Teil II

RADIOAKTIVE STOFFE AUS KERNTECHNISCHEN ANLAGEN UND URANBERGBAUANLAGEN

(Radioactive substances from nuclear and uranium mining facilities)

Bearbeitet von den Leitstellen zur Überwachung der Umweltradioaktivität, vom Bundesamt für Strahlenschutz, Fachbereich Strahlenschutz und Umwelt, Berlin und Oberschleißheim, und von der Eigenüberwachung Endlager Morsleben, Salzgitter

1. Radioaktive Stoffe aus kerntechnischen Anlagen (Radioactive substances from nuclear facilities)

Bearbeitet Bundesamt für Strahlenschutz, Fachbereich Strahlenschutz und Umwelt, Berlin und Oberschleißheim, und von der Eigenüberwachung Endlager Morsleben, Salzgitter

1.1 Allgemeine Angaben über kerntechnische Anlagen (General data on nuclear facilities)

In der Bundesrepublik Deutschland bestanden im Jahr 2002 folgende kerntechnische Anlagen:

- 19 Atomkraftwerke (Tabelle 1.1-1) mit einer elektrischen Bruttoleistung von insgesamt 22.365 MW, einer Gesamtstromerzeugung von 165 TWh und einem Anteil von 28% an der Gesamt-Brutto-Stromerzeugung und von rund 33% an der Stromerzeugung der öffentlichen Versorgung im Jahr 2002. Die Kernkraftwerke Kahl, MZFR Karlsruhe, Rheinsberg, Gundremmingen A, AVR Jülich, Lingen, KNK Karlsruhe, Würgassen, Greifswald, Hamm-Uentrop und Mülheim-Kärlich haben den Betrieb bereits beendet.
- 4 Forschungsreaktoren (Tabelle 1.1-2) mit einer thermischen Leistung von insgesamt 38 MW.
- 4 Kernbrennstoff verarbeitende Betriebe: NUKEM GmbH, SIEMENS AG Brennelementewerk Hanau: Betriebsteil MOX-Verarbeitung und Betriebsteil Uran-Verarbeitung, ADVANCED NUCLEAR FUELS GmbH (ANF) Brennelement-Fertigungsanlage Lingen und URENCO D Urananreicherungsanlage Gronau. Die Betriebe NUKEM GmbH und SIEMENS AG haben die Brennelementeproduktion eingestellt.
- 7 Zwischenlager für abgebrannte Brennelemente: Zwischenlager Greifswald für abgebrannten Brennstoff (ZAB) Lubmin, Transportbehälterlager Ahaus (TBL-A), AVR-Behälterlager im Forschungszentrum Jülich, Transportbehälterlager Gorleben (TBL-G), Zwischenlager im KKW Obrigheim, Transportbehälterlager im Zwischenlager Nord (ZLN) Rubinow und Standort-Zwischenlager Lingen.
- 3 Interimslager f
 ür abgebrannte Brennelemente: Interimslager Neckarwestheim, Philippsburg und Biblis.
- Das Endlager für radioaktive Abfälle Morsleben (ERAM) hat im Jahr 2002 keine radioaktiven Abfälle zur Endlagerung angenommen (Tabelle 1.1-3).

Für die Ableitung radioaktiver Stoffe und die daraus resultierende Strahlenexposition der Bevölkerung gelten die Vorschriften der Strahlenschutzverordnung. Die Begrenzung der Ableitung radioaktiver Stoffe ist in § 47 StrlSchV geregelt. Für die Planung, die Errichtung, den Betrieb, die Stilllegung, den sicheren Einschluss und den Abbau von Anlagen oder Einrichtungen sind hier Grenzwerte für die durch Ableitungen radioaktiver Stoffe mit Luft und Wasser aus diesen Anlagen oder Einrichtungen jeweils bedingte Strahlenexposition von Einzelpersonen der Bevölkerung im Kalenderjahr festgelegt. Für die effektive Dosis beispielsweise beträgt der Grenzwert jeweils 0,3 Millisievert über Luft bzw. Wasser, für die Schilddrüsendosis 0,9 Millisievert pro Jahr.

Bei kerntechnischen Anlagen werden von der zuständigen Aufsichtsbehörde im atomrechtlichen Genehmigungsverfahren zusätzlich Höchstwerte für die Ableitung radioaktiver Stoffe mit Abluft und Abwasser festgelegt. In einem radioökologischen Gutachten ist dabei nachzuweisen, dass auch bei voller Ausschöpfung dieser Genehmigungswerte die Dosisgrenzwerte nach § 47 StrlSchV nicht überschritten werden. Darüber hinaus besteht nach § 6 StrlSchV die Verpflichtung, jede Strahlenexposition auch unterhalb der Grenzwerte so gering wie möglich zu halten.

