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made with or without coordination between local jurisdictions and provide a computational 

feasible way to solve the optimization problem. We illustrate the model using the COVID-

19 data in China. When travel restrictions target key routes, only around 5% of the possible 

routes need to be closed in order to have the same number of confirmed COVID-19 cases 

in the initial outbreaks. Uncoordinated travel restrictions ignore policy externalities and 
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1 Introduction

The spread of communicable diseases, especially those that could transmit via airborne droplets,

depends crucially on the degree of interactions between infectious and susceptible people. Pop-

ulation flows have therefore been shown to strongly predict the spread of COVID-19 (e.g., Fang

et al., 2020, Jia et al., 2020, Qiu et al., 2020, Wu et al., 2020) and other infectious diseases (e.g.,

Brockmann and Helbing, 2013) across space. To slow the transmission of COVID-19, many public

health measures have been adopted across the world, ranging from mild measures, such as social

distancing, quarantine and isolation, travel restrictions, testing and contact tracing, to stringent

measures, such as city lockdown, shelter-in-place, etc. While many of these public health measures

are e↵ective in suppressing the spread of COVID-19 (e.g., Tian et al., 2020), they could also bring

significant social and economic costs and disruptions.

In this paper, we explore the feasibility of imposing travel restrictions on specific origin and

destination pairs and examine the optimal designs of such policies. In addition to being less restric-

tive and therefore more cost-e↵ective than lockdowns, route-specific travel restrictions can still be

implementable when complete lockdowns are not, for example, when the unit under consideration

is a major metropolitan or an entire country. Even in the scenarios when route-specific travel re-

strictions are not possible, our identified optimal travel restrictions, once integrated with advanced

mobile technology and specific public health measures1, can be used to improve risk management

for people with certain travel histories. For instance, information on travel histories has been linked

to centralized, real-time health insurance database and electronic health records to facilitate health-

care facilities to identify high-risk patients for targeted screening, timely quarantine, and aggressive

contact tracing (Emanuel et al., 2020, Wang et al., 2020a). These data also guide border checks

and surveillance (Whitelaw et al., 2020).

To characterize the optimal travel restrictions and o↵er numerical solutions for policy consid-

eration, we embed a parsimonious model of the spatial spread of the disease in an optimization

problem that considers the trade-o↵ between the costs from disease infections and those from travel

restriction measures. The optimization problem is solved from the perspective of a social planner

that can coordinate policies and dictate the levels of restrictions on the population flows between

each pairs of cities. We also solve the optimization problem under the constraint that each city acts

independently to maximize its own payo↵ while taking the actions of other cities as given, i.e., a si-

multaneous move Nash equilibrium outcome. Due to the externality of policy e↵ects, uncoordinated

travel restrictions can be sub-optimal and we illustrate this in an empirical application.

Applying the theoretical model to the data on the spread of COVID-19 in China between

January and February, 2020, we first show that intercity population flows intensify spatial virus

spreading. Based on the estimated parameters, we identify top routes in the population flow

networks most influential on the total number of COVID-19 cases in China and thus need to
1With the advent of mobile payment applications, social media, security camera footage, facial recognition, and

global positioning system (GPS) in vehicles to collect real-time data, travel histories of individuals have become
increasingly easily accessible in multiple countries and regions.
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be restricted the most, which consist of those closely connected to areas with severe infections

and those whose destinations are cities with large population outflows. In comparisons to the

scenario without coordination, total social welfare can be improved with often less stringent optimal

restrictions imposed due to spillover e↵ects when cities coordinate their travel restriction policies.

Accounting for such spillovers saliently alters our perceptions of travel restriction policies. These

results can be generalized to guide our responses to other communicable diseases with human-to-

human transmissions.

Our paper contributes to the growing literature on the optimal designs of various aspects of

the public health measures in response to COVID-19. A number of studies embed an Susceptible-

Infectious-Recovered (SIR) model (Kermack and McKendrick, 1927) in an optimal control problem,

such as lockdowns of certain sections of the population (Acemoglu et al., 2020, Alfaro et al., 2020,

Alvarez et al., 2020), testing and quarantine (Berger et al., 2020). Holtz et al. (2020) study co-

ordinated and uncoordinated shelter-in-place orders. Fajgelbaum et al. (2020) examine optimal

restrictions targeting directional commuting flows. They integrate a spatial epidemiology model

with a quantitative model of commuting, production, and equilibrium across locations. Their focus

is on commuting flows within a metropolitan area where population flows in the form of commut-

ing are related to disease spread and production. We identify the key parameters using a causal

inference model, in comparison to this literature dominated by epidemiology models. Our model

is more concise and applicable to a larger geographic scale, such as the spread of diseases across

many cities or countries, because the number of choice variables is shown to be proportional to the

number of units N , rather than N2. We examine local decision making in both coordinated and

uncoordinated scenarios.

Our paper is also related to policies on networks. We add to the literature on the spatial spread

of diseases (Brockmann and Helbing, 2013) by considering the design of policies that a↵ect the

rate of spillovers. Ballester et al. (2006) characterize the node in a network whose removal has the

largest impact on the aggregate outcome. We consider the marginal e↵ect of varying the strength

of a directed link between two nodes on the individual and aggregate outcomes, and show that this

can be characterized as a product between a term similar to the Bonacich centrality of population

flows of the origin and a term measuring the contagion risk that the destination poses to other

locations through population flows. Therefore, an optimal travel restriction policy should take into

account the risk of the origin and also the risk that the destination can bring to other cities. Our

results can be extended to spatial interaction models where agents take the network as given (e.g.,

Lee, 2007) and a planner can alter the strength of network links.

The paper is organized as follows. Section 2 describes a model for the spread of communicable

diseases across space and estimates of the model parameters based on the spread of COVID-19

in China are presented in Section 3. Section 4 analyzes the optimal travel restrictions from the

perspective of a social planner that can coordinate between cities, and from the perspective of

individual cities with no between-city coordination. Section 5 concludes.
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2 The key link in network interactions

2.1 Model setup

There are N = {1, · · · , n} units interacting through a network described by an n ⇥ n matrix

W = (wij). Let yi denote the outcome of unit i. We assume the following model of network

interactions,

yi =

0

@
nX

j=1

wijyj

1

A�+ x0i� + ui. (1)

wij � 0 and wii = 0. xi is a vector of control variables which can include time lagged values of

yi. ui is the error term. Eq.(1) can be rationalized as best responses in a game where individual

utilities depend on linear and quadratic terms of the own and others’ actions (e.g., Ballester et al.,

2006, Blume et al., 2015).

