2. Physikalische Einheiten (Physical units)

Basiseinheiten

Die Basiseinheiten bilden ein System zusammenhängender Einheiten. Sie heißen nach den internationalen Empfehlungen SI-Einheiten (SI = Système International d'Unités).

Tabelle 2-1 Basiseinheiten (Basic units)

Einheiten	Kurzzeichen	Basisgröße
Meter	m	Länge
Kilogramm	kg	Masse
Sekunde	S	Zeit
Ampère	Α	Stromstärke
Kelvin	K	Temperatur
Mol	mol	Stoffmenge
Candela	cd	Lichtstärke

Tabelle 2-2 SI-Einheiten in der Radiologie (SI units applied in radiology)

Physikalische Größe	SI-Einheit alte Einheit		Beziehung	
Aktivität	Becquerel (Bq) Curie		1 Ci = 3,7 10 ¹⁰ Bq *	
	1 Bq = 1/s	(Ci)	1 Bq = 2,7 10 ⁻¹¹ Ci = 27 pCi	
Energiedosis	Gray (Gy)	Rad	1 rd = 0,01 Gy *	
	1 Gy = 1 J/kg	(rd)	1 Gy = 100 rd *	
Äquivalentdosis	Sievert (Sv)	Rem	1 rem = 0,01 Sv *	
	1 Sv = 1 J/kg	(rem)	1 Sv = 100 rem *	
Ionendosis	Coulomb pro	Röntgen	1 R = 2,58 10 ⁴ C/kg *	
	Kilogramm	(R)	= 0,258 mC/kg *	
	(C/kg)		1 C/kg = 3876 R	
Energiedosisleistung	Gray pro Sekunde	Rad pro Sekunde	1 rd/s = 0,01 Gy/s *	
	(Gy/s)	(rd/s)	1 Gy/s = 100 rd/s *	
Ionendosisleistung	Ampere pro	Röntgen pro Sekunde	$1 \text{ R/s} = 2,58 \ 10^4 \text{ A/kg} *$	
	Kilogramm	(R/s)	= 0,258 mA/kg *	
	(A/kg)			

Bei Werten mit ^{*} ist der Umrechnungsfaktor genau angegeben, bei den anderen ist er abgerundet.

Dezimale Vielfache und Teile von Einheiten

Dezimale Vielfache und Teile von Einheiten können durch Vorsetzen der in Tabelle 2-3 aufgeführten Präfixe vor den Namen der Einheit bezeichnet werden.

Tabelle 2-3 Präfixe (Prefixes)

Präfix	Kurzbezeichnung	Faktor
Exa	E	10^{18}
Peta	P	10 ¹⁵
Tera	T	10 ¹²
Giga	G	10^{9}
Mega	M	10^{6}
Kilo	k	10^{3}
Hekto	h	10^{2}
Deka	da	10 ¹

Präfix	Kurzbezeichnung	Faktor
Dezi	d	10-1
Zenti	С	10 ⁻²
Milli	m	10 ⁻³
Mikro	μ	10-6
Nano	n	10-9
Piko	р	10 ⁻¹²
Femto	f	10 ⁻¹⁵
Atto	a	10 ⁻¹⁸

- 294 - ANHANG

Tabelle 2-4 Physikalische Größen in der Nichtionisierenden Strahlung (Physical quantities in non-ionising radiation)

Niederfrequente elektrische und magnetische Felder			
Elektrische Feldstärke	Е	V/m (Volt pro Meter)	
Magnetische Feldstärke	Н	A/m (Ampere pro Meter)	
Magnetische Flussdichte	В	Vs/m^2 (Voltsekunde pro Quadratmeter); T (Tesla) 1 $Vs/m^2 = 1$ T gebräuchlich: 1 μ T Veraltet: G (Gauss)	$B = \mu \bullet H = \mu_0 \bullet \mu_r \bullet H^{-1}$ für Luft und organische Materialien gilt: $B(\mu T) = 1,256 \bullet H(A/m)$ $1 G = 10^4 T = 100 \mu T$
Hochfrequente elektromagnetische Felder			
Elektrische Feldstärke	Е	V/m (Volt pro Meter)	$E = Z_0 \bullet H$ dabei ist Z_0 der Feldwellenwiderstand des leeren Raumes mit 376,7 Ω (Ohm) = 376,7 V/A
Magnetische Feldstärke	Н	A/m (Ampere pro Meter)	
Leistungsflussdichte	S	W/m² (Watt pro Quadratmeter)	$S = E \bullet H = Z_0 \bullet H^2 = E^2/Z_0$ (gilt im Fernfeld)
Spezifische Absorptionsrate	SAR	W/kg (Watt pro Kilogramm) gemittelt über 6 min Einwirkdauer und 10 g Gewebe	

dabei ist μ Permeabilitätskonstante, μ_0 die Permeabilitätskonstante im Vakuum und μ_r die Permeabilitätszahl eines Mediums.

ANHANG - 295 -