Die Ableitungen aus Anlagen oder Einrichtungen sind nach § 48 StrlSchV zu überwachen und nach Art und Aktivität spezifiziert der zuständigen Aufsichtsbehörde mindestens jährlich mitzuteilen. Die Anforderungen der Emissions- und Immissionsüberwachung sind in der "Richtlinie zur Emissions- und Immissionsüberwachung kerntechnischer Anlagen" (REI) aufgeführt. Ziel dieser Richtlinie ist es, eine Beurteilung der aus der Ableitung radioaktiver Stoffe mit Abluft und Abwasser resultierenden Strahlenexposition des Menschen zu ermöglichen und die Kontrolle der Einhaltung der Emissions- und Dosisgrenzwerte zu gewährleisten.

Die im Rahmen der Emissionsüberwachung bei Kernkraftwerken erforderlichen Messungen, die Dokumentation der Messergebnisse und die Berichterstattung an die jeweils zuständige Aufsichtsbehörde sind gemäß den sicherheitstechnischen Regeln des Kerntechnischen Ausschusses (KTA) 1503.1 (Überwachung

der Ableitung radioaktiver Stoffe mit der Kaminfortluft bei bestimmungsgemäßem Betrieb) und 1504 (Überwachung der Ableitung radioaktiver Stoffe mit Wasser) durchzuführen. Die Überwachung der Emissionen der Forschungsreaktoren erfolgt gemäß der KTA-Regel 1507 (Überwachung der Ableitungen radioaktiver Stoffe bei Forschungsreaktoren).

Die Messprogramme gliedern sich in die Teile "Überwachungs- und Bilanzierungsmessungen des Betreibers" und "Kontrolle der Bilanzierungsmessungen des Betreibers durch einen unabhängigen Sachverständigen". Dabei hat der Betreiber einer kerntechnischen Anlage sämtliche Ableitungen von Radionukliden zu erfassen und zu bilanzieren, um eine Grundlage für die Beurteilung der Strahlenexposition in der Umgebung der Anlage zu schaffen. Die von den Betreibern vorzunehmenden Messungen werden durch Kontrollmessungen behördlich eingeschalteter Sachverständiger (Landesmessstellen, Bundesamt für Strahlenschutz) entsprechend der Richtlinie zur "Kontrolle der Eigenüberwachung radioaktiver Emissionen aus Kernkraftwerken" überprüft. Betreiber und Sachverständige sind gehalten, zur internen Kontrolle der Messqualität an vom Bundesamt für Strahlenschutz in Zusammenarbeit mit der Physikalisch-Technischen Bundesanstalt durchgeführten Ringvergleichen teilzunehmen.

Die Überwachung der Emissionen wird ergänzt durch die Überwachung der Immissionen in der Umgebung kerntechnischer Anlagen. Auch bei der Umgebungsüberwachung ist ein Messprogramm vom Betreiber der Anlage und ein ergänzendes und kontrollierendes Programm von unabhängigen Messstellen durchzuführen. Diese Überwachungsprogramme sind für die jeweilige kerntechnische Anlage unter Berücksichtigung örtlicher und anlagenspezifischer Gegebenheiten zu erstellen. Für die Beurteilung der Immissionsverhältnisse in der Umgebung von Atomkraftwerken sind die für die Ausbreitung radioaktiver Stoffe bedeutsamen meteorologischen Einflussgrößen gemäß der KTA-Regel 1508 (Instrumentierung zur Ermittlung der Ausbreitung radioaktiver Stoffe in der Atmosphäre) zu messen und zu registrieren. Die Ergebnisse der Immissionsüberwachung dienen der Beweissicherung, der Beurteilung der Einhaltung der Dosisgrenzwerte im bestimmungsgemäßen Betrieb sowie zur Beurteilung von Störfallauswirkungen.

Über diese Überwachungsprogramme verfügt die atomrechtliche Aufsichtsbehörde mit der Kernreaktor-Fernüberwachung über ein System zur laufenden Kontrolle sicherheitsrelevanter Betriebs-, Emissionsund Immissionsdaten, um sich von der Einhaltung der den Strahlenschutz betreffenden rechtlichen Verpflichtungen der Betreiber zu überzeugen.

Die bilanzierten Jahreswerte der Ableitung radioaktiver Stoffe mit Abluft und Abwasser der Atomkraftwerke, der Forschungszentren Karlsruhe, Jülich, Rossendorf, Geesthacht und des Hahn-Meitner-Instituts Berlin, sowie der Kernbrennstoff verarbeitenden Betriebe, der Forschungsreaktoren und des Endlagers für radioaktive Abfälle Morsleben für das Jahr 2002 sind in den Abschnitten 1.2 und 1.3 getrennt nach Abluft und Abwasser angegeben. In den Ableitungen der Forschungszentren sind die Emissionen der dort betriebenen Leistungs- und Forschungsreaktoren enthalten. Aus den für 2002 ermittelten Ableitungswerten geht hervor, dass die von den zuständigen Behörden festgelegten Höchstwerte für die jährlichen Emissionen in allen Fällen eingehalten wurden.

