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ABSTRACT
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and Ischaemic Heart Disease in Older 
Age*

Adverse conditions in early life can have consequential impacts on individuals’ health in 

older age. In one of the first papers on this topic, Barker and Osmond (1986) show a 

strong positive relationship between infant mortality rates in the 1920s and ischaemic heart 

disease in the 1970s. We go ‘beyond Barker’, first by showing that this relationship is robust 

to the inclusion of local geographic area fixed effects, but not family fixed effects. Second, 

we explore whether the average effects conceal underlying heterogeneity: we examine 

if the infant mortality effect offsets or reinforces one’s genetic predisposition for heart 

disease. We find considerable heterogeneity that is robust to within-area as well as within-

family analyses. Our findings show that the effects of one’s early life environments mainly 

affect individuals with the highest genetic risk for developing heart disease. Put differently, 

in areas with the lowest infant mortality rates, the effect of one’s genetic predisposition 

effectively vanishes. These findings suggests that advantageous environments can cushion 

one’s genetic risk of developing heart disease.
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1 Introduction

Adverse conditions during the prenatal and early childhood period can have significant

and potentially irreversible impacts on individuals’ health and well-being in older age (for

a recent review, see e.g. Gluckman et al., 2016; Gage et al., 2016; Conti et al., 2019).1

The best known proponent of this hypothesis is the British physician and epidemiologist

David Barker. In one of the first of a set of papers, Barker and colleagues showed a

strong positive geographical relationship between the infant mortality rate in the 1920s

and ischaemic heart disease mortality in the 1970s in the UK (Barker and Osmond, 1986).

They conclude that “poor nutrition in early life increases susceptibility to the e↵ects of

an a✏uent diet.”2

In addition to such ‘environmental’ circumstances a↵ecting the development of heart

disease, genetic factors are known to play an important role. For example, twin studies

have shown that the disease is heritable, and more recent Genome-Wide Association

Studies (GWAS) have started to unravel the specific genetic variants implied in the disease

(see e.g. Samani et al., 2007; Helgadottir et al., 2007; McPherson et al., 2007; Schunkert

et al., 2011; Deloukas et al., 2013; Nikpay et al., 2015; Howson et al., 2017; Nelson et al.,

2017; van der Harst and Verweij, 2018). These gene-discovery studies have linked dozens

of independent genetic loci to heart disease, facilitated a better understanding of the

causal risk factors, and informed the development of new therapeutics (see e.g. Khera

and Kathiresan, 2017).

Whereas the role of these environmental and genetic main e↵ects are established and

widely-documented, the understanding of their interplay—so-called Gene-Environment

(GxE) interplay—is still in its infancy.3

1The vast literature on the so-called Developmental Origins of Health and Disease (DOHaD) hypothesis
spans both the medical and social sciences (see e.g., Gillman, 2005; Gluckman et al., 2008; Almond and
Currie, 2011a,b; Almond et al., 2018; Heindel et al., 2017; Arima and Fukuoka, 2020). Correlational and
causal linkages have been found between several measures of early life adversities and health outcomes—
such as cardiovascular disease, metabolic syndrome, and obesity—as well as socio-economic outcomes—
such as educational attainment and wages.

2Some of his other papers on this topic include, e.g. Barker and Osmond (1987), focusing on maternal
mortality as a proxy for the early life environment, and Barker et al. (1989), where early life neonatal
and postneonatal mortality predict later life mortality from stroke. In other work, they show that low
birth weight associates with mortality from ischaemic heart disease in older age (Barker et al., 1989).

3Some studies discuss the potential role of gene-environment interactions for cardiovascular disease,
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In this paper, we start by laying out di↵erent mechanisms through which genetic

variation can moderate the e↵ect of environmental conditions. We highlight the potential

role of epigenetics, but argue that this is neither a su�cient, nor a necessary condition

for the existence of gene-environment interaction e↵ects. We then empirically confirm the

independent importance of genetic variation and adverse conditions during gestation and

early childhood (as proxied by infant mortality rates at birth as in Barker and Osmond,

1986), in explaining later life heart disease. We then go ‘beyond Barker’ in two ways. First,

we explore the robustness of the Barker hypothesis to the inclusion of local geographical

area fixed e↵ects, exploiting only variation in infant mortality rates and heart disease

within a local area over time. We also investigate the sensitivity to the inclusion of family

fixed e↵ects, comparing later life heart disease among full siblings who were exposed to

di↵erent rates of infant mortality at birth, whilst controlling for individuals’ age at the

monthly level. Second, we move ‘beyond Barker’ by studying the importance of gene-

environment interplay in ischaemic heart disease. This allows us to answer questions such

as “does genetic susceptibility aggravate adverse early life circumstances?”, or – vice versa

– “can advantageous early life environments cushion genetic risk?”

We do this using individual-level data on over 370,000 individuals in the UK Biobank

(Sudlow et al., 2015), of whom we identify ⇠33,000 full siblings from their genetic data.

Ischaemic heart disease is the most common cause of death in the developed world, ac-

counting for more than nine million deaths worldwide in 2016 (e.g., WHO, 2018).4 Ad-

vancing our knowledge on the interplay between genetic and environmental factors that

drive the world’s major killer is therefore not just a fundamental scientific advance, but

may also inform governments on how environmental policies can reduce the – arguably

unfair – inequalities in heart disease arising from one’s genetic variation.

Our first contribution is to digitize historical data on infant mortality rates in the UK5,

but none of these focus on the long-held DOHaD hypothesis (see e.g., Visvikis-Siest and Siest, 2008;
Hirvonen, 2009; Flowers et al., 2012).

4Ischaemic heart disease occurs when the arteries cannot transfer enough oxygen-rich blood to the
heart. The most common type is coronary artery disease, where the blood-flow to the heart is restricted
by atherosclerosis, or plague.

5We start with the already-digitized data from the Great Britain Historical Database (GBHD; Ell
et al., 2020), see also the Vision of Britain website. The GBHD contains birth, death, and infant
mortality counts, as well as population estimates from 1930 to 1973 but lacked the years 1958 to 1962.
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link these to the UK Biobank and use them to replicate the analysis by Barker and Osmond

(1986) on the relationship between early life conditions and later life outcomes. Rather

than specifying area-level outcomes, as in the original study, we have individual -level

outcomes for those born between the late 1930s and early 1970s. As a measure of the early

life environment, we use the infant mortality rate that each individual was exposed to in

their year and local area of birth, as published in the Registrar General reports for England

and Wales (HMSO, 1934). The spatial units we employ are Local Government Districts,

including over 1400 small geographic regions covering the whole of England andWales. We

then merge this information with the UK Biobank, a major resource that follows the health

and well-being of around 5 million individuals in the UK aged 40-69 between 2006-2010.

Linking these two datasets provides previously unexplored information on the early life

conditions in the ⇠35 years and ⇠1400 districts of birth of the UK Biobank participants.

This in turn allows us to explore the determinants of heart disease, combining spatial

variation in infant mortality rates across small geographical regions (à la Barker and

Osmond, 1986) as well as temporal variation in infant mortality rates across individuals’

year of birth (à la Kermack et al., 1934). Indeed Kermack et al. (1934) were among the

first to suggest that one’s childhood environment is crucial in shaping individuals’ health

in adulthood, but they largely ignore spatial variation in childhood environments. In

contrast, Barker and Osmond (1986) focus on such geographical variation, but do not

explore temporal variation in adverse environments. Our data allow us to combine both

sources of variation and investigate the relationship between early life adversity and later

life health for a period characterised by a substantial improvement in early life conditions.

A second contribution is to deepen our understanding of the relationship between

early life environments and later life outcomes by incorporating recent advances in the

understanding and collection of individual-level molecular genetic data. More specifically,

we investigate whether the early life environment exacerbates or mitigates any genetic

e↵ects on heart disease. We begin by showing the strong predictive power of the early life

environment as well as the relevant polygenic score6, confirming the importance of both

We digitized these remaining years, and systematically quality-controlled the entirety of the database.
6Polygenic scores measure one’s genetic ‘predisposition’ towards a trait (here: heart disease). We
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components. Next, we investigate the interaction between the polygenic score and the

infant mortality rate at the time and location of birth. In other words, we shed light not

only on whether improving the early life environment reduces the average disease preva-

lence in older age, as suggested by Barker, but also whether such improvements reduce

the inequality in disease prevalence for individuals with di↵erent genetic predispositions

for the disease. In the other direction, our interaction results enable testing whether in-

dividuals’ genetic predisposition exacerbates or protects individuals against adverse early

life conditions in developing ischaemic heart disease.