Denote ⌘i = x0i� + ui and ⌘ =
⇣
⌘1 · · · ⌘n

⌘0
. Assuming that the matrix I � �W is invertible,

Eq.(1) describes an equilibrium system of {yi}ni=1 for given ⌘ and W . The reduced form is

yi = `0i(I � �W )�1⌘, (2)

where `i an n⇥1 vector with i-th entry 1 and all other entries 02. We first observe that the increase

in the aggregate outcome for a shock to city j is
@
P

i yi
@⌘j

= `0j (I � �W 0)�1 1, where 1 is a vector

of ones, i.e., units with higher values of Bonacich centralities have larger e↵ects on the aggregate

outcome. For a specific network link, the e↵ect of varying wj0j1 on the equilibrium yi, while keeping

other network links fixed, is given by

@yi
@wj0j1

= �`0i (I � �W )�1 `j0`
0
j1 (I � �W )�1 ⌘. (3)

From Eq.(3), the marginal e↵ect of varying the intensity of the network link wj0j1 on the aggregate

equilibrium outcome,
P

i yi, is

@
P

i yi
@wj0j1

= �10 (I � �W )�1 `j0`
0
j1 (I � �W )�1 ⌘ = �`0j0

�
I � �W 0��1

1`0j1 (I � �W )�1 ⌘. (4)

In our empirical illustration, yi denotes the number of Covid-19 cases in city i in logarithms.

wij , i 6= j is a measure of the intensity of population flows from city j to i. In a model of network

interactions, Ballester et al. (2006) show that individual outcomes are proportional to their Bonacich

centralities and that the marginal contribution of a unit to the aggregate outcome is given by its own

Bonacich centrality and its contribution to the Bonacich centralities of other units. Conventionally,

removing a unit, for instance, through lockdown of an entire city can be viewed as removing all

2Note that the Bonacich centrality of unit i is `0i(I � �W )�11 (Ballester et al., 2006) and Eq.(2) can be viewed as
a weighted Bonacich centrality of unit i, with weights given by the vector ⌘.
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network links that originate or point to the city. In contrast, in our case the policy targets the values

of directed network links, for example, through ex ante restriction of route-specific transportation

or ex post contact tracing and quarantine measures contingent on specific travel histories. Eq.(4)

shows that the marginal e↵ect of a directed link on the aggregate outcome depends on the interaction

between the Bonacich centrality of the destination city (`0j0 (I � �W 0)�1 1) and a term similar to

the Bonacich centrality of the origin city (`0j1 (I � �W )�1 ⌘). Intuitively, the intensity of population

flows between two cities has a stronger e↵ect on the aggregate outcome if the origin city has a higher

infection risk or the destination city can a↵ect many other cities.

2.2 The key network link

Eq.(4) shows the marginal e↵ect of varying the intensity of a network link on the aggregate outcome.

In some circumstances, the policy may be binary. For example, either a travel route is shut down or

it is open. Ballester et al. (2006) provide results on which node’s removal from a network results in

the largest reduction in the aggregate outcome. We add to their results by showing which network

link’s removal leads to the largest reduction in the aggregate outcome.

Theorem 1. Suppose that the network interactions are described by Eq.(2) and |�|maxi
P

j |wij | <
1. Removing the network link wj0j1, i.e., replacing wj0j1 by 0, will reduce the the aggregate outcome

by [(I � �W 0)�1 1]j0wj0j1�[(I � �W )�1 ⌘]j1.

Proof. Let �j0j1 denote the scenario when the network link wj0j1 is removed. Under the assumption

that |�|maxi
P

j |wij | < 1, I � �W and I � �W�j0j1 are invertible and the equilibrium outcome

described by Eq.(2) exists and is unique. From Eq.(2),

ys � y�j0j1
s = `0s (I � �W )�1 ⌘ � `0s

�
I � �W�j0j1

��1
⌘ (5)

=
nX

t=1

1X

p=1

�p
⇣
w[p]
st � w[p]

st(�j0j1)

⌘
⌘t

= �I(s = j0)wj0j1⌘j1 +
nX

t=1

1X

p=2

�pI(s = j0)wj0j1w
[p�1]
j1t

⌘t +
1X

p=2

�pw[p�1]
sj0

wj0j1⌘j1

+
nX

t=1

1X

p=3

�p
X

a+b=p�1
a�1,b�1

w[a]
sj0

wj0j1w
[b]
j1t

⌘t,

where w[p]
st is the weight of all paths of length p from s to t: w[0]

st = 1, w[1]
st = wst, w[p]

st =
Pn

k1=1 · · ·
Pn

kp�1=1wsk1wk1k2 · · ·wkp�1t for p � 2. w[p]
st(�j0j1)

is the weight of all p-length paths

from s to t that does not contain wj0j1 . I() is the indicator function.

Summing over s, the impact of removing wj0j1 on the aggregate outcome is

nX

s=1

�
ys � y�j0j1

s

�
= �

 
1 +

nX

s=1

�w[1]
sj0

+
nX

s=1

�2w[2]
sj0

+ · · ·
!
wj0j1
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⌘j1 +

nX

t=1

�w[1]
j1t

⌘t +
nX

t=1

�2w[2]
j1t

⌘t + · · ·
!

= [
�
I � �W 0��1

1]j0wj0j1�[(I � �W )�1 ⌘]j1 .

Theorem 1 provides a geometric characterization of the key network links in terms of their im-

pacts on the aggregate outcome if they are removed, which depend on the link intensity (�wj0j1),

the centrality of the origin unit ([(I � �W )�1 ⌘]j1), and the centrality of the destination unit

([(I � �W 0)�1 1]j0).

2.3 Contextual e↵ects

Contextual e↵ects reflect changes in outcomes as a result of exposures to similar factors for those

who are close. The identification of causal spillover e↵ects in the presence of contextual e↵ects is

the focus in many papers in both econometric (Manski, 1993, Bramoullé et al., 2009, Lee et al.,

2010, Blume et al., 2015) and applied fields (e.g., Christakis and Fowler, 2007, Cohen-Cole and

Fletcher, 2008). Ballester and Zenou (2014) extend the key player analysis of Ballester et al. (2006)

to allow for contextual e↵ects and show that the identification of the unit whose removal results in

the largest reduction in the aggregate outcome can be di↵erent when contextual e↵ects are taken

into account. This section extends the key network link analysis to allow for contextual e↵ects.

The network interactions model is

yi =

0

@
nX

j=1

wijyj

1

A�+ ⌘i, ⌘i = x0i� +

0

@
nX

j=1

wijx
0
j

1

A�w + ui. (6)

Let ⌘�j0j1 denote the n ⇥ 1 vector ⌘ with the wj0j1 term replaced by zero, i.e., ⌘�j0j1 =

⌘ � `j0wj0j1x
0
j1�w.

Theorem 2. Suppose that the network interactions are described by Eq.(6) and |�|maxi
P

j |wij | <
1. Removing the network link wj0j1, i.e., replacing wj0j1 by 0, will reduce the the aggregate outcome

by [(I � �W 0)�1 1]j0wj0j1

⇣
�[(I � �W )�1 ⌘�j0j1 ]j1 + x0j1�w

⌘
.

