TEIL B AKTUELLE DATEN UND DEREN BEWERTUNG

(CURRENT DATA AND THEIR EVALUATION)

I NATÜRLICHE UMWELTRADIOAKTIVITÄT

(NATURAL ENVIRONMENTAL RADIOACTIVITY)

Bearbeitet vom Bundesamt für Strahlenschutz

1. Natürliche Umweltradioaktivität (Natural environmental radioactivity)

Die natürliche Strahlenexposition in Deutschland zeigt große regionale Unterschiede. Diese sind bedingt durch die unterschiedlichen Gehalte des Erdbodens an Uran, Thorium und K-40 (terrestrische Strahlung), durch die unterschiedliche Meereshöhe (kosmische Strahlung), durch die unterschiedlichen Konzentrationen des radioaktiven Edelgases Radon in der Atemluft und die regional unterschiedliche Aufnahme natürlich radioaktiver Stoffe mit der Nahrung und dem Trinkwasser. Dies führt, wie in Teil A - I erläutert, insgesamt zu einer jährlichen Exposition von etwa 2 bis 3 mSv. Gegenüber den regionalen Schwankungen sind die Unterschiede der Exposition von Jahr zu Jahr gering. Im Berichtsjahr wurden keine Untersuchungen durchgeführt, die die natürliche Komponente der Strahlenexposition weiter differenzieren.

- 2. Zivilisatorisch veränderte natürliche Umweltradioaktivität (Technologically enhanced natural environmental radioactivity)
- 2.1 Hinterlassenschaften und Rückstände aus Bergbau und Industrie (Relics and residues of mining and industry)

Hinterlassenschaften der Uranproduktion in Sachsen und Thüringen

Bei den Sanierungsarbeiten der Wismut GmbH werden mit Genehmigung der zuständigen Behörden vor allem Radionuklide der Uran-/Radiumzerfallsreihe mit der Fortluft bzw. mit den Schacht- oder Abwässern in die Umwelt abgeleitet. Nachfolgend wird ein Überblick über die Emissions- und Immissionssituation in den betroffenen Regionen gegeben, der auf ausgewählten Daten aus der Umweltüberwachung nach der Richtlinie zur Emissions- und Immissionsüberwachung bei bergbaulichen Tätigkeiten (REI-Bergbau) beruht.

Detailinformationen über die Sanierungstätigkeit und die Ergebnisse der Umweltüberwachung geben die jährlichen Umweltberichte der Wismut GmbH (www.wismut.de).

2.1.1 Ableitung radioaktiver Stoffe mit Fortluft¹ und Abwasser infolge der Tätigkeit der Wismut GmbH (Emissionen)

(Discharge of radioactive substances with exhaust air and waste water as a result of the activities of the Wismut GmbH)

In Tabelle 2.1.1-1 sind die Fortluftmengen und die Ableitungen radioaktiver Stoffe aller Wismut-Sanierungsbetriebe in den Jahren von 1998 bis 2010 zusammengestellt. Die Tabelle zeigt, dass die Ableitungen mit der Fortluft insgesamt seit Jahren deutlich unter den - in Klammern angegebenen - genehmigten Werten liegen.

In Tabelle 2.1.1-2 ist diese Gesamtentwicklung für die Jahre 2009 und 2010 auf die einzelnen Standorte der Wismut-Sanierung aufgeschlüsselt. Es wurden die aus den Betrieben in den beiden Jahren insgesamt in die Atmosphäre abgeleiteten Mengen radioaktiver Stoffe zusammengestellt. Am Standort Königstein hat sich die Jahresableitung an Radon um etwa 40% verringert, die Ableitung langlebiger Alphastrahler hat sich gegenüber dem Vorjahr etwa verdoppelt. Dieser Anstieg ist auf intensive untertägige Versatzarbeiten zurückzuführen. Während in Dresden-Gittersee die Ableitungen auf dem Niveau des Vorjahres liegen, hat sich am Standort Schlema/Alberoda die Jahresableitung an Radon gegenüber dem Vorjahr geringfügig um etwa 4% erhöht. An den Thüringer Standorten Ronneburg, Seelingstädt und im sächsischen Pöhla konnten die Ableitungen völlig eingestellt werden. Die gesamten Ableitungen sowohl von Rn-222 als auch der langlebigen α -Strahler werden fast ausschließlich von den Standorten Königstein und Schlema/Alberoda verursacht. Die daraus resultierende jährliche Strahlenexposition kann hier im Berichtsjahr bis zu 0,5 mSv betragen, was den geltenden Grenzwert von 1 mSv/a für die Bevölkerung deutlich unterschreitet.

Tabelle 2.1.1-1 Ableitung radioaktiver Stoffe mit der Fortluft in die Atmosphäre im Zeitraum 1998 bis 2010 (Messwerte der Wismut GmbH)

(Discharge of radioactive substances into the atmosphere with exhaust air during the period from 1998 to 2010 – Values measured by the Wismut GmbH)

Zeitraum	Fortluftmengen in					
	10 ⁹ m ³ /a	Rn-222 in TBq/a *		Langlebige $lpha$ -Strahler in MBq/a *		
1998	22,1	664,7	(1.201,1)	31,3	(137,1)	
1999	20,8	491,3	(926,2)	30,3	(107,4)	
2000	18,3	380,4	(798,2)	10,0	(99,9)	
2001	14,2	316,4	(557,4)	5,3	(101,1)	
2002	11,8	260,5	(447,4)	13,9	(101,1)	
2003	8,6	168,4	(298,4)	13,2	(83,1)	

Hier sind im Wesentlichen Abwetter von Untertage gemeint.

