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Abstract

While moving in space, pedestrians often adjust their direction of move-

ment and/or their speed to avoid collisions with others and obstacles. This

steering process is influenced by physical factors from the environment, as

well as psychological factors of pedestrians such as motivation. Therefore,

when modeling the movement of pedestrians especially for reproducing

self-organization phenomena, it is important to consider these factors.

This cumulative dissertation includes four publications related to velocity-

based models for pedestrian dynamics. Three of them study the

navigation of pedestrians and related self-organization phenomena, and

the remaining one is an applied study related to the control measures

adopted by German supermarkets during the COVID-19 pandemic.

Velocity-based models consider pedestrians as particles also called agents

and describe their movement at the operational level, by means of first-

order differential equations. Velocity-based models, contrary to cellular

automata, are continuous in space. Moreover, the new position of

pedestrians is determined directly by a velocity function instead of an

integrating of acceleration in force-based models.

In publication I, a velocity-based model that considers several basic

behaviors of pedestrians is proposed and validated with the fundamental

diagram of unidirectional pedestrian flow. Besides, the effect of agents’

shape on the overall dynamics is studied. Although this basic model is

able to guarantee the volume exclusion and reproduce the fundamental

diagram of unidirectional pedestrian flow, it does not perform well in

complex scenarios, where self-organization phenomena occur. Therefore,

in publication II and III, the previously developed basic model is used to

quantitatively study clogging in bottleneck scenarios and lane-formation

in bidirectional flow scenarios, respectively. In addition, in publication III,

an anticipation mechanism is introduced into the basic model to describe

lane-formation in bidirectional flow scenarios more realistically. Based
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on the analysis in publications II and III, a new structure of the model

for pedestrian dynamics is proposed in the outlook chapter of this

dissertation. Finally, in publication IV, the velocity-based model is used

to evaluate the effectiveness of control measures adopted by German

supermarkets during the COVID-19 pandemic in 2020.
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Zusammenfassung

Wenn sich Fußgänger in Menschenmengen bewegen, passen sie oft ihre

Bewegungsrichtung und/oder ihre Geschwindigkeit an, um Kollisionen mit

anderen Personen und Hindernissen zu vermeiden. Beeinflusst wird dieser

Lenkvorgang durch physikalische Faktoren aus der Umgebung, aber auch

durch psychologische Faktoren des Fußgängers wie die Motivation. Daher

ist es bei der Modellierung der Bewegung von Fußgängern insbesondere

zur Reproduktion von Selbstorganisationsphänomenen wichtig, diese

Faktoren zu berücksichtigen.

Diese kumulative Dissertation umfasst vier Veröffentlichungen zu gesch-

windigkeitsbasierten Modellen für die Fußgängerdynamik. Drei dieser

Veröffentlichungen untersuchen die Navigation von Fußgängern und

damit verbundene Selbstorganisationsphänomene, während die vierte eine

angewandte Studie zu den Kontrollmaßnahmen deutscher Supermärkte

während der COVID-19-Pandemie. Geschwindigkeitsbasierte Modelle

betrachten Fußgänger als Teilchen, auch die Agenten genannt werden,

und beschreiben ihre Bewegung auf operativer Ebene mit Hilfe von

Differentialgleichungen erster Ordnung. Geschwindigkeitsbasierte Modelle

sind im Gegensatz zu zellulären Automaten im Raum kontinuierlich.

Außerdem wird die neue Position von Fußgängern direkt durch eine

Geschwindigkeitsfunktion bestimmt, anstatt die Beschleunigung in kraft-

basierte Modelle zu integrieren.

In der Publikation I wird ein geschwindigkeitsbasiertes Modell, das

grundlegende Verhaltensweisen von Fußgängern berücksichtigt, vorgestellt

und mit dem Fundamentaldiagramm des unidirektionalen Fußgängerflusses

validiert. Außerdem wird der Einfluss der Agentenform auf die

Gesamtdynamik untersucht. Dieses vereinfachte Modell ist in der Lage,

den Volumenausschluss zu gewährleisten und das Fundamentaldiagramm

des unidirektionalen Personenstrom zu reproduzieren, stößt jedoch in

komplexen Szenarien, in denen Selbstorganisationsphänomene auftreten,
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an seine Grenzen. Daher wird in den Publikationen II und III das zuvor

entwickelte Modell verwendet, um die Verstopfung in Engpassszenarien

bzw. die Spurbildung in bidirektionalen Strömungsszenarien quantitativ

zu untersuchen. Darüber hinaus wird in der Publikation III ein

Antizipationsmechanismus in das Modell eingeführt, um die Spurbil-

dung in bidirektionalen Strömungsszenarien realistischer zu beschreiben.

Basierend auf der Analyse in den Publikationen II und III wird im

Ausblick dieser Dissertation eine neue Struktur des Modells für die

Fußgängerdynamik vorgeschlagen. Schließlich wird in der Publikation IV

das geschwindigkeitsbasierte Modell verwendet, um die Wirksamkeit der

Kontrollmaßnahmen deutscher Supermärkte während der COVID-19-

Pandemie im Jahr 2020 zu bewerten.
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Abbreviations

AVM Anticipation velocity model
CA Cellular automaton
CSM Collision-free speed model
FD Fundamental diagram
GCVM Generalized collision-free velocity model
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Crowd disasters

Nowadays, with the increase of the world’s population and the convenience of trans-

portation, the scale of events in which numerous persons gather in specific locations

is getting bigger. The safety of the crowd in these events is an important issue for

both participants themselves and the organizers. Although most of these events are

carefully planned before they are held, accidents may still be unavoidable, even in

some small-scale events, when high densities of people are in combination with un-

favorable geometrical constructs such as bottlenecks. For example, the Hillsborough

disaster in Sheffield, England, on 15 April 1989, led to 96 deaths and 766 injuries [1].

The Love Parade disaster in Duisburg, Germany, on 24 July 2010, caused 21 deaths

and at least 500 injuries [2]. The crowd crush in Shanghai, China on 31 December

2014, resulted in 36 deaths and 49 injuries [3]. Recently, on April 30, the crowd crush

occurred in Meron, Israel, in which 45 people were dead and 150 were injured [4].

To avoid these disasters, events of the crowd must be cautiously planned by using

handbooks or simulations that are validated with the result of experiments or field

studies. Among these methods, simulations offer an efficient tool for testing different

scenarios, beforehand. Besides, simulations can be easily evaluated and interpreted

through appropriate visualization. By studying the movement of pedestrians and the

phenomena observed in crowds, pedestrian dynamics can be described in simulations

by mathematical models. After verification and validation, these models are efficient

tools to examine the safety of large events and explore the efficiency and safety of

different organizational measures.
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1.1. MOTIVATION

1.1.2 Building designs

As the urban population increases, the buildings in big cities become much larger

and more complex, which makes a safe evacuation of people in emergency situations

a serious task. For instance, when a fire or a natural disaster such as an earthquake

occurs, people in a building need to evacuate in a short time. The efficiency of the

evacuation process is mainly affected by the structure of the building, e.g., the layout

and shape of rooms, the length and width of corridors, the location and height of

staircases, and the location and width of exits. Usually, changing the structure of

an already constructed building is costly. Therefore, it is important to evaluate the

building with respect to safety, comfort, and efficient design before construction and

during the planning phase.

The guidance for designing the structure of buildings can be divided into two cat-

egories, which are prescriptive and performance-based methods [5]. The prescriptive

method is mainly based on experience and according to the type of buildings, provides

the minimal or maximal number of some features, e.g., the minimal width of exit and

the maximal number of occupants. This method can be easily followed by choos-

ing satisfactory parameters of facilities but is insufficient for buildings with complex

structures. Therefore, the performance-based method is developed, which focus on

designing buildings based on users’ requirements [6]. One of the main steps in the

performance-based method is using evaluation tools to assess whether the proposed

solution meets the performance requirements, e.g., required safe egress time should

be larger than available safe egress time. Knowing how people move in different sce-

narios is important for this evaluation. However, up to now, there is no general valid

description of the pedestrian movement, because it depends on multiple factors like

the environment, culture, region, and characteristics of pedestrians.

In spite of this, handbooks and simulations can be used for the evaluation process.

Handbooks provide the information of pedestrian dynamics as a reference for facility

design, which includes the mean dimension and the free-flow walking speed of pedes-

trians at different ages, the relation between pedestrian flow and density at different

scenarios, etc. [7, 8, 9]. However, handbooks regard the crowd as homogeneous and

are unable to consider the heterogeneity of individuals. This insufficiency can be well

made up by numerical simulations through assign individual parameters to the agent

in microscopic models.
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CHAPTER 1. INTRODUCTION

1.1.3 Evaluating control measures for pandemics

The spread of COVID-19 has caused a huge impact on humans’ life worldwide. The

virus that causes COVID-19 spreads mainly when an infected person is in close con-

tact with other people for a certain period of time [10]. Therefore, many control

measures are adopted to reduce close contact among people. For example, stores in

Germany take measures including limiting the number of customers and asking cus-

tomers to keep social distance (a minimum of 1.5m). However, the effectiveness of

these measures is unknown and is hard to measure as it is (ethically) not possible to

conduct experiments with humans under these special conditions. With the simula-

tion of customers’ movement in confined stores, these measures can be evaluated by

using suitable indexes to reflect the degree of contact among customers. Moreover,

the model for pedestrian dynamics can be extended to an epidemiology model by

combining the knowledge and data about the transmission of viruses.

1.2 State-of-the-art models of pedestrian dynam-

ics

The behaviors and actions of pedestrians are usually classified into three different

levels [11]. The strategic level is the highest one, which defines the activities pedes-

trians choose and their order of execution. The level lower than the strategic level

is the tactical level. At this level, pedestrians choose a route to reach the area of

each activity. The route is influenced by many factors including the available walking

time, the distance to walk, and the degree of congestion of the road, etc. The last

and lowest one is the operational level. This level covers those behaviors and actions

pedestrians take to avoid imminent collisions with others and obstacles.

The majority of models for pedestrian dynamics describe the movement of pedes-

trians at the operational level. The decisions at strategical and tactical levels are

often considered as external inputs of the operational model. The studies in the cur-

rent dissertation focus on models at the operational level. A general categorization

of pedestrian models at the operational level is based on the scale of analyzed quanti-

ties. According to the scale from large to small, models are classified into macroscopic,

mesoscopic, and microscopic models.

Macroscopic models treat the crowd as a whole and describe the movement of

crowds using averaged quantities, such as density, velocity, or flow. These models

neither distinguish individual pedestrians nor consider individual behavior [12], but

3



1.2. STATE-OF-THE-ART MODELS OF PEDESTRIAN DYNAMICS

they can provide an understanding of the overall behavior of crowds. Therefore,

macroscopic models are often used for scenarios of large crowds where individual

differences could be neglected. Since there are many similarities between the dynamics

of crowds and fluids, a lot of macroscopic models of pedestrian dynamics are developed

on the basis of fluid mechanics [13, 14, 15, 16, 17, 18, 19, 20]. Under the assumption

of conservation of mass and momentum, these models are usually constituted by a

set of continuity equations. However, it is obvious that the movement of crowds does

not satisfy these classical continuum assumptions. The network-based model [21,

22, 23, 24] is another type of macroscopic model, which uses networks to represent

pedestrians’ transport in buildings. Each node in the network represents a facility

in the building, e.g., rooms, corridors, halls. These nodes are connected by edges,

which corresponds to the connection of these facilities. Network-based models are

generally used to determine the optimal evacuation route. However, it can also be

combined with microscopic and mesoscopic models to consider the interaction between

pedestrians.

Mesoscopic models also use averaged quantities to describe the movement of

crowds. However, different from macroscopic models, in mesoscopic models, the

behavior of individual pedestrians is described by probability distributions of their

positions and velocities. To distinguish between the macroscopic and mesoscopic

models more clearly, it is recommended to read [12, 25, 26, 27]. The development of

mesoscopic models is inspired by the kinetic theory of gases [12, 28, 29, 30]. The meso-

scopic model is also a tool to connect the macroscopic and the microscopic models,

the relevant works can be found in [31, 32].

Compared with macroscopic and mesoscopic models, microscopic models focus

on the movement of each pedestrian. Pedestrians are represented as particles, also

called “agents”, which influence each other’s movement. Since the movement of each

agent needs to be calculated, the microscopic models are computationally expensive to

some extent, especially when the scale of crowds is big. However, microscopic models

can naturally take into account the heterogeneity and stochasticity of pedestrians’

behavior. Moreover, they are suitable to study the interaction between pedestrians

and describe their dynamics in simple scenarios.

In recent years, many microscopic models have been developed for describing

pedestrian dynamics. In microscopic models, the calculation of the new position of

agents usually requires solving differential equations. However, there are also some

models that determine the new positions of agents directly according to their current

situation, such as desired directions and the positions of neighbors, instead of solving

4



CHAPTER 1. INTRODUCTION

differential equations. A typical model that falls into this category is the cellular

automata (CA) model, which is discrete in space and time. The two-dimensional

space is divided into cells of a specific size. Each cell can only be occupied by one

agent. In some case, finer discretization are used, where agents occupy more than

one cell [33]. At each time step, whether agents moving to the neighboring cell or

staying in the current cell is specified by a set of rules in combination with prob-

ability. CA models were firstly applied for describing the movement of vehicles on

streets and highways, then they were gradually adapted to model the movement of

pedestrians [34, 35, 36, 37, 38]. In subsequent developments, various concepts are

continuously introduced into the CA model to more accurately describe pedestrian

dynamics, e.g., floor field [39, 40], friction parameters [41, 42], anticipation mecha-

nism [43, 44], and game theory [45, 46]. The lattice gas model is similar to the CA

models. Agents are located at cross points in the lattices gas model instead of cells

in the CA model [47, 48, 49, 50, 51, 52]. The space-discreteness of CA and lattice

gas models leads to lower computational costs compared to other microscopic models

continuous in space. However, spatial discretization also brings limitations, especially

in complex scenarios. For instance, the size of the geometry, the maximum density

of agents, and the velocity of agents are all limited by the size and type of cells.

Based on the underlying mechanism used to determine the movement of agents,

microscopic models requiring solving differential equations can be divided into two

main categories, which are acceleration-based and velocity-based models [53].

Most of the acceleration-based models are continuous in space. The interactions

between pedestrians and infrastructure are described by forces, so acceleration-based

models are also called force-based models. Based on Newton’s second law, the move-

ment of an agent is determined by the acceleration proportional to the force applied

to it. The most famous model in this category is the social force model [54], which

adopts three force terms to describe the pedestrian movement: the driving force

prompts pedestrians to move at their desired velocity, the repulsion force from neigh-

bors and borders to keep distance, and the attractive force from persons or objects.

Two additional contact forces are introduced later for dense crowd [55]. The model is

widely used to investigate the pedestrian dynamics in the bottleneck scenario [56, 57].

In some studies [58, 59], a group force is also introduced to describe the movement of

pedestrians in groups. Furthermore, the model is extended in different ways to better

reproduce the movement of pedestrians in bidirectional flow situations [60, 61, 62].

Another force-based model that has been extensively studied is the centrifugal force

model [63]. Chraibi et al. [64] generalized the model and introduced an elliptical
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1.2. STATE-OF-THE-ART MODELS OF PEDESTRIAN DYNAMICS

volume exclusion of agents. Besides circular and elliptical agents, in [65, 60] each

agent is represented by three overlapping disks. Since agents in force-based models

are driven by forces, they show some unrealistic behavior, such as overlapping and

oscillation. These limitations are detailed discussed in [53, 64, 66].

Velocity-based models are also continuous in space, but the movement of the agent

is determined by velocity directly. The velocity of agents is determined by the position

and velocity of their neighbors as well as their surroundings. Therefore, calculating the

new position of agents only need to solve first-order differential equations. Velocity

obstacle models are typically velocity-based model, and it is initially proposed for

robot motion planning in a time-varying environment [67]. The velocity obstacle of

an agent is the set of the agent’s velocities that would cause collisions with obstacles

(both static and moving) at some future time. See Figure 1.1. Velocities outside the

velocity obstacles are called avoidance velocities. Then the new velocities of agents are

selected by a specific rule from the set of avoidance velocities, for example, the highest

avoidance velocity along the line to the goal. In subsequent studies, models based on

different forms of velocity obstacles have been proposed [68, 69, 70, 71, 72]. Models

based on velocity obstacles mainly focus on the collision avoidance of agents. They

can reproduce several self-organization phenomena of pedestrians and avoid gridlock

in some situations, however, these models are usually not designed for reproducing

the fundamental diagram (FD) of pedestrian flows. Tordeux et al. [73] proposed a

model to describe pedestrian dynamics, where the moving direction and speed of an

agent are calculated separately. The model is called the collision-free speed model

(CSM). The direction of movement is determined by the desired direction of the agent

and the influence from surrounding neighbors. The speed is a function of the distance

to the closest neighboring agent in the direction of movement, which is directly given

from a special representation of the FD. The model is overlapping-free, and the speed

function reflects the relationship between the speed and the distance to the front

agent. Therefore, the model can easily reproduce the FD of pedestrians in single-lane

scenarios. Since the model has few parameters and its structure is clear, it is suitable

to further develop the model by considering both physical and psychological factors

of pedestrians. This model is introduced in publication I. Moreover, the studies in

other publications included in this dissertation are all based on this model.

6



CHAPTER 1. INTRODUCTION

Figure 1.1: Velocity obstacles (hatched areas) of agent i . Velocity obstacle V Oi
j is

the set of velocities that would cause collisions with agent j (static). Velocity obstacle
V Oi

k is the set of velocities that would cause collisions with agent k (moving with
velocity Vk). ri, rj, and rk are the radius of the three agents.

1.3 Verification and validation

Verification and validation are two essential components in the process of developing

a model. Verification is the process of determining that a model complies with the

developer’s conceptual description and specifications. Validation of a model is the pro-

cess of assessing how well the model can reproduce the movement of real pedestrians.

Therefore, the data sets of pedestrian movement obtained from different scenarios are

indispensable for developing and enhancing a model. Many researchers are dedicated

to collect data on pedestrian movement from the field study [74, 75, 76, 77] and con-

trolled experiment [78, 79, 80, 81]. The data from the field study is collected directly

from public places, such as streets and train stations. While in the controlled ex-

periment, pedestrians move in artificially designed scenarios according to predefined

rules. Therefore, to some extent, field studies are considered by many researchers to

be more realistic than controlled experiments. However, the controlled experiment

also has its advantages. Compared to the field study where the pedestrian movement

is affected by many factors, the controlled experiment allows to better control the

environment of the experiments, e.g., the width of the doors and corridors, which is

7



1.3. VERIFICATION AND VALIDATION

more suitable to analyze the effect of a single factor. Nowadays, the movement of

pedestrians is usually first recorded in the form of videos, then the position of each

pedestrian at each frame is extracted for further studies. Since pedestrians are usually

marked with the colored cap or code marker in the controlled experiment, it is easier

to extract their positions than in the field study [82].

With the extracted trajectories of pedestrians, the movement of pedestrians can

be described by different quantities, e.g., speed (v), density (ρ), and specific flow

(Js = ρ · v). The relationship between these quantities is called the fundamental

diagram (FD), which is probably the most important and widely used relationship to

validate models that are used to describe transport properties of pedestrian streams

quantitatively. The two relationships that are often used to validate models are

density-speed v(ρ) and density-specific flow Js(ρ). Several researchers collected the

relationship between density and speed from the field study [83, 84, 85, 76, 77].

Although the same qualitative trend has been observed, that is the speed of pedes-

trians decreases with increasing density, there are still differences between the re-

lationship obtained from these studies. The reason behind the difference is that

the FD is influenced by many factors, e.g, culture and population differences, the

motivation of pedestrians, the type of measured pedestrian flow (uni- and multi-

directional), and the type of facilities (corridor, bottleneck, stairs). To analyze the

effect of every single factor and avoid the influence of other factors, many well-

designed controlled experiments are performed. For instance, the single-file move-

ment [78, 86, 87, 88, 89, 90], unidirectional flow in straight corridors [91], bidirectional

flow in straight corridors [92, 93, 94, 95], and four-directional crossing flow [96].