Die aus den Ableitungen radioaktiver Stoffe mit Abluft und Abwasser aus kerntechnischen Anlagen berechneten Werte der Strahlenexposition der Bevölkerung sind in Abschnitt 1.5 zusammengefasst. Weiterhin wird der Beitrag ausländischer kerntechnischer Anlagen zur Strahlenexposition der Bevölkerung in der Bundesrepublik Deutschland ermittelt. Im benachbarten Ausland waren 2002 in Grenznähe bis zu einer Entfernung von 30 km zur deutschen Grenze die in Tabelle 1.1-4 aufgeführten kerntechnischen Anlagen in Betrieb. Das Kernkraftwerk Mühleberg in der Schweiz wird trotz seiner großen Entfernung zur Grenze ebenfalls aufgeführt, weil es im Einzugsgebiet des Rheins liegt. Über die jährlichen Emissionsraten kerntechnischer Anlagen in EU-Ländern informiert die Kommission der Europäischen Union in den Berichten "Radioactive effluents from nuclear power stations and nuclear fuel reprocessing plants in the European Community". Die jährlichen Emissionen der Schweizer Anlagen werden in den Jahresberichten "Umweltradioaktivität und Strahlendosen in der Schweiz" des Bundesamtes für Gesundheit, Bern, veröffentlicht.

Tabelle 1.1-1 Atomkraftwerke in der Bundesrepublik Deutschland (Nuclear power plants in the Federal Republic of Germany)

Atomkraftwerk/Standort	Тур а)	elektr.	Bruttostrom-	Beginn/Ende des	Vorfluter
		Brutto-	erzeugung	nuklearen	
		leistung	2002 *) (MWa)	Betriebes	
Versuchsatomkraftwerk Kahl	SWR	(MW)	(IVIVVa) ()	1960/1985	Main
	_		· ·		
MZFR Karlsruhe	D ₂ O-DWR	58	0	1965/1984	Rhein
Kernkraftwerk Rheinsberg	WWER	70	0	1966/1990	Stechlinsee
Kernkraftwerk Gundremmingen A	SWR	252	0	1966/1977	Donau
Versuchsatomkraftwerk AVR Jülich	HTR	15	0	1966/1988	Rur/Maas
Kernkraftwerk Lingen	SWR	268	0	1968/1977	Ems
Kernkraftwerk Obrigheim	DWR	357	342	1968	Neckar
Kernreaktoranlage KNK Karlsruhe	NaR	20	0	1971/1991	Rhein
Kernkraftwerk Würgassen	SWR	670	0	1971/1994	Weser
Kernkraftwerk Stade	DWR	672	565	1972	Elbe
Kernkraftwerk Greifswald 1 - 5	WWER	je 440	0	1973/1990	Ostsee
Kernkraftwerk Biblis A	DWR	1225	749	1974	Rhein
Kernkraftwerk Biblis B	DWR	1300	1227	1976	Rhein
Kernkraftwerk Neckarwestheim 1	DWR	840	762	1976	Neckar
Kernkraftwerk Brunsbüttel	SWR	806	102	1976	Elbe
Kernkraftwerk Isar 1	SWR	912	898	1977	Isar
Kernkraftwerk Unterweser	DWR	1410	812	1978	Weser
Kernkraftwerk Philippsburg 1	SWR	926	787	1979	Rhein
Kernkraftwerk Grafenrheinfeld	DWR	1345	1191	1981	Main
Kernkraftwerk Krümmel	SWR	1316	1011	1983	Elbe
Kernkraftwerk Hamm-Uentrop	HTR	307	0	1983/1988	Lippe
Kernkraftwerk Gundremmingen B	SWR	1344	1199	1984	Donau
Kernkraftwerk Grohnde	DWR	1430	1305	1984	Weser
Kernkraftwerk Gundremmingen C	SWR	1344	1236	1984	Donau
Kernkraftwerk Philippsburg 2	DWR	1458	1330	1984	Rhein
Kernkraftwerk Mülheim-Kärlich	DWR	1302	0	1986/1988	Rhein
Kernkraftwerk Brokdorf	DWR	1440	1361	1986	Elbe
Kernkraftwerk Isar 2	DWR	1475	1389	1988	Isar
Kernkraftwerk Emsland	DWR	1400	1354	1988	Ems
Kernkraftwerk Neckarwestheim 2	DWR	1365	1197	1988	Neckar