Zeitraum	Fortluftmengen in	Gesamte Ableitung radioaktiver Stoffe					
	10 ⁹ m ³ /a	Rn-222 in TBq/a *		Langlebige $lpha$ -Strahler in MBq/a *			
2004	8,3	147,3	(268,1)	14,0	(82,9)		
2005	7,9	105,3	(298,1)	14,7	(79,9)		
2006	6,2	80,3	(268,0)	6,53	(78,3)		
2007	5,0	65,2	(269,0)	5,4	(78,4)		
2008	3,6	92,9	(267,6)	4,9	(77,8)		
2009	3,1	98,8	(267,6)	3,1	(77,8)		
2010	2,6	101,2	(267,6)	4,55	(77,8)		

Genehmigungswerte in Klammern

Tabelle 2.1.1-2 Ableitung radioaktiver Stoffe mit der Fortluft in die Atmosphäre in 2009 und 2010 (Messwerte der Wismut GmbH)

(Discharge of radioactive substances into the atmosphere with exhaust air in 2009 and 2010 - Values measured by the Wismut GmbH)

Betriebsteile der	Anzahl der Abwet-					Ableitung radioaktiver Stoffe				
Sanierungsbe- triebe	terschächte und Wetterbohrlöcher		Abluftmengen in 10 ⁹ m ³ /a		Rn-222 in TBq/a *		Langlebige α-Strahler in MBq/a *			
	2010	2009	2010	2009	2010	2009	2010	2009		
Schlema/Alberoda	1	1	1,34	1,39	99 (100)	95 (100)	0,8 (5,7)	1,4 (5,7)		
Dresden-Gittersee	1	1	0,09	0,11	0,1 (1,6)	0,09 (1,6)	0,05 (1,6)	0,04 (1,6)		
Königstein	1	2	1,2	1,6	2,1 (166)	3,7 (166)	3,7 (70,5)	1,7 (70,5)		

^{*} Genehmigungswerte in Klammern

Die Ableitungen radioaktiver Stoffe mit den Abwässern in die Oberflächengewässer (Vorfluter), die in Tabelle 2.1.1-3 zusammengestellt sind, liegen ebenfalls seit Jahren deutlich unter den Genehmigungswerten. Die Abwassermenge führte wegen der im Vergleich zum Jahr 2009 deutlich erhöhten Niederschlagsmengen im Nassjahr 2010 insgesamt auch zu höheren Freisetzungen von Radionukliden, siehe Tabelle 2.1.1-4.

Aus den Ableitungen in die betroffenen Gewässer resultiert an keiner Stelle eine nennenswerte Strahlenexposition. Sie kann bei Unterstellung realistischer Nutzungsszenarien im Einzelfall für die kritische Personengruppe bis zu 0,13 mSv/a betragen, so dass der geltende Grenzwert von 1 mSv/a für die Bevölkerung weit unterschritten wird.

Infolge der im fortschreitenden Sanierungsprozess erfolgenden Einbindung weiterer Haldenkomplexe werden bisher diffus angefallene Sickerwässer gefasst und einer Behandlung zugeführt. Auch die Umlagerung von kontaminierten Materialien, eine in einzelnen Flutungsbereichen veränderte Wasserzusammensetzung und durch die strengere und längere Winterperiode behindert ablaufende chemische Reaktionen sorgten für eine teils geringere Effizienz der Wasserbehandlungsanlagen (WBA) bei der Fällung von Schadstoffen und somit für erhöhte Ableitungen. Es zeigt sich außerdem, dass auf Grund hydrochemischer Prozesse mittelfristig die Möglichkeit einer Erhöhung der Schadstoffkonzentration besteht; langfristig wird jedoch eine Konzentrationsabnahme einsetzen.

Insgesamt wird deutlich, dass das jetzt erreichte Niveau der Ableitungen auch weiterhin durch die meteorologischen Verhältnisse geprägten Schwankungen unterliegen wird und somit keine steuerbare Größe darstellt. Die Funktion der WBA ist trotz ihres Einsatzes an der Kapazitätsgrenze als zuverlässig einzuschätzen, da die genehmigten maximalen und mittleren Schadstoffkonzentrationen stets unterschritten wurden.

Die Genehmigungswerte für Abwässer aus den Wasserbehandlungsanlagen wurden jeweils aus der genehmigten Wassermenge (Pöhla: 20 m³/h, Königstein: 650 m³/h, Ronneburg: 750 m³/h, Seelingstädt: 300 m³/h) multipliziert mit der Maximalkonzentration (Pöhla: 0,2 mg Uran/l, 0,3 Bq Ra-226/l, WBA Ronneburg: 0,1 mg Uran/l bzw. 0,2 Bq Ra-226/l) bzw. mit dem genehmigten Jahresmittelwert der Konzentration (Königstein 0,3 mg Uran/l, 0,4 Bq Ra-226/l, Seelingstädt: 0,3 mg Uran/l bzw. 0,2 Bq Ra-226/l) errechnet.