We have three main findings. First, we replicate Barker’s result that the infant mortal-

ity rate in one’s local district and year of birth is associated with ischaemic heart disease

later in life using well-powered individual-level data from the UK Biobank. However, our

interpretation of these findings di↵ers from Barker on two counts. First, we show that

infant mortality rates are systematically associated to socioeconomic disadvantage, and

hence are likely to additionally capture other characteristics of the environment than just

“nutritional deficiencies” (as in Barker and Osmond, 1986). Indeed, areas with high in-

fant mortality rates are poorer and of lower socioeconomic position, and this in itself may

negatively a↵ect individuals’ health in later life. Second, we explore the robustness of our

findings to the inclusion of Local Government District fixed e↵ects, as well as to family

fixed e↵ects. In the former, we compare people born in the same district over time and

exploit variation in infant mortality rates and outcomes within districts. In the latter,

we compare siblings born in di↵erent years and exploit variation in infant mortality rates

and outcomes within families. We find that the main e↵ect of the infant mortality rate is

robust (albeit attenuated) to accounting for time-invariant variation within districts, but

not within families. This suggests that the infant mortality rate does not mainly capture

within-family variation in nutritional circumstances, but rather that it proxies for other

unobserved characteristics that vary between families, such as poverty or socio-economic

status. Accounting for these using a family fixed e↵ects approach renders the average

e↵ect of the infant mortality rate insignificant.

discuss this in more detail below.
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A second main finding is that the genetic signal in ischaemic heart disease largely de-

rives from direct (or causal) genetic e↵ects. As pointed out by Davey Smith and Ebrahim

(2003); Howe et al. (2021); Biroli et al. (2022) among others, family designs enable us to

estimate the direct genetic e↵ect on the outcome, accounting for demography (e.g. popu-

lation stratification, assortative mating) and indirect genetic e↵ects (e.g., genetic nurture,

where parental genotypes influence o↵spring outcomes through environmental channels).

We find that the genetic e↵ects are robust to the inclusion of district and family fixed

e↵ects, suggesting that demography and indirect genetic e↵ects are not driving the asso-

ciation between polygenic scores and heart disease. To clarify: by direct genetic e↵ects we

make a probabilistic statement about a counterfactual, i.e., those with higher polygenic

scores are more likely to develop ischaemic heart disease later in life. We do not mean

that these e↵ects are purely biological, immutable or deterministic. Indeed, even though

these e↵ects are downstream consequences of genetic variation across individuals, they

could be entirely mediated by malleable environmental conditions.

The third main finding is that the null e↵ect of infant mortality conceals underlying

genetic heterogeneity: we find evidence of non-negligible interactions between genes and

the environment. Our findings imply that among those with high genetic risk for ischaemic

heart disease, the infant mortality rate significantly aggravates the risk. In contrast, in

districts with the lowest infant mortality rates, the e↵ect of genetic predisposition e↵ec-

tively vanishes. We find that these results are robust (albeit attenuated) to the inclusion

of district as well as family fixed e↵ects. This not only reveals previously masked hetero-

geneity in the DOHaD literature, but additionally provides evidence that environmental

interventions may moderate and even mitigate genetic susceptibility to heart disease.7

This finding strongly debunks genetic determinism of later life diseases such as heart dis-

ease, and establishes that the disease is the product of complex interactions between genes

7Although we know from the epigenetics literature that early-life circumstances may trigger di↵erential
epigenetic expression (see e.g., Heijmans et al., 2008), much remains to be learned. First, epigenetic
studies generally do not investigate how epigenetic changes a↵ect later life outcomes. Instead, they tend to
explore how di↵erent circumstances, or environments, a↵ect DNA methylation. Second, not all epigenetic
e↵ects are expected to translate into developmental di↵erences, and they could arise in segments of the
DNA where there is no variation across individuals. In fact, as we argue below, epigenetics is one potential
channel through which gene-environment interplay exists, but it is neither necessary, nor su�cient.
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and the environment. As such, it suggests that improving the early life environment can

significantly reduce the variation driven by ‘genetic risk’ in the population.

The rest of this paper is structured as follows: Section 2 provides a background to

the paper, discussing the importance of ‘nature’ (genetics), ‘nurture’ (proxied here by the

infant mortality rate) and why or how the two may interact to shape individuals’ outcomes

later in life. The data is described in Section 3, followed by the empirical specification in

Section 4. The results are discussed in Section 5, with the robustness analysis in Section 6.

We conclude in Section 7.

2 Background

2.1 Nature: Genetics

The human genome consists of over 3 billion base pairs in each cell nucleus, with four

possible bases: adenine (A), thymine (T), guanine (G) and cytosine (C).8 Comparing

any two unrelated human beings, over 99% of their genome is identical. The remaining

<1% di↵ers between individuals, with a Single Nucleotide Polymorphism (or SNP, pro-

nounced snip) being the most common form of genetic variation. A SNP is a one base-pair

substitution at a particular location (locus) on the human genome.

To identify genetic variants that are associated with a particular trait of interest, such

as coronary heart disease, so-called Genome-Wide Association Studies (GWAS) relate

each SNP to the trait in a hypothesis free-approach. Stringent p-values are then used

to identify SNPs that are robustly associated with the trait of interest, and replication

is performed in other, independent samples. Most human complex traits are polygenic,

meaning that they are a↵ected by many SNPs, each with a very small e↵ect size. To

increase the predictive power of SNPs, they can be aggregated into a so-called polygenic

score (PGS, also referred to as a polygenic index or PGI), defined as a weighted sum of

the individual SNPs:
8A base pair is set of two bases, with A always pairing with T, and C always pairing with G.
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PGSi =
JX

j=1

�jxij

where xij is a count of the number of ‘e↵ect’ alleles at SNP j of individual i, and

�j is the associated e↵ect size, obtained from an independent GWAS. Polygenic scores

have been shown to be powerful tools to identify patients with increased risk for coronary

artery disease, atrial fibrillation, type 2 diabetes, inflammatory bowel disease, and breast

cancer. Indeed, Khera and Kathiresan (2017) propose the use of polygenic prediction in

clinical care.

2.2 Nurture: The infant mortality environment

The infant mortality rate in the year and location of birth can be seen as a broad measure

of the environment that an individual was exposed to around birth. Di↵erent mechanisms

have been suggested that explain how such early life environments can a↵ect outcomes in

older age. First, adverse conditions in early life may lead to permanent changes in body

structure, physiology and metabolism (see e.g. Gluckman et al., 2008; Belsky, 2019; Colich

et al., 2020; McDermott et al., 2021). For instance, they may lead to compensatory pat-

terns of growth, with nutritional resources being diverted from child development towards

survival, potentially a↵ecting the development of the body more generally. Similarly, ad-

verse circumstances may cause the body to automatically protect the growth of one organ

(e.g., the brain) at the expense of other organs (e.g., the heart), which in turn can a↵ect

the development of future disease (see e.g. Campbell et al., 1967; Rudolph, 1984; Hales

and Barker, 2001).

Another mechanism is ‘foetal programming’. This refers to the intrauterine environ-

ment giving the foetus a forecast of the circumstances into which it will be born (Gluckman

and Hanson, 2006a; Gluckman et al., 2008). Individuals’ metabolism may then adapt to

ensure optimal survival under similar conditions. Hence, foetal programming is believed

to reflect foetal adaptation. Whilst foetal adaptation may be beneficial to short-term

survival, it could be detrimental to health in adulthood if later life circumstances are very

di↵erent from those prenatally (Barker, 1995). For example, if the foetus was exposed

8



to a famine prenatally, the body may develop in a way to ensure survival under similar

conditions post-birth. If it is then exposed to an environment with su�cient nutrition (or

over-nutrition), this may impact on the development of disease later in life.9

Finally, rather than the infant mortality rate having a causal e↵ect on later life health,

it is likely to also capture socio-economic di↵erences. Indeed, the literature on infant mor-

tality rates in the 20th century shows a strong social gradient: infant mortality is substan-

tially higher among the unskilled social classes compared to the professional classes, and

in northern compared to more southern regions within the UK. It is also higher among

illegitimate children (Adelstein et al., 1980).

2.3 The potential interaction between ‘nature’ and ‘nurture’

There are multiple reasons why ‘nature’ might interact with ‘nurture’ to shape individuals’

later life outcomes. First, there may be a biological channel: genes may predispose indi-

viduals to certain health conditions or behaviours, but the extent to which these genes are

expressed – their phenotypic e↵ect – can depend on environmental circumstances (Gluck-

man and Hanson, 2006a; Rutter, 2006). For example, if adverse circumstances early in life

cause permanent changes in the structure of certain organs (e.g., the heart), genetic vari-

ants may change their expression in that organ. This can in turn a↵ect the development

of the organ and with that, future disease. This channel is also known as environmentally-

induced epigenetic regulation (see e.g., Gluckman and Hanson, 2006b); switching genes

on and o↵ depending on environmental circumstances. The epigenetic literature tends to

focus on the e↵ects of certain exposures on the epigenome, with some studies establishing

epigenetic expressions driven by early life circumstances (e.g., Heijmans et al., 2008).