Proof. The proof mirrors the proof of Theorem 1 with some modifications.

ys � y�j0j1
s = `0s (I � �W )�1 ⌘ � `0s

�
I � �W�j0j1

��1
⌘�j0j1

= `0s (I � �W )�1 �⌘ � ⌘�j0j1
�
+ `0s (I � �W )�1 ⌘�j0j1 � `0s

�
I � �W�j0j1

��1
⌘�j0j1

= `0s (I � �W )�1 `j0wj0j1x
0
j1�w + `0s (I � �W )�1 ⌘�j0j1 � `0s

�
I � �W�j0j1

��1
⌘�j0j1 .

The proof is completed by using the result in Eq.(5) and summing over s.
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Table 1: Summary of Empirical Model Specifications
Model A Model B

yi log(1 + # of confirmed COVID-19 cases by February 29)
zi local weather variables that a↵ect infection rates
wij , ti average pop. flows, Jan 1-Feb 29 average pop. flows, Jan 1-Jan 22
w̃ij , t̃i average pop. flows, same lunar calendar

days in 2019 as Jan 1-Feb 29, 2020
Endogenous wij , ti,

Pn
j=1wijyj

Pn
j=1wijyj

IV t̃i,
Pn

j=1 w̃ijzj
Pn

j=1wijzj

When contextual e↵ects are present, the additional term in the e↵ect of closing a network link

on the aggregate outcome is due to spillovers from the origin j1’s characteristics (wj0j1x
0
j1�w) to

the destination j0 and further spillover e↵ects from j0.

3 Estimates of Model Parameters

In this section, we estimate the model parameters in Eq.(1) using data on confirmed COVID-19

cases and the intensities of between and within city population flows in China. The estimated

coe�cient of between city spread (�) will be the basis for the model of optimal travel restrictions

in Section 4.

We consider two empirical specifications (Table 1). In the first specification (Model A), we

use the measures of population flow during January 1 - February 29, 2020 to construct the between

and within city population flows. On January 23, the city of Wuhan was placed under lockdown

and travelling out of Wuhan was mostly stopped. Since then, people’s travel decisions were likely

a↵ected by either the perceived risk of infection or the public health measures imposed by the

government, which in turn were responding to the infection dynamics. Thus, to mitigate the

endogeneity issue of the observed population flows between and within cities in Model A, we use

the population flow during the same lunar calendar days in 2019 as the instrumental variables. As

a comparison, in an alternative specification (Model B), we estimate the impacts of between and

within city population flows during January 1 - 22, 2020 considering that people’s traveling behavior

is less likely to be a↵ected by the severity of COVID-19 transmission before January 23. For both

models, the population flow weighted average number of infections in other cities may correlate with

the error term because infections can spread in both directions as cities are interconnected through

the population flow network. We construct instrumental variables using population flow weighted

meteorological variable in other cities following Qiu et al. (2020). We control weather conditions

in the own city, including precipitation, the interaction between precipitation and wind speed, and

a dummy for bad weather. The same set of weather characteristics in other cities weighted by the

between city population flow intensities are used as IVs for the spatially lagged dependent variables

(
Pn

j=1wijyj).
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3.1 Data

We collect the numbers of cumulative confirmed COVID-19 cases of 360 prefecture level cities by

February 29, 2020 from 32 provincial-level Health Commissions in China. The National Oceanic and

Atmospheric Administration (NOAA) provides precipitation, visibility, wind speed, an indicator

for bad weather (fog, rain or drizzle, snow or ice pellets, hail, thunder, tornado or funnel cloud),

average temperature, etc. at the daily level for 362 weather stations in China. To merge the

meteorological variables with the cumulative number of COVID-19 cases, we first calculate daily

weather variables for each city from station-level weather records following the inverse distance

weighting method. Specifically, for each city, we draw a circle of 100 km from the city’s centroid

and calculate the weighted average daily weather variables using stations within the 100-km circle.

We use the inverse of the distance between the city’s centroid and each station as the weight.

Second, we calculate the average weather characteristics of each city for each specification, which

are then matched with the number of COVID-19 cases based on the city identifier.

We obtain the data on population movement between and within cities from Baidu Migration3,

which is based on mobile phone location data to track population flow. From the Baidu Migration

data, we collect the daily inflow index and outflow index for 369 cities between January 1 and

February 29 in 2020, and on the same lunar calendar days in 2019. For each of the 369 cities,

Baidu Migration also records the shares of the top 100 origination cities for the population inflow

to the city and the shares of the top 100 destination cities for the population outflow from the city.

We assume that the population flow is zero for destination or origin cities outside the top 100 lists.

Then the between city population flow intensities are calculated by multiplying the daily migration

index of the population flows with the share of the flows4. Regarding the within city population

flow intensities, Baidu also provides the daily within city migration index for January 1 - February

29 of 2020 and the same lunar calendar days in 2019. Summary statistics are presented in Table

2. The average intensities of within city population flows are smaller in cities without confirmed

cases than those in cities with confirmed cases.

3.2 Estimation Results

In Table 3, columns (1) and (3) report the OLS estimates and columns (2) and (4) display the IV

estimates from Eq.(1). Columns (3) and (4) include province fixed e↵ects, while columns (1) and

(2) do not. All columns in Table 3 show a significantly positive spillover e↵ect of infections in other

cities mediated by population flows. The IV estimate � = 0.258 (column (2)) implies that a 1%

increase in infections in a city where 100,000 people travel to the focal city causes a 0.284% increase

in the number of cases in the focal city5. The magnitudes of OLS and IV estimates on � are very

3http://qianxi.baidu.com/
4In the event of a slight gap between the population flow intensity calculated by the inflow index of destination

cites and that by the outflow index of origination cities for a city pair, we take average of the two intensities.
5In Fang et al. (2020), one migration index unit represents 90,848 people movements. Based on this estimate, we

find that the destination city infections increase by 0.284% (0.258 ⇥ 100000 ÷ 90848 ⇥ 1%) for a 1% increase in the
infections in the origin city from where 100,000 people travel to the destination city on average daily.