Tabelle 2.1.1-3 Ableitung radioaktiver Stoffe mit den Abwässern in die Oberflächengewässer im Zeitraum 1998 bis 2010 (Messwerte der Wismut GmbH)

(Discharge of radioactive substances into surface waters with waste waters during the period from 1998 to 2010 – Values measured by the Wismut GmbH)

Zeitraum	Abwassermenge in 10 ⁶	Gesamte Ableitung radioaktiver Stoffe				
	m³/a	Uran ii	n t/a*	Ra-226 i	n GBq/a*	
1998	14,7	3,8	(12,8)	4,8	(14,8)	
1999	14,7	3,8	(9,4)	2,7	(13,6)	
2000	16,1	4,1	(11,3)	3,6	(15,4)	
2001	14,3	2,8	(13,1)	0,7	(16,7)	

Zeitraum	Abwassermenge in 10 ⁶	Gesamte Ableitung radioaktiver Stoffe				
	m ³ /a	Uran ir	Uran in t/a*		n GBq/a*	
2002	18,4	4,5	(8,4)	0,8	(7,0)	
2003	14,6	3,1	(8,2)	0,3	(6,8)	
2004	13,9	2,8	(8,2)	0,2	(6,7)	
2005	14,8	2,2	(8,0)	0,3	(6,7)	
2006	16,3	2,4	(9,0)	0,3	(7,9)	
2007	19,2	3,1	(9,0)	0,4	(8,2)	
2008	20,2	3,0	(9,1)	0,3	(8,4)	
2009	20,9	3,2	(9,5)	0,4	(8,5)	
2010	25,0	4,4	(9,7)	0,6	(8,5)	

^{*} Genehmigungswerte in Klammern

Tabelle 2.1.1-4 Ableitung radioaktiver Stoffe mit den Abwässern in die Oberflächengewässer 2009/2010 (Messwerte der Wismut GmbH)

(Discharge of radioactive substances into surface waters with waste waters for the years 2009/2010 - Values measured by the Wismut GmbH)

VORFLUTER	Abwass	ermenge	Ableitung radioaktiver Stoffe					
Betriebsteile der	in 10 ⁶ m ³ /a *		Uran	in t/a *	Ra-226 in GBq/a *			
Sanierungsbetriebe	2010	2009	2010	2009	2010	2009		
ZWICKAUER MULDE	11,997	8,488	2,8476	2,170	0,2401	0,196		
(SACHSEN)	(-)	(-)	(6,544)	(6,294)	(4,345)	(4,302)		
Schlema/Alberoda	10,611	7,377	2,683	1,999	0,238	0,184		
	(-)	(-)	(6,509)	(6,259)	(4,292)	(4,249)		
Crossen	1,274	0,993	0,163	0,169	0,0026	0,012		
	(-)	(-)	(-)	(-)	(-)	(-)		
Pöhla	0,112	0,118	0,0016	0,002	0,00002	0,0001		
	(-)	(-)	(0,035)	(0,035)	(0,053)	(0,053)		
ELBE (SACHSEN)	4,942	4,455	0,620	0,231	0,277	0,155		
	(5,869)	(5,689)	(1,708)	(1,708)	(2,278)	(2,278)		
Königstein	4,942	4,455	0,620	0,231	0,277	0,155		
	(5,869)	(5,689)	(1,708)	(1,708)	(2,278)	(2,278)		
PLEISSE	0,219	0,165	0,015	0,020	0,004	0,004		
(THÜRINGEN)	(0,250)	(0,400)	(0,040)	(0,040)	(0,030)	(0,030)		
Ronneburg	0,219	0,165	0,015	0,020	0,004	0,004		
	(0,250)	(0,400)	(0,040)	(0,040)	(0,030)	(0,030)		
WEISSE ELSTER	7,869	7,753	0,896	0,729	0,082	0,069		
(THÜRINGEN)	(9,198)	(9,200)	(1,446)	(1,446)	(1,84)	(1,84)		
Ronneburg	5,555	5,523	0,347	0,341	0,039	0,055		
(WBA)	(6,570)	(6,570)	(0,657)	(0,657)	(1,314)	(1,314)		
Seelingstädt	2,314	2,230	0,549	0,388	0,043	0,014		
	(2,628)	(2,630)	(0,789)	(0,789)	(0,526)	(0,526)		

^{*} Genehmigungswerte in Klammern

2.1.2 Überwachung der Konzentrationen radioaktiver Stoffe in den Umweltmedien in der Umgebung der Sanierungsbetriebe (Immissionen)

(Monitoring of the concentrations of radioactive substances in environmental media from areas in the vicinity of remediation facilities)

Im Folgenden werden die Rn-222-Konzentrationen in der bodennahen Luft und die Urankonzentrationen und Ra-226-Aktivitätskonzentrationen in Oberflächengewässern betrachtet, die durch die Sanierungstätigkeiten der Wismut GmbH beeinflusst werden können.

Rn-222-Konzentrationen in der bodennahen Luft

Zur Überwachung der Luft werden nach der "Richtlinie zur Emissions- und Immissionsüberwachung bei bergbaulichen Tätigkeiten (REI-Bergbau)" Messstellen zur Ermittlung der Rn-222-Konzentration der bodennahen Atmosphäre betrieben. Die Messnetze gewährleisten nicht nur eine Kontrolle der Auswirkungen von Ableitungen über die dafür vorgese-

henen technischen Einrichtungen wie z. B. Lüfter; sie dienen auch zur Erfassung der aus diffusen Freisetzungen, beispielsweise aus Haldenoberflächen, resultierenden Umweltkontamination sowie zur Kontrolle der Auswirkungen der Sanierungsarbeiten. Für die Beurteilung der Gesamtstrahlenexposition in der Umgebung der Bergbauanlagen sind alle genannten Prozesse von Bedeutung. Die freigesetzte Rn-222-Menge aus den in industriellen Absetzanlagen und Halden deponierten Materialien kann dabei in der Größenordnung der jährlichen Ableitungsmengen nach Tabelle 2.1.1-2 liegen.