However, even if early life circumstances cause epigenetic changes, this does not nec-

essarily imply that they a↵ect later life outcomes. Indeed, there could be compensatory

investments by the individual or her environment that o↵set the development of any epi-

genetic e↵ects on later life phenotypes. For example, parental investments in children may

9For studies looking at the e↵ects of intrauterine exposure to famines on later life outcomes, see e.g.
those on the Dutch Hunger Winter (Smith, 1947; Stein et al., 1975; Schultz, 2010; Conti et al., 2021),
famines in China (St Clair et al., 2005), Finland (Kannisto et al., 1997), the Netherlands (Lindeboom,
2010), and Leningrad (Stanner et al., 1997).
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di↵er in response to early life circumstances, potentially mitigating or reinforcing their

e↵ects (see e.g. Yi et al., 2015; Adhvaryu and Nyshadham, 2016; Grätz and Torche, 2016;

Molina, 2021; Majid, 2018; Muslimova et al., 2020). This may be a conscious reaction to

environmental circumstances, but it could also be an unconscious response. Similarly, if

prenatal malnutrition leads to epigenetic expression, but parents fully compensate for this

harmful exposure, we would not necessarily detect any di↵erences in later-life outcomes.

In other words, epigenetic expression in response to environmental circumstances is not a

su�cient condition for the existence of gene-environment interaction e↵ects on later life

outcomes.

Furthermore, an interaction between nature and nurture need not be epigenetic. For

example, one’s genetic predisposition for certain health conditions or behaviours may

simply reflect the ‘type’ of individual, with di↵erent ‘types’ responding di↵erently to dif-

ferent environments. For example, Fletcher (2012) finds that variation in the nicotinic

acetylcholine receptor moderates the influence of tobacco taxation on smoking, showing

that only those with the protective polymorphism respond to tobacco taxation and re-

duce their tobacco use (see also, e.g., Slob and Rietveld, 2021). A di↵erential response to

tobacco taxation is unlikely to occur due to epigenetic changes or compensatory e↵ects,

and is more likely to indicate that those with the protective polymorphism can be seen as

di↵erent ‘types’ who respond di↵erently to di↵erent environments. In other words, epige-

netics is also not a necessary condition for the existence of gene-environment interaction

e↵ects.

In this study, we cannot identify the specific channel that may be driving our gene-

by-environment interaction e↵ects, and hence we are unable to distinguish between the

di↵erent potential mechanisms. Instead, we quantify the extent to which genes and envi-

ronments interact in shaping individuals’ later life health, which is an essential precursor

to analyses seeking to identify epigenetic changes or other channels through which the

early-life environments and genetic predisposition interact in the development of heart

disease.
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3 Data

The data we use is the UK Biobank; a major resource that follows the health and well-

being of approximately 500,000 individuals in the UK aged 40-69 between 2006-2010.

Participants have provided information on their health and well-being, and given blood,

urine and saliva samples. They have also been genotyped.

An advantage of the UK Biobank is that it is a very large sample of individuals for

whom we observe an extensive amount of relevant health (as well as social and economic)

outcomes later in life. Our main outcome of interest is motivated by the existing literature:

we define a binary indicator measuring whether the individual has been diagnosed with

ischaemic heart disease (IHD). We identify individuals using the ICD-10 codes (I20-I25)

obtained from mortality records as well as primary and secondary diagnoses in individuals’

hospital inpatient records that are linked to the UK Biobank. Around 11% of our sample

has been diagnosed with IHD.

Another advantage of these data is that it includes a relatively large sample of siblings.

This means that the analysis can hold constant any time-invariant observed and unob-

served family characteristics that may a↵ect both the exposure and outcome of interest,

using family fixed e↵ects. We do this in the analysis below.

One of the main disadvantages of the UK Biobank, however, in particular for our

research, is that there is almost no information on the early life environment, other than

the location of birth.10 To allow us to explore the e↵ects of early life circumstances

on later life health, we exploit the the eastings and northings of the location of birth

to identify the Local Government District in which individuals were born. We then

merge in data on individuals’ environmental conditions in their year of birth at the Local

Government District level (henceforth: district-level). In the absence of information on

individual- or family-level circumstances around birth, this allows us to characterise the

birth environment for each individual in the UK Biobank, providing a rich resource to

add to these existing data.11

10The data also include (self-reported) birth weight, an indicator for whether the participants were
breastfed, and whether the mother smoked during pregnancy.

11Note that the districts we observe su↵er from the modifiable areal unit problem (MAUP, Netrdová
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To this end, we take the Great Britain Historical Database (GBHD; Ell et al., 2020)

as a starting point, which contains district-level birth, death, and infant mortality counts,

as well as population estimates for the years 1930–1957 and 1963–1973. We collect and

digitize this information for the remaining years 1958–1962, and systematically quality-

control the entirety of the database. We then link the infant mortality rate in the year

and district of birth, defined as the total number of deaths within the first year of life per

1000 live births, for all UK Biobank participants born in England or Wales. This local

mortality rate is a proxy for the quality of the early life environment that each individual

was exposed to. The year and district-specific infant mortality data are extracted from

the Registrar General Statistical Reviews of England and Wales from 1934-1971 (HMSO,

1934).

We use the genetic data in the UK Biobank to create a polygenic score for heart

disease, using the GWAS summary statistics from Nikpay et al. (2015). This GWAS

excludes the UK Biobank, ensuring the discovery sample is independent from the analysis

sample, meaning we do not su↵er from over-prediction.12 We correct for co-inheritance

between SNPs using LDpred (Vilhjálmsson et al., 2015), assuming the fraction of causal

SNPs is 1. We standardise all polygenic scores to have mean 0, standard deviation 1.

We make the following sample selection: First, we drop those with missing birth

co-ordinates since these cannot be geo-located to a Local Government District. We also

drop those born outside England and Wales, as the infant mortality data does not contain

reports for other parts of the United Kingdom. This leaves us with 405,180 individuals.

We next drop those of non-European ancestry, those with missing data on ischaemic heart

disease, or on infant mortality rates. Our final sample size includes 378,838 individuals.

et al., 2020), in that they change over time in terms of their shape, name and type (e.g., rural or urban
district). A frequently-used solution is aggregation (Gregory and Ell, 2005) to larger time-invariant
geographic units, but this leads to a loss of data and specificity. An alternative is to create weights for
smaller spatial sub-units (representing, e.g., its population) and use these to construct time-invariant
districts and their associated (weighted) statistics. We use WeightGIS (Baker, 2020) to do the latter,
creating time-invariant districts based on their parish-level population; we standardise districts to the
1951 census shapefile provided by Vision of Britain (University of Portsmouth, 2011).

12In the robustness analyses, where we focus on the sibling sample, we explore the sensitivity of our
findings to the use of an alternative polygenic score, obtained from a GWAS on the UK Biobank sample
that excludes siblings and related individuals. We then use these GWAS estimates to construct a polygenic
score on the analysis sample of siblings. Our results are not sensitive to this alternative construction of
the polygenic score.
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In further analysis, we restrict our estimation to the sibling sample of the UK Biobank.

As there is no self-reported information on family members, we identify siblings using

the (genetic) kinship matrix provided by the UK Biobank. Our analysis sample includes

33,060 full siblings.

3.1 The Infant Mortality Rate

Figure 1 shows the distribution of infant mortality rates across England and Wales for

the 1951 Census year. The di↵erent geographical regions shown are the 1472 Local Gov-

ernment Districts for which we observe annual infant mortality rates. These are relatively

small geographic areas, showing substantial variation in infant mortality rates across Eng-

land and Wales.

To better understand the temporal and spatial variation in infant mortality rates,

Figure 2 presents a box plot of the district-level variation in infant mortality rates over

time. The white line in the centre of the box is the median, with the box representing the

inter-quartile range. This shows two main points. First, there has been a large reduction

in the infant mortality rate over time, from approximately 50–60 infant deaths per 1000

live births in the late 1930s to just under 20 infant deaths per 1000 live births in the

1960s. Second, although the inter-quartile range reduces over time, it remains relatively

large, even in the late 1960s, suggesting there is su�cient variation in infant mortality

rates across districts to investigate its e↵ect on later life outcomes.

