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The important thing is not to stop questioning. Curiosity has its own reason for
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to comprehend a little of this mystery every day. Never lose a holy curiosity.

Albert Einstein

Learning without thought is labour lost; thought without learning is perilous.
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Abstract
Spintronics is based on the transport of information by the spin of elec-

trons rather than charge current so as to avoid the Joule heat. Among it,
magnons, as the most elementary excitations in magnetic materials, have
emerged as a prominent tool in electrical and thermal manipulation and
transport of spin. Importantly, magnonics as a field is considered as one of
the pillars of modern spintronics.

In this thesis, the linear spin-wave theory is utilized to explore the ma-
gnonic properties based on the effective spin Hamiltonian, parameterized
from the first-principles calculations and fitting to experiments. Inspired by
the experimental result, a family of two-dimensional metal-organic frame-
works with the Shastry-Sutherland lattice are calculated from first-principles,
and corresponding applications in spintronics and magnonics are investi-
gated in the thesis. Additionally, combined with inelastic neutron scatter-
ing results, the magnonic topological properties are systematically explored
in the multiferroic ferrimagnet Cu2OSeO3. The experimental magnon dis-
persions are well fitted, when considering the Heisenberg-Dzyaloshinsky-
Moriya interaction model, and the Weyl points are forecasted whose posi-
tion can be controlled by changing the Dzyaloshinsky-Moriya interaction of
the material. Moreover, a measurable thermal Hall conductivity is predicted,
which can be associated with the emergence of the Weyl points.

Notably, in realistic two-dimensional materials, e.g., ferromagnetic hon-
eycomb materials, the Dzyloshinskii-Moriya interaction is often accompa-
nied by the Kitaev interaction, which poses a challenge to distinguish their
magnitude. In the thesis, we demonstrate that it can be done by accessing
magnonic transport properties and rotating the magnetization in the sys-
tem. By studying honeycomb ferromagnets that exhibit at the same time the
Dzyaloshinskii-Moriya interaction and Kitaev interaction, complex magnonic
topological properties are revealed accompanied by intricate magnonic trans-
port characteristics represented by thermal Hall and magnon Nernst effects.
Moreover, the effect of a in-plane magnetic field is investigated, showing
that it can break the symmetry of the system and bring drastic modifications
to magnonic topological transport properties, serving as hallmarks of the
relative strength for anisotropic exchange interactions. Furthermore, based
on our proposed strategy, the spin interactions in CrSiTe3 and CrGeTe3 are
predicted and their potential applications in topological magnonics are ex-
plored.

In addition to magnonics, orbitronics, which exploits the orbital degree
of freedom of electrons rather than the spin, emerges as a powerful platform
in efficient design of currents and redistribution of angular momentum in
structurally complex materials. In the thesis, we uncover a way to bridge the
magnonics and electronic orbital magnetism, originating in the coupling of
scalar spin chirality, inherent to magnons, to the orbital degree of freedom
in solids. We show that this can lead to efficient generation and transport of
electronic orbital angular momentum by magnons, thus opening the door to



viii

combine the functionalities of magnonics and orbitronics. Lastly, the discov-
ery is applied to realistic materials, e.g., Mn3Ge, to demonstrate the magnon-
mediated orbital magnetism.
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Zusammenfassung
Die Spintronik verspricht Informationen durch Spins anstelle von Elek-

tronen zu übertragen und so die Entstehung von Joulewärme zu vermeiden.
Dabei haben sich Magnonen, die elementarsten Anregungenen magnetischer
Materialien, als ein wichtiges Werkzeug zur elektrischen und thermischen
Beeinflussing and beim Transport von Spins herausgestellt.

Unter diesen haben sich Magnonen als elementarste Anregungen mag-
netischer Materialien als herausragendes Werkzeug bei der elektrischen und
thermischen Manipulation und beim Transport von Spin herausgestellt. Heut-
zutage hat sich das Feld der Magnonik eine der zentralen Säulen der Spin-
tronik etabliert.

In dieser Arbeit wird die lineare Spinwellentheorie verwendet, um Mag-
nonen basierend auf einem effektivem Spin-Hamilton-Operator zu unter-
suchen, der mit Hilfe von ab initio Berechnungen und experimentellen Daten
parametrisiert wurde.

Inspiriert vom Experimenten wurde eine Familie zweidimensionaler
metallorganischer Systeme mit einem Shastry-Sutherland-Gitter mittels ab-
initio Berechnungen und die entsprechenden Anwendungen in der Spin-
tronik und Magnonik werden in der vorliegenden Arbeit ebenfalls unter-
sucht. Mit Hilfe der inelastischen Neutronenstreuungsergebnissen werden
die topologischen Eigenschaften von Magnonenanregungen im multiferro-
ischen Ferrimagneten Cu2OSeO3 systematisch untersucht.

Die experimentellen Magnonendispersionen sind gut geeignet um das
Heisenberg-Dzyaloshinsky-Moriya-Interaktionsmodells zu verstehen. Darü-
ber hinaus sagen wir voraus, dass eine messbare thermische Hall-Leitfähig-
keit mit dem Auftreten der Weyl-Punkte verbunden ist, deren Position durch
Änderungen der Dzyaloshinsky-Moriya-Wechselwirkung des Materials ver-
ändert werden kann.

Insbesondere in realistischen zweidimensionalen Materialien wird die
Dzyloshinskii-Moriya-Wechselwirkung häufig von der Kitaev-Wechselwirk-
ung begleitet, was es schwierig macht ihre Größe zu unterscheiden. In der
vorliegenden Arbeit zeigen wir jedoch, dass dies durch eine Untersuchung
der Magnonentransporteigenschaften möglich ist. Indem wir wabenförmige
Ferro-magneten untersuchen, die gleichzeitig Dzyaloshinskii-Moriya- und
Kitaev-Wechselwirkungen aufweisen, zeigen wir nicht triviale topologische
Eigenschaften der Magnonen, die von komplizierten Magnonentransport-
eigenschaften begleitet werden, wie sie durch thermische Hall- und Magnon-
Nernst-Effekte gegeben sind. Darüber hinaus untersuchen wir auch die Wirk-
ung eines Magnetfelds und zeigen, dass es nicht nur die Symmetrie des
Systems bricht, sondern auch drastische Modifikationen der topologischen
Transporteigenschaften von Magnonen mit sich bringt, die als Kennzeichen
für die relative Stärke anisotroper Austauschwechselwirkungen dienen. Bas-
ierend auf unserer vorgeschlagenen Strategie werden außerdem die Spin-
Wechselwirkungen in CrSiTe3 und CrGeTe3 vorhergesagt und ihre mögliche
Anwendungen in der Magnonik untersucht.
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Neben der Magnonik stellt sich auch die Orbitronik, die den Orbitalfrei-
heitsgrad von Elektronen anstelle ihres Spins ausnutzt, als leistungsstarke
Plattform für die effiziente Realisierung von Strömen und die Umverteilung
des Drehimpulses in strukturell komplexen Materialien heraus. In dieser
Arbeit entdecken wir einen Weg, die Welt der Magnonik mit der des elek-
tronischen Orbitalmagnetismus zu verbinden. Wir zeigen, dass dies zu einer
effizienten Erzeugung und zum Transport des elektronischen Drehimpulses
durch Magnonen führen kann, wodurch die Möglichkeit eröffnet wird, die
Funktionen von Magnonik und Orbitronik zum gegenseitigen Nutzen im
Bereich der Spintronik-Anwendungen zu kombinieren. Schließlich wenden
wir den vorgeschlagenen Mechanismus auch auf realistische Materialien an,
hier Mn3Ge, um seine Magnonenspin- und Orbitaleigenschaften zu demon-
strieren.
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Chapter 1

Introduction

With the development of modern society, energy consumption has increased
dramatically, leading to energy issues that are receiving more and more at-
tention from mankind. It is reported that the Information and Communica-
tion Technology (ICT) consumption has a one-way causality with electricity
consumption, which in turn causes a rise in CO2 emissions [1]. In order to
protect our environment and make full use of energy, spintronics is proposed
and actively promoted in the past decades.

In spintronics, the information is transported by the spin of electrons
rather than electrons themselves so as to avoid the generation of Joule heat.
Based on this theory, many applications have been realized. For instance,
some logic devices are designed in the data storage field based on the giant
magnetoresistance (GMR) [2] effect and tunneling magnetoresistance (TMR)
effect [3]. In addition, spintronics also has applications in semiconductors,
such as spin-polarized electrical injection and spin-based transistors. Nowa-
days, it is still a promising topic to search for new candidate materials in
spintronics. Notably, half-metal materials can be used efficiently for spin-
polarized injection, and semiconductors with high Curie temperature have
promising applications in spin-based transistor technology.

Within spintronics, the concept of spin waves, i.e. collective spin excita-
tion, plays an important role. The spin-wave theory was first proposed by
Bloch in 1930 [4] and its fingerprints were first observed by Brockhouse [5].
For a magnetic material in the ground state, each spin has its own direc-
tion, and magnetic properties can be explained by the spins and their in-
teractions. Out of equilibrium, the behavior of these spins is perceived as
an "elastic medium". The perturbation of local magnetization can propagate
through the whole material, due to external heat, optical excitation, etc. As
this behavior is analogous to the propagation of water waves in the sea, this
phenomenon is named spin waves, whose quanta are quasiparticles called
magnons. Magnons hold unprecedented potential for various applications
in the realm of magnetic phenomena. For instance, the information can be
transferred by magnons without any Ohmic losses in magnetic insulators, as
there is no directional flow of electrons. Utilizing magnons for information
transformation is known as magnonics, which is boomed by the experimental
discovery of the thermal Hall effect of magnon in Lu2V2O7 [6]. In a re-
cent study, it was predicted that the thermal Hall effect of magnons can be
aroused by the spin-orbit coupling (SOC) in the form of the Dzyaloshinskii-
Moriya interaction (DMI) [7]. Therefore, understanding the nature of spin
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interactions in real magnets is a prerequisite for an in-depth study of the
topological properties of magnons.

In magnets, the spin interactions are usually dominated by the short-
range exchange interactions and long-range magnetic dipole interactions.
Besides, the DMI, magnetocrystalline anisotropy, and Kitaev interactions,
which originate in the interplay of SOC with crystal symmetry, may exist
in magnets. Thus, establishing how to evaluate the contribution of these
types of interactions becomes an important research aim. On the one hand,
the quantitative parameters of different spin interactions can be obtained
through first-principles calculations based on density functional theory (DFT).
On the other hand, the spin interactions can be predicted based on a fitting
to experimental data. For instance, many experimental techniques to detect
magnonic excitations have been developed in the past, such as the angle-
dependent ferromagnetic resonance (FMR), Raman scattering, and inelastic
neutron scattering (INS). By utilizing these techniques, we can formulate the
corresponding effective spin Hamiltonian, which reflects the spatial depen-
dence of the magnetic exchange interactions.

After determining spin interactions in magnets, the magnetic properties
can be finally investigated. In addition to an external magnetic field, the com-
bination of interactions mentioned above can produce rich magnetic ground
states, such as skyrmions, domain walls, spin spirals, and spin liquids [8,
9, 10]. Besides, the DMI or Kitaev interaction can also bring to the fore-
front a variety of interesting magnonic topological phenomena and various
magnonic topological states, e.g., the Weyl points, explored here for the case
of Cu2OSeO3. Previously, it has been speculated that both DMI [6] and the
Kitaev interaction [11] can generate the thermal Hall effect in layered van
der Waals materials with similar magnon dispersion. In my thesis, the in-
terplay of DMI and Kitaev interactions for magnonic transport properties of
honeycomb materials is investigated, and the strategies to be applied in real
materials to distinguish both interactions are proposed.

In addition to magnonics, orbitronics is also attracting more and more at-
tention in recent years. Orbitronics exploits the orbital degree of freedom of
electrons rather than their spin, emerging as a powerful platform in efficient
design of currents and redistribution of angular momentum in structurally
complex materials. The orbital magnetism is aroused from the circulating
electric currents, and usually finite orbital moment can be produced from the
SOC that naturally breaks the orbital degeneracy. Apart from this, orbital
magnetism can also be obtained based on magnetic geometry. In this theory,
an effective internal magnetic field is generated to break the orbital degener-
acy, which is caused by the electron hopping among non-coplanar spin sites
with spin chirality in a frustrated magnet or in a skyrmion. The emergence
of such chirality-driven orbital magnetization in various systems has been
shown in recent years [12, 13, 14, 15, 16], where the spin chirality normally
corresponds to the scalar spin chirality (SSC). By using this approach, not
only large orbital magnetic moments can be realized in light materials, but
also it inspires us to realize the orbital magnetism through magnonic excita-
tions.
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It is clear that the SSC is vanishing in the ground state of collinear mag-
netic systems, while it can be harvested by magnons excitation, generating
the topological orbital magnetism (TOM). In the thesis, combining magnon-
ics and electronic orbital magnetism calculations, we revealed efficient gen-
eration and transport characteristics of electronic orbital angular momentum
by magnons. Our findings combine the functionalities of magnonics and or-
bitronics in the realm of spintronics applications, which provide references
for future theoretical and experimental studies.

Altogether, this thesis mainly focuses on four aspects: 1) A family of two-
dimensional (2D) metal-organic frameworks (MOFs) is investigated to ex-
plore possible applications in spintronics and magnonics; 2) In collaboration
with experimental partners, spin interactions, and magnonic properties, e.g.,
magnonic Weyl phases and thermal Hall effect, are investigated in a proto-
typical skyrmionic material Cu2OSeO3; 3) The influence of DMI and Kitaev
interactions on magnonic characteristics are explored in van der Waals ma-
terials; 4) Orbital properties of magnetic materials are explored through the
coupling between SSC and magnons, in which a new mechanism named as
the orbital Nernst effect is proposed.

1.1 Outline of the Thesis

The left parts of the thesis are organized as follows:
Chapter 2. In this chapter, we present the origin of magnetism, especially the
contribution from the orbital angular momentum. Besides, different types
of spin interactions are introduced to constitute the generalized Heisenberg
model. Furthermore, we present the concept of spin waves, and a general
method is introduced to obtain the magnon eigenvalue and eigenstate via
quantum mechanical formalism.
Chapter 3. In this chapter, we introduce the fitting to experimental data and
ab initio method to achieve the parametrization of the generalized Heisenberg
Hamiltonian.
Chapter 4. In this chapter, we present the geometric topology, whose con-
cept is extended from electronic systems to magnonic systems. By utiliz-
ing the magnon Berry curvature, we present a magnonic topological phe-
nomenon, the magnonic Weyl point. According to the semiclassical method,
the magnonic transport properties in the context of the thermal Hall effect
and magnon Nernst effect are introduced.
Chapter 5. Based on the first-principles calculation, we demonstrate the can-
didate application of 2D-MOFs with the Shastry-Sutherland lattice (SSL) in
spintronics. A family of 2D MOFs are studied and Mn-PBP is predicted to
be the first ferromagnetic (FM) 2D MOF-SSL with the Curie temperature 105
K. We predict that Mn-PBP would change from semiconductor to half-metal
under compressive strain or proper electron/hole doping and a spintronic
device based on Mn-PBP has been proposed. Moreover, based on the ab initio
calculation, the magnon dispersion and the magnonic transport properties of
Mn-PBP are investigated to explore its application in magnonics.
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Chapter 6. In this chapter, based on the linear spin-wave theory and INS
method, we predict the magnonic Weyl points in a multiferroic ferrimag-
net Cu2OSeO3. The DMI is adopted to successfully explain the experimental
magnon dispersion. Further, we observe that a measurable thermal Hall con-
ductivity is associated with the emergence of the Weyl points, the position of
which can be tuned by modifying the DMI vector.
Chapter 7. In real materials, the DMI and the Kitaev interaction can coex-
ist, which poses the challenge of distinguishing their magnitude separately.
Hereby, we propose that it can be done by accessing magnonic transport
properties and magnetic field response. Further, working with collabora-
tors, we predict the spin interactions in CrSiTe3 and CrGeTe3 based on our
proposed strategies. The candidate applications in magnonics are also stud-
ied in these two materials.
Chapter 8. In this chapter, we propose a new mechanism to establish a link
between magnonics and orbitronics. We theoretically reveal the unknown
coupling of magnonic excitations to spin chirality in generic classes of spin
systems. Relying on the microscopic analysis, we show that a finite spin
chirality can be generated by thermally excited magnons even in a collinear
spin system. Further, we predict that there is a topological orbital magnetism
aroused from the coupling between the magnonic generation of chirality and
free electrons. This provides a direct link between the magnonic excitations
and the generation of electronic orbital magnetization. Finally, we reveal that
driving currents of magnons (i.e., in an applied temperature gradient) can
cause a significant magnon drag of the orbital momentum across the system.
As such, the discovery demonstrates the potential of orbital electron-magnon
coupling for controlling the magnetization properties.
Chapter 9. Based on the theory proposed in Chapter. 8, the magnon-driven
orbitronics are investigated in non-collinear systems, e.g., antiferromagnetic
Kagome lattice and Mn3Ge.
Chapter 10. In the last Chapter, we summarize all the results. Parts of this

thesis have already been published in Refs [17, 18, 19, 20].
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Chapter 2

Spin-wave theory

In this chapter, we discuss the origin of magnetism, in which the genera-
tion of orbital magnetism is presented in detail. Then, the concept of inter-
action between spins is introduced to constitute the Heisenberg model [4].
Furthermore, different types of spin interactions, e.g., Dzyaloshinskii-Moriya
interaction, Kitaev interaction, and higher-order interactions are presented
to form the generalized Heisenberg model. Lastly, the concept of spin wave
is introduced, and a general method is shown to obtain the magnon disper-
sion (eigenvalue) and magnon wavefunction (eigenvector) through quantum
mechanical formalism. In this section, some of the methods are inspired by
Ref. [21].

Some results presented in Chapter 2.2 and Chapter 2.3.3 have already been published:
Li-chuan Zhang, et. al., Communications Physics, 3, 227, 2020.
Fengfeng Zhu, Li-chuan Zhang, et. al., Science Advance 7(37), eabi7532, 2021.
Some methods presented in Chapter 2.4 have already been published:
Li-chuan Zhang, et. al., Physical Review B 103, 1344142021, 2021.
Li-chuan Zhang, et. al., Communications Physics, 3, 227, 2020.

2.1 Origin of magnetism

In magnets, the origin of magnetism almost entirely comes from the magnetic
moments contributed by electrons. It is provided by two parts, which are
the intrinsic spin magnetic moment of electrons and the orbital magnetism
generated from the circulating electric currents. Usually, magnetism is dom-
inated by the spin in magnets and its mechanism has been studied over
decades, while the contribution of the orbital moment is usually neglected as
it is usually much smaller than the spin magnetic moment.

The magnetic moment m contributed by the spin angular momentum S
can be represented as:

mS = −1

ℏ
µBgeS, (2.1)

where µB is Bohr magneton, given by eℏ/2me in SI units with me, ℏ repre-
sent the electron mass and reduced Planck constant separately. The ge is the
Lande’s g-factor, and usually we assume ge = 2. Similarly, we can calculate
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the orbital magnetic moment:

mL = −1

ℏ
µB

∑
i

Li, (2.2)

where Li = ri× (mevi) represents the angular momentum of the ith electron,
and vi is the velocity of the ith electron. By combining the Eq. (2.1) and
Eq. (2.2), the total magnetic moment can be represented as:

m = −1

ℏ
µB(L+ geS). (2.3)

Next, we discuss the origin of magnetism in real materials. We first start
from the isolated atoms according to the Hund’s rules. It is easy to under-
stand that the angular momentum is zero for those atoms that have full sub-
shells (such as the noble gases), as each orbital is filled with two opposite
spins.

The situation is more complicated except for the noble gases. For instance,
in some transition-metal compounds, the electron from the outermost sub-
shells or part of inner subshells may be involved in the formation of chemi-
cal bonds, while most of the inner d/f subshells are less susceptible and still
follow the Hund’s rules. These transition-metal atoms are said to possess
localized magnetism, and a similar phenomenon is discussed in Chapter 5.
Besides, in some metallic systems, the electrons are itinerant and delocalized,
and the density of electrons with spin up different from that of electrons with
spin down, leading to the magnetism of the system.

Usually, we just ignore the contribution of orbital magnetism. However,
it is revealed that in some materials, it has a significant impact on the system.
Besides, the orbital magnetism may originate not only from the spin-orbit
coupling. In the next section, we will discuss the features of orbital mag-
netism in detail.

2.2 Orbital magnetism

2.2.1 The calculation of orbital magnetism from modern the-
ory1

As shown in Section 2.1, magnetism is mainly generated by the spin and or-
bital moment. Except for the intensive study of spin, it is investigated that
the orbital magnetism has influence on the spin transport [22, 23], magnetic
anisotropy [24] and DMI [25, 26], etc. To study the properties of orbital mag-
netism, several approaches are proposed. Especially, based on the semiclas-
sical approach [27], the modern theory is a very powerful framework to ad-
dress and obtain the orbital magnetism.

1In my thesis, the shown results calculated with this method are obtained by Dongwook
Go.
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From the modern theory, we can numerically access the orbital magnetism
of the electronic system according to the rigorous expression [28]:

LOM =
e

2ℏ
∑

nk∈occ

Im[⟨∂kunk| × (H(k) + Enk − 2EF)|∂kunk⟩], (2.4)

where H(k) is the Hamiltonian for the electronic system. In the calculation
it often refers to the effective Wannier-function based Hamiltonian or tight-
binding Hamiltonian, unk is a periodic part of the Bloch state with band in-
dex n at momentum k, its corresponding energy eigenvalue is Enk. At zero
temperature, the summation goes over all occupied states below the Fermi
energy EF.

2.2.2 Topological orbital magnetism

The orbital magnetism can be modulated by the spin-orbit interaction. How-
ever, in light materials the orbital magnetism is usually tiny, as the spin-orbit
interaction is weak to break the orbital degeneracy. Here, we would like to
explore a specific mechanism to realize large orbital magnetism in weak spin-
orbit interaction systems. This prompted the presentation of the topological
orbital magnetism. When an electron hops among non-coplanar spin sites
with spin chirality in frustrated magnets ( i.e., skyrmions), it behaves as if it
feels an internal magnetic field [29, 30, 12, 15]. Similar to the Zeeman field,
the generated effective magnetic field can couple to the orbital degrees of
freedom and break the orbital degeneracy, manifesting in the topological or-
bital moment. The emergence of such chirality-driven orbital magnetization
in various systems has been investigated in recent years [30, 12, 13, 14, 15,
16], where the spin chirality normally corresponds to the scalar spin chirality
(SSC):

χijk = Ŝi · (Ŝj × Ŝk), (2.5)

where Si, Sj and Sk are three neighboring spins forming a triangle, where
Ŝα is the unit vector along Sα with α ∈ (i, j, k). The SSC is inherent to
skyrmions [8, 31, 14, 15, 32] and frustrated magnets [33, 34, 35], which has
been crucial for understanding i.e., topological Hall effect [36, 37].

The topological orbital moment (TOM) at the ith lattice site originates
from non-zero SSC of all triangles of spins in which i participates [16]:

LTOM
i = κTO

∑
jk

χijkêijk, (2.6)

where χijk represents the SSC between the atoms located at Ri, Rj , and
Rk. Here, we focus only on triangles that are formed by atoms which are
nearest neighbors. The direction of the TOM is given by the normal vector
êijk ∝ (Rj − Ri) × (Rk − Ri) of the oriented triangle of spins. The κTO is
called topological orbital susceptibility, and it characterizes the strength of
the orbital response of electrons to the SSC.
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FIGURE 2.1: Schematic diagram of the generation of orbital an-
gular momentum by magnons. An electron hopping among
non-collinear triplets of spins gives rise to so-called topological
orbital moment (TOM), LTOM, which points out of the plane
of the spins. The electronic TOM is effectively induced by the
scalar spin chirality realized for example on a kagome spin lat-
tice, which is shown in an oblique view.

In this thesis, we want to explore whether magnonic excitations them-
selves can give rise to net SSC, even if it is absent in the ground state. Then
we would have a unique mechanism for imprinting electronic orbital angu-
lar momentum into the system through generating SSC by magnons. Here,
we use a schematic diagram, shown in Figure 2.1, to represent the mecha-
nism, which presents a unique way to obtain orbital angular momentum by
magnon excitation. In Chapter 8, the ferromagnetic kagome lattice is selected
as an example to explore the coupling between chirality and electronic orbital
magnetism.

2.3 Origin of magnetic interactions

The magnetic interaction is the coupling between spins in magnets, and it is
the source of magnetic order. The magnetic interactions are mainly gener-
ated by electron-electron Coulomb interaction, magnetic dipole-dipole inter-
actions and spin-orbit coupling. Usually, the Coulomb interactions dominate
and give rise to the exchange interaction. The dipole-dipole interaction is a
long-range interaction, which can create magnetic domains. We don’t dis-
cuss the dipole-dipole interaction in this thesis, as usually its value is much
smaller than the exchange interaction. The spin-orbit interaction also plays
an important role in magnets, which can lead to the formation of the domain
wall, Dzyaloshinskii-Moriya interaction and magnetic anisotropy energy, etc.
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2.3.1 Magnetic exchange interaction

We first discuss the exchange interaction mainly aroused from the Coulomb
interactions and the Pauli principle. Following the textbooks [38], we first
study the ground state of a two hydrogen atoms system. We here assume
two hydrogen atoms at positions R1 and R2 and the positions of two elec-
trons are denoted with r1 and r2. The corresponding Hamiltonian follows
the Schrödinger equation:

− ℏ2

2m
(∇2

1 +∇2
2)Φ(r1, r2) + (V +W )Φ(r1, r2) = EΦ(r1, r2), (2.7)

where V and W represent the potential due to the two protons and electron-
electron interaction, separately. According to the Pauli exclusion principle,
two electrons can’t occupy the same quantum state simultaneously, leading
to the fact that the wave function of the system Φ is antisymmetric. In the
system, the total spin S can be selected as S = 1, which corresponds to sym-
metric triplet states, and it can be represented with |S,mS⟩:

|1, 1⟩ = | ↑↑⟩ ,

|1, 0⟩ = 1√
2
( | ↑↓⟩+ | ↓↑⟩) ,

|1,−1⟩ = | ↓↓⟩ ,

(2.8)

and S = 0, which is an antisymmetric singlet state

|0, 0⟩ = 1√
2
( | ↑↓⟩ − | ↓↑⟩). (2.9)

The wavefunction of the system Φ can be indicated by a spin-dependent
function |S,mS⟩ and spin-independent position function ϕ(r), which means
that singlet and triplet spin states must correspond to symmetric and an-
tisymmetric spin-independent position function |ϕ(r)⟩+ and |ϕ(r)⟩−, sepa-
rately.

|Φs⟩ = |ϕ(r)⟩+ |0, 0⟩ ,
|Φt⟩ = |ϕ(r)⟩− |1,m⟩ (m = −1, 0, 1).

(2.10)

From Eq. (2.7), the Hamiltonian is spin-independent, we have

Ĥ|Φs⟩ = Es|Φs⟩ = Es |ϕ(r)⟩+ |0, 0⟩ ,
Ĥ|Φt⟩ = Et|Φs⟩ = Et |ϕ(r)⟩− |1,m⟩ ,

(2.11)

where the Ĥ is the Hamiltonian dependent on position, and it has the corre-
sponding eigenvalues Es and Et.

Here, we introduce a new HamiltonianH , which provides the same eigen-
values but is position-independent, and we assume that H acts exclusively
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on the electron spins:

H|0, 0⟩ = Es |0, 0⟩ ,
H|1,m⟩ = Et |1,m⟩ .

(2.12)

From quantum mechanics, we know that the expectation value of S2
i is given

by

S2
i = ℏ2S(S + 1) =

3

4
ℏ2, (2.13)

where S = 1
2
. The total spin S = S1 + S2, and we have

S1 · S2 =
1

2
(S2 − S2

1 − S2
2) =

1

2
ℏ2(S(S + 1)− 3

2
). (2.14)

From Eq. (2.14), one can show that:

H =
1

4
(Es + 3Et)−

1

ℏ2
(Es − Et)S1 · S2 = J0 − J12S1 · S2, (2.15)

where we call J12 the exchange coupling parameter:

J12 =
1

ℏ2
(Es − Et). (2.16)

If J12 is positive, we say that the spin interaction is ferromagnetic, and the
spins tend to align parallel to each other.

To investigate what is the meaning of J12, the Heitler-London approxima-
tion is adopted, and the ϕs and ϕt are represented as:

Φs =
1√
2
(φ2(r1)φ1(r2)− φ1(r1)φ2(r2)),

Φ′
t =

1√
2
(φ2(r1)φ1(r2) + φ1(r1)φ2(r2)),

(2.17)

where φi represents the ground state wave function of the isolated atom i.
The value of Es − Et can be expressed as:

Es − Et =
⟨Φs|Ĥ|Φs⟩
⟨Φs|Φs⟩

− ⟨Φ′
t|Ĥ|Φ′

t⟩
⟨Φ′

t|Φ′
t⟩

. (2.18)

From the Heitler-London approximation, in the limit of large separation be-
tween the atom 1 and 2, the Es − Et is approximately given by:

Es − Et ≈ 2

∫
φ1(r1)φ2(r2)

[
e2

|r1 − r2|
+

e2

|R1 −R2|
− e2

|r1 −R2|
− e2

|r2 −R1|

]
φ2(r1)φ1(r2)dr1dr2.

(2.19)

Eq. (2.19) indicates that exchange coupling parameter J12 = 1
ℏ2 (Es − Et) is
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equal to the matrix element between two states which differ only by coor-
dinate exchange, and that is the reason why we call this interaction the ex-
change interaction.

This interaction can be promoted from two spin sites to N spins, then we
get the Heisenberg exchange interaction:

Hexc = −
∑
ij

JijSi · Sj. (2.20)

To obtain the exchange interaction, two assumptions are made. On the
one hand, the interaction is restricted to a certain subset of nondegenerate
orbital states. On the other hand, the orbital functions are assumed orthog-
onal. In fact, in a real system, these two assumptions are not satisfied, and
the interactions are very complicated. Regardless, the magnetic exchange
interaction successfully describes many observed magnetic phenomena in
magnets.

2.3.2 Zeeman coupling

Under the application of homogeneous magnetic field B, the magnetisation
m can couple with B, generating additional energy:

HZeeman = −
∑
i

B · (mL
i +mS

i ), (2.21)

where the mL
i and mS

i are the orbital magnetic moment and spin magnetic
moment at site i. Usually, the orbital contribution is too tiny to be ignored. In
Chapter 8, we discuss the Zeeman energy generated by the coupling between
topological orbital moment and B, which is also named the ring-exchange
interaction.

2.3.3 Magnetic interactions caused by spin-orbit coupling

Magnetocrystalline anisotropy

The magnetocrystalline anisotropy (MCA) is mainly due to the spin-orbit
coupling (SOC). The orbital motion of the electrons couples with the crystal
field, and this coupling energy is dependent on the magnetic moment ori-
entation. If the system has a uniaxial anisotropy, the spin Hamiltonian of
magnetocrystalline anisotropy can be written as:

HMCA = −A
∑
i

(n̂i · Si)
2. (2.22)

Here, A is the anisotropy parameter determined by the energy difference
between the magnetic moments along vector n̂i and perpendicular to it. If
A > 0, the direction of n̂i is called the easy-axis, and the system has the min-
imum energy if the spin direction is parallel to n̂i. If A < 0, the minimum
energy corresponds to the case when the spin direction is perpendicular to
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n̂i, and the system has an easy-plane. Besides, multi-axis systems exist, but
they are too complex for us to consider. In this thesis, all magnetic systems
investigated are uniaxial systems.

Dzyaloshinskii-Moriya interaction

The Dzyaloshinskii-Moriya interaction (DMI) [25, 26], also known as an an-
tisymmetric exchange interaction, is an exchange interaction between two
neighboring spins due to the SOC. Its spin Hamiltonian in an atomistic de-
scription can be written as:

HDMI = −
∑
ij

Dij · (Si × Sj), (2.23)

where Dij = (Dx
ij, D

x
ij, D

x
ij) is a vector which holds antisymmetric: Dij =

−Dji. The DMI only exists in a system with broken inversion symmetry, and
the direction of Dij is determined by the structure, following the Moriya’s
symmetry rules [26]. To satisfy the symmetry requirement, the DMI usually
exists at surfaces, interfaces or bulk materials with low symmetry. In addi-
tion, heavy elements are introduced to enhance the SOC.

The DMI is a very important interaction, which greatly promotes the pros-
perity of magnetic phenomena. It is the origin of spin-spiral magnetic struc-
tures, skyrmions and some frustrated magnets. In magnonics, an appropri-
ate DMI can drive the vector spin chirality and nontrivial magnonic topol-
ogy. The influence of DMI on magnonic phenomena is investigated and the
detailed information is shown in Chapter 6.