The bottleneck is another important scenario related to the movement of pedes-

trians. When the incoming flow is sufficiently large, congestions can occur in front

of the bottleneck. The relationship between the capacity and the width of the bot-

tleneck has been discussed a lot and it is often used to validate models. The flow

through the bottleneck shows a linear growth with increasing the width of the bot-

tleneck in experiments [81, 97, 80, 98]. Besides the width of the bottleneck, the flow

inside the bottleneck is also influenced by many other factors, e.g., the length of the

bottleneck [99], the obstacle in front of the bottleneck [100, 101], and the motivation

of pedestrians [97, 102, 103].

Besides FD and bottleneck flow, self-organization phenomena, which is an im-

portant characteristic of pedestrian dynamics, can also be used to validate models.

Self-organization is a process where some form of overall order in the crowd arises
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CHAPTER 1. INTRODUCTION

spontaneously from local interactions between individual pedestrians, e.g., stop-and-

go waves [77, 104], zipper effect [79, 81], clogging and lane formation. In this disser-

tation, clogging and lane formation are mainly studied.

Clogging is a typical phenomenon occurred in front of the bottleneck. See Fig-

ure 1.2(a)1. It is mentioned above that the flow through a bottleneck is influenced

by the motivation of pedestrians. This is because clogging occurs when dense crowds

move through the bottleneck with high motivation. Clogging is often expressed as the

jamming arch formed by several pedestrians in front of the bottleneck, which signifi-

cantly decreases the flow through the bottleneck. In publication II, the phenomenon

is studied through simulations and related studies are introduced.

(a) (b)

Figure 1.2: The self-organization phenomena in laboratory experiments. (a) Clogging.
(b) Lane formation.

Lane formation is another phenomenon that occurs in bidirectional pedestrian

streams, where pedestrians self-organize into dynamically varying and separated lanes.

See Figure 1.2(b)2. Unlike car traffic, where stable lanes are predetermined by the

restrictions given by the infrastructure, in pedestrian dynamics lanes are formed dy-

namically and naturally with neither external synchronization nor any prior agree-

ment between the pedestrians. Lane formation is also assumed to be a reason for

the difference between the FD of uni- and bidirectional flows. In publication III, the

phenomenon is investigated through simulations and related literature are reviewed.

1http://ped.fz-juelich.de/da/2018crowdqueue
2http://ped.fz-juelich.de/da/2009unidirOpen
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1.4. OBJECTIVES

1.4 Objectives

The main goal of this dissertation is to develop a microscopic model that can repro-

duce the FD of both uni- and bidirectional pedestrian flow, as well as self-organization

phenomena including clogging and lane-formation. The model is based on the struc-

ture of the CSM and focuses on the operational navigation of agents. It means the

model is velocity-based, first-order, and continues in space.

For this purpose, the development of the model is structured in three steps. The

first step is developing a model that is able to mitigate the unrealistic oscillation in

the CSM, as well as to reproduce the FD of unidirectional pedestrian flow in straight

corridors. This model considers several basic behaviors of pedestrians, which are:

agents move toward the target without backward movement, change the direction of

movement smoothly to avoid collision with neighbors, and adjust speed based on the

distance to the closest neighboring agent in front.

The model proposed in the first step is insufficient for reproducing clogging and

lane-formation quantitatively, as the factors of pedestrians, which are related to these

self-organization phenomena, are not considered fully. Therefore, the second step

is determining the ignored “relevant factors” of the basic model by analyzing the

simulations of the proposed model in the bottleneck and bidirectional flow scenarios.

In the bottleneck scenarios, it is investigated how the motivation of pedestrians and

their tendency of queuing affect the occurrence of clogging. Moreover, the effect of

factors such as parameters of the spatial boundaries is also investigated. While in

bidirectional flow scenarios, the action predicting changes of neighboring pedestrians’

positions and the strategy of following others are considered, their influence on the

formation of lanes is studied.

The final step is extending the model proposed in the first step according to the

analysis result of the second step. The model proposed in this step can reproduce the

FD of both uni- and bi-directional pedestrian flows. Moreover, this model is able to

describe clogging and lane-formation closer to reality.

Besides the studies related to the main goal, an application of the CSM is also

covered in this dissertation. The effectiveness of control measures in German super-

markets during COVID-19 is evaluated through simulations.
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Chapter 2

Research questions and results

In publication I, a modified model of the CSM is proposed for mitigating unrealistic

oscillations of the agents in the simulation. The model is then used to study clog-

ging in bottleneck scenarios (publication II) and lane formation in bidirectional flow

scenarios (publication III). The model is extended with an anticipation mechanism

to reproduce bidirectional flow more realistically (publication III). Furthermore, an

application of the CSM, which is related to the control measures during COVID-19

period, is given in publication IV. The investigated questions and main results of each

publication are given below.

2.1 Publication I: The basic model

The CSM is a model continuous in space based on first-order equations describing

microscopically pedestrian dynamics [73].

It consists of two components for determining the direction of movement and speed

of agents, respectively. The sub-model for the direction of movement considers the

desired direction of agents and the impact of their neighbors. In analogy to most force-

based models, the strength of the influence from a neighbor to an agent is a function

of the distance between the two agents, and the direction of the vector describing this

effect points from the neighbor to the agent. However, unlike force-based models,

where accelerations of agents are calculated, the speed of an agent is determined

directly by a speed function according to the distance to the closest neighboring agent

in front. The structure of the model, especially the sub-model for speed, guarantees

the volume exclusion of agents. Although the model is simple, the property of volume

exclusion is enough to qualitatively reproduce several self-organization phenomena in

pedestrian dynamics, e.g., clogging and lane formation. Besides, since the speed sub-

model is based on the relationship between speed and distance to the front agent, it
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2.2. PUBLICATION II: CLOGGING IN THE BOTTLENECK

is suitable to reproduce the FD of pedestrians. This model has a clear structure and

few parameters, which are beneficial to further extensions.

The interaction among agents has been described in the CSM. However, the influ-

ence of walls and obstacles was neglected in the definition of the model, which hinders

the implementation of the model in more scenarios. Therefore, in publication I, this

gap is closed before introducing further extensions. After that, the FD of single-lane

movement and unidirectional flow in a two-dimensional corridor are used to validate

the model. It is found that, when the shape of agents is dynamic elliptical instead

of circular, the reproduced FD in the two-dimensional corridor fits the experimental

data better.

Adopting elliptical agents reveals another deficiency of the CSM that is the strong

fluctuation of agents’ direction of movement. Besides, the sub-model for the direction

of movement, which is inspired from the force-based model, also inherits the oscilla-

tion caused by the frequently backward movement of agents. Therefore, generalized

collision-free velocity model (GCVM) is proposed. A dynamical vision area is intro-

duced to identify the neighbors who have an impact on the direction of movement

of agents. The vector describing the influence from neighbors to an agent is rede-

fined as a unit vector perpendicular to the desired direction of the agent. Moreover,

a new relaxation time parameter is used to smooth the turning process of agents.

Compared to the CSM, the unrealistic oscillation of agents is significantly reduced in

the GCVM. Furthermore, the GCVM can reproduce a more realistic distribution of

agents in front of the bottleneck.

2.2 Publication II: Clogging in the bottleneck

Although a series of extensions have been made on the CSM, the volume exclusion

property is reserved in the GCVM, which results in the occurrence of prolonged clogs

in front of the bottlenecks with a small width. Clogging is a phenomenon that several

pedestrians mutually block each other in front of the bottleneck when high density

and high motivation coincide. Since the flexibility and elasticity of the human body,

the clog of pedestrians is usually temporary in time. However, the volume exclusion

of agents in the simulation results in clogs interrupting flow for a longer time than

reality, and sometimes even stable clogs occur.

In publication II, to quantitatively study the clogging phenomenon in the simula-

tion, the formation of the minimal clog in the GCVM is defined as two agents whose

directions of movement point toward each other but the distance between them is too
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CHAPTER 2. RESEARCH QUESTIONS AND RESULTS

small for them to move. Besides, space and time conditions are adopted to identify

prolonged clogs that interrupt the flow longer than a predefined threshold. By analyz-

ing the number of prolonged clogs and the time lapse between two consecutive agents

passing the bottleneck, the effect of various factors on the occurrence of prolonged

clogs is studied.

The investigated factors are categorized as parameters of the spatial boundaries,

algorithmic factors related to the implementation of the model, and the parameters

of the movement model. Parameters of the spatial boundaries include the width and

the position of the bottleneck exit. As the width of the exit increases the number of

prolonged clogs and the probability of clogs sustaining a longer time both decrease.

Besides, when locating the exit adjacent to the lateral wall of the bottleneck, the

number of prolonged clogs is significantly less than with the other locations. For

algorithmic factors, the update methods and the size of the time step are considered

as may having an effect. However, the simulation results obtained with different

update methods and values of time step do not show significant differences, which

comes to the conclusion that the clog in the GCVM is not an algorithmic issue.

Last, the effect of model parameters is studied. The investigated parameters cover

the slope of the speed-headway relationship, the free speed of agents, the strength

and range of the impact from neighbors in the direction of movement, and the shapes

of agents. An increased slope of the speed-headway relationship leads to a smaller

distance between agents, which corresponds to the scenario with a higher level of

motivation. Increasing the slope results in the increase of both the free flow rate and

the number of prolonged clogs in simulations. Since the free speed of agents only

determines the maximal speed agents can achieve when the distance to the closest

agent in front is far enough, a higher free speed does not affect the movement of agents

at congested conditions. Consequently, a higher free speed leads to a lower number

of prolonged clogs, as agents move faster in low density situations. A greater impact

from neighbors on the direction of movement makes agents being more stimulated

to deviate from their desired directions, so agents tend to queue when this impact

is low. It results in that the number of prolonged clogs increases with increasing

influence from neighbors on the direction of movement. Furthermore, with performing

simulations where pedestrians are modeled as disks with different radius, it is found

that the number of prolonged clogs decreases when the ratio between the width of

the exit and the radius of agents increases. However, the number of prolonged clogs

is not affected by the absolute values of the width and the radius if the ratio of them

remains the same.

13



2.3. PUBLICATION III: LANE FORMATION AND ANTICIPATION

The analysis in publication II reveals that the GCVM can qualitatively describe

the clogging of pedestrians in front of the bottleneck to a certain extent. However, a

further extension for the GCVM to break the volume exclusion of agents in congested

situations is inevitable for better describing the clogging phenomenon, for example,

introducing the strategy of pushing others. The structure of a new model that con-

siders the strategy of pushing others is discussed in chapter 3.

2.3 Publication III: Lane formation and anticipa-

tion

To eliminate the oscillation of agents in the CSM, the backward movement of agents

is abandoned, which results in a side effect that jamming appears at a lower density in

bidirectional flow scenarios in the GCVM than in the CSM. Actually, jamming would

not occur at such a low density in bidirectional pedestrian flow. Instead, pedestrians

follow others who move in the same direction as them and form separate lanes to avoid

collision with agents moving in the opposite direction. This phenomenon is called

lane-formation, which is based on a stimulus-response mechanism and strategies of

navigation in a fast-changing environment. Due to the combination of the volume

exclusion and the agents’ ability to change their moving direction, the CSM and

the GCVM can qualitatively reproduce lane formation as observed in the system of

inanimate particles. However, they are not sufficient for a quantitative description of

the phenomenon.

In publication III, the anticipation velocity model (AVM) is proposed for reproduc-

ing lane formation more realistically. Compared to the GCVM, the action predicting

changes of neighboring pedestrians’ positions and the strategy of following others are

covered in this model. Although jamming is not completely eliminated in the bidirec-

tional flow scenarios, the critical density where jamming occurs in the AVM is higher

than in the CSM and the GCVM. Besides, the definition of an order parameter is

used to quantitatively describe the formation of lanes at transient states. The AVM

leads much faster to the formation of lanes than the CSM and the GCVM, which is

much closer to the experimental result. Finally, the AVM is validated with the FD of

uni- and bidirectional flow. The difference between the FD of uni- and bidirectional

flow is also reproduced well. Moreover, the course of lane formation in time and

the shape of the formed lanes in the simulations with the AVM are similar to in the

experiments.
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Compared to the CSM and the GCVM, the AVM reproduces the bidirectional

pedestrian flow more realistically, which proves the significance of considering pedes-

trian’s anticipation and the strategy of following others into the model. However,

forming lanes is not the only strategy adopted by pedestrians to avoid collisions.

Sometimes, pedestrians choose to cooperate with others to avoid the occurrence of

collisions in advance, which should be also considered into the model. The structure

of a new model that considers the strategy of cooperating with others is discussed in

chapter 3.

2.4 Publication IV: Application

In addition to the above studies about the CSM and its extensions, the CSM is applied

to study the effectiveness of the measures taken by German supermarkets during the

COVID-19 period. Since the COVID-19 spreads primarily from person to person

through small droplets produced by coughing, sneezing, or speaking of an infected

person, reducing close contact among people is one of the recommended measures to

prevent infection.

To slow down the transmission of the disease, supermarkets in Germany took

measures to reduce the contact of customers. For instance, restricting the number of

customers, asking them to keep social distance and enter with a shopping cart. In

publication IV, the effectiveness of these measures is quantitatively evaluated through

numerical simulations with the CSM. First, an index based on the distance between

agents is defined to reflect the degree of contact between them. The lower the dis-

tance between two agents leads to the higher the degree of contact. Then a virtual

supermarket is built based on a real one nearby the city Jülich in Germany, which

represents the typical structure of a German medium-sized supermarket. Simulations

are performed in this virtual supermarket with four scenarios adopting different con-

trol measures. The first two situations only consider the restriction of agents’ number,

where the maximum number of agents in the supermarket at the same time is 50 in

scenario 1 and 30 in scenario 2. Scenario 3 takes into account the rule of 1.5m social

distance, and scenario 4 uses larger agents to represent the customer with a shopping

cart.

In each scenario, the total number of agents enter the supermarket for shopping is

the same. By analyzing the accumulated time spent by all the agents for shopping and

the average degree of contact between agents in the four scenarios, the following results

are obtained. The limitation on the number of customers in the supermarket slightly
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increases the accumulated time for shopping, but it significantly reduces the contact

among agents. Moreover, keeping a social distance is also effective at reducing the

contact among agents and not influence the accumulated time for shopping. However,

entering the supermarket with shopping carts influences neither the degree of contact

nor the accumulated time for shopping. In addition, it is also observed that agents

contact each other more in the area with the crossing structure than in other areas.

Therefore, reducing the crossing structure in the supermarket may be also an effective

measure to reduce the contact among customers.

Although the results of this study may change with the structure of the virtual

supermarket scenario and the behavior of agents in simulations, this study presents

a framework to evaluate the effectiveness of control measures adopted in indoor sce-

narios during the COVID-19 period.
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Chapter 3

Discussion and outlook

In this dissertation, three microscopic models for pedestrian dynamics are developed

and studied, which are the collision-free speed model (CSM), the generalized collision-

free velocity model (GCVM), and the anticipation velocity model (AVM). The three

models are velocity-based models and have the same structure, which consists of a

sub-model for the direction of movement (operational navigation) and a sub-model

for speed. However, they perform differently as different sub-models are adopted for

operational navigation.

The CSM is the simplest among these three models, and it is also the only one of

the three models in which agents can move backward. Actually, it was observed that

backward movement can indeed reduce the occurrence of gridlock in scenarios, where

multi-directional flow and high density come together. However, this backward move-

ment is also a reason for the unrealistic oscillation in the simulation, which is hardly

observed in real pedestrian movement. In reality, pedestrians only move backward

actively when having a very strong tendency to give way to others, which is a kind of

cooperative behavior realized by communication. In addition, pedestrians sometimes

move backward passively in scenarios with high motivation, which can be attributed

to the pushing from others. The backward movement in the CSM occurs frequently

and is caused by the inappropriate description of pedestrians’ waiting behavior, which

does not well match the two situations described above.

Therefore, the backward movement is removed in the GCVM by modifying the

direction of the vector that describes the impact of neighbors on the direction of move-

ment. Removing the backward movement leads to a more realistic simulation without

oscillation, but as mentioned before it also results in more gridlock in scenarios with

multi-directional flow. This is because collisions among agents occur more frequently

in multi-directional flow scenarios, hence they need to move backward and make space

in order to dissolve these already formed collisions. However, if we carefully observe
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the movement of pedestrians, we notice that they prefer to avoid collisions in advance

before they even happen.

Pedestrians usually avoid collisions by using a stimulus-response mechanism to

anticipate changes in the environment. Therefore, the AVM introduces two new

features based on the GCVM, which are the action anticipating changes of neighboring

pedestrians’ positions and the strategy of following others. It is realized by calculating

the influence of neighbors using their future positions and direction of movement.

In bidirectional flow scenarios, agents in the simulation with the AVM form lanes

more realistically and faster than with the other two models. It shows that covering

anticipation into the model is significant for reproducing the collision avoidance of

pedestrians.

However, as in real life, only considering anticipation is not enough to avoid all

collisions in the simulation, especially in high-density situations. From the observation

in the experiment, there are two main strategies adopted by pedestrians for avoiding

or solving collisions. The first strategy is observed frequently in front of bottlenecks,

where pedestrians with high motivation push others away and so obtain some space

to move. Pushing is a typical strategy for solving formed collisions. It means a

pedestrian can still move even in situations with limited space, which is realized by

breaking the volume exclusion to some extent or changing postures via turning the

body, moving shoulders, etc. However, in most daily situations pedestrians rarely

push others, as pushing is often linked to impoliteness and rudeness. Instead, most

pedestrians prefer to avoid collisions in advance by giving away space to others, who

may be potentially on the collision course. This strategy can be interpreted as a

form of “cooperation”, where pedestrians who have enough space to move choose to

wait in place or move slightly backward and signal other people to go first. In fact,

pedestrians choose different strategies by perceiving the surrounding environment to

avoid or solve collisions. However, in all three models, detached from the situation,

agents can only choose the same strategy defined in each model. For instance, the

speed of an agent is determined by the distance to the agent in front, which is not

always in accordance with reality. Therefore, for future research, we propose a new

structure of the model for pedestrian dynamics as shown in Figure 3.1.

In the new structure, agents first perceive the actual situations, which includes

the position, velocity, motivation, and cooperation signal from others. Then the

prediction of future situations is made according to the current situations. Three

optional methods for predicting future situations are considered, which are: the future

position, the time to collision, and the distance to collision. Afterward, the strategy
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CHAPTER 3. DISCUSSION AND OUTLOOK

Figure 3.1: A new structure of the model for pedestrian dynamics.

adopted by an agent is the result of a combination of perception, prediction, and self-

property of the agent. According to the different situations, agents choose different

strategies, i.e., normal movement, following, pushing, and cooperation. Future works

include defining the situation, when agents adapt each strategy and how they will

move when they adopt the corresponding strategy.
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[89] Asja Jelić, Cécile Appert-Rolland, Samuel Lemercier, and Julien Pettré. Prop-

erties of pedestrians walking in line: Fundamental diagrams. Physical review

E, 85(3):036111, 2012.

[90] Rudina Subaih, Mohammed Maree, Mohcine Chraibi, Sami Awad, and Tareq

Zanoon. Experimental investigation on the alleged gender-differences in pedes-

trian dynamics: A study reveals no gender differences in pedestrian movement

behavior. IEEE Access, 8:33748–33757, 2020.

[91] Jun Zhang, Wolfram Klingsch, Andreas Schadschneider, and Armin Seyfried.

Transitions in pedestrian fundamental diagrams of straight corridors and

t-junctions. Journal of Statistical Mechanics: Theory and Experiment,

2011(06):P06004, 2011.
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Abstract

The collision-free velocity model is a microscopic pedestrian model, which despite its sim-
plicity, reproduces fairly well several self-organization phenomena in pedestrian dynamics.
The model consists of two components: a direction sub-model that combines individual
desired moving direction and neighbor’s influence to imitate the process of navigating in
a two-dimensional space, and an intrinsically collision-free speed sub-model which controls
the speed of the agents with respect to the distance to their neighbors.