In Tabelle 2.1.2-1 sind die Ergebnisse der von der Wismut GmbH durchgeführten Überwachung an bergbaulich beeinflussten Messstellen im Zeitraum Winter 2009/2010 bis Sommer 2010 zusammengefasst. Die teilweise hohen Maximalwerte der Rn-222-Konzentration resultieren aus der Lage einiger Messpunkte auf oder in unmittelbarer Nähe von Anlagen (z. B. Abwetterschächten) und Betriebsflächen.

Tabelle 2.1.2-1 Rn-222-Konzentration in der bodennahen Atmosphäre an bergbaulich beeinflussten Messstellen (Winter 2009/2010 und Sommer 2010; Messwerte der Wismut GmbH) (Radon-222 concentrations in the atmosphere close to ground level at sampling locations influenced by mining activities - Winter 2009/2010 and summer 2010; Values measured by the Wismut GmbH)

Gebiet	Anzahl der	Anzahl der Mess	Maximum		
	Messstellen	≤ 30 Bq/m ³	31 - 80 Bq/m ³	> 80 Bq/m ³	Bq/m ³
Winter 2009/2010					
Schlema/Alberoda	69	30	35	4	190
Pöhla	5	5	0	0	17
Seelingstädt	24	22	2	0	53
Crossen	34	29	5	0	51
Königstein	8	8	0	0	15
Gittersee	9	9	0	0	25
Ronneburg	31	31	0	0	22
Sommer 2010					
Schlema/Alberoda	70	16	38	16	240
Pöhla	5	4	1	0	38
Seelingstädt	24	19	5	0	77
Crossen	33	19	13	1	100
Königstein	8	7	1	0	34
Gittersee	9	7	2	0	39
Ronneburg	31	26	5	0	39

In Tabelle 2.1.2-2 sind die Ergebnisse der von der Wismut GmbH durchgeführten Überwachung an bergbaulich *nicht* beeinflussten Messstellen zusammengefasst. Die an diesen Messstellen ermittelten Rn-222-Konzentrationen repräsentieren den lokalen natürlichen Konzentrationspegel der jeweiligen Bergbaugebiete und können deshalb als Vergleichswerte herangezogen werden.

Tabelle 2.1.2-2 Rn-222-Konzentration in der bodennahen Atmosphäre an bergbaulich nicht beeinflussten Messstellen (Mittelwerte 1991 – 2010 und Schwankungsbreite der Mittelwerte der einzelnen Jahre; Messwerte der Wismut GmbH)

(Radon-222 concentrations in the atmosphere close to ground level at sampling locations not influenced by mining activities - mean values 1991 - 2010 and range of variation of the mean values for the individual years; Values measured by the Wismut GmbH)

Gebiet	Winter (Rn-22	2-Konzentratio	onen in Bq/m³)	Sommer (Rn-222-Konzentrationen in Bq/m ³)			
	Minimum	Maximum	Mittelwert 1991 – 2010	Minimum	Maximum	Mittelwert 1991 – 2010	
Schlema/Alberoda	20	40	28	22	39	32	
Pöhla *	14	35	20	18	29	24	
Seelingstädt	11	39	23	15	37	25	
Crossen	13	35	25	17	37	25	
Königstein	11	31	19	13	36	24	
Gittersee	15	33	25	23	46	33	
Ronneburg	11	40	23	16	37	27	

* Im Gebiet P\u00f6hla wurden mit Abschluss der wesentlichen Sanierungsarbeiten die Messungen an bergbaulich unbeeinflussten Messstellen im Winterhalbjahr 2005/06 eingestellt

Entsprechend der "Richtlinie zur Emissions- und Immissionsüberwachung bei bergbaulichen Tätigkeiten (REI-Bergbau)" wurden von unabhängigen Messstellen im Auftrag der jeweiligen zuständigen Landesbehörde zusätzlich Kontrollmessungen an ausgewählten Messpunkten des von der Wismut GmbH betriebenen Messnetzes zur Überwachung der Rn-222-Konzentration in der bodennahen Atmosphäre durchgeführt. Die Ergebnisse stimmen unter Berücksichtigung der jeweiligen Messunsicherheiten überein.

Auch durch das Bundesamt für Strahlenschutz wurden seit 1991 in den Bergbaugebieten umfangreiche Untersuchungen zur Ermittlung und Bewertung der Rn-222-Konzentrationen in der bodennahen Freiluft durchgeführt.

Insgesamt ergibt sich aus den Messungen, dass in großen Teilen der Bergbaugebiete mittlere Radonkonzentrationen gemessen wurden, die zwar über den für große Gebiete Nord- und Mitteldeutschlands charakteristischen Konzentrationswerten von 5 bis 15 Bq/m³ liegen, aber auch in den Gebieten ohne bergbaulichen Einfluss in ähnlicher Höhe festgestellt wurden und deshalb offensichtlich z. T. natürlichen Ursprungs sind. Messtechnisch nachweisbare, bergbaubedingt erhöhte Konzentrationen treten vor allem in der unmittelbaren Nähe von Abwetterschächten, an großen Halden oder an Absetzanlagen der Erzaufbereitung auf. Die Verringerung der Radonexposition der Bevölkerung aus solchen Hinterlassenschaften ist weiterhin eines der Ziele der Wismut-Sanierung.

Überwachung der Urankonzentrationen und Ra-226-Aktivitätskonzentrationen in Oberflächengewässern

Die Überwachung der Urankonzentrationen und Ra-226-Aktivitätskonzentrationen wird in allen Oberflächengewässern durchgeführt, in die radioaktive Ableitungen erfolgen. Zur Ermittlung des bergbaulichen Einflusses werden die Immissionsmessungen der Wismut GmbH i.d.R. an Messstellen vor und nach der betrieblichen Einleitung vorgenommen.