Kitaev interaction

In addition to DMI, the Kitaev interaction originating from SOC is attracting
increasing attention [39, 40, 41, 42, 10]. The Kitaev interaction is not only
theoretically studied in the triangular, honeycomb and kagome lattice [43,
42, 44], but is also observed in the honeycomb lattice, experimentally (e.g.,
A2IrO3, α−RuCl3) [45, 42]. The Kitaev interaction plays an important role
in spin liquid states [42, 10], Majorana quantization [10], and plenty of topo-
logically ordered phases can be achieved by applying an external magnetic
field [46, 47]. The interplay of the Kitaev interaction and DMI for magnonic
properties are systematically studied for the honeycomb lattice, as discussed
in Chapter 7. The sketch of the honeycomb Kitaev model is shown in Fig-
ure 2.2 (a), and the effective spin Hamiltonian of the Kitaev interaction is
represented as:

HK = −K
∑
⟨ij⟩γ

Sγ
i S

γ
j (γ ∈ x,y, z), (2.24)

where K is called the strength of the Kitaev interaction and γ denotes the
component of the spin directed along the bond x, y and z. In this thesis, Sγ

i

is defined as Si · γ̂α with γ̂α (α ∈ (x, y, z)) being the Kitaev vector and Si being
the spin vector defined as Si = (Sx, Sy, Sz). One kind of definition of the
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FIGURE 2.2: (a) Sketch of the structure of honeycomb Kitaev
model. The unit cell is outlined with a thin black line, where
blue balls represent magnetic atoms. The Kitaev bonds x (yel-
low), y (blue), z (red) are indicated with thick colored lines.
(b) The top view of monolayer CrI3 with the Cr2I2 plane colored
according to their normal vectors γ̂x, γ̂y and γ̂z . These normal
vectors are called as Kitaev vector and the polar angle of γ̂z is
defined as the Kitaev angle.

Kitaev vector is shown in Figure 2.2 (b), where the γ̂z is defined as (sinθ, 0,
cosθ) with polar angle θ defined as the Kitaev angle in the thesis, and the γ̂x

and γ̂y can be obtained according to the crystal symmetry.

2.3.4 Higher-order spin interactions

The interactions mentioned above are one or two site spin interactions. There
are interactions including more than two spins, such as ring exchange in-
teraction [48, 49, 7], spin-chirality interaction, and chirality-chirality interac-
tion [16]. The ring exchange is known as the orbital Zeeman coupling and it
is discussed in Chapter 8. Other higher-order interactions are not considered
in my thesis.

2.3.5 Generalized Heisenberg Hamiltonian

After considering all interactions mentioned above, we get the generalized
Heisenberg Hamiltonian:

H =−
∑
i,j

JijSi · Sj −
∑

⟨ij⟩∈x,y,z

KSγ
i S

γ
j −

∑
ij

Dij · (Si × Sj)

− A
∑
i

(n̂i · Si)
2 −B · µB

∑
i

(geSi + Li),
(2.25)

where the first term is the exchange interaction term, and Jij coefficients me-
diate the isotropic Heisenberg exchange interaction between spins Si and Sj



14 Chapter 2. Spin-wave theory

on sites i and j. The second term is due to the anisotropic Kitaev interaction,
where Sγ

i = Si · γ̂ij with γ̂ij being the Kitaev vector determined by the sites i
and j. The third term is the DMI represented by the DMI vectors Dij . The
fourth term is the single-ion anisotropy term with respect to the local easy
axis n̂i, and the last term is the energy of Zeeman coupling to the magnetic
field B. Here ℏ is renormalized as "1".

2.3.6 Monte Carlo method

In this section, we discuss how to obtain the classical ground states and Curie
temperature with the help of the Monte Carlo method. During the simula-
tion, we first need to build a big system which contains enough sites. The
Markov chain is selected and the time-dependence of the probability Pn(t) is
given by the master equation [50]:

∂Pn(t)

∂t
= −

∑
n ̸=m

[Pn(t)Wn→m − Pm(t)Wm→n], (2.26)

where Wn→m represents the transition rate from state n to m. In equilibrium,
the probability obeys ∂P eq

n (t)/∂t = 0 and Pn(t)Wn→m = Pm(t)Wm→n. In a
classical system, the probability can be calculated according to:

Pn(t) = e
− En

kBT /Z, (2.27)

where T represents the temperature, kB is the Boltzmann constant, En is the
energy of state n and Z is the partition function. In many cases, it is impos-
sible to calculate the Z, and it is usually unknown. In fact, we don’t need
to calculate Z, and only the energy difference ∆E = En − Em is important.
During the process of the Markov chain, if the system is in equilibrium, each
configuration is directly generated from the previous one with the equation:

Pn(t)

Pm(t)
=
Wm→n

Wn→m

= e
− ∆E

kBT , (2.28)

In our calculation, the most widely used form is adopted:

Wm→n =

{
e
− ∆E

kBT (∆E > 0),
1 (∆E < 0).

(2.29)

We carry out the simulation from a given classical spin configuration {S}n
with energy En. Then, we randomly give an updated spin at site i, e.g. we
change the spin Si → −Si in an Ising model. Then, the new energy En+1

can be calculated according to the Hamiltonian. If the new energy is lower
than the old one (En+1 < En), we always accept the update, which is the new
configuration {S}n+1. If En+1 > En, whether we accept it or not depends on
the probability

q = e
−En+1−En

kBT (2.30)
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We generate a random number r ∈ (0, 1), and we compare the value of r and
q to determine whether we accept the new configuration or not. If r < q,
we accept the step, otherwise, it is rejected. We repeat this routine many
times, until the system is in equilibrium, which corresponds to the classical
magnetic ground state under the given temperature.

The Curie temperature of a ferromagnet or the Néel temperature of an
antiferromagnet can be estimated through counting the variation of the aver-
age magnetic moment with temperature. For instance, the Curie temperature
of magnets can be determined by locating the second-order phase transition
point of the magnetic moment. In Chapter 5, the Monte Carlo method is used
to obtain the Curie temperature of Mn-PBP.

2.3.7 Introduction to spin wave

As mentioned above, we introduced all kinds of spin interactions to build the
generalized Heisenberg Hamiltonian. In the following sections, we discuss
the spin dynamics with localized magnetic moments. Firstly, we discuss it
from the perspective of mean-field theory.

To simplify the analysis, in our Hamiltonian, we only select the Heisen-
berg exchange interaction and we set Jij > 0 to ensure that its ground state
is ferromagnetic:

H = −
∑
i,j

JijSi · Sj. (2.31)

We introduce the effective field from the mean-field theory:

H = −Beff ·
∑
i

Si, (2.32)

where the effective magnetic field is expressed as:

Beff = 2
∑
j

JijSj. (2.33)

Here the factor ’2’ is introduced as each pair of neighbors is calculated twice.
Then we can study the motion of each spin through calculating the spin
torque according to:

τi = ℏ
dSi

dt
= −Si ×Beff

= −2
∑
j

JijSi × Sj.
(2.34)
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The spin operators can be expressed as Si = (Sx
i , S

y
i , S

z
i ) with the length S for

all i. Then, the Eq. (2.34) can be expressed as:

ℏ
dSx

i

dt
= −2

∑
j

Jij(S
y
i S

z
j − Sy

j S
z
i ),

ℏ
dSy

i

dt
= −2

∑
j

Jij(S
z
i S

x
j − Sz

jS
x
i ),

ℏ
dSz

i

dt
= −2

∑
j

Jij(S
y
i S

x
j − Sy

j S
x
i ).

(2.35)

As the ground state is ferromagnetic, we can assume the direction of mag-
netization points along the z axis and the motion of the spin is consisted of
a small movement around the z axis. Then, we can assume that Sz ≈ S and
treat Sx and Sy as higher-order terms. Then, only the first two equations of
Eq. (2.35) are left, as Sx

i S
y
j and Sy

i S
x
j are disregarded:

ℏ
dSx

i

dt
= −2S

∑
j

Jij(S
y
i − Sy

j ),

ℏ
dSy

i

dt
= −2S

∑
j

Jij(S
x
j − Sx

i ).

(2.36)

It is clear from Eq. (2.36), the spin dynamics of Sx is related to Sy, and vice-
versa. To decouple these, the following transformation is introduced:

S± = Sx ± iSy. (2.37)

Here, the S± are named as the ladder operators. The S+ and S− correspond to
an increase and a decrease in the Sz quantum number. The ladder operators
follow the following commutation relations:

[S+
i , S

−
j ] = 2Sz

i δij,

[Sz
i , S

±
j ] = ±2S±

i δij.
(2.38)

Then Eq. (2.36) can be transformed to:

ℏ
dS±

i

dt
= ∓2S

∑
j

Jij(S
±
i − S±

j ). (2.39)

To simplify the analysis, we can assume that the spin system is in Bravais
lattice with only one spin i in each unit cell. Then we can make use of the
Fourier transform:

S±
k (t) =

1√
N

∑
i

e−ikRiS±
i (t),

S±
i (t) =

1√
N

∑
k

eikRiS±
k (t),

(2.40)
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where Ri is the position vector of the site i and k is the wave vector of the
spin wave. Then Eq. (2.39) turns into:

ℏ
dS±

k (t)

dt
= ∓i2S(J0 − Jk)S

±
k (t), (2.41)

with J0 =
∑

i Jij , Jk =
∑

i e
−ik∆RijJij and ∆Rij = Ri −Rj . Then, Eq. (2.41)

can be solved with the ansatz solution: S±
k (t) = S±

k e
∓iω±

k t:

ℏω±
k = ∓2S(J0 − Jk). (2.42)

Let’s focus on S−
i and S−

k , as the corresponding eigenvalue is positive. From
the Heisenberg picture or commutation relation, we have:

dS−
k

dt
=

i

ℏ
[H,S−

k ]. (2.43)

Then, we have ℏω−
k S

−
k = [H,S−

k ]. If we define a fully polarized ground state
|Φ⟩ and we apply S−

k to it, then we get:

ℏω−
k S

−
k |Φ⟩ = [H,S−

k ]|Φ⟩ = HS−
k |Φ⟩ − S−

k E0|Φ⟩ (2.44)

where E0 is the ground state energy. We thus find:

HS−
k |Φ⟩ = (E0 + ℏω−

k )S
−
k |Φ⟩. (2.45)

In Eq. (2.45), S−
k |Φ⟩ is a new eigenstate of Hamiltonian H . The S−

k creates one
quantum of the spin wave with the energy ℏω−

k , and we call this quantized
spin wave as magnon.

2.4 Quantum theory of spin waves

2.4.1 Magnon dispersion with quantum theory method

In this part, we first present a simple Hamiltonian to discuss its ground
state; then the Holstein-Primakoff transformation is introduced to transfer
the Hamiltonian from spin operator to bosonic creation and annihilation op-
erators. Finally, we discuss how to obtain the magnon dispersion from the
perspective of quantum theory.

Ground state of the ferromagnetic Heisenberg Hamiltonian

Here, we consider a simple ferromagnetic Heisenberg Hamiltonian:

H =−
∑
i,j

JijSi · Sj − geµBB
∑
i

Si, (2.46)
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with Jij > 0 , B is the magnetic field along z direction (0, 0, Bz). We can prove
that its exact ground state has the following formula:

|ΦGS⟩ =
∏
i

|S⟩i. (2.47)

We update the Eq. (2.46) with Eq. (2.37)

H =−
∑
i,j

JijS
z
i S

z
j −

∑
i,j

JijS
+
i S

−
j − geµBB

∑
i

Sz
i . (2.48)

As introduced in the Eq. (2.37), we introduce the lowering and raising oper-
ators, and they satisfy:

S±
i |Sz⟩i =

√
(S ∓ Sz)(S + 1± Sz)|Sz ± 1⟩i. (2.49)

Then, we have

S+
i |Sz = S⟩i = 0, (2.50)

which means that Sz = S is the maximal quantum number. From Eq. (2.46),
we have:

H|ΦGS⟩ = E0|ΦGS⟩, (2.51)

with E0 = −S2
∑

ij Jij − geµBBz

∑
i S

z
i . Therefore, |ΦGS⟩ is an eigenstate of

H . As other states with a non-maximal Sz quantum number for one of the
lattice sites have larger energy than E0, it has to be the ground state.

Holstein-Primakoff transformation

Next, we introduce the Holstein-Primakoff (HP) transformation [51]. From
quantum mechanics, we are familiar with the bosonic creation operator α†

and annihilation operator α, which satisfy the following equation:

αg|...ng...⟩ =
√
ng|...ng − 1...⟩,

α†
g|...ng...⟩ =

√
ng + 1|...ng + 1...⟩,

(2.52)

where g represents a generic quantum state and ng is the corresponding oc-
cupation number. The α† and α follow the bosonic commutation relations:

[α†
i , α

†
i ] = [αi, αi] = 0,

[αi, α
†
j] = δij.

(2.53)

Here, we can treat the occupation number ni as the spin-deviation operator
given by the equation:

ni = Si − Sz
i = α†

iαi. (2.54)
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Then, we have

α†
i |Sz⟩i = α†

i |n = S − Sz⟩i =
√
S − Sz

i + 1|n = S − Sz + 1⟩i
=
√
S − Sz

i + 1|Sz − 1⟩i,
αi|Sz⟩i = αi|n = S − Sz⟩i =

√
S − Sz

i |n = S − Sz − 1⟩i
=
√
S − Sz

i |Sz + 1⟩i.

(2.55)

Combining the Eq. (2.49) and Eq. (2.55), we have

S−
i |Sz⟩i = α†

i

√
S + Sz

i |Sz⟩i =
√
2Sα†

i

√
1− S − Sz

i

2S
|Sz⟩i

=
√
2Sα†

i

√
1− α†

iαi

2S
|Sz⟩i,

(2.56)

S+
i |Sz⟩i =

√
S + Sz

i + 1αi|Sz⟩i =
√
2S

√
1− S − Sz

i − 1

2S
αi|Sz⟩i

=
√
2S

√
1− α†

iαi

2S
αi|Sz⟩i,

(2.57)

which yields:

S−
i =

√
2Sα†

i

√
1− α†

iαi

2S
,

S+
i =

√
2S

√
1− α†

iαi

2S
αi.

(2.58)

We name Eq. (2.58) as the HP transformation. We immediately conclude
that ni < 2S, from the Eq. (2.58) and Eq. (2.54). Usually, the spin devia-
tions are very small at low temperature, and we can assume ni ≪ 2S. Then,
the Eq. (2.58) transforms into:

S−
i =

√
2Sα†

i ,

S+
i =

√
2Sαi,

Sz
i = S − a†iai = S − ni.

(2.59)

In the linear spin-wave theory, we usually use Eq. 2.59 to perform the HP
transformation.

Let us come back to the ferromagnetic Heisenberg Hamiltonian as given
by Eq. (2.46). Its ground state corresponds to S = Sz, and Eq. (2.55) changes
to:

α†
i |Sz⟩i = |Sz − 1⟩i,
αi|Sz⟩i = 0.

(2.60)
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Eq. (2.60) indicates that α†
i |Sz⟩i generates one deviation state, and the whole

spin is less by 1 than the original state. If we perform the Fourier transfor-
mation on α†

i and αi, we get the magnon creation and magnon annihilation
operators, respectively:

ak =
1√
N

∑
k

e−ik·Riαi,

a†k =
1√
N

∑
k

eik·Riα†
i ,

(2.61)

The magnon annihilation ak and magnon creation operator a†k have special
meaning. For instance, in the ferromagnetic ground state with spin length S,
a†k|ΦGS⟩ corresponds to the total magnetization of NS − 1, which means that
a†k creates one quantum of spin wave at momentum k, which is one magnon.

Magnon dispersion

To get the magnon dispersion, we first rewrite the Hamiltonian according to
Eq. (2.46) and Eq. (2.59). Then, the Hamiltonian is represented in terms of
bosonic operators and we only keep the terms of quadratic order. This is be-
cause the higher-order interactions refer to the magnon-magnon interaction
and the first-order terms vanish. The Hamiltonian is updated as:

H =− S
∑
ij

Jij(aia
†
j + a†iaj − a†iai − a†jaj)− geµBSBz

∑
i

a†iai + E0, (2.62)

where E0 is the constant energy and it corresponds to the ground state en-
ergy: E0 = −S2

∑
ij Jij − geµBBz

∑
i S

z
i . Then, we can do Fourier transforma-

tion on Eq. (2.62) to transform it from real space to momentum space accord-
ing to Eq. (2.61). Here we assume that each unit cell contains only one spin
and we finally obtain:

H =
∑
k

ϵka
†
kak + E0, (2.63)

and the energy of a magnon at vector k is represented as:

ϵk = S

(∑
ij

Jij −
∑
ij

Jije
ik∆Rij

)
+ geBzµBS, (2.64)

with ∆Rij = Ri − Rj . As Jij > 0, we get ϵk ≥ 0, indicating that magnons
correspond to excitation states. The minimum of ϵk happens at k = 0, which
is also the classical ground state. As the method is based on the HP trans-
formation, and we only keep terms up to the quadratic order of the creation
and annihilation operators, this method is called the linear spin-wave theory
(LSWT) [52, 53].
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If the number of spin sites n > 1 in one unit cell, the system has nmagnon
branches. Then, Eq. (2.63) can be changed into the matrix format:

H =
(
a†k,1 · · · a

†
k,n

)
Hk


ak,1

...

ak,n


, (2.65)

where

Hk =


H11

k · · ·H1n
k

... . . . ...

Hn1
k · · ·Hnn

k


. (2.66)

where H ii
k =

∑
j SJij + geBzµBS and H ij

k = −
∑

∆Rij
SJije

ik∆Rij with ∆Rij =

Ri −Rj for the whole system. We can do the matrix diagonalization of the
linear spin-wave matrix Hk to obtain the corresponding magnon dispersion.

Low T spontaneous magnetization

For a given low temperature, the total spin magnetization per unit cell can
be derived as:

M(T ) = geµB

∑
i

(S − ⟨a†iai⟩T)

= NgeµBS − geµB

∑
k

(⟨b†kbk⟩T)

=M(0)

[
1− 1

NS

∑
k

⟨n̂k⟩T

]

=M(0)

[
1− V

NS(2π)3

∫
BZ

dk

eϵk/kBT − 1

]
,

(2.67)

whereM(0) = NgeµBS is the saturation magnetization. If we ignore the mag-
netic field, the eigenvalue of magnons can be obtained based on the Eq. (2.64):

ϵ(k) = 2S
∑
△R

J(△R) sin2(
k · △R

2
). (2.68)
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Usually, the exchange interactions decay rapidly as we increase △R in mag-
nets. At low temperature, ϵk ≫ kBT and only magnons with small k con-
tribute to M(T ), causing that k · △R ≪ 2. Then, the Eq. (2.68) changes into:

ϵ(k) ≈ S

2

∑
△R

J(△R)(k · △R)2. (2.69)

If we update Eq. (2.69) to Eq. (2.67) and utilize certain approximations, we
can arrive at M(T ) with the following expression:

M(T ) =M(0)

[
1−

(
T

TC

) 3
2

]
, (2.70)

where TC is the Curie temperature of the ferromagnet. The Eq. (2.70) is con-
sistent with low-temperature experiments on ferromagnets, which is also
known as Bloch T

3
2 law. In Chapter 8, we present the temperature-dependent

magnetization of TOM, which holds different characteristics.

2.4.2 Spin waves with generalized Heisenberg Hamiltonian

In this section, we present a generic approach to get the eigenvalue and
eigenstate in complex systems from the generalized Heisenberg Hamiltonian
with linear spin-wave theory [52, 53]. We start from the following Hamilto-
nian:

H =−
∑
i,j

JijSi · Sj −K
∑
⟨ij⟩γ

Sγ
i S

γ
j −

∑
ij

Dij · (Si × Sj)

− A
∑
i

(n̂i · Si)
2 − geµBB

∑
i

Si,
(2.71)

where the meaning of each term has been discussed above, and ℏ is set to 1.

Spin waves with ferromagnetic ground state

We first focus on the ferromagnetic ground state, where all spins point in the
z direction. We can transform the Hamiltonian into the matrix form, and the
resulting Hamiltonian is shown as:

H = −
∑
⟨ij⟩

S†
i ĴijSj −

∑
⟨ij⟩

S†
iD̂ijSj −

∑
⟨ij⟩

S†
i ÂSj − µBge

∑
i

B · Si, (2.72)

where the spin operators S†
i are regarded as the column vectors with S†

i =

(Sx
i , S

y
i , S

z
i ). Ĵij is the new exchange matrix tensor introduced to represent

the anisotropic exchange interaction between the atom i and j, containing the
Kitaev interaction and isotropic exchange interaction. The D̂ij and Â repre-
sent the antisymmetric off-diagonal DMI tensor and the single-ion magnetic
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anisotropy energy tensor caused by the spin-orbit coupling:

D̂ij =

 0 Dz
ij −Dy

ij

−Dz
ij 0 Dx

ij

Dy
ij −Dx

ij 0

, Âi =

 0 0 0
0 0 0
0 0 A

. (2.73)

We introduce anisotropic exchange interaction represented by the Kitaev
interaction. Here, we put both Kitaev interaction and the isotropic exchange
interaction together to form the new exchange matrix Ĵij :

Ĵij =

 Jxx
ij Jxy

ij Jxz
ij

Jyx
ij Jyy

ij Jyz
ij

Jzx
ij Jzy

ij Jzz
ij

 = Jij1 +Kγ̂α ⊗ γ̂α. (2.74)

Here, Jij is the isotropic exchange interaction and Ĵij regards the interaction
between site i and j (e.g., x, y, z in Figure. 2.2) with γ̂α (α ∈ (x, y, z)) the Kitaev
vector2. Based on the symmetry, there are three different Kitaev vectors in
the honeycomb lattice (also in the triangle and kagome lattice). Acoording
to the definitation of γ̂z discussed in Chapter 2.3.3, γ̂x and γ̂y can be obtained
according to the symmetry of the system with

R̂θi =

 cos θi − sin θi 0
sin θi cos θi 0
0 0 1

, (2.75)

where i ∈ (x, y) and the γ̂x = γ̂zR̂
T
θx , γ̂y = γ̂zR̂

T
θy with the θx = 120◦ and

θy = 240◦.
According to Eq. (2.59), the HP transformation [51] is adopted to change

from spin operators to creation and annihilation spin-wave operators. We
can represent it with matrix format: Si = M̂iai with

M̂i =

√
2S

2

 1 1 0
−i i 0

0 0
√

2
S

, ai =

 αi

α†
i

Si − α†
iαi

. (2.76)

Finally, we get the Hamiltonian with matrix format and each matrix el-
ement holds different order of the creation/annihilation operators and here
we only keep the quadratic order. A Fourier transformation of the bosonic
operators is used by

ai(k) =

(
αi(k)

α†
i (−k)

)
=

1√
N

∑
i

e−ikRi

(
αi

α†
i

)
, (2.77)

where N is the number of the unit cells, and k is the vector in the reciprocal
k-space of magnons. The Fourier-transformed Hamiltonian with quadratic

2If including the symmetric off-diagonal anisotropy, the new exchange matrix Ĵij follows
the equation: Ĵij = Jij1+Kγ̂α⊗γ̂α+Γ(γ̂β⊗γ̂γ+γ̂γ⊗γ̂β) with α, β, γ ∈ (x, y, z, ) in Figure. 2.2
and Γ represents the symmetric off-diagonal anisotropy[54].
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terms, denoted as H2, becomes a 2n × 2n matrix, where n is the number of
spins.

The H2 contains the number-nonconserving terms (e.g., αiαj , and α†
iα

†
j),

and we can use bosonic Bogoliubov transformation to obtain the eigenvalue.
Numerically, we can diagonalize the dynamical matrix of H2, which is calcu-
lated based on the commutation relation:

i
dΦ(k)

dt
= [Φ(k), H2(k)] = D̂Φ(k), (2.78)

where the dynamical matrix is given by D̂ = ĝH2 with ĝ = [(1, 0), (0,−1)].
The 1 is the n × n identity matrix, and one basis of Φ(k) is chosen as Φ(k) =

[a1k, ... ank, a
†
1−k, ... a

†
n−k]

T . The positive real eigenvalues of the dynamical
matrix D̂ correspond to the magnon excitation spectrum in the system. The
stability of the system is confirmed when there are n non-negative eigenval-
ues for each vector k. The left and right eigenvectors of D̂, denoted as VL and
VR, may differ since D̂ is not necessarily hermitian. The relationship between
them is given by VL = ĝV †

Rĝ.

Spin waves with non-collinear ground state

If the classical ground state of magnets is not ferromagnetic, every spin in
the unit cell needs to be represented in its local reference frame. To deal
with the problem, the rotation matrix R̂(θs, ϕs) is introduced. In non-collinear
systems, the spin Si can be represented as Si = R̂i(θs, ϕs)S

′
i, with

R̂i(θs, ϕs) =

 cos θs cosϕs − sinϕs cosϕs sin θs
sinϕs cos θs cosϕs sin θs sinϕs

− sin θs 0 cos θs

 (2.79)

where the θs and ϕs represent the polar angle and azimuthal angle, respec-
tively. The S′

i represents the pseudospin at site i along z axis, and the length
is the same as Si.

Then, the Hamiltonian Eq. (2.72) is transformed into:

H =−
∑
⟨ij⟩

S′
i
†R̂i(θs, ϕs)

T ĴijR̂j(θs, ϕs)S
′
j −

∑
⟨ij⟩

S′
i
†R̂i(θs, ϕs)

T D̂ijR̂j(θs, ϕs)S
′
j

−
∑
⟨ij⟩

S′
i
†R̂i(θs, ϕs)

T ÂR̂j(θs, ϕs)S
′
j − µBge

∑
i

BR̂i(θs, ϕs) · S′
i

(2.80)

where S′
i can be transformed according to Eq. (2.76) with the format S′

i =

M̂iai. Finally, the eigenvalues and eigenvectors can be obtained easily ac-
cording to the method mentioned above.
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Spin waves with higher-order interactions

The Hamiltonian of the orbital Zeeman coupling, also called as the ring-
exchange interaction, is investigated in this thesis. Although the Hamilto-
nian contains three-spin interaction, only the quadratic order terms are kept
during the HP transformation. More detailed information is discussed in
Chapter 8.

2.5 Magnon-phonon coupling

The magnons and phonons are both bosons, and the hybridized excitation
of magnons and phonons with the name of magnetoelastic has been ob-
served [55]. This magnon and phonon hybridization can realize nonzero
Berry curvature and nontrivial topology. This is an interesting topic, but is
not considered in this thesis.

2.6 Summary

In this chapter, the Heisenberg exchange interaction, DMI, Kitaev interaction,
Zeeman coupling and higher-order interactions are introduced to explore the
effective spin Hamiltonian of magnets. Besides, we introduced the concept of
spin wave and discussed how to obtain the magnon dispersion based on the
LSWT. These basic theories are used to investigate the magnonic properties
in the later chapters.
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Chapter 3

The parametrization of effective
spin Hamiltonian

As discussed in Chapter 2, a generalized Heisenberg Hamiltonian is utilized
to describe the effective spin-spin interaction in magnets with localized mag-
netic moments. Within the adiabatic approximation, rich magnetic properties
(e.g., Curie temperature and spin-wave), can be obtained based on the atom-
istic Heisenberg Hamiltonian. However, in realistic materials, the specified
parameters are required to measure the strength of spin interactions.

In this chapter, we first introduce the fitting to experimental data method
to achieve the parametrization of effective spin Hamiltonian, while discussing
its strengths and weaknesses. Then, the first-principles method is presented
to obtain the quantitative parameters.

3.1 The parametrization of effective spin Hamilto-
nian through fitting to experimental data

Using experimental data to fit the model parameters is a traditional but pow-
erful method. In this thesis, this method is utilized to explain the experimen-
tal magnons dispersion and investigate the magnon properties in Cu2OSeO3,
CrSiTe3, CrGeTe3 and Mn3Ge. All fittings are done by selecting the represen-
tative data points of the magnon dispersion obtained from the inelastic neu-
tron scattering experiment, and then parameters are fitted with the Broyden
– Fletcher – Goldfarb – Shanno method [56].

In order to do the fitting more efficiently, it is desirable to identify the in-
teractions in the materials. For instance, it has been shown that in skyrmion
cluster Cu2OSeO3, the spin-spin interaction is dominated by the exchange
interaction and may be accompanied by Dzyaloshinskii-Moriya interaction
(DMI) [57, 58, 59]. We then build the effective model to fit the experimental
data, which is illustrated in Section 6.2.2. In the thesis, the fitting method
is also used to investigate the types of interactions in magnets. In Chapter 7,
we compare the fitting of a Heisenberg-Kitaev model with a Heisenberg-DMI
model in order to settle the question over the existence of Kitaev interactions
or DMI in CrSiTe3 and CrGeTe3. Although both models fit the experimental
magnons spectrum very well, we conclude that the interactions are domi-
nated by Heisenberg-DMI in CrSiTe3 and CrGeTe3.
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While fitting to the experimental result is a straightforward method to
obtain the required parameters, it has some drawbacks. It is difficult to do
fitting in a material in which we lack experimental data. What’s worse, de-
spite the fact that we can obtain detailed experimental data, sometimes it is
still a challenge to fit the parameters well, as too many degrees of freedom
need to be considered. To deal with this problem, we can relay on the first-
principles calculations to realize the parametrization of Hamiltonian.

3.2 The parametrization of effective spin Hamilto-
nian based on the first-principles calculation

First-principles calculation provides a reliable approach to describe quantum-
mechanical behaviors of electrons and atomic nuclei in a large number of
situations. In other words, we can understand the properties of any mate-
rial based on first-principles calculation, where properties can be predicted
by solving the Schrödinger equation in any structure without the need for
free parameters. However, the exact solution of the Schrödinger equation re-
quires an exponential amount of memory and is therefore only feasible for
very small systems. To deal with this problem, it is necessary to introduce
some approximations.

3.2.1 The Hamiltonian of many-body systems

The system we investigate is a many-body system, containing multi-electron
and multi-atomic-nuclei. Here, the Hamiltonian can be written as:

Ĥ =− ℏ2

2me

∑
i

∇2
i −

∑
i,I

ZIe
2

|ri −RI |
+

1

2

∑
i ̸=j

e2

|ri − rj|
− ℏ2

2MI

∑
I

∇2
I

+
1

2

∑
I ̸=J

ZIZJe
2

|RI −RJ |
,

(3.1)

where me represents the mass of electron and MI represents the mass of nu-
clei marked as I with charge number ZI , respectively. The position vector ri
and RI denote the position of electron i and nuclei I . The total Hamiltonian Ĥ
consists of the electron kinetic, nuclear-electron interaction, electron-electron
interaction, nuclear kinetic, and nuclear-nucleus interaction, which are rep-
resented by the first, second, third, fourth, and fifth terms, respectively. As
it is impossible to solve the many-body Schrödinger equations, we need to
simplify the problem.

3.2.2 Born-Oppenheimer approximation

According to the conservation of momentum, the velocity of the light elec-
trons is much larger than that of the nuclei, which are at least a thousand
times heavier. Therefore, we can assume that the nucleus is stationary when
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we study the motion of electrons, as the velocity of the nucleus is very small.
Thus, the motion of the electron only depends on the position of the nu-
cleus without considering the velocity of the nucleus, and we can separate
the motion of the electron from that of the nucleus. This is called the Born-
Oppenheimer approximation [60] or the adiabatic approximation, because the
electrons are treated to be adiabatic with respect to the motion of the nucleus.
This approximation suggests that the total wave function is the product of the
electron wave function and the nucleus wave function, where two of them
are independent of each other. Then, the Hamiltonian of electron and nu-
cleus can be expressed separately. The electronic Hamiltonian can be written
as:

Ĥe =− ℏ2

2me

∑
i

∇2
i +

1

2

∑
i ̸=j

e2

|ri − rj|
+
∑
i,I

V (RI − ri), (3.2)

where the third term of Eq. (3.2) is the effective potential which includes the
nuclear electrostatic potential. After the Born-Oppenheimer approximation,
the electron-nucleus interaction is simplified to an external effective poten-
tial, and the main problem is the electron-electron interaction.

3.2.3 Hartree-Fock Approximation

To solve the Eq. (3.2), the main difficulty is the Coulomb interactions among
the electrons, which refers to electron-electron interactions. In Hartree-Fock
approximation, we assume the wave function of the many-body system can
be expressed as the Slater determinant of the single-electron wave function,
which has a wide range of applications in quantum chemistry.