In this paper we generalize the collision-free velocity model by introducing the influence
of walls and extending the distance calculations to velocity-based ellipses. Besides, we
introduce enhancements to the direction sub-module that smooth the direction changes of
pedestrians in the simulation; a shortcoming that was not visible in the original model due
to the symmetry of the circular shapes. Moreover, the introduced improvements mitigate
backward movements, leading to a more realistic distribution of pedestrians especially in
bottleneck scenarios.

We study by simulation the effects of the pedestrian’s shape by comparing the funda-
mental diagram in narrow and wide corridors. Furthermore, we validate our generalized
approach by investigating the flow through bottlenecks with varying exit’s widths.

Keywords: Collision-free velocity model, pedestrian dynamics, dynamical ellipse,
fundamental diagram, validation

1. Introduction

Nowadays, the scale of crowd activities is getting bigger with the constant increase in
the world population and the convenience of transport. Although these events usually are
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carefully planned before they are held, the probability of accidents cannot be neglected,
especially when the number of participants is considerably high. Besides, in some complex
buildings, such as train stations, airports, stadiums, and commercial malls, crowd density
can be relatively high, in particular during rush hours. For increasing the comfort and
usability of these facilities, simulations of pedestrian dynamics may help during the design
of buildings and even after their construction to identify potential bottlenecks and mitigate
their effects [1, 2].

In general, models used to describe pedestrian dynamics can be categorized according
to their scale of definition into macroscopic models, mesoscopic models, and microscopic
models. Microscopic models describe individual trajectories of pedestrians while macroscopic
models rely on aggregated quantities e.g. density, velocity, and flow to describe pedestrian
dynamics in partial differential equation systems [3, 4, 5, 6]. For instance, recent macroscopic
approaches rely on mean-field game theory and the coupling of Hamilton-Jacobi-Bellman
and Fokker-Planck equations [7, 8, 9, 10]. The intermediate scale between microscopic
and macroscopic classes is mesoscopic. Kinetic models [11, 12, 13, 14, 15] describing the
crowd through distribution functions with Boltzmann-type equations and discrete queuing
models [16, 17, 18] belong to the mesoscopic modeling category. Mesoscopic models can
take in consideration behavior heterogeneity [18, 19, 20] or stochastic components in the
interaction. Generally speaking, macroscopic and mesoscopic models consider pedestrian
flow as a continuum and deal with large modeling scales, while microscopic models operate
at local scales. Yet a systematic classification of model features according to the model form
is difficult. We refer to [21, 22, 23, 24, 25, 26, 27] for overviews of modeling approaches for
pedestrian dynamics.

We aim in this article to tackle pedestrians’ interactions as well as their granular aspects
(e.g. pedestrian shape and collision-free property) and to describe their dynamics locally in
simple geometries such as corridors and bottlenecks. Objectives are mainly addressed on
the microscopic modeling scale.

Microscopic models are largely used in traffic engineering to simulate pedestrian dy-
namics. They describe pedestrians individually and can naturally take into account the
heterogeneity and stochasticity of the pedestrians’ behavior. Most of the models can repro-
duce fairly well several collective phenomena in pedestrian dynamics [26, 28, 29]. After more
than 50 years of development, many kinds of microscopic models exist in the literature. We
can distinguish between cellular automate models [30, 31, 32, 33, 34] (0th order models),
velocity models [35, 36, 37, 38] (1st order models) and force-based models [39, 40, 41, 42]
(2nd order models). While the former models are discrete in space and computationally
fast, the later models are continuous in space and hence are easier to be used in complex
geometries. Whether continuous models are computationally expensive depends not only
on the order of the model but also on its definition. However, generally speaking, first-order
models are less expensive since their numerical solution involves only one integration step,
while two integration steps are required for second-order models. Furthermore, for numer-
ical reasons fine discretization generally requires small integration time steps. In any case,
microscopic models remain however generally much more computationally expensive than
continuum pedestrian models.
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In this paper, we focus on the extension of the collision-free velocity model introduced in
[36]. The collision-free velocity model (for short CVM) is a velocity-model, composed of a
speed and a direction sub-models. Unlike most force-based models, CVM, being a first-order
model, is by definition collision-free.

We generalize the CVM by considering the influence of walls and integrating two ex-
tensions. First, we change the shape of agents from circle to dynamical ellipse. In the
original model, circles are used to express the projection of the pedestrian’s body on the
two-dimensional plane. However, many references and researches indicate that a dynam-
ical ellipse can represent pedestrian’s shape more accurately since the space a pedestrian
occupied is influenced by the length of the legs during the motion and the lateral sway-
ing of the body [40]. Therefore, we generalize CVM by extending the distance calculation
to velocity-based ellipse and compare the simulation results with the original model (cir-
cles). After introducing the first extension, an unnatural “shaking” was observed during
the simulation, which is caused by the zero-order direction sub-model. We propose a new
first-order direction sub-model, designed to stabilize the direction changes of pedestrians in
the simulation.

For the sake of completeness, we briefly introduce the original CVM in section 2. The
generalization of the model from circle-based to an ellipse-based definition and the new
direction sub-model are presented in section 3. In section 4, the comparison between the
simulation results of a circle and a velocity-based ellipse is given and the performances of
the new direction sub-model are compared to the original CVM. Finally, we give a summary
of the extensions and discuss limitations of the model as well as future research directions
in the concluding section 5.

2. Collision-free velocity model

In the original model, the moving direction and speed of each pedestrian are updated at
each time step. Moving direction of a pedestrian is obtained by superposing the influence
of the surrounding pedestrians and the desired moving direction. The value of the speed
depends on the minimum spacing in the moving direction. In Figure 1 (borrowed from [36]),
pedestrians are modeled as circles with constant diameter `. Xi, Xj and Xk are positions of
pedestrians i, j and k. The original CVM is described as

Ẋi(Xi, Xj, . . . ) = Vi(Xi, Xj, . . . ) · ~ei(Xi, Xj, . . . ), (1)

where Vi is the speed of pedestrian i and ~ei is the moving direction.
Moving direction ~ei is obtained from the direction sub-model

~ei(Xi, Xj, ...) = u1 ·
(
~e 0
i +

∑

j∈Ni

R(si,j) · ~ei,j
)
, (2)

where u1 is a normalization constant such that ||~ei|| = 1, ~e 0
i is the desired direction towards

a certain goal, Ni is the set containing all the neighbours of the pedestrian i, ~ei,j is the
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Figure 1: Notations used in the collision-free velocity model. ` is the size of agents, Xi, Xj and Xk are
positions of pedestrians, ~ei is the moving direction of pedestrian i and Vi is the moving speed, si,j and si,k
are distances between the centers of pedestrians, ~ei,j and ~ei,k and the unit vector from Xj and Xk to Xi.

unit vector from the center of the pedestrian j towards the center of the pedestrian i. The
function

R(si,j) = k · exp
(`− si,j

D

)
, (3)

is used to describe the influence that neighbours act on the moving direction of pedestrian
i. The strength coefficient k > 0 and the distance coefficient D > 0 calibrate the function
accordingly. As mentioned before, ` is the diameter of the circle used to represent the
pedestrians and si,j is the distance between the centers of pedestrian i and j.

After obtaining the moving direction ~ei, the speed model

Vi(si,j) = min
{
V 0
i ,max

{
0,
si − `
T

}}
, (4)

is used to determine the scale of velocity Vi in the direction ~ei. In Eq. 4, V 0
i is the desired

speed of pedestrian i, which depends on various environmental factors such as the existence
of stairs or smoke produced by a fire.

si = min
j∈Ji

si,j, (5)

is the distance between the center of pedestrian i and the center of the closet pedestrian in
front of pedestrian i, when pedestrian i moving in the direction ~ei. The definition of set Ji
in Eq. 5 is

Ji =
{
j, ~ei · ~ei,j ≤ 0 and

∣∣~e⊥i · ~ei,j
∣∣ ≤ `

si,j

}
, (6)

where ~e⊥i · ~ei = 0. Ji is the set of all pedestrians overlapping with the grey area in Figure 1.
The only coefficient in the speed model is T > 0 which is used to adjust the gap between
pedestrians.
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The above-mentioned definition of the CVM describes specifically interactions among
pedestrians. However, the influence of walls and obstacles has been left from the definition
of the model. In this work, we close this gap by only considering straight walls. If the shape
of the wall in the simulation is irregular, then we will approximate it to a few straight walls.
In Figure 2, Xi, ~ei and Vi have the same definitions as in Figure 1. Besides, there are two
walls in the figure, wall v and w. Cv and Cw are the closest points in wall v and w to the
center of pedestrian i respectively. ~ei,v and ~ei,w are the unit vectors from Cv and Cw to Xi.
si,v and si,w are the distances from Cv and Cw to Xi. The angle between ~ei and −~ei,v is αv
and the angle between ~ei and −~ei,w is αw.

Figure 2: Notations used in the collision-free velocity model when calculating the influence of walls. `, Xi,
~ei, Vi are the size, position, moving direction and moving speed of pedestrian i, Cv and Cw are the closest
points in wall v and w to Xi, ~ei,v and ~ei,w are the unit vectors from Cv and Cw to Xi, si,v and si,w are
the distances from Cv and Cw to Xi, αv is the angle between ~ei and −~ei,v, αw is the angle between ~ei and
−~ei,w.

After introducing the influence of walls, the direction model becomes

~ei = u2 ·
(
~e 0
i +

∑

j∈Ni

R(si,j) · ~ei,j +
∑

v∈Wi

Rw(si,v) · ~ei,v
)
, (7)

where u2 is a normalization constant such that ||~ei|| = 1, Wi is the set of walls nearby
pedestrian i, and

Rw(si,v) = kw · exp
( `

2
− si,v
Dw

)
, (8)

where kw > 0 and Dw > 0 are used to calibrate the function accordingly.
To avoid overlaps of pedestrians with walls, walls should not only influence pedestrian’s

moving direction but also their speed. The expanded speed model is

Vi = min
{
V 0
i ,max

{
0,
si − `
T

}
,max

{
0,
swi
T

}}
, (9)
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where the definitions of si, `, T are same as in Eq. 4 and

swi = min
v∈JWi

si,v − `
2

cosαv
, (10)

where JWi is the set containing all the walls in the moving direction of pedestrian i (grey
area in Figure 2).

3. Generalization of the collision-free velocity model

In this section we introduce extensions of the CVM. We also show how every extension
influences the resulting dynamics and eventually enhances the simulation results.

3.1. From circle to ellipse

We generalize the collision-free velocity model by extending the distance calculations
to velocity-based ellipses. The plane view of the pedestrian i’s body is represented by an
ellipse [43]. The major semi-axis ai and minor semi-axis bi of the ellipse represent the space
requirement in the direction of motion and along the shoulder axis respectively.

In [40] the semi-axis along the walking direction is defined as

ai = amin + τaVi, (11)

where Vi is the speed of pedestrian i, while amin > 0 and τa > 0 are two parameters.
The idea that the semi-axis of the ellipse along the walking direction vary with speed is

derived from the fact that the spacing a pedestrian needed in her moving direction has a
positive correlation with her speed [44]. This, in turn, is also the role of parameter T which
is defined in the speed sub-model to adjust the gap between agents. We conclude that in our
model T and τa model the same behavior of pedestrians even if their physical interpretations
are different.

This becomes apparent after performing a basic stability analysis of the model. Assuming
an one-dimensional system in steady-state , we can derive from the speed sub-model in Eq. 4
the following relation

Vsteady =
1/ρsteady − 2 · amin

T̃
, (12)

where Vsteady and ρsteady are the speed and the density of pedestrians flow in steady state,
and T̃ = T + 2τa. Hence, the parameter τa and the parameter T in speed sub-model have
the same influence on the dynamics. To confirm our assumption we perform numerical
simulations by varying these two parameters while maintaining a constant value of T̃ . We
can observe from Figure 3 that although the values of τa are different in these simulations,
the results obtained are almost identical when T̃ is constant. In the spirit of Occam’s razor,
we dispense with parameter τa and opt for a constant semi-axis ai.

The other semi-axis along the shoulder axis bi is defined according to [40] as a linear
function:

bi = bmax − (bmax − bmin)
Vi
V 0
i

, (13)
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Figure 3: The fundamental diagram obtained in 1D simulations with T̃ = 1.06.

with bmin is the minimal semi-width when pedestrian i reaches the desired speed V 0
i and

bmax is the maximum semi-width reached when pedestrian i is not moving [40].
We found in simulations with the CVM that this linear relationship does not provide

satisfactory results. Hence we introduce a new non-linear function inspired by the observa-
tion that pedestrians often reduce their occupied space in the vertical direction of motion
by turning their body to walk faster and pass through narrow gaps that are smaller than
the width of their shoulder.

We set

bi = bmin +
bmax − bmin

1 + eβ·(Vi−γ)
, (14)

which is a Sigmoid function, where the maximum semi-width bmax is equal to the half of a
static pedestrian’s width and bmin is equal to the half of a moving pedestrian’s minimum
width. Parameters β and γ are used to adjust the shape of the function as shown in Figure 4
which shows the curves of the function for different parameter values.

After defining the semi-axes of the ellipse, we extend the distance calculations from
circle to velocity-based ellipse (Figure 5). The ellipses in the full line describe non-moving
pedestrians, while the ellipses in the dashed line represent the pedestrians at the desired
velocity. di,j is the distance between ellipses used to represent pedestrian i and j, which is
defined as the distance between the borders of ellipses i and j, along a line connecting their
centers. di,v is the distance between the wall v and pedestrian i, which is defined as the
distance between the Cv (the closest points in wall v to the center of pedestrian i) and the
border of ellipse used to present pedestrian i, along a line connecting the center of pedestrian
i and Cv.
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Figure 4: The new function of b with different β and γ, the left figure shows the curves of the function with
same γ = 0.1 but different β while the right figure shows the curves of the function with same β = 50 but
different γ.

Figure 5: Notations used in the collision-free velocity model after extending the distance calculations between
pedestrians from circle to velocity-based ellipse. di,j is the length of red segment and di,v is the length of
blue segment. Xi and Xj are positions of pedestrians, Cv is the closet point in wall v to Xi, Vi and Vj are
moving speeds of pedestrians, ~ei is the moving direction of pedestrian i, ~ei,j and ~ei,v are the unit vectors
from Xj and Cv to Xi, αv is the angle between ~ei and −~ei,v.
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In the new equation of motion, the influence of the agents’ shape is added as follows:
The moving direction ~ei is calculated by Eq. 7, but the new definition of functions

R(di,j) = k · exp
(di,j
D

)
, Rw(di,v) = kw · exp

(di,v
Dw

)
, (15)

are used. Then the speed Vi is obtained by

Vi = min

{
V 0
i ,max

{
0,
di
T

}
,max

{
0,
dwi
T

}}
, (16)

where

di = min
j∈Ji

di,j, dwi = min
v∈JWi

di,v
cosαv

. (17)

Here Ji and JWi are the sets containing all pedestrians and walls in the direction of move-
ment (i.e. the pedestrians and walls overlap with the grey area in Figure 5). We set the
width of the grey area to 2bmin in the case of a velocity-based ellipse. The comparisons
between the models describing agents with different shapes are given in section 4.

3.2. New direction sub-model

After generalizing the model to ellipses, some unrealistic phenomena during simulation
become visible. First of all, backward movements occur very often, which is not realistic es-
pecially in evacuation scenarios. Second, an unnatural “shaking” appears during simulation,
which is due to a strong fluctuation of the ellipse’s orientation.

In the original model, the moving direction of pedestrian i is calculated by combining
individual desired moving direction ~e 0

i and the neighbors’ influence. Since the direction of
neighbor’s influence is from the center of pedestrians or closest point on the wall towards the
center of the pedestrian i, the influence can be divided into two parts, one is the projection on
~e 0
i and the other one is perpendicular to the projection part. The direction of the projection

part is the reason for backward movements. Pedestrians hardly choose a moving direction
whose projection on ~e 0

i is in the inverse direction of ~e 0
i . And the cause of the “shaking” is

that pedestrians turn to ~ei directly after calculation in the original model (0th order model).
Therefore, our solution has two parts, the projection of neighbors’ influence on ~e 0

i is
always equal to zero, and introducing a smoothing process (e.g. a relaxation process) in the
direction sub-model. Based on this idea, we propose a new direction sub-model as shown in
Figure 6, where ~e 0

i is the desired moving direction of the pedestrian i and ~ei is the actual
moving direction, ~e N

i,j and ~e N
i,v are the new directions used to calculate the influence of the

pedestrians j and walls v act on pedestrian i respectively.
The new direction sub-model uses two steps to calculate the moving direction of a pedes-

trian. First, we use

~Ei = u3 ·
(
~e 0
i +

∑

j∈Ni

R(di,j) · ~e N
i,j +

∑

v∈Wi

Rw(di,v) · ~e N
i,v

)
, (18)
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Figure 6: Notations used in the new direction sub-model. the direction of influence from pedestrian j to
pedestrian i is vector represented by red chain line and the direction of influence from wall v to pedestrian
i is vector represented by the blue dashed line. Xi and Xj are positions of the pedestrians, Cv is the closet
point in wall v to Xi, ~e

0
i and ~ei are the desired moving direction and the actual moving direction of the

pedestrian i, ~ei,j and ~ei,v are the unit vectors from Xj and Cv to Xi, ~e
N
i,j and ~e N

i,v are the directions used
to calculate the influence of the pedestrians j and walls v act on pedestrian i respectively.

to calculate the optimal moving direction of the pedestrian i, u3 is a normalization constant
such that || ~Ei|| = 1. The repulsive function R(di,j) and Rw(di,v) are given in Eq. 15 and the
definition of ~e N

i,j and ~e N
i,v are

~e N
i,j =





~e 0⊥
i if Cj > 0,

~e 0⊥
i or − ~e 0⊥

i if Cj = 0,

−~e 0⊥
i if Cj < 0.

~e N
i,v =





~e 0⊥
i if Cv > 0,

~e 0⊥
i or − ~e 0⊥

i if Cv = 0,

−~e 0⊥
i if Cv < 0.

(19)

where
Cj = ~ei,j · ~e 0⊥

i , Cv = ~ei,v · ~e 0⊥
i . (20)

Here, ~e 0⊥
i is the vector obtained by rotating desired moving direction ~e 0

i for 90◦ counter-
clockwise. According to Eq. 19, influence from pedestrians and walls are decided not only
by their position but also by the desired moving direction of the pedestrian i. If the centers
of pedestrians or the closest points in walls to the center of the pedestrian i are located in
the left area to ~e 0

i , the direction of influence is defined as right side perpendicular vector of
~e 0
i and vice versa. It should be noticed that there might be an extremely rare case when
Cj or Cv is equal to zero. In this case, the influence direction is decided by multiple factors,
e.g. culture, gender. To simplify the model, the direction of influence is randomly chosen
from ~e 0⊥

i and −~e 0⊥
i in this case, corresponding to pedestrians avoiding front obstacles from

the sides.
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Then, we introduce a new relaxation time parameter τ in the direction sub-model, which
is represented as

d~ei(t)

dt
=

~Ei(t)− ~ei(t)
τ

, (21)

where ~ei is the moving direction of the pedestrian i and ~Ei is the optimal moving direction
calculated by Eq. 18. In this step, we change the direction sub-module from zero-order to
first-order, which does not change the global first-order property of the original CVM. By
adjusting τ , a pedestrian can turn to its moving direction smoothly.

Besides, we use a dynamical vision area in this paper, which is the hatching area in
Figure 7. Only the pedestrians and walls located in Areai, which is the dynamical vision
area of the pedestrian i, influence the moving direction of the pedestrian i. The set contains
all neighbors of the pedestrian i in Areai is

NArea
i =

{
j, ~ei · ~ei,j < 0 or ~e 0

i · ~ei,j < 0
}
. (22)

Here ~ei,j is the vector from the center of neighbors towards the center of the pedestrian i.
As for the walls, only when two vertices of a wall are both in Areai, this wall influences the
moving direction of the pedestrian i. Vision area of the pedestrian i is decided by his desired
moving direction ~e 0

i and his actual moving direction ~ei. This means a pedestrian choose
the best moving direction according to the neighbors and walls located in the half area in
front of his moving direction and the half area in front of his desired moving direction. The
dynamical vision area is based on the idea that pedestrians will turn their heads to obtain
the environmental information of the areas in front of their desired moving directions if their
actual moving directions deviate from the desired moving directions. Using this dynamical
vision area can eliminate some unrealistic block occurred between agents when using fixed
vision area in the simulation.