7
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Table 2: Summary Statistics
Variables N Mean SD Min Median Max

Cities with confirmed cases
Jan1-Feb29, 2020
Average confirmed cases 324 246.170 2741.927 1 19 49122
Average within city population flows 324 3.709 0.607 1.808 3.724 5.534
Average precipitation,mm 324 0.218 0.415 0 0.122 4.528
Average wind speed,m/s 324 2.278 0.761 0.958 2.163 5.050
Bad weather 324 0.393 0.185 0 0.381 0.805
Jan1-Jan22, 2020
Average within city population flows 324 5.230 0.562 3.096 5.322 6.553
Average precipitation,mm 324 0.169 0.369 0 0.065 4.233
Average wind speed,m/s 324 2.122 0.795 0.732 1.966 6.077
Bad weather 324 0.399 0.223 0 0.364 0.909

Cities without confirmed cases
Jan1-Feb29, 2020
Average within city population flows 36 3.105 0.788 1.761 3.027 4.776
Average precipitation,mm 36 0.385 1.023 0 0.034 3.961
Average wind speed,m/s 36 1.966 0.752 0.887 1.806 3.745
Bad weather 36 0.187 0.164 0 0.159 0.583
Jan1-Jan22, 2020
Average within city population flows 36 4.138 1.039 1.968 4.264 6.366
Average precipitation,mm 36 0.395 1.074 0 0.016 4.365
Average wind speed,m/s 36 1.887 0.812 0.797 1.677 3.680
Bad weather 36 0.232 0.181 0 0.224 0.818

Please see the text for variable sources.
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Table 3: Model A: Estimation Results
(1) (2) (3) (4)
OLS IV OLS IV

� 0.252*** 0.258*** 0.240*** 0.245***
(0.0406) (0.0269) (0.0373) (0.0329)
[0.277] [0.284] [0.264] [0.270]

� -0.365 0.294 -0.387** -0.144
(0.365) (0.209) (0.143) (0.136)

Precipitation -0.987*** -0.614*** -0.249*** -0.237***
(0.253) (0.207) (0.0731) (0.0660)

Precipitation ⇥ wind speed 0.329*** 0.245*** 0.0594* 0.0547*
(0.0709) (0.0702) (0.0346) (0.0322)

Bad weather 3.434*** 2.959** 0.562 0.619
(1.131) (1.175) (0.592) (0.605)

Observations 360 360 360 360
Province FE NO NO YES YES

The dependent variable is the log of the number of cumulative confirmed cases by February 29, 2020. The
endogenous explanatory variables include the log of cumulative number of confirmed cases in other cities and
the intensity of population flows between and within cities. Control variables are precipitation, the interaction
between precipitation and wind speed, and a dummy for bad weather in own cities. The set of these variables
in other cities weighted by the population flow intensities between cities in 2019, and the within-city population
flow intensities in 2019 are used as instrumental variables in the IV regressions. In Column (3)-(4), province
fixed e↵ects are included. Elasticity of infection spillovers per 100000 daily population movements are reported
in brackets. Standard errors in parentheses are clustered by provinces. *** p<0.01,** p<0.05, * p<0.1.

similar. Population movements between cities lead to the spread of the virus, which can be reduced

by travel restrictions. The IV estimated coe�cient on the within city population flow intensity is

positive in column (2) and negative in column (4), and both are insignificant. Notice that the OLS

estimate of � is negative, which can be ascribed to the issue of reverse causality because people

may avoid going outside when the risk of catching the virus is high. After controlling for province

fixed e↵ects, the estimated spillover e↵ects remain stable and significant although the magnitudes

are somewhat smaller.

Table 4 presents the first-stage estimates for the IV regressions in Table 3. Columns (1) and

(3) display the coe�cients on the sum of cumulative confirmed cases in other cities weighted by

population flows. Columns (2) and (4) present the coe�cients on within city population flow

intensity. We also report the R-squared and F -test statistics for the joint significance of excluded

instruments in the first stage.

To illustrate to what extent our estimates are sensitive to the specification of the population

flow matrix, we consider a di↵erent specification where the between and within city population flow

intensities are averages of the population flows between January 1 and January 22, 2020 (Model

B in Table 1). The city of Wuhan was placed under lockdown on January 23, 2020. As is in Jia

et al. (2020), this specification examines how population flows before the adoption of the large-
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Table 4: Model A: First Stage Results
(1) (2) (3) (4)

VARIABLES Wy t Wy t

Own city
Within-city population flow intensities in 2019 0.184 0.733*** 0.255* 0.752***

(0.136) (0.0960) (0.143) (0.138)
Precipitation 0.102 -0.293*** 0.0649 -0.0817***

(0.151) (0.0472) (0.0462) (0.0174)
Precipitation ⇥ wind speed -0.0750 0.0581*** -0.0436 0.0337***

(0.0546) (0.0195) (0.0277) (0.00733)
Bad weather -0.362 0.219 -0.283 -0.108

(0.377) (0.311) (0.451) (0.120)
Other cities, weight = population flow

Precipitation -4.042** -0.981* -2.342** -0.145
(1.645) (0.543) (1.083) (0.283)

Precipitation ⇥ wind speed 1.516** 0.215 1.006** 0.0929
(0.631) (0.184) (0.379) (0.0934)

Bad weather 4.649*** 0.0523 4.424*** -0.253***
(0.409) (0.131) (0.261) (0.0698)

First-stage R2 0.937 0.587 0.969 0.840
F -test of excluded instruments 138.7 30.30 238.3 78.31
F -test p-value 0.000 0.000 0.000 0.000
Observations 360 360 360 360
Province FE NO NO YES YES

This table reports the first stage results for the weighted sum of cumulative confirmed cases in other cities and
the intensities of population flows within cities. The first-stage R-squared and F -tests for the joint significance of
excluded instruments in the first stages are reported. Standard errors in parentheses are clustered by provinces.
*** p<0.01,** p<0.05, * p<0.1.
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Table 5: Model B: Estimation Results
(1) (2) (3) (4)
OLS IV OLS IV

� 0.179*** 0.163*** 0.170*** 0.170***
(0.0165) (0.0126) (0.0136) (0.0125)
[0.197] [0.179] [0.187] [0.187]

� 0.288* 0.294** 0.131 0.131
(0.148) (0.141) (0.164) (0.153)

Precipitation -0.606*** -0.638*** -0.229*** -0.228***
(0.140) (0.152) (0.0731) (0.0685)

Precipitation ⇥ wind speed 0.234*** 0.242*** 0.0513 0.0513
(0.0568) (0.0610) (0.0360) (0.0337)

Bad weather 2.387** 2.531** 0.439 0.436
(0.973) (1.052) (0.752) (0.704)

Observations 360 360 360 360
Province FE NO NO YES YES

The dependent variable is the log of the number of cumulative confirmed cases by February 29, 2020. The average
intensities of population flows between and within cities are calculated between January 1 and January 22, 2020,
which are treated as exogenous. The endogenous explanatory variables include the log of cumulative number
of confirmed cases in other cities. Control variables are precipitation, the interaction between precipitation and
wind speed, a dummy for bad weather in own cities. The sum of these variables in other cities weighted by the
the population flow intensities between cities in 2020 are used as instrumental variables in the IV regressions. In
Column (3)-(4), province fixed e↵ects are included. Elasticity of infection spillovers per 100000 daily population
movements are reported in brackets. Standard errors in parentheses are clustered by provinces. *** p<0.01,**
p<0.05, * p<0.1.