Hartree equation

We first introduce the Hartree equation, which is proposed by Hartree in
1928. To deal with the electron-electron interactions, the mean-field theory
(MFT) method is introduced to transform the multi-electrons interactions
into the single electron motion equation problem. The wave function of the
many-body system is expressed as Hartree wave function:

Φ(r) = ϕ1(r1)ϕ2(r2) · · ·ϕi(ri) · · ·ϕN(rN). (3.3)

Eq. (3.3) consists of the product of every single electron wave function, and
each of them only depends on its own spatial coordinate position. We can
obtain the Hartree equation, which is a Schrödinger equation for the single
electron wave function:[

− ℏ2

2me

∇2 +
∑
j ̸=i

e2
∫
dr′

|ϕj(r
′)|2

|r− r′|
+
∑
I

V (r−RI)

]
ϕi(r) = εiϕi(r). (3.4)
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The Hartree equation treats every single electron in an effective potential con-
sisting of the nuclear electrostatic potential and mean-field Coulomb poten-
tial from all electrons.

Hartree-Fock Equation

Since the electrons are fermions, which obey the Pauli exclusion principle,
the wave function of the system has to be antisymmetric when exchanging
two electrons. Therefore, the product of every single electron wave function
should obey antisymmetricity . To fulfill this rule, the Slater determinant is
proposed:

Φ(r) =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1(r1, σ1) ϕ2(r1, σ2) · · · ϕN(r1, σN)
ϕ1(r2, σ1) ϕ2(r2, σ2) · · · ϕN(r2, σN)

...
... . . . ...

ϕ1(rN , σ1) ϕ1(rN , σ2) · · · ϕN(rN , σN)

∣∣∣∣∣∣∣∣∣ , (3.5)

where the σi represents the spin of electron i. As shown in Eq. (3.5), obvi-
ously, exchanging two electrons corresponds to exchange two columns or
two rows of the determinant. If we use the Slater determinant as the wave
function, we can get the Hartree-Fock equation:

[
− ℏ2

2me

∇2 +
∑
j ̸=i,σ′

e2
∫
dr′

|ϕσ′
j (r

′)|2

|r− r′|
+
∑
I

V (r−RI)

]
ϕσ
i (r)

−
∑
j ̸=i,σ′

δσσ′e2
∫
dr′

ϕσ′∗
j (r′)ϕσ

i (r
′)

|r− r′|
ϕσ′

j (r) = εσi ϕ
σ
i (r).

(3.6)

Compared to Eq. (3.4), a new item is added, and it is called the exchange
term, where δσσ′ indicates that exchange term favors states having the same
spin. Besides, as shown in Eq. (3.4) and Eq. (3.6), the wave function is con-
tained in the effective Hamiltonian. To obtain the eigenvalue and eigenstate
of the Hamiltonian, we need to do self-consistent calculations, which is called
as "self-consistent field method".

Based on the Hartree-Fock approximation, we expand the many-body
wavefunction in Slater determinant that describes the electron wave func-
tion. However, it neglects the electron correlation, thus the approximation
results usually have large deviations from experimental results. An alter-
native solution is to use density functional theory, which contains both ex-
change and correlation energy of the system.

3.2.4 Density Functional Theory

The main idea of density functional theory (DFT) is to utilize the charge den-
sity instead of the electronic wave functions as the basic quantity. Without
considering spin, the degree of freedom of the system changes from 3N (N
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is an electron number) to 3 (spatial variables), which is more convenient to
solve the problem.

Hohenberg-Kohn Theorems

The Hohenberg-Kohn theorems were proposed by Hohenberg and Kohn in
1960 [61], which contains two parts:
Theorem 1 In a electronic Hamiltonian as shown in Eq. (3.2), for the Hamil-
tonians with non-degenerate ground states, there is a one-to-one mapping
among the external potential V (r), the normalized ground-state wave func-
tion Φ and the ground state charge density ρGS(r), where the ρGS(r) can be
represented as:

ρGS(r) = N

∫
d3r2 · · ·

∫
d3rNΦ

∗(r, r2, · · · , rN)Φ(r, r2, · · · , rN). (3.7)

In other words, all the ground-state properties can be derived from the ρGS.
Theorem 2 In a many-body system, the number of electrons is a constant,
and the minimum value of the total energy of the charge density functional
E[ρ(r)] is the ground state energy of the system, and the corresponding ρ(r)
is the ground state charge density of the system. Then, the energy functional
of the ground state can be expressed as:

EGS[ρ(r)] = T [ρ(r)] + Eint[ρ(r)] +

∫
drVext(r)ρ(r), (3.8)

where the T [ρ(r)], Eint[ρ(r)], and
∫
drVext(r)ρ(r) refer to the functional of ki-

netic, electron-electron interaction and electron-potential interaction, sepa-
rately.

According to the constraint of the constant electron number, we have∫
drρ(r) = N . The nonmagnetic calculations can be extended to magnetic

calculations, after including the spin degree to the system.

Kohn-Sham equation

The Hohenberg-Kohn theorems help us to derive the ground state properties
of the multi-electrons system using the ground state charge density rather
than wave function as the basic variable. However, it is still a big challenge
to solve the many-body problem. In 1965, Kohn and Sham put forward the
approximation to change the many-body question into the single electron
problem [62]. They proved that for every interacting system, there exists
an effective single-electron potential Veff , such that the ground state density
of Heff is equal to that of the interacting system. In a word, the system is
assumed to satisfy the Kohn-Sham equation:[

− ℏ2

2me

∇2 + Veff [ρ(r)]

]
ϕi(r) = εiϕi(r), (3.9)
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FIGURE 3.1: A flow chart of the self-consistency circle of the
DFT calculation.

which holds the same form as the single-particle Schrödinger equation. Then,
the exact charge density of the interacting system can be calculated using the
formula ρ(r) =

∑occ
i=1 |ϕi(r)|2. Since the density ρ(r) is calculated from the

wavefunction ϕi(r), the Eq. (3.9) needs to be calculated in a self-consistent
manner (as shown in Figure 3.1). The potential Veff [ρ(r)] is split into Veff [ρ(r)] =
Vext[ρ(r)] + VH[ρ(r)] + Vxc[ρ(r)], where the Vext is the nuclear electrostatic po-
tentials, VH is the Hartree potential, and Vxc is called the exchange-correlation
potential, which is unknown but assumes to be small.

Therefore, Vxc is defined as:

Vxc[ρ(r)] = Veff [ρ(r)]− Vext[ρ(r)]− VH[ρ(r)]. (3.10)

The Vxc is defined as the difference between the potential of the many-body
system and the Hartree-approximation potential.

Finally, Eq. (3.8) can be rewritten as:

EKS[ρ(r)] = Ts[ρ(r)] + Eext[ρ(r)] + EH[ρ(r)] + Exc[ρ(r)]. (3.11)

where the Ts[ρ(r)] is the total noninteracting kinetic energy of the occupied
Kohn-Sham orbitals:

Ts[ρ(r)] = − ℏ2

2me

occ∑
i

⟨ϕ∗
i (r)|∇2|ϕi(r)⟩. (3.12)

The EH[ρ(r)] is the Hartree term, which describes the Coulomb interaction
between electrons:

EH[ρ(r)] =

∫∫
drdr′

ρ(r)ρ(r′)

|r− r′|
. (3.13)
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The Exc[ρ(r)] is the exchange-correlation energy, and it is still unknown. It
has the relation with Vxc[ρ(r)]:

Vxc[ρ(r)] =
δExc[ρ(r)]

δρ(r)
|ρ(r)=ρGS(r). (3.14)

Exchange-correlation energy

As the exchange-correlation energy Exc[ρ(r)] is still unknown, one of the
biggest challenges is selecting approximations to accurately predict proper-
ties in materials with a limited amount of computational resources.
Local density approximation

The local density approximation (LDA) [62] is the simplest approxima-
tion. In LDA, we assume the electronic system changes slowly, and the whole
system can be divided into many small element dr, in which we treat the elec-
trons as the interacting homogeneous electron gas. In other words, the LDA
only takes the density at r into account and not of the surrounding areas.

ELDA
xc [ρ(r)] =

∫
drρ(r)ϵxc[ρ(r)], (3.15)

where the ϵxc(ρ(r)) is the exchange-correlation energy density of the inter-
acting homogeneous electron gas with the density of ρ(r).

Similarly, for a magnetic system, we have local spin density approxima-
tion (LSDA):

ELDA
xc [ρ(r)] =

∫
drρ(r)ϵxc[ρα(r), ρβ(r)], (3.16)

where the ρα(r) and ρβ(r) represent local spin up density and local spin down
density, and the total density is often expressed as ρ(r) = ρα(r) + ρβ(r).

Even though the LDA is a very basic approximation, it works surprisingly
well and is used in many calculations.
Generalized gradient approximation

In a real system, the charge density is not homogeneous, the correlation
energy calculated by LDA is usually larger than the exact value. The gener-
alized gradient approximation (GGA) [63] is introduced to reduce the error
caused by the inhomogeneous charge density distribution in space. In GGA,
we consider the contribution of the electron density gradient in the energy
density functional to reflect the inhomogeneity of the real system. If taking
the spin into account, the most commonly used exchange-correlation poten-
tial energy from GGA is:

EGGA
xc [ρ(r)] =

∫
drρ(r)ϵxc[ρα(r), ρβ(r),∇ρα(r),∇ρβ(r)]. (3.17)

The LDA and GGA are widely used to describe the electronic proper-
ties in DFT calculation, especially when the system is dominated by s and
p shell electrons. However, in transition-metal systems, the strongly corre-
lated electrons in d and f orbitals are localized. It leads to a large deviation
from the experimental results, such as the underestimation of the band gap
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in transition-metal sulfides[64]. To deal with this issue, one method is to
introduce a strong interaction in the energy expression, which is generated
from the inner electron shell of the atom. As this is similar to the form in the
Hubbard model, we call this method as LDA(GGA)+U.

Choice of Basis Sets

In DFT calculations, an appropriate basis set is needed to expand the Kohn-
Sham wave function. The basis needs to be as small as possible to reduce the
amount of computation, and as complete as possible to avoid any missing in-
formation of the original wave functions after we expand the wave function.
The two most commonly used basis are the plane-wave basis set and atomic
orbital basis set.

The plane-wave basis set makes it easy to construct the Hamiltonian. The
plane-wave basis is often combined with the pseudopotential, and to im-
prove the convergence and efficiency a lot of DFT codes are built according to
the plane-wave basis set, e.g., Vienna ab initio simulation package (VASP) [65],
Quantum Expresso [66]. Besides, standing for the fully linearized augmented
plane waves, the FLEUR code is developed ( https://www.flapw.de), which
has wide applications in electronic structure and magnetic properties calcu-
lations.

3.2.5 LDA(GGA)+U

As mentioned above, the LDA(GGA)+U method is widely used to calculate
the system containing d and f shell electrons. The U is also called the Hub-
bard U , and its value can be estimated based on the experimental result or
calculated according to linear response theory (LRT) [67]. From the perspec-
tive of DFT, the U can be obtained according to Eq. (3.18):

Ui = (χ−1
0 − χ−1)i =

∂αno−int
i

∂qi
− ∂αint

i

∂qi
, (3.18)

where the Ui is the Hubbard U at atom i, and qi represents the localized or-
bital state occupations in i atom. χ0 and χ represent the non-interaction and
interaction density response functions of the system with respect to the lo-
calized potential shift αi, respectively. The non-interaction and interaction
localized perturbation potential are calculated:

αint
i = −∂E[{qi}]

∂qi
; αno−int

i = −∂E
no−int[{qi}]
∂qi

, (3.19)

where the E[{qi}] and Eno−int[{qi}] denote the occupation-dependent energy
function and the occupation-dependent energy function required for the self-
consistent solution of the non-interacting Kohn-Sham equations, separately.
The LRT is utilized to obtain the Hubbard U in Chapter 5.
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3.2.6 The parametrization of the generalized Heisenberg
model

As discussed in Chapter 2.3.5, the generalized Heisenberg Hamiltonian can
be expressed with localized magnetic moments:

H =−
∑
i,j

JijSi · Sj −K
∑
⟨ij⟩γ

Sγ
i S

γ
j −

∑
ij

Dij · (Si × Sj)

− A
∑
i

(n̂i · Si)
2 −B · µB

∑
i

(geSi + Li),
(3.20)

where the first term represents the isotropic exchange interaction, the second
term denotes the Kitaev interaction, third term refers to the Dzyaloshinskii-
Moriya interaction (DMI), the fourth and fifth term are the single-ion aniso-
tropy energy and the Zeeman energy, separately. Many methods have been
proposed to calculate these interaction parameters, such as the magnetic force
theorem method [68], the Berry curvature method [69] and spin-spiral, etc.
In this section, we present the parameterization of these interactions with the
straightforward method based on the ab initio calculation [70].

Exchange interaction

We first discuss the exchange interaction, which contains the isotropic ex-
change interaction and the Kitaev interacton.

Hexc = −
∑
i,j

JijSi · Sj −K
∑
⟨ij⟩γ

Sγ
i S

γ
j , (3.21)

And it can be transformed to:

Hexc = −
∑
⟨ij⟩

S†
i ĴijSj = −

∑
⟨ij⟩

S†
i

 Jxx
ij Jxy

ij Jxz
ij

Jyx
ij Jyy

ij Jyz
ij

Jzx
ij Jzy

ij Jzz
ij

Sj, (3.22)

with S†
i = (Sx

i , S
y
i , S

z
z ). To determine the elements of matrix Ĵij , we can com-

pare the energy difference between different states with local spin flips.
If we want to investigate the interaction between the spin i and j, we can

flip the spin direction of site i and j to calculate the corresponding energy
based on the first-principles calculation. In this case, the total energy can be
divided as: Ei = Eexc1+C, and Eexc1 donates the interaction between the site
i and site j. Then the energy difference between different spin flips lies in the
exchange interaction.

Taking Jxx
ij as an example: to calculate the Jxx

ij , we can set four states, and
the Jxx

ij can be expressed as:

Jxx
ij =

E1 − E2 − E3 + E4

4
, (3.23)
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state site i site j other sites

1 S(1, 0, 0) S(1, 0, 0) Experimental structure
2 S(1, 0, 0) S(−1, 0, 0) Experimental structure
3 S(−1, 0, 0) S(1, 0, 0) Experimental structure
4 S(−1, 0, 0) S(−1, 0, 0) Experimental structure

where E1, E2, E3 and E4 are total energy calculated with collinear spin con-
figurations, shown below.

Dzyaloshinskii-Moriya interaction

Similar to exchange interactions, the DMI can be calculated. The effective
atomic Hamiltonian of DMI can be transformed to matrix format:

HDMI = −
∑
⟨ij⟩

S†
iD̂ijSj = −

∑
⟨ij⟩

S†
i

 0 Dz
ij −Dy

ij

−Dz
ij 0 Dx

ij

Dy
ij −Dx

ij 0

Sj. (3.24)

Comparing Eq. (3.22) and Eq. (3.24), we find that they have similar matrix
formulas, and total Hamiltonian of exchange interaction and Dzyaloshinskii-
Moriya interaction can be expressed as:

H = −
∑
⟨ij⟩

S†
i

 Jxx
ij Jxy

ij +Dz
ij Jxz

ij −Dy
ij

Jyx
ij −Dz

ij Jyy
ij Jyz

ij +Dx
ij

Jzx
ij +Dy

ij Jzy
ij −Dx

ij Jzz
ij

Sj. (3.25)

Here, we take Jxy
ij and Dz

ij as examples to reveal how to obtain the DMI
and anisotropic exchange interaction. We set the following states

state site i site j other sites

1 S(1, 0, 0) S(0, 1, 0) Experimental structure
2 S(1, 0, 0) S(0,−1, 0) Experimental structure
3 S(−1, 0, 0) S(0, 1, 0) Experimental structure
4 S(−1, 0, 0) S(0,−1, 0) Experimental structure
5 S(0, 1, 0) S(1, 0, 0) Experimental structure
6 S(0,−1, 0) S(1, 0, 0) Experimental structure
7 S(0, 1, 0) S(−1, 0, 0) Experimental structure
8 S(0, −1, 0) S(−1, 0, 0) Experimental structure

and we have relation:

Jxy
ij −Dxy

ij =
E1 + E4 − E2 − E3

4
,

Jyx
ij +Dxy

ij =
E5 + E6 − E7 − E8

4
.

(3.26)
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We can obtain the elements of DMI and anisotropic exchange interaction
easily (here, we have Jxy

ij = Jyx
ij ), according to Eq. (3.26).

Single-ion anisotropy energy

If the system has the easy-axis or easy-plane anisotropy, the single-ion aniso-
tropy energy A can be easily obtained. For instance, if the easy-axis is along
with z direction, we can set four states with site i: 1, S(0, 0, 1); 2, S(0, 0,−1);
3, S(1, 0, 0); 4, S(−1, 0, 0). and A is calculated according to:

A =
E1 + E2 − E3 − E4

4
. (3.27)

Zeeman energy

To determine the Zeeman energy, we need to know the magnetic moment
of each site. In the thesis, we consider the contributions of spin and orbital
angular momentum to the magnetic moment. From the DFT calculation, we
can obtain the magnetic moment of spin directly, and the orbital angular
momentum can be calculated based on the modern theory [28], shown in
Chapter 2.

3.3 Conclusion

In the thesis, we discuss the parametrization of the effective spin Heisenberg
model with fitting to the experimental data and DFT calculation. According
to the experimental data offered from our collaborators, the fitting method
is adopted to identify the effective spin interaction Hamiltonian in magnetic
materials: Cu2OSeO3, CrSiTe3, CrGeTe3 and Mn3Ge. The DFT method is
used to study a family of two-dimensional (2D) metal-organic frameworks
(MOFs) with the Shastry-Sutherland magnetic lattice, which is discussed in
Chapter 5.
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Chapter 4

Magnonic topology and transport

The magnon is a quasiparticle evoked from the collective excitation in mag-
nets, which has promising candidate applications in spintronics [71, 72]. In
the field of spintronics, the study of magnons has led to a boom in magnon-
ics, which aims to explore new approaches to carry information using the
collections of spins instead of the charge of electrons to avoid the dissipation
of Joule heating [73, 74].

In this chapter, analogous to the electronic topology and electronic Berry
curvature in momentum space [75], the magnonic topology is presented. By
utilizing the magnon Berry curvature, we present a magnonic topological
phenomenon, the magnonic Weyl point. Based on the semiclassical method,
the magnonic transport properties in the context of the thermal Hall effect
and magnon Nernst effect are introduced [76, 6, 77, 78].

4.1 The Berry Phase and Berry curvature

To demonstrate the topological nature, we first introduce the concept of the
Berry phase in a quantum mechanical system, which was originally intro-
duced by Berry [75]. We assume that the system described by a Hamiltonian
H(X) depends on a set of parameters X = (X1, X2, ...) following the adia-
batic evolution, as the parameters are valid. Then, the instantaneous basis of
the Hilbert space of H(X) obeys the Schrödinger equation:

H(X)|nX⟩ = εn(X)|nX⟩ , (4.1)

where |nX⟩ are eigenstates of Hamiltonian H(X) with the eigenvalue εn(X).
If we assume the εn(X) are nondegenerate, then the time evolution of

the system in the eigenstate | ψ(t)⟩ follows the time-dependent Schrödinger
equation:

H(X(t))|ψ(t)⟩ = iℏ∂t|ψ(t)⟩ . (4.2)

Here, the solution of Eq. (4.2) can be expanded with the instantaneous ba-
sis |ψ(t)⟩ =

∑
m cm(t)|mX(t)⟩, in which the time-dependent expansion co-

efficient is marked as cm(t). If we substitute the new basis to Eq. (4.2) and
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multiply ⟨nX(t) | from the left side, then we can get the equation:

∂tcn(t) =− i
1

ℏ
εn(X(t))cn(t)− cn(t) ⟨nX(t)|∂t|nX(t)⟩

−
∑
m ̸=n

cm(t) ⟨nX(t)|∂t|mX(t)⟩ ,
(4.3)

and the last term of Eq. 4.3 corresponds to the transition rate between the
state |nX(t)⟩ and |mX(t)⟩. Here, the εn(X) are nondegenerate, and we can set
Cn(0) = 1 and Cm(0) = 0(m ̸= n). Then, the state |ψ(t)⟩ can be represented
as cn(t)|mX(t)⟩ under the adiabatic evolution, and Eq. (4.3) can be solved
directly by integration:

cn(t) = e−
i
ℏ
∫ t
0 εn(τ)dτei

∫ t
0 i⟨nX(τ)|∂t|nX(τ)⟩dτ

= e−iαdyn(t)eiγn(t),
(4.4)

where the αdyn(t) represents the dynamical phase, and for a closed path the
γn(t) refers to the geometric, or Berry phase:

γn(t) =

∫ t

0

i ⟨nX(τ) |∂t|nX(τ)⟩ dτ =

∮
C

i ⟨nX |∇X|nX⟩ dX =

∮
C

An(X)dX,

(4.5)
where C is a closed loop in parameter space. Since the basis states are nor-
malized, the γn(t) is a real number modulo 2π. We call the integrand An(X)
Berry connection, which describes the vector potential An along with the
path C.

From the Stokes’ theorem, the Eq. (4.5) can be rewritten from the integral
along with closed path C to the integral over the surface S

γn(t) =

∮
C

An(X)dX =

∫
S

Ωn(X) · dS, (4.6)

where Ωn = ∇X × An. Analogous to the magnetic vector potential and the
magnetic field, here Ωn is an effective "magnetic field" and we call it Berry
curvature.

Next, we discuss how to obtain the Berry curvature from the eigenvalue
and eigenvector. From the Eq. (4.5), we already know that Ωn = ∇X ×An =
i ⟨∇XnX |×|∇XnX⟩, and it can be adapted with the completeness relation
1 =

∑
m |m(X)⟩ ⟨m(X)| :

Ωn =
∑
m

i ⟨∇XnX |m(X)⟩ × ⟨m(X)| ∇XnX⟩ . (4.7)

In the adiabatic system, we assume the eigenvalues are nondegenerate, we
have relation:

⟨m(X)|∇XnX⟩ = ⟨m(X) |∇XH|n(X)⟩
εn(X)− εm(X)

. (4.8)
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Then the Berry curvature becomes:

Ωn(X) = i
∑
m ̸=n

⟨n(X) |∇XH|m(X)⟩ × ⟨m(X) |∇XH|n(k)⟩
(εn(X)− εm(X))2

, (4.9)

with n ̸= m.

4.2 The Berry curvature in magnonic systems

In this section, we introduce the magnon Berry phase in periodic magnonic
systems. As we discussed before, the magnon is used to describe the collec-
tive vibration of spins in a magnetic crystal lattice. The Hamiltonian with
parameters X = (X1, X2, ...) is used to describe the magnon’s behavior with
the periodic potential in momentum space k. As crystalline materials have
translational symmetry, the eigenstate of magnons ψn,k(r) at k with the band
index n follows the Bloch theorem [79].

ψn,k(r) = eik·run,k(r), (4.10)

where the un,k(r) is a periodic function. Then, the Hamiltonian of magnon H
has

Hψn,k(r) = εn,kψn,k(r), (4.11)

which can be rewritten:

Hkun,k(r) = εn,kun,k(r), (4.12)

whereHk = e−ik·r ·H ·eik·r represents the magnon Hamiltonian in momentum
representation. The Berry curvature of magnon band n can be obtained by
replacing X with k in Eq. (4.9).

Ωn(k) = i
∑
m ̸=n

⟨un,k |∇kH| um,k⟩ × ⟨um,k |∇kH| un,k⟩
(εn,k − εm,k)2

. (4.13)

Besides, in a two-dimensional (2D) system, the Berry curvature tensor only
has non-zero value along z direction:

Ωxy
n (k) = −2 Im

∑
m ̸=n

〈
ψnk|∂H(k)

∂kx
|ψmk

〉〈
ψmk|∂H(k)

∂ky
|ψnk

〉
(εnk − εmk)2

. (4.14)

Unlike the pure electronic Hamiltonian, sometimes the magnon Hamil-
tonian H contains number-nonconserving terms (e.g., αiαj , and α†

iα
†
j), where

the αi and α†
i represent the creation and annihilation spin-wave operators. As

discussed in Chapter 2, we can diagonalize the dynamical matrix D̂ instead
of the Hamiltonian matrix to get the eigenvalue and eigenvector. Then, in 2D
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Symmetry TR SI

Eigenvalue E(k) = E(−k) E(k) = E(−k)

Berry curvature Ωn(−k) = −Ωn(k) Ωn(−k) = Ωn(k)

Approach DMI, spin length, spin interaction,
field, etc. DMI, etc.

TABLE 4.1: Comparison of time-reversal(TR) symmetry and
space inversion (SI) symmetry in magnonic system. Several ap-
proaches are listed to break TR symmetry and SI symmetry in
magnonic systems.

system, the Eq. (4.14) becomes into:

Ωxy
n (k) = −2 Im

∑
m ̸=n

〈
ψnk|∂D̂(k)

∂kx
|ψmk

〉〈
ψmk|∂D̂(k)

∂ky
|ψnk

〉
(εnk − εmk)2

, (4.15)

where the D̂(k) represents the dynamical matrix in the momentum represen-
tation which is discussed in Chapter 2. We need to note that since D̂(k) is not
a hermitian matrix, the left and right eigenvector ⟨ψn,k| and |ψn,k⟩ may not
hermitian.

Lastly, we briefly discuss the symmetry properties of the magnon Berry
curvature in momentum space. There are two major symmetries in the sys-
tem, time-reversal (TR) symmetry and space inversion (SI) symmetry, and
their properties are shown in Table 4.1. If one system fulfills both TR and
TR symmetry, the corresponding Berry curvature satisfies both Ωn(−k) =
−Ωn(k) and Ωn(−k) = Ωn(k). This means the Berry curvature at every k
point is zero. To obtain non-trivial Berry curvature, either TR or SI symmetry
should be broken. In electronic systems, the SI or TR can be broken through
introducing e.g., non-zero electric polarization or spin-orbit coupling. Here,
we briefly list some methods to break the SI or TR symmetry in magnonic
systems. On the one hand, the TR symmetry can be broken by introduc-
ing some appropriate interaction, such as Dzyaloshinskii-Moriya interaction
(DMI), Kitaev interaction and magnon-phonon coupling. On the other hand,
the SI symmetry can be destroyed by introducing some anisotropy interac-
tion or changing the spin moment length or direction, etc. This symmetry
analysis is applied in Chapter 6.

4.3 Weyl Semimetal in magnonic systems

In this section, we introduce the concept of the Weyl semimetal. First, the
concept of Chern number is presented. From Eq. (4.6), we know the Berry
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phase:

γn(t) =

∮
C

An(X)dX =

∫
S

Ωn(X) · dS =

∫
S′
Ωn(X) · dS+ 2πn. (4.16)

Here, S and S ′ are non-overlapping surfaces with the same boundary path
C, and we define the closed surface S which is constituted by S and S ′ with
the seam C. As the Berry phase is the modulo of 2π, the n is an integer. If we
calculate the integral of Berry curvature over S, we get the concept of Chern
number:

Cn =
1

2π

∫
S

Ωn(X) · dS =
1

2π

(∫
S

Ωn(X) · dS−
∫
S′
Ωn(X) · dS

)
= n. (4.17)

Here, the Cn is called the first Chern number of the nth-eigenstate. In a non-
degenerate system, the Cn is always an integer and it separates out different
topological phases from topologically trivial phases. In 2D systems, the Bril-
louin zone (BZ) is a closed surface because of the periodicity in momentum
space, then, the Cn can be calculated based on Eq. (4.18):

Cn =
1

2π

∫
BZ

Ωxy
n (k)dkxdky. (4.18)

As shown in Figure 4.1, the Cn is calculated for a given closed surface S
and the value of Cn is related to the monopoles inside. In order to generate
the monopole, conditions need to be satisfied, which include two aspects: 1)
either TR or SI symmetry (or both) should be broken to make the Berry cur-
vature nonzero, 2) there are crossing points that are also called Dirac point,
appearing between two nearby bands. The charge of a monopole, which is
also called topological charge, can be calculated with an infinitesimal sphere
Si surrounding the crossing point:

Qi =
1

2π

∫
Si

Ω(k) · n dSi, (4.19)

where n is the surface normal. If these crossing points have non-zero topo-
logical charge, we call these points Weyl points [80], and the system with
Weyl points are also called the Weyl semimetal system, such as TaAs [81],
which have been observed in experiments. Besides, the Weyl point not only
exists in the electronic system [80, 81], but also in bosonic systems, e.g., pho-
tonic [82], magnonic [83, 84, 85] or phononic system [86].

The example of Weyl points is shown in Figure 4.1, where the Weyl points
appear in pairs with opposite topological charges. Berry curvature vector
field starts from one Weyl point and finally converges to another partner
Weyl point, and each pair is connected by an arc on the surface. The appear-
ance of Weyl points is protected by the symmetry of the system, which is
stable and can be kept with slight variations of the parameters in the Hamil-
tonian. There is at least one pair of Weyl points presented in a system, and the
number of Weyl points in Weyl semimetal systems can be estimated based on
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FIGURE 4.1: Weyl points and arc. The red and blue ball rep-
resent the Weyl points of two bulk bands with the topological
charge +1 and −1, which are the source or sink of the Berry
curvature vector field. The spherical surface refers to the closed
surface S and the Chern number Cn is +1 for the left sphere.
The projections of Weyl points onto surface are shown with red
and blue points and they are connected by an arc. In electronic
system, this arc crossing the Fermi level is called the Fermi arc.

the symmetry. As discussed in Section 4.2, the eigenvalue and Berry curva-
ture need to fulfill some rules if the system holds TR or SI symmetry. For
instance, when only TR symmetry is broken, the minimal number of Weyl
points is two, which locate at k and −k point with topological charge q and
−q separately. If the SI symmetry is broken and TR symmetry is kept, there
are at least two Weyl points with the same topological charge at k and −k,
which means there are at least four Weyl points in the BZ.

In this thesis, we focus on the study of magnonic Weyl points. The appear-
ance of Weyl points and their relationship with symmetry is systematically
explored in the material Cu2OSeO3, and the detailed information is revealed
in Chapter 6.

4.4 Magnonic transport based on the semiclassical
theory

The magnon thermal Hall effect and magnon Nernst effect1 are discussed in
this part, according to the semiclassical theory, and both of them are trans-
verse transport caused by non-trivial magnonic topology.

1The magnon Nernst effect discussed in the thesis refers to the "magnon spin Nernst
effect" discussed in Ref. [77, 78].
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The Hall effect refers to the production of a voltage difference across an
electrical conductor in a magnetic field, which was discovered by E. Hall [87].
Relevantly, the direction of the generated voltage is transverse to an electric
current and applied magnetic field which is perpendicular to the current. Un-
like the Hall effect that is formed by the movement of an electronic current,
the thermal Hall effect describes the thermal current carried by electron[88],
phonon [89], magnon [6], etc. In this section, we focus on discussing the
thermal Hall effect via magnons, which is driven by the magnon Berry cur-
vature in momentum space. The Nernst effect is a thermoelectric effect,
which refers to a sample, e.g., semiconductor, subjected to a magnetic field
and a temperature gradient, will be induced an electric field, where the mag-
netic field, temperature gradient and electric field are perpendicular with
each other. And the magnon Nernst effect indicates a spin currents gener-
ated from temperature gradients in a magnonic system.

The Berry curvature refers to the wave function changes and is associated
with the band structure, which can drive various Hall effects or Nernst ef-
fects in momentum space. We first discuss the Berry curvature dynamics in
an electronic system, which was developed by Sundaram and Niu [90] to in-
troduce an “anomalous velocity” [91] to explain the anomalous Hall effect. In
both k (momentum space) and r space (real space), the electronic wave func-
tion dynamics can be described by the motion in a semiclassical way [92, 90]:

ṙ =
1

ℏ
∂εn(k)

∂k
− k̇×Ωn(k),

ℏk̇ = qE+ qṙ×B,

(4.20)

where q is the electron charge (here we set it equal to −e), E is an electric
field and B is the magnetic field. The 1

ℏ
∂εn(k)
∂k

represents the group velocity
Vn(k), and the −k̇×Ωn(k) is the anomalous velocity, which gives rise to the
transverse transport and its direction is perpendicular to the applied electric
field and magnetic field. In 2D systems, the electronic wave function motion
is restricted to the xy plane and we can obtain its transverse conductivity
based on the Boltzmann equation [93]:

δxy = − e2

(2π)2ℏ
∑
n

∫
BZ

Ωxy
n (k)ρF (εn(k))d

2k, (4.21)

where ρF (εn(k)) is the Fermi distribution function. At zero temperature,
ρF (εn(k)) simplifies into a step function at the Fermi energy level. If the
Fermi energy is within the m-th band gap, the integral over Berry curvature
is an integer wm which is called the winding number. And the corresponding
transverse conductivity can be expressed as:

δxy = − e2

πℏ
∑
n≤m

Cn = − e2

πℏ
wm. (4.22)

Here, Cn is the Chern number of band n and them represents the index of the
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first band below the Fermi level. Eq. (4.22) indicates that the transverse elec-
trical conductivity is quantized, which corresponds to the integer quantum
Hall effect (QHE) [94].