To explore the extent to which the infant mortality rate is correlated with other socio-

economic indicators, we merge district-level data on social class from the UK Censuses in

1951, 1961 and 1971 to the district-level data on infant mortality rates in these years from

the Registrar General reports. Social class is measured as the proportion of households in

each district that is of social class I (professional), II (managerial/technical), III (skilled

non-manual/manual), IV (semi-skilled manual) and V (unskilled manual). We also link

data on illegitimacy; recently proposed as a proxy for social class (Lührmann and Wilson,

2018). We then regress the infant mortality rate on the illegitimacy rate (i.e., the number

of illegitimate children per 1000 live births) and the social class indicators. Table 1
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Figure 1: Geographic distribution of the infant mortality rate (infant deaths per 1000
live births) in 1951 for England and Wales. This work is based on data provided through
www.VisionofBritain.org.uk and uses historical material which is copyright of the Great
Britain Historical GIS Project and the University of Portsmouth (2011).

presents the estimates, showing a strong social gradient in infant mortality, with districts

that have larger proportions of individuals in lower social classes experiencing significantly

higher infant mortality rates. This is true for the pooled sample (column 1), as well as for

the individual Census years (columns 2–4), though the magnitude reduces over time and

it is no longer significant in 1971. The strong correlation between the infant mortality rate

and social class is important, as this suggests that the former is likely to partially capture

di↵erent socio-economic indicators of the district. We find some suggestive evidence that

the illegitimacy rate is positively correlated with infant mortality, though only in 1971.
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Figure 2: Trend and variation in infant mortality rates for England and Wales; 1935–1970

Table 1: Correlations between district level infant mortality rates, social class and illegit-
imacy

All years 1951 1961 1971

Illegitimacy rate 0.0105 0.0050 -0.0048 0.0303***

(0.0091) (0.0238) (0.0145) (0.0106)

Proportion social class I -0.3373*** -0.7362*** -0.4171** -0.2087

(0.1240) (0.2654) (0.2100) (0.1519)

Proportion social class II -0.0298 0.1144 -0.0626 -0.0826

(0.0375) (0.0875) (0.0499) (0.0629)

Proportion social class IV 0.0996** 0.1783*** 0.0584 -0.1452**

(0.0421) (0.0650) (0.0693) (0.0725)

Proportion social class V 0.2447*** 0.3718*** 0.2311 0.1053

(0.0750) (0.1142) (0.1478) (0.1369)

R
2

0.17 0.03 0.03 0.03

No. of observations 4297 1468 1409 1420

Notes: Column (1) additionally includes census year dummies. Social class III is the reference category. Robust standard

errors, clustered by district, in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

3.2 The Polygenic Score

We next provide descriptive statistics on the polygenic score and how it correlates with

the outcome of interest. The top left hand graph of Figure 3 presents the density of the

(standardized) polygenic score for heart disease. We divide the PGS into 200 bins, and

plot the average outcome (i.e., the probability of being diagnosed with ischaemic heart

disease) for each bin. These are the black dots. The line through the dots is obtained

from a kernel-weighted local polynomial regression of the outcome on its polygenic score.

This shows a strong correlation between the polygenic score and ischaemic heart disease.
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We report the statistical strength of this relationship in regressions below. The figures

also show some suggestion of convexity in the relationship between the polygenic score

and the outcome. We model this directly below and explore the sensitivity of our findings

to linear specifications of the polygenic score in the robustness analysis.

The middle graph in the top row of Figure 3 shows a similar plot, but with the Infant

Mortality Rate (IMR) on the horizontal axis. This shows a strong correlation between the

infant mortality rate at birth and the likelihood of being diagnosed with ischaemic heart

disease in later life. However, the graph suggests that the relationship is somewhat non-

linear, with little di↵erence in ischaemic heart disease for those born in areas characterised

by low (i.e. more than 1 standard deviation below the mean) rates of infant mortality,

but with increasing risk of ischaemic heart disease among those with (standardised) infant

mortality rates above -1.

The top right hand graph in Figure 3 shows the extent to which the PGS and the infant

mortality rate are correlated with one another. Positive (negative) gene-environment

correlation – rGE – indicates that individuals with a higher genetic predisposition are

more (less) likely to be observed in environments with higher infant mortality rates. The

figure shows some suggesting evidence of positive rGE, with districts exposed to higher

than average infant mortality rates also having higher than average polygenic scores,

although – as we show below – this correlation does not survive in our sibling sample.

The middle set of three graphs in Figure 3 show the same relationships as above, but on

the sibling sample only. This still shows a positive correlation between the polygenic score

and ischaemic heart disease (figure on the left). As we show in the regressions below, the

strength of this relationship is similar in this reduced sample. The correlation between the

infant mortality rate and ischaemic heart disease (graph in the middle) is again positive,

but does not suggest strong non-linearities. Furthermore, we find no evidence of rGE in

the reduced sibling sample (graph on the right), with the slope of the line being close to

zero.

Finally, the bottom three graphs only exploit within-family variation. In other words,

we use the UK Biobank sibling sample and correlate the residuals of the variables shown
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Figure 3: Correlation between the polygenic score, infant mortality rates, and ischaemic
heart disease in the full estimation sample (row 1), the sibling sample (between families;
row 2) and sibling sample (within families, row 3).

on the axes, after taking out the family fixed e↵ects. This still shows a positive correlation

between the polygenic score and ischaemic heart disease (bottom left figure), though – as

we show below – the magnitude of the e↵ect is slightly smaller, since the within-family

analysis accounts for shared environments and parental genotypes (see e.g. Selzam et al.,

2019; Koellinger and Harden, 2018; Kong et al., 2018; Lee et al., 2018). Accounting for

time-invariant characteristics within families, we still find a positive correlation between

the infant mortality rate and ischaemic heart disease, as shown in the bottom middle

graph, though this is e↵ects is again attenuated. Finally, we find no evidence of gene-

environment correlation (rGE; bottom right graph). This is reassuring, as it suggests

we are identifying true gene-environment interactions, rather than spurious gene-gene or

environment-environment interactions (for more detail on the interpretation of the G⇥E

coe�cient in the presence of rGE, see Biroli et al. (2022)).
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4 Empirical strategy

Baseline specification: To explore the relationship between ischaemic heart disease,

the infant mortality rate at birth, the polygenic score and their interaction, we write the

baseline empirical specification as:

Yid = ↵ + �1IMRd,t=0 + �2IMR2

d,t=0
+ �3PGSi + �4PGS2

i

+ �5PGSi ⇥ IMRd,t=0 + �6PGS2

i ⇥ IMR2

d,t=0

+ �Xi + f1(IMR,X) + f2(PGS,X) + uid (1)

where Yid is equal to one if individual i, born in district d, has been diagnosed with

ischaemic heart disease, and zero otherwise. The district-level infant mortality rate in the

year of birth (i.e., t = 0) is given by IMRd,t=0, which is standardised to have mean 0 and

standard deviation 1. The relevant polygenic score is given by PGSi, also standardised to

have mean 0 and standard deviation 1. The gene-environment interaction is denoted by

PGSi ⇥ IMRd,t=0. We follow Biroli et al. (2022) and include non-linear terms of PGSi,

IMRd,t=0, as well as PGSi ⇥ IMRd,t=0, though we explore the robustness of our results

to linear specifiations in Section 6 below; we show that this does not change our main

conclusions.

Within Xi, we control for the individual’s gender and we include dummies for each

year-month of birth (i.e., [(12 months ⇥ 38 years)-1] separate dummy variables). The

latter will account for the fact that older individuals are more likely to be exposed to higher

infant mortality rates, and are also more likely to have worse health, on average. Hence,

including dummies for each year-month of birth is the most flexible specification to account

for individuals’ age at the monthly-level. We also include the first 10 principal components

of the genetic relatedness matrix to control for any remaining genetic di↵erences across

ancestry groups, as is custom in the literature (see e.g. Price et al., 2006).13 Finally, the

function f1(IMR,X) and f2(PGS,X) denotes interactions between IMRd,t=0 and Xi and

13Although it is not necessary to control for the principal components in the within-family analysis,
we include them to allow the comparison to the between-family analysis. Excluding them does not a↵ect
our conclusions.
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between PGSi and Xi respectively (as in Keller, 2014). The error is denoted by uid; we

report heteroskedasticity-robust standard errors, clustered by either by district (in full

sample) or by family and district (in the family fixed e↵ects analysis below).

We start by estimating the relationship between the local infant mortality rate in

the year of birth and later life ischaemic heart disease (i.e. Equation (1) without PGSi,

PGS2

i and the interaction terms). This analysis is meant as a replication of the original

Barker hypothesis, showing the strength of the relationship between infant mortality

rates in the year and region of birth and ischaemic heart disease, and allowing for a non-

linear (quadratic) e↵ect. However, note that, in contrast to Barker and Osmond (1986),

our outcome of interest is measured at the individual level, as opposed to the regional

level. We next explore the statistical relationship between the outcome of interest and

the relevant polygenic score (i.e., Equation (1) without IMRd,t=0, IMR2

d,t=0
and the

interaction terms), aiming to corroborate the results from existing GWAS that genetic

scores are predictive of heart disease, as well as to quantify this relationship.

Finally, by including the main e↵ects as well as their interactions, as in Equation (1),

we explore whether being born in a district characterised by low infant mortality rates can

reduce not only the mean disease prevalence in older age, but also its variation predicted

by the polygenic score. Or vice versa, whether an individual’s polygenic score exacerbates

or protects against the e↵ects of being born in high infant mortality rate districts.