scale public health measures seed COVID-19 across space. Results are reported in Table 5 and

are similar to the baseline results in Table 3 except for the OLS estimates of � in column (1),

which is significantly positive. This is expected, because the within city population flows before

the lockdown of Wuhan are not likely to be a↵ected by the unobservables that drive the infection

dynamics, hence smaller endogeneity biases. The IV estimate of � is positive in column (4), and is

positive and significant in column (2). With more within city population movement, people may

be more likely to be in contact with the infected in the same city. The estimated cross city spillover

e↵ects are smaller than those in Table 3, which is possibly because that the average population

flows before January 22 only measure part of the population flows that generate spatial spillovers

in infections by February 29. The first-stage results for these IV regressions are reported in Table

6. If population flows are exogenous, the OLS estimate of � is overestimated due to positive spatial

spillovers between cities, which can be seen from Table 5. It is also of interest to note that in

Model A, people’s travel intensities after the virus outbreak were likely negatively correlated with

the severity of local infections, which could lead to a negative bias of the OLS estimate, and the

direction of the bias is therefore ambiguous for the OLS estimates of Model A (Table 3).
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Table 6: Model B: First Stage Results
(1) (2)

VARIABLES Wy Wy

Own city
Within-city population flow intensities in 2020 -0.182 -0.169

(0.213) (0.205)
Precipitation 0.198 0.0537

(0.189) (0.106)
Precipitation ⇥ wind speed -0.183** -0.0739

(0.0894) (0.0636)
Bad weather -1.932** -0.605

(0.918) (0.790)
Other cities, weight = population flow

Precipitation -8.266*** -5.542***
(2.963) (1.892)

Precipitation ⇥ wind speed 3.822*** 3.011**
(1.267) (1.126)

Bad weather 8.068*** 7.714***
(0.809) (0.794)

First-stage R2 0.931 0.968
F -test of excluded instruments 219.3 171.3
F -test p-value 0.000 0.000
Observations 360 360
Province FE NO YES

This table reports the first stage results for the weighted sum of cumulative confirmed cases in other cities. The
first-stage R-squared and F -tests for the joint significance of excluded instruments in the first stages are reported.
Standard errors in parentheses are clustered by provinces. *** p<0.01,** p<0.05, * p<0.1.
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4 Optimal Travel Restrictions

Travel restrictions such as city lockdowns and suspensions of intercity transportation significantly

disrupted population flows between cities in China since the outbreak of COVID-19 in January.

While studies have shown that public health interventions such as city lockdowns and shelter-

in-place orders have reduced the number of infections (Fang et al., 2020, Tian et al., 2020, Qiu

et al., 2020), it remains an open question whether the set of policies adopted can be improved,

especially in light of the large number of available policy tools and the socioeconomic costs that

these policies inevitably incur. In Section 2, we characterize travel routes on which the population

flows contribute the most to the spread of viral diseases. The presence of policy e↵ect externality

calls for coordination between local jurisdictions in the adoption of travel restrictions, and aggregate

social welfare could be lower if local decisions do not account for their spillover e↵ects (Holtz

et al., 2020). In this section, we propose a model that considers the trade-o↵ between costs from

viral infections and those from the public health measures, and solve for the set of optimal travel

restrictions when cities can coordinate (4.1) or act independently (4.2). The theoretical model is

then applied to the data on COVID-19 infections in China (4.3).

4.1 Social Planner’s Problem

Suppose that the social planner can impose restrictions on between city travels so that wij can be

reduced to �ijwij with 0  �ij  1. The restrictions we discuss in this paper aim to limit the

spread of infections across cities that arise from the interactions between infected and susceptible

people. There are many policy instruments that can achieve this goal, such as lockdowns which

stop intercity travels (Qiu et al., 2020) or imposing proactive testing and quarantine on people with

certain travel histories after their arrival (Wang et al., 2020b), and the feasibility of the policy tools

can vary in di↵erent places. In the following, we refer to the policies simply as travel restrictions.

The marginal cost of such restrictions is assumed to be increasing with the amount of travel that

could have happened without the restrictions but did not happen with the restrictions imposed.

The cost of the restriction on route wij is modeled by
⇣
�ij'1 +

1
2�

2
ij'2

⌘
wij , with parameters '1 < 0

and '2 > 0. Summarize travel restrictions by matrix �, (�)ij = �ij and the diagonal elements of

� are restricted to zeros6. The social planner applies weight gi to city i and g =
⇣
g1 · · · gn

⌘0
.

The planner’s optimization problem is to minimize the cost from COVID-19 infections and the

travel restrictions imposed,

min
0�ij1,1in,1jn,i 6=j

X

i

giyi +
X

i,j,i 6=j

(�ij'1 +
1

2
�2
ij'2)wij , (7)

6This is without loss of generality. In the first order conditions of the optimization problem, terms such as ��W
are not a↵ected by this restriction, because the diagonal entries of W are zeros.
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subject to

yi =

0

@
nX

j=1

�ijwijyj

1

A�+ ⌘i, for all i. (8)

Remark 1. The welfare weights gi in (7) are determined by the social planner and could accom-

modate heterogeneous costs of infections across space. As one example, gi =
1

population sizei
if the

cost of infections is proportional to the number of cases in logs per capita. The special case that

gi = 1 for all i is also included.

Remark 2. The planner’s problem is a static one-period model. We have assumed that the plan-

ner’s information set is �(W, {⌘i}ni=1,�) where �() denotes the �-field generated by the argument

inside. In this parsimonious model, spatial distribution of infections is determined by the initial

viral spread (⌘) and the exogenous population flows between cities which are the targets of travel

restrictions.

In reality, � can be estimated empirically as in Section 3 or based on prior studies on similar

infectious diseases. For example, when �wijyj is specified as �
pop flowj!i

popj
yj, � can be calculated

based on the basic reproduction number in an SIR model of the disease (Kermack and McKendrick,

1927). In addition, the planner can adjust its decisions as new information become available with

the passage of time, and the future evolution of the variables may depend on the decisions made

in the past. Jeong and Lee (2020) consider a dynamic optimization problem where forward looking

agents interact with others over time on a fixed network. It is an area for future research that

the network is among the choice variables as well in the settings of Jeong and Lee (2020). We

have assumed fixed population flows, but people can adjust their behavior in response to factors

such as risks of infections, government policies, etc., as has been shown in many studies such as

Wong (2008) and Fang et al. (2020). Fajgelbaum et al. (2020) endogenize the costs of lockdowns by

modeling individuals’ commuting decisions, which provide labor supply to firms, generate incomes,

and also spread diseases. While the main objective of our model is to show what types of routes

should be restricted the first and how this relates to the network structure, these are substantive

future research topics.