In this thesis, the magnonic transport properties are investigated with a
semiclassical method[95]. Analogously to the study of the integer Hall effect,
we utilize the magnon Berry curvature to explore the thermal Hall effect of
magnon. The thermal Hall effect of magnon is generated by breaking the
TR or SI symmetry in the system through introducing e.g., DMI, Kitaev in-
teraction to get a nonzero Berry curvature, which has been observed in the
insulating ferromagnet Lu2V2O7 [6] . Similar to Eq. (4.20), the motion for
magnons in semiclassical way can be written as [96, 95]:

ṙ =
1

ℏ
∂εn(k)

∂k
− k̇×Ωn(k),

ℏk̇ = −∇U(r),
(4.23)

where the εn(k) is the eigenvalue of the nth magnonic band, Ωn(k) is the
magnonic Berry curvature in k space, and the ∇U(r) is the potential for
magnons. The equilibrium situation is selected as a starting point. To con-
fine the magnon transport within the magnet, the potential gradient ∇U(r)
is needed. The potential U(r) changes from 0 to infinity value as the position
r changes from the inside of the magnet to the outside, leading to the vector
k̇ pointing inward near the edge area of the magnet. Similar to the motion
in the electronic system, the −k̇ ×Ωn(k) offers an anomalous velocity along
with the edge direction. As a result, there is an edge current of magnons, and
the magnon edge current I and the magnon edge energy current IE can be
expressed as:

I = − 1

ℏV
∑
n,k

∫ ∞

εn(k)

Ωxy
n (k)nB(ε)dε,

IE = − 1

ℏV
∑
n,k

∫ ∞

εn(k)

Ωxy
n (k)εnB(ε)dε,

(4.24)

where V is the volume of the magnet, the nB(ε) is the Bose distribution func-
tion and it follows the nB(ε) = (e

ε−µ
kBT − 1)−1 with µ representing the chemical

potential. When the temperature gradient is applied, it gives rise to the spa-
tial variation of magnon density. As shown in Figure 4.2, each magnon edge
currents in the small regions do not offset each other, resulting in finite ther-
mal Hall current along with the transverse direction. Then, the transverse
magnon current density and energy current density of magnon aroused by
the edge current can be expressed as: j = −∇ × I , jE = −∇ × IE, and the
transverse transport conductivity can be obtained based on the relationship
between the magnon current and the heat current.

We take an example of the temperature gradient along y direction, and the
magnon current density (j)∇T

x and energy current density (jE)
∇T
x of magnon
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FIGURE 4.2: The magnon transport under the temperature gra-
dient. Each small rectangular box represents the magnon edge
currents in the small regions and they do not offset each other
along the transverse direction. This leads to the appearance of
the transverse thermal hall current of magnon.

along x direction are written as:

(j)∇T
x = − T

ℏV
∂y

(
1

T

)∑
n,k

∫ ∞

εn(k)

Ωxy
n (k)(ε− µ)

(
dnB(ε)

dε

)
dε,

(jE)
∇T
x = − T

ℏV
∂y

(
1

T

)∑
n,k

∫ ∞

εn(k)

Ωxy
n (k)ε(ε− µ)

(
dnB(ε)

dε

)
dε.

(4.25)

Here, the µ represents the magnon chemical potential. We select the heat
current rather than magnon number current, which is due to the fact that it is
not easy to measure the magnon number current experimentally. On the one
hand, the magnon is not conserved due to the fact that H contains number-
nonconserving terms (e.g., αiαj , and α†

iα
†
j). On the other hand, the magnon –

magnon interactions will produce or annihilate magnons.
Under a temperature gradient, the magnon current density and energy

current density holds the relationship:

j∇T
x = κxyMN(∇T )y
(jE)

∇T
x = κxyTH(∇T )y.

(4.26)

Then, we can obtain the transverse thermal Hall conductivity κxyTH and "pure
magnon Nernst conductivity" κxyMN, straightforwardly. Here, we can put κxyTH

and κxyMN to the transport tensor L, and the transverse transport coefficients
Lxy
ij holds:

Lxy
ij = −(kBT )

q

ℏV
∑
n,k

Ωxy
n (k)cq(nB(ε)), (4.27)

where cq(nB(ε)) =
∫∞
εn(k)

(ε − µ)q(−dnB(ε)
dε

)dε = (kBT )
q
∫ nB(ε)

0
(log(1 + t−1))qdt

with q = i+ j − 2 (i, j correspond to 1 or 2), and log(1 + t−1) is the inverse of
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the Bose distribution function.
If the i = j = 2, the Lxy

22 corresponds to the thermal Hall effect, and the
transverse thermal Hall conductivity κxyTH can be expressed as:

κxyTH = − k2BT

(2π)3ℏ
∑
n

∫
BZ

c2(nB(ε)) Ω
xy
n (k) dk, (4.28)

where c2(τ) = (1+τ) ln2[(1+τ)/τ ]−ln2 τ−2Li2(−τ), and Li2 denotes the poly-
logarithm function. Similarly, we can obtain the magnon Nernst conductivity
κxyN :

κxyN = − kB
(2π)3

∑
n

∫
BZ

c1(nB(ε)) Ω
xy
n (k) dk, (4.29)

where c1(τ) =
∫ τ

0
ln[(1 + t)/t]dt = (1 + τ) ln(1 + τ) − τ ln τ . Here, the κxyN

refers to the spin Nernst effect of magnon, as each magnon carries the angular
momentum −ℏ. In the thesis, we call this "spin Nernst effect of magnon" as
magnon Nernst effect.

For two-dimensional systems, the thermal Hall conductivity and magnon
Nernst conductivity can be expressed as:

κxyTH = − k2BT

(2π)2ℏ
∑
n

∫
c2(nB(ε)) Ω

xy
n (k) dk,

κxyN = − kB
(2π)2

∑
n

∫
c1(nB(ε)) Ω

xy
n (k) dk,

(4.30)

Both thermal Hall conductivity and magnon Nernst conductivity have
their high-temperature limit. We here take the thermal Hall conductivity as
an example to briefly demonstrate the feature. According to Eq. (4.28), we
get:

κxyTH
T→∞

= − k2BT

(2π)3ℏ
lim
T→∞

∑
n

∫
BZ

c2(nB(ε)) Ω
xy
n (k) dk. (4.31)

According to the L’Hospital’s rule, Eq. (4.31) can be rewritten as:

κxyTH
T→∞

= lim
T→∞

κxy
TH

T
1
T

= lim
T→∞

∂
κxy
TH

T

∂ 1
T

= lim
T→∞

(
−T 2 ∂

∂T

κxyTH(T )

T

)
. (4.32)

Then, the high-temperature limit of thermal Hall conductivity can be repre-
sented as:

κxyTH
T→∞

= − k2B
(2π)3ℏ

lim
T→∞

∑
n

∫
BZ

T 2 c2(nB(ε))

∂T
Ωxy

n (k) dk

= − kB
(2π)3ℏ

∑
n

∫
BZ

εn(k)Ω
xy
n (k) dk.

(4.33)

If we assume both bands are flat, and simplify the system into two bands
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model, honeycomb lattice for instance, then the Eq. (4.33) can be updated
into:

κxyTH
T→∞

= − kB
(2π)3ℏ

∑
n

εn

∫
BZ

Ωxy
n (k) dk =

kB
(2π)2ℏ

△C1. (4.34)

where the △ represents the effective band gap and C1 is the Chern num-
ber of the first magnon branch. Then, we get the conclusion that the high-
temperature limit of thermal Hall conductivity is a constant, which is deter-
mined by the band gap △ and the Chern number.

4.5 Summary

In this chapter, the topological properties are extended from electronic sys-
tems to magnonic systems, where the magnon Berry curvature is introduced
and some magnonic topological phenomenon is explored, the magnonic Weyl
point. The magnonic transport properties in the context of the thermal Hall
effect and magnon Nernst effect were introduced according to the semiclas-
sical method.
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Chapter 5

Two-dimensional metal-organic
frameworks with
Shastry-Sutherland lattice

In this chapter, inspired by the successful synthesis of Fe/Cu-5, 5’-bis (4-
pyridyl) (2, 2’- bipirimidine) (PBP) [97, 98], we systematically investigated
a family of two-dimensional (2D) metal-organic frameworks (MOFs) with
the Shastry-Sutherland lattice (SSL), i.e., transition-metal (TM)-PBP (TM =
Cr, Mn, Fe, Co, Ni, Cu, Zn) by means of first-principles density functional
theory calculations and Monte Carlo simulation discussed in Chapter 2 and
Chapter 3. Mn-PBP is discovered to be the first ferromagnetic (FM) 2D MOF
with SSL and the Curie temperature is predicted to be about 105 K, while Fe-
PBP, TM-PBP (TM = Cr, Co, Ni) and TM-PBP (TM = Cu, Zn) are found to be
antiferromagnetic (AFM), dimerized (AFM dimer) and nonmagnetic, respec-
tively. The electronic structure calculations reveal that TM-PBP are semicon-
ductors with band gaps ranging from 0.12 eV to 0.85 eV, which could be eas-
ily modulated by various methods. Particularly, Mn-PBP would exhibit half-
metallic behavior under compressive strain or proper electron/hole doping
and a Mn-PBP based spintronic device has been proposed. Moreover, the
magnon dispersion and the magnonic transport properties of Mn-PBP are
studied to explore its candidate application in magnonics.

Some results presented in this chapter have already been published:
Li-chuan Zhang, et. al., Chemical Science 10, 10381-10387 2019.

5.1 Introduction of two-dimensional metal-organic
frameworks with Shastry-Sutherland lattice

In recent years, the two-dimensional (2D) metal-organic frameworks (MOFs)
formed by metal atoms and polar organic molecules [99, 100, 101] have stim-
ulated wide interest for researchers [102, 103] due to the advantage of low
cost, chemical tenability, easy fabrication, and mechanical flexibility. It has
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FIGURE 5.1: (a) The schematic structure of transition-metal
(TM)−PBP. The red balls indicate the TM atoms. The black
dashed lines outline the unit cell of the TM-PBP system and
the lattice parameter is marked as a. (b) The abstraction of
(a) by focusing on TM atoms. The red dot lines (J1) and blue
dashed lines (J2) represent the interactions between the nearest
TM atoms and the second nearest TM atoms, respectively. (c)
The conventional standard Shastry-Sutherland lattice, which is
topologically equivalent to (b).

been proved that there are a lot of novel physical properties in 2D MOFs sys-
tems, such as ferromagnetic/antiferromagnetic ground states [104], super-
conductors [105], and topological insulators [106, 107]. By choosing transition-
metal atoms, the magnetic 2D MOFs can be easily obtained, and the magnetic
structure can be modulated by the polar organic molecules. According to the
geometrical structure, the magnetic 2D MOFs can be classified into hexago-
nal lattice [106, 107], square lattice [104], and Kagome lattice [108, 109], etc.

Here, we want to introduce a special magnetic lattice, which is called
Shastry-Sutherland lattice (SSL) [110]. The SSL was introduced by Shastry
and Sutherland in 1981 [110], and it is a special type of distorted square lat-
tice. It attracts a great variety of attentions, especially on the properties of
magnetic order and fractional magnetization plateaus at low temperature in
the materials SrCu2(BO3)2 [111, 112] and rare-earth-metal tetraborides RB4

(R= La−Lu) [113, 114]. Besides, several SSL in 2D MOFs have also been syn-
thesized, such as the Cu-5, 5’-bis(4-pyridyl) (2, 2’ -bipirimidine) (PBP) [98]
and the Fe−PBP [97]. The schematic structure of Cu/Fe−PBP is shown in
Figure 5.1 (a) and the black dashed lines outlined the unit cell. The frame-
work of metal atoms can be abstracted to a deformed square lattice, which is
topologically equivalent to the standard SSL (see Figure 5.1 (b, c)). Inspired
by the synthesis of Cu/Fe-PBP, we want to explore whether some other can-
didate TM elements can form MOFs with PBP. We also want to investigate is
there novel electronic and magnetic properties of this SSL in 2D MOFs ma-
terials. These motivate us to do intensive theoretical research to extend the
frontier of the 2D MOF field.
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5.2 Stability and ground state in TM−PBP

5.2.1 Bonding Energy

Firstly, we relaxed the structure of TM-PBP to obtain the geometric param-
eters of 2D-MOFs frameworks, where the Vienna ab initio simulation pack-
age (VASP)[65] is used with the generalized gradient approximation (GGA)
of Perdew–Burke–Ernzerhof (PBE)[63] for the exchange–correlation poten-
tial. To explore the stability of the TM-PBP, the binding energy between TM
atoms and PBP molecules is introduced to represent the corresponding bond-
ing strength in different TM-PBP system according to:

Ebinding = (2EPBP + 4ETM − ETM−PBP)/4, (5.1)

where the ETM−PBP represents the total energy of TM−PBP unit cell, which
contains 2 PBP molecules and 4 TM atoms. The Ebinding is the binding energy
between PBP molecules and TM atoms. As shown in Table 5.1, the binding
energy is generally about 3 to 4 eV per TM atom for most TM-PBP except that
of Zn-PBP, which is only about 1 eV. Considering the fact that Cu/Fe-PBP has
already been successfully synthesized, TM-PBP (TM=Cr, Mn, Co, Ni) is very
likely to be obtained experimentally.

5.2.2 Exchange interaction and 2D Ising model

To identify the magnetic ground states of 2D TM-PBP frameworks, we pro-
pose three different typical magnetic configurations, i.e., ferromagnetic (FM),
Néel antiferromagnetic (AFM) and stripe AFM (see Figure 5.2), and the cor-
responding total energy of them are calculated, separately. As shown in Ta-
ble 5.1, all TM-PBP frameworks hold semiconductors and magnetic moments
of these systems are mainly localized in transition-metal atoms, which means
the exchange interactions are localized and we can choose the exchange in-
teraction between metal atoms to simplify the analysis of spin interactions.
In our model, only up to the second-nearest-neighbor exchange interaction is
selected. The 2D Ising model for SSL [115] is selected to study the magnetic
ground state of TM-PBP frameworks:

Etotal = E0 + Emag = E0 +
∑
⟨ij⟩

J1Si · Sj +
∑
⟨l,m⟩

J2Sl · Sm, (5.2)

where the Emag and E0 represent the energy of effective spin interactions
and the total energy without the magnetic interactions, separately. J1 and J2
stand for the exchange interaction coupling constants of the nearest-neighbor
and second-nearest-neighbor metal atoms, Si, Sj and Sl, Sm indicate the spin
operators at nearest site i and j (second nearest site l and m) respectively.
The out-of-plane magnetic anisotropic energy is calculated with the value of
0.034 meV. In our model, the magnetic anisotropic energy term is neglected
because of its tiny value.
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FIGURE 5.2: Magnetic configurations of ferromagnetic (FM)
(a), Néel antiferromagnetic (Néel AFM) (b) and stripe antifer-
romagnetic (Stripe AFM) (c) types in the form of conventional
standard Shastry-Sutherland lattice, respectively.

The value of J1 and J2 can be obtained by calculating three different typ-
ical magnetic states mentioned above. There are four TM atoms in each unit
cell, and the total energy per unit cell with different magnetic configurations
can be expressed as follows according to the Hamiltonian in Eq. (5.2):

EFM = E0 + 2J1S
2 + 8J2S

2,

EAFMNéel
= E0 + 2J1S

2 − 8J2S
2,

EAFMStripe
= E0 − 2J1S

2,

(5.3)

then the coupling constants J1 and J2 can be derived as

J1 = (EFM + EAFMNéel
− 2EAFMStripe

)/8S2,

J2 = (EFM − EAFMNéel
)/16S2,

(5.4)

where the S is the spin moment of the system. According to the total en-
ergy of the TM-PBP frameworks with different magnetic configurations from
the DFT calculation, we calculate the value of coupling constants J1 and J2,
and the results are listed in Table 5.1. The first-principles calculations were
performed using the Vienna ab initio simulation package (VASP) [65] with
the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof
(PBE) [63] for the exchange-correlation potential. The interaction between
the electron and nuclei was expressed with the projector-augmented wave
(PAW) method [116]. 800 eV was selected as the plane wave function kinetic
energy cutoff and 10−6 eV was set as the energy convergence threshold. The
Brillouin zone was sampled with 5×5×1 Gamma-centered Monkhorst−Pack
grids [117]. The shape and volume for each cell were fully optimized and
the maximum force for each atom was less than 0.01 eV/Å. To obtain accu-
rate results in MT-PBP, the GGA+U method is adopted and more details are
discussed in Section 5.3.1.

In TM-PBP frameworks, the second nearest neighboring distances of TM
atoms (d2) are much longer than the nearest neighboring distance of TM
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a d1 d2 Eb Eg M Mcell J1 J2 Magnetic

Cr 18.17 5.91 10.33 3.4 0.73 4.36 0 0.1 −3.3×10−5 Dimerized
Mn 17.79 5.50 10.21 3.5 0.12 4.33 16 −1.86 −0.31 FM
Fe 17.76 5.43 10.15 4.2 0.16 3.12 0 2.5 0.7 Stripe AFM
Go 17.62 5.46 10.11 4.4 0.53 1.96 0 0.4 −3.5×10−2 Dimerized
Ni 17.49 5.33 10.06 4.3 0.73 0.96 0 0.9 −2×10−2 Dimerized
Cu 17.55 5.44 10.07 3.6 0.85 0 0 − − Nomagnetic
Zn 17.34 5.17 10.01 1.0 0.13 0 0 − − Nonmagnetic

TABLE 5.1: The structural, electronic, and exchange interaction
parameters in MT-PBP frameworks. a (Å): lattice parameter;
d1 (Å) and d2 (Å): distances between the nearest TM atoms and
second-nearest TM atoms; Eb (eV): binding energy between TM
atoms and PBP molecules; Eg (eV): energy band gap in the elec-
tronic band structure; M (µB) and Mcell (µB/cell): magnetic mo-
ment per TM atom and per unit cell, respectively; J1 (meV) and
J2 (meV): magnetic coupling constants for the nearest neigh-
boring TM atoms and second-nearest neighboring TM atoms,
respectively.

atoms (d1). Considering all frameworks are semiconductors, the nearest neigh-
boring magnetic exchange interactions should be much stronger than the
second-nearest neighboring interactions. Significantly, Mn-PBP, Fe-PBP, TM-
PBP (TM=Cr, Co, Ni) and TM-PBP (TM=Cu, Zn) are proved to be FM, AFM,
dimerized (AFM dimer) and NM, respectively. The calculated results indi-
cate that the first exchange coupling constants of Mn-PBP and Fe-PBP are
much larger than that of others. For Mn-PBP, exchange interaction coupling
constants J1 ( −1.86 meV) and J2 (−0.31 meV) are both negative, which mani-
fests the magnetic exchange interactions between nearest and second-nearest
TM atoms are both FM, and the whole system also exhibits FM behavior. For
Fe-PBP, the value of J1 (2.5 meV) and J2 (0.7 meV) are both positive, implying
AFM interactions between neighboring Fe atoms and a Stripe AFM ground
state of the system. When it comes to TM-PBP (TM=Cr, Co, Ni), all of J1 are
positive, illustrating AFM interactions between the nearest neighboring TM
atoms. However, all of J2 are lesser than J1 at least two orders of magnitude.
Thus, we deduce that the magnetic ground state of TM-PBP (TM=Cr, Co,
Ni) should be dimer phase, in which the nearest TM atoms bonded as AFM
dimers and the whole system do not exhibit macro magnetic order. From
the previous study, we know that the SSL systems normally display AFM
ground states [113, 114], the FM ground state founded in Mn-PBP provides a
novel example of FM Shastry-Sutherland spin lattice.

5.2.3 Curie temperature of Mn-PBP

Based on the Ising model mentioned above, the thermodynamical magnetic
properties of Mn-PBP framework are simulated according to the Monte Carlo
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FIGURE 5.3: The variation of the average magnetic moment of
unit cell with respect to the temperature for Mn-PBP, the red
and blue line correspond to the results simulated with opti-
mized structure and 95% biaxial compression, respectively. The
left inset indicates the results with 1 electron/hole doping in
each unit cell.

method [118, 119], and the Curie temperature of Mn-PBP is predicted.
With the method discussed in Section 2.3.6, we carry out a Mento Carlo

simulation. The simulation is carried out on a 200×200 2D SSL and the simu-
lation steps are up to 109 for each temperature. The 100×100 2D SSL with 108

steps is also calculated, and almost the same results are obtained, verifying
the simulation has converged. As shown in Figure 5.3, with the evolution
of temperature, the total magnetic moment per unit cell starts to drop grad-
ually from 16 µB at about 60 K, and it becomes 0 µB until at about 110 K.
The Curie temperature (TC) can be determined through locating the second-
order phase transition point, which locates at about 105 K. This means the
magnetic ground state of Mn-PBP changes from FM to paramagnetic when
the temperature rises above 105 K. Compared to recent popular 2D FM mate-
rials, e.g., PTC−Fe (2D MOF) [120] and CrI3 [121], this material holds higher
TC from our calculation. Therefore, it’s likely that the predicted result can be
confirmed by experiments, although the Curie temperature could be overes-
timated from the Ising model.
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FIGURE 5.4: (a) The exchange interaction J of PBP−Mn as a
function of the effective U . The black line represents the value
of J1, and the red line represents J2. (b) Band structures of
Mn−PBP. Left panel: spin-down bands (red); Right panel: spin-
up bands (blue). The solid lines and dotted lines represent the
band structure with Ueff = 3 eV and Ueff = 4.2 eV, respectively.

5.3 The HubbardU and substrate effect on the mag-
netic properties

5.3.1 The influence of Hubbard U

The calculated electronic and magnetic properties in this Chapter are ob-
tained from the first-principles calculation. The DFT +U method proposed by
Dudarev, et al. [122, 123] is adopted to obtain accurate electronic properties,
where only the effective Ueff = U (correlation energy) − J (exchange energy)
value is meaningful. In our calculation, Ueff is selected as 3 eV for all TM-PBP
frameworks, referring to previous works on other 2D MOFs [124, 125, 104].
Besides, the linear response theory method developed by Cococcioni [67] is
employed (shown in Section 3.2.5) to evaluate Ueff and the predicted value is
4.2 eV, which does not affect the qualitative result, shown in Figure 5.4. The
calculated TC is 115 K when the Ueff is chosen as 4.2 eV, demonstrating that
the magnitude of effectiveUeff is appropriate. To confirm the FM ground state
of Mn-PBP, we further check the effect of Ueff value on magnetic properties.
A series of Ueff values ranging from 1.0 eV to 4.2 eV have been tested, and the
ground state of Mn-PBP is always FM as shown in Figure 5.4 (a). Thus, the
predicted FM ground state of Mn-PBP is reliable.

5.3.2 Substrate effect on Mn-PBP

Experimentally, the 2D MOFs are synthesized on the surface of the substrate,
and the compression of 2D material is usually realized through applying
compression to its substrate. Therefore, it is necessary for us to investigate
the effect of the substrate on the magnetic properties of Mn-PBP.
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FIGURE 5.5: The relaxed structure of Mn-PBP and monolayer
BN which is selected as the substrate. The side view (a) and top
view (b) are shown respectively.

As monolayer BN is a stable insulator, we utilize it as the substrate of
Mn-PBP. The optimized result of Mn-PBP with the substrate is shown in Fig-
ure 5.5, where both with or without 95% compression are investigated. In-
terestingly, a slight buckling is observed in the structure, and we find that
all the Mn atoms move downward to approach the BN monolayer, implying
that the BN layer has attractiveness to Mn atoms. However, this buckling will
not influence the magnetic ground state of Mn-PBP. After comparing the to-
tal energy of different magnetic configurations, we conclude that the ground
state of Mn-PBP is still FM.

5.4 Bonding analysis and electronic properties

The bonding analysis is done on the Mn-PBP framework according to the
Bader charge analysis [126, 127] and the electron localization function (ELF)
analysis [128].

In Bader charge analysis, a zero flux surface is introduced to divide atoms
to determine the Bader volume. For instance, the zero flux surface is a 2D
surface on which the charge density is a minimum perpendicular to the sur-
face, i.e., the vertical surface of A-A bond for A2 molecule. Then, the total
electronic charge of an atom is approximately calculated based on the charge
enclosed within the Bader volume. Based on this method, we can quantify
the difference of charge on selected atoms and provide some information to
classify the corresponding chemical bonds. Migrations of charge in Mn-PBP
are calculated based on the Bader charge analysis, and the result is shown in
Figure 5.6 (a). It is evaluated that the charge transfers from each Mn atom
to whole PBP molecules with about 1.19 e. We classify the PBP molecules
around each Mn atom into several groups, i.e., N1 group and N2/N3 group.
Each N1, N2/N3 atoms accept about 0.13 e, 0.12 e from nearby Mn atoms,
and charges transferred from each Mn atom to N1 group and N2/N3 group
are 0.51 e and 0.68 e, respectively.
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FIGURE 5.6: (a) The values of charge transfers from Mn to
nearby PBP through Bader charge analysis. (b) The electron
localization function of Mn-PBP on the plane crossing all Mn
atoms.

The ELF is a measurement to quantify the extent of spatial localization
of electron and it can be used to determine the type of chemical bonds. The
ELF value ranges from 0 to 1, and 1 means the electrons are localized which
refers to the covalent bond. If the ELF equals 0.5, it corresponds to electron
gas, and that is a metallic bond. The ELF analysis of Mn-PBP is shown in
Figure 5.6 (b). A high ELF area is found at C-C, C-N covalent bonds. Besides,
high ELF area is also found among the bond between N and Mn atoms, which
is apparently different from C-C, C-N bond and should correspond to the
N-Mn coordinated bond caused by the electron pair donation from N atom
to its nearby Mn atom. Moreover, low ELF area also exist in the bridge-
like area between neighboring N1, N2 and N3 atoms, which may imply that
neighboring N atoms can interact with each other directly.

Electronic structures of TM-PBP frameworks have been investigated, and
we here show the band structure and projected density of states (PDOS) of
Mn-PBP in Figure 5.7. Meanwhile, the band structure of TM-PBP (TM=Cr, Fe,
Co, Ni, Cu, Zn) is shown in Figure 5.8. All TM-PBP frameworks are found
to be semiconductors and the corresponding band gaps range from 0.12 eV
to 0.85 eV, as listed in Table 5.1. Among them, Cu-PBP has the largest energy
gap, while Mn-PBP has the smallest gaps. Only Mn-PBP has the FM ground
state, which makes the spin-up and spin-down energy bands deviate from
each other as indicated in Figure 5.7. The Mn-PBP framework is a FM semi-
conductor with a tiny band gap, where the spin-up electrons hold the semi-
conducting behavior with the band gap of 0.12 eV and the spin-down elec-
trons hold almost 1 eV band gap. This means that the 100% spin-polarized
carriers could be realized under optical, thermal or electrical gating excita-
tion or strain. To further uncover the electronic properties of Mn-PBP, the
PDOS is calculated and shown in the right side of Figure 5.7, revealing that
there is a strong hybridization of pz orbital from C and N atoms and dxz, dyz
orbitals from Mn atoms near the Fermi level. However, s, dxy, dz2 and dx2−y2
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FIGURE 5.7: Electronic structure of Mn-PBP. Left panel: spin-up
bands (blue lines); middle panel: spin-down bands (red lines);
Right panel: spin-up and spin-down PDOS. The insert of the
middle panel indicates the first Brillouin zone.

orbitals of Mn atoms are located about 0.5 eV above Fermi level and they cor-
respond to the flat bands, implying that they are localized states with higher
energy.

The novel electronic properties of Mn-PBP can be explained in terms of
the symmetry of the system and the type of bonding. As shown in Figure 5.9,
there are three Mn-N bonds around the same Mn atom, and the distance
between Mn and N1 atom is 2.01 Å, while the distance between Mn and
N2/N3 atom is 2.06 Å. Besides, the angle of N2−Mn−N3, N1−Mn−N2 is
83.64◦ and 138.18◦, respectively. The diverse bond lengths and angles reveal
that three Mn-N bonds around Mn atom don’t hold C3 symmetry. The asym-
metric Mn−N coordinating bonds lead the non−equilateral triangle crystal
field contributed by neighboring N atoms, causing the split of Mn d orbitals,
where dxz, dyz orbitals shift down and dxy, dz2 and dx2−y2 orbitals shift up.
Among them, Mn dxz, dyz orbitals locate around Fermi level and hybrid with
pz orbitals provided from C and N atoms in PBP, which is responsible for the
bonding between Mn and PBP molecules. We also try to investigate the elec-
tronic and spin polarization properties from the aspect of real space and we
show the result in Figure 5.9. The partial charge density of Mn−PBP around
the Fermi level is shown in Figure 5.9 (a), indicating that the partial charge
density mainly locates around Mn atoms and its neighboring N atom. The
result is consistent with the above deduction that d orbitals (dxz, dyz of Mn)
strongly hybrid with pz (N and C atoms) orbitals. The spin−polarized charge
density of Mn−PBP is shown in Figure 5.9 (b), and it is clear that the major-
ity spin locates on Mn atoms, which should be provided by the localized d
orbitals from Mn atoms. Meanwhile, the minority spin is mainly polarized
in PBP molecules. Among them, N atoms adjacent to Mn atoms are oppo-
sitely polarized compared to Mn atoms, and the polarization of N1 atom is
much stronger than N2/N3 atoms. Interestingly, the phenomena similar to
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FIGURE 5.8: Band structures of TM-PBP (TM=Cr, Fe, Co, Ni,
Cu, Zn). In AFM TM-PBP (TM=Cr, Fe, Co, Ni), the energy band
of spin-up and spin-down are identical to each other as here the
spin-orbit coupling is ignored in the calculation. The GGA+U
method is used and the value of Ueff is 3 eV in all calculations.
Some similar band structures are obtained in different frame-
works according to the symmetry of the system.

FIGURE 5.9: (a) Top and side views of partial charge density
in Mn-PBP framework. The energy range was chosen around
the Fermi level: −0.2 to 0.2 eV, and isosurface value is 0.002
e/Bohr3. The inset enlarges the area around Mn atom, where
three neighboring N atoms of Mn were marked as N1, N2 and
N3. (b) The spin-polarized charge density of Mn-PBP on the
plane crossing all Mn atoms. The unit of the color map is
e/Bohr3.
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RKKY exchange mechanism [129] is observed in PBP molecules, where car-
bon atoms in PBP molecules are alternately polarized. Besides, we find that
this is not an isolated case in MOFs, as a similar phenomenon is also be found
in some other MOFs [130].

FIGURE 5.10: (a) The spin-polarized charge density distribu-
tion of Mn-PBP on the plane crossing the Mn atoms. The scale
bar unit is e/bohr3. The range is from −0.04 e/bohr3 to 0.87
e/bohr3 , which is different from Figure 5.9. Top and side view
of spin-polarized charge density distribution of (b) FM Mn-PBP.
Top and side view of spin-polarized charge density distribution
of (c) AFM Fe-PBP. The purple and red colors represent major
and minor spin, respectively and the isosurface value is 0.01
e/Å3.

We should note that although there are some kind of RKKY exchange
mechanism in Mn-PBP, the polarized spin is mainly localized at metal atoms,
as shown in Figure 5.10 (a), which explains why we can use the atomic model
to describe the effective spin interaction. We also compared the difference of
spin polarization between the FM Mn-PBP and Stripe AFM Fe-PBP, and the
results are shown in Figure 5.10 (b, c).

5.5 The influence of strain and chemical doping
for Mn-PBP

Strain is a common way to regulate the electronic and magnetic properties
of systems, and the modulation on the band structure of Mn-PBP is shown
in Figure 5.11. The result shows that Mn-PBP changes from a ferromagnetic
semiconductor to a semimetal when about 95% biaxial strain is applied. Be-
sides, the strain can change the distance between Mn atoms and affect the ex-
change coupling constants, thus changing the Curie temperature. As shown
in Figure 5.3, a 95% biaxial compressive strain can raise the Curie tempera-
ture from 105 K to 125 K.

The effect of electron and hole doping on the electronic structure of Mn-
PBP is also investigated. As shown in Figure 5.12 (b), there is a tiny band gap
with the spin-up polarized states below and above Fermi level, while the
spin-down polarized states hold about 1 eV band gap. When the system is
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FIGURE 5.11: The band structures of Mn-PBP under different
biaxial strains. The solid and dotted lines represent the spin-
up and spin-down bands, separately. The corresponding lattice
parameters are varying from 98.75% to 95% of the original lat-
tice parameter, and they are represented with different colors.
Obviously, 95% compression could close the band gap and turn
Mn-PBP into a half metal.

doped with 1 hole/electron per unit cell ( Figure 5.12 (c, d)), the Fermi level
declines/rise and crosses the spin-polarized energy band. This gives rise
to the half metal, in which spin-up electrons behavior as metal, while spin-
down electrons act like semiconductor. According to this analysis, we pro-
posed a spin-field-effect transistor (SFET) based on the Mn-PBP framework,
and its schematic structure is declared in Figure 5.12 (a). Since electron/hole
doping can be controlled by the substrate materials and gate voltage Vgs, con-
trollable spin ON/OFF switch can be realized in Mn−PBP SFET and 100%
spin−polarization carriers could be observed. While we acknowledge that
the concept of SFET has been proposed more than 30 years ago [131], it’s
still complicated to realize the functional SFET for information processing.
Therefore, the Mn-PBP is a promising material for future spintronic devices.