In wichtigen Vorflutern wurden die in Tabelle 2.1.2-3 angegebenen Werte bestimmt. In den übrigen durch die Ableitung radioaktiver Stoffe betroffenen Vorflutern liegen die Uran- und Radiumkonzentrationen in den gleichen Konzentrationsbereichen.

Tabelle 2.1.2-3 Medianwerte der jährlichen Uran- und Radiumkonzentrationen in den Vorflutern sächsischer und thüringischer Bergbaugebiete in 2009 und 2010 (Messwerte der Wismut GmbH) (Median values for annual uranium and radium concentrations in the receiving streams of mining areas in Saxony and Thuringia in the years 2009 and 2010 - Values measured by the Wismut GmbH)

Betrieb	Probennahmestelle	Messpunkt	Uran	in mg/l	Ra-226	in mBq/l
			2010	2009	2010	2009
Sächsische B	ergbaugebiete		•			
Königstein	Quellgebiet Eselsbach	k-0018	0,015	0,017	11	< 10
	Eselsbach nach Einmündung Teufelsgrundbach	k-0024	0,034	0,050	35	11
	Elbe Rathen	k-0028	0,001	0,001	11	11
Gittersee	Kaitzbach vor Halde	g-0076	0,017	0,018	14	18
	Kaitzbach nach Einleitung	g-0077	0,060	0,068	16	14
Aue	Zwickauer Mulde in Aue	m-131	0,002	0,002	10	12
	Zwickauer Mulde bei Hartenstein	m-111	0,008	0,009	13	14
Pöhla	Luchsbach vor Schachtanlage	m-115	< 0,001	< 0,001	< 10	< 10
	Luchsbach nach WBA-Auslauf	m-165	0,018	0,021	12	17
Crossen	Zwickauer Mulde Wehr Mühlgraben	M-201	0,007	0,007	14	14
	Zwickauer Mulde Brücke Schlunzig	M-205	0,008	0,008	13	13
	Oberrothenbacher Bach	M-204	0,125	0,160	14	15
	Zinnborn	M-232	0,150	0,240	106	98
Thüringer Bei	rgbaugebiete		•	•	•	•
Seelingstädt	Weiße Elster aus dem Oberlauf	E-312	0,002	0,001	10	10
	Weiße Elster nach Einmündung Pöltschbach	E-314	0,004	0,004	< 10	10
	Lerchenbach	E-369	0,130	0,130	10	10
	Fuchsbach vor Mündung	E-383	0,029	0,034	10	11
	Weiße Elster nach Einmündung Fuchsbach	E-321	0,006	0,007	10	10
Ronneburg	Gessenbach	e-416	0,031	0,042	20	18
	Vereinigte Sprotte	s-609	0,005	0,004	< 10	10
	Wipse	e-437	0,047	0,035	11	12
	Weiße Elster	e-419	0,005	0,005	< 10	10

Die im Jahr 2010 ermittelten Werte der Uran- und Radiumkonzentration in den großen Vorflutern Elbe, Zwickauer Mulde und Weiße Elster weisen trotz des erheblich höheren Wasseranfalls im Vergleich zum Vorjahr keine nennenswerten Veränderungen auf.

Im Oberlauf von Wismut-Ableitungen wurden an den Messpunkten m-131, m-115 und E-312 Urankonzentrationen bis zu einer Höhe von 2 μ g/l und Aktivitätskonzentrationen bis zu einer Höhe von 10 mBq/l für Ra-226 ermittelt. Diese Werte liegen im Bereich des allgemeinen geogenen Niveaus, das in Oberflächengewässern der Bundesrepublik Deutschland ermittelt wurde. Die in bergbaulich unbeeinflussten Oberflächengewässern in Deutschland festgestellten Aktivitätskonzentrationen überschreiten den Wert von 3 μ g/l für U-238 und von 30 mBq/l für Ra-226 nicht und beinhalten mit den ebenfalls im Oberlauf von Wismut-Einleitungen gelegenen Messpunkten, wie z. B. g-0076 auch den Einfluss lokaler geologischer Besonderheiten oder des Altbergbaus.

In kleineren Bächen, die eine geringe Wasserführung aufweisen, wird das o. a. geogene Niveau im Unterlauf von Wismut-Einleitungen bei Ra-226 etwa bis zum Faktor 3 überschritten und reicht von Werten unter der Nachweisgrenze (<10 mBq/l) bis zu 106 mBq/l, während es bei Uran bis zum Faktor 50 erhöht ist und Werte zwischen 5 und 150 μg/l aufweist (vgl. Messpunkte k-0024, g-0077, m-165, M-204, M-232, E-369, E-383, e-416, s-609 und e-437).

Diese kleinen Bäche unterliegen stark dem Einfluss der Sanierungsarbeiten und der Witterung und weisen daher jährliche Schwankungen auf.

In den großen Vorflutern wurden an den Messpunkten k-0028, m-111, E-314, E-321, M-205 und e-419 im Unterlauf von Wismut-Ableitungen Werte der Urankonzentration ermittelt, die gegenüber dem o. a. geogenen Niveau bis etwa zum Dreifachen erhöht sind (1 - 8 μ g/l). Mit Werten von < 10 bis 13 mBq/l liegen die Ra-226-Aktivitätskonzentrationen dagegen im Bereich des o. a. geogenen Niveaus.

Aus der Sicht des gesundheitlichen Strahlenschutzes stellen die infolge von radioaktiven Ableitungen der Wismut GmbH erhöhten Werte der Urankonzentration und der Ra-226-Aktivitätskonzentration weder in den Bächen noch in den Vorflutern Zwickauer Mulde, Elbe, Pleiße und Weiße Elster ein Problem dar, da deren Wasser nicht im unmittelbaren Einflussbereich für Trinkwasserzwecke genutzt wird und somit keine nennenswerten Strahlenexpositionen entstehen.