Figure 7: Dynamical vision area. Xi is the position, Areai is the hatching area, ~e 0
i is the desired moving

direction towards the exit, and ~ei is the actual moving direction of pedestrian i.
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These enhancements can almost eliminate the phenomena of backward movement and
“shaking” in the simulation, as shown in Figure 8.
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Figure 8: Time series of the angle between the moving direction of a pedestrian and the x-axis (φ).

φ is defined as the angle between the moving direction of a pedestrian and the x-axis.
As we can see in Figure 8, the blue line (original model) shows a strong fluctuation of the
angle over time compared with the red line (our extension).

In the next section, we further show a systematic comparison of both models.

4. Simulation results

In this section, the comparisons and analysis of models with different shapes and different
direction sub-models are given. Preliminary simulation analysis has shown that the model
can satisfy standards addressed in [45, 46] for basic movements of single pedestrians. We aim
in this section to extend the validity of the model in regard to fundamental diagrams and
collective behaviors in straight corridors and bottlenecks. The simulations in this section are
executed with Euler scheme using a time step ∆t = 0.05 s. The update of the pedestrians
is parallel in each step.

First, we perform simulations in a 26 m corridor with periodic boundary condition and
measure the 1D fundamental diagram in a two meters long area located in the middle of
the corridor. The shape of agents in these simulations, as well as the direction sub-model,
are insignificant for the outcome of the simulation since pedestrians can not overtake others
walking in front. Hence, we can focus on the validation of the speed sub-model and the
relation between the speed and the required spacing in front.
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The values of parameters are shown in Table 1. The desired speed of the pedestrians is
1.34 m/s. The shape of agents is circular with a constant radius a. The value of a is 0.18 m
and the value of T is 1.06 s, which are obtained from the linear relationship of required
length and velocity [44].

V 0 (m/s) a (m) T (s) k D (m) kw Dw (m)
1D 1.34 0.18 1.06 3.0 0.1 6.0 0.05

Table 1: Parameters of CVM in one-dimensional scenario

The simulation results in the 1D case are shown in Figure 9. We realize that the obtained
1D fundamental diagram fit well with the experimental data.

0.5 1.0 1.5 2.0 2.5 3.0
[1/m]
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0.8

1.0

1.2

v
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/s
]

simulation
experiment

Figure 9: Velocity-density relation (fundamental diagram) in one-dimensional scenario, compared with
experimental data [47].

In the second step, we investigate the effect of the agent’s shape on the two-dimensional
fundamental diagram. The simulation scenario is a 26×1.8 m2 corridor with periodic bound-
ary conditions. We measure the 2D fundamental diagram of models which describing agent
with different shapes. We use three kinds of shapes here, circles with constant radius, el-
lipses with constant a and variable b as defined in Eq. 13 and ellipses with constant a and
variable b as defined in Eq. 14.

The value of V 0, a, T and parameters in direction sub-model are the same as in the
one-dimensional case. Table 2 summarizes the value of other parameters.

The simulation results of the 2D case are shown in Figure 10. From Figure 10, we can
get the result that the shape of agents in the model influence the fundamental diagram

44



bmin (m) bmax (m) b function β γ
constant circle \ \ \ \ \
original ellipse 0.15 0.25 (13) \ \

new ellipse 0.15 0.25 (14) 50 0.1

Table 2: Parameters of CVM in two-dimensional scenario
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Figure 10: Relation between flow and density (fundamental diagram) in two-dimensional scenario, compared
with experimental data obtained in the Hermes-project [48].

in the two-dimensional scenario, especially in the high-density area. The results obtained
with constant circle and ellipse with variable b defined as Eq. 13 both have deviation with
experimental data in the high-density area while using ellipse with variable b defined as
Eq. 14 can obtain 2D fundamental diagram which is closer to the experimental results.
That means the new function for b we proposed has a positive impact on the simulation
result.

Then, we perform simulations in bottleneck scenarios [47]. We measure the relation
between the flow in the middle of the bottleneck and the width of the bottleneck which is
adjusted from 1.0 m to 2.5 m in our simulations. As we mentioned before, we can observe
some unusual behavior during the simulation. Besides, we observe that the distribution of
pedestrians in front of the bottleneck is different from the experiment. The new direction
sub-model proposed in the previous section can eliminate these unusual phenomena.

In order to compare the simulation results of original and new direction sub-model fairly,
we adjust the value of the parameter T to make the flow-width relation obtained from the
simulation results as close to the relation obtained from experimental data as possible. The
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shape of the pedestrian in original and new model are both the new dynamical ellipse we
proposed in previous section, the value of a, bmin, bmax, β and γ are given in Table 2, the
value of k, D, kw, Dw are provided in Table 1. The desired speeds of the pedestrians are
Gaussian distributed with a mean of 1.34 m/s and a standard deviation of 0.26 m/s [49].
After validation, the value of T in the original model is 0.5 s and in the new model is 0.45 s.
The value of new parameter τ introduced in new direction sub-model is 0.3 s. The relations
obtained are shown in Figure 11 and compared with experimental data. In Figure 11 we
can find the relation obtained from simulation results of the original and new model both
very close to the experimental data.
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Figure 11: Relation between the flow in the middle of the bottleneck and the width of bottleneck, compared
with experimental data[23].

Since the purpose of our extension is to eliminate backward movement and shaking
phenomenon. We compare two indexes to prove that our extensions are useful. The first
one is the backward movement proportion

O =

N∑

i=1

Mi∑

k=0

Oi(k ·∆t)

N∑

i=1

Mi

, (23)

where ∆t is the time step size in the simulation, Mi ∗ ∆t is the simulation duration of
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pedestrian i, N is the number of pedestrians in the simulation and

Oi(t) =

{
1, ~ei(t) · ~e 0

i (t) < 0

0, else
, (24)

where ~ei(t) is the moving direction of pedestrian i. This definition means that when the
angle between the actual moving direction and the desired moving direction of a pedestrian
is greater than 90 degrees, we regard it as a backward movement.

We calculate the proportion of backward movement from the simulation results of the
original model and new model in bottleneck scenarios with different widths from 1.0 m to
2.5 m. The results are shown and compared in Figure 12.
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Figure 12: Proportion of backward movement in bottleneck scenarios with different widths from 1.0 m to
2.5 m.

From Figure 12, we can find that the proportion of backward movement significantly de-
creases in the new model compared to the original model. Therefore our extension eliminates
the unrealistic backward movement.

The second index is the average angular variation in moving direction per pedestrian per
frame, which is presented as

Saverage =

N∑

i=1

Mi∑

k=1

Si(k ·∆t)

N∑

i=1

(Mi − 1)

(25)
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with
Si(t) =

∣∣∠
[
~ei(t), ~eit−∆t)

]∣∣ , (26)

where the definition of ∠
[
~ei(t), ~eit − ∆t)

]
is the angle between ~ei(t) and ~ei(t − ∆t). The

definition of moving direction ~ei(t) is the same as before. Si(t) is the absolute value of the
angle between moving direction in the current time step and the previous one. We compare
this index for the new model and the original model. The results are presented in Figure 13.
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Figure 13: Average angular variation in moving direction per pedestrian per frame in bottleneck scenarios
with different widths from 1.0 m to 2.5 m.

It can be observed in Figure 13 that in the new model the pedestrians change less their
direction than the pedestrians in the original model, which is in line with the fact that
pedestrians prefer to keep their direction instead of changing it. Compared within the
original model, agents no longer shake frequently.

Finally, we compare the spatiotemporal profile of bottleneck flow when the width is 1.2 m.
In simulations, we initialise pedestrians in the same positions and at the same times as in
the experiment, in order to eliminate the impact of pedestrians’ initial distribution. The
profiles obtained from the experiment, the original speed model as well as the new model are
shown in Figure 14. Although profiles obtained from new model are still somewhat different
from the experimental results, a visible enhancement can be observed. The pedestrians do
not deviate strongly from the exit as it can be observed with the original model.

5. Conclusion

In this paper we enhance and generalize the collision-free model [36] by introducing new
components that lead to better dynamics. We firstly complete the collision-free velocity
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(a) density, experiment (b) density, original model (c) density, new model

(d) velocity, experiment (e) velocity, original model (f) velocity, new model

(g) Specific flow, experiment (h) Specific flow, original model (i) Specific flow, new model

Figure 14: Spatiotemporal profile of bottleneck flow, the width of bottleneck is 1.2 m. Pedestrians pass
through the bottleneck from bottom to top.
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model by introducing the influence of walls. Then, we generalize the definition of the model
in order to consider dynamical ellipse shapes of pedestrian’s projection on the 2D space,
instead of the originally used circular shapes. Hereby, we define the semi-axes of the ellipses
such that the two-dimensional fundamental diagram is well reproduced with respect to
experimental data. After introducing a new direction sub-model, we show quantitatively that
the unrealistic behavior of the agents during simulations with the original model could be
mitigated. Simulation results show that the new direction sub-model can remove unrealistic
backward movement and undesired shaking behaviors without compromising the benefits of
the original model.

Our validation of the model was systematic, going from the fundamental diagram in
narrow corridors (1D) through fundamental diagrams in wide corridors (2D) to the flow-
width relation in bottlenecks. Although the generalized model produces better results, there
are still some problems that have not been solved yet. First of all, in bottleneck scenarios
with small widths, a jamming arch may arise. Here, the collision-free nature of the model
favors excessive blocking of agents in front of the exit. Further investigations are necessary
to identify an appropriate mechanism for mitigating the effects of arching. Besides, more
detailed validations will be done in future work.
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Abstract

This article studies clogging phenomena using a velocity-based model for pedestrian dy-
namics. First, a method to identify prolonged clogs in simulations was introduced. Then
bottleneck simulations were implemented with different initial and boundary conditions.
The number of prolonged clogs were analyzed to investigate the decisive factors causing this
phenomenon. Moreover, the time lapse between two consecutive agents passing the exit, and
the trajectories of agents were analyzed. The influence of three type of factors was studied:
parameters of the spatial boundaries, algorithmic factors related to implementation of the
model, and the movement model. Parameters of the spatial boundaries include the width
and position of the bottleneck exit. Algorithmic factors are the update methods and the
size of the time step. Model parameters cover several parameters describing the level of
motivation, the strength and range of impact among agents, and the shape of agents. The
results show that the occurrence of prolonged clogs is closely linked to parameters of the spa-
tial boundaries and the movement model but has virtually no correlation with algorithmic
factors.

Keywords: bottleneck, clogging, pedestrian dynamics, simulations, velocity-based model

1. Introduction

Clogging is a phenomenon that usually arises when particles pass through narrow bottle-
neck structures [1]. It is often expressed as the jamming arch formed by several interactive
particles in front of the bottleneck, which significantly decreases or even stops the flow
through the bottleneck.

The phenomenon occurs in different systems of inert particles such as granular material in
the silo [1, 2, 3], dense suspension of colloidal particles [4, 5, 6, 7] or electrons on the surface of
liquid helium [8, 9]. This type of clogging is usually stable if there is no external disturbance
to break the balance between the particles that form the clogging [1, 10]. Clogging can also
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be observed in the movement of animals [11] and humans [12] when congestion and high
motivation coincide, for instance, when a large number of passengers at a train station enter
carriages through a narrow train door with high motivation, or when fans at entrances to a
concert hall are all trying to get in and find places near the stage [13].

Unlike with the clogging of inert particles, clogging in systems with humans is temporary.
The duration of clogs depends on the motivation level of the pedestrians involved in the
clogging [5, 11, 12, 13]. Although the clogging of humans may last a relatively long time
in some extreme cases and sometimes even leads to severe injuries [14, 15], in most normal
cases, its duration is short even in competitive situations [13]. In the literature, the short-
term nature of the clogs is often attributed to the fluctuation in the load to the humans in
the clog. This fluctuation, in turn, may be the result of the flexibility and elasticity of the
human body. Moreover, some clogs are avoided before forming, through complex steering
mechanisms that include cognitive processes and control of the body.

However, microscopic models based on physical principles merely focus on guaranteeing
volume exclusion. They do not take the above-mentioned factors sufficiently into account,
which could lead to prolonged clogs (clogs interrupting flow for a long time) or even stable
clogs similar to inert particles. One study, [16], examined this phenomenon using a cellular
automaton (CA) model. A friction parameter was introduced for an improved description
of the clogging of pedestrians. In another study, [17], the friction parameter was extended
to a function of the number of agents in clogging for a more realistic result of the pedes-
trian outflow through the exit. The effect of queuing and pushing behavior in front of the
bottleneck on the overall dynamics of the crowd is explored using another CA model in
[18], where a local pushing mechanism is used [19]. Another global pushing mechanism is
proposed in [20]. Furthermore, game theory is combined with CA models in some studies
to better reproduce the movement of pedestrians [21, 22]. Prolonged clogs and stable clogs
can also be observed in the social force models for pedestrian dynamics by increasing the
desired velocity of the agents [23]. Introducing random behavioral variations is important
to mitigate these clogs in simulations [24, 25]. Further studies [26, 27] used the social force
model to study the effect of desired velocity and the exit door on the duration of clogs.
Clogs caused by higher desired velocity in force-based models result in lower flow through
bottlenecks, a phenomenon also known as “faster-is-slower” [24, 26, 27, 28, 29].

In this paper, we focus on prolonged clogs occurring in the generalized collision-free
velocity model (GCVM) [30], a first-order microscopic model for pedestrian dynamics. It
is based on the collision-free speed model [31], and strictly follows the principle of volume
exclusion to guarantee that there is no overlap among agents. Therefore, clogs that result
in long-term interruption of flow occur frequently in simulations of bottlenecks, particularly
in narrow exits. We aim to quantify these prolonged clogs by exploring decisive factors
behind their occurrence in the bottleneck scenario, to purposefully improve the GCVM for
reproducing pedestrians’ movement more realistically. The effect of three types of factors is
examined in this study. The first category includes two parameters of the spatial boundaries,
i.e., the width and the position of the bottleneck exit. The second category consists of
algorithmic factors related to the implementation of the GCVM, including the time step size
and the update scheme (e.g., sequential or parallel update) for the agents in the simulations.
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Third, several model parameters such as the strength of impact among agents in the GCVM,
and the shapes of the agents are analyzed. The results are used to ascertain the relationship
between these factors and the occurrence of prolonged clogs.

This paper is organized as follows. Section 2 introduces the bottleneck scenario for the
simulations. In section 3, we briefly define the GCVM and introduce the method used for
identifying prolonged clogs in numerical simulations. Section 4 compares simulation results
obtained with various factors and shows the corresponding analysis. Finally, we conclude
with a discussion in section 5.

2. The bottleneck scenario for simulations

The bottleneck scenario for simulations in this study is shown in Figure 1. It is composed
of three parts separated by red dashed segments. The source area, a 8 m×8 m square in gray,
the moving area, a rectangular room with an area of 10 m × 8 m, and the exit, a corridor
measuring 2 m × w. In section 4 different values of w and d (the position of the exit with
respect to the lower horizontal wall) are used to determine the effect of the structure of the
bottleneck has on the occurrence of the prolonged clogs.

Figure 1: The bottleneck scenario for simulations.

In order to determine the decisive factors behind the appearance of prolonged clogs,
simulations are implemented in the bottleneck scenario with different initial and boundary
conditions. In each simulation, 400 agents are generated with a constant rate at random
positions in the source area and these move through the moving area to leave the scenario by
the exit. During this process, clogs may appear, leading to an interruption of the bottleneck
flow. A clog interrupting the flow longer than the time threshold Tw is identified as a pro-
longed clog. Since prolonged clogs can last a long time and so as to ensure that the blockage
does not stop the dynamics of the system, resulting in an impractically long simulation time,
we manually solve them by moving one of the agents involved in the clog to free space in the
source area. The details of this manual clog-solving procedure will be elaborated in the next
section. The number of prolonged clogs in each simulation is recorded. Then the results of
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different simulations are compared to explore the relationship between these factors and the
occurrence of prolonged clogs.

The model for pedestrian dynamics and the approach to identify clogs are presented in
the following section.

3. Introducing the model and identifying prolonged clogs

We begin this section with a brief introduction to the GCVM, which is the model used
in this study. It is defined as

Ẋi(Xi, Xj, . . . ) = ~ei(Xi, Xj, . . . ) · Vi(Xi, Xj, . . . ), (1)

where Xi is the position of agent i, Vi is a scalar denoting its speed, and ~ei is a unit vector
representing its direction of movement.

The direction of movement ~ei is calculated first by using the equation

~ei = u ·
(
~e 0
i +

∑

j∈Ji
k · exp

(−si,j
D

)
· ~ni,j + ~wi

)
. (2)

Here, u is a normalization constant such that ‖~ei‖ = 1. ~e 0
i is a unit vector representing the

desired direction of the agent. This is calculated according to reference lines indicated by
the red dashed segments in Figure 1. The vector ~e 0

i points to the middle of the reference
line when agent i is not in the range of the reference line; otherwise, it points to the nearest
point on the reference line. More details of the calculation method are given in [32]. Ji is
the set of agents that contains all neighbors affecting the moving direction of agent i. The
magnitude of the impact from these neighbors is a function of si,j, which is the distance
between the edges of agent i and j along the line connecting their centers. Parameters k > 0
and D > 0 are used to calibrate the strength and range of the impact, respectively. The
effect of k and D on the strength of impact is shown in Figure 2(a) and a similar analysis
for the effect of k and D can be found in [33]. The direction of the impact from agent j to
i is denoted by the unit vector ~ni,j, which depends on the relative positions of both agents.
~wi is the effect from walls and obstacles in the room, which is calculated analogously to the
effect from neighbors.

Then the speed on the new moving direction is obtained using the equation

Vi = min
{
V 0
i ,max

{
0,
si
T

}}
. (3)

The speed is a function of si, which is the maximum space of agent i in the new direction
of movement ~ei without overlapping with other agents. In Eq. 3, V 0

i is the free speed of
agent i, the speed that is achieved by moving without interference from other agents. The
parameter T > 0 is the slope of the speed-headway relationship. The speed functions with
different V 0

i and T are shown in Figure 2(b). The value of T could be used to model the
level of motivation in simulations. A decrease of T at constant si leads to a smaller distance
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Figure 2: (a) The effect of k and D on the strength of impact. (b) The speed functions with different V 0
i

and T .

between agent i and the nearest agent in front, which corresponds to behavior with a higher
level of motivation. A more detailed introduction to the GCVM can be found in [30].

Since there is no overlapping among agents in the GCVM, the space occupied by one
agent is not available to other agents. Therefore, clogging occurs when the direction of
movement, ~ei, of two agents point toward each other and the distance si,j between them
is too small for them to move. A representative case is shown in Figure 3(a). It could be
formalized by 




si,j ≤ ε,

Vi + Vj ≤ λ,

~ei,j · ~ei < 0,

~ei,j · ~ej > 0,

(4)

where ~ei,j is the unit vector points from the center of agent j to i, ε is a threshold used to
determine whether the distance between these two agents is small enough to form a clog,
and λ is the threshold of speed to ascertain whether these two agents are almost stationary.
The last two conditions in Eq. 4 denote that these two agents are moving toward each other.
In the present study, ε is equal to the radius of agents, and λ is set as (V 0

i + V 0
j )/100. A

clog formed by more than two agents contains at least two agents satisfying Eq. 4.
There could be many pairs of agents that satisfy the definition of clogging in Eq. 4 at

any time and any place in the simulation. We treat clogs that interrupt the flow longer
than time period Tw as prolonged clogs. These prolonged clogs occur almost around exits,
as the degree of freedom in the direction of movement is limited by the wall. An example of
prolonged clogs is shown in Figure 3(b), a clog consisting of four red agents is formed in front
of the bottleneck and interrupts the flow. After Tw = 2 s, the clog is solved manually by
moving one of the agents in the clog. As for clogs that do not interrupt the flow or last less
than Tw seconds, we do not destroy them artificially since these can be solved automatically
by agents adjusting their direction of movement. A clog formed by two red agents, which
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can be automatically solved in Tw = 2 s, is shown in Figure 3(c).