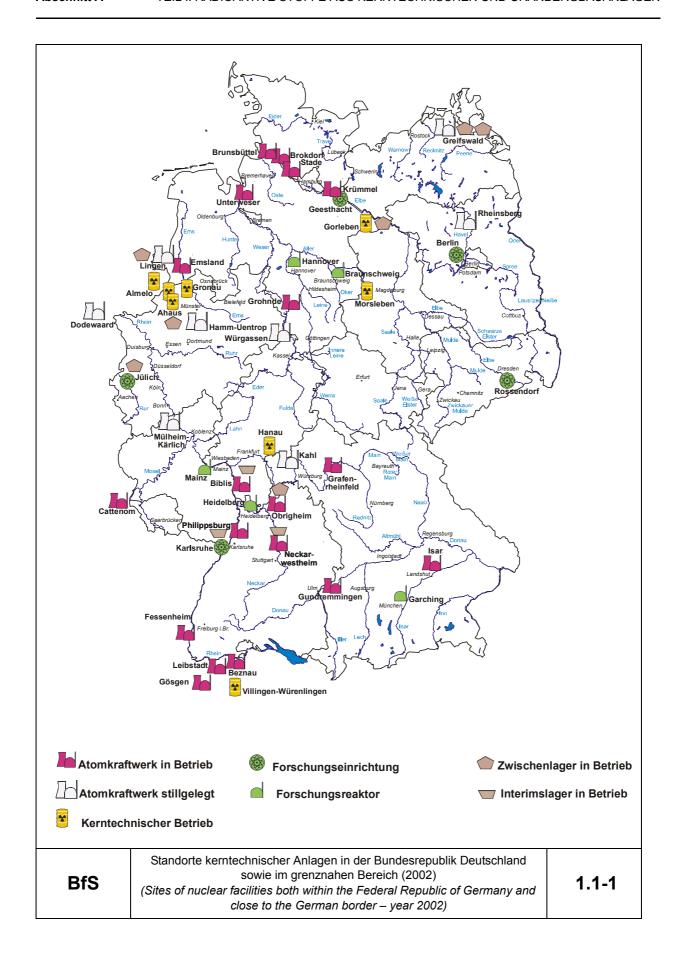
a) SWR = Leichtwasser-Siedewasserreaktor; DWR = Leichtwasser-Druckwasserreaktor; D₂O-DWR = Schwerwasser-Druckwasserreaktor; HTR = gasgekühlter Hochtemperaturreaktor; NaR = natriumgekühlter Reaktor; WWER = Leichtwasser-Druckwasserreaktor sowjetischer Bauart

^{*)} Daten aus Atomwirtschaft, atw 2/2003

Tabelle 1.1-2 Forschungsreaktoren (ausgenommen Nullleistungsreaktoren) in der Bundesrepublik Deutschland
(Research reactors - not including reactors with zero output - in the Federal
Republic of Germany)

Standort	Betreiber	Bezeich- nung des Reaktors	therm. Leistung *) (MW)	Beginn/- Ende des nuklearen Betriebes
Garching	Technische Universität München	FRM	4	1957/2000
Rossendorf	Forschungszentrum Rossendorf e.V.	RFR	10	1957/1991
Geesthacht	GKSS-Forschungszentrum Geesthacht GmbH	FRG 1 FRG 2	5 15	1958 1963/1993
Karlsruhe	Forschungszentrum Karlsruhe GmbH	FR 2	44	1961/1981
Jülich	Forschungszentrum Jülich GmbH	FRJ 1 FRJ 2	10 23	1962/1985 1962
Mainz	Johannes Gutenberg-Universität	FRMZ	0,1	1965
Braunschweig	Physikalisch-Technische Bundesanstalt	FMRB	1	1967/1995
Neuherberg	GSF - Forschungszentrum für Umwelt und Gesundheit GmbH	FRN	1	1972/1982
Hannover	Medizinische Hochschule	FRH	0,25	1973/1996
Berlin	Hahn-Meitner-Institut Berlin GmbH	BER II	10	1973
Heidelberg	Deutsches Krebsforschungszentrum	HD II	0,25	1978/1999

^{*)} im Dauerbetrieb


Tabelle 1.1-3 Endlager für radioaktive Abfälle in der Bundesrepublik Deutschland (Ultimate disposal facilities for radioactive wastes in the Federal Republic of Germany)

Standort	Betreiber	Bezeichnung	Beginn des Betriebes	Inventar
Morsleben	Bundesamt für Strahlenschutz	ERAM	1971	36752 m ³ /3,8 E14 Bq

Unter Berücksichtigung des Abklingverhaltens seit Beginn der Einlagerung ergibt sich für die Gesamtaktivität ein Wert von 1,37 E14 Bq.