2.2 Radon in Gebäuden (Radon in buildings)

Untersuchungen und Ergebnisse

Im Rahmen verschiedener Forschungsvorhaben wurden in den vergangenen Jahren Messungen der Radonaktivitätskonzentration in der Bodenluft und in Gebäuden durchgeführt. Der Jahresmittelwert der Radonkonzentration in Aufenthaltsräumen liegt in Deutschland bei 50 Bq/m³. Dies entspricht bei einer durchschnittlichen Aufenthaltszeit in den Räumen von ca. 19 Stunden pro Tag einer mittleren jährlichen effektiven Dosis von ca. 0,9 mSv. In Einzelfällen wurden Höchstwerte von bis zu 10.000 Bq/m³ festgestellt. Bereits bei Radonkonzentrationen über 100 Bq/m³ zeigt sich eine signifikante Erhöhung des Lungenkrebsrisikos um etwa 10% pro 100 Bq/m³. Welche Radonkonzentrationen in einzelnen Gebäuden anzutreffen sind, hängt vom geologischen Untergrund am Gebäudestandort und der Radondichtheit der Gebäudehülle ab, da in den überwiegenden Fällen das in der Bodenluft vorkommende und durch erdberührende Wände und die Bodenplatte in das Haus eindringende geogene Radon die Ursache für eine erhöhte Radoninnenraumkonzentration ist.

Auf der Grundlage der vorliegenden Ergebnisse an insgesamt 2.346 Messpunkten wurde eine bundesweite Übersichtskarte der regionalen Verteilung der Radonaktivitätskonzentration in der Bodenluft erstellt (siehe Abbildung 2.2-1).

Im Ergebnis ist festzustellen, dass die gemessenen Radonaktivitätskonzentrationen in der Bodenluft einen Bereich von ca. 5 kBq/m³ bis 1.000 kBq/m³ überstreichen. Lokal hängt die Höhe vom jeweiligen geologischen Untergrund ab. In ca. 30% der Fläche Deutschlands und davon überwiegend in Gebieten der Norddeutschen Tiefebene liegt die Bodenluftkonzentration im Bereich unterhalb von 20 kBq/m³. Werte über 100 kBq/m³ sind nur in einigen eng begrenzten Gebieten zu erwarten. Diese sind in der Regel durch das Vorkommen von Graniten oder granitähnlichen Gesteinen nahe der Erdoberfläche gekennzeichnet.

In Gebieten mit Radonaktivitätskonzentrationen in der Bodenluft bis 20 kBq/m³ sind Radonaktivitätskonzentrationen in Aufenthaltsräumen über 100 Bq/m³ selten. Grundsätzlich kann in diesen Gebieten davon ausgegangen werden, dass ein fachgerechter Schutz der Gebäude gegen von außen angreifende Bodenfeuchte nach dem Stand der Technik ausreichend Schutz vor erhöhten Radonkonzentrationen im Gebäude bietet.

Bei Radonaktivitätskonzentration in der Bodenluft von mehr als 20 kBq/m³ und in Abhängigkeit von der Bauweise und dem Bauzustand sind erhöhte Radonkonzentrationen in Gebäuden häufiger zu erwarten. Überdurchschnittlich häufig werden erhöhte Radonkonzentrationen in Häusern älteren Baujahres gefunden, insbesondere dann, wenn die Häuser keine Fundamentplatte oder Undichtigkeiten der Gebäudehülle im erdberührten Bereich aufweisen. Infolge der Geologie des Bauuntergrundes können in einzelnen Gebäuden Jahresmittelwerte von einigen Tausend Becquerel pro Kubikmeter auftreten. In den Regionen mit einer Bodenluftkonzentration von mehr als 20 kBq/m³ sind Messungen der Radonaktivitätskonzentration in der Innenraumluft zu empfehlen, um die tatsächliche Strahlenexposition betroffener Personen durch Radon bewerten und gegebenenfalls angemessene Schutzmaßnahmen ergreifen zu können. Bei der Planung neuer Gebäude sind Maßnahmen zur Begrenzung des Radoneintritts aus dem Boden in das Gebäude in Betracht zu ziehen, deren Umfang sich an den Standortbedingungen orientieren sollte. Insbesondere bei Radonkonzentrationen in der Bodenluft von über 100 kBq/m³ ist auch bei neu errichteten Gebäuden ohne Radonschutzmaßnahmen häufig mit Radonkon-

zentrationen über 100 Bq/m³ zu rechnen. Tabelle 2.2-1 zeigt die auf der Radonaktivitätskonzentration in der Bodenluft beruhende Abschätzung (Stand 2007) der Anzahl von Ein- und Zweifamilienhäusern mit Radonaktivitätskonzentrationen in Aufenthaltsräumen oberhalb von 100 Bq/m³.