Remark 3. Our model can accommodate uncertainties in the initial viral spread. Suppose that W

and the distribution of ⌘ are known to the decision maker. The planner’s problem is

min
0�ij1,1in,1jn,i 6=j

E
X

i

giyi +
X

i,j,i 6=j

(�ij'1 +
1

2
�2
ij'2)wij , (9)

subject to (8). Notice that
P

i giyi is linear in ⌘,
P

i giyi = g0(I � �� �W )�1⌘. Let ⌘̄ = E⌘. We

can rewrite Eq.(9) as

min
0�ij1,1in,1jn,i 6=j

X

i

giȳi +
X

i,j,i 6=j

(�ij'1 +
1

2
�2
ij'2)wij ,
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subject to

ȳi =

0

@
nX

j=1

�ijwij ȳj

1

A�+ ⌘̄i, for all i.

In the empirical illustration in Section (4.3), we consider two specifications for the expectations

of the initial viral spread. In the first scenario, we assume that ⌘̄Wuhan = log(10000), ⌘̄i = 0 for

i 6= Wuhan. In the second scenario, we construct ⌘̄ from the estimated parameters and the residual,

⌘̄i = ti�̂ + x0i�̂ + ûi.

By the extreme value theorem, a continuous function attains a minimum on a compact set, and

therefore the optimization problem in (7) always has a solution. The first order condition of (7)

with respect to �ij for wij 6= 0 and i 6= j is

�wijg
0 (I � ���W )�1 `i`

0
j (I � ���W )�1 ⌘ + ('1 + �ij'2)wij = 0

for interior 0 < �ij < 1. For the boundary solutions,

�wijg
0 (I � ���W )�1 `i`

0
j (I � ���W )�1 ⌘ + ('1 + '2)wij  0, if �ij = 1,

�wijg
0 (I � ���W )�1 `i`

0
j (I � ���W )�1 ⌘ + '1wij � 0, if �ij = 0.

Let � be a function from an n⇥ n matrix to an n⇥ n matrix. Define the following functions,

f(x) =

8
>>><

>>>:

0 if x  0

x if 0 < x < 1

1 if x � 1

,

(�(�))ij =

8
>>><

>>>:

f
⇣
�'�1

2

⇣
�g0 (I � ���W )�1 `i`0j (I � ���W )�1 ⌘ + '1

⌘⌘

if i 6= j, wij 6= 0

0 otherwise

. (10)

The first order necessary conditions above can be summarized by �(�) = � for � 2 [0, 1]n⇥n.

Notice that �() is a continuous function from a convex and compact set to itself. By Brouwer’s

fixed-point theorem, �(�) = � has a solution. Therefore the optimal solution to (7) can be obtained

by solving �(�) = �.

Taking the network structure of population flows into account, an optimal policy on between

city mobility not only considers the severity of the outbreak in the immediate origin city, but also

the outbreak intensity in cities that are connected to the origin city and the risk that infections in

the destination city poses to other connected cities. From Eq.(10), assuming positive between city

spread (� > 0), the travel from city j to i will be more severely restricted (i.e., smaller �ij) if the

infection risk is high for travelers from city j (`0j (I � ���W )�1 ⌘), or city i is influencing many
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other cities ((I � ���W )�1 `i).

� contains n2 � n unknown parameters and directly solving for them can be infeasible. How-

ever, we note that Eq.(10) imposes restrictions on � which can greatly reduce the number of free

parameters, as we can write

� = �(�) = ⇤

✓
�'�1

2 �
�
I � �(��W )0

��1
g⌘0
�
I � �(��W )0

��1 � '1

'2
1n⇥n

◆
, (11)

where ⇤() is a function from Rn⇥n ! [0, 1]n⇥n with (⇤(M))ij = f(Mij) if i 6= j, wij 6= 0 and

(⇤(M))ij = 0 otherwise. Because the rank of matrix (I � �(��W )0)�1 g⌘0 (I � �(��W )0)�1 is

only 1, we can parameterize � as

� = ⇤

✓
ab0 � '1

'2
1n⇥n

◆
, (12)

with unknown parameters a =
⇣
1 a2 · · · an

⌘0
and b =

⇣
b1 b2 · · · bn

⌘0
7. The number of

unknown parameters is now 2n� 1, which can be much smaller than n2 � n.

Remark 4. Heterogeneities. The extent that cross city spread of the disease is mediated by popula-

tion flows may depend on the nature of interactions between travellers and the local population, and

may be heterogeneous across city pairs. This can be modelled by assuming a route specific nonzero

spillover coe�cient �ij, and rewrite Eq.(8) as yi =
Pn

j=1 �ijw̃ijyj + ⌘i, with w̃ij = �ijwij. The

equation that characterizes the optimal solutions is

� = ⇤

✓
�'�1

2 L�
✓⇣

I � (�� W̃ )0
⌘�1

g⌘0
⇣
I � (�� W̃ )0

⌘�1
◆
� '1

'2
1n⇥n

◆
, (13)

with (L)ij = �ij and (W̃ )ij = w̃ij. If the cost of travel restrictions is not linear in the population

flow intensity, such as when routes have di↵erent compositions of business and leisure travels, we

can replace the term by
⇣
�ij'1 +

1
2�

2
ij'2

⌘
✓ij for some route specific cost measure ✓ij.

In both cases, the rest of the analysis can be modified easily, with the exception that we may not

be able to parameterize the set of optimal policies using 2n�1 parameters, because the matrix as an

argument to ⇤() in Eq.(11) may not be rank 1 due to heterogeneities in �ij or ✓ij, as Eq.(13) shows.

We opt for the simpler specification because it is feasible to solve for the optimality numerically when

n is large.

Remark 5. Risk Aversion. The planner’s objective function can be nonlinear in yi, which can

allow for risk aversion when there is uncertainty in ⌘. Let u() be a concave function. The planner’s

objective function is now

min
0�ij1,1in,1jn,i 6=j

E
X

i

giu(yi) +
X

i,j,i 6=j

(�ij'1 +
1

2
�2
ij'2)wij ,

7a1 is normalized to 1, because ab0 = (ra)(r�1b0) for r 6= 0.
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subject to (8). Taking derivatives with respect to �ij, the optimal solution can be characterized by

� = E⇤
✓
�'�1

2 �
⇣�

I � �(��W )0
��1

g(y)⌘0
�
I � �(��W )0

��1
⌘
� '1

'2
1n⇥n

◆
,

where g(y) =
⇣
g1u0(y1) · · · gnu0(yn)

⌘0
. Note when there is no uncertainty, � can still be param-

eterized using (12) which allows for easier computation.

4.2 Travel Restrictions without Coordination

Restricting population flows has both benefits and costs. The costs from lost economic activities

may be mostly borne by the cities that impose restrictions, at least in the short run. On the other

hand, the benefits from reduced contagion may be enjoyed by other cities. If each city is making

decisions on travel restrictions independently with no coordination between cities, this becomes

a classic example of positive externalities and the level of travel restrictions may be suboptimal.