Since we are exploring the e↵ects of early life circumstances (and in particular: mor-

tality) on later life health, it is important to take into account the potential for selection.

Indeed, a high infant mortality rate implies that only a selected sample remains (i.e.,

those who survived). Assuming that the survivors are healthier than those who did not

survive, we are likely to underestimate the e↵ects of interest.

District Fixed E↵ects: Equation (1) compares individuals born in districts with high

infant mortality rates to those born in districts with lower infant mortality rates, condi-

tional on the other covariates including the year-month of birth. However, districts with

a high infant mortality rate may be systematically di↵erent from districts with a low

infant mortality rate. Indeed, Table 1 shows that the population in high infant mortality
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rate districts is likely to be of lower socio-economic class. To take this into account, we

next add district fixed e↵ects, only exploiting variation in infant mortality rates within

districts over time. Such district fixed e↵ects specifications ensure that the parameters

are identified only o↵ of within-district variation, comparing individuals born in the same

district, yet exposed to di↵erent infant mortality rates depending on their year of birth.

Family Fixed E↵ects: Whereas district fixed e↵ects go a long way in controlling for

socio-economic di↵erences across districts, the socio-economic composition of districts

may change over time. As such, an increase in the infant mortality rate may still reflect

an increase in regional poverty, which may be driving the results from the regressions

above. We therefore also exploit the fact that the UK Biobank includes a sample of full

siblings, meaning we can look at variation within full-sibling pairs from the same family.

The family fixed e↵ects specification is, given by:

Yijd = ↵ + �1IMRijd,t=0 + �2IMR2

ijd,t=0
+ �3PGSij + �4PGS2

ij

+ �5PGSij ⇥ IMRijd,t=0 + �6PGS2

ij ⇥ IMR2

ijd,t=0

+ �Xij + f(IMR,PGS,X) + ⌘j + uijd (2)

where ⌘j are the family fixed e↵ects; the other variables are defined above. As such,

Equation (2) exploits the fact that some individuals are born in years with low infant

mortality rates, but their siblings, who largely share the same family environment, may be

born in years with higher or lower infant mortality rates. Hence, this specification exploits

variation in infant mortality, holding any other time-invariant (observed or unobserved)

family characteristics fixed and as such accounts for any confounders that di↵er between

households that may bias the estimates from Equation (1).

An additional advantage of the sibling sample is that estimation of the genetic e↵ects

is purged from endogeneity concerns. That is, even though one’s genotype is fixed at

conception and therefore by definition not a↵ected by early-life circumstances, parental

genotypes can act as potential confounders. More specifically, the parental genotype can

shape the environment in which children are raised, also known as ‘genetic nurture’, and
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therefore act as a potential confounder in the relationship between one’s own genotype

and the outcome (see, e.g., Kong et al., 2018; Wertz et al., 2019). Whilst this may

be more of a concern for polygenic scores related to socio-economic outcomes such as

educational attainment, we cannot rule out endogeneity of the polygenic score for heart

disease. Controlling for family fixed e↵ects exploits only variation in genetic variants

within sibling pairs, the allocation of which is randomly assigned by Mendel’s law.

In sum, given the random inheritance of genetic variants within families, the coe�-

cients �3 and �4 in Equation (2) capture the direct genetic e↵ect. Moreover, since our

environmental measure – the infant mortality rate in the district and year of birth – is

uncorrelated with our polygenic score in the within-family analysis (see Section 3.2), we

are able to estimate a genuine ‘G ⇥ E’ interaction, as opposed to spurious ‘G ⇥ G’ or

‘E ⇥ E’ due to e.g., gene-environment correlations or genetic nurture.14

Having said that, we acknowledge that we cannot claim to estimate the causal e↵ect

of the infant mortality rate in one’s district and year of birth. Even though the district–

and family fixed e↵ects specifications allow us to rule out that the infant mortality rate

is merely picking up district- or family-specific time-invariant (socioeconomic) conditions,

and so we are confident that the infant mortality rate reflects early-life environmental

conditions, we cannot open the black box of which early-life environmental factors are

the driving causal mechanism. In other words, it is likely that the infant mortality rate

proxies for other early life ‘environments’.

Finally, whereas the sibling sample is helpful to reduce endogeneity concerns, a down-

side is that it is significantly smaller compared to the main sample. There are approxi-

mately 33,000 siblings in our analysis sample; substantially less than the full sample. This

has two (related) implications, both leading to a loss of power. First, using the smaller

14We show in Figure A.1 in Appendix A that the infant mortality rate is uncorrelated to a wide range
of other polygenic scores, and similarly, that the polygenic score for heart disease is uncorrelated with
a range of alternative early life environments (Figure A.2). Indeed, finding evidence of systematic rGE
between the infant mortality rate and alternative polygenic scores would suggest that our G⇥E estimate
may in fact be picking up a gene-gene interaction e↵ect. Vice versa, strong correlations between the
polygenic score for heart disease and alternative early life environments would suggest that our G ⇥ E
estimate may instead be capturing an environment-environment interaction e↵ect. Our analysis shows no
strong evidence of rGE in either case, with a wide range of polygenic scores and early life environments,
reinforcing the argument that we are identifying genuine G⇥ E interactions.
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sample will directly inflate the standard errors. Second, including family fixed e↵ects

means we are only exploiting variation within families. As most siblings are born rela-

tively close together and infant mortality rates do not change dramatically over the course

of a few years within a given district, there is relatively little variation in infant mortality

rates over time within the same family. Hence, for both these reasons, the within-family

analysis has much less power than the between-family analysis, and this will be reflected

in the standard errors. We therefore focus more on the magnitude of the estimates, as

opposed to its precision.

5 Results

Baseline specification: Column 1 in Table 2 presents the estimates from a simple

regression of the binary indicator of ischaemic heart disease on the infant mortality rate

in the district and year of birth as well as its square, controlling for gender and year ⇥

month of birth dummies. This confirms the results in Barker and Osmond (1986), showing

a significant relationship between adverse early life conditions and later life cardiovascu-

lar health. In fact, the estimates suggest an inverse U-shaped association. Column 2

shows the predictive power of the polygenic score, corroborating the findings from exist-

ing GWAS and showing a significant positive relationship between the polygenic score for

heart disease and the individual diagnosis, which is stronger for those with higher poly-

genic scores. Including the infant mortality rate and the polygenic score simultaneously,

as in column 3 and column 4, shows e↵ects of similar magnitude. Column 4 further adds

the interaction term between genetic variation and the early life environment, showing a

positive and significant e↵ect, with no evidence of non-linearities in the squared interac-

tion. In other words, an increase in the infant mortality rate in the district and year of

birth increases the probability of being diagnosed with ischaemic heart disease by more

for those with a high polygenic score for heart disease.

Figure 4 graphically presents the regression results from column 4 in Table 2, showing

a fanning out of the regression lines. In other words, a less advantageous early life en-
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Table 2: Gene-environment interplay for ischaemic heart disease

Ischaemic Heart Disease

(1) (2) (3) (4) (5)

IMR 0.0156*** 0.0128*** 0.0130*** 0.0049***

(0.0017) (0.0014) (0.0014) (0.0011)

IMR
2

-0.0017*** -0.0013*** -0.0015*** -0.0005

(0.0005) (0.0004) (0.0005) (0.0005)

PGS 0.0290*** 0.0289*** 0.0288*** 0.0285***

(0.0006) (0.0006) (0.0006) (0.0006)

PGS
2

0.0042*** 0.0042*** 0.0040*** 0.0040***

(0.0004) (0.0004) (0.0004) (0.0004)

IMR ⇥ PGS 0.0105*** 0.0106***

(0.0006) (0.0007)

IMR
2⇥ PGS

2
0.0002 0.0002

(0.0002) (0.0002)

Covariates Yes Yes Yes Yes Yes

District FEs No No No No Yes

Mean 0.11 0.11 0.11 0.11 0.11

R
2

0.07 0.07 0.07 0.08 0.08

No. of observations 378838 378838 378838 378838 378838

Notes: Covariates include gender and all year⇥month of birth dummies. ‘Mean’ is the mean of the dependent variable.

Robust standard errors clustered by district in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

vironment is associated with an increased probability of being diagnosed with ischaemic

heart disease. However, the magnitude of this e↵ect increases substantially with indi-

viduals’ polygenic score: the association with the infant mortality rate is much stronger

for those with higher genetic risk for developing ischaemic heart disease. The graph also

suggests that genetic risk plays a minor role in the probability of being diagnosed with

ischaemic heart disease among those exposed to low infant mortality rates at birth, with

little variation in the outcome of interest across polygenic scores for those born into low

infant mortality rate districts. This suggests that one’s genetic predisposition matters

less for the development of ischaemic heart disease among those born in advantageous,

healthier environments.