Besides, the electron and hole doping also influence the magnetic proper-
ties, and its increase on Curie temperature of Mn-PBP is shown in the inset
of Figure 5.3.

5.6 Magnonic properties of Mn-PBP

In the field of spintronics, magnons play an important role. In this section,
we investigate the candidate application of Mn-PBP in magnonics, which
is considered as one of the pillars in modern spintronics. The linear spin-
wave theory (LSWT) [52, 53] introduced in Chapter 2 is selected to calculate
the magnon dispersion and magnonic transport properties. The Heisenberg-
Dzyaloshinskii-Moriya interaction (DMI) model is utilized to describe the
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FIGURE 5.12: (a) The schematic of spin-field-effect transistor
device based on Mn-PBP. (b) The total DOS of spin-up and spin-
down electrons without electron/hole doping. The total spin-
up and spin-down DOS with one (c) electron or (d) hole doping
in one unit cell.

spin interactions in SSL, which has already been studied [132, 133]. The ef-
fective Hamiltonian is given as:

Emag =
∑
⟨ij⟩

J1Si · Sj +
∑
⟨l,m⟩

J2Sl · Sm +
∑
⟨lm⟩

Dlm · (Sl × Sm), (5.5)

where J1 and J2 represent exchange interactions and we here select the same
parameters obtained from our ab initio calculations based on the Ising model
in Mn-PBP. The DMI is introduced in our Hamiltonian, which is represented
by Dlm between the site l and m.

In our ab initio calculations, the spin-orbit coupling is ignored to simplify
calculations, causing that the DMI is always zero. However, as shown in Fig-
ure 5.13 (a), the second-nearest-neighbor DMI can exist in Mn-PBP according
to the symmetry of the structure. Inspired by the Ref. [132], the DMI vector
is selected as out-of-plane (along the z-axis) with the clockwise chirality. The
calculated magnon dispersion is shown in Figure 5.13 (b), where different
colors correspond to different DMI magnitude values represented by D. We
find that only the top two bands of the magnon spectrum are strongly in-
fluenced by the D value. Besides, compared to the electronic band structure
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FIGURE 5.13: (a) The illustration of 2D Shastry-Sutherland lat-
tice, where the Dzyaloshinskii-Moriya interactions (DMI) of the
second nearest neighbor interaction is introduced. The DMI
vector direction is out-of-plane with the clockwise chirality.
(b) The spin-wave dispersion of Mn-PBP based on the linear
spin-wave theory (LSWT). The exchange interaction J1 and J2
are chosen from the DFT calculation. The black, blue dotted,
and red dotted line represent the results with DMI value D =
0J2, 0.2J2 and 0.4J2, separately. (c-e) The thermal Hall conduc-
tivity with the function of temperature, in which the influence
of J1 and DMI value on thermal Hall conductivity are com-
pared. The blue dotted and red dotted line represent the result
with DMI value 0.2J2 and 0.4J2, which are the same as param-
eters shown in (b), and here solid lines represent the result with
opposite DMI value. In (c-e) the J2 is chosen as −0.31 meV and
J1 is set with different values shown in the panel (c-e).

shown in Section 5.4, the magnon dispersion has a similar shape, which is
due to the symmetry of the SSL.

The transverse 2D thermal Hall effect is investigated in Mn-PBP, and the
calculated 2D thermal Hall conductivity κTH is shown in Figure 5.13 (c-e) ac-
cording to Eq. (4.30). In Figure 5.13 (c-e), we show the relationship between
κTH and temperature T, where the T is limited to 100 K referring to the cal-
culated Curie temperature. We observe that the κTH is zero when the D is
zero, and non-zero κTH can be realized by introducing a non-zero chirality
provided by the second-nearest neighbor DMI. Additionally, through com-
paring the influence of DMI and J1 on κTH, the κTH is strongly affected by
the DMI and the exchange interaction. As displayed in Figure 5.13 (c-e), the
κTH increases with the increasing of DMI or the reduction of J1. We have
demonstrated that the electronic properties can be modulated by the strain
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or doping, which suggests that the exchange interaction can be controlled,
leading to the modulation of magnonic transport properties. Furthermore,
the corresponding 3D κTH can be obtained when choosing an effective thick-
ness of 2D SSL based on the formula κxyTH = κTH/l, in which l corresponds
to the effective thickness and κxyTH represents the transverse 3D thermal Hall
conductivity. For instance, the estimated transverse 3D thermal Hall conduc-
tivity is about 10−3 W/mK when the l is selected as 5 Å, which is about the
same order of magnitude in Lu2V2O7[6].

5.7 Discussion

A family of 2D TM-PBP (TM= Cr, Mn, Fe, Co, Ni, Cu, Zn) MOFs with the
SSL have been systematically studied by means of first-principles calcula-
tions and Monte Carlo simulations. It is observed that each TM atoms bond
with its nearby three N atoms with asymmetric coordination bonds in the
TM-PBP frameworks. Different magnetic arrangements have been investi-
gated in TM-PBP frameworks, where the Mn-PBP framework holds the FM
ground state with the Curie temperature of about 105 K which can be regu-
lated by strain or chemical doping. Besides, TM-PBP (TM= Cr, Fe, Co, Ni)
holds stripe AFM ground state, and TM-PBP (TM= Cu, Zn) possesses non-
magnetic properties. The band gap of TM-PBP ranges from 0.12eV to 0.87
eV. The Mn-PBP framework is found to be a half semiconductor with the
band gap of less than 0.15 eV, caused by the novel low-symmetry coordina-
tion bonds with the hybridization of pz orbital from C and N atoms in PBP
molecules and dxz, dyz orbitals from Mn atoms. It is demonstrated that both
strain and electron/hole doping can modulate the electronic properties of
Mn-PBP, that can be transited from semiconductor to metal. The magnonic
transport properties of Mn-PBP is investigated, indicating that the system
holds non-trivial topological properties in the aspect of magnons. Moreover,
as Cu-PBP and Fe-PBP systems have already been successfully synthesized,
it will be promising to synthesize Mn-PBP and other 2D MOF TM-PBP in the
near future. These novel properties indicate that TM-PBP frameworks have
candidate applications in electronic devices, especially the Mn-PBP frame-
work with the first predicted FM ground state with SSL in MOFs.
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Chapter 6

Magnonic Weyl states in
Cu2OSeO3

The Cu2OSeO3 is a multiferroic ferrimagnet with the ground state of heli-
cal spin order. Based on the linear spin-wave theory discussed in Chapter 2
and magnonic topology theory presented in Chapter 4, the best fit of the
experimental magnons dispersion of Cu2OSeO3 is done in the presence of
Dzyaloshinskii-Moriya interaction (DMI). It is predicted that two pairs of
degenerate Weyl nodes with opposite topological charge are located at the
high-symmetry points in the reciprocal space in the absence of DMI terms.
However, the degeneracy of these Weyl nodes are lifted when considering
the non-vanishing effect of the DMI in this material, and positions of Weyl
points sensitively depend on the direction and magnitude of the DMI vector.
Besides, the topologically protected magnon surface states are investigated
and the magnonic contribution to the thermal Hall conductivity is estimated,
which are strongly influenced by the DMI.

Results presented in this chapter have already been published:
Li-chuan Zhang, et. al., Phys. Rev. Research 2, 013063 2020.

6.1 Introduction of Cu2OSeO3

The cubic copper(II)-oxoselenite Cu2OSeO3 is a multiferroic ferrimagnet with
a chiral crystal structure that attracts more and more researchers’ attention
due to the emergence of skyrmion order [134, 135, 136, 137, 138]. Its crystal
structure is cubic (space group P213) with the lattice constant a = 8.925Å [139].
As shown in Figure 6.1, each unit cell of Cu2OSeO3 has 16 magnetic Cu2+

ions, and the magnetic structure can be approximated as a distorted breathing-
pyrochlore lattice, which is consisted of slightly deformed tetrahedral Cu4

clusters in a face-centered cubic (fcc) arrangement [59]. Magnetic interactions
within the tetrahedron lead to a ferrimagnetic ground state, in which one of
the Cu2+ spins is antiparallel to the other three, resulting in the total spin
S = 1 of the tetrahedron [140, 141]. Below the Curie temperature TC ≈ 57K,
the helical spin order is observed with a wave number q ≈ 0.01Å−1, which
corresponds to a modulation period of approximately 63 nm in the [001] di-
rection [135].
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FIGURE 6.1: (a) The geometric structure of Cu2OSeO3 in the
unit cell with Cu, Se, and O elements represented by yellow,
black and red ball. (b) The magnetic structure of ferrimagnetic
Cu2OSeO3 is shown together with five different interactions,
marked by JFM

s , JAFM
s , JFM

w , JAFM
w and JO..O, where JO..O repre-

sents the antiferromagnetic long-range interaction.

As shown in Figure 6.1 (b), every Cu2+ ion occupies two structurally
nonequivalent positions, so that every Cu4 tetrahedral cluster consists of
one Cu(2) ion on the 4a Wyckoff site and three Cu(1) ions on the 12b site
[139, 142]. The exchange interactions in Cu2OSeO3 have been systematically
studied and up to 5 different interactions are considered [140, 57, 141, 143].
The proposed model is used to describe the inelastic neutron scattering (INS)
spectrum of spin-wave excitations in a broad energy range and in the whole
reciprocal space [59], as well as electron spin resonance (ESR) that probes
spin-wave excitations at the zone center [144].

In more details, the strong superexchange coupling JFM
s between the Cu(1)

ions within the cluster are ferromagnetic (FM), whereas the Cu(1) and Cu(2)
spins within the same tetrahedron are coupled antiferromagnetically with a
coupling constant JAFM

s . These exchange constants constitute the dominant
magnetic interactions that lead to a ferrimagnetic spin arrangement within
the cluster: three Cu(1) spins align ferromagnetically, and the Cu(2) spin is
pointing in the opposite direction [145]. The intercluster interactions are con-
siderably weaker, given by the FM superexchange JFM

w between the nearest
Cu(1) ions of neighboring clusters, the weak AFM coupling JAFM

w between
Cu(1) and Cu(2), and a longer-range exchange JAFM

O..O that connects Cu(1) and
Cu(2) sites across the diagonals of alternating Cu(1)–Cu(2) hexagon loops [57].

The model, involving five different Heisenberg exchange interactions, pro-
vides a qualitatively good fit to the experimental spin-wave dispersion over
the entire Brillouin zone (BZ) [59] with the exception of the zone corner (R
point), where the magnon bands remain degenerate for any values of the ex-
change parameters. Tucker et al. [58] recently showed that this degeneracy is
removed by Dzyaloshinskii-Moriya interaction (DMI), leading to a clearly re-
solved spin gap of ∼1.6 meV in the magnon spectrum, which they observed
by neutron spectroscopy. These observations are a strong indication for the
existence of topological magnon states in Cu2OSeO3, which motivated our
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investigation in this chapter.

6.2 Magnon dispersion and model establishment
of Cu2OSeO3

6.2.1 Experimental result and effective Hamiltonian

New accuracy experimental INS results are offered from Prof. Dmytro S. In-
osov’s group in TU Dresden, and more detailed measurements were utilized
with cold-neutron triple-axis spectrometer PANDA [146] and the time-of-
flight (TOF) spectrometer MAPS [147]. From the experimental result shown
in Figure 6.2 (a, b), it is very clear that at R point there is a band gap of about
1.6 eV. The magnon spectrum of Cu2OSeO3 has been analyzed in several pre-
vious works, where similar parameters of exchange interactions are adopted
and the DMI is ignored [57, 58, 59]. In this section, we use linear spin-wave
theory (LSWT) [52, 53] to calculate the magnon spectrum of Cu2OSeO3, start-
ing from the generalized Heisenberg model,

H =
∑
⟨ij⟩

S†
i ĴijSj, (6.1)

where the interaction tensor between the lattice sites i and j

Ĵij =

 Jx
ij Dz

ij −Dy
ij

−Dz
ij Jy

ij Dx
ij

Dy
ij −Dx

ij Jz
ij

. (6.2)

The interaction tensor Ĵij includes the symmetric exchange Jij and the an-
tisymmetric off-diagonal DMI terms Dij , caused by the spin-orbit coupling.
The DMI vector is defined as Dij = (Dx

ij, D
y
ij, D

z
ij), and its value is discussed

in the next section. Following earlier works [59], we include five Heisen-
berg exchange interactions shown in Figure 6.1 (b), with their numerical
values listed in Table 6.1. As the total magnetization per tetrahedra satisfy
3⟨Sz

Cu1⟩+ ⟨Sz
Cu2⟩ = 1, we set the spin length of SCu2 as 0.45 and SCu1 as 0.4833

to get the best fitting results. To deal with the ferrimagnetic system, the rota-
tion matrix Oi is used, introduced in Chapter 2.4.2, where Oi determines the
magnetic moment direction at the site i.

Based on the LSWT, we first calculate the magnon dispersion without
the DMI, and the obtained magnon dispersions are very close to previously
published data, as shown in Figure 6.7. The results demonstrate that there
are two doubly-degenerate crossing points among the lowest four magnon
branches: one at Γ and one at R high-symmetry points. However, the results
of high-resolution INS measurements, presented in Figure 6.2, clearly mark
the formation of a 1.6 meV band gap at R with the eigenvalue around 10
eV. Therefore, the DMI is utilized to the effective spin Hamiltonian to repro-
duce the experimental results, and the corresponding magnonic topology in
Cu2OSeO3 is investigated due to the introduction to DMI.
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6.2.2 The DMI vector

The cubic Cu2OSeO3 has the B20 structure with the space group P213. Em-
ploying the symmetry operations, the positions of all Cu2+ ions can be ob-
tained from the positions of the Cu(2) (u, u, u) and the Cu(1) (a, b, c) atom,
where u = 0.88557, a = 0.13479, b = 0.12096, and c = 0.87267. Furthermore,
global symmetries are related to the different bond directions of equivalent
pairwise interactions. According to the Moriya’s symmetry rules [26], the
corresponding DMI vectors obey the same respective symmetry relations as
the bond directions. The atomic positions, the bond directions, and the cor-
responding DMI vectors of the nearest neighbor interaction are listed in Ta-
ble 6.2, the copper structure and the nearest neighbor interaction bonds are
additionally visualized in Figure 6.3. Similarly, other kinds of interactions
and DMI vectors can be obtained, but they are not listed here.

The DMI vectors can be acquired through ab initio calculation and exper-
imental fitting. We tried both methods and the results are shown below.

DMI vector with ab initio parameters

As indicated in Eq. (6.1) and Eq. (6.2), considering five antisymmetric DMI
vectors in the Hamiltonian, there are 15 additional parameters introduced,
which is very hard to accurately fit them. In this section, we use 5 distinct ab
initio DMI vectors which were reported by O. Janson et al. [Nat. Commun.
5, 5376 (2014)]. As the Heisenberg interaction parameters from the ab initio
results are similar to the results shown in Table 6.1, we fix the exchange in-
teraction parameters to study the influence of DMI. The comparison between
the theoretical result and the experimental data is shown in Figure 6.4, and
four Dirac points between band 2 and band 3 were found in the first BZ. The
results indicate that two doubly-degenerate crossing points split at R point,
by utilizing the ab initio DMI parameters. However, the calculated magnon
dispersion is not consistent with experimental results. We attribute this to an
inherent flaw in the strong spin-orbit coupling system with ab initio calcula-
tion.

Parameters Distance (Å) J (meV) [59] D (meV)

JFM
w 3.039 −4.2 (−0.491, 2.0, −1.41)
JAFM

s 3.057 12.3 0

JFM
s 3.220 −14.5 0

JAFM
w 3.300 2.33 0

JAFM
O..O 6.350 3.88 0

TABLE 6.1: Values of the parameters entering the Heisenberg
Hamiltonian Eq. (6.2). Five exchange interactions are listed to-
gether with the corresponding interatomic distances which are
very similar to the previous works. The nearest-neighbor DMI
vector was chosen so as to reproduce the experimental spin-
wave dispersion.
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FIGURE 6.3: The atomic positions of copper atoms in the unit
cell of Cu2OSeO3. The blue lines represent the nearest neighbor
bonds of Table 6.2. The position of Cu2+ ions are listed in the
right side of picture with a = 0.13479, b = 0.12096, and c =
0.87267. The position of Cu1, Cu2, Cu3 and Cu4 are represented
as: (u, u, u); (1.5− u, 1− u, u− 0.5); (1− u, u− 0.5, 1.5− u) and
(u− 0.5, 1.5− u, 1− u) with u = 0.88557.

TABLE 6.2: The bond vector and the DMI vector for the nearest-
neighbor interaction in Cu2OSeO3.

i j Rij Dij

r5 r12 (0.5− b− a, 1− c− b, 0.5 + a− c) (Dx, Dy, Dz)
r5 r16 (−0.5 + c− a, 0.5− a− b, 1− b− c) (−Dz, Dx, Dy)
r6 r13 (1− c− b, 0.5 + a− c, 0.5− b− a) (Dy, Dz, Dx)
r6 r14 (0.5− a− b, 1− b− c,−0.5 + c− a) (Dx, Dy,−Dz)
r7 r11 (0.5 + a− c, 0.5− b− a, 1− c− b) (Dz, Dx, Dy)
r7 r15 (1− b− c,−0.5 + c− a, 0.5− a− b) (Dy, Dz, Dx)
r8 r9 (−0.5 + b+ a, 1− c− b,−0.5− a+ c) (−Dx, Dy,−Dz)
r8 r10 (0.5− c+ a, 0.5− a− b,−1 + b+ c) (Dz, Dx,−Dy)
r9 r10 (1− c− b,−0.5− a+ c,−0.5 + b+ a) (Dy,−Dz,−Dx)
r11 r15 (0.5− b− a,−1 + c+ b,−0.5− a+ c) (Dx,−Dy,−Dz)
r12 r16 (−1 + c+ b,−0.5− a+ c, 0.5− b− a) (−Dy,−Dz, Dx)
r13 r14 (−0.5− a+ c, 0.5− b− a,−1 + c+ b) (−Dz, Dx,−Dy)
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FIGURE 6.4: Momentum-energy cuts along (a) (110) and
(b) (001) directions that cross at (1.5, 1.5, 1.5). The red dotted
lines represent the theoretical results using the referenced ab ini-
tio DMI vectors[141].

DMI vector with fitting

Alternatively, the DMI vectors can be obtained by fitting to the experimental
magnon dispersion. In this section, we present how to obtain the DMI vector
based on the experimental fitting. First, a set of representative points of ex-
perimental data are selected as the data base for the fitting. Subsequently, the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian update strategy is em-
ployed to converge the considered DMI vector. This procedure is executed
separately for each DMI vector of the first 4 nearest neighbors given in Ta-
ble 6.1. After few iteration steps, the first, second, third and fourth nearest
DMI vectors converge to (−0.458, 2.011, 0.565) meV, (1.505, 6.143, 3.013) meV,
(0.262, 4.615, 1.236) meV and (3.976,−2.484,−2.024) meV, respectively. The
comparison of the magnon dispersion with different DMI vectors are shown
in Figure 6.5, which points towards great accuracy when considering the
first nearest neighbor DMI. We get the conclusion that including the nearest-
neighbor DMI vector obtained from the experimental fitting can reproduce
the experimental results.

However, the ground state of the system is the helical spin order, which is
not included in the previous fitting. The nearest-neighbour DMI vector is re-
fitted to realize the similar spin-spiral ground state, and the new DMI vector
is obtained as (−0.491, 2.0,−1.41) meV. As shown in Figure 6.6, we compare
the total energy of different spin spiral states with different DMI vectors, and
the minimum energy of the black line is located close to the q = 0.01Å−1,
which is the wave number observed from the experiment. Therefore, only the
nearest-neighbor DMI vector with the fitted value (−0.491, 2.0,−1.41) meV is
introduced to the Hamiltonian in Table 6.1.
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FIGURE 6.5: The comparison of fitted results to the experimen-
tal data. Panels (a)–(d) correspond to the results obtained when
considering only the first, second, third, and fourth nearest-
neighbor DMI vector, respectively.

FIGURE 6.6: The comparison of the total energy of the system
for the spin spiral calculation. During the simulation, the cone
angles is selected as π/2. The calculation result with the fitted
DMI vector (−0.491, 2.0,−1.41) is almost consistent with the ex-
perimental result.
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FIGURE 6.7: The magnon dispersion of the lowest four bands of
Cu2OSeO3. The dotted blue line represents the dispersion with-
out the effect of the DMI, with the Weyl points emerging at R
and at Γ. The black line represents the dispersion upon includ-
ing the DMI, with six Weyl points emerging at R1, R2, R3, R4,
Γ1 and Γ2. The exact positions of the Weyl points are shown in
the inset: R1 = (−0.39, 0.47,−0.23), R2 = (−0.38, 0.34,−0.25),
R3 = (0.40, 0.22,−0.33), R4 = (−0.40, 0.18, 0.49), Γ1 =
(0.01,−0.03, 0.04), Γ2 = (0.01,−0.11, 0.03).

6.2.3 Magnon dispersion from the LSWT

The magnon dispersion is studied based on the LSWT, and the effect of DMI
on the magnon dispersion is explored, shown in Figure 6.7. Irrespective of
its exact choice, including the DMI into the picture has a drastic effect on the
number and position of the degenerate crossings between bands 2 and 3 in
the magnonic band structure, while the position of these degenerate cross-
ings at high symmetry points without the DMI is enforced by the crystal
symmetry. The set of DMI parameters we used here (see Table 6.1), splits
previously degenerate crossing points at Γ and R, giving rise to overall six
crossings: two at R3 and R4 (in the vicinity of R), two at Γ1 and Γ2 (in the
vicinity of Γ) and one additional pair of new crossing points at R1 and R2, see
Figure 6.7. Given state-of-the-art experimental conditions, it is difficult to ob-
tain the neutron scattering evidence (e.g., in terms of characteristic intensity
pattern) for the predicted crossing points from the experiment, which can be
partly attributed to their asymmetric positioning in the BZ and the respective
necessity of scanning through the directions which contain them. However,
given the excellent agreement between theory and experiment in Figure 6.2,
we are confident that our theoretical model reproduces the magnonic spec-
trum of Cu2OSeO3 throughout the whole BZ well and that the degeneracy
points predicted by the model can be eventually resolved experimentally in
the future. In the next subsection, we analyze the topological character of
these points.
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FIGURE 6.8: (a,b) Monopole distribution of the absolute mag-
nitude of the Berry curvature corresponding to two lowest
magnon bands in the k-planes marked in the inset. In (a), the
DMI was not taken into account, while (b) shows the result with
the DMI included. The k-planes are chosen so that they include
the Weyl points. (c, d) The evolution of the Chern number as
a function of kz . Here, the Chern number C12 refers to the to-
tal Chern number of band 1 and band 2. The (c) and (d) panels
display the result without and with the DMI effect, respectively.
The inset in (d) is the zoom into the region around kz = 0.03.

6.3 Topological properties of Cu2OSeO3

6.3.1 Magnonic Weyl states

The magnon berry curvature is calculated to investigate the magnonic topol-
ogy, based on Eq. (6.3).

Ωn(k) = −
∑
m ̸=n

Im
[
⟨V L

nk|∂kD̂(k)|V R
mk⟩ × ⟨V L

mk|∂kD̂(k)|V R
nk⟩
]

(ϵnk − ϵmk)2
, (6.3)

where ϵmk and ϵnkare the magnonic eigenvalues. D̂ is the dynamical matrix
discussed in Chapter 2 and VR and VL represent the right and left eigenstates.
As we mainly focus on the topological nature of the band crossings arising
between bands 2 and 3, we analyze the cumulative Berry curvature of the
bands 1 and 2. In Figure 6.8 (a) we present the direction of the normalized
projected cumulative Berry curvature vector field and its absolute magnitude
in the ky = kz plane, first for the case without DMI. In the mentioned figure,
the color scale represents the absolute value of the Berry curvature vector
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field. As apparent from the figure, the Berry curvature distribution exhibits
two monopole-like features at R and Γ, where the band crossings occur, with
the crossing at Γ serving as a source, and the crossing at R serving as a sink
of the Berry curvature field. The corresponding distribution, obtained after
including the DMI, is shown in Figure 6.8 (b) in the plane which includes Γ1

and R3 points and which is perpendicular to the ky-kz plane. In the latter case
the distribution of the Berry curvature field, although similar to the previous
case, is more complex, owing to the fact that the crossings at Γ2, R1, R2 and
R4 are very close to the plane.

Next, we compute the monopole charge of the ith band crossing by evalu-
ating the flux of the cumulative Berry curvature field through an infinitesimal
sphere Si surrounding the crossing:

Qi =
1

2π

∫
Si

Ω(k) · n dSi, (6.4)

where n is the surface normal. According to our calculations, without the
DMI, the total topological charge of the two degenerate points at Γ is +2,
while it constitutes a value of −2 at R. Upon including the effect of the DMI,
each of the double degeneracies splits into two nondegenerate points with
charges of +1 at Γ1 and Γ2, and −1 at R3 and R4. Meanwhile, a pair of
newly emerging degeneracies have the monopole charge +1 and −1 at R2

and R1 points, respectively.
The topological analysis is further supported by the BZ evolution of the

first Chern number, defined analogously to the charge as: C(P ) = 1
2π

∫
P
Ω(k)·

n dP where P is a two-dimensional slice of the BZ and n is its normal vector.
By defining the plane P as the kx-ky plane at a given kz with n = (0, 0, 1),
we compute the evolution of C(kz) as a function of kz, presenting the results
in Figure 6.8 (c, d). Without DMI, the Chern number changes by 2 when P
passes through the degenerate crossing points, while in the presence of DMI
it changes by 1 when P passes through every nondegenerate crossing point.
This analysis underlines the main finding of this chapter — the emergence of
two doubly degenerate type-I Weyl points [148] in the magnonic structure of
Cu2OSeO3, located at R and Γ without DMI, which further split into overall
four Weyl points when the symmetry of the system is reduced by including
the DMI into consideration, while the latter additionally drives an emergence
of a new pair of Weyl points near R.

6.3.2 Surface states

As the emergence of the Weyl points in the magnonic band structure of a
three-dimensional crystal is expected to give rise to the surface states of a
thin film, here, we analyze the magnon band structure of a 75-layer thick
two-dimensional slab of Cu2OSeO3 cut along the [001] axis, presenting the re-
sults in Figure 6.9. The spin-wave dispersion is shown along the path which
includes the projections of the Weyl points onto the (001)-plane, which are
further indicated with red and blue small circles in the figure, according to
their topological charge. In the magnon band structure, the states are marked
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with their weight at the surface of the slab, which is represented by different
color scales. Here, the color scale is calculated based on the equation:

LW (k, j) =
∑
i

V i
L(k, j)V

i
R(k, j)(R

i
z − 0.5), (6.5)

where k is the reciprocal space vector, j denotes the band index, i numbers
the magnetic atom, and Ri

z represents the normalized position for atom i
along the z-axis. V i

L(k, j) and V i
R(k, j) are the components of the left and right

eigenstates of jth magnon branches at the magnetic atom i. The Eq. (6.5)
provides a reasonable measurement to judge the surface character of each
state. However, as shown in Figure 6.9 (a), surface states at about 9.2 meV
along ΓY and Y R appear to loose and regain their surface character with-
out contact to bulk states, which is highly unusual. This issue is resolved
by Figure 6.9 (d), which shows the real-space decomposition of one of these
apparent bulk states at the Y point. That state exhibits highly localized con-
tributions on both surfaces but none in the bulk, hence the degenerate states
are indeed highly localized at the surfaces. Accordingly, Eq. (6.5) is unable to
classify such states equally localized on both surfaces. This justifies the as-
sumption that the other apparent bulk states along that high symmetry line
are of surface character as well. Numerically, the origin of the surface char-
acter concealment is the exact energetic degeneracy which causes unsuitable
eigenstate superpositions.

Figure 6.9 (a) corresponds to the situation without the DMI, with pro-
jections of the Weyl points positioned at high symmetry points in the two-
dimensional BZ. We observe that in this case the Weyl points of opposite chi-
rality are connected by the magnon “arc” surface states, which is in accord
with our topological analysis in Section 6.3.1. Additional analysis of the sur-
face magnon arcs with the cut energy 9.25 meV is given in Figure 6.9 (c), vi-
sualizing clear arcs connecting the projected Weyl point to bulk states. Upon
including the effect of the DMI, the Weyl points split, and their projections
move to the Γ1, R3, Γ2 and R4 points. Meanwhile, one pair of Weyl points
appear in R1 and R2 points. Again, this is consistent with the previous anal-
ysis of the topological charges: while the points of the same charge are not
connected by the surface states, the points of opposite chirality are.

6.4 Thermal Hall conductivity

In Cu2OSeO3, the thermal Hall effect of magnons is the generation of a trans-
verse thermal Hall voltage under an applied longitudinal temperature gradi-
ent due to the presence of the DMI [6, 149]. The energy-dependent contribu-
tion to the ij’th Cartesian component of the thermal Hall conductivity tensor
κ̂ is given by:

κij(ϵ) = − k2BT

(2π)3ℏ
∑
n

∫
BZ
δ(ϵnk − ϵ)C2(f

B
n ) Ω

ij
n (k) dk, (6.6)
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FIGURE 6.9: (a, b) The surface magnon band structure of the
75-layer thick slab of Cu2OSeO3(001) along the paths indicated
in the inset shown on the (a) without the DMI, and on the (b)
including the DMI. The special points Γ, R, Γ1, R1, Γ2, R2,
R3 and R4 are the projections of the Weyl points onto the (001)
plane, which are indicated with red (positive charge) and blue
(negative charge) solid circles. The color scale represents the
weight of the magnonic wave function along with the slab.
(c) The surface arcs calculated without DMI effect for the se-
lected energy of 9.25 meV. (d) The real-space distribution of the
weight of the state at Y-point shown in (a) with the energy of
about 9.2meV. Here, the Rz refers to the z-component of the
atomic position represented with fractional coordinates.

where n enumerates the magnon bands, fB
n is the Bose distribution function,

which can be expressed as fB
n = (eϵnk/kBT − 1)−1, and C2 is given by

C2(x) = (1 + x)

(
ln

1 + x

x

)2

− ln2 x− 2Li2(−x), (6.7)

with Li2 denoting the dilogarithm function. The thermal Hall conductiv-
ity tensor of the system is then defined as κij = limµ→∞ κijµ , where κijµ =
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FIGURE 6.10: Components of the thermal Hall conductivity
tensor in Cu2OSeO3. Energy-dependent (a), and cumulative (b)
thermal Hall conductivity computed at 60 K. (c) The tempera-
ture dependence of the thermal Hall conductivity.

∫ µ

0
κij(ϵ) dε is the cumulative thermal Hall conductivity.
From the experiment, we know that the Curie temperature of Cu2OSeO3

is around 60K [141, 58]. The computed energy-dependence and the cumu-
lative components of the thermal Hall conductivity, calculated according to
Eq. (6.6) at 60 K, are shown in Figure 6.10 (a, b). In these plots, we observe
that there is a significant enhancement especially in the κxz component of
the thermal Hall conductivity in the energy region between 8 and 10 meV.
This enhancement can be attributed to the distribution of the Berry curva-
ture around the Weyl points in that energy region, which correspondingly
gives rise to the fingerprint of the Weyl points in the energy distribution of
the thermal Hall effect. Since the Weyl-point enhancement is most prominent
for the κxz component, the overall value of the thermal Hall conductivity for
this component is by far dominant over the other two components at 60 K,
see Figure 6.10 (c), where the thermal Hall conductivity as a function of tem-
perature is shown. As magnons obey the Bose distribution, and the low-lying
states are thus responsible for the thermal Hall effect at low temperatures, the
characteristic zero-plateau in κ observed in Figure 6.10 (c) is the consequence
of the vanishing contribution by the “topologically-trivial” low-lying bands
which are basically not affected by the DMI, (Figure 6.7). Respectively, the
thermal Hall effect “lifts off” once the region of Weyl points is reached by
the distribution of magnons. The overall magnitude of the thermal Hall ef-
fect that we predict in the region of higher temperatures can reach as much
as 2 × 10−4 W/Km, which is large enough to be observed in experiments [6,
149].
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FIGURE 6.11: The evolution of the Weyl points near R (a) and
Γ (b) as a function of the DMI strength, with the DMI vector
following D = c(−0.491, 2.0,−1.41)meV, where the coefficient
c represented by the color scale is chosen from 0 to 1.2. The red
circle marks a new pair of Weyl points, and their projections are
circled by red dotted circles.