In the case of compliance with social distancing orders in the United States, Holtz et al. (2020)

show that social distancing behaviors in a state can be influenced by people in other states that are

geographically or socially close, and because of the presence of spillovers, uncoordinated resumption

of economic activities is not optimal. Similar results also hold in our context. To see this, assume

that each city can choose the level of population inflows to the city. The optimization problem of

city i is to choose {�ij}nj=1,j 6=i while taking the choices of other cities as given,

min
0�ij1,1jn,j 6=i

giyi +
X

j,i 6=j

(�ij'1 +
1

2
�2
ij'2)wij , (14)

subject to

yi =

0

@
nX

j=1

�ijwijyj

1

A�+ ⌘i.

The necessary conditions for individual optimalities can be summarized by �̃(�̃) = �̃ for �̃ 2
[0, 1]n⇥n. The function �̃() is defined as

⇣
�̃(�̃)

⌘

ij
=

8
>>>><

>>>>:

f

✓
�'�1

2

✓
�gi`0i

⇣
I � ��̃�W

⌘�1
`i`0j

⇣
I � ��̃�W

⌘�1
⌘ + '1

◆◆

if i 6= j, wij 6= 0

0 otherwise

, (15)

where f() is the same as in Eq.(10).

Comparing (15) with the coordinated travel restriction policies (10), we can see that without

coordination between cities, a city only takes into account the e↵ect of travel restrictions on its

own, which is less than the total e↵ect because of external benefits to other cities, and this results
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in travel restrictions that may not be optimal. Note that theoretically the set of travel restrictions

with coordination may not be more stringent than the restrictions without coordination across all

city pairs. With coordination, it may be optimal that with certain origin and destination pairs

strictly controlled, travels on other routes can be restricted less.

To solve for the optimal �̃, as in the previous subsection, we observe that

�̃ = �̃(�̃) = ⇤

0

BBB@
�'�1

2 �

0

BBB@

g1`01

⇣
I � ��̃�W

⌘�1
`1

...

gn`0n

⇣
I � ��̃�W

⌘�1
`n

1

CCCA
⌘0
⇣
I � �(�̃�W )0

⌘�1
� '1

'2
1n⇥n

1

CCCA
, (16)

where function ⇤() is the same as in Eq.(11) and the term involving �̃ on the right hand side is an

n⇥n matrix of rank 1. Therefore �̃ can be parameterized using Eq.(12) and Eq.(16) can be solved

for these 2n� 1 unknowns.

4.3 Empirical Illustration

Section 2 shows that the marginal e↵ects of adjusting the population flow intensity on a route on

the total number of infections are heterogeneous, and depend on the product between the Bonacich

centralities of the origin and the destination. Suppose that travels on routes whose marginal e↵ects

are larger are stopped first and we can then calculate the number of infections in the counterfactual

scenario using Eq.(2). A few additional assumptions are needed. As a proxy of population flow

patterns without any government intervention, the population flow matrix W is constructed from

the averages of intercity population flows between January 1, 2020 and January 22, 2020 before

the implementation of major public health measures such as the lockdown of Wuhan. For the

coe�cient of the spatial spillover e↵ect (�) and the initial viral spread of COVID-19 infections, we

use the estimate from Column 4 of Table 3. In the ranking of travel routes by their marginal e↵ects

(4), we consider two rankings which correspond to di↵erent information sets of the decision maker.

In the first ranking, the decision maker has complete information and the initial viral spread (⌘)

is based on the estimated residuals. In the second ranking, the decision maker believes that there

is a log(10000) shock to Wuhan and none to other cities. The choice of the size of the shock is

arbitrary because o�cial estimates on the size of infections at the time when large scale public

health measures were being implemented are not available8.

In Figure ??, travel routes are either closed or open. We now examine the case that the intensity

of restrictions is variable, there is a trade-o↵ between reduced infections and levels of restrictions,

and numerically solve the optimization problems of (7) and (14). The costs of travel restrictions

are parameterized by '1 = �1 and '2 = 1, under which the marginal cost of new travel restrictions

starting at no restrictions is zero, and the marginal cost is increasing with the levels of restrictions

8As a reference, there were 444 confirmed cases in Wuhan by January 22, 2020, one day before the lockdown of
Wuhan. Wu et al. (2020) estimate that 75,815 individuals had been infected in Wuhan by January 25. Many people
infected with COVID-19 do not show symptoms, however.
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Figure 1: Selection of g̃

This figure shows the number of COVID-19 cases per city and the cost of a COVID-19 confirmed case in equivalent

monetary terms, that have the equal costs as a total shutdown of intercity travels across the whole country in Eq.(7),

for di↵erent values of the weight g̃. It is assumed that without any restrictions, the population flow patterns in 2020

would be the same as those observed in 2019. For the monetary values, we assume that the cost of total shutdown of

intercity travel equals to 40% of GDP in the first quarter of 2019 (1.246 trillion USD). The choice of 40% is because

the GDP of Hubei province, which was subject to almost province-wide lockdowns since the outbreak, contracted by

39.18% year on year in the first quarter of 2020.

imposed, until it reaches wij at the maximum level of restrictions for the j ! i route (i.e., �ij = 0).

The relative costs of COVID-19 infections and travel restrictions are measured by the vector g, and

we consider g = g̃1 with g̃ 2 {1, 10, 25}.
To provide economic meanings to the values of g̃, Figure 1 plots the number of confirmed

COVID-19 cases per city and the corresponding monetary costs per confirmed case, whose costs

are equivalent to a complete shutdown of intercity travels in the social planner’s objective function

(7). While this only serves an illustrative purpose because the values depend on assumptions such

as the counterfactual population flow patterns in 2020 without government interventions and the

economic costs of restrictions on intercity population flows which are topics in separate analysis

(e.g., Fang et al., 2020, Baker et al., 2020), a value of g̃ that is between 5 and 10 seems reasonable.

The set of solutions of the optimization problem is the o↵-diagonal elements of the n ⇥ n

matrix �. Figure 2 shows the average levels of optimal outbound restrictions for the top 20 cities,

according to the average levels of restrictions on outbound population flows (1� 1
n�1

Pn
i=1 �ij). The
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viral spread before spatial interactions is measured by ⌘, and we consider two specifications which

reflect di↵erent information sets of the decision makers, as in Figure ??. In the first specification

(upper panel of Figure 2), we assume that a log(10000) unit shock is observed in Wuhan, and other

elements of ⌘ are zeros. In the second specification (lower panel of Figure 2), we use the estimated

⌘̂ based on the estimated coe�cients from Column 2 of Table 3 in the appendix. Figure 3 shows

the travel routes from Wuhan where the optimal travel restrictions are the most stringent.

In this illustrative example, the outbreak started in Wuhan. The optimal policies indicate

that travels out of the outbreak city and cities that are closely connected to the outbreak city in

terms of population flows should be strictly controlled, and this allows for less control on other

cities. Among the travel routes from the outbreak city, those whose destination cities have large

population outflows should be more strictly controlled, such as those in the Pearl River Delta,

Jingjinji Metropolitan Region which includes Beijing, and the Yangtze River Delta (Figure 3).

