2. Physikalische Einheiten (Physical units)

Basiseinheiten

Die Basiseinheiten bilden ein System zusammenhängender Einheiten. Sie heißen nach den internationalen Empfehlungen SI-Einheiten (SI = Système International d'Unités).

Tabelle 2-1 Basiseinheiten (Basic units)

Einheiten	Kurzzeichen	Basisgröße
Meter	m	Länge
Kilogramm	kg	Masse
Sekunde	S	Zeit
Ampère	Α	Stromstärke
Kelvin	K	Temperatur
Mol	mol	Stoffmenge
Candela	cd	Lichtstärke

Tabelle 2-2 SI-Einheiten in der Radiologie (SI units applied in radiology)

Physikalische Größe	SI-Einheit	alte Einheit	Beziehung	
Aktivität	Becquerel (Bq)	Curie	1 Ci = 3,7 10 ¹⁰ Bq *	
	1 Bq = 1/s	(Ci)	1 Bq = 2,7 10 ⁻¹¹ Ci = 27 pCi	
Energiedosis	Gray (Gy)	Rad	1 rd = 0,01 Gy *	
	1 Gy = 1 J/kg	(rd)	1 Gy = 100 rd *	
Äquivalentdosis	Sievert (Sv)	Rem	1 rem = 0,01 Sv *	
	1 Sv = 1 J/kg	(rem)	1 Sv = 100 rem *	
Ionendosis	Coulomb pro Kilogramm	Röntgen	1 R = 2,58 10 ⁻⁴ C/kg *	
	(C/kg)	(R)	= 0,258 mC/kg *	
			1 C/kg = 3876 R	
Energiedosisleistung	Gray pro Sekunde	Rad pro Sekunde	1 rd/s = 0,01 Gy/s *	
	(Gy/s)	(rd/s)	1 Gy/s = 100 rd/s [*]	
Ionendosisleistung	Ampere pro Kilogramm	Röntgen pro Sekunde	1 R/s = 2,58 10 ⁻⁴ A/kg [*]	
	(A/kg)	(R/s)	= 0,258 mA/kg [*]	

Bei Werten mit * ist der Umrechnungsfaktor genau angegeben, bei den anderen ist er abgerundet.

Dezimale Vielfache und Teile von Einheiten

Dezimale Vielfache und Teile von Einheiten können durch Vorsetzen der in Tabelle 2-3 aufgeführten Präfixe vor den Namen der Einheit bezeichnet werden.

Tabelle 2-3 Präfixe (Prefixes)

Präfix	Kurzbezeichnung	Faktor
Exa	Е	1018
Peta	Р	10 ¹⁵
Tera	Т	10 ¹²
Giga	G	10 ⁹
Mega	M	10 ⁶
Kilo	k	10 ³
Hekto	h	10 ²
Deka	da	10 ¹

Präfix	Kurzbezeichnung	Faktor
Dezi	d	10 ⁻¹
Zenti	С	10 ⁻²
Milli	m	10 ⁻³
Mikro	μ	10 ⁻² 10 ⁻³ 10 ⁻⁶ 10 ⁻⁹
Nano	n	10 ⁻⁹
Piko	р	I 10 ⁻¹²
Femto	f	10 ⁻¹⁵ 10 ⁻¹⁸
Atto	а	10 ⁻¹⁸

Tabelle 2-4 Physikalische Größen in der Nichtionisierenden Strahlung (Physical quantities in non-ionising radiation)

Niederfrequente elektrische und magnetische Felder				
Elektrische Feldstärke	E	V/m (Volt pro Meter)		
Magnetische Feldstärke	Н	A/m (Ampere pro Meter)		
Magnetische Flussdichte	В	Vs/m² (Voltsekunde pro Quadratmeter); T (Tesla) 1 Vs/m² = 1 T gebräuchlich: 1 µT Veraltet: G (Gauss)	B = $\mu \cdot H = \mu_0 \cdot \mu_r \cdot H$ für Luft und organische Materialien gilt: B (μ T) = 1,256 \cdot H (A/m) 1 G = 10^{-4} T = 100μ T	
Hochfrequente elektromagnetische Felder				
Elektrische Feldstärke Magnetische Feldstärke	Н	V/m (Volt pro Meter) A/m (Ampere pro Meter)	E = $Z_0 \bullet H$ dabei ist Z_0 der Feldwellenwiderstand des leeren Raumes mit 376,7 Ω (Ohm) = 376,7 V/A	
Leistungsflussdichte	S	W/m² (Watt pro Quadratmeter)	$S = E \bullet H = Z_0 \bullet H^2 = E^2/Z_0$ (gilt im Fernfeld)	
Spezifische Absorptionsrate	SAR	W/kg (Watt pro Kilogramm) gemittelt über 6 min Einwirkdauer und 10 g Gewebe		