6.5 Effect of the DMI on Weyl points and thermal
Hall conductivity

6.5.1 Effect of DMI on Weyl points position

Given the low structural symmetry of Cu2OSeO3, it is reasonable to explore
the influence of the DMI vector on the position of the Weyl points in the
BZ. While we envisage that the tuning of the DMI parameters can be real-
ized e.g., by pressure, strain, electric field [150, 151, 152, 153], or doping with
defects, knowing the correlation between the Weyl point geometry and the
DMI provides a unique tool for accessing the details of the DMI in a given
sample, which are challenging to extract with other techniques based on e.g.,
measuring the properties of domain walls [154, 155].

To estimate the influence of the DMI on the Weyl points, we first keep
the direction of the DMI along the fitted DMI direction, while scaling its
magnitude following D = c(−0.491, 2.0,−1.41)meV, (c is the coefficient rep-
resented by the color scale in Figure 6.11 (a,b)). The evolution of the Weyl
points around R and Γ upon increasing the DMI is shown in Figure 6.11 (a)
and (b) separately. Notably, upon starting from a degenerate case at zero
DMI, the splitting between the two Weyl points is clearly driven by lowering
of symmetry upon including the non-vanishing DMI. When the value of the
coefficient c continues to increase and eventually approaches 0.5, a new pair
of Weyl points appears near the R point, which is indicated by the red circle.

Further, after fixing the magnitude of the DMI to the value of 1meV, we
rotate the direction of the nearest neighbor DMI vector, as specified by angle
θ, about the x, y and z-axis, and track the position of two Weyl points around
Γ and R in Figure 6.12, respectively. The results indicate that the Weyl points
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FIGURE 6.12: The effect of the DMI on Weyl point positions.
Only the nearest DMI was taken into account and the positions
of Weyl points were drawn separately near the R (a2, b2, c2)
point and Γ (a1, b1, c1) points. (a,b,c) corresponds to the ro-
tation of the DMI vector around x, y and z axes with the ini-
tial vector along [010] (a3), [100] (b3) and [010] (c3). The projec-
tion of each Weyl point onto the kx-ky, kx-kz and ky-kz planes
is shown with black symbols in the corresponding planes. The
color map represents the value of θ in the range from 0 to 2π.

rotate around the R and Γ points along specific paths when following the
rotation of the DMI vector. The corresponding trajectories, while having a
relatively complex shape in the three-dimensional BZ, clearly possess a high
degree of symmetry, as apparent from the projections of the trajectories onto
the high-symmetry planes, see e.g., Figure 6.12 (a1–c1) and (a2–c2).

6.5.2 Effect of DMI on thermal Hall conductivity

In addition, to systematically investigate the influence of DMI on the ma-
gnonic topology, we also address the relationship between the thermal Hall
effect and the DMI. To do this, under the premise of ensuring the agreement
with the experimental magnon dispersion, the magnon dispersion, and ther-
mal Hall conductivity are calculated for a different choice of the DMI vector,
which gives rise to 4 Weyl points. As we show in Figure 6.13, the magnon
dispersion can be fitted very well with the DMI vector (−0.458, 2.011, 0.565).
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FIGURE 6.13: Momentum-energy cuts along (a) (HH 3
2), (b)

(32
3
2L), and the first two cuts are centered a the R(32

3
2
3
2) point.

The magnon dispersion calculated with the nearest-neighbor
DMI vector (−0.458, 2.011, 0.565) meV is shown with thin red
lines. The Energy-dependent and cumulative thermal Hall con-
ductivity calculated at 60 K are shown in (c, d), separately. The
temperature dependence of the thermal Hall conductivity is
shown in (e). During the calculation, the nearest-neighbor DMI
is selected as (−0.458, 2.011, 0.565) meV for (c-e).

However, the magnitude of the thermal Hall conductivity is about one order
smaller than the one discussed above. These results suggest that the ther-
mal Hall conductivity in this compound is directly related to the Weyl points
modulated by the microscopics of the DMI.

6.6 Discussion

In this chapter, based on the LSWT and experiment, several important find-
ings concerning the magnonic properties of Cu2OSeO3 are obtained. On
the one hand, we can attribute the origin of the experimentally observed
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magnon band gap in the spin-wave spectrum at the R point to the effect of
the DMI, which is chosen so as to provide the best fit to the high-resolution
neutron scattering data. On the other hand, after systematically address-
ing the topological properties of Cu2OSeO3, we reveal the emergence of the
doubly-degenerate Weyl nodes with topological charge ±2 at high-symmetry
points even without the effect of the DMI. We further predict that not only
each Weyl point splits into two but also one pair of Weyl points appears near
R point, as the symmetry of the system is reduced when bringing the DMI
into play. The proximity of several bands makes it difficult to resolve the
bands forming the Weyl crossing point from the other two modes, yet from
the overall agreement of the calculations with the experimental measure-
ments one can conclude that our proposed fitting parameters must be valid
within the present accuracy of the experiment. Moreover, we find that the
position and number of the Weyl points can be controlled by changing the
details of DMI. We further predict that the emergence of the Weyl points in
the system goes hand in hand with the formation of topological magnonic
surface states, which can be observed for instance at the (001) surface of
Cu2OSeO3.

These findings open a quest for experimental observation of the Weyl
points in this material, and exploring the influence of such points in the
magnon spectrum on various properties of more complex magnetic phases
in Cu2OSeO3, for example, its skyrmion phase. While we discover that Weyl
points play a crucial role in shaping the magnitude and temperature depen-
dence of the thermal Hall effect in its ferrimagnetic phase, we expect that
the same holds true also for skyrmions in Cu2OSeO3. The observation of the
exact position of the Weyl points as well as following their dynamics upon
structural reconstructions in Cu2OSeO3 can further provide a unique tool for
accessing the microscopics of the DMI in this complex compound, which can
be of paramount importance for understanding and shaping of chiral dy-
namics and properties of Cu2OSeO3. The latter finding also suggests that in
special materials of Cu2OSeO3 type one can expect that the topologies in the
space of magnons and the real-space of skyrmions can be closely intertwined.
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Chapter 7

The interplay of Kitaev interactions
and Dzyaloshinskii-Moriya-
interactions

In magnets, the Dzyaloshinskii-Moriya interaction and the anisotropic ex-
change interaction respected by Kitaev interaction can coexist. However, it
is a challenge to distinguish their magnitude separately, as both of them may
hold similar magnon dispersion. In this chapter, we demonstrate that it can
be done by accessing magnonic transport properties and magnetic field re-
sponse. Based on our proposed strategy, the spin interactions in CrSiTe3 and
CrGeTe3 are predicted and their candidate applications in magnonics are ex-
plored.

Results presented in this chapter have already been published:
Li-chuan Zhang, et. al., Physical Review B 103, 1344142021, 2021.
Fengfeng Zhu, Li-chuan Zhang, et. al., Science Advance 7(37), eabi7532, 2021.

7.1 The Kitaev interaction in magnets

As presented in Section 2.3.3, the Kitaev interaction has been theoretically
investigated in triangle, honeycomb and kagome lattice [43, 42, 44], and the
layered magnetic materials with anisotropic Kitaev-type of spin interactions,
such as iridates A2IrO3 (A=Li; Na) [45, 156, 157, 158], α-RuCI3 [159, 42] or
CrI3 [54], are attracting an ever-increasing attention owing to their poten-
tial applications in topological quantum computing and spintronics [160, 73].
Similar to the Dzyaloshinskii-Moriya interaction (DMI) - another pivotal in-
teraction in the realm of magnetic materials – the Kitaev interaction is origi-
nated from the spin-orbit coupling, and it has been shown that both interac-
tions can coexist in one material [161, 162, 163].

Practically, one of the natural ways to address the properties of Kitaev in-
teraction in a specific material lies in measuring and analyzing the magnon
spectra, which directly reflect the interplay of spin interactions in the sys-
tem with magnetic anisotropy and an external magnetic field [164, 165, 166].
However, it is known that similar magnon properties in terms of magnon
band dispersion can be realized by either Kitaev or DMI in honeycomb ferro-
magnets such as e.g., CrI3 [25, 167]. This makes the magnonic detection of the



86 Chapter 7. The interplay of Kitaev interactions and
Dzyaloshinskii-Moriya-interactions

FIGURE 7.1: (a) Sketch of the structure of honeycomb CrI3
monolayer. The unit cell is outlined with a thin black line,
where blue balls represent Cr3+ ions and pink balls are io-
dide ions. The Kitaev bonds x (red), y (dark blue), z (yel-
low) are indicated with thick colored lines. The arrows mark
the second-nearest-neighbor bond orientations along black dot-
ted lines that share a common sign of out-of-plane DM vector.
(b) Schematic diagram of the influence of an in-plane magnetic
field B on the spin direction S whose polar angle is defined as
θs. (c) The perspective view of Cr2I2 plane, where its normal
vector is marked as γ̂ and the Kitaev angle is defined as the po-
lar angle of γ̂.

Kitaev interaction ambiguous, and calls for refining the measurement proto-
col for bringing to light the magnitude and symmetry of the exotic Kitaev
exchange.

The phase diagram of the Kitaev-DMI model has been studied in the past,
and the distinction between the gapped and gapless phases of this model
has been shown to be possible to draw by referring to thermal Hall effect
measurements [11]. In order to distinguish whether the system is DMI or
Kitaev interaction dominated, magnonic properties other than the dispersion
have to be investigated in detail.

7.2 Model establishment

To investigate the magnonic properties of honeycomb ferromagnets exhibit-
ing DMI and Kitaev interactions in the presence of Heisenberg exchange and
magneto-crystalline anisotropy exposed to a magnetic field, we consider the
effective spin Hamiltonian on a two-dimensional ferromagnetic honeycomb
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lattice, sketched in Figure 7.1, given by:

H =−
∑
i,j

JijSi · Sj −K
∑
⟨ij⟩γ

Sγ
i S

γ
j −

∑
ij

Dij · (Si × Sj)

−
∑
i

A(n̂i · Si)
2 −B · µBge

∑
i

Si,
(7.1)

where the first and second terms contribute to the exchange interaction. The
Jij coefficients mediate the isotropic Heisenberg exchange interaction be-
tween spins Si and Sj on sites i and j, and the second term is the Kitaev inter-
action, where Sγ

i = Si · γ̂ij with γ̂ij being the Kitaev vector determined by the
sites i and j. The second-nearest-neighbor DMI is represented by the third
term with DMI vectors Dij pointing out-of-plane, as required by the symme-
try of the structure, i.e., Dij = (0, 0, Dz

ij). Additionally, we add a single-ion
anisotropy term with respect to the local easy axis n̂i (choosing it to be the
unit vector along the z-direction), and the energy of Zeeman coupling to the
magnetic field B, with µB as Bohr magneton and ge-factor of 2.

Figure 7.1 represents the monolayer honeycomb Kitaev materials such as
α-RuCl3 [159, 42] and CrI3 [54], and for simplicity we refer to our studied
system as CrI3 in the following. Referring to experimental data from the
Ref [54], we set approximate values for the nearest-neighbor exchange inter-
action J = 0.2meV, the Kitaev interactionK = 5.2meV, and the spin moment
magnitude S = 1.5. An easy-axis anisotropy energy of A = 0.1 meV is cho-
sen so as to ensure that the ground state is ferromagnetic along the z-axis and
reproduce the 0.3 meV band gap in the magnon spectrum at the zone center
for the lowest branch. As displayed in Figure 7.1 (c), the Kitaev vector γ̂ij
is defined as the normal vector to the Cr2I2 plane spanned by Cr ions i and
j, and the nearby I atoms. Respectively, the Kitaev vector corresponding to
the yellow bond in Figure 7.1 (a) and marked with z is chosen as γ̂z=(sinθ,
0 cosθ)=(

√
2√
3
, 0, 1√

3
) [54, 168], where the Kitaev angle θ is about 54.74◦ for

the case of CrI3. The Kitaev vectors for red and blue bonds are determined
analogously, and their value are obtained according to the C3 symmetry, as
discussed in Section 2.4.

7.3 The magnonic properties in Heisenberg-Kitaev
model

To study the interplay of DMI and Kitaev interaction, we first ignore the effect
of the magnetic field and DMI. Then we can easily study the magnonic trans-
port properties in a simplified Heisenberg-Kitaev model with all spin direc-
tions along z direction. As introduced in Section 2.4, the Holstein-Primakoff
transformation [51] is employed to rewrite the Hamiltonian in terms of bo-
sonic ladder operators ai and a†i , and the linear spin-wave theory (LSWT) [52,
53] is used to obtain the eigenvalue and eigenvector of the system. As the Ki-
taev angle θ is different in different Kitaev materials [169, 54], we investigate
the Heisenberg-Kitaev model by varying the θ angle and the magnitude of
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FIGURE 7.2: (a) The comparison of magnon dispersions along
high-symmetry lines for different values of the Kitaev param-
eters. Grey, blue and red lines correspond to the K values of
0, 5.2 and 3meV. The dashed and solid lines correspond to the
Kitaev angles θ of 45◦ and 54.74◦, respectively. The correspond-
ing energy-resolved Chern number is shown in (b). The Berry
curvature distribution of the first magnon branch in the first
Brillouin zone for different K-values with θ = 54.74◦ is shown
in the inset of (b). The color map ranges from −40 to 40 in arb.
units, and the exceeding values are marked with black. The
magnon band gap △ as a function of K (at θ = 54.74◦) and θ (at
K = 5.2 meV) is shown in (c) and (d), respectively.

K, assuming that the sign of the latter remains positive. We further keep
the value of J + K/3 constant so as to ensure that the ground state has the
same energy. By comparing the band dispersion for different K and θ values
shown in Figure 7.2 (a), we find that the band gap between the two modes
△ is enlarged as either K or θ increases, see Figure 7.2 (c,d). Meanwhile, a
larger K not only decreases the spin stiffness at the Γ point but also opens a
larger band gap at K, as shown in Figure 7.2 (a, c). As a larger θ enhances the
effect of anisotropic exchange interaction, the single-ion anisotropy energy is
introduced to ensure the stability of the system. In Figure 7.2 (d), the range
of considered angles is limited by 54.75◦ owing to the fact that the system be-
comes unstable if the single-ion anisotropy energy remains unchanged. The
relationship between the θ and the required anisotropy energy A is studied
and we show the result in Figure 7.3, indicating that an anisotropy energy
is required if the interaction is dominated by the Kitaev interaction with the
Kitaev angle larger than 54.74◦.
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FIGURE 7.3: The relationship between the θ and the required
minimum anisotropy energy A in the Heisenberg-Kitaev model
with K = 5.2 meV and D = 0 meV.

The topological character of the magnonic bands is accessed by comput-
ing the Chern number Cn, given by Cn = 1

2π

∫
Ωxy

nk dkxdky, where the Ωxy
nk is

obtained based on the Eq. (4.15) and the integral is performed over the first
Brillouin Zone (BZ), and n is the n-th magnon branch. The calculated Chern
numbers are −1 and +1 for the first and second branches in the Heisenberg-
Kitaev model. As shown in Figure 7.2 (b), the energy-dependent Chern num-
ber defined as an integral of the Berry curvature at a given energy, as well as
the Berry curvature distribution of the first branch indicate that the largest
contributions to the Chern number come from around the K-point. Besides,
the observed Chern number variation and Berry curvature distribution are
quite non-trivial in energy and in the reciprocal space (the opposite sign of
magnon Berry curvature around Γ point), which brings about the unusual
topological transport properties as manifested in the unusual temperature
dependence of the thermal Hall conductivity and the magnon Nernst con-
ductivity.

According to Eq. (4.30), we obtain the thermal Hall conductivity κxyTH and
magnon Nernst conductivity κxyN of the model system. As shown in Fig-
ure 7.4 (a-b), a sign change with increasing temperature T of κxyTH and κxyN
is clearly obtained for the values of K = 5.2meV and θ = 54.74◦, which is
in line with the observations for Kitaev materials [170, 171]. This can be ex-
plained by a variation in the sign of the energy-dependent Chern number in
the energy region of 1 to 2meV for these specific values of K and θ, which
is absent for smaller values of Kitaev parameters. For smaller K and θ, the
Berry curvature magnitude rises at much higher energies, which explains the
overall suppression of thermal Hall and magnon Nernst conductivity that we
observe. To emphasize this effect further, we plot the dependence of κxyTH/T
on temperature T and parameters K and θ separately in Figure 7.4 (c-d).
In this figure, we observe that regardless of the sign of κxyTH/T , its absolute



90 Chapter 7. The interplay of Kitaev interactions and
Dzyaloshinskii-Moriya-interactions

FIGURE 7.4: (a, b) The temperature dependence of thermal Hall
conductivity κxyTH and magnon Nernst conductivity κxyN , in units
of 10−11 W/K and kB/2π, respectively. Blue and red lines corre-
spond to the K values of 5.2 and 3meV, separately. The dashed
and solid lines correspond to the Kitaev angles θ of 45◦ and
54.74◦, respectively. The map of κxyTH/T (c) and κxyN (e) as a func-
tion of temperature T and parameter K at the Kitaev angle of
θ = 54.74◦. The map of κxyTH/T (d) and κxyN as a function of T
and θ at the constant K-value of 5.2meV. The unit of the color
map in (c, d) is chosen as W/K2. The unit of the color map in
(e, f) is kB/(2π).

value always increases with K and θ at a given temperature. Similar con-
clusions can be drawn for the magnon Nerst conductivity κxyN , as shown in
Figure 7.4 (e-f).

Utilizing the mean-field-theory (MFT), we can simply estimate the Curie-
Weiss temperature in ferromagnetic honeycomb lattice, following the equa-
tion:

TC =
2S(S + 1)

kB
(−A− 3

2
J1 −−1

2
K), (7.2)

and the estimated TC is about 84 K for CrI3. Even though the MFT cannot
distinguish the isotropic and anisotropic interaction and the TC is overesti-
mated, the estimated value is still lower than 100 K.

However, the Curie temperature is not taken into account in our magnonic
transport properties calculation. In this chapter, the main target is to reveal
the magnonic transport characteristics with the interplay of DMI and Kitaev
interaction, whose features are demonstrated up to the high-temperature
limit. The 100 K is simply taken as a natural boundary for our simulations,
and in fact, all the features in corresponding dependencies which emphasize
the influence of two types of interactions are clearly visible and prominent
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for temperatures which are well below 100 K. Moreover, the Curie tempera-
ture can be easily controlled by the modifications in the Heisenberg exchange
strength, magnetic anisotropy, or by the strength of the applied magnetic
field [54], which do not necessarily alter the qualitative behavior of the trans-
port characteristics especially with respect to the relative importance of the
DMI and Kitaev interactions.

7.4 The Heisenberg-Kitaev model with the influ-
ence of DMI

After fully understand the magnonic topology in the FM Heisenberg-Kitaev
model, we investigate the impact of DMI on its magnon dispersion and ma-
gnonic transport properties. As shown in Figure 7.5 (a), our results indicate
that both DMI and Kitaev interaction can modify the magnon dispersion and
open a gap at the crossing point K. The difference in the impact of DMI and
Kitaev interactions is that the latter strongly influences the shape of magnon
dispersion, whereas the DMI mainly influences the dispersion around the K
point. As also visible in Figure 7.5(a-b), a band gap of the same magnitude
△ can be realised by a combination of different DMI and Kitaev parame-
ters. We can expect that if introducing more exchange interactions, a simi-
lar magnon dispersion with different parameter sets for Heisenberg-Kitaev
model and Heisenberg-DMI model can be obtained. For instance, the exper-
imental magnon dispersion of CrI3 can be fitted well with both Heisenberg-
Kitaev model or Heisenberg-DMI model [162, 54]. In this context, the rele-
vance of a given model can be probed by accessing its topological transport
properties and comparing them to experiments.

The topological thermal Hall conductivity κxyTH modulated by Kitaev pa-
rameters (θ,K) and DMI (D) is shown in Figure 7.6. The topological phase
boundary marked with different sets of (C1, C2) Chern numbers is shown
with a white dashed line. As the sign of the Berry curvature generally changes
in the BZ for the first branch, shown in Figure 7.5 (c-f), the zero isolines of
κxyTH does not generally coincide with the phase boundary, which is differ-
ent from the purely DMI-mediated system [76, 18]. Similar to Figure 7.4 (c),
in Fig. 7.6 (b-c) the sign change of κxyTH is observed when increasing T in
the topological phase marked as (−1, +1). This feature can be explained
by the fact that while DMI mainly influences the magnonic states around
K or M points, the Berry curvature around Γ point is mainly determined
by the Kitaev interaction, see Figure 7.5 (c-f). The total contribution to κxyTH

thus presents a subtle competition between Berry curvature contributions
from around these points, whose overall sign depends on the interplay be-
tween the parameters. The phase diagrams of κxyTH with respect to θ, K and
D at T = 100K are shown in Figure 7.6 (a, d). Consistent with the discus-
sion above, the magnitude of κxyTH is directly determined by the strength of
K and the magnitude of θ. Notably, at a given K, the sign of κxyTH can be
adjusted by the sense of DMI. Similar observations can be made also for the
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FIGURE 7.5: (a) The comparison of magnon dispersions with
different Kitaev and DMI parameters specified in the legend (in
the units of meV and degrees). The magnon dispersions repre-
sented with black, blue, green and red lines have almost the
same band gap △ between the two branches. (b) Band gap △ at
point K as a function of D and K at θ = 54.74◦. (c-f) The com-
parison of berry curvature distribution in first BZ with different
D and K with the Kitaev angle θ = 54.7◦. The color map ranges
from −40 to 40 arb. units, and the exceeded value is marked as
black and grey. During the calculation, the J +K/3 is kept as a
constant.

magnon Nernst conductivity, and here we don’t discuss them again as the
phenomenon are very similar to the thermal Hall conductivity of magnon.

7.5 The effect of a magnetic field on the Heisenberg-
Kitaev-DMI model

In this section, we explore the effect of an external in-plane magnetic field
on magnonic properties in the Heisenberg-Kitaev-DMI model, as shown in
Fig. 7.1(b). Under the influence of the magnetic field B = B(cosϕs, sinϕs, 0)
with ϕs corresponding to the azimuthal angle of B, spins in the FM magnets
incline into the plane. In honeycomb ferromagnetic lattice, the spin vector
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FIGURE 7.6: (a) Dependence of thermal Hall conductivity κxyTH

on K and D at T = 100K and θ = 54.74◦. Here, we keep the
value of J +K/3 constant. The T -dependence of thermal Hall
conductivity κxyTH is shown in (b, c). (b) κxyTH as a function of T
and D, with K and θ corresponding to the case of CrI3. (c) κxyTH

as a function of T and K for θ = 54.74◦ and D = −0.2meV.
Similar to (a), the J + K/3 is a constant. (d) κxyTH as a function
of θ and D at T = 100K and K = 5.2meV. The corresponding
color map is in the units of W/K.

modulated by the magnetic field is represented as:

Si = S(sin θs cosϕs, sin θs sinϕs, cos θs), (7.3)

where S represents the spin length and θs donates the polar angle of spin
direction. Then, the classical total energy of each unit cell is calculated based
on the Hamiltonian Eq. (7.1), which is expressed as below.

Eunit(θs) = −2µBgeBS sin θs − 2AS2 cos2 θs + const. (7.4)

Obviously, the energy of the Hamiltonian is the function of θs, the mini-
mum energy of the system is obtained through solving the equation:
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∂Eunit(θs)

θs
= −2µBgeBS cos θs + 4AS2 sin θs cos θs = 0. (7.5)

We get the relationship between the applied magnetic field and the θs:

sin θs = geµBB/2AS. (7.6)

As shown in Figure 7.7, both polar angle θs and azimuthal angle ϕs have
an influence on the magnon dispersion in the Heisenberg-Kitaev model. Be-
sides, the C3 symmetry of the magnon dispersion is broken if the polar angle
is nonzero assuming non-vanishing Kitaev interaction. To demonstrate this
feature from the inelastic neutron scattering (INS) experiment, the spin-spin
correlation function of the Heisenberg-Kitaev model in honeycomb lattice is
calculated through spinW [172] code according to the following equation [52,
173]:

S(ω,k) =
1

2π

∫ ∞

−∞
expiωt⟨S(k, t)S(k, 0)⟩dt, (7.7)

where the S(k, t) is the lattice Fourier transform of the spin configuration at
time t. The calculated results are shown in Figure 7.8, which can be used as
a reference for the experiment to distinguish the Heisenberg-Kitaev model
and Heisenberg-DMI model. If ignoring the anisotropy energy, the magnon
dispersion remains the same when the polar angle is changed in the pure
Heisenberg model. In the Heisenberg-DMI model, although the constant en-
ergy mapping of the magnon spectra changes with the evolution of polar

FIGURE 7.7: The distribution of the eigenvalue difference be-
tween the second and first branch in the first BZ with differ-
ent θs and ϕs. The parameters are chosen as K = 5.2 meV,
D = 0 meV for (a-e) which is marked as Heisenberg-Kitaev
model (HK model). The (f) is the result of Heisenberg-DMI
model with K = 0 meV and D = 0.29 meV.
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angle, the magnon dispersion still remains the C3 symmetry. However, the
C3 symmetry of the magnon dispersion is broken in the Heisenberg-Kitaev
model, for a given nonzero θs.

FIGURE 7.8: The constant energy mappings of the magnon
spectra in the xy plane with different polar angle θs. The first BZ
is outlined by the white dotted line and the energy is selected
ranging from 3.5 to 3.8 meV for (a-c) and 6.0 to 6.5 meV for (d-
f). The (a-c) represent the Heisenberg-Kitaev model and (d-f)
denote the Heisenberg-DMI model. The parameters of Kitaev
interaction in (a-c) are the same as in CrI3 mentioned above. In
(d-f) the parameters are chosen as J = 1.933 meV, K = 0 meV,
and D = 0.21 meV. The calculated magnon spectra is convolved
with an energy of 0.1 meV as an estimation of the instrument
energy resolution.

Additionally, we systematically studied the evolution of the band gap be-
tween the two magnon branches, marked by △, with the angles θs and ϕs in
the Heisenberg-DMI model and Heisenberg-Kitaev model. We find ϕs has a
strong impact on the band gap when θ is larger than 40◦ with nonzero finite
K value, while the band gap is only influenced by the polar angle θs in the
Heisenberg-DMI model (K = 0).

The magnonic transport properties affected by the magnetic field are stud-
ied. We draw the topological phase diagram of thermal Hall conductivity as
a function of θs and ϕs in Figure 7.9 (c). When θs is smaller than 40◦, the
system resides in the (−1, +1) phase, and the influence of ϕs is suppressed.
However, κxyTH exhibits a very non-trivial dependence on ϕs when the system
enters the (+1, −1) phase upon increasing θs. The strong dependence of κxyTH

on ϕs and θs is also visible in the temperature-dependence plots shown in
Figure 7.10. As indicated in Figure 7.10 (a, b), the C3 symmetry of the con-
ductivity is preserved, in line with the symmetry of the Kitaev interaction on
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FIGURE 7.9: (a, b) Evolution of the band gap △ with the an-
gles θs and ϕs in the Heisenberg-DMI model (K = 0) (a), and
Heisenberg-Kitaev model (D = 0) (b). (a, b) share the same
color map and the units are meV. (c) Thermal Hall conductivity
κxyTH as a function of θs and ϕs at T = 100K (same parameters as
in (b)). The unit of the color map in (c) is chosen as W/T.

a honeycomb lattice. Moreover, from Figure 7.10 (c,d) we observe a strong
influence of the DMI on the magnitude and angular dependence of the ther-
mal Hall conductivity. Overall our result reveals a rich landscape of thermal
Hall effect of Kitaev ferromagnets exposed to an external magnetic field.

7.6 Summary

In our study, we reveal the magnonic properties of honeycomb ferromagnets
with DMI and Kitaev interaction subject to an external magnetic field. On
the one hand, we observe intricate magnonic transport characteristics, which
have been observed in Kitaev materials [170, 171] that we attribute to the non-
trivial Berry phase properties of the system. On the other hand, our results
demonstrate a rich magnonic topological phase diagram drawn as a function
of Kitaev parameters, DMI and magnetic field strength. Since the magnitude
of the DMI and Kitaev interaction can be adjusted through e.g., application of
strain [174] or electric field [153], our investigation provides a good reference
point for designing the magnonic properties of candidate Kitaev materials.
Our findings bare significant relevance given that although several Kitaev
materials have been discovered to date (e.g., [45, 156, 157, 158, 159, 42]), it is
still not clear how to judge the relative importance of Kitaev interaction with
respect to DMI.

From the perspective of magnons, based on the results of our work, we
propose several strategies to disentangle the two types of interactions from
each other. We claim that one anisotropy energy A have to be introduced to
ensure the stability of the system in the Heisenberg-Kitaev model for certain
Kitaev angle θ. Besides, if an application of an external in-plane magnetic
field brings along a significant modification of the shape of the magnon dis-
persion and a strong variation of the magnonic properties as a function of
the in-plane direction of the field, then the system is dominated by Kitaev
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FIGURE 7.10: (a, b) κxyTH with the function of temperature and
the azimuthal angle ϕs, which ranges from 0o to 360o at θs = 60◦.
The D is chosen as 0 meV in (a) and 0.2 meV in (b). (c-d) κxyTH

as a function of temperature and θs for different values of D
assuming ϕs = 0◦ and K = 5.2meV. (a-d) share the same color
map in the unit of W/T.

interaction rather than DMI. Additionally, the changes of sign in the ther-
mal transverse characteristics as a function of temperature or strength with
an external magnetic field can serve as another indication of the prominence
of the Kitaev interaction in the system. These simple criteria can potentially
enable a magnonic characterization of exchange interactions of Kitaev mate-
rials, and pave the way to employing magnonic topology for designing their
exotic properties.

7.7 Application in CrGeTe3 and CrSiTe3

According to the theoretical study mentioned above, we investigate the spin
interactions in CrSiTe3 and CrGeTe3 cooperated with our experimental col-
laborates.
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7.7.1 Introduction of CrGeTe3 and CrSiTe3

The CrSiTe3 and CrGeTe3 are van der Waals layer materials with the ferro-
magnetic ground states. As shown in Figure 7.11, CrXTe3 (X=Si, Ge) is an
ABC stacked honeycomb lattice with spin length S = 3/2 for each Cr3+ ions,
which is similar to CrI3 [25, 167]. Some magnetic properties of these mate-
rials have been explored in the previous studies. For instance, the ab initio
calculations predict that in monolayer CrGeTe3 both Kitaev interaction and
DMI can exist in monolayer CrGeTe3 except for the ion anisotropy energy,
in which the magnitude of Kitaev interaction is predicted about 5% of the
Heisenberg exchange interaction [169]. It is already demonstrated that the

FIGURE 7.11: (a) Magnetic structure of CrXTe3 (X= Si, Ge). The
Cr atoms form a honeycomb lattice in xy plane. The first and
second nearest-neighbor exchange interactions in intra-plane
and inter-planes are marked separately. (b) The top view of
monolayer CrSiTe3. We present the Kitaev interaction and DMI
in the same plot. The unit cell is outlined with a thin black
line, where blue balls represent Cr3+ ions. In the Heisenberg-
Kitaev model, the Kitaev bonds x (red), y (dark yellow), z (blue)
are indicated with thick colored lines. In the Heisenberg-DMI
model, the arrows mark the second-nearest-neighbor bond ori-
entations along black dotted lines that share a common sign of
an out-of-plane DM vector.

spin interaction of CrI3 is dominated by the Kitaev interaction [54], and both
CrI3 and CrXTe3 (X=Si, Ge) have very similar magnetic structures. Here, we
want to figure out whether the Kitaev interaction plays an important role in
CrXTe3 or not.
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7.7.2 The parameterization of effective spin Hamiltonian in
CrXTe3 (X=Si, Ge)

To explore the spin interaction in CrXTe3 (X=Si, Ge), the magnon spectrum
of CrSiTe3 and CrGeTe3 are obtained based on the INS experiment. All the
experimental results are offered from our collaborate: Dr. Fengfeng Zhu from
Dr. Yixi Su’s research group in Jülich Centre for Neutron Science (JCNS) at
Heinz Maier-Leibnitz Zentrum (MLZ).