(a)

t = 0 s

t = 2 s

(b)

t = 0 s

t = 2 s

(c)

Figure 3: (a): When two agents are about to cause clogging, ~ei and ~ej are directions of movement of
agent i and j, ~ei,j is the unit vector points from the center of agent j to i, si,j is the distance between the
edges of agent i and j along the line connecting their centers. (b): A prolonged clog is manually solved
after interrupting the flow for 2 s. (c): A clog is solved automatically by agents adjusting their direction of
movement.

The flowchart in Figure 4 illustrates how to count the prolonged clogs in simulations,
where t is the current time, tp is the time at which the last agent enters the exit, tm is the
time of the last manual clog-solving process, Ns is the number of prolonged clogs, ∆t is the
time step size in the simulation, and tc is the smaller of t− tp and t− tm.

For each time step of a simulation, a non-zero flow through the measurement line between
moving area and exit is an indicator that no prolonged clogs occur. Otherwise, we will check
whether tc is greater than the threshold Tw, and whether there are agents satisfying the
definition of clogging in Eq. 4. A prolonged clog is identified if these two conditions are met.
It is treated as a new clog if tp, the time when the last agent crossed the bottleneck, is not
less than tm, the time of the last manual removal of an agent. Regardless of whether the
clog is new or already existing, one of the two agents forming the closest clog to the exit
is moved manually to free space in the source area. It should be noted that breaking up
a prolonged clog may require more than one manual clog-solving process, which results in
tp < tm. The number of prolonged clogs is counted from the beginning of the simulation to
the last agent leaving the simulation scenario.
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Start

Initialization: t = 0, tp = 0, tm = 0, Ns = 0

Run: t = t + ∆t

Does any agent enter the exit?

tp = t tc = min{t− tp , t− tm}

tc ≥ Tw and does any clog exist?

If tp ≥ tm ?

Ns = Ns + 1

Manually solving the closest clog to the exit,
tm = t

Do all agents leave the scenario?

End

YES

NO

YES

NO

YES

NO

YES

NO

Figure 4: The process of solving and counting prolonged clogs. t is the current time, tp is the time of the
last agent entering the exit, tm is the time of the last manual clog-solving process, Ns is the number of
prolonged clogs, ∆t is the time step size in the simulation, tc is the smaller of t − tp and t − tm, Tw is the
time threshold.
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4. Simulation results

In each simulation, one or two factors were selected for variation. The other factors were
set to default values as shown in Table 1.

Factors Default values
Agent generation rate 8 Agents/s

Agent shape circle (r = 0.2 m)
Update method parallel update

Time step size ∆t 0.05 s
w (Figure 1) 0.8 m
d (Figure 1) 4 m
k (Eq. 2) 3
D (Eq. 2) 0.1 m
V 0
i (Eq. 3) 1.34 m s−1

T (Eq. 3) 0.3 s

Table 1: Default values of factors in simulations. w is the width of the exit, d is the distance between the
center of the exit and the lower horizontal wall of the moving area, k and D are parameters used to calibrate
the strength and range, respectively, of the impact from neighbors in the movement direction, V 0

i is the free
speed, and T is the slope of the speed-headway relationship.

To improve the efficiency of simulations, a series of simulations were implemented firstly
to select the suitable Tw, the time span between the formation, and artificial termination of a
prolonged clog for subsequent simulations. We ran simulations in four bottleneck scenarios,
where the value of w was 0.8, 1.0, 1.2, and 1.6 m, respectively. For each scenario, simulations
with Tw from 0 s to 4 s were implemented. We ran each simulation four times with different
distributions of agents in the source area. The relationship between Tw and the mean values
of Ns, the number of prolonged clogs, from the four runs are shown in Figure 5, where the
error bars indicate the standard deviations. The results in scenarios with a different value
of w are represented by different marks and colors. In all four scenarios, Ns dis not change
significantly when Tw was longer than 2 s. Therefore, this value for Tw was selected for the
following simulations.

In the following, we ran each simulation four times. The mean value of Ns from the four
runs reflects the effect of the factors observed on the occurrence of prolonged clogs. Moreover,
the time lapse between two consecutive agents entering the exit, and the trajectories of agents
were analyzed for the selected factors.

4.1. Parameters of spatial boundaries

The effects of the width and the position of the exit are explored in this subsection.
Three exit positions (d = 4.0, 2.0, or w/2 m) and six widths (w = 0.8, 1.0, 1.2, 1.6, 2.0, or
2.5 m) were selected for the simulations. The exit was located in the middle of two lateral
walls of the moving area when d = 4 m and adjacent to the lower horizontal wall when
d = w/2.
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Figure 5: The correlation between Ns (the number of prolonged clogs) and Tw (the time span between the
formation and artificial termination of a prolonged clog) for different values of w (the width of the exit).
The error bars show the standard deviations.

Figure 6 shows the correlation between Ns and w for different values of d. The position
of the exit does not alter the fact that Ns decreases to zero as w increases. Moreover, there
is no prolonged clog when the exit is wider than 1.6 m for all three positions. Besides the
effect of w, when d = w/2 (the exit is adjacent to the lower horizontal wall of the moving
area), Ns was significantly less than with the other two locations. We assumed that this
difference was caused by the reduced degree of freedom in the possible directions in which
agents will move.

In order to quantitatively analyze the influence of the width of the exit (w) on the clogs,
we examined the time lapses δ between two consecutive agents passing the exit, for different
values of w. The value of δ reflects the sustained time of clogs interrupting the flow. The
probability distribution function P (t > δ), also known as the survival function, is sensitive
to changes in the spatial boundaries, e.g. the width of the bottleneck [5, 11, 12, 34]. We
analyzed the results of simulations when d = 4 m. The survival functions of different values
of w are compared in Figure 7(a). It can be observed that the probability of a higher value
of δ decreases as w increases. Besides, the occurrence of prolonged clogs leads to plateaus
in the survival functions of w = 0.8 and w = 1.0 m. Basically, in these two cases, the actual
values of 〈δ〉, the mean time lapse, are unknown as clogs lasting longer than 2 s are manually
solved. In fact, the actual value of 〈δ〉 without manually removal of clogs may probably tend
to infinite. Nevertheless, in order to obtain an estimate for the lower bound of 〈δ〉 and study
its dependence on w, we treated all δ > 2 s as δ = 2 s in the calculation of the mean value of
δ. The correlation between the value of 〈δ〉 and w is shown in Figure 7(b). The mean value
and standard deviation of δ both decrease with increasing w.
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Figure 6: The correlation between Ns (the number of prolonged clogs) and w (the width of the exit) for
different values of d (the distance between the center of the exit and the lower horizontal wall of the moving
area). The error bars show the standard deviations.
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Figure 7: (a): The survival functions of δ for simulations with different values of w when d = 4 m. (b): The
correlation between the 〈δ〉 (the mean time lapse between two consecutive agents entering the exit) and w
when d = 4 m. The error bars show the standard deviations.
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4.2. Algorithmic factors

The effect of update methods and the time step sizes ∆t to solve the equation of motion
are analyzed in this subsection. Two update methods were adopted: the parallel update
and the sequential update. When we used the parallel update, the direction of movement,
speed and location of all the agents were updated at the same time. When the sequential
update was used, the direction of movement, speed and location of agents were updated one
by one according to the distance to the exit. The agents near the exit had more effect on
the dynamic of the system than the agents further away from the exit. Therefore, the agent
with a greater effect, i.e., the agent closer to the exit, was updated first in the sequential
update. For each update method, simulations were performed with different values of ∆t
from 0.01 s to 0.125 s.

The correlation between Ns and ∆t for two update methods is shown in Figure 8. The
effect of ∆t on Ns is marginal for both update methods.

To explain the reason behind the results, an extreme case is considered here where two
agents i and j are moving directly toward each other, which means ~ei = −~ej. We assume
that their direction of movement is fixed, and si,j < T ·V 0

i . According to Eq. 3, their speeds
Vi and Vj are both equal to si,j/T . They will not overlap and, consequently, form a clog if
their speeds satisfy

(Vi + Vj) ·∆t ≤ si,j, (5)

which can be transformed to 2 · ∆t ≤ T . This example illustrates that adopting a lower
value of ∆t or substituting the sequential update cannot hinder the occurrence of clogging,
since the scarcity of available space is not changed.

Therefore, the occurrence of prolonged clogs in the simulations with the GCVM is not
an algorithmic issue.
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Figure 8: The correlation between Ns (the number of prolonged clogs) and ∆t (time step size) for different
update methods. The error bars show the standard deviations.
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4.3. Parameters of the GCVM

In this subsection, the effect of several parameters in the GCVM is examined, including
the slope of the speed-headway relationship T and the free speed V 0 in Eq. 3. The strength
and range of the effect of neighbors in the direction of movement, k and D in Eq. 2, and the
shapes of agents are also studied.

First, we looked at the effect of T and V 0. We ran simulations with different V 0 (1.34,
3.34, or 5.34 m s−1) and different T (0.1, 0.3, 0.5, 0.8, or 1.0 s). The correlation between
Ns and T for different values of V 0 is shown in Figure 9(a). For all three values of V 0,
as T increased, Ns decreased initially, then remained relatively stable. A decrease in T
led to a smaller slope of the speed-headway function, see Eq. 3 and Figure 2(b). With
decreasing T agents move closer, which reduces the space available to resolve clogs. This is
in accordance with the finding that clogging is more likely to occur in scenarios with higher
level of motivation [12, 25, 28, 34].

The level of motivation has been shown to have an effect on the time lapse δ [12, 25, 28].
Figure 9(b) shows the survival functions of δ in the simulations with V 0 = 3.34 m s−1, which
is similar to the result of granular media experiment [28]. These survival functions can be
approximately separated into two successive regimes by δ = 1.2 s. For δ ≤ 1.2 s, increasing
T leads to a higher value of P (t > δ), while for δ > 1.2 s, increasing T reduces P (t > δ).
The mean time lapse 〈δ〉 for each regime is shown in Figure 9(c). As we mentioned above,
the actual values of 〈δ〉 for the region of δ > 1.2 s are unknown as clogs lasting longer than
2 s are manually solved. Therefore, we treated all δ > 2 s as δ = 2 s in the calculation of the
mean value of δ. The obtained values are the lower bound of the real ones. Decreasing T
can be interpreted as increasing the level of motivation, which results in an increase in the
free flow rate (δ ≤ 1.2 s) as well as an increase in the probability of clogging (δ > 1.2 s).

However, a higher value of V 0, which can be interpreted as the expression of a higher
motivation level, leads to lower values of Ns. We analyzed the results of simulations with
T = 0.8 s. The survival functions of different values of V 0 are compared in Figure 9(d).
The probability of a higher value of δ decreases as V 0 increases. According to Eq. 3, the
speed of agents in the GCVM depends on the overlapping-free spaces in their directions
of movement. Although a higher V 0 increases the maximum possible speed of agents, it
has little effect in congested areas due to limited space. Therefore, the effect of V 0 in the
GCVM on the motivation level of present simulations is marginal, as most of the investigated
situations represent congested conditions. Moreover, a higher V 0 allows agents to move faster
in low density situations, which results in the reduction of Ns. Note, that in force-based
models [25] the driving force increases with increasing V 0, hence V 0 can have an effect in
congested situations as well.

Then we examined the effect of k and D. Higher values of k and larger D led to agents
being more stimulated to deviate from their desired directions. We ran simulations with
different values of k (0.2, 0.5, 1, 2, 3, 4, 5, or 6) and different values of D (0.01, 0.02, 0.05,
or 0.1 m). The correlation between Ns and k for different values of D is shown in Figure 10.

It can be seen that Ns increases with increasing k and increasing D. We assume the
reason for this is that lower values of k and D decrease the neighbor’s impact on agents,
which leads to the queuing behavior. We show in Figure 11(a) the trajectories of agents
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Figure 9: (a): The correlation between Ns (the number of prolonged clogs) and T (the slope of the speed-
headway relation) for different values of V 0 (the free speed). The error bars show the standard deviations.
(b): The survival functions of δ (the time lapse between two consecutive agents entering the exit) in the
simulations with different values of T when V 0 = 3.34 m s−1. (c): The mean time lapse 〈δ〉 versus T when
V 0 = 3.34 m s−1, for δ ≤ 1.2 s and δ > 1.2 s, respectively. (d): The survival functions of δ (the time
lapse between two consecutive agents entering the exit) in the simulations with different values of V 0 when
T = 0.8 s.
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Figure 10: The correlation between Ns (the number of prolonged clogs) and k for different values of D. The
error bars show the standard deviations.

in the simulation when k is 0.2 and D is 0.01 m, which shows a strong queuing behavior.
When the impact among agents increased consistently, agents began to deviate from their
desired direction until the queuing behavior was broken. Figure 11(b) shows the trajectories
of agents in the simulation when k is 3 and D is 0.01 m.

(a) (b)

Figure 11: (a): Trajectories of agents when k is 0.2 and D is 0.01 m. (b): Trajectories of agents when k is
3.0 and D is 0.01 m.

The final factor analyzed was the shapes of agents. In the previous sections, a pedestrian’s
shape was modeled as circles with a constant radius. To study the influence of the shape, we
also performed simulations where pedestrians were modeled as velocity-based ellipses [30].
The length of the semi-axis along the walking direction is a constant value a. The length of
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the other semi-axis along the shoulder equals b, which is defined as

b = bmin +
bmax − bmin

1 + eβ·(V−γ)
, (6)

where bmax is the maximum value which is equal to half of a static pedestrian’s width, bmin

is equal to the half of a moving pedestrian’s minimum width, V is the speed of the agent,
and parameters β and γ are used to adjust the shape of the function.

Simulations in this part are performed with three constant circles with different radius
values r (0.15, 0.20, or 0.25 m) and a velocity-based ellipse (a = 0.20 m, bmin = 0.15 m,
bmax = 0.25 m, β = 50, γ = 0.1). Figure 12(a) shows the correlation between Ns and w for
different shapes. The result of the ellipse is close to the result of the circle with r = 0.20 m,
which is between the result of the smallest circle (r = 0.15 m) and of the biggest circle
(r = 0.25 m). The possible explanation of this result is that the shape of the dynamic
ellipse varies with the speed of agents. For example if the speed of an agent is 0.1 m s−1,
the dynamic ellipse becomes a circle with r = 0.2 m. Which means that in high density
situations the agents tend to have a circular shape instead.
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Figure 12: (a) The correlation between Ns (the number of prolonged clogs) and w (the width of the exit)
for different shapes of agents. The error bars show the standard deviations. (b) The correlation between Ns

and w/r for different r (the radius of agents). The error bars show the standard deviations.

A finding in [35] is that the probability of clogs stopping the flow decreases with an
increasing ratio between the size of the orifice and the size of the beads. Therefore, we plot
Figure 12(b) with w/r (the ratio between the width of the exit and the radius of the agents)
as the horizontal axis. It seems that the number of prolonged clogs is not affected by the
absolute values of w and r, provided that w/r remains the same.

5. Conclusion

In the present paper, we focus on prolonged clogs that occur in bottleneck scenarios
with the GCVM. A general definition of prolonged clogs has been given. Then a series of
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simulations in a bottleneck scenario were implemented to analyze the effect of various factors
on the occurrence of prolonged clogs.

From the simulation results, the following conclusions can be drawn. First, the number
of prolonged clogs decreases as the width of the exit increases. Second, the occurrence of
prolonged clogs cannot be eliminated by adopting a smaller time step size or updating the
positions of agents sequentially. Third, a decrease in T in the GCVM leads to smaller dis-
tance between agents, which corresponds to a behavior with a higher level of motivation.
Meanwhile, decreasing T reduces the space available for agents to resolve clogs, which in-
creases the number of prolonged clogs. This is in accordance with the fact that clogging
is more likely to occur in scenarios with a higher level of motivation. Fourth, reducing the
degree of freedom in the possible directions in which agents will move can reduce or even
eliminate the occurrence of prolonged clogs. For instance, this can be facilitated by the
queuing behavior in Figure. 11(a) as well as by locating the exit adjacent to the lower hor-
izontal wall of the moving area. Finally, when the ratio between the width of the exit and
the radius of agents increases, the number of prolonged clogs decreases.
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Abstract

Lane formation in bidirectional pedestrian streams is based on a stimulus-response mech-
anism and strategies of navigation in a fast-changing environment. Although microscopic
models that only guarantee volume exclusion can qualitatively reproduce this phenomenon,
they are not sufficient for a quantitative description. To quantitatively describe this phe-
nomenon, a minimal anticipatory collision-free velocity model is introduced. Compared to
the original velocity model, the new model reduces the occurrence of gridlocks and repro-
duces the movement of pedestrians more realistically. For a quantitative description of the
phenomenon, the definition of an order parameter is used to describe the formation of lanes
at transient states and to show that the proposed model compares relatively well with ex-
perimental data. Furthermore, the model is validated by the experimental fundamental
diagrams of bidirectional flows.

Keywords: anticipation, velocity-based model, pedestrian dynamics, bidirectional flow,
lane formation

1. Introduction

In bidirectional flow situations, pedestrians self-organize into dynamically varying and
separated lanes [1, 2, 3, 4, 5, 6]. Although the mechanisms behind this apparently organized
separation of the crowd are not known for certain and in many cases may seem random, we
observe that this formation leads to a reduction in collisions and thus increases the speed.
Unlike with car traffic, where stable lanes are predetermined by the restrictions established
by the infrastructure, in pedestrian dynamics, lanes are formed dynamically and naturally
with neither external synchronization nor any prior agreement between pedestrians.

We also see lane formation in systems of inanimate particles [7, 8, 9], where models
ensuring volume exclusion are sufficient to reproduce the phenomenon. Therefore, with
a simple social force model considering the repulsion between particles, Helbing et al. [10]
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qualitatively reproduced the lane formation in a corridor with periodic boundary conditions.
They attributed two reasons to this phenomenon, the sideways movement, which separates
agents moving in opposite directions, and the weak interaction between agents moving in
the same lane, which maintains the lanes that have been formed [2].

However, pedestrians usually avoid collisions by using a stimulus-response mechanism to
anticipate changes in the environment. In this context, we consider anticipation as the pre-
diction of the path of neighboring pedestrians by perceiving their past or current movement
and taking this information into account to avoid collisions. The effect of anticipation on the
movement of pedestrians in bidirectional flows has been discussed and addressed in several
works to date. For instance, Suma et al. [11] conducted a bidirectional flow experiment
where participants are asked to use cell phones (weak anticipation) or move cautiously (ex-
cessive anticipation), to study how anticipation affects the movement of pedestrians. They
found anticipation significantly affects the time it takes for pedestrians to pass through the
corridor, and there is an optimal degree of anticipation to realize the minimum passing time.
However, since the scale of the experiment was small, the lane formation was not analyzed
quantitatively. Murakami et al. [12] performed the bidirectional experiment in a corridor
with open boundary conditions, and they observed that the sideways movement of pedestri-
ans before lane formation can be described in terms of the Lévy walk process. Therefore, the
authors suggested that this sideways movement is strongly related to lane formation. More-
over, they assumed the most likely action underlying the sideways movement is anticipation.
The relationship between anticipation and lane formation is further studied in [13] through
a larger scale bidirectional flow experiment, where pedestrians distracted by cell phones are
located at different positions to represent situations with different degrees of anticipation.
They found anticipation favors the formation of lanes in bidirectional flow situations. As
a part of the anticipation process, the strategy selected by pedestrians in bidirectional flow
situations is also related to the formation of lanes. It was observed in experiments that pre-
ferring to follow other pedestrians moving in the same direction is a strategy to promote and
stable the formation of lanes [14, 15, 16]. In addition, lane formation is also influenced by the
effect of various factors, such as flow ratio [17] and heterogeneity of agents [16]. Therefore,
models based solely on volume exclusion, such as the one in [10], are oversimplified and not
suitable for quantitatively reproducing the lane formation in pedestrian systems.