To explore more flexible non-linearities in the gene-environment interaction e↵ect, we

next plot the relationship between the residualised outcome and the infant mortality rate

at birth using local polynomial plots, where the residual is obtained from a regression

of ischaemic heart disease on the covariates listed in Equation (1). The left hand panel

of Figure 5 shows this for the quintiles of the polygenic score, whereas the panel on

the right presents it for the polygenic score deciles. This shows similar trends to those in
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Figure 4: G⇥ E interplay for Ischaemic Heart Disease; full sample

Figure 4, illustrating a diverging pattern as the infant mortality rate increases. Again, the

figure suggests that one’s genetic predisposition makes little di↵erence in the probability of

developing ischaemic heart disease among those born in more advantageous environments,

yet plays a major role when exposed to an adverse early life environment.

Figure 5: G⇥E interplay for Ischaemic Heart Disease, local polynomial plots; full sample

District Fixed E↵ects: To explore the extent to which these coe�cients are capturing

unobserved di↵erences across districts in infant mortality rates and later life ischaemic

heart disease, column 5 in Table 2 adds district of birth fixed e↵ects, taking into account

that, e.g., districts with high infant mortality rates are systematically poorer than dis-

tricts with lower infant mortality rates. Hence, we now only exploit variation in infant
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mortality rates within districts over time, comparing individuals born in the same district

but exposed to di↵erent rates of infant mortality due to their year of birth. The findings

suggest that over half of the main infant mortality rate e↵ect is due to time-invariant

di↵erences between districts. A one standard deviation increase in infant mortality rates

in the district and year of birth is associated with a 0.5 percentage point (4%) increase

in the probability of being diagnosed with ischaemic heart disease (with its square be-

ing insignificantly di↵erent from zero). The coe�cients on the polygenic score and the

interaction do not change with the addition of district fixed e↵ects, suggesting there is

no systematic variation in these variables across districts, once we account for the main

e↵ect of the infant mortality rate.

Family Fixed E↵ects: Table 3 reproduces the regression results for the full sample

without district fixed e↵ects (columns 1–3); the results for the reduced sibling sample

without family fixed e↵ects (columns 4–6), and the results for sibling sample including

family fixed e↵ects (columns 7–9). Reducing the sample size to include only siblings

causes a substantial increase in all standard errors, yet does not lead to big changes in the

estimated coe�cients of the infant mortality rate and the polygenic score. However, the

estimate on the interaction halves, suggesting that the sibling sample is di↵erent from the

full UK Biobank. Indeed, the sibling sample is more likely to be born in urban areas, with

more limited representation of the rural districts in England and Wales. Nevertheless, it

remains statistically significant, even on the reduced sample.

Moving to the estimates from the family fixed e↵ects specifications (columns 7–9), we

find a very small reduction in the parameter estimate on the polygenic score, suggesting

that demography and indirect genetic e↵ects do not play a large role for ischaemic heart

disease. However, the coe�cient on the infant mortality rate approaches zero and is no

longer significant. This therefore suggests that the infant mortality rate partially proxies

for other unobserved characteristics that vary between families. Once these are accounted

for via the family fixed e↵ects, the coe�cient on the infant mortality rate is no longer

significant. The interaction e↵ects, however, remain very similar to the point estimate in

the between-family analysis (column 6). In other words, the results suggest that the infant
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mortality rate does not increase the probability of being diagnosed with ischaemic heart

disease for those with an average polygenic score, yet that it does increase this probability

for those with a high polygenic score. In the other direction, a one standard deviation

increase in the polygenic score increases the probability of being diagnosed with ischaemic

heart disease, and this e↵ect is larger for those exposed to higher infant mortality rates

at birth.

Table 3: Restricting the sample size and including family fixed e↵ects

Full sample Reduced (sibling) sample With family fixed e↵ects

IMR 0.0136*** 0.0128*** 0.0130*** 0.0129*** 0.0121*** 0.0121*** -0.0003 -0.0002 -0.0002

(0.0014) (0.0014) (0.0014) (0.0034) (0.0033) (0.0034) (0.0049) (0.0049) (0.0049)

IMR
2

-0.0015*** -0.0013*** -0.0015*** -0.0012 -0.0011 -0.0016 0.0009 0.0007 0.0003

(0.0004) (0.0004) (0.0005) (0.0014) (0.0014) (0.0014) (0.0023) (0.0023) (0.0023)

PGS 0.0289*** 0.0288*** 0.0277*** 0.0274*** 0.0222*** 0.0219***

(0.0006) (0.0006) (0.0017) (0.0018) (0.0033) (0.0033)

PGS
2

0.0042*** 0.0040*** 0.0060*** 0.0055*** 0.0058*** 0.0053**

(0.0004) (0.0004) (0.0013) (0.0014) (0.0019) (0.0022)

IMR ⇥ PGS 0.0105*** 0.0054*** 0.0052**

(0.0006) (0.0018) (0.0026)

IMR
2⇥ PGS

2
0.0002 0.0006 0.0006

(0.0002) (0.0010) (0.0012)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

District FE No No No No No No No No No

R
2

0.07 0.07 0.08 0.07 0.07 0.07 0.56 0.57 0.57

N 378838 378838 378838 33060 33060 33060 33060 33060 33060

Notes: Columns (1)-(3) show robust standard errors clustered by district on the full sample. Columns (4)–(6) show robust

standard errors clustered by district on the sibling sample. Columns (7)–(9) use two-way clustering by family and district

on the sibling sample. * p < 0.1, ** p < 0.05, *** p < 0.01.

Figure 6 shows the non-linear local polynomial plots from the residualised outcome,

as in Figure 5 above, but now also residualised for family fixed e↵ects. This again shows

rising divergence in ischaemic heart disease with increasing infant mortality rates. The

probability of developing ischaemic heart disease is very similar for those exposed to low

infant mortality rates at birth, with one’s polygenic score being more important for those

exposed to high infant mortality rates.

Potential mechanisms: To examine potential mechanisms for the significant interac-

tion between the polygenic score for heart disease and the infant mortality rate in early

life, we investigate whether and how the main and interaction e↵ects are associated with
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Figure 6: G ⇥ E interplay for Ischaemic Heart Disease, local polynomial plots; sibling
sample, accounting for family fixed e↵ects.

specific behaviours and other outcomes that also associate with heart disease, including

BMI, blood pressure, height, drinking and smoking. Indeed, if the main and interaction

e↵ects show no association with these alternative outcomes, they cannot be a mediator in

the relationship between infant mortality, polygenic scores and heart disease. We define

smoking and drinking as dummy variables that equal to one if the individual currently

smokes or drinks, or has done so in the past, and zero otherwise.

Table 4 presents the estimates, where the first column for each outcome only controls

for the covariates specified in Equation (1) and the second additionally accounts for family

fixed e↵ects, as in Equation (2). All analyses are based on the sibling sample and specify

the polygenic score for heart disease as the variable capturing the genetic component.

Examining first the estimates that do not control for family fixed e↵ects, we find that the

infant mortality in one’s year and district of birth has an inverse U-shaped association

with BMI and systolic blood pressure, as well as a U-shaped relationship with height in

adulthood. There are no strong di↵erences in drinking and smoking among those born

in areas characterised by di↵erent infant mortality rates. Once we control for family

fixed e↵ects, however, these associations reduce in magnitude and are generally no longer

significantly di↵erent from zero, though there is some evidence of marginal non-linearities

in BMI and systolic blood pressure.

Furthermore, we find that the polygenic score for heart disease predicts variation in

BMI, blood pressure, height, alcohol and smoking status, with the estimates suggesting

these associations are generally linear. When controlling for family fixed e↵ects, the esti-
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mates reduce, but they all remain significantly di↵erent from zero. Finally, the coe�cients

on the G ⇥ E terms in the analyses that do not include family fixed e↵ects are signifi-

cant only for BMI and diastolic blood pressure, with no evidence of any non-linearities,

where a higher polygenic score for heart disease is protective against the adverse e↵ects

of increased infant mortality rates. However, including family fixed e↵ects renders them

insignificantly di↵erent from zero. In other words, we find no strong evidence that BMI,

blood pressure, height, drinking, and smoking mediate the relationship between polygenic

scores and infant mortality rates in the development of ischaemic heart disease.
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6 Robustness checks

This section explores the sensitivity of our main findings to a set of robustness checks.

First, we explore whether there are gender di↵erences in the relationship between the

early life infant mortality rate and later life heart disease. Second, we test the sensitivity

of our findings to controlling for additional covariates at the district level. Third, we

explore the use of an alternative polygenic score for heart disease, constructed from the

summary statistics of our tailor-made GWAS on the non-siblings (and non-relatives) of

the UK Biobank. Fourth, we examine the robustness of our results to specifying the

main and interaction e↵ects as linear predictors (i.e., not allowing for non-linearities in

PGS and IMR). Fifth, we compare our analysis to those that use the infant mortality

rate in the years around birth (as opposed to the year of birth) as the main variable of

interest. Other than our first robustness check, all are based on the family fixed e↵ects

specification.