As shown in Figure 7.12 and Figure 7.13, there is a global band gap be-
tween the upper three magnonic branches and the lowest three magnonic
branches. According to the symmetry of the system, the glob band gap can-
not be realized just through the isotropic Heisenberg exchange interaction.
To open the band gap, more types of spin interactions need to be considered,
such as the DMI or Kitaev interaction. Since CrXTe3 (X=Si, Ge) systems con-
tain heavy element atoms, the spin-orbit coupling (SOC) plays an important
role, indicating that the DM and Kitaev interaction may exist in these mate-
rials. Based on the LSWT, we separately fit the experimental results with the
Heisenberg-DMI model and Heisenberg-Kitaev model:

HH−DMI = −
∑
i,j

JijSi · Sj −
∑
ij

Dij · (Si × Sj)−
∑
i

A(n̂i · Si)
2

HH−K = −
∑
i,j

JijSi · Sj −K
∑
⟨ij⟩γ

Sγ
i S

γ
j −

∑
i

A(ni · Si)
2.

(7.8)

The second-nearest-neighbor DMI is considered based on the symmetry
of the material in the Heisenberg-DMI model. While in the Heisenberg-
Kitaev model, the nearest-neighbor Kitaev interaction is adopted with the
setting shown in Figure 7.11. We list the fitted parameters of CrXTe3 (X=Si,
Ge) with both models in Table. 7.1.

In Figure 7.12 (c, d) and Figure 7.13 (c, d), we present the fitted results
based on the Heisenberg-DMI model. The black solid lines are the calcu-
lated magnon spectra by using the Heisenberg-DMI model with LSWT and

Parameters Jab1 Jab2 Jc1 Jc2 A Dij K Remark

CrSiTe3
−1.49 −0.15 −0.07 −0.06 −0.01 (0, 0, 0.12) - H-DMI

−0.4 −0.2 −0.08 −0.065 −0.22 - −3 H-Kitaev

CrGeTe3
−2.73 −0.33 −0.10 −0.08 −0.01 (0, 0, 0.32) - H-DMI

−0.24 −0.42 −0.1 −0.08 −1.9 - −6.5 H-Kitaev

TABLE 7.1: The exchange interactions including DMI and Ki-
taev interactions are all listed together for both CrSiTe3 and
CrGeTe3. The values of the next nearest-neighbor DMI vector is
chosen to reproduce the experimental spin-wave dispersion in
the Heisenberg-DMI model, same for Kitaev interaction in the
Heisenberg-Kitaev model.
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FIGURE 7.12: (a, b) Energy and intensity map of magnons
in CrSiTe3 along high symmetry directions measured by ther-
mal neutron triple-axis spectrometer IN8, PUMA and cold neu-
tron triple-axis spectrometer IN12, respectively. The black solid
lines are the calculated magnon spectra by using the parame-
ters from the second-nearest-neighbor Heisenberg-DMI mod-
els. The inset in (a) is a contrast-adjusted plot for the dashed
rectangle part to make the acoustic branch much easier to see.
The inset in (b) shows the exact Q-path measured in the recip-
rocal space. (c-d) Calculated magnon spectra intensity maps for
(a-b) respectively with the code spinW. The calculated spectra is
convolved with an energy resolution of 1 meV to compare with
experimental data. The parameters are listed in Table.7.1. (f)
Energy scan of magnon Density of states at 3 different K points
in (e) The solid lines are the multi-peak Gauss fitting. the gray
bars represent the averaged energy position for the magnon
bands at different K point.
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FIGURE 7.13: (a, b) Energy and momentum-resolved neutron
scattering intensity map of magnons in CrGeTe3 along high
symmetry directions measured by thermal neutron triple-axis
spectrometer IN8 and cold neutron triple-axis spectrometer
IN12. Black solid lines are the calculated magnon dispersion
based on the Heisenberg-DMI model. Inset in (b) shows the
projected BZ boundaries with high symmetry points and ex-
perimental measured paths. (c,d) The corresponding simulated
magnon intensity map for (a,b) by using the spinW code. The
calculated spectra are convolved with an energy resolution of 1
meV to compare with experimental data.

the simulated magnon spectra intensity maps are obtained with the code
spinW. Overall, our calculated results are consistent with the experimental
results. Although there is a mismatch for the scattering intensity shown in
Figure 7.13 (a, c), we suspect that it may lie in the magnon-phonon interac-
tion. The projected phonon density of state for bulk CrGeTe3 is calculated,
and we show the result in Figure 7.14. Clearly, the phonon states with the
energy of about 6 THz (about 25 meV) are mainly contributed by magnetic
Cr ions which are consistent with the previous calculation for monolayer
CrGeTe3 [175]. Coincidentally, the optical magnon branches of CrGeTe3 are
also located in a similar energy range. The overlap in energy makes the cou-
pling between magnons and phonons favorable. Moreover, both types of
excitation are mainly originated in Cr atoms, so the spectral weight transfer
from phonon to magnon states is very likely to occur.

In fact, in addition to the Heisenberg-DMI model, the Heisenberg-Kitaev
model also fits the experimental result very well. The comparison between
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FIGURE 7.14: The projected phonon density of state in CrGeTe3.
The result is calculated based on the ab initio code VASP.

FIGURE 7.15: Comparison of different models in CrSiTe3. (a)
Magnon spectra calculated by Heisenberg-DMI model. Dash
lines are the calculated magnon spectra and the intensity maps
are the result of convolution with energy resolution of 1 meV.
(b) Magnon spectra calculated by Pure Heisenberg model. (c)
Magnon spectra calculated by Heisenberg-Kitaev model. (d)
Comparison of the magnon spectra dispersion near K point be-
tween all the models in (a-c).

the Heisenberg-DMI model and Heisenberg-Kitaev model are shown in Fig-
ure 7.15. In the Heisenberg-Kitaev model, as shown in Table 7.1, a very large
magnetic anisotropy energy needs to be introduced to ensure the system sta-
ble. This is consistent with the study in Section 7.3, where the Kitaev angle
in CrSiTe3 and CrGeTe3 are 57.28◦ and 62.26◦, respectively. However, it is in-
dicated that the magnetic anisotropic energy of both materials are very small
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from the experimental investigation. Besides, even if the magnon disper-
sion can be reproduced well when the bond-dependent Kitaev interactions
are assumed to be perfectly orthogonal, it is still difficult to understand the
huge difference of the strength of the Kitaev interaction between CrSiTe3 and
CrGeTe3, since the Kitaev interaction is mainly caused by the heavy Te atoms
of CrXTe3 [169, 174]. Therefore, the conflictive results lead us to believe that
the Kitaev interaction is weak in these materials and the magnonic band gap
is more likely opened through the DMI rather than the Kitaev interaction.

7.7.3 Topological properties of CrXTe3 (X=Si, Ge)

To investigate the topological nature in CrXTe3, the Berry curvature is calcu-
lated based on Eq. (6.3). The Chern number Cn is calculated to characterize
the topology of magnonic bands according to Cn = 1

2π

∫
Ωxy

nk · n dP , where P
is a two-dimensional slice of the Brillouin zone and n is the normal vector
of P . As the intra-face interactions dominate the spin interaction, the lowest
three branches cross with each other. Therefore, we use the sum of the lowest
three branches to calculate the total Chern number. For bulk CrXTe3, the to-
tal Chern number is calculated as (−3, +3) for the lowest three branches and
upper three branches, which means that every honeycomb layer will hold
one topological edge state inside this nontrivial bulk gap. To indicate this
feature, the edge states of monolayer CrSiTe3 are calculated, which is shown
in Figure 7.16. The color scale is calculated according to Eq. (6.5), and the
edge states are observed clearly in zigzag and armchair nanoribbon with the
projections of the bulk states.

The DMI vector can be modulated by the strength of SOC, pressure, strain,
electric field [150, 151, 152, 153], or doping with defects. It is promising that
we can obtain a stronger DMI effect in CrSnTe3 and CrPbTe3 or CrXTe3 het-
erojunction. To reveal the influence of DMI strength on magnonic properties,
we calculate the magnon dispersion and thermal Hall conductivity, which are
shown in Figure 7.17 and Figure 7.18. As shown in Figure 7.17, the magnonic
band gap increases linearly with the increase of DMI value, which is very
similar to the SOC effect in electronic band structure. From the experimen-
tal results, we know that the Curie temperature of CrSiTe3 and CrGeTe3 are
around 30 K and 60 K. The calculated temperature-dependent and energy-
dependent thermal Hall conductivity are shown in Figure 7.18 (a-d), accord-
ing to Eq. (4.28). For both materials, the κxy is significantly enhanced in the
energy region close to the band gap, which can be attributed to the distri-
bution of the Berry curvature around the K point. In low temperature only
these "topologically-trivial" states are excited according to the Bose distribu-
tion, leading to the zero platform at very low temperature. The effect of DMI
on thermal Hall conductivity is shown in Figure 7.18 (e), from which we can
observe that the thermal Hall conductivity increases with the enhancement of
DMI. The predict value for CrGeTe3 reaches the order of 10−4 W/Km, which
is large enough to be observed in experiment.
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FIGURE 7.16: The edge states of monolayer CrSiTe3 for zigzag
and armchair nanoribbon. The color scale represents the weight
of the magnonic wave function along with the slab.

FIGURE 7.17: (a) The impact of the DMI on the magnon disper-
sion of CrSiTe3. (b) The relationships between the global band
gap and the strength of Dz . Red and blue filled circles corre-
spond to the band gap of CrSiTe3 and CrGeTe3, respectively.

7.8 Discussion

In this chapter, we put the DMI and Kitaev interaction to one stage, and



7.8. Discussion 105

FIGURE 7.18: The transverse thermal Hall conductivity (κxy)
of CrGeTe3 and CrSiTe3. The temperature dependence κxy is
shown in (a, b), and the energy-dependent thermal Hall con-
ductivity of CrSiTe3 at 30 K and CrGeTe3 at 60 K are shown in
(c, d). The κxy with the function of Dz in CrGeTe3 for the given
temperature 60K is shown in (e).

systematically study the interplay of them in magnonic aspects from the nu-
merical methods. Several methods are proposed to distinguish whether the
DMI or Kitaev interaction is dominant in ferromagnetic honeycomb mate-
rials from the perspective of magnons. Moreover, based on the proposed
strategy, we investigate the spin interactions in CrSiTe3 and CrGeTe3, and
discovered a very promising new class of 2D topological magnon insulators.
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Chapter 8

Imprinting and driving electronic
orbital magnetism using magnons

Magnons, as the most elementary excitations of magnetic materials, have re-
cently emerged as a prominent tool in electrical and thermal manipulation
and transport of spin, and magnonics, as a field is considered as one of the
pillars of modern spintronics. On the other hand, orbitronics, which exploits
the orbital degree of freedom of electrons rather than their spin, emerges as a
powerful platform in efficient design of currents and redistribution of angu-
lar momentum in structurally complex materials.

In this chapter, a link between the worlds of magnonics and orbitronics
is established, with the example of ferromagnetic kagome lattice, resulting
in a unique blend of paradigms which can enrich the respective fields and
give rise to novel unexpected functionalities relying on efficient magnon-to-
orbital conversion. The so far unknown coupling of magnonic excitations to
spin-chirality in generic classes of spin systems is theoretically investigated.
By referring to microscopic arguments, a finite spin chirality can be generated
by thermally excited magnons even if the former is forbidden in the ground
state of a collinear spin system. Besides, it is predicted that the magnonic
generation of chirality will lead to a strong orbital response of the spin sys-
tem via the mechanism of topological orbital magnetism, which promotes the
orbital dynamics of electrons in spin systems with chirality. This provides a
direct link between magnonic excitations and generation of electronic orbital
magnetization. Finally, we demonstrate that driving currents of magnons
for example in an applied temperature gradient causes a significant magnon
drag of the orbital momentum across the system. The latter discovery reveals
the potential of orbital electron-magnon coupling for controlling the magne-
tization properties via “magnon-orbital” torques and generation of sizeable
orbital accumulation which can be probed experimentally. Alternatively, our
findings point to a possibility of selected orbital control of magnonic proper-
ties and functionalities.

Results presented in this chapter have already been published:
Li-chuan Zhang, et. al., Communications Physics, 3, 227, 2020.
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8.1 Electronic topological orbital magnetism

As discussed in Chapter 2, the orbital magnetism is not only influenced by
the strength of the spin-orbital coupling (SOC) but also the the scalar spin
chirality (SSC). In this chapter, we focus on the orbital magnetism aroused
from the SSC, which is called as topological orbital magnetism 1. We first
present the results which concern the generation of electronic orbital mag-
netism by the mechanism of SSC. The electronic Hamiltonian with s-d model
is established by making use of the tight-binding (TB) model of a magnet on
a two-dimensional (in the xy-plane) kagome lattice without the SOC (Fig-
ure 2.1).

In the electronic Hamiltonian shown in Eq. (8.1), hoppings among the
atoms and an exchange splitting at each atomic site are considered, which is
similar to that of Refs. [176, 177]. The spin-orbit interaction is explicitly not
employed to reveal the SSC-mediated mechanism of orbital moment genera-
tion. We show the electronic Hamiltonian:

H = t1
∑
⟨i,j⟩

c†icj + t2
∑
⟨⟨i,j⟩⟩

c†icj + J
∑
i

m̂i · σ, (8.1)

where i and j are site indices, ⟨· · · ⟩ and ⟨⟨· · · ⟩⟩ indicate first and second near-
est neighbor pairs, respectively, and m̂i is the direction of the local magnetic
moment at site i. The first and second nearest hopping amplitudes are cho-
sen as t1 = 1.0 eV and t2 = 0.15 eV, respectively, and strength of the exchange
interaction is set to J = 1.7 eV.

As shown in the inset of Figure 8.2 (b), three basis atoms in the unit cell,
namely A, B and C, are marked. The directions of the local magnetic mo-
ments are parameterized by m̂i = (cos θ cosϕi, cos θ sinϕi, sin θ), where the
azimuthal angles ϕi are assumed to be chirally ordered, i.e., ϕi = ϕ0 for i ∈ A,
ϕi = ϕ0 + 2π/3 for i ∈ B, and ϕi = ϕ0 + 4π/3 for i ∈ C. We start with the
ferromagnetic state with the spins along z axis (see the corresponding band
structure in Figure 8.2 (a)) and then rotate all spins into the plane by an angle
θ away from the xy plane, while keeping the azimuthal angles of the three
spins at 0◦, 120◦ and 240◦ (keeping z-axis as the three-fold rotational sym-
metry axis). Based on the TB model with parameters mentioned above, we
obtained the corresponding electronic band structure. We find that the ef-
fect of such non-coplanarity on the band structure is most prominent in the
vicinity of band degeneracies, shown in Figure 8.2 (a).

Based on Eq. (2.4), we calculate the behavior of electronic orbital moment
as a function of angle θ and Fermi level. The calculated result is shown in
Figure 8.2 (b), where the red symbols represent the calculated orbital mo-
ment for the electron density of ρ = 1.0 e(cell)−1. The result indicates that the
orbital moment vanishes for the coplanar and collinear cases, and the largest
value of orbital moment is reached for the state with the largest SSC. As the
spin-orbit coupling is not considered, the total orbital moment is generated

1The so-called chiral, proportional to the vector spin chirality, is not considered. This is
because it is expected to arise in the regime of large spin-orbit interaction [15], although it
has contribution to the orbital magnetism
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FIGURE 8.1: Microscopics of topological orbital magnetism.
(a) The electronic band structure based on the tight-binding
model of a kagome ferromagnet. The orange lines represent
the bands of the ferromagnetic structure and the blue dotted
lines mark the bands of the state canted by a polar angle of
θ = 10◦. (b) The total topological orbital moment (TOM)
as a function of the canting angle for the electron density of
ρ = 1.0 e(cell)−1. The red symbols mark the calculated values
according to Eq. (2.4), while the black line is a fit according to
Eq. (8.2). The inset in the upper left corner indicates the spin di-
rection of the calculated kagome lattice. The inset on the right
displays the value of the topological orbital susceptibility κTO

around the ferromagnetic state as a function of Fermi energy of
the tight-binding model.

by the topological orbital moment (TOM) LTOM. From the Eq. (2.6), with the
arranged azimuthal angles, we can expand the equation with canting angle
θ in kagome lattice:

LTOM
z (θ) = κTOm̂A · (m̂B × m̂C) =

3
√
3

2
κTO cos θ sin2 θ, (8.2)

where we can get the relationship between the TOM and canting angle θ.
Then the obtained LTOM can be fitted with the function of θ, and overall the
explicitly calculated orbital response of the system to canting fits the TOM-
picture very well, such as the case with band filling of one electron per unit
cell in Figure 8.2 (b). This type of behavior, when κTO with a good degree of
accuracy can be assumed to be independent of θ in the whole range of pos-
sible canting, persists over large regions of energies. The deviations from it
occur in the vicinity of band crossings where the response of the band struc-
ture to canting is very large, and where the orbital response is expected to be
pronounced [15].

Regardless, we focus on the interplay of orbital magnetism and magnons
which cause small deviations of the magnetization from the ferromagnetic
state, thus the value of the topological orbital susceptibility in the vicinity of
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θ = 0◦ is of primary interest. To extract κTO near θ = 0, we use

κTO =
2

3
√
3

d2LTOM
z

dθ2

∣∣∣∣
θ=0

, (8.3)

where the second derivative is evaluated by a finite difference method. Our
calculations, shown in the inset of Figure 8.2 (b) for the entire range of en-
ergies of the model, reveal that the magnitude of κTO in the limit of small
canting exceeds the value of 1µB over large regions of energy, and sensitively
depends on the electronic structure.

Overall, our electronic tight-binding calculations demonstrate that even
within the simplest electronic structure considered here it is possible to gen-
erate sizable electronic orbital magnetization by the mechanism of SSC, the
properties of which can be tuned by electronic structure design.

8.2 Magnonic excitations in ferromagnetic kagome
lattice

In this section, the influence of electronic orbital magnetism on magnonic
properties are investigated by referring to an effective Hamiltonian of spin-
waves of a ferromagnet on a two-dimensional kagome lattice, which is given
by

H =− 1

2

∑
ij

JijSi · Sj −
1

2

∑
ij

Dij · (Si × Sj)

−B · κTO
∑
ijk

êijk[Ŝi · (Ŝj × Ŝk)]− µBB ·
∑
i

Si,
(8.4)

where Jij mediates the Heisenberg exchange between spins Si and Sj on
sites i and j, the second term is the antisymmetric DMI quantified by vec-
tors Dij , and the fourth term couples the spins to an external magnetic field
B. In addition, we extend the Hamiltonian by the ring-exchange term in
Eq. (8.4) to include explicitly the interaction between the magnetic field and
the TOM [178, 48, 7]. This term is given by the product of the SSC and the
topological orbital susceptibility κTO [15, 16]. Owing to the symmetry of
the planar kagome lattice, the TOM, and the DMI vectors are perpendicular
to the film plane (along the z-axis, as shown in Figure 8.2 (a)), along which
we also apply the external magnetic field of magnitude B. Theoretically, the
topological orbital susceptibility κTO is k dependent parameter, but here we
treat it as a constant to simplify the calculation and analysis.

In the toy model, we consider in our analysis only nearest-neighbor inter-
actions except for the Heisenberg term, where we include next-nearest neigh-
bors as well. The nearest-neighbor Heisenberg coupling is set as J1 = 1meV ,
and the next-nearest-neighbor strength amounts to J2 = 0.1 J1 unless stated
otherwise, and the spin-moment length S is fixed to 1. For the magnitude
of topological orbital susceptibility κTO, we choose a representative value of
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−0.5µB − a value not only motivated by recent material studies [12, 16, 179],
but also corresponding to the lower bound of κTO-range found in Section 8.1
for small deviations from the ferromagnetic state. As follows from the model
considerations, the range of values for κTO exhibited by the electrons living
on a kagome lattice is very large, and one should keep in mind that the ef-
fects discussed below can be further enhanced by engineering the electronic
structure and the values of κTO. This route of material design is distinctly dif-
ferent from that associated with the design of the spin-orbit strength, taken
routinely in conventional spin-orbitronics.

FIGURE 8.2: (a) The unit cell of kagome lattice is indicated by
blue dotted line. The directions of DMI are shown in the tri-
angle. (b, c) Magnon dispersion and the corresponding Chern
number of isoenergy in a magnetic field of 10 T. Black, blue
and red lines correspond to different DMI values of 0 meV,
0.2J1, and −0.2J1, respectively. (c) Topological phase diagram
of the magnonic bands of a kagome ferromagnet as a func-
tion of the second nearest-neighbor Heisenberg coupling J2
and Dzyaloshinskii-Moriya interaction (DMI) (in units of the
nearest-neighbor Heisenberg coupling J1), as well as external
magnetic field B (in Tesla). Colors highlight different phases
that are characterized by sets (C1, C2, C3) of Chern numbers.
The unstable ferromagnetic phase is shown in red.

To obtain the magnonic bands and the corresponding topology, the lin-
ear spin-wave theory [172, 76] is used, which we reformulate first in terms
of bosonic ladder operators ai and a†i via the Holstein-Primakoff transforma-
tion [51]. Similarly to the previous approximation to treat the effect of chiral-
ity [7], only the quadratic terms are kept in the effective spin-wave Hamilto-
nian. Within the linear theory, the SSC χijk, coupling directly to the magnetic
field in Eq. (8.4), can be expressed as [7]:

χijk =
i

S
(a†iaj − aia

†
j + a†jak − aja

†
k + a†kai − aka

†
i ). (8.5)

A Fourier transform of the bosonic ladder operators is performed to map
from real space to momentum space. Then, the Hamiltonian matrix H(k) at
the spin-wave vector k = (kx, ky) is diagonalized to obtain the eigenvectors
and the eigenvalue of the spin-waves. We address the topological character
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of the magnonic bands by computing the Chern number Cn, given by Cn =
1
2π

∫
Ωxy

nk dk, where the integral is performed over the first Brillouin zone (BZ),
and Ωxy

nk represents the magnon Berry curvature of the nth spin-wave branch
calculated based on Eq. (4.14).

The magnonic bands and the corresponding Chern number of isoenergy
are shown in Figure 8.2. The dispersion of the three spin-wave branches in
the presence of an external magnetic field of 10T is shown in Figure 8.2 (b).
In the absence of DMI, the Chern numbers of magnon bands from lowest to
highest exhibit 1, 0, and −1, solely due to the coupling of the magnetic field to
the SSC. The distribution of Berry curvature is reflected in Figure 8.2 (c), from
which we can see that the maximum berry curvature is located around the K
point. By including the effect of DMI, we find that the coupling to the vector
spin chirality modifies the dispersion without changing the topology of the
bands for this choice of parameters. While the microscopic origin of inter-
actions with vector and scalar spin chiralities which enter Eq. (8.4) is funda-
mentally different, their roles for the resulting magnon dispersion are rather
similar at the level of linear spin-wave theory. Based on the obtained spin-
wave spectra and Berry curvature calculations, we present in Figure 8.2 (d)
the complete topological phase diagram as a function of the model param-
eters entering the Hamiltonian. Sampling the nearest-neighbor coupling J2,
the DMI strength, and the magnitude of the B-field, we identify eight non-
trivial phases in addition to an unstable ferromagnetic state. These phases
come in pairs with an opposite overall sign in the set of Chern numbers.

8.3 Imprinting topological orbital magnetism by
magnons

In this section, the mechanism of TOM generated by magnons excitation
through SSC is explored. We refer to this quantity as the local TOM of the
n-th magnon branch and access it according to

LTOM
nk = κTO⟨Ψnk|χ(k)|Ψnk⟩, (8.6)

where Ψnk represent the eigenvector of nth branch for k vector and χ(k) is
the Fourier transform of the SSC. The value of the local TOM for different
magnon branches is presented in Figure 8.3 (a–c), where the magnitude of
TOM is represented by the line thickness. While either finite DMI or B-field
are necessary to activate the local TOM, the Γ point typically hosts the min-
ima and maxima of LTOM

nk in our model. Specifically, the local TOM of the
lowest spin-wave branch reaches its global minimum at Γ whereas the higher
magnon bands carry the maximal values as they correspond to precessional
modes with an innately larger SSC. Clearly, the complex interplay between
DMI and the orbital Zeeman coupling modifies not only the magnon topol-
ogy but imprints also on the local TOM. In particular, the ordering of the
states with the positive and negative sign of LTOM

nk is inverted during the
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topological phase transition, which directly links the nature of electronic or-
bital magnetism with non-trivial topology of magnonic bands.

Since the local orbital moment carried by magnons depends strongly on
the band and position in the Brillouin zone, the effect of finite temperature
which results in the excitation of magnons with finite energy, can give rise to
a net magnon-mediated electronic orbital magnetization. To show this, we
introduce a finite temperature T in our spin system, and calculate the orbital
response of the electronic bath. The temperature dependence of the TOM is
represented as

⟨LTOM⟩T = κTO
∑
ijk

êijk⟨χijk⟩T , (8.7)

where ⟨χijk⟩T denotes the expectation value of the scalar spin chirality.
The Eq. (8.7) is proved as follows. We know that the Hamiltonian in mo-

mentum space is quadratic and can thus be written as:

H =
∑
ij

hija
†
iaj = a†ĥ a, (8.8)

where a† and a stand for basis vectors formed by the set of ladder operators,
and ĥ is the matrix representation of the Hamiltonian. After solving the cor-
responding eigenvalue problem of ĥ, we obtain the matrix of eigenvectors Û ,
and the diagonal matrix ϵ̂ containing the eigenvalues, i.e., ϵ̂ = Û †ĥ Û . This in-
formation provides an alternative representation of the Hamiltonian in terms
of new basis vectors b and b† (with the identity a = Ûb):

H = b†ϵ̂b =
∑
i

ϵib
†
ibi. (8.9)

To determine the temperature dependence of TOM via the average scalar
spin chirality ⟨χijk⟩T , according to Eq. (8.5), we need to evaluate expressions
of the form i

S

∑
ij oij⟨a

†
iaj⟩T , where oij is the matrix element of a general op-

erator Ô:

i

S

∑
ij

oij⟨a†iaj⟩T =
i

S
⟨a†Ôa⟩T =

i

S
⟨b†Û †ÔÛb⟩T =

i

S

∑
ij

⟨b†ibj⟩T (Û †ÔÛ)ij.

(8.10)

Since magnons are bosons that follow the Bose distribution function nB(ϵ) =
[exp(βϵ) − 1]−1 with β = 1/kBT , the above equation can be simplified by
taking into account the relation

⟨b†ibj⟩T = δijnB(ϵi). (8.11)

Substituting this result back into the temperature-dependent expectation value
of the scalar spin chirality, we arrive at the final expression for the overall
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TOM perpendicular to the kagome plane, as used in the main text:

⟨LTOM⟩T = κTO
∑
n

∫
nB(ϵnk)⟨Ψnk|χ(k)|Ψnk⟩dk

=
∑
n

∫
BZ

nB(ϵnk)L
TOM
nk dk,

(8.12)

where the integral is performed over the two-dimensional BZ, and χ(k) is
the Fourier transform of Eq. (8.5).

In Figure 8.3 (d–g) we analyze the sum of the local TOM weighted by the
occupation number of each spin-wave branch at a given temperature, i.e.,

ℓ(k) =
∑
n

LTOM
nk nB(ϵnk). (8.13)

Depending on T , the number of excited magnons is different in each
branch, which leads to a non-trivial distribution of ℓ(k) in momentum space,
as shown in Figure 8.3 (d–g) for the model with finite B-field but zero DMI.
At low T , as shown in Figure 8.3 (d), only the magnons around the Γ-point
from the first branch can be excited, leading to small local contributions
around the BZ center. As the temperature is increased, for example, to T =
25K, all spin-wave states from the first branch are excited such that ℓ(k)
peaks in the M point with moderate magnitude as shown in Figure 8.3 (e). If
additionally magnons from the higher branches contribute at elevated tem-
peratures, the maximum of ℓ(k) occurs at the Γ point, where the local TOM
of the corresponding magnon states is the largest.

The total TOM carried by thermally activated magnons per unit cell is
calculated based on the Eq. (8.12) and the results are shown in Figure 8.4, il-
lustrating theB, T -dependence of the overall TOM for various DMI coupling
strengths. On the one hand, as more magnons become available to carry the
TOM, higher temperatures enhance the magnitude of ⟨LTOM⟩T in the spin-
wave system. On the other hand, the roles of orbital Zeeman coupling and
DMI are intertwined in generating TOM. For example, while TOM locally
vanishes at zero DMI and B-field, a DMI with positive coupling strength
generally counteracts the effect of the magnetic field on TOM if κTO is neg-
ative. Overall, for non-trivial choices of these parameters, as shown in Fig-
ure 8.4 (d), at low T the total TOM increases linearly and dependent on the
value of κTO.

The total TOM emerges as a quantity which can be readily measured ex-
perimentally by referring to techniques which are sensitive to orbital mag-
netization in solids [180, 181, 182, 183]. Besides, the different temperature
response of spin and TOM for magnetization provides us another option to
detect the TOM. The sizeable magnitude of the effect that we predict not only
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lends itself to an unambiguous observation, but can also influence signifi-
cantly the temperature dependence of the overall magnetization in a sam-
ple, providing thus an additional “anomalous" orbital channel to the con-
ventional mechanism of magnetization variation mediated by thermally ex-
cited magnons [74, 184, 185]. Given the much stronger sensitivity of TOM
to electronic structure changes, as compared to the spin, we suggest that the
magnon-driven orbital magnetism can serve as a unique tool in tracking the
electronic structure dynamics in various types of setups. Besides, as we ob-
serve that the sign of ⟨LTOM⟩T correlates with the ordering of the topological
spin-wave bands and their respective Chern numbers, we suggest to exploit
the total topological orbital moment as an indicator of topological dynamics
of magnons.

FIGURE 8.3: Imprinting electronic orbital magnetism by
magnons in a kagome ferromagnet. (a–c) Fat band analy-
sis for the magnonic bands of the model for the values of
the Dzyaloshinskii-Moriya interaction (DMI) (in units of the
nearest-neighbor Heisenberg coupling J1), and magnetic field
B specified at the bottom. Red and blue colors represent pos-
itive and negative sign of the local topological orbital moment
(TOM) LTOM

nk , respectively, and the line thickness denotes the
corresponding magnitude. Bold integers indicate the Chern
numbers of the spin-wave bands. (d–g) Distribution of the lo-
cal TOM in the Brillouin zone for different temperatures, after
summing over all magnon branches weighted by the Bose dis-
tribution. The color map is in units of µB, and the model pa-
rameters of the panel (a) are used.
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FIGURE 8.4: Overall TOM of the spin-wave system as a func-
tion of magnetic field and temperature. The panels (a–c)
present phase diagrams for the DMI strengths of 0, 0.2J1, and
−0.2J1, respectively, with the color map indicating the net TOM
in units of µB per unit cell. In (d), solid and dotted lines corre-
spond to DMI strengths of 0 and 0.2J1, respectively, and the
magnetic field is given in Tesla.

8.4 Driving orbital currents by magnons

From the discussion of Section 8.3, we get the conclusion that a finite TOM,
stemming from orbital electronic currents, can be triggered by thermally ac-
tivated magnons. This observation suggests that TOM is intimately linked to
thermal spin transport, which is mediated by the coupling of the SSC to the
bath of electrons in the system.

8.4.1 Orbital Nernst effect of magnons

Analogy to the well-known magnon Nernst effect, we coin the orbital Nernst
effect of magnons, which is illustrated in Figure 8.5. The phenomenon of
orbital Nernst effect relates spatial temperature gradients to the emergence
of topological orbital currents via jTOM

x = κxyONE(∇T )y, where κxyONE stands for
the topological orbital Nernst conductivity, which within the semiclassical
theory reads

κxyONE = − kB
4π2µB

∑
n

∫
BZ

c1(nB(ϵnk)) Ω
xy
nkL

TOM
nk dk , (8.14)
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FIGURE 8.5: Sketch of the orbital Nernst effect of magnons for
a ferromagnet on an example of the kagome lattice. While the
generation of a magnon (orange arrows) imprints an average
scalar spin chirality into the system and leads to the genera-
tion of electronic TOM (red arrow), the generation of a magnon
flow in a temperature gradient ∇T results in a transverse de-
flection of magnons and corresponding TOM-mediated drag of
the orbital angular momentum, denoted by ⟨LTOM⟩T − which
we refer to as the orbital Nernst effect.

where c1(τ) =
∫ τ

0
ln[(1 + t)/t]dt = (1 + τ) ln(1 + τ) − τ ln τ . In essence, the

latter relation quantifies the fundamental mechanism behind a magnon −
which develops a transverse velocity proportional to the Berry curvature
in an applied temperature gradient − “dragging" with it the electronic or-
bital angular momentum which is generated by non-zero SSC inherent to the
magnon. In contrast to the usual spin Nernst effect of magnons [96, 186, 77],
the conductivity in Eq. (8.14) characterizing the orbital Nernst effect depends
explicitly on the local TOM of the magnon branches.