To give a more realistic picture of the behavior of agents in the bidirectional flow simu-
lation, the process of anticipation was considered in several recent models. Suma et al. [11]
proposed an anticipation floor field cellular automata model. The transition probability of
agents is calculated by considering the cells occupied by other agents currently, as well as the
cells that are expected to be occupied by other agents in the future. The model was analyzed
in [18] by using an order parameter, which is originally used to detect lanes of particles in a
colloidal suspension [19]. Quantitative analysis showed that the model with anticipation can
reproduce lane formation in higher density situations than the model without anticipation,
but the model is not calibrated with experimental data. Zanlungo et al. [20] introduced an-
ticipation into the social force model. Instead of using the current distance between agents,
the repulsion force from one agent to another is calculated by using their future distance
determined by the time to collision. The result of calibration shows that introducing antic-
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ipation improves the model’s capability to reproduce pedestrian trajectories. However, the
influence of anticipation on lane formation was not studied in this work. Through statistical
analysis of pedestrian trajectories, Karamouzas et al. [21] found that the time to collision
is more suitable to describe the interaction energy between pedestrians than the distance
between them. Based on the power law relationship between the interaction energy and
the time to collision, a force-based model is developed, which can reproduce several self-
organization phenomena including lane formation. However, a quantitative analysis of the
lane formation was not conducted using this model. Moreover, although the model was val-
idated with experimental data by comparing the data from [22], the calibration process did
not distinguish the uni- and bidirectional flow. Bailo et al. [23] also proposed a microscopic
model based on the time to collisions. The model is able to reproduce the lane formation
in bidirectional flow situations, but it hasn’t been tested in scenarios with different densi-
ties. Besides, the model was not calibrated with the experimental data. Seitz [24] proposed
four simple cognitive heuristics to describe pedestrian behavior and investigated the possi-
ble heuristics related to lane formation. It was found that only the model with “follower”
heuristics can reproduce lane formation, which corresponds to the strategy of following other
agents moving in the same direction. This work shows that considering the correct cognitive
heuristics is significant and maybe also enough for reproducing self-organization phenomena,
which provides a direction for developing models in the future.

Besides lane formation, another phenomenon related to bidirectional flow is the jamming
transition, also called gridlock, appearing at a critical density. Muramatsu et al. [25] used
a lattice gas model without backstepping to study the jamming transition in bidirectional
pedestrian flow with open boundary conditions. They found the jamming transition does not
depend on the corridor size but it is affected by the strength of the drift (the preference to
move in the desired direction) and the traffic rule adopted (such as keep to the right). Fang
et al. [26] adopted a cellular automata model with backstepping and the right-hand side rule.
They observed the critical density of jamming transition increases with a higher probability
of backstepping. Nowak et al. [18] studied the phenomenon with the anticipation floor field
cellular automata model proposed in [11]. They discovered the anticipation mechanism in
the model suppresses the formation of jamming (facilitating the formation of lanes), which
leads to an increase in the critical density of the jamming transition. However, the jamming
transition is only observed in computer simulations.

Furthermore, the fundamental diagram is used to analyze bidirectional streams. In some
early studies summarized in [15], it is believed that there is no clear or only a small differ-
ence between uni- and bidirectional flows. Helbing et al. [27] concluded that bidirectional
flows are more efficient than unidirectional flows. The possible reason behind this is better
coordination between people in bidirectional situations (lane formation). Kretz et al. [28]
also found that pedestrians use space more efficiently in bidirectional situations. Subse-
quently, Zhang et al. [15] carried out both uni- and bidirectional flow experiments under
laboratory conditions. A clear difference between the fundamental diagrams of uni- and
bidirectional flows is observed when the density is higher than 1.0 m−2. The specific flow
reaches a peak with increasing density in the unidirectional flow, whereas a plateau is formed
in the bidirectional flow. However, there are no experimental data for densities higher than
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4.5 m−2.
In order to reproduce bidirectional flow quantitatively, the anticipation velocity model

(AVM) for pedestrian dynamics is proposed. The action anticipating changes of neighboring
pedestrians’ positions and the strategy of following others are covered in this model. The
new model is compared to two similar models from the literature, the collision-free speed
model [29] and generalized collision-free velocity model [30], and we highlight the reasons
behind the difference. Moreover, we use the AVM to study the jamming transition, lane for-
mation, and fundamental diagrams in bidirectional flow scenarios. In the following section,
the AVM is described.

2. Definition of the anticipation velocity model

In this model, an agent is represented as a disk with a constant radius r. The position and
velocity of pedestrian i are denoted by ~xi and ~vi, respectively, where ~vi = ~̇xi. Furthermore,
~vi = ~ei · vi, where ~ei and vi denote the direction of movement and the speed of agent i,
respectively. Both variables are modeled differently as explained in the following subsections.

2.1. Submodel for operational navigation

The direction of movement of agent i is determined by its desired direction which is a unit
vector denoted by ~e 0

i pointing towards its target. The determination of the target follows
various tactical strategies, which is not the subject of the present study. For operational
navigation to avoid collisions and obstructions, in the presence of other agents, the direction
of i will deviate from its desired direction ~e 0

i . To consider anticipation, the process can be
divided into the following parts: a. perception of the actual situation, b. prediction of a
future situation, and c. selection of a strategy leading to an action.

a. Perception of the actual situation: To consider restrictions using visual perception, it
is assumed that only agents located in the union of two half-planes, where i is moving or
intends to move, affect its direction. The set containing all agents who have an impact on
i’s direction of movement is

Ni(t) =

{
j, ~ei(t) · ~ei,j(t) > 0 or ~e 0

i (t) · ~ei,j(t) > 0

}
, (1)

where ~ei,j denotes the unit vector from i to j.
b. Prediction of a future situation: To consider the prediction, it is assumed that the

strength of j’s impact on i is a function of the predicted distance between these two agents at
a particular time point. Given a time constant ta, which can be interpreted as the prediction
time, the predicted distance is defined as

sa
i,j(t+ ta) = max

{
2r,

(
~x a
j (t+ ta)− ~x a

i (t+ ta)
)
· ~ei,j(t)

}
, (2)

where ~x a
i (t+ ta) = ~xi(t) + ~vi(t) · ta. See Figure 1.
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Figure 1: An example of sai,j(t+ ta), the predicted distance between agents i (~xi, ~vi) and j (~xj , ~vj). When
pedestrians move towards each other their predicted distance is smaller than the actual distance.

c. Selection of a strategy leading to an action: After the introduction of the predicted
distance in Eq. 2, the strength of the impact from agent j on the direction of movement of
agent i is defined as

Ri,j(t) = αi,j(t) · exp

(
2r − sa

i,j(t+ ta)

D

)
, (3)

where D > 0 is a constant parameter used to calibrate the range of the impact from neighbors
and αi,j is a directional dependency used to vary the strength of impact from different
neighbors (see Eq. 4).

αi,j(t) = k
(

1 +
1− ~e 0

i (t) · ~ej(t)
2

)
, k > 0, (4)

where αi,j is minimal (k) when both vectors ~e 0
i and ~ej are aligned and is maximum (2k)

when they are anti-aligned, which means that agents influence each other’s direction strongly
in bidirectional scenarios. Here, αi,j means agents have a high tendency to follow the agents
who move in the same direction. When this strategy is used, the probability of further
conflicts is reduced.

The direction of the impact from agent j on i’s direction of the movement is defined as

~ni,j(t) = − sign

(
~e a
i,j(t+ ta) · ~e 0⊥

i (t)

)
· ~e 0⊥

i (t), (5)

where ~e a
i,j(t+ ta) = ~x a

j (t+ ta)−~xi(t). The direction of ~ni,j depends on the predicted position
of agent j after a period of time ta. Note that when this predicted position is aligned with
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the desired direction of i, the direction of ~ni,j(t) in Eq. 5 is chosen randomly as ~e 0⊥
i or

−~e 0⊥
i . See Figure 2. This rule prevents agents from moving in the opposite direction to the

desired direction.

Figure 2: The direction of the impact from j on the direction of movement of i (~ni,j) according to Eq. 5.

Finally, Eq. 3 and Eq. 5 yield the optimal direction of agent i as

~e d
i (t) = u

(
~e 0
i (t) +

∑

j∈Ni(t)

Rj,i(t) · ~nj,i(t)

)
, (6)

where u is a normalization constant such that ‖~e d
i ‖ = 1. Then, the direction of movement

of agent i is updated as
d~ei(t)

dt
=
~e d
i (t)− ~ei(t)

τ
, (7)

where τ is a relaxation parameter adjusting the rate of the turning process from the current
direction ~ei to the optimal direction ~e d

i .

2.2. Submodel for the speed

After obtaining the new direction of the movement according to Eq. 7, the set of neighbors
that are imminently colliding with i is defined as

Ji =
{
j, ~ei · ~ei,j ≥ 0 and

∣∣~e ⊥i · ~ei,j
∣∣ ≤ 2r

si,j

}
, (8)
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where si,j is the current distance between i and j. Therefore, the maximum distance that
agent i can move in the direction without overlapping other agents is

si = min
j∈Ji

si,j − 2r. (9)

Finally, the speed of agent i in the new direction is

vi = min
{
v0
i , max

{
0,
si
T

}}
, (10)

where v0
i is the free speed of agent i, and T > 0 is the slope of the speed-headway relation-

ship. The speed submodel used here is the same as in the generalized collision-free velocity
model [30].

3. Test with two interacting agents

Binary interaction scenarios with the collision-free speed model (CSM) [29], the gener-
alized collision-free velocity model (GCVM) [30], and the AVM, respectively, are studied to
assess the models’ ability. The three models adopt the same speed submodel but different
submodels for operational navigation. In both the CSM and the GCVM, the strength of the
effect from agent j on agent i’s direction of movement is a function of the distance between
the two agents. As for the direction of this effect, in the CSM it is from j to i, while in the
GCVM it is obtained with Eq. 5 (ta = 0 s). The parameters of these models are summarized
in Table 1.

r [m] k Eq. 4 D [m] Eq. 3 T [s] Eq.10 ∆t [s] τ [s] Eq. 7 ta [s]
CSM

0.18 3 0.1 1.06 0.05
\ \

GCVM
0.3

\
AVM 1

Table 1: The parameters of the models in binary interaction simulations. Here, r is the radius of agents,
∆t is the time step size, and ta is the prediction time. The simulation in the present study is conducted
using the Euler scheme. Parameter values of the CSM and the GCVM are obtained from [30]. The reason
for ta = 1 s in the AVM is discussed in Appendix A.

The first scenario is that agent i walks behind agent j, which is shown in Figure 3(a).
The agents have the same desired direction, but the free speed of agent i is higher than
that of agent j. The trajectory of the agents in the first scenario is shown in Figure 3(b).
In the simulation using the GCVM and the AVM, agent i overtakes agent j by adjusting
the direction of movement. In the CSM, however, no overtaking is observed. Moreover,
compared to the GCVM, the overtaking in the AVM occurs earlier.
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Figure 3: (a): Scenario 1, agent i walks behind agent j. The two agents have the same desired direction but
the free speed of agent i is higher than that of agent j. (b): The trajectory of agents. The position of agents
at different times is represented by the disk, and the transparency of these disks increases with increasing
time. When the AVM is used, overtaking starts earlier.

The second scenario, more relevant to bidirectional flow, depicts two agents having the
same free speed with opposite desired directions (see Figure 4(a)). The trajectory of the
agents in the second scenario is shown in Figure 4(b). Here again, it is observed that with
the GCVM and the AVM, agents i and j both change their paths to avoid the imminent
conflict, although this maneuver occurs earlier in the AVM than in the GCVM. In the CSM,
the two agents are unable to pass each other.
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Figure 4: (a): Scenario 2, agent i and agent j move toward each other. The two agents have the same free
speed but opposite desired directions. (b): The trajectory of agents. The position of agents at different
times is represented by the disk, and the transparency of these disks increases with increasing time. Evasive
movement starts earlier when the AVM is used.

In the last scenario (see Figure 5(a)), the paths cross at right angles. The free speeds
of the two agents are very similar but not quite equal to avoid the symmetric movement of
the two agents. The trajectory of the agents in the last scenario is shown in Figure 5(b).
When the AVM is used, the agents deviate slightly from the desired direction to the target
and avoid collision.

(a)
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Figure 5: (a): Scenario 3, agent i and agent j move across each other’s path. The free speeds of the two
agents are very close but not equal and their desired directions are perpendicular to each other. (b): The
trajectory of agents. The position of agents at different times is represented by the disk, and the transparency
of these disks increases with increasing time.
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In all cases, it can be concluded that, without introducing noise terms into the models,
the movement of agents in the simulation using the AVM is closer to reality than using the
CSM and the GCVM, where agents have difficulty overtaking or performing realistic evasive
movements.

4. Bidirectional flow simulations with periodic boundary conditions

4.1. States of bidirectional flow

The bidirectional flow simulation is performed for a corridor shown in Figure 6. The
width of the corridor is 4 m, which is the same as the experimental setting in [31]. Simu-
lations were also performed in corridors with different widths, and the result is discussed
in Appendix B. For the initial conditions of a simulation, the gray waiting areas are sepa-
rated into grids with a specific size, then the agents are randomly distributed in these grids
without overlapping. The same number of agents were placed at the left and the right sides
of the corridor. After the simulation starts, agents in the left waiting area move toward
the right, and vice versa. Different initial conditions of agents’ desired direction ~e 0 were
compared before performing the simulations in this section. Since no significant difference
could be observed between the simulation results of ordered and unordered initial conditions,
agents’ desired direction ~e 0 were set parallel to the horizontal walls of the corridor. The
free speeds of agents are normally distributed N ∼ (1.55, 0.182) m s−1 according to [15]. The
effect of the free speed distribution on the simulation results is studied in Appendix C. All
simulations presented in this section are performed with periodic boundary conditions in the
walking direction of the agents. Each simulation lasts 400 s, which gives a good compromise
between the running time of the simulations and the time needed to develop lane formation.

Figure 6: The corridor for bidirectional flow simulations. Dashed arrows outside the corridor represent
periodic boundary conditions.

Based on the approach used in [18], the patterns emerging in our simulations are classified
into four different states, which are local jamming, global jamming, lane formation, and
disorder (see Figure 7). Local jamming and global jamming are both categorized as jamming
states, whereas lane formation and disorder are grouped into the moving states. If the
average speed of an agent over 10 s is less than v0/100, it is indicated as a static agent.
Using this definition, a simulation is considered to be in the jamming state when the number
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of static agents in the simulation is equal to or greater than 2 (Nstatic ≥ 2); otherwise, the
simulation is considered to be in a moving state. Note, although 400 s is usually long enough
to reach the steady state of the simulation, the jamming or moving state of a simulation
still has a certain probability of being transient. The number of static agents in the four
simulations in Figure 7 are 29 (local jamming), 80 (global jamming), 0 (lane formation),
and 0 (disorder), respectively.

(a)

(b)

(c)

(d)

Figure 7: Different states of bidirectional flow simulations with periodic boundary conditions. (a): Local
jamming. (b): Global jamming. (c): Lane formation. (d): Disorder.

In this section (Figures 8, 9, and 10(a)), each simulation is performed for M = 30 times
with different distributions of agents in the waiting areas, then the jamming probability Pjam

is calculated as
Pjam = Sjam/M, (11)

where Sjam is the number of simulations leading to a jamming state.
To further distinguish between the states of lane formation and disorder, the quantity Φ

defined in [32] is introduced as

Φ =
1

N

N∑

i=1

φi, (12)
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with

φi =
(N same

i −Ndiff
i )2

(N same
i +Ndiff

i )2
∈ [0, 1], (13)

where N is the total number of agents in the corridor, N same
i is the set of all agents initially

in the same waiting area as agent i and currently moving in i’s lane, and Ndiff
i is the set of

all agents initially in a different waiting area to agent i and currently moving in i’s lane.
The expressions of N same

i and Ndiff
i are

N same
i =

{
j, |yj − yi| < 3r/2 and ~e 0

i · ~e 0
j > 0

}
, (14)

Ndiff
i =

{
j, |yj − yi| < 3r/2 and ~e 0

i · ~e 0
j < 0

}
, (15)

where yi is the vertical position of agent i.
Φ is an indicator of how pronounced lanes are formed in a simulation. Knowing that an

order parameter is only measured at steady states, Φ is used here to compare models with
respect to their performance of describing the transient state of lane formation. The values
of Φ in the four simulations in Figure 7 are 0.66 (local jamming), 0.18 (global jamming),
1.00 (lane formation), and 0.31 (disorder), respectively. Nevertheless, there is no specific
boundary to clearly distinguish between the states of lane formation and disorder.

4.2. Jamming transition

To study the jamming transition in bidirectional flow, simulations are performed with
the AVM, the CSM, and the GCVM, respectively. The parameters of models are shown
in Table 1. For each model, simulations are performed with different numbers of agents
ranging from 20 to 200 (10 to 100 in each waiting area). The global density of agents in
the corridor, ρglobal, is defined as the number of agents divided by the area of the whole
corridor (including the waiting area). The relationship between Pjam and ρglobal for different
models is shown in Figure 8. With an increase in ρglobal, a transition from moving states
(Pjam = 0) to jamming states (Pjam = 1) is observed in the simulation of all three models.
However, with the AVM, the transition occurs at a higher value of ρglobal compared to the
other two models, which indicates the model’s ability to reproduce lane formation even at
higher density values.
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Figure 8: The relationship between Pjam and ρglobal for different models.

4.3. Parametric study

Parameters k and D are used to calibrate the strength and range of the impact from
neighbors to the direction of movement in all three models (the CSM, the GCVM, and the
AVM). Although the definitions vary slightly between the three models, higher values of
k and larger D always led to agents being more stimulated to deviate from their desired
directions. In this section, the effect of k and D on the jamming probability Pjam is studied
for each of the three models.

For each model, simulations are performed with different values of k (1, 2, 3, 4, 5, and
6) and different values of D (0.01, 0.02, 0.05, 0.10, 0.20 m). To ensure simulations with
jamming and moving states, the global density of agents ρglobal is set close to the critical
density between the moving state and the jamming state (see Figure 8). The number of
agents is 100 (ρglobal ≈ 0.96 m−2) for the simulations using the CSM, 60 (ρglobal ≈ 0.58 m−2)
for the simulations using the GCVM, and 140 (ρglobal ≈ 1.35 m−2) for the simulations using
the AVM. Other parameters of the three models are given in Table 1.

The jamming probability of the simulation using the CSM and the GCVM is shown in
Figures 9(a) and 9(b), respectively. The reason of the non-monotonic trend in Figure 9(b)
when D = 0.2 m is that excessive influence from neighbors will cause agents to be more
dispersed in the vertical direction of the corridor. When two groups of agents meet, more
dispersed distribution leads to the formation of rows that exceed the maximum number of
rows limited by the width of the corridor and ultimately results in the occurrence of jamming.
Except for this non-monotonic trend, the value of Pjam in the simulation using the CSM and
the GCVM decreases with increasing k and D, which means that the jamming probability
decreases with increasing impact from neighbors on the direction of movement. However,
the value of Pjam in the simulation using the AVM shows a different trend (see Figure 9(c)).
When the value of D is small (0.01, 0.02, and 0.05 m), the value of Pjam changes slightly.
With a larger value of D (0.1 m), the value of Pjam increases with increasing k. Note that
when the value of D is large enough (0.2 m), the value of Pjam is close to 1 and the effect of
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k is marginal again. Generally, in the AVM, with increasing impact from neighbors on the
direction of movement, the jamming probability increases.
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Figure 9: The relationship between Pjam and k for different values of D. The mean value of D can be read
in the legend. (a): CSM. (b): GCVM. (c): AVM.

On the basis of all combinations of k and D in Figure 9, the set of parameters that leads
to the minimal Pjam is identified for each model and shown in Table 2.

CSM GCVM AVM
k 6 4 6
D [m] 0.2 0.2 0.01

Table 2: The set of k and D that leads to the minimal Pjam in Figure 9.

4.4. Lane formation

The values of k and D from Table 2, together with other parameter values from Table 1,
are used for a comparative study of lane formation in the three models. For each model,
simulations are performed with different numbers of agents from 20 to 300 (ρglobal from
0.19 to 2.8 m−2). The relationship between Pjam and ρglobal for different models is shown in
Figure 10(a). Compared to Figure 8, the jamming probability Pjam is significantly reduced
in the simulation using the CSM and the AVM by adopting the optimal values of k and D.
The GCVM, however, does not show any improvement.