Radonkonzentration Relative Häufigkeit tausend Häuser Ba/m³ in % 10 - 12 100 1.300 -1.600 1,6 - 3,1 200 220 -420 400 0.3 - 0.940 -140 4 > 1.000 0.03 -0,2 25

Tabelle 2.2-1
Geschätzte Anzahl der Ein- und Zweifamilienhäuser mit Radonkonzentrationen über verschiedenen Schwellenwerten in
Aufenthaltsräumen

(Estimated number of one- and two-family houses with radon concentration above various threshold values in living rooms)

In Bergbaugebieten können über Klüfte und Risse im Deckgebirge oder über direkte Verbindungen von Stollen oder Schächten Grubenwetter in die Gebäude gelangen. In diesen Fällen werden die eindringende Radonmenge und die daraus resultierende Radonkonzentration meist von der Bewetterung der untertägigen Hohlräume beeinflusst. In Häusern von Bergbaugebieten wurden in Einzelfällen kurzzeitig deutlich über 100.000 Bq/m³ gemessen. Werden Jahresmittelwerte der Radonkonzentration von über 100 Bq/m³ Luft in Aufenthaltsräumen ermittelt, ist generell die Durchführung geeigneter Maßnahmen zu empfehlen. Dabei sollen die Höhe der Radonkonzentration, d. h. des damit verbundenen Gesundheitsrisikos, und der Aufwand der Sanierungsmaßnahmen in einem angemessenen Verhältnis stehen

Der Einfluss der Radonabgabe aus mineralischen Baumaterialien wird im Vergleich zum geogenen Radon allgemein als gering angesehen. Im Zuge einer Diskussion um eine mögliche Einbeziehung der Radonabgabe eines Baustoffes als Zulassungskriterium in der Bauproduktrichtlinie und um die vorhandene Datenbasis zu aktualisieren, wurde die Radonabgabe von in Deutschland aktuell üblichen Produkten in einem Projekt untersucht (siehe Kap. 2.3).

Generell von untergeordneter Bedeutung für die Radonkonzentrationen in Innenräumen ist in Deutschland das in Wasser gelöste Radon, welches bei dessen Anwendung in die Raumluft freigesetzt wird.

Die Weltgesundheitsorganisation (WHO) weist in einer Publikation aus dem Jahr 2001 darauf hin, dass Radon ein wichtiges Gesundheitsproblem darstellt und für den Menschen krebserregend ist. Ferner wird festgestellt, dass die Unsicherheit bei der Risikoabschätzung geringer ist als bei anderen krebserregenden Stoffen. Im Jahre 2005 startete die WHO ein internationales Radonprojekt, um die Gesundheitsaspekte einer Radonexposition zu analysieren und Empfehlungen für Messungen und Sanierungen sowie Leitfäden zur administrativen Regelung in den Mitgliedsstaaten zu formulieren. Der Abschluss des Projektes fand Ende 2009 mit der Veröffentlichung des WHO-Radonhandbuches statt. In diesem Handbuch wird der auch vom BfS und BMU vorgeschlagenen Referenzwert der Radonkonzentration in Aufenthaltsräumen von 100 Bq/m³ empfohlen. Selbst unter schwierigen Randbedingungen sollte der Wert nicht über 300 Bq/m³ liegen. Bei Neubauten sind Maßnahmen einzusetzen, die zu einer Konzentration deutlich unter 100 Bq/m³ führen sollten.

Im Jahre 2010 veröffentlichte die WHO eine Zusammenstellung wichtiger Innenraumschadstoffe als Teil der neuen Leitlinien zur Raumluftqualität. In dieser Zusammenfassung wird Radon als Innenraumschadstoff aufgeführt. Das aus den epidemiologischen Studien abgeleitete zusätzliche Lebenszeitrisiko beträgt im Alter von 75 Jahren 0,6 ·10 ·5 pro Bq/m³, d. h. sechs Fälle pro einer Million Betroffener für lebenslange Nichtraucher bzw. 15 ·10 ·5 pro Bq/m³ (für Raucher). Das Risiko für Ex-Raucher liegt dazwischen und und verringert sich mit zunehmender Abstinenzdauer. Die Radonkonzentration, die mit einem zusätzlichen Lebenszeitrisiko von 1 pro 100 oder 1 pro 1000 einhergeht, beträgt dementsprechend 67 Bq/m³ bzw. 6,7 Bq/m³ für Raucher und 1670 Bq/m³ bzw. 167 Bq/m³ für lebenslange Nichtraucher.

Im Jahr 2010 wurde im Auftrag des BfS für Deutschland erstmalig eine Kosten-Nutzen-Analyse mit unterschiedlichen potenziellen Regelungsszenarien durchgeführt. Es wurden verschiedene Szenarien untersucht, die in bauliche Sanierungsmaßnahmen bei bestehenden Gebäuden und dem radonsicheren Errichten von Neubauten unterteilt wurden. Zudem gingen unterschiedliche Eingriffsniveaus von 100, 200 und 400 Bq/m³ Innenraumluft, die Unterscheidung nach freiwilligen und verpflichtenden Maßnahmen sowie unterschiedliche regionale Ebenen in die Berechnung ein. Der Interventionseffekt wurde in Form verminderter Lungenkrebserkrankungen und gewonnener qualitätsadjustierter Lebensjahre (QALY) dargestellt. Aus der Perspektive der durch etablierte Methoden ermittelten Kosteneffektivität ist festzustellen, dass für Deutschland allgemein die Sanierung bestehender Gebäude mit einem verpflichtenden Eingreifwert von 100 Bq/m³ mit anschließender Erfolgskontrolle die geringsten Kosten verursacht. Für Radon-Hochrisiko-Gebiete ist das radonsichere Bauen hingegen vorzuziehen.