8.4.2 Comparison of the orbital Nernst effect and magnon
Nernst effect

Based on Eq. (8.14), we demonstrate the existence of the orbital Nernst effect
via explicit calculation. In Figure 8.6 (a, b) and Figure 8.7 (b) the non-trivial
dependence of the orbital Nernst effect on T and on the model parameters,
as well as its correlation with the topology of the magnon bands are sum-
marized. Although the orbital Nernst effect has a distinct microscopic ori-
gin in the orbital electron-magnon coupling, we predict that the correspond-
ing conductivity can reach the order of kB/π. When assuming a distance of
5 Å between two kagome layers, an orbital Nernst conductivity of (2π)−1kB
is equivalent to the value 4.394 × 10−15 Jm−1K−1, or 66786 ℏe−1µAcm−1K−1,
which is comparable to the values known as the spin Nernst effect of magnons
or spin Nernst effect of electrons [77, 186, 76, 187, 188, 189]. Additionally,
we emphasize that the magnitude of the effect can be further enhanced by
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FIGURE 8.6: Driving orbital currents by magnons: the orbital
Nernst effect. (a) Phase diagram of the orbital Nernst effect.
Dependence of the orbital Nernst conductivity κxyONE on mag-
netic field B and second nearest-neighbor Heisenberg coupling
J2 (in units of the nearest-neighbor Heisenberg coupling J1) at
T = 200K and zero Dzyaloshinskii- Moriya interaction (DMI).
Solid black lines are the boundaries between different topolog-
ical phases characterized by the Chern numbers of the three
magnon branches. (b) κxyONE as a function of B and tempera-
ture T for the model with DMI strength of 0.2J1. (c,e) Compar-
ison of the κxyONE (solid lines) and magnon Nernst conductivity
κxyN (dashed lines). (c) κxyONE and κxyN as a function of B for the
model at 200 K with DMI strength of 0 (red) and 0.2J1 (blue).
The different topological phases are distinguished with a thin
vertical line. (e) κxyONE and κxyN as a function of T for different
strengths of the DMI and B. (d, f) Magnon Nernst conductivity
κxyN and thermal Hall conductivity κxyTH as a function of B and
temperature T for the model with DMI strength of 0.2J1.
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FIGURE 8.7: (a) Phase diagram of the magnon Nernst effect.
Dependence of the magnon Nernst conductivity κxyN on DMI D
and second nearest-neighbor Heisenberg coupling J2 (in units
of the nearest-neighbor Heisenberg exchange coupling J1) at
T = 200K and B = 5T. (b) Phase diagram of the orbital
Nernst effect of magnon. Dependence of the magnon Nernst
conductivity κxyONE on DMI D and second nearest-neighbor
Heisenberg exchange coupling J2 at T = 200K and B = 5T.
Solid black lines are the boundaries between different topolog-
ical phases characterized by the Chern numbers of the three
magnon branches.

proper electronic structure engineering of the topological orbital susceptibil-
ity, which in its nature does not rely on the presence of spin-orbit interaction
in the system. As such, our finding underlines the strong potentiality of the
orbital Nernst effect for the realm of spincaloritronics and marks this effect
as an entry point for ideas evolving around magnon-mediated orbitronics.

Besides, our analysis obtained by the calculation in Figure 8.6 and Fig-
ure 8.7, indicates that both DMI and the coupling of the external magnetic
field to the SSC can generate a finite orbital Nernst conductivity. Compar-
ing these results in more detail, we note that the sign of κxyONE is the same
in topological phases in which the sets of Chern numbers differ by a global
sign as shown in Figure 8.6 (c) and Figure 8.7 (b). This invariance stems from
the product of the two microscopic quantities in Eq. (8.14), each of which
changes its individual sign as the Chern numbers are reversed. Still, as ex-
emplified in Figure 8.6 (a-c) and Figure 8.7 (b), the orbital Nernst effect is
characteristic to the non-trivial magnon topology of distinct phases. Close
to topological phase transitions, the orbital Nernst effect changes abruptly
and thus behaves rather differently compared to thermal Hall and magnon
Nernst effects, see Figure 8.6 (b–f). As a consequence, the conductivity κxyONE

can in principle reach very large values near the phase boundary as shown
in Figure 8.7 (b). Since the orbital Nernst effect is absent without the B-field
and DMI, the peak structure in Figure 8.6 (b,c) for a magnetic field of about
7T can be understood as a result of the competition between the effects of
orbital Zeeman coupling and DMI, which results in a strongly suppressed
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orbital Nernst effect. Besides, Figure 8.6 (b, d, e) reveal the qualitative differ-
ence in the temperature dependence of the orbital Nernst effect, conventional
Nernst effect and thermal Hall effect of magnon. The peculiar behavior of the
orbital Nernst effect in response to an external magnetic field can be used to
disentangle it from the magnon Nernst effect experimentally.

8.5 Discussion

In this chapter, we present a new mechanism to build a link between the
magnonic and orbitronics. The ferromagnetic kagome lattice is selected as an
example to demonstrate the characteristic, among material representatives of
which one can name for example Cu(1-3,bdc) [190] or Nd3Sb3Mg2O14 [191].
Furthermore, the conclusions drawn from our analysis go well beyond this
particular class of materials, and include for instance collinear or non-collinear
states on a hexagonal, pyrochlore, B20 and Mn3Ge quasi-kagome type of
lattice [162, 192, 12, 16, 29], as well as their thin films. While in the latter
classes the magnon drag of orbital momentum is non-vanishing, a precursor
of prominent magnon-driven orbital phenomena is a large topological orbital
susceptibility κTO in a given material of the order of that exhibited, e.g., by
MnGe [16], Mn/Cu(111) [12], or Mn3Ge [179]. The latter quantity can be es-
timated from microscopic calculations, as well as from experiment, as first
approximation κTO is given by the orbital susceptibility of the system [15].

The uncovered mechanism of magnon-driven chirality accumulation has
far-reaching consequences for the transport properties of systems which ex-
hibit such chirality. For example, it will result in the generation of topologi-
cal Hall or topological spin Hall effect of the underlying electronic bath [193,
194, 195, 194], which will contribute to the temperature dependence of the
anomalous Hall conductivity even in nominally collinear magnets [196]. On
the other hand, magnon-driven orbital magnetism brings the orbital angu-
lar momentum variable into the game of magnon-based spincaloritronics,
which is conventionally associated with the generation and transport of spin.
Unleashing the orbital channel for the magnon-mediated effects poses a key
question of the role of orbital magnetism for the temperature-dependent mag-
netization dynamics, however, it also opens a number of exciting possibili-
ties for direct applications. Given the sensitivity of the orbital effects to the
topology of magnonic bands and generally magnonic properties, we suggest
that accessing the magnon-mediated dynamics of orbital properties can serve
as a unique tool of tracking the topological dynamics of magnons. More-
over, our findings also point at an exciting possibility of exploiting prop-
erly engineered orbital injection for excitation of specific magnonic modes
via the inverse orbital Nernst effect. As in topologically-complex materials
the electronic topology is directly related to the orbital properties [197], this
link can be used for realizing hybrid non-trivial electron-magnon topologies.
Overall, the uncovered here orbital electron-magnon coupling bares various
prospects for integration of spin-orbitronics schemes into magnonic setups
and vice versa, which shall be explored in the future.
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In the next chapter, we present the application of the orbital Nernst effect
in other systems, where the modulation of orbital magnetism on magnonic
properties are also demonstrated.
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Chapter 9

Magnon-driven orbitronics in
non-collinear systems

In Chapter 8, we introduce a mechanism to generate and transport topo-
logical orbital magnetization by magnonic excitations, with a example of
ferromagnetic kagome lattice. Except for the ferromagnetic kagome lattice,
magnon-meidated topological orbital magnetization also exists in other lat-
tices, e.g., a ferromagnetic honeycomb lattice as well as non-collinear systems.
In this chapter, we present the application of magnon-driven orbitronics in
non-collinear magnetic systems, e.g., antiferromagnetic kagome lattice and
Mn3Ge.

Results presented in Chapter 9.2 have already been published:
Li-chuan Zhang, et. al., Communications Physics, 3, 227, 2020.

9.1 Magnon-driven orbitronics in antiferromag-
netic kagome lattice

9.1.1 Establishing the model

Nowadays, the antiferromagnetic (AFM) kagome magnets are studied in-
tensively and many compounds have already been synthesized in this field,
e.g., YCu3(OH)6Cl3 [198], Nd3Sb3Mg2O14 [191], etc. In this section, we in-
vestigate the magnon-mediated electronic topological orbital magnetization
and its transport properties in non-collinear AFM kagome lattice with copla-
nar 120◦, shown in Figure 9.1. The effective spin Hamiltonian of the model is
given in Eq.(9.1).

H =−
∑
⟨ij⟩

JijSi · Sj −B · κTO
∑
ijk

êijk[Ŝi · (Ŝj × Ŝk]

− µBgeB
∑
i

Si +
∑
ij

Dij · (Si × Sj)−
∑
i

A(n̂iSi)
2,

(9.1)

In Eq.(9.1), the Jij mediates the isotropic Heisenberg exchange interaction
between spins Si and Sj on sites i and j. The second and third terms are Zee-
man coupling terms, where an external magnetic field B couples the elec-
tronic orbital moment and spin moment separately. The fourth term is the
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FIGURE 9.1: Schematic structure of monolayer antiferromag-
netic kagome lattice. The top view and perspective view are
shown in (a) and (b), respectively. The unit cell is outlined with
a black line, where the yellow ball represents the magnetic atom
and its moment direction is revealed by the red arrow . The
canting angle η is marked in (b) aroused by the magnetic field.

antisymmetric Dzyaloshinskii-Moriya interaction (DMI) quantified by vec-
tors Dij , and the last term is the single-ion anisotropy energy with respect to
the local in-plane easy axes n̂i. In Eq. (9.1), the electronic orbital moment is
given by the product of the scholar spin chirality (SSC) and free electron cou-
pling, where the coupling strength is characterized by the topological orbital
susceptibility κTO [15, 16]. To simplify the calculation, the topological orbital
moment (TOM), DMI vectors, and the external magnetic field are chosen per-
pendicular to the film plane (along the z-axis).

9.1.2 The canting angle η

Firstly, the spin configuration influenced by the out-of-plane magnetic field
in the AFM kagome lattice is explored. As shown in Fig. 9.1, the direction of
magnetic moments can be represented with the vector:

Ŝi = (cos η cosϕi, cos η sinϕi, sin η), (9.2)

where ϕi is the azimuthal angle and η represents the out-of-plane canting
angle. In this section, the azimuthal angles ϕi are assumed to be chirally
ordered, i.e., ϕi = ϕ0 for i ∈ A, ϕi = ϕ0 + 2π/3 for i ∈ C, and ϕi = ϕ0 + 4π/3
for i ∈ B. In our model, we set ϕ0 = π/2, and then the the spin vector of each
magnetic atoms can be represented as:

SA = S(0, cos η, sin η),

SB = S(−
√
3

2
cos η,−1

2
cos η, sin η),

SC = S(

√
3

2
cos η,−1

2
cos η, sin η),

(9.3)
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FIGURE 9.2: (a) The relationship between the canting angle η
and the out-of-plane magnetic field B = (0, 0, B) (in Tesla) for
different value of topological orbital susceptibility κTO with
J1 = −2 meV, J2 = 0.1J1 and A = 0.02J1. (b) Topologi-
cal phase diagram of the magnon bands in a antiferromagnet
kagome lattice with a function of J2 (in units of J1) and mag-
netic field value B with parameters Dz = 0.1J1, κTO = 0.05µB

and A = 0.02J1. The colors highlight the canting angle of the
ground state with the unit degree. Different phases are outlined
by the black line and marked by sets (C1, C2, C3) of Chern num-
bers.

Here, S is the length of the spin moment. In our model, the exchange in-
teractions are considered only upto the second-nearest-neighbor. From the
Hamiltonian Eq. (9.1), the classical total energy of each unit cell is calculated:

Eunit(η) =− 3J1S
2

2
− 3J2S

2

2
+

9J1S
2

2
cos 2η +

9J2S
2

2
cos 2η

− 3
√
3BκTOS3 cos2 η sin η − 3BS sin η

+ (3
√
3DS2 − 3AS2) cos2 η,

(9.4)

Obviously, the energy of the Hamiltonian is the function of η, and the mini-
mum energy of the system is obtained through solving the Eq. (9.5):

∂Eunit(η)

η
=− 9(J1 + J2)S

2 sin 2η + 6
√
3BκTOS3 cos η sin2 η

− 3
√
3BκTOS3 cos3 η − 3BS cos η

− 2(3
√
3DS2 − 3AS2) cos η sin η = 0,

(9.5)

As the range of sin η and cos η are from −1 to 1, we find that only one solution
of η satisfies the condition, which corresponds to the minimum energy.

In this section, we set the model parameters as S = 0.5, J1 = −2 meV,
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J2 = 0.1J1 , κTO = 0.05µB, A = 0.02J1. Besides, we set the D = (0, 0, Dz) with
Dz = 0.1J1 for the nearest-neighbor interaction. The magnetic field depen-
dent canting angle η for AFM kagome lattice is shown in Fig. 9.2 (a), where
the magnetic field effect on the canting angle η is compared by changing
the topological orbital susceptibility κTO. Under the same external magnetic
field, the generated η is different with different κTO, and it is indicated that η
and κTO are negatively correlated in Figure 9.2 (a). The magnetic field effect
on a honeycomb lattice is also calculated to make a comparison. The cant-
ing angle of the minimum energy in honeycomb lattice fulfills the equation
sin η = B/S

−6J1+2A
, which is similar to the previous work [199].

FIGURE 9.3: (a-b) Fat band analysis for the magnonic bands
with different B specified at the bottom. Red and blue colors
represent positive and negative signs of the local TOM LTOM

nk ,
respectively, and the line thickness denotes the corresponding
magnitude. Bold integers indicate the Chern numbers of the
spin-wave bands. (c) Orbital Nernst conductivity κxyONE as a
function of DMI and temperature with the magnetic field of
10T. (d) Magnon Nernst conductivity κxyN as a function of B and
temperature with DMI strength of 0.1J1. (e) κxyONE as a function
of B and temperature with DMI strength of 0.1J1. The blue dot-
ted line for (d, e) represents magnetic field dependent canting
angle and the black dotted line indicates the phase boundary.
The unit of the color map for (c-e) is chosen as kB/2π.
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9.1.3 Topological phase diagram and orbital Nernst effect

Based on the linear spin-wave theory (LSWT) [52, 53], we calculate the ma-
gnon dispersion and eigenvector of the AFM kagome lattice. To characterize
the topology of magnonic bands, the Chern number Cn is calculated, based
on Cn = 1

2π

∫
BZ

Ωxy
nk dk, where the n refers to the nth magnon branch, and

Ωxy
nk is obtained based on Eq. (4.15). Then the topological phase of the system

can be marked by sets (C1, C2, C3) of Chern numbers, and the topological
phase diagram as the function of J2 and external out-of plane magnetic field
is shown in Figure 9.2 (b). With the increase of magnetic field value B, the
canting angle η increases together with the scalar spin chirality and TOM
Zeeman coupling, leading to the modulation of topological phase. The com-
plex phase diagram in Figure 9.2 indicates that the noncoplanarity of kagome
magnets aroused by the magnetic field has rich topological properties, thus
resulting in rich magnonic transport properties in this system.

In order to explore magnonic transport properties, we calculate the topo-
logical orbital Nernst conductivity and magnon Nernst conductivity in the
presence of an external magnetic field. We first calculate the local TOM of the
n-th magnon branch according to LTOM

nk = κTO⟨Ψnk|χnoc(k)|Ψnk⟩, where the
χnoc(k) is the Fourier transform of χnoc

ijk = Ŝi · (Ŝj × Ŝk) = Ŝ′
iO

T
i · (OjŜ

′
j×OkŜ

′
k)

between triplets of spins, and the rotation matrix Oi represents the magnetic
moment direction at the site i and Ŝ′ is the unit quasi-spin pointing z direc-
tion. The calculated local TOM is shown in Figure 9.3 (a-b).

According to Eq. (8.14) and Eq. (4.29), we calculate the topological orbital
Nernst conductivity κxyONE and magnon Nernst conductivity κxyN . The calcu-
lated results are shown in Figure 9.3 (c-e), which indicates that the DMI and
magnetic field can modulate the value of κxyONE and κxyN , and the value of κxyONE

is related to the topological phase diagram. Besides, in the calculation, the
magnitude of topological orbital susceptibility κTO is much smaller than the
value we chose in Chapter 8 (lower by an order of magnitude) and some non-
collinear textures according to the ab initio calculation [12, 16, 179], whereas
the calculated κxyONE is still larger than the calculated κxyN .

9.2 Orbital Nernst effect in Mn3Ge

9.2.1 Introduction of Mn3Ge

In Chapter 8, we select the ferromagnetic kagome lattice as a platform to
demonstrate the existence of orbital Nernst effect in collinear systems which
do not exhibit chirality in their ground state. Besides, in Section 9.1, we dis-
cuss the orbital Nernst effect in non-collinear kagome lattice, and the mag-
netic field effect on the spin frustration is investigated. In this section, the
orbital Nernst effect in realistic material Mn3Ge is investigated. Mn3Ge is
a compensated noncollinear antiferromagnetic material with a Néel temper-
ature of about 380 K [200], and the spin moment of each Mn atom is about
S= 2.5µB. The behavior of the TOM with the chirality of spins in Mn3Ge has
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FIGURE 9.4: Perspective view (a) and top view (b) of Mn3Ge.
Three different interaction paths with different colors are
marked as J1, J2 and J3. The inter-layer interaction (J4) is not
shown. The Mn atom is represented with the purple ball. The
spin direction of each Mn atom is revealed by red arrows.

been studied through ab initio calculations [201]. Taking the data for the lat-
ter work, the topological orbital susceptibility κTO is obtained through fitting
the TOM as a function of polar angle θ according to Eq. 8.2. We estimate its
value, and give a rough value as −0.1µB for this quantity.

9.2.2 Establishing the model for Mn3Ge

Similar to the method discussed in Section 9.1, the rotation matrix is intro-
duced to deal with the non-collinear antiferromagnetic spin arrangement.
Then, the SSC χnoc

ijk can be represented by the product of rotation matrix and
quasi-spin operators. To get the magnon dispersion, the LSWT is used, where
the Holstein-Primakoff (HP) transformation [51] is adopted to introduce the
quantum spin operators. In the calculation, only the quadratic part of the
Hamiltonian (H2) is kept. After Fourier transformation, the magnon bands
are obtained through diagonalizing the dynamical matrix of H2. More tech-
nical details can be seen in Section 2.4.2.

Parameters J (meV) D (meV)

J1 −7.5 0

J2 −6.0 (0, 0,−0.25)
J3 1.2 0

J4 −1 0

K 0.04 0

TABLE 9.1: Values of the parameters entering the Heisen-
berg Hamiltonian Eq. 9.6. Four exchange interactions and
one single-ion anisotropy parameters are listed. The second
nearest-neighbor DMI vector was chosen so as to reproduce the
experimental spin-wave dispersion.
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FIGURE 9.5: The comparison between the experimental data
and the theoretical calculation of the magnon spectra of Mn3Ge.
The neutron scattering figure is adapted from the Ref. [203],
while the red and black dotted lines mark the magnon disper-
sion calculated with the fitted parameters. The red line is calcu-
lated based on the parameters shown in Table. 9.1 and the black
dotted line is the calculation performed without DMI. The ex-
perimental magnon dispersion at the Γ point exhibits a disper-
sion of about 17meV, and the magnitude of the DMI is intro-
duced to reproduce it.

To reproduce the magnonic structure of Mn3Ge properly, the spin Hamil-
tonian is modified as:

H =−
∑
⟨ij⟩

JijSi · Sj −
∑
⟨ij⟩

Dij · (Si × Sj)−K
∑
i

(n̂i · Si)
2

−B · κTO
∑
ijk

êijk[Ŝi · (Ŝj × Ŝk)]−B ·
∑
i

Si,
(9.6)

where the third term is introduced to take into account the single-ion aniso-
tropy energy with respect to the local in-plane easy axes n̂i. The magnon
excitation spectrum of Mn3Ge has been accessed experimentally before [202,
203], and we used the experimental data to estimate the exchange interaction
and DMI through the fitting. In our calculation, the exchange interactions
are considered up to the fourth nearest neighbor, where different interac-
tion paths are shown in Figure 9.4. To fit the experiment, the second-nearest
neighbor DMI is taken into account. The comparison between the calculated
and experimental spectra is shown in Figure 9.5, with the parameters listed
in Table. 9.1. The comparison in Figure 9.5 indicates that the experimental
data can be fit quite well, while including the effect of the DMI is indispens-
able, with the latter finding being consistent with the situation of Mn3Sn [204,
205].

Based on the fitted parameters, we calculate the transport properties of
Mn3Ge. In experiments, an external magnetic field is applied to study the
transport properties of this material. The applied magnetic field gives rise to
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a small out of the plane canting of the spins. From experimental data on the
magnetization variation, the canting angle of the order of 1◦ can be estimated
for the magnetic field of the magnitude of several Tesla − e.g., an angle of
0.4◦ was deduced for the applied magnetic field of 5T [29]. Using the latter
estimate, we compute the properties of the system in the canting range of
0.4− 2◦, adjusting the magnitude of the external field accordingly.

FIGURE 9.6: Orbital Nernst effect in Mn3Ge. (a) Fat band anal-
ysis for the magnonic bands of Mn3Ge with the canting angle
η = 1◦. Red and blue colors represent the positive and neg-
ative signs of the local TOM LTOM

nk , respectively, and the line
thickness denotes the corresponding magnitude. (b) Compari-
son between the magnon Nernst conductivity (dotted line) and
orbital Nernst conductivity (solid line) as the function of tem-
perature for Mn3Ge. Different color represents two different
canting angles η = 0.4◦ (red color) and η = 1◦ (black color). The
unit of Nernst conductivity in (b) is 103ℏe−1µA(cm)−1K−1. The
schematic sketch of the magnetic structure of Mn3Ge is shown
in the inset.

9.2.3 Orbital Nernst effect in Mn3Ge

The local TOM of the Mn3Ge, LTOM
nk is calculated according to Eq. (8.6). The

fat band analysis of Mn3Ge for η = 1◦ is shown in Figure 9.6 (a). Similar
to the antiferromagnetic kagome lattice, the maximum value appears in the
vicinity of the Γ point.
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Except for the local orbital analysis of the bands, the magnon, κxyN , and
orbital, κxyONE, Nernst conductivities in this material are estimated as a func-
tion of temperature. Our calculations show that in Mn3Ge the magnitude
of magnonic and orbital contributions to the transverse thermal currents is
comparable and sizeable. As both contributions are opposite in sign, this
potentially gives rise to a non-trivial dependence of the overall current of
angular momentum on temperature, which can be accessed experimentally.
The comparison between the magnon Nernst conductivity and orbital Nernst
conductivity with different canting angles is shown in Figure 9.7 (a). Com-
paring the values of κxyONE and κxyN , we find that the spin and orbital contribu-
tions to the Nernst effect in this material exhibit a similar order of magnitude
in a wide range of temperatures. Overall, we find that the scale of κxyONE in
Mn3Ge is comparable to the available values for the spin Nernst effect of
magnons or spin Nernst effect of electrons [206].

FIGURE 9.7: (a) The comparison between the magnon Nernst
conductivity and orbital Nernst conductivity for Mn3Ge with
different canting angle η. The inset is the comparison between
the magnon Nernst conductivity and orbital Nernst conduc-
tivity for Mn3Ge at η = 1◦, with the κTO selected as −0.2µB.
(b) The DMI effect on the magnon Nernst conductivity (repre-
sented with a solid line) and orbital Nernst conductivity (rep-
resented with a dotted line) in Mn3Ge. The black and red color
correspond to η = 1◦, η = 0.4◦ respectively, while green and
blue color of the lines represent the case without the DMI when
η is chosen as 1◦ and 0.4◦ respectively. The units of the conduc-
tivity are 103 ℏe−1µA(cm)−1K−1.

The result without DMI is calculated, and the result is shown in Fig-
ure 9.7 (b). Expectedly, as shown in Figure 9.7 (b), we find the magnitude
of the κxyONE and κxyN of Mn3Ge are impacted by the DMI. By performing cal-
culations assuming a value of −0.2µB for κTO, we demonstrate that the or-
bital Nernst effect might be even stronger than the magnon Nernst effect in
Mn3Ge if the coupling of conduction electrons to the SSC is stronger, see the
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inset of Figure 9.7 (a). The modulation of κTO has been discussed in Chap-
ter 8, and stronger coupling between the free electron and SSC can be realized
by doping the system or applying strain.

9.3 Summary

In this chapter, we demonstrate the mechanism of orbital Nernst effect in
non-collinear systems, such as in material Mn3Ge. The orbital moment, gen-
erated and transported by magnons, is systematically investigated under the
influence of the magnetic field.
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Chapter 10

Summary and future work

10.1 Summary

This thesis mainly focuses on the magnonic topological properties in mag-
nets.

As shown in Chapter 2, the effective spin Hamiltonian was employed
to investigate the properties of magnons in magnets, which is composed
of the Heisenberg exchange interaction, Dzyaloshinskii-Moriya interaction,
Kitaev interaction, Zeeman coupling, and higher order interactions, etc. In
Chapter 3, the parameterization of Hamiltonian was done based on the first-
principles calculation and fitting to experiments, separately. Then, by utiliz-
ing the linear spin-wave theory, a generalized method was proposed to ob-
tain the magnon dispersion and eigenvector in the adiabatic approximation
of the Hamiltonian represented with matrix format (shown in Section 2.4).
In addition, the magnon Berry curvature was introduced to describe the
magnonic topological phenomenon and explore the magnonic transport prop-
erties in Chapter 4. Utilizing these methods, we have implemented research
works on magnons presented in Chapter 5-9.

By relying on the first-principles calculation, a family of two-dimensional
metal-organic frameworks with Shastry-Sutherland lattice were systemati-
cally investigated in the application of spintronics in Chapter 5. Besides, the
effective spin Hamiltonian of Mn-PBP was obtained, the magnonic transport
properties of which were investigated to explore the candidate application in
magnonics.

Via the cooperation with the experiment, the effective spin Hamiltonian
was obtained and the magnonic Weyl points were shown in multiferroic fer-
rimagnet Cu2OSeO3 ( Chapter 6). It was predicted that the thermal Hall con-
ductivity and Weyl points were strongly influenced by the Dzyaloshinskii-
Moriya interactions.

In Chapter 7, we discussed the interplay of the Dzyaloshinskii-Moriya
interaction and Kitaev interaction for magnonic properties in a honeycomb
lattice. From the perspective of magnons, we proposed several strategies to
distinguish the two types of interactions from each other. Importantly, co-
operated with experimental collaborators, the proposed strategies were suc-
cessfully applied to materials CrSiTe3 and CrGeTe3.

In addition to the magnonics, the orbitronics was also discussed in the
thesis. As shown in Chapter 8, a theoretical mechanism is proposed, among
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which we coupled magnonic excitations to spin-chirality in generic classes
of spin systems. Together with the microscopic analysis, we revealed that
even in the ground state with a collinear spin system, a finite spin chirality
can be generated by thermally excited magnons. Further, this generated chi-
rality led to a strong orbital response of the spin system via the mechanism
of topological orbital magnetism, which built the bridge between magnonic
excitation and the generation of electronic orbital magnetization. Moreover,
we indicated that in an applied temperature gradient, a significant magnon
drag of the orbital momentum was driven by currents of magnons. Based on
this, we proposed a new transport mechanism, which was named as orbital
Nernst effect of magnons.

Finally, we presented the application of orbital Nernst effect of magnons
in Chapter 9, where the orbital transport properties driven by magnons were
investigated in non-collinear systems (e.g., antiferromagnetic kagome lattice
and real material Mn3Ge).

10.2 Future work

High throughput computing and spin-wave theory

By combining the Monte Carlo, spin-wave theory, and first-principles calcu-
lations, the magnonics properties can be investigated in a range of magnets.
For instance, we can study the candidate Kitaev materials and explore their
corresponding topological magnonic properties through Fleur-AiiDa.

Orbital magnetism driven by magnons

In the thesis, we present the electronic orbital moment and its transport char-
acter. More works can be done in this field, such as its application in real
materials or complex magnetic structures.

Magnon and phonon coupling

Notably, both magnon and phonon are bosons, which have similar energy
scales and are easily coupled with each other in momentum space. The topol-
ogy can be introduced through their coupling.
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Appendix A

Publication List

• Li-chuan Zhang, Guangzhao Qin, Wu-Zhang Fang, Hui-Juan Cui,
Qing-Rong Zheng, Qing-Bo Yan and Gang Su, Tinselenidene: a Two-
dimensional Auxetic Material with Ultralow Lattice Thermal Conduc-
tivity and Ultrahigh Hole Mobility, Scientific Reports 6 (2016), 19830.
(DOI: 10.1038/srep19830 )
− Results obtained in this paper are not discussed in this thesis.

• Li-chuan Zhang, Lizhi Zhang, Guangzhao Qin, Qing-Rong Zheng, Ming
Hu, Qing-Bo Yan, Gang Su, Two-dimensional Magnetic Metal-Organic
Frameworks with Shastry-Sutherland Lattice, Chemical Science 10(2019),
10381-10387. (DOI: 10.1039/C9SC03816G)
− This paper summarizes the computational method and investigates
the application of the 2D-MOFs MT-PBP with SS lattices in spintronics.
Some results are presented in Chapter 5.

• Li-chuan Zhang, Y.A. Onykiienko, P.M. Buhl, Y.V. Tymoshenko, P. Čer-
mák, A. Schneidewind, A. Henschel, M Schmidt, S. Blügel, D.S. Inosov,
Y. Mokrousov. Magnonic Weyl states in Cu2OSeO3. Phys. Rev. Research
2(2020), 013063. (DOI: 10.1103/PhysRevResearch.2.013063)
− This paper is cooperated with experimental collaborates to investi-
gate the magnonic Weyl point. I contribute the theoretical part, and
some results are discussed in Chapter 6.

• Li-chuan Zhang, Dongwook Go, Fabian R Lux, Jan-Philipp Hanke,
Patrick M Buhl, Sergii Grytsiuk, Stefan Blügel, Yuriy Mokrousov. Im-
printing and driving electronic orbital magnetism by magnons. Com-
munications Physics 3(2020), 227. (DOI: 10.1038/s42005-020-00490-3)
− This work is done with collaborators. I performed the magnonic part
of the calculations and analysis. For a better introduction of the work,
both magnonic results and electronic TOM calculation which is calcu-
latted by Dongwook, Go are presented in Chapter 8 and Chapter 9.

• Li-chuan Zhang, Fengfeng Zhu, Dongwook, Go, Fabian R Lux, Fla-
viano José dos Santos, Samir Lounis, Yixi Su, Stefan Blügel, Yuriy Mo-
krousov. The interplay of Dzyaloshinskii-Moriya and Kitaev interac-
tions for magnonic properties of Heisenberg-Kitaev honeycomb ferro-
magnets. Physical Review B 103(2021), 1344142021.
(10.1103/PhysRevB.103.134414)
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− This paper discusses the interplay between the DMI, Kitaev interac-
tion and magnetic field in magnetic honeycomb lattice. Some results
are presented in Chapter 7.

• Fengfeng Zhu*, Li-chuan Zhang*, Yao Wang*, Flaviano José dos Santos,
Junda Song, Thomas Mueller, et. al. Topological magnon insulators in
two-dimensional van der Waals ferromagnets CrSiTe3 and CrGeTe3: to-
wards intrinsic gap-tunability. Science Advance 7 (37), eabi7532, (2021).
(DOI: 10.1126/sciadv.abi7532)
− This paper is done with experimental collaborators. I performed the
magnonic part of the calculations and analysis. Some results are pre-
sented in Chapter 7.

• Guangzhao Qin, Zhenzhen Qin, Wu-Zhang Fang, Li-Chuan Zhang,
Sheng-YingYue, Qing-Bo Yan, Ming Hu, and Gang Su, Diverse aniso-
tropy of phonon transport in two-dimensional group IV-VI compounds:
a comparative study. Nanoscale, 8(2016), 11306.
(DOI: 10.1039/C6NR01349J) − Results obtained in this paper are not
discussed in this thesis.

• Chengxiao Peng, Guangzhao Qin, Li-chuan Zhang, Guangbiao Zhang,
Chao Wang, Yuli Yan, Yuanxu Wang, Ming Hu, Dependence of phonon
transport properties with stacking thickness in layered ZnO. Journal of
Physics D: Applied Physics, 51 (2018), 315303.
(DOI: 10.1088/1361-6463/aacf19) − Results obtained in this paper are
not discussed in this thesis.

• Guanzhao Qin, Zhenzhen Qin, Li-Chuan Zhang, Minghu, Giant effect
of spin-lattice coupling on the thermal transport in two-dimensional
ferromagnetic CrI3. J. Mater. Chem. C, 8(2020), 3520-3526.
(DOI: 10.1039/C9TC05928H ) − Results obtained in this paper are not
discussed in this thesis.
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