Furthermore, to gain a better insights into the lane formation phenomenon, the average
value of Φ in the last 10 s of each simulation is calculated. First, simulations are classified
as “jamming” or “moving” according to their states. Then, the mean value and standard
deviation of Φ in the simulations with the moving state are calculated for each model and
each density. The variations in Φ with respect to the global densities are shown in Fig-
ure 10(b). For all the three models, when ρglobal < 1.0 m−2, the values of Φ in the moving
states are always close to 1, which indicates that, in this case, lanes are always formed.
When ρglobal > 1.0 m−2, for the moving states, the value of Φ is unavailable in the GCVM,
and the values in the AVM are significantly higher than in the CSM. This indicates that,
although both are in the moving states, the AVM reproduces lane formation much better.
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Figure 10: Using the values of k and D from Table 2. (a): The relationship between Pjam and ρ for different
models. (b): The mean value and standard deviation of Φ in the simulations with the moving state, for
each model and each density.

The quantity Φ is a reliable indicator of the formation of lanes in a simulation. Since
it changes in time, an artificial threshold of 0.8 for Φ is introduced to describe how fast
lanes are developed. The time when the value of Φ first exceeds the threshold is denoted by
tlane. The mean value and standard deviation of tlane in simulations with the moving state
are calculated for each model and each density. See Figure 11(a). For all three models, the
mean value of tlane increases with increasing ρglobal, which is to be expected. Moreover, lanes
form much faster in the simulation using the AVM than with the other models.
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Figure 11: (a) The mean value and standard deviation of tlane in the simulations with the moving state, for
each model and each density. (b):The relationship between the value of Φ and the simulation time t of three
simulations using different models (ρglobal=1.92 m−2) and an experiment [31].

Three single simulations using different models are further compared with bidirectional
flow experiment [31]. Figure 11(b) shows the time series of Φ in the first 200 s. Here, Φ

87



continues to increase to 1 and then remains stable in the simulation using the AVM, while it
keeps fluctuating below 0.7 for the CSM. For the GCVM, the quantity Φ is stable at a low
value, indicating a lack of any lane formation. The possible reason for the difference between
the AVM and the CSM here is that the moving state of the AVM can be attributed to the
strategy of following, while the moving state of the CSM is due to agents pushing each other
aside. This behavior is also reflected in the snapshots of the three simulations at different
times, shown in Figure 12. The experiment compared in Figure 11(b) is performed in a 4 m
corridor under open boundary conditions and it records the trajectories of pedestrians in
the 10 m length measurement area. The steady density of pedestrians in the measurement
area is around 2 m−2. The value Φ for pedestrians in the measurement area is calculated
and the lane formation occurs even earlier in the experiment than in the simulation. It
could not be excluded that, in the experiment, the formation of lanes starts even outside of
the measurement area. Thus, the comparability of experiments and simulations is limited.
However, a comparison of the time series of Φ, in particular, the increase in Φ over time,
provides a rough estimate whether the time in which the system switches from an unordered
state without lanes to an ordered state with lanes has the same order of magnitude.

t = 0 s

t = 5 s

t = 10 s

t = 20 s

t = 40 s

AVM

CSM

t = 100 s

GCVM AVM

CSM

t = 200 s

GCVM AVM

Figure 12: The snapshot of the simulations using the CSM, the GCVM, and the AVM (from left to right).
From top to bottom: t = 0, 5, 10, 20, 40, 100, and 200 s.

5. Validation of the AVM using the fundamental diagram

After the AVM was compared to two other models and showed its ability to produce
lane formation reasonably, the model was then validated with respect to the fundamental
diagram. For this purpose, the fundamental diagram (FD) obtained from bidirectional flow
experiments in a 3.6 m corridor [15] and a 4.0 m corridor [31] was used to calibrate the
parameters of the AVM. Bidirectional flow simulations with open boundary conditions were
performed in a corridor shown in Figure 6. The same number of agents were placed at the left
and the right side of the corridor. The number of agents is varied in different simulations to
realize different local densities in the corridor. Agents in the left waiting area move toward
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the right, and vice versa. The simulation ends when all agents leave the corridor. The
calibration was performed manually. First, simulations were performed with different sets of
parameters, and the resulting fundamental diagrams were compared with the experimental
data. According to this comparison, the parameters were adjusted repeatedly until the
simulated fundamental diagram fits the experimental data. The final set of parameters is
listed in Table 3.

Flow types v0 [m s−1] r [m] k D [m] T [s] τ [s] ta [s]
Bidirectional

N ∼ (1.55, 0.182) 0.18 6 0.01
0.6

0.3 0.75
Unidirectional 0.5

Table 3: Validated parameters of the AVM.

The FD obtained by simulations and experiments are compared in Figure 13. The speed
v, the local density ρlocal, and the specific flow Js = ρlocal · v in both the simulation and the
experiment are measured from trajectories of pedestrians or agents using the same method.
The measurement method is proposed in [31], where the local density is measured using the
Voronoi method and the measured speed is the projection of the real speed in the horizontal
direction. The FD obtained from the simulation is consistent with the FD obtained from
the experiment.
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Figure 13: The fundamental diagram of bidirectional flow from the experiment and the simulation. (a)
Density-velocity. (b) Density-specific flow.

As well as the quantitative comparison of the FD, the process of lane formation in the
simulation is qualitatively compared to the experiment (see Figure 14). The trajectory
snapshots of a simulation and a bidirectional flow experiment in a 4 m wide corridor are
compared. Note that the trajectories of the experiment are superimposed by the swaying
of the head movement due to the bipedal movement in steps, which is not covered by the
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model. Moreover, the course of lane formation in the simulation is similar in time to the
experiment.

t = 1 s

t = 3 s

t = 5 s

Simulation

Experiment
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Simulation

Experiment

t = 15 s

Simulation

Figure 14: The trajectory snapshots of an experiment (left) and a simulation (right). Top to bottom: t =
1, 3, 5, 10, and 15 s.

The first 50 s trajectories of agents in the simulation and pedestrians in the experiment are
shown in Figure 15. Four lanes can be observed in both the experiment and the simulation.
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Figure 15: The trajectories of pedestrians (agents) in the first 50 s. (a) Experiment. (b) Simulation.

The fundamental diagram of the unidirectional flow was then reproduced with the cali-
brated parameters listed in Table 3. The value of T is lower from unidirectional flow than
bidirectional flow, which means pedestrians keep a larger distance with the person in front in
bidirectional flow than in unidirectional flow. It is assumed to be caused by pedestrians move
more cautiously in the bidirectional flow. The FD of uni- and bidirectional flow obtained
by simulations with the AVM are shown in Figure 16(a). The specific flow reaches a peak
with increasing local density ρlocal in the unidirectional flow simulation, where a plateau is
formed in the bidirectional flow simulation. The difference is in line with the observation
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in the experiment [15]. See Figure 16(b). A similar result was also reproduced by using
an improved cellular automata model in [33]. Note that the experimental data for higher
densities than 4.5 m−2 cannot be reached. Data from simulations and experiments show
different scatter. The larger scatter at the congested regime indicates that real pedestrians
steer more smoothly at high densities than the agents modeled by the AVM. One possible
reason for this discrepancy is that the agents in the model always jostle to move further and
are apparently unaware of the strategy of simply standing still.
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Figure 16: The fundamental diagram of uni- and bidirectional flow. (a) The relation between the local
density and the specific flow in the simulation. (b) The relation between the local density and the specific
flow in the experiment.

6. Conclusion

A new velocity model is proposed to take into consideration anticipation of pedestrians.
For this, the process of anticipation is divided into three parts: perception of the actual
situation, prediction of a future situation and selection of a strategy leading to an action.

First, the AVM is compared to the two other velocity-based models (the generalized
collision-free velocity model (GCVM), and the collision-free speed model (CSM)) in binary
interaction scenarios. Even in these simplified situations, the simulated trajectories of agents
show that the AVM can reproduce the movement of pedestrians more realistically than the
other two models.

In a second step, these models are compared in the bidirectional flow scenario with
periodic boundary conditions. Simulations are classified as jamming state or moving state,
according to the number of static, or blocked, agents in the simulation. Compared to the
other two models, the critical density between the moving states and jamming states is
shifted to higher values using the AVM. This indicates that the AVM prevents imminent
collisions better than the other models.
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The influence of the parameters describing the effect from neighbors in the three models is
studied in bidirectional flow scenarios. Only for the AVM does an increase in the impact from
neighbors in the direction of movement lead to an increase in the jamming probability. The
opposite occurs when the CSM and the GCVM are used. The bidirectional flow simulation
with periodic boundary conditions is then performed using the set of parameters that leads
to the minimum jamming probability. The jamming probability is significantly reduced in
the simulation using the CSM and the AVM by adopting the new parameters but there is
little change in the simulation using the GCVM.

After this, the quantity Φ, describing the degree of order given by lanes, is adopted to
analyze the formation of lanes quantitatively. In line with experimental results of high-
density situations, the AVM leads to the formation of lanes much faster than the CSM. One
possible reason for this difference here is that the moving state of the AVM can be attributed
to the strategy of following, while the moving state of the CSM could be associated with
agents pushing each other aside.

Finally, the AVM is validated using the fundamental diagram (FD). After calibration
based on the bidirectional FD, the FD for unidirectional flow is correctly reproduced by
simulation using the AVM. The difference between the FD of uni- and bidirectional flow is
also well reproduced. Moreover, the course of lane formation in time and the shape of the
formed lanes in the simulations with the AVM are similar to those in the experiments.

Additional analyses using the AVM in the bidirectional flow simulation with periodic
boundary conditions are conducted. In Appendix A, the decisive factors leading to im-
proved performance in the simulation using the AVM are studied. The result shows that
the prediction of the future situation and the strategy of following are both significant for
reducing the jamming probability, and there is an optimal prediction time to realize the
minimum jamming probability. In Appendix B, simulations are performed in corridors
with different widths. When the corridor is wider than 2 m, the effect of the corridor width
on the jamming probability is insignificant. In addition, the heterogeneity of agents’ free
speed is studied in Appendix C, where the jamming probability decreases with increasing
heterogeneity of the free speed of agents.
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Appendix A. Decisive factors in the anticipation velocity model

Using the AVM reduces the jamming probability and favors the formation of lanes in
bidirectional flow simulations. The possible causes for the improvement are the prediction
time ta, and the dynamic αi,j reflecting pedestrians’ preference to follow others moving in
the same direction. To identify the decisive factor of this improvement, simulations are
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performed in periodic boundary conditions with dynamic αi,j and constant αi,j (αi,j = k),
respectively. For each case, different values of ta (0, 0.2, 0.5, 1.0, 1.5, and 2 s) are adopted.
The simulation scenario is the corridor shown in Figure 6. The free speeds of agents are
normally distributed N ∼ (1.55, 0.182) m s−1. The number of agents in each simulation
is 140 (ρ ≈ 1.35 m−2). This corresponds to the global density where the transition from
moving states (Pjam = 0) to jamming states (Pjam = 1) occurs in the simulation using the
AVM. The other parameters of the AVM are shown in Table 1.
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Figure A.17: (a): The relationship between the jamming probability Pjam and the prediction time ta for
dynamic and constant αi,j . (b): Mean value and standard deviation of Φ in the simulation with jamming
(J) and moving (M) states for each value of ta and each αi,j (dynamic and constant).

The relationship between the jamming probability Pjam and the prediction time ta for
dynamic and constant αi,j is shown in Figure 17(a). The same tendency of Pjam is observed
in the simulation with dynamic and constant αi,j. As ta increases, Pjam decreases until ta

reaches a specific value, then it increases. Moreover, the effect of the prediction time ta on
the jamming probability Pjam is more significant in the simulation with dynamic αi,j than
with constant αi,j.

The mean value and standard deviation of Φ in the simulation with jamming and moving
states are calculated for each ta and each αi,j (dynamic and constant). See Figure 17(b).
The values of Φ are close to 1 in the moving state and less than 0.3 in the jamming state.
Neither the prediction time ta nor the coefficient αi,j affects the formation of lanes in the
simulation with the moving state.

In conclusion, the prediction time ta and the dynamic αi,j both contribute to reducing
the jamming probability in the bidirectional flow simulation. Moreover, a longer prediction
time does not mean a lower jamming probability. An appropriate prediction time ta can
reduce the jamming probability. A similar conclusion also drawn from [11] is that there is
an optimal strength of anticipation to realize the smoothest counterflow.
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Appendix B. Width of the corridor

A transition from moving states (Pjam = 0) to jamming states (Pjam = 1) occurs with an
increase of ρglobal (the global density of agents) in the bidirectional flow simulations. In this
appendix, the effect of the corridor width on this transition is studied. Six corridors with
different widths (1, 2, 3, 4, 5, and 6 m) are simulated. Apart from the width, these corridors
are identical to the corridor shown in Figure 6. For each corridor, simulations are performed
in periodic boundary conditions with different values of ρglobal (0.31, 0.62, 0.92, 1,23, 1.54,
or 1.85 m−2). The simulation is performed with the AVM using the parameters in Table 1.
The free speeds of agents are normally distributed N ∼ (1.55, 0.182) m s−1.
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Figure B.18: The numbers in the legend give the width of the corridor. (a): Relationship between the
jamming probability Pjam and the global density ρglobal for corridors with different widths. (b): Mean value
and standard deviation of Φ in the simulation with the moving state (M), for each corridor and each global
density ρglobal.

The relationship between the jamming probability Pjam and the global density ρglobal for
corridors with different widths is shown in Figure 18(a). The transition from moving states
to jamming states is observed in the simulation with all corridors except for the corridor of
1 m width. When the width of the corridor is 1 m, the value of Pjam is close to 1 even if the
global density is very low. One possible reason for this is that the effect of walls prevents
agents from using the full width of the corridor.

The mean value and standard deviation of Φ in the simulation with the moving state are
calculated for each corridor and each value of ρglobal. See Figure 18(b). When the width of
the corridor is 1 m and ρglobal = 0.31 m−2, the value of Φ is lower than in other situations. In
addition to this, there is no significant difference between the value of Φ in other simulations
with the moving state, which is always close to 1.

Appendix C. Heterogeneity of the free speed of the agents

To analyze the influence of the heterogeneity of agents, the free speed is chosen according
to a normal distribution. A larger standard deviation of the distribution corresponds to a
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higher heterogeneity in the free speed of agents. In other sections, the normal distribution
N ∼ (1.55, 0.182) m s−1 obtained from the experiment in [15] is used. In this subsection,
normal distributions with the same mean value (1.55 m s−1) but different standard deviations
(0, 0.09, 0.18, 0.36, or 0.54 m s−1), which is denoted by σ, are adopted in this analysis. To
avoid negative values, the lower limit of the free speed is set as 0.1 m s−1. Simulations
are performed with periodic boundary conditions in the corridor shown in Figure 6. The
number of agents is 140 in each simulation (ρ ≈ 1.35 m−2). It corresponds to the global
density, where the transition from moving states (Pjam = 0) to jamming states (Pjam = 1)
occurs in the simulation using the AVM. Other parameters of AVM are shown in Table 1.
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Figure C.19: (a): The relationship between the jamming probability Pjam and the standard deviation σ.
(b): The mean value and standard deviation of Φ in the simulation with jamming and moving states, for
each value of σ.

The relationship between the jamming probability Pjam and the standard deviation σ is
shown in Figure 19(a). The value of Pjam decreases as σ increases. The mean value and
standard deviation of Φ in the simulation with jamming and moving states are calculated
for each value of σ. See Figure 19(b). The value of Φ in the moving state is higher than
in the jamming state. Moreover, there is no significant difference between the value of Φ
in the simulation with the moving state, which is always all close to 1. In conclusion, with
increasing heterogeneity of the free speed of agents, the jamming probability decreases, but
the formation of lanes in the simulation with the moving state is not affected.
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Info: Xu Q, Chraibi M. On the effectiveness of the measures in supermarkets for

reducing contact among customers during COVID-19 period. Sustainability, 2020,

12(22): 9385.

Note: The model used in this publication is the collision-free speed model (CSM),

but it also involves the effect of walls and the elliptical agents, which are defined in

the generalized collision-free velocity model (GCVM). Therefore, the model used in

the publication is directly called the GCVM for convenience.
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On the Effectiveness of the Measures in Supermarkets for Reducing

Contact among Customers during COVID-19 Period
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Abstract

The spread of the COVID-19 virus had a huge impact on human life on the global scale.
Many control measures devoted to decrease contact among people have been adopted to slow
down the transmission of the disease. A series of measures have been taken in supermarkets,
which include restricting the number of customers, keeping social distance, and entering with
a shopping cart. In this work, we investigate with numerical simulations the effectiveness of
these measures in reducing the contact among customers. Several scenarios with different
control measures are designed for numerical analysis. The movements of customers in a
supermarket are simulated by a microscopic model for pedestrian dynamics. Moreover, an
index based on the distance between customers is defined to measure the degree of contact
and therefore evaluate it quantitatively. The effect of these measures on the average contact
degree of each customer is explored, and the spatial distribution of the contact among
customers in the supermarket is shown in a qualitative way. Simulation results show that
except shopping cart measure, the other two measures are effective in reducing contact
among customers.

Keywords: COVID-19 virus disease, control measures, supermarket, numerical simulation,
microscopic model, contact

1. Introduction

The so-called Coronavirus (COVID-19) was first identified in December 2019 in Wuhan,
Hubei, China and has became an infectious disease worldwide [1]. As of 29 June 2020, there
have been more than 10 million confirmed cases of COVID-19, including nearly 500,000
deaths, as reported by the World Health Organization (WHO) [2]. The disease spreads
primarily from person to person through small droplets produced by coughing, sneezing, or
speaking of an infected person [3]. Therefore, as there is still no known vaccine against the
virus, reducing close contact situations among people is one of the recommended measures to
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Chraibi)
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prevent infection [4]. Other measures taken by many countries to avoid or even prohibit sit-
uations leading to close contact among people, including travel restrictions, closing schools,
and canceling large gatherings. The effectiveness of these control measures are investigated
in some works [5, 6, 7].

The pandemic and these control measures also have a huge impact on pedestrian dy-
namics at different scales, e.g., touristic urban areas [8, 9] and university buildings [10, 11].
In this work, we focus on supermarkets, which are kept open during the outbreak. In order
to keep the safety of customers, a series of measures have been adopted. These measures in-
clude setting a limitation on the number of customers in the supermarket, asking customers
to keep a certain distance with each other (a minimum of 1.5 m), and requiring customers
to enter the supermarket with a shopping cart, while wearing a face mask.

In this paper, we investigate the extent to which these measures are effective in reducing
the contact among customers with the help of numerical simulations. Many simulations have
been performed to predict the influence of this pandemic on the example of supermarket
visitors, and to investigate the best measures to slow down its spread.

Existing models for COVID-19 transmission dynamics operate on different levels, which
can be described as macroscopic and microscopic. On the macroscopic level, the investi-
gated population is divided into different groups of individuals sharing the same status,
and the interactions between groups are described by systems of differential equations. The
most popular model in this category is the SEIR model (Susceptible–Exposed–Infected–
Recovered). Many significant works about COVID-19 are based on this model and its
extensions [12, 13, 14, 15, 16]. Macroscopic models are computationally cheap and can intu-
itively reflect the changing trend of groups of population with different infectious statuses.
It can be used to predict the spread of the disease, and estimate the effectiveness of control
measures in regions with large population, e.g., a city.

As opposed to macroscopic models, which divide population into several groups, micro-
scopic models treat each person as an individual with different properties. The status of
each people in the simulation is different, which can be healthy, infected or other. Micro-
scopic models for COVID-19 are usually composed of a model for pedestrian dynamics and
a model for disease transmission dynamics. The movement and interaction of individuals
are simulated by a model for pedestrian dynamics, and the status transitions of individuals
are simulated by a disease transmission model [17, 18, 19, 20]. Although microscopic models
are computationally more expensive than macroscopic models, they can map more details in
person level, therefore it is suitable to simulate the spread of virus in confined spaces during
a short time period.

