȁݏ ൌ Ͳ) is 8.7% for weight, and 21.0% relative to height. 
*** p<0.01 

 