6.1 Gender di↵erences

We start by exploring whether the relationship between ischaemic heart disease and infant

mortality rates at birth is similar for men and women. Table 5 shows slightly larger

estimates for men compared to women, possibly reflecting a higher incidence of heart

disease among men. In addition, we find that the polygenic score is more predictive among

men, with the magnitude of the interaction term also being slightly larger. Nevertheless,

for both groups do we find evidence of main as well as interaction e↵ects for ischaemic

heart disease. Furthermore, we find evidence of non-linearities of the interaction term for

women, though not for men.

6.2 Controlling for additional district-level covariates

As shown in Table 1, the infant mortality rate is likely to capture variation in socio-

economic characteristics. Although the district fixed e↵ects capture some of this variation,

it may not be able to account for time-varying characteristics that correlate with the infant
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Table 5: G⇥ E interplay for ischaemic heart disease, by gender

Females Males

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

IMR 0.0109*** 0.0109*** 0.0110*** 0.0043*** 0.0151*** 0.0151*** 0.0154*** 0.0051**
(0.0014) (0.0014) (0.0014) (0.0011) (0.0018) (0.0018) (0.0018) (0.0020)

IMR2 -0.0006 -0.0006 -0.0012** -0.0005 -0.0020** -0.0020** -0.0016* -0.0001
(0.0005) (0.0005) (0.0006) (0.0007) (0.0008) (0.0008) (0.0009) (0.0008)

PGS 0.0170*** 0.0170*** 0.0171*** 0.0169*** 0.0429*** 0.0429*** 0.0423*** 0.0419***
(0.0005) (0.0005) (0.0005) (0.0005) (0.0010) (0.0010) (0.0010) (0.0010)

PGS2 0.0028*** 0.0028*** 0.0022*** 0.0022*** 0.0058*** 0.0058*** 0.0062*** 0.0063***
(0.0004) (0.0004) (0.0005) (0.0005) (0.0007) (0.0007) (0.0007) (0.0007)

IMR ⇥ PGS 0.0075*** 0.0076*** 0.0136*** 0.0138***
(0.0006) (0.0006) (0.0011) (0.0011)

IMR2⇥ PGS2 0.0006** 0.0006** -0.0004 -0.0005
(0.0003) (0.0003) (0.0004) (0.0004)

Covariates Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
District FEs No No No No Yes No No No No Yes
Mean 0.07 0.07 0.07 0.07 0.07 0.16 0.16 0.16 0.16 0.16
R2 0.04 0.04 0.04 0.04 0.05 0.07 0.07 0.07 0.07 0.08
No. of observations 203750 203750 203750 203750 203738 175089 175089 175089 175089 175068

Notes: These analysis are based on the full UK Biobank analysis sample, controlling for district fixed e↵ects in columns

(5) and (10). ‘Mean’ is the mean of the dependent variable. Robust standard errors clustered by district in parentheses. *

p < 0.1, ** p < 0.05, *** p < 0.01.

mortality rate. We therefore next explore whether our analysis is robust to the inclusion

of a set of variables that vary over time within districts. For this, we include district-level

illegitimacy, birth and death rates in the regressions, as measured during individuals’ year

of birth, aiming to capture some socio-economic di↵erences between districts. Column

(1) of Table 6 replicates the main estimates from column (9) of Table 3 for comparison.

Column (2) reports the estimates that control for the additional covariates, showing very

similar coe�cients on the infant mortality rate, the polygenic score, and the interactions,

with no significant e↵ects of the additional covariates.

6.3 Alternative polygenic score

The polygenic score used in our main analysis is constructed from the summary statistics

in Nikpay et al. (2015). It is well-known, however, that the GWAS estimates are specific

to the environmental context and demographic characteristics of the discovery sample (see

e.g., Domingue et al., 2020). We therefore examine the sensitivity of our findings to the

use of an alternative polygenic score, constructed using the summary statistics from our

own tailor-made GWAS on the non-siblings of the UK Biobank sample (also excluding

any other relatives of the sibling sample). The latter ensures that the discovery sample
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Table 6: Robustness analyses of gene-by-environment interplay for ischaemic heart disease

Ischaemic Heart Disease

(1) (2) (3) (4)

IMR -0.0002 -0.0008 0.0003 0.0009

(0.0049) (0.0050) (0.0049) (0.0049)

IMR
2

0.0003 0.0003 0.0004

(0.0023) (0.0023) (0.0023)

PGS 0.0219*** 0.0219*** 0.0324*** 0.0217***

(0.0033) (0.0033) (0.0032) (0.0033)

PGS
2

0.0053** 0.0053** 0.0051**

(0.0022) (0.0022) (0.0021)

IMR ⇥ PGS 0.0052** 0.0052** 0.0098*** 0.0050*

(0.0026) (0.0026) (0.0029) (0.0026)

IMR
2 ⇥ PGS

2
0.0006 0.0006 0.0004

(0.0012) (0.0012) (0.0012)

Illegitimacy Rate -0.0002

(0.0038)

Birth Rate 0.0017

(0.0043)

Death Rate 0.0020

(0.0035)

Covariates Yes Yes Yes Yes

PCs Yes Yes Yes Yes

Additional controls No Yes No No

R
2

0.57 0.57 0.57 0.57

No. of observations 33060 33060 33060 33060

Notes: All estimates are from family-fixed e↵ects specifications. ‘Covariates’ refers to gender and year-month dummies;

‘PCs’ are the first 10 principal components of the genetic relatedness matrix. ‘Additional controls’ refer to the district-level

covariates illegitimacy rate, birth rate and death rate, added in Column (2). Robust standard errors in parentheses, clustered

by family and district throughout. Column (4) uses a polygenic score constructed from our own GWAS on non-siblings of

the UK Biobank. All analyses control for the interactions between IMR and X and between PGS and X. * p < 0.1, **
p < 0.05, *** p < 0.01.

is independent of the analysis sample. It also ensures that the two samples are from the

same environmental context, likely increasing the predictive power of the polygenic score.

Column (3) of Table 6 presents the results. Although the main e↵ects of the infant

mortality rate are not substantially a↵ected, we find a somewhat larger main e↵ect of the

polygenic score. In addition, the estimate on the interaction term between the polygenic

score and the infant mortality rate is larger. These findings confirm the existence of impor-

tant interplay between the early life environment and individuals’ genetic predisposition

in the development of heart disease in older age.
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6.4 Modelling G and E as linear e↵ects

Our main analysis allows for non-linear (quadratic) e↵ects in the infant mortality rate

at birth, the polygenic score, as well as their interaction. To explore the robustness of

our findings, we next re-estimate Equation (2) but restrict the main e↵ects as well as

the interaction terms to enter the function linearly. The estimates, presented in Column

(4) of Table 6, are very similar to the specification that allows for non-linearities, and

show evidence of an interaction e↵ect between the infant mortality rate in one’s year and

district of birth and one’s polygenic score in shaping individuals’ probability of being

diagnosed with heart disease in later life.

6.5 Exploring timing of the infant mortality rate

Barker and Osmond (1986) show similar correlations between ischaemic heart disease

in adulthood and regional infant mortality rates, irrespective of whether neonatal or

postneonatal infant mortality rates are used. We here explore whether our estimates are

robust to di↵erent timings of the measurement of the infant mortality rate, ranging from

four years before birth to four years after birth. Figure 7 and Figure 8 show the estimates,

respectively, of the main infant mortality rate and the G ⇥ E interaction e↵ects on the

vertical axis, with the horizontal axis denoting the timing relative to the year of birth.15

The estimates in Figure 7 are based on a model that includes district fixed e↵ects, whilst

the estimates in Figure 8 are based on a model that includes family fixed e↵ects). The

dashed horizontal line is the estimate from the analysis above, using the infant mortality

rate measured in the year of birth; the solid line is at zero.

The left panel of Figure 7 suggests that it matters when the infant mortality rate is

measured. Using the infant mortality rate in the year of birth or the year prior to birth

(we loosely refer to this as the year of pregnancy), the estimates are almost double the size

compared to using earlier or later years, though we cannot statistically distinguish them

from each other. The evidence is suggestive however that the prenatal and the first year

15For ease of interpretation and plotting of the estimates, we here model the probability of being
diagnosed with ischaemic heart disease as a function of G, E, and G ⇥ E, but do not allow for the
squared terms.
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Figure 7: Exploring the timing of the infant mortality rate for Ischaemic Heart Disease;
full sample, controlling for district fixed e↵ects.

of life are the most important in shaping later-life disease risk. The right panel of Figure 7

shows that the interaction term is largest in magnitude for the infant mortality rate in

the year of birth, although the other years show a remarkably consistent interaction e↵ect

that di↵ers significantly from zero in all specifications.