Tabelle 1.1-4 Grenznahe kerntechnische Anlagen im benachbarten Ausland (Nuclear facilities in neighbouring countries located close to the German border)

Land	Anlage/Standort	Entfernung zur deutschen Grenze
Schweiz	Kernkraftwerk Beznau (2 Blöcke) Paul Scherrer Institut Villigen/Würenlingen Kernkraftwerk Mühleberg Kernkraftwerk Gösgen-Däniken Kernkraftwerk Leibstadt	ca. 6 km ca. 7 km ca. 70 km ca. 20 km ca. 0,5 km
Frankreich	Kernkraftwerk Fessenheim (2 Blöcke) Kernkraftwerk Cattenom (4 Blöcke)	ca. 1,5 km ca. 12 km
Niederlande	Kernkraftwerk Dodewaard (Betrieb beendet) Urananreicherungsanlage Almelo	ca. 20 km ca. 15 km

1.2 Ableitung radioaktiver Stoffe mit der Abluft kerntechnischer Anlagen (Discharges of radioactive substances with exhaust air from nuclear facilities)

Bearbeitet vom Bundesamt für Strahlenschutz, Fachbereich Strahlenschutz und Umwelt, Oberschleißheim

Die nuklidspezifisch nachgewiesenen Aktivitätsableitungen werden vom Betreiber vierteljährlich und jährlich dokumentiert und an die zuständige Aufsichtsbehörde übermittelt. Aus der lückenlosen Bilanzierung der Ableitungen radioaktiver Stoffe wird die Strahlenexposition der Bevölkerung in der Umgebung der kerntechnischen Anlagen ermittelt und die Einhaltung der Dosisgrenzwerte des § 47 StrlSchV überprüft. Auf die Bestimmung der Strahlenexposition aus den Emissionsdaten muss deshalb zurückgegriffen werden, weil die Aktivitätskonzentrationen der aus kerntechnischen Anlagen abgeleiteten Radionuklide in den Umweltmedien Luft und Wasser und in Nahrungsmitteln im Allgemeinen so gering sind, dass sie messtechnisch nicht nachgewiesen werden können. Die Aktivitätsableitungen sind dagegen genügend genau erfassbar (Tabellen 1.2-1 bis 1.2-8).

Die bilanzierten Jahreswerte der Ableitung radioaktiver Stoffe mit der Abluft der Atomkraftwerke im Jahr 2002 sind in Tabelle 1.2-1 für die Nuklidgruppen radioaktive Edelgase und Aerosole (Halbwertszeit > 8 Tage), sowie für die Radionuklide Jod-131, Kohlenstoff-14 (14 CO $_2$ -Anteil) und Tritium aufgeführt. Die Jahresableitungen von MZFR, KNK und AVR sind in den Ableitungswerten der Forschungszentren Karlsruhe und Jülich enthalten (Tabelle 1.2-5). Die einzelnen in einer Nuklidgruppe zusammengefassten Radionuklide zeigen entsprechend ihrer chemisch-physikalischen Natur in den Umweltmedien und im menschlichen Körper unterschiedliches Verhalten. Daher ist für die Berechnung der Strahlendosis die Kenntnis der Zusammensetzung des abgeleiteten Nuklidgemisches erforderlich. Die auf Grund von Einzelnuklidmessungen ermittelte Zusammensetzung der 2002 abgeleiteten Edelgase ist aus Tabelle 1.2-2 zu ersehen. Tabelle 1.2-3 enthält die Zusammensetzung der aerosolgebundenen Radionuklide einschließlich der β-Strahler Strontium-89 und -90 sowie der α-Strahler Plutonium-238, -239, -240, Americium-241, Curium-242 und -244.

Tabelle 1.2-4 zeigt die zeitliche Entwicklung der jährlichen Gesamtableitungen für Edelgase und I-131 mit der Abluft und die Gesamt-Bruttostromerzeugung der Atomkraftwerke in der Bundesrepublik Deutschland. Die Summe der Jahresableitungen radioaktiver Edelgase war 2002 mit 1,8•10¹³ Becquerel niedriger als 2001 mit 2,8•10¹³ Becquerel. Die Gesamtableitung an I-131 lag 2002 mit 3,3•10⁸ Becquerel über dem Vorjahreswert von 2,2•10⁸ Becquerel. Diese jährlichen Schwankungen sind abhängig von den Betriebsbedingungen der Atomkraftwerke.

In Tabelle 1.2-5 sind die Angaben über die Ableitung radioaktiver Stoffe mit der Abluft aus den Forschungszentren Karlsruhe, Jülich, Rossendorf, Geesthacht und dem Hahn-Meitner-Institut Berlin im Jahr 2002 zusammengefasst. Die Ableitungen radioaktiver Stoffe aus den übrigen Forschungsreaktoren sind in Tabelle 1.2-6 angegeben.

Die Ableitung radioaktiver Stoffe mit der Abluft aus dem Endlager Morsleben ist in Tabelle 1.2-7 zusammengestellt. Am Schacht Bartensleben werden jährlich etwa 1 Milliarde m³ Abwetter aus dem untertägigen Kontrollbereich abgegeben. Die Ableitungswerte für radioaktive Stoffe liegen z. T. um Größenordnungen unterhalb der genehmigten Werte.