Travel routes with destinations in the Pearl River Delta should be more strictly restricted, because

of the large population outflows from this area during this period of the year. The time window

includes the Lunar New Year and there is a large number of migrant workers in cities in the Pearl

River Delta who traditionally return to their hometowns before the Lunar New Year9. When cities

act independently, they do not take into account the external benefit of their travel restrictions

in reducing infections in other cities, and the levels of travel restrictions are not optimal, and in

many cases, lower than those imposed when cities can coordinate. It is also interesting to note that

when the infections are su�ciently costly (g̃ = 25), the social planner imposes stringent restrictions

on population outflows from the outbreak city, which in turn may actually enable a less stringent

control on population flows from other cities than the policies that are optimal when cities do

not coordinate, as seen for the city of Xiaogan in Hubei province (upper panel of Figure 2) or

Beijing (lower panel of Figure 2). This indicates that quick and stringent restrictions on cities

with outbreak of costly infectious diseases could optimally allow for less restrictive public health

measures in other places.

While the empirical illustration examines the spread of COVID-19 in China, our modelling

framework can be applied to improve public health policy responses in di↵erent contexts, such as

to a di↵erent infectious disease or in di↵erent geographic locations. With coordination between cities

that takes into account the external e↵ects of local policies, the optimal set of travel restrictions

tends to place greater restrictions on routes whose destinations have large population outflows,

and less restrictions on routes that have a lower likelihood of generating large spillovers, which is

confirmed in Figure 4 that compares the actual population flow patterns in 2020 after government

interventions with those that are predicted to be optimal according to the model.

9According to the 2010 population census of China, there were 85.9 million people who lived outside their home
provinces in China, among whom 21.5 million lived in Guangdong province, the highest number among provinces.
The Pearl River Delta includes Hong Kong, Macau and cities in Guangdong province such as Guangzhou, Shenzhen
and Dongguan.
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Figure 2: Average Optimal Levels of Outbound Restrictions, Top 20 Cities

This figure shows the average levels of restrictions on outbound population flows for the top 20 cities (1� 1
n�1

Pn
i=1 �ij)

with g̃ = 10 and coordination between cities. g̃ is the value of the weight on COVID-19 infections, and is given in the

“COVID weight” column. “With coordination” denotes solutions of the optimization problem of the social planner,

and “no coordination” denotes solutions of the optimization problem where cities act independently. Cities in blue

are in Hubei province.
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Figure 3: Optimal Intensities of Outbound Restrictions from Wuhan, Top 20 Destinations

This figure shows the intensities of restrictions on outbound population flows from Wuhan for the top 20 destinations

in terms of the intensity of restrictions (1��i,Wuhan) with g̃ = 1 and coordination between cities. g̃ is the value of the

weight on COVID-19 infections, and is given in the “COVID weight” column. “With coordination” denotes solutions

of the optimization problem of the social planner, and “no coordination” denotes solutions of the optimization problem

where cities act independently. Cities in orange/red/purple are in the Pearl River Delta/Jingjinji Metropolitan

Region/Yangtze River Delta, respectively.
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Figure 4: Actual and Optimal Levels of Intercity Population Flows

For each route, we compute the di↵erence between the average population flow intensities in 2020 and the optimal

level predicted by the model. Panel A shows the 50 routes with most negative di↵erences, i.e., the optimal level of

travel restriction is less restrictive than the actual policy implemented, and Panel B shows the 50 routes with most

positive di↵erences, i.e., the optimal policy is more restrictive than the actual one. The model assumes the following:

(1) Travel patterns would be the same as those on the same lunar calendar days in 2019 in the absence of government

interventions; (2) There are coordination between cities; (3) The weight g̃ in Eq.(7) is 10. (4) Initial viral spread is

based on the estimated coe�cients from Column 2 of Table 3 in the appendix.
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5 Conclusions and Discussion

Restrictions on travel are frequently imposed as part of governments’ responses to the COVID-19

pandemic. Blanket bans or lockdowns of entire regions could incur significant social and economic

costs, which may outweigh the benefits from reduced infections and erode the public support in the

pandemic control measures. In this paper, we show that the marginal e↵ect of decreasing intercity

population flows in reducing total infections is not homogeneous but depends on the positions of the

origin and destination cities in the network of population flows. The marginal benefit of population

flow restrictions is larger if the origin city is closely connected to areas with severe infections, or the

infections in the destination city can spill over to many other cities. Population flow restrictions

that target these links could be more cost e↵ective. Based on the dynamics of the spatial spread of

diseases, we propose a model of optimal travel restrictions on each origin and destination city pairs,

which considers the trade-o↵ between the public health costs of infections and the economic costs

from restricting population flows, and whether cities can coordinate their policies. We characterize

the optimal solutions and show how they can be solved numerically.

We apply the theoretical model to the data on the spread of COVID-19 in China. Intercity pop-

ulation flows lead to spatial spread of the disease. Based on the estimated parameters, we identify

routes in the population flow network that are most influential on the total number of COVID-19

cases in China. Travels out of the city experiencing virus outbreak or those whose destination cities

having large population outflows will be restricted the most according to the optimal solution of

travel restriction policies, which in turn may loosen a large portion of existing travel restrictions

while substantially improve social welfare. Comparing the scenario when cities can coordinate

their policies, the set of travel restriction policies with no coordination are suboptimal with lower

total social welfare. The results of this paper could also be applied to optimize the public health

measures in response to other infectious diseases where population flows significantly contribute to

their spread.

These findings may have rich implications for virus mitigation strategies that go beyond im-

posing ex ante route-specific travel restrictions to optimize ex post management. For countries

at the beginning of an epidemic or with inadequate resources, systematic infection screening and

personnel training may take time and are demanding. The incubation period and high prevalence

of asymptomatic infections may also limit the e↵ectiveness to screen vital signs or self-reporting

of symptoms (World Health Organization, 2020). Therefore, a number of economies have adopted

innovative approaches in their strategies to e↵ectively curb virus spreading. For instance, tools

such as migration maps, which collect real-time data on the location of people via mobile phones,

mobile payment applications, and social media, allow mainland China to track the movement of

people who flowed out of Wuhan. These data also guide border checks and surveillance (Wu et al.,

2020, Liu, 2020). Taiwan initiated health checks for airline travelers from Wuhan and surrounding

cities, integrating data from immigration records with its centralized, real-time health insurance

database. This integration allowed healthcare facilities to access patients’ travel histories and iden-

tify high-risk individuals for testing and tracking (Wang et al., 2020a). South Korea’s aggressive
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contact tracing using security camera footage, facial recognition technology, bank card records, and

GPS data from vehicles and mobile phones provides real-time data and detailed timelines of peo-

ple’s travel that facilitates targeted screening and timely quarantine (Fisher and Sang-Hun, 2020).

Such mobile technology will continue to help advance policies on travel restrictions while striking

a balance between privacy concerns and public welfare.
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