A supermarket is a relatively small scenario that can have a high population mobility.
Therefore, in this work we use a microscopic model to investigate different scenarios in
a supermarket and evaluate the effectiveness of measures taken in these scenarios. In the
following, we focus on the contact among customers instead of the virus transmission among
customers, as reducing contact is important to slow down the transmission of COVID-19.
By measuring the contact degree, we can study the effectiveness of various measures more
directly.

To simulate the movement of customers in the supermarket, the generalized collision-
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free velocity model (GCVM) for pedestrian dynamics is adopted [21]. First, we define a
distance-based index to quantify the degree of contact among customers. Second, according
to the different measures taken by the supermarket, corresponding simulation scenarios are
designed and executed. Finally, the values of the contact index obtained from different
scenarios are analyzed and compared to evaluate the effectiveness of these measures. This
work is organized as follows. In Section 2.1, we briefly introduce the GCVM adopted in
this work and give the definition of the index to quantify the contact among pedestrians.
Section 2.2 presents the supermarket scenarios designed for the simulations and describes
how customers move in the supermarket. Section 3 gives simulation results obtained in
the scenarios with different control measures and the corresponding analysis. Finally, in
Section 4 we finish with a discussion.

2. Research methods

2.1. How to quantify contact among pedestrians

The generalized collision-free velocity model for pedestrian dynamics is used in this work
to simulate the movement of customers in the supermarket. It is composed of a direction
sub-model and a speed sub-model, and can be described as

Ẋi(Xi, Xj, . . . ) = ~ei(Xi, Xj, . . . ) · Vi(Xi, Xj, . . . ), (1)

where Xi, ~ei, and Vi are the position, moving direction, and moving speed, respectively.
The direction sub-model calculates the moving direction ~ei for pedestrian i as

~ei = u ·
(
~e 0
i +

∑

j∈Ni

k · exp
(−si,j

D

)
· ~ei,j + ~wi

)
, (2)

where u is a normalization constant such that ‖~ei‖ = 1. The new direction is decided by three
different components. The first component is the ~e 0

i , which is an unit vector representing
the desired moving direction of the pedestrian i. The second component is the effect from
other pedestrians belonging to Ni, which is the set that contains all the neighbors who affect
the moving direction of pedestrian i. The magnitude of the effect from these neighbors is a
function of si,j, which is the distance between the edges of pedestrian i and j along the line
connecting their positions. Coefficients k > 0 and D > 0 are used to calibrate the function
accordingly. The direction of the effect from pedestrian j to i is denoted by ~ei,j, which is a
unit vector point from the position of pedestrian j to pedestrian i. The definitions of si,j and
~ei,j are shown in Figure 1. The last part is ~wi, which is the effect from walls and obstacles
in the building.

The speed sub-model calculates the moving speed Vi for pedestrians i as

Vi = min
{
V 0
i ,max

{
0,
si
T

}}
, (3)

where V 0
i is the desired moving speed of pedestrian i, si is the collision-free moving spacing

of pedestrian i in the moving direction ~ei, and coefficient T > 0 is used to adjust the speed
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according to the gap between two pedestrians. A more detailed definition of the model can
be found in [21].

The distance among pedestrians changes with time while they are moving in space. We
assume that small distances lead to a bigger contact index. Therefore, the index Ci(t),
representing the contact degree of pedestrian i with its neighbors at time t, is defined as

Ci(t) =
∑

j∈Ni

exp
(
− di,j(t)

)
, (4)

where di,j is the distance between the position of pedestrians i and j, see Figure 1.

Figure 1: The definition of si,j , di,j and ~ei,j . si,j is the distance between the edges of pedestrian i and j
along the line connecting their positions, di,j is the distance between the position of pedestrians i and j,
and ~ei,j is a unit vector point from the position of pedestrian j to pedestrian i.

2.2. Simulation of shopping behavior in the supermarket

A fictive supermarket scenario, as shown in Figure 2, is built based on a real supermarket
nearby the city Jülich in Germany to simulate several scenarios. It represents the typical
structure of a medium-sized supermarket in Germany. The supermarket is 34 m long and
18 m wide. It is composed of three different areas: a checkout, a shopping, and an outside
area.

The checkout area includes three counters 5 m × 1 m (in black) and three corridors (in
gray), while the shopping area includes 10 goods shelves. The sizes of the far left two shelves
are 6 m× 2 m and the sizes of other shelves are 10 m× 2 m. Except the area in front of the
checkout area, the widths of the walking paths are 2 m. The entrance is located in the upper
left corner of the supermarket (green dashed segments). The exits from the shopping area
to the checkout area and the exits from checkout area to outside are all marked with red
dash segments.
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Figure 2: The geometrical structure of the supermarket used in the simulations, the outside area of the
supermarket is filled with hatch lines.

We perform the simulations with a total of M customers. Hereby, P persons are gener-
ated outside the supermarket every minute until all the M customers are generated. The
generated customers enter the supermarket from the entrance and move in the shopping
area. Each customer is assigned a random goal within the supermarket after entering the
supermarket. After reaching the goal, the customer is assigned another random goal until
the time spent in the shopping area is longer than tshop

i , the shopping time for customers.
As introduced before, there are three counters in the checkout area, which means cus-

tomers have three choices after finishing the shopping. We assume customers prefer to check
out at the counter with the fewest customers. Customers who choose the same counter check
out one by one in the order of entering the corridor. The time spent for checking out tcheck

i

is proportional to the shopping time and is defined as

tcheck
i = α · tshop

i , (5)

where α < 1 is a parameter. Finally, after checking out, the customers leave the supermarket.
Besides the basic movement of customers, the behavior of customers is influenced by the

measures adopted by the supermarket. Therefore, these measures are considered into the
basic movement model. We introduce three main measures commonly used in supermarkets
nowadays.

The first measure is setting a limitation for the maximal number of customers in the
supermarket. This is realized by introducing a new parameter Lmax in our model, which is
the max allowable number of customers in the supermarket at the same time. Customers
can only enter the supermarket when the number of persons inside the supermarket does
not exceed the threshold Lmax. Otherwise, customers have to wait outside.

The second measure is asking customers to keep social distance to each other. From daily
observations in supermarkets, the social distance rule is well maintained in the checkout area,
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but cannot be maintained in a strict manner in the shopping area. Therefore, compared
with simulations without the social distance rule, a larger value of D in Eq. 2 is adopted to
enforce larger distances among pedestrians.

Besides, to simulate the queuing of customers, a modified speed sub-model as following
is used when customers are in the checkout area.

Vi = min
{
V 0
i ,max

{
0,
di − dwait

i

T

}}
. (6)

In the modified speed sub-model, di is the distance between positions of customer i and
the nearest front customer. dwait

i is the distance that customer i wants to keep with the
nearest front customer. The expression of dwait

i is

dwait
i = max

{
drule, β · tshop

i

}
, (7)

where drule is the social distance adopted and β is a parameter.
When there is no social distance rule, the distance between the customers in the checkout

area is decided by the shopping time, as we assume that longer shopping times correspond
to more space for putting purchased good on the conveyor belt. When the social distance
measure is taken, customers maintain at least drule distances with each other even when they
purchase few items in the market.

The last measure is requiring customers to enter the supermarket with a shopping cart.
In our simulations, customers are represented by circles with a radius r. Considering that
shopping carts increase the space occupied by each customer in the supermarket, a bigger
ellipse is used to represent the customers with shopping carts. The length of the semi-major
axis in the moving direction is a, and the length of semi-minor axis is b.

3. Simulation results

To explore if the measures taken by the supermarkets are efficient in reducing the contact
among customers, the simulations are implemented in the geometry shown in Figure 2 with
four different scenarios. For all cases, we use the following parameter values in Table 1. We
assumed reasonable values for the desired moving speeds and the shopping times of cus-
tomers, which are normally distributed for heterogeneity. The mean and standard deviation
of the desired moving speeds refer to the free walking speed of pedestrians [22, 23]. The
other values in Table 1 are kept constant to guarantee the justification of the comparisons
between different scenarios. The differences among the settings of these four scenarios are
shown in Table 2.
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Parameters Values
k 8

T (s) 1
α 0.1

β (m/s) 0.003
M (person) 100

P (person/minute) 10
V 0
i (m/s) N ∼ (1.34, 0.262)

tshop
i (s) N ∼ (300, 502)

Table 1: The same parameters in all four scenarios. k (Eq. 2) is the parameter to calibrate the strength of
the impact from other pedestrians, T (Eq. 3 and Eq. 6) is the parameter to calibrate the speed according
to the gap between two pedestrians, α (Eq. 5) is the parameter to calibrate the checkout time according
to the shopping time, β (Eq. 7) is the parameter to calibrate the distance between customers in checkout
area according to the shopping time, M is the total number of customers generated in the simulation, P
is the number of customers generated every minute, V 0

i (Eq. 3 and Eq. 6) is the desired moving speed of

customers, and tshopi is the shopping time of customers.

Scenario ID Lmax (Person) drule (m) D (m) Need Shopping Cart
1 50 0 0.1 No
2 30 0 0.1 No
3 30 1.5 0.3 No
4 30 1.5 0.3 Yes

Table 2: The setting of four scenarios in this work. Lmax is the max allowable number of customers in the
supermarket at the same time, drule is the social distance, and D (Eq. 2) is the parameter to calibrate the
scale of the impact from other pedestrians.

The snapshots of each scenario are shown in Figure 3. The customers are represented by
circles with r = 0.2 m in scenarios 1, 2, and 3, where customers can enter the supermarket
without a shopping cart. In scenario 4, customers enter the supermarket with shopping
carts, therefore they are represented by ellipses with semi-axes a = 0.4 m and b = 0.25 m.
Customers inside the supermarket are in green whereas customers outside are in red.

Supermarkets take measures to reduce the contact among customers, but these measures
may result in a decrease in the service efficiency. Two quantities are chosen to study the
trade-off between the efficiency of the supermarket and the effectiveness of the measures.
The first one is tsim, which is the time spent by all the M customers in the supermarket.
tsim reflects the efficiency of the supermarket. It can be represented by

tsim = tlast − tfirst, (8)

where tfirst is the time when the first customer enters the supermarket, and tlast is the time
when the last customer leaves the supermarket. The second one is the average contact degree
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(a) (b)

(c) (d)

Figure 3: The snapshots of four scenarios, customers inside the supermarket are in green whereas customers
outside are in red. (a): Scenario 1. (b): Scenario 2. (c): Scenario 3. (d): Scenario 4.

of all the M customers, which is defined as

C̄ =
1

M
·
∫ tlast

tfirst

M∑

i=1

Ci(t)dt. (9)

If customer i is outside the supermarket, Ci is equal to zero. A reasonable measure should
reduce C̄ as much as possible without increasing tsim significantly.

The simulations of this work are performed using JuPedSim [24], which is an open
framework for simulating and analyzing the dynamics of pedestrians. The simulations are
executed on a standard computer (Inter(R) Core(TM) CPU of 2.50 GHZ) with Euler scheme
using a time step ∆t = 0.05 s. The update of the customers is parallel in each time-step.
We run simulations in each scenario for 30 times. Then, we calculated the mean value and
standard deviation of tsim and C̄, which are shown in Figure 4.

Hypothesis testing is implemented before comparing the results of different scenarios.
The null hypothesis is set as there is no significant difference between the results of two
compared scenarios. The Shapiro–Wilks test is performed first to test the normality of
the differences between the results of two scenarios. Since all the differences satisfy the
condition of normality (p1 is greater than 0.05), we can perform the Paired t-test for all the
comparisons. The null hypothesis is accepted when p2 is greater than 0.05. The results of
Shapiro–Wilks test and Paired t-test are shown in Table 3.

106



Scenario 1 Scenario 2 Scenario 3 Scenario 4
1200

1300

1400

1500

1600

1700

tsim
 (s

)

tsim

0

50

100

150

200

250

300

350

400

C 
(1

/p
er

so
n)

C

Figure 4: The comparison of tsim (time spend by all customers) and C̄ (average contact degree of all
customers) for four scenarios, the error bars show the standard deviation.

Mean Standard Deviation
Shapiro–Wilks Test Paired t-Test
W p1 t p2

tsim

S1–S2 −175.3000 26.8790 0.9798 0.8200 −35.1211 0.0000
S2–S3 −6.1125 16.1472 0.9666 0.4497 −2.0385 0.0507
S3–S4 −3.2083 18.0953 0.9709 0.5639 −0.9548 0.3476

C̄
S1–S2 172.7929 11.7533 0.9828 0.8938 79.1711 0.0000
S2–S3 40.5942 5.8819 0.9755 0.6980 37.1660 0.0000
S3–S4 −2.1007 7.5094 0.9426 0.1070 −1.5065 0.1428

Table 3: The result of Shapiro–Wilks test and Paired t-test. (S1 means the result from scenario 1.)

From scenario 1 to scenario 4, the protective measures adopted by the supermarket
become stricter. Comparing scenario 1 and scenario 2, scenario 2 has smaller Lmax than
scenario 1. The values of p2 for tsim and C̄ are both less than 0.05, showing a significant
difference between the results of these two scenarios. From scenario 1 to scenario 2, the
mean value of C̄ decreases roughly 56%, and the mean value of tsim increases roughly 13%.
In conclusion, restricting the number of customers in the supermarket is an effective measure
to reduce the contact among customers with a slightly reduced efficiency of the supermarket.

Scenario 2 and scenario 3 have the same Lmax, but the social distance rule is adopted
in scenario 3. Since the value of p2 for tsim is greater than 0.05, we can say there is no
significant difference between tsim of these two scenarios. For C̄, the value of p2 is less than
0.05. The mean value of C̄ decreases nearly 29% from scenario 2 to scenario 3. Therefore,
social distance rule is also effective to reduce the contact, and hardly affect the efficiency of
the supermarket.

In scenario 4, the shopping cart is required for entering the supermarket. Compared with
scenario 3, the values of p2 for tsim and C̄ are both greater than 0.05. Therefore, it seems
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that the shopping cart rule has limited effect with respect to reducing the contact, although
this rule can reduce the workload of counting customers, since the supermarket can limit the
number of people in the supermarket by placing a shopping cart with a quantity of Lmax.
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Figure 5: The steady states of the four scenarios.

In addition to the two quantities, the spatial distribution of the contact among customers
in the supermarket is investigated. The steady state of each scenario is identified first, which
is defined as the status that the number of customers in the supermarket reaches Lmax. For
each scenario, one run is picked out to show the steady states. The steady states of these
four scenarios correspond to the flat regions of four lines in Figure 5. The steady areas of
scenarios 2, 3, and 4 are almost overlapped, as the value of Lmax are the same. The vertical
axis represents the number of customers in the supermarket. The oscillation of the steady
state is caused by the time gap between customers entering and leaving the supermarket.
The start time and the end time of the steady state is defined as tstart and tend, respectively.

The geometry of the supermarket is divided into regular grids of size 0.2 m× 0.2 m, and
an index Cgrid is calculated for each grid according to

Cgrid =

∫ tend

tstart

∑
i∈GCi(t)dt∫ tend

tstart

∑
i∈G dt

, (10)

where G is the set containing all the customers in the grid. We calculate the mean value of
Cgrid in each grid with the 30 times simulations of each scenario. The distributions of Cgrid

in the supermarket for four scenarios are shown in Figure 6.
A qualitative observation shows that the distribution of Cgrid changes with the measures

taken by the supermarket. The same conclusions as before can be obtained, for instance,
restricting the number of customers and social distance rule are useful to reduce the contact
among customers, and the shopping cart rule is not effective.
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Figure 6: The distributions of Cgrid in the supermarket for four scenarios. (a) Scenario 1. (b) Scenario 2.
(c) Scenario 3. (d) Scenario 4.

The four profiles in Figure 6 also show that the values of Cgrid differ depending on
different parts of the supermarket. Therefore, in Figure 7(a) four areas in the supermarket
are specified, and the average values of Cgrid in these areas are calculated. The grids which
are located in the obstacles (e.g., counters and goods shelves) are ignored in the calculation,
as the values of Cgrid in the obstacle areas are always equal to zero. The mean values and
standard deviations of 30 times simulations for four scenarios are compared in Figure 7(b).
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Figure 7: The average values of Cgrid in specified areas. (a) The locations of these areas. (b) The comparison
of average values; the error bars show the standard deviation.

109



The same hypothesis testing is implemented for following comparisons. Paired t-test
is performed when the difference between two scenarios satisfy the condition of normality.
Otherwise, Wilcoxon signed-rank test is used. The testing results are shown in Table 4.

The common point of these four scenarios is the average values of Cgrid in Area 2 and
Area 4 are higher than in Area 1 and Area 3. The reason is that crossing structures are
exist in Area 2 and Area 4. Customers in these crossing areas can move in more directions,
thus increasing the likelihood of congestion, especially when the number of customers in the
supermarket is high.

More information can be obtained by combining Figure 7 and Table 4. Restricting the
number of customers decreases the value of Cgrid in all four areas. The social distance rule
also reduces the contact of customers in Area 1, Area 3 and Area 4, but has no effect in
Area 2. As for the shopping cart rule, it has a little influence in Area 2 and Area 3, and no
effect in Area 1 and Area 4.

Mean Standard Deviation
Shapiro–Wilks Test Paired t-Test (Wilcoxon)
W p1 t (W ) p2

Area 1
S1–S2 0.1952 0.0907 0.6739 0.0000 0.0000 0.0000
S2–S3 0.0229 0.0135 0.9247 0.0355 0.0000 0.0000
S3–S4 −0.0009 0.0052 0.9837 0.9140 −0.8889 0.3814

Area 2
S1–S2 0.2646 0.0663 0.9414 0.0994 21.5000 0.0000
S2–S3 0.0070 0.0285 0.9705 0.5527 1.3228 0.1962
S3–S4 0.0336 0.0257 0.9638 0.3851 7.0483 0.0000

Area 3
S1–S2 0.1210 0.0316 0.9822 0.8799 20.5898 0.0000
S2–S3 0.0582 0.0167 0.9939 0.9996 18.7725 0.0000
S3–S4 0.0153 0.0133 0.9488 0.1566 6.1786 0.0000

Area 4
S1–S2 0.3027 0.0774 0.9711 0.5688 21.0676 0.0000
S2–S3 0.2570 0.0520 0.9908 0.9946 26.6224 0.0000
S3–S4 −0.0157 0.0587 0.9714 0.5795 −1.4439 0.1595

Table 4: The testing result of comparisons for different areas in the supermarket. (S1 means the result from
scenario 1.)

4. Conclusions

Supermarkets are closely related to people’s daily life. During the COVID-19 period, a
series of measures are adopted in supermarkets to slow down the propagation of the disease.
The effectiveness of these measures are investigated in this paper. The contact degree among
customers is treated as the standard for comparing different measures. Simulations of several
scenarios corresponding to different measures taken by supermarkets are performed.

We run simulations in each scenario for 30 times and implement hypothesis testing.
Although the supermarket scenarios used in this work is simplified and the behavior of
customers in our simulations are based on several assumptions, the following results can
be obtained by comparing the accumulation of the time spent by all the customers in the
supermarket and the average contact degree of these costumers. The limitation on the
number of customers in the supermarket slightly reduces the efficiency of the supermarket,
but significantly reduces the contact among customers. The social distance rule is also
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effective at reducing the contact among customers. However, the shopping cart rule has
little effect in reducing the contact among customers.

Moreover, the spatial distribution of the contact between customers in the supermarket
shows that the contact in the areas with crossing structure is obviously higher than in other
areas. Therefore, reducing the crossing area in the supermarket may be an effective measure
to reduce the contact among customers.

In summary, supermarkets should continue to limit the number of customers and require
customers to maintain a minimum social distance. Besides, supermarkets can change the
layout to reduce the crossing area.

The work in this paper only focus on the contact among people using on a velocity-
based model, but has potential to be extended to an epidemiology model by combining the
knowledge and data about the spread COVID-19 into the movement model.

The results of this work may change with the structure of the fictive supermarket scenario
and the behavior of customers in simulations, but nonetheless we believe that the framework
presented in this study can evaluate the effectiveness of control measures in indoors scenarios.

Future research will focus on the dependence of our results on the structure of scenarios
(like the width of walking paths, the number of counters in the checkout area) and behavior
of customers (i.e., the shopping time tshop and the desired moving speed V 0

i ). Besides, the
validation of both movement and behavioral models in this work will be proceed.
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