Bei den Kernbrennstoff verarbeitenden Betrieben werden die mit der Abluft emittierten α -strahlenden Aerosole ermittelt (Tabelle 1.2-8). Die abgeleitete α -Aktivität lag 2002 mit insgesamt 3,5•10⁶ Becquerel höher als 2001 mit 7,1•10⁵ Becquerel.

Die für das Jahr 2002 ermittelten Werte für die Ableitung radioaktiver Stoffe mit der Abluft aus kerntechnischen Anlagen entsprechen in der Summe etwa den Werten der vorhergehenden Jahre, wenn auch Einzelwerte je nach den betrieblichen Bedingungen erheblich voneinander abweichen können; sie unterschreiten im Allgemeinen deutlich die jeweiligen Genehmigungswerte, wie beispielsweise für Atomkraftwerke der Vergleich zwischen den Werten der Tabelle 1.2-1 und üblichen Genehmigungswerten von ca. 10¹⁵ Becquerel für Edelgase, ca. 3•10¹⁰ Bq für Aerosole und ca. 10¹⁰ Bq für I-131 zeigt.

Die im Rahmen der Emissionsüberwachung ermittelten jährlichen Ableitungen radioaktiver Stoffe dienen als Grundlage für die Berechnung der Strahlenexposition der Bevölkerung in der Umgebung der kerntechnischen Anlagen. Maß des Strahlenrisikos ist nicht die abgeleitete Aktivität, sondern die effektive Dosis (Anhang, Abschnitt 1). Die aus den Jahresableitungen unter Berücksichtigung von meteorologischen, ökologischen und biologischen Parametern berechneten Jahresdosen sind in Kapitel 1.5 angegeben.

Tabelle 1.2-1 Ableitung radioaktiver Stoffe mit der Abluft aus Atomkraftwerken im Jahr 2002 (Discharges of radioactive substances with exhaust air from nuclear power plants in the year 2002)

Kernkraftwerk	Edelgase	Aerosole ^{a)}	Jod-131	¹⁴ CO ₂	Tritium
			Aktivität in Bq		
Kahl ^{b)}	-	6,4 E+03	-	-	-
Rheinsberg ^{C)}	nn	6,3 E+05	-	-	nn
Gundremmingen A ^{d)}	-	2,8 E+05	-	-	3,2 E+09
Lingen ^{d)}	-	nn	-	6,7 E+08	1,7 E+08
Obrigheim	1,3 E+12	2,1 E+05	2,2 E+04	1,7 E+10	9,8 E+10
Stade	1,7 E+12	1,1 E+05	2,4 E+06	1,4 E+10	6,5 E+11
Würgassen ^{e)}	-	2,8 E+06	-	1,9 E+09	6,2 E+10
Greifswald ^{C)}	-	3,2 E+07	-	-	3,9 E+08
Biblis A	3,8 E+11	1,5 E+06	2,3 E+04	3,2 E+10	4,8 E+11
Biblis B	4,4 E+11	2,2 E+05	1,9 E+05	3,7 E+10	1,9 E+11
Neckar 1	4,4 E+11	3,0 E+05	7,4 E+04	4,9 E+09	1,2 E+11
Brunsbüttel	7,4 E+11	4,8 E+06	1,8 E+06	1,7 E+11	4,4 E+10
Isar 1	9,8 E+11	nn	6,9 E+06	3,1 E+11	6,7 E+10
Unterweser	3,0 E+12	7,3 E+05	nn	6,9 E+10	4,2 E+11
Philippsburg 1	6,6 E+10	3,5 E+06	6,1 E+06	5,5 E+11	3,5 E+10
Grafenrheinfeld	7,6 E+10	1,7 E+06	nn	2,6 E+11	2,5 E+11
Krümmel	1,2 E+12	7,5 E+06	2,6 E+08	9,8 E+10	3,8 E+10
Gundremmingen B und C	1,4 E+12	4,3 E+04	4,6 E+07	9,8 E+11	1,2 E+12
Grohnde	2,8 E+11	1,1 E+05	8,6 E+06	3,9 E+10	5,8 E+11
Hamm-Uentrop ^{f)}	-	nn	-	nn	2,0 E+08
Philippsburg 2	3,2 E+12	1,8 E+05	3,9 E+05	8,5 E+10	2,9 E+11
Mülheim-Kärlich ^{f)}	nn	nn	nn	3,0 E+10	nn
Brokdorf	1,7 E+12	nn	1,5 E+06	1,0 E+11	2,5 E+11
Isar 2	2,8 E+11	nn	nn	1,7 E+11	3,7 E+11
Emsland	1,5 E+11	2,3 E+04	nn	2,0 E+11	1,4 E+12
Neckar 2	3,5 E+11	5,3 E+04	nn	1,0 E+11	2,0 E+11

a) Halbwertszeit > 8 Tage, ohne Jod-131, einschließlich Strontium und Alphastrahler

nn: nicht nachgewiesen (Aktivitätsableitung unter Nachweisgrenze)

b) Betrieb beendet 1985

c) Betrieb beendet 1990

d) Betrieb beendet 1977

e) Betrieb beendet 1994

f) Betrieb beendet 1988

^{-:} Messung / Angabe nicht erforderlich

Tabelle 1.2-2 Ableitung radioaktiver Edelgase mit der Abluft aus Atomkraftwerken im Jahr 2002 (Discharges of radioactive noble gases with exhaust air from nuclear power plants in the year 2002)