Figure 8 shows the estimates from the family fixed e↵ects specification. These sug-

gest no significant main e↵ects of the infant mortality rate in the year of birth, but a

significant positive e↵ect for the infant mortality rate in the year of pregnancy. Taken

at face value, this suggests that the prenatal period is more important than the neonatal

period in shaping later-life disease risk. The interaction estimates, shown in the panel

on the right, do not suggest that the timing of measurement matters, with the estimates

being relatively constant across the di↵erent specifications. All show positive interaction

e↵ects, confirming that the early life environment interacts with individuals’ genetic risk

for heart disease. However, the fact that the estimates are similar across the di↵erent

specifications suggests that the e↵ects are not driven by factors that are specific to the

year of birth. Instead, it looks like the infant mortality rate is a broader indicator of

adverse environments in early life.
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Figure 8: Exploring the timing of the infant mortality rate for Ischaemic Heart Disease;
sibling sample, controlling for family fixed e↵ects.

7 Conclusion

The Barker hypothesis states that adverse circumstances in the prenatal and early life pe-

riod can lead to disease in older age. We confirm this hypothesis in the UK Biobank, using

a large sample of individuals in England and Wales born between the 1930s and 1970s.

We then explore whether this relationship holds exploiting only variation within local

areas or variation within families, and we investigate any heterogeneity of the association

with respect to individuals’ genetic predisposition. Our analysis shows a strong inverse

U-shaped correlation between the local infant mortality rate at birth and later life heart

disease. When using only variation in exposure to infant mortality rates and polygenic

scores within siblings, we show that the correlation is not significant for those with an

average polygenic score, but only exists among individuals with the highest genetic risk

for developing heart disease. Although we still interpret our estimates as correlational

rather than causal, our findings do show that gene-environment interplay in heart disease

is strong and robust to the inclusion of district and family fixed e↵ects.

Our findings suggest that improvements in the early life environment reduce the role

of genetic risk for heart disease. More specifically, being exposed to low infant mortality

rates in one’s year and region of birth reduces the risk of being diagnosed with ischaemic
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heart disease, with very little variation in this risk between those with high or low genetic

predispositions for heart disease. In contrast, being exposed to high infant mortality rates

increases the risk of ischaemic heart disease, and this risk is increased even further among

those with a high genetic predisposition for heart disease.

One important issue to take into account in the interpretation of the results is se-

lection and scarring. First, it is well known that the UK Biobank is not representative

of the UK population, with its participants being more likely to live in urban areas and

being of higher socio-economic status, on average (Fry et al., 2017). This will a↵ect the

generalisability of our findings. Indeed, we cannot simply extrapolate our results to the

full UK population, though our analysis shows that the positive correlation between in-

fant mortality at birth and disease in old age also holds for this slightly higher SES (UK

Biobank) population. If anything, we would expect this relationship to be stronger among

individuals of lower SES, suggesting that we may underestimate the e↵ects of interest.

Second, individuals born in districts with high infant mortality rates may not be observed

in the data, as they may have already passed away. If this is the case, our sample is a

selected (healthier) sample of individuals, meaning that our estimates are likely to be a

lower bound. Third, individuals born in districts with high infant mortality rates may

have been ‘scarred’ in early life because of their exposure to an adverse environment.

In fact, this is one of the potential mechanisms suggested in the literature, that adverse

conditions in early life may lead to permanent changes in the body structure, physiology

and metabolism. Indeed, this is what we would likely be capturing in the analysis.

Our findings have at least two implications. First, our findings clearly show that

‘genetic determinism’, or the idea that human behaviour is controlled by an individual’s

genes with no role for non-genetic/environmental influences, is incorrect. Indeed, we find

strong evidence that ‘nature’ and ‘nurture’ complement each other. Our findings therefore

suggest a more nuanced understanding of later life health, in which the e↵ect of one’s

genetic predisposition depends on the environment in which individuals live and grow

up (see also, e.g., Caspi, 2010). This suggests that improving the early life environment

not only reduces the mean prevalence in heart disease, but also the variation in heart
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disease for those with di↵erent genetic predispositions. This is an interesting contrast with

findings for education and cognition outcomes, where genetic e↵ects are typically weaker

in deprived environments (Heath et al., 1985; Tucker-Drob and Bates, 2016; Harden,

2021).

Second, despite the fact that our study looks at infant mortality rates between the

1930s and 1970s, our findings do have policy relevance. Indeed, they suggest that improv-

ing the early life environment for children born now, will likely positively a↵ect individuals’

future health. Although we cannot pinpoint exactly what the infant mortality rate cap-

tures, and therefore what the main cause is of the change in disease prevalence in older

age, our findings do suggest that a general improvement in such early life circumstances

have long-run e↵ects on the health and well-being of the population, in particular among

those with high genetic risk for developing heart disease.
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Appendix A: Gene-environment correlation

To further explore whether gene-environment correlation (rGE) may be driving our results, Figure A.1

presents the same (between-family and within-family) figures as Figure 3, focusing on the sibling sample,

but instead of using the polygenic score for heart disease, we use polygenic scores that are relevant to

other traits. In Figure A.2, we show the correlation between the polygenic score for heart disease and

alternative early life environments. Indeed, if the environment of interest (the infant mortality rate),

is somehow correlated to one’s other polygenic score, or if one’s polygenic score for heart disease is

somehow correlated to other early life environments, it is unclear whether the environment-coe�cient

partially captures one’s genetic predisposition, and vice versa, through rGE. In that case, it is unclear

whether the coe�cient on the gene-environment interaction (G ⇥ E) is truly a G ⇥ E, or whether it

captures a G⇥G or E ⇥ E.

For example, if individuals with a high polygenic score for educational attainment are more likely to

select into healthier and wealthier environments (see e.g. Abdellaoui et al., 2019), we may see a negative

correlation between the polygenic score for educational attainment and the infant mortality rate. It is

then unclear whether the G ⇥ E e↵ect in the main analysis captures a true interaction e↵ect between

the polygenic score for heart disease and the early life infant mortality rate, or whether this is partially

capturing an interaction between the the polygenic score for heart disease and the polygenic score for

educational attainment (G⇥G). Similarly, if individuals with higher polygenic scores for heart disease are

more likely to live in areas characterised by higher illegitimacy rates, it is unclear whether the interaction

e↵ect captures a true G⇥E e↵ect, or whether this picks up an interaction between the infant mortality

rate and the illegitimacy rate (E ⇥ E).

As genetic variants are randomly allocated within families, we do not encounter this interpretational

issue with the coe�cient on the polygenic score in the within-family analysis. Indeed, the coe�cient on

the genetic term in the within-family analysis captures a genetic e↵ect16 In the between-family analysis,

it may capture either a genetic or environmental e↵ect; the latter via genetic nurture or rGE.

Figure A.1 shows the gene-environment correlations between the infant mortality rate at birth and

the polygenic scores for BMI (using GWAS summary statistics from Locke, 2015), educational attainment

(23andMe), and height (Locke, 2015). The left panel of each row of graphs shows the raw correlation

between the infant mortality rate and the relevant polygenic score for the sibling sample. The right

panel shows this same relationship exploiting only within-family variation, i.e., taking the residuals of

the variable shown on the axes after taking out the family fixed e↵ect.

Figure A.2 shows the gene-environment correlations between the polygenic score for heart disease and

alternative district-level variables: the district-level illegitimacy rate, birth rate and death rate. The left

panel again shows the raw correlation for the sibling sample, whilst the panel on the right only exploits

16Though note that the genetic e↵ect is potentially attenuated; see Trejo and Domingue (2019).
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within-family variation.

For both Figure A.1 and Figure A.2, the slope of the lines are close to zero. In other words, we

find no evidence of any strong gene-environment correlation for any of the polygenic scores and early life

environments used here. This again is reassuring, suggesting we are identifying true G⇥E interactions,

rather than spurious G⇥G or E ⇥ E interactions.
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Figure A.1: Correlation between infant mortality rates, and the polygenic scores for BMI,
educational attainment and height in the sibling sample without (column 1) and with
(column 2) family fixed e↵ects.
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Figure A.2: Correlation between the polygenic score for heart disease and three alternative
early life environments: the district-level illegitimacy rate, birth rate and death rate using
the sibling sample without (column 1) and with (column 2) family fixed e↵ects.

47


	Introduction
	Background
	Nature: Genetics
	Nurture: The infant mortality environment
	The potential interaction between `nature' and `nurture'

	Data
	The Infant Mortality Rate
	The Polygenic Score

	Empirical strategy
	Results
	Robustness checks
	Gender differences
	Controlling for additional district-level covariates
	Alternative polygenic score
	Modelling G and E as linear effects
	Exploring timing of the infant mortality rate

	Conclusion