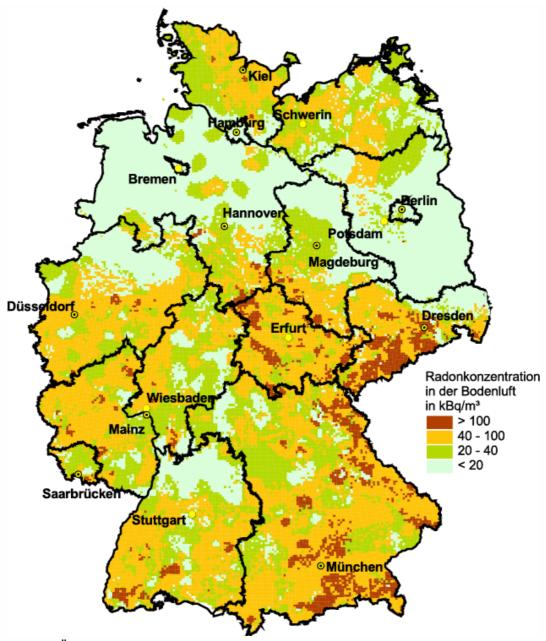


Abbildung 2.2-1 Übersichtskarte der Radonkonzentration in der Bodenluft in 1 m Tiefe (nach Daten von 2001) (Overview of Radon concentration in soil air at 1 m depth - data from 2001)

2.3 Radioaktive Stoffe in Baumaterialien und Industrieprodukten (Radioactive substances in building material and industrial products)

Untersuchungen und Ergebnisse

Die von den Baustoffen ausgehende Gammastrahlung führt zu einer mittleren Äquivalentdosisleistung in Wohngebäuden von rund 0,6 mSv/a, was einer jährlichen effektiven Dosis von 0,3 mSv entspricht.

Das durch radioaktiven Zerfall aus Ra-226 entstehende Rn-222 ist aus der Sicht des Strahlenschutzes von besonderem Interesse. In den wichtigen mineralischen Baustoffen Beton, Ziegel, Porenbeton und Kalksandstein sowie in den Naturwerksteinen wurden allerdings Ra-226-Konzentrationen gemessen, die in der Regel nicht die Ursache für im Sinne des Strahlenschutzes relevante Radonkonzentration in Wohnungen (siehe Kapitel 2.2) sind.

Im Zuge einer Diskussion um eine mögliche Einbeziehung der Radionuklidkonzentration und der Radonabgabe eines Baustoffes als Zulassungskriterium in der Bauproduktrichtlinie und um die vorhandene Datenbasis zu aktualisieren, wurde in einem Projekt in Zusammenarbeit mit dem Bundesverband Baustoffe - Steine und Erden e.V. (bbs) die Nuklidkonzentration und Radonexhalation von über 100 in Deutschland aktuell üblichen, repräsentativen Innenraumprodukten untersucht. Die Spannweite der Ergebnisse der massespezifischen Aktivitätsmessungen in den Baustoffen ist in Tabelle 2.3-2 zusammengefasst.

Tabelle 2.3-2 Ergebnisse der Radonnuklidbestimmungen in Baustoffgruppen

	Spezifische Aktivität (Bq/kg)								
Produkte	Doobooooki	к	-40	Th-228		Ra-226			
	Probenzahl	min.	max.	min.	max.	min.	max.		
Gipsprodukte	5	< 20	120	1,6	5,8	3,8	13		
Kalksandsteine	3	35	180	2,8	7,2	4,1	10		
Mineralwolle	7	49	350	4,7	64	16	80		
Ziegel	27	470	1200	37	98	38	63		
Zement/Mörtel	11	135	380	11	21	11	35		
Fliesen/Keramik	5	295	620	39	97	67	110		
Porenbeton	10	97	350	4,8	19	8	26		
Mörtel	7	120	310	6	31	11	53		
Putze	19	12	220	0,9	31	2	22		
Estrich	5	210	295	11	34	11	26		
Leichtbeton	7	710	850	28	83	27	98		
Beton	3	230	560	10	47	13	25		

Bei der Mehrzahl der Baustoffgruppen wurde eine Gesamtdosis deutlich unterhalb von 1 mSv/a abgeschätzt. Dieser Wert kann bei den Produktgruppen Ziegel, Leichtbeton und Beton, die allerdings die Massenprodukte darstellen, von wenigen Produkten überschritten werden. Selbstverständlich sind bei wechselnden Rohstoffen oder Zusätzen von Rückständen mit erhöhten Radionuklidgehalten Veränderungen der durchschnittlichen Exposition von 0,5 mSv/a nach oben und unten möglich. Die durchgeführten Untersuchungen haben weiterhin gezeigt, dass der baustoffbedingte Anteil an der Radonkonzentration in Innenräumen grundsätzlich unter 20 Bq/m³ liegt. 20 Bq/m³ würden zu einer Dosis von 0,4mSv pro Jahr führen. Es kann allerdings nicht ausgeschlossen werden, dass - wie national und international in der Vergangenheit beobachtet - in Einzelfällen Materialien eingesetzt werden können, die zu einer erhöhten Radoninnenraumkonzentration führen.

Wegen der zunehmenden Verwendung von Naturwerksteinen im häuslichen Bereich kommt der von diesen Materialien ausgehenden Strahlenexposition für die Bevölkerung besondere Bedeutung zu. Deshalb wurden mit Unterstützung des Deutschen Naturwerkstein-Verbandes e. V. eine Reihe marktgängiger Fliesen und anderer Plattenmaterialien unterschiedlichster Herkunft untersucht. Die spezifische Aktivität natürlicher Radionuklide (Ra-226, Th-232 und K-40) variiert auch innerhalb der einzelnen Materialarten in einem großen Bereich. Unter den Natursteinen besitzen vor allem kieselsäurereiche Magmagesteine infolge natürlicher Radionuklide vergleichsweise hohe spezifische Aktivitäten.

Eine breitere Übersicht über die spezifische Aktivität natürlicher Radionuklide in Baustoffen, beruhend auf den Daten der Messreihe in den 90er Jahren, gibt Tabelle 2.3-1 in Teil A dieses Berichts.