Radionuklid	Kahl/	Gundremmin-	Obrigheim	Würgassen	Stade	Greifswald	Biblis A	Biblis B
	Rheinsberg	gen A / Lingen						
				Aktivität	in Bq			
Ar -41			5,8E+10		1,4E+12		2,7E+10	5,0E+10
Kr -85m							2,5E+07	2,5E+07
Kr85							2,8E+11	3,3E+11
Kr -87								
Kr -88								
Kr -89							9,6E+07	
Xe-131m							9,0E+09	4,9E+08
Xe-133m							7,9E+07	2,1E+08
Xe-133			9,7E+11				3,8E+10	4,0E+10
Xe-135m							5,5E+08	1,3E+09
Xe-135			2,4E+11		3,1E+11		2,5E+10	2,4E+10
Xe-137								7,9E+07
Xe-138								2,6E+08

Radionuklid	Neckar 1	Brunsbüttel	Isar 1	Unterweser	Philipps-	Grafen-	Krümmel	Gundrem-			
					burg 1	rheinfeld		mingen B, C			
		Aktivität in Bq									
Ar -41	4,0E+11		1,5E+09	9,3E+10	3,1E+08	7,6E+10		1,8E+11			
Kr-85m					2,1E+08		1,2E+09	3,7E+09			
Kr -85	5,0E+09		8,7E+10	3,3E+10			1,7E+11	3,7E+11			
Kr -87	1,0E+09		4,3E+07		6,5E+08		2,6E+09	4,5E+09			
Kr -88			2,3E+11				1,5E+09				
Kr-89								4,1E+08			
Xe-131m				6,9E+11			1,4E+10	2,4E+11			
Xe-133m		6,5E+09					1,5E+10	1,1E+10			
Xe-133	8,3E+09	4,9E+11	6,0E+10	1,3E+12	9,7E+09		7,3E+11	4,1E+11			
Xe-135m	1,0E+08	7,5E+10	3,1E+11		2,6E+10		8,3E+10	3,5E+10			
Xe-135	2,6E+10	1,7E+11	1,1E+11	8,4E+11	2,9E+10		2,2E+11	8,3E+10			
Xe-137			1,3E+11					3,3E+10			
Xe-138											

Radionuklid	Grohnde	Hamm-	Philipps- burg 2	Mülheim-Kär- lich	Brokdorf	Isar 2	Emsland	Neckar 2
		Uentrop	burg 2					
				Aktivität in	Bq			
Ar-41			3,6E+11		1,2E+11	7,0E+10	1,5E+11	6,0E+10
Kr -85m			6,3E+10		3,3E+09	9,9E+07		
Kr -85	9,3E+10		1,3E+11			1,9E+11		2,3E+11
Kr -87			1,7E+10			8,5E+07		8,3E+07
Kr -88			8,4E+10			3,3E+08		5,7E+08
Kr- 89						2,2E+08		
Xe-131m			4,7E+10			1,9E+10		6,0E+10
Xe-133m			6,4E+10			7,7E+08		1,1E+09
Xe-133	1,7E+11		2,0E+12		1,5E+12	5,1E+08		6,4E+08
Xe-135m			2,0E+09			1,1E+07		5,6E+07
Xe-135	1,6E+10		3,8E+11		3,8E+10	1,7E+08		9,1E+07
Xe-137						1,3E+08		4,6E+08
Xe-138						1,4E+08		

Tabelle 1.2-3 Ableitung radioaktiver Aerosole mit der Abluft aus Atomkraftwerken im Jahr 2002 in Becquerel (Jod-131: Tabelle 1.2-1)

(Discharges of radioactive aerosols with exhaust air from nuclear power plants in the year 2002, expressed in becquerel - iodine-131: Table 1.2-2)

Radio- nuklid	Kahl	Rheins- berg	Gund- remmin-	Lingen	Obrig- heim	Würgas- sen	Stade	Greifs- wald	Biblis A
		•	gen A						
				P	Aktivität in	Bq			
Cr-51									
Mn-54			3,8E+04						
Fe-59									
Co-57									
Co-58					6,4E+04				
Co-60	3,8E+03	8,4E+04	2,2E+05		8,5E+04	1,8E+06	6,4E+04	1,6E+07	1,6E+04
Zn-65									
Sr-89									
Sr-90		5,8E+04							
Zr-95									
Nb-95									
Ru-103									
Ru-106									
Ag-110m					2,4E+04				
Sn-113									
Sb-124									3,7E+04
Sb-125									
Te-123m					3,4E+04				1,4E+06
Cs-134									
Cs-137	2,7E+03	3,3E+05	2,2E+04		2,9E+03	9,8E+05	4,7E+04	1,6E+07	
Ba-140									
La-140									
Ce-141									
Ce-144									
Eu-152		1,2E+05							
Eu-154		4,0E+04							
Pu-238/									
Am-241									
Pu-239/									
Pu-240									
Pu-241									
Cm-242									
Cm-244									

Radio- nuklid	Biblis B	Neckar 1	Bruns- büttel	Isar 1	Unterwe- ser	Philipps- burg 1	Grafen- rheinfeld	Krüm- mel	Gund- remmin-
									gen B,C
		1	1	1	Aktivität in			1	_
Cr-51						6,4E+05	3,3E+04		
Mn-54			1,2E+06			3,1E+05	1,2E+04	2,4E+05	4,3E+04
Fe-59		6,0E+03							
Co-57									
Co-58		2,6E+04	2,2E+04			4,1E+04	6,2E+04	5,8E+04	
Co-60	3,5E+04	1,3E+05	3,0E+06		6,8E+05	1,9E+06	1,5E+06	1,3E+06	
Zn-65		1,0E+04	2,3E+05			5,2E+05		1,8E+05	
Sr-89						1,1E+04		2,6E+06	
Sr-90								2,4E+04	
Zr-95		3,1E+04					2,3E+04		
Nb-95		7,0E+04					6,5E+04		
Ru-103									
Ru-06									
Ag-110m									
Sn-113									
Sb-124		2,3E+04			4,5E+04				
Sb-125									
Te-123m	1,9E+05								
Cs-134								4,1E+04	
Cs-137			4,0E+05			1,6E+04	5,8E+03	3,1E+04	
Ba-140						2,2E+04		2,2E+06	
La-140			1,3E+04					9,0E+05	
Ce-141			9,4E+03						
Ce-144									
Eu-152									
Eu-154									
Pu-238/									
Am-241									
Pu-239/									
Pu-240									
Pu-241									
Cm-242									
Cm-244									

Radio-	Grohnde	Hamm-	Philipps-	Mülheim-	Brokdorf	Isar 2	Emsland	Neckar 2
nuklid		Uentrop	burg 2	Kärlich				
				Aktivität	in Bq			
Cr-51								
Mn-54			3,8E+03					
Fe-59			6,4E+04					
Co-57								
Co-58			1,9E+04					
Co-60	1,1E+05		5,8E+03				1,3E+04	3,9E+04
Zn-65								
Sr-89								
Sr-90								
Zr-95								
Nb-95			1,8E+04				1,0E+04	1,4E+04
Ru-103			3,0E+03					
Ru-106			2,3E+04					
Ag-110m			1,2E+04					
Sn-113								
Sb-124								
Sb-125								
Te-123m								
Cs-134								
Cs-137			1,4E+04					
Ba-140								
La-140								
Ce-141								
Ce-144			1,9E+04					
Eu-152								
Eu-154								
Pu-238/								
Am-241								
Pu-239/								
Pu-240								
Pu-241								
Cm-242								
Cm-244								

Tabelle 1.2-4 Ableitung radioaktiver Edelgase, von Jod-131 und Aerosolen (ohne Jod-131, einschliesslich Strontium und Alphastrahler) mit der Abluft und Gesamt-Bruttostromerzeugung der Atomkraftwerke in den Jahren 1993 bis 2002 (Discharges of radioactive noble gases, of iodine-131 and aerosols (excluding iodine-131, including strontium and alpha sources with exhaust air from nuclear power plants (without research centres) in the years from 1993 to 2002)

Jahr	Edelgase	Jod-131	Aerosole	Bruttostromerzeugung
		Aktivität in Bq		in MWa
1993	2,8 E13	3,9 E08	3,1 E08	17526
1994	4,2 E13	8,0 E08	2,6 E08	17256
1995	9,8 E13	5,5 E08	5,2 E08	17596
1996	6,2 E13	3,4 E08	3,6 E08	18459
1997	3,8 E13	3,0 E08	3,7 E08	19451
1998	2,7 E13	1,8 E08	2,7 E08	18460
1999	1,9 E13	2,5 E08	1,4 E08	19374
2000	2,6 E13	2,2 E08	1,1 E08	19371
2001	1,5 E13	2,8 E08	7,4 E07	19552
2002	1,8 E13	3,3 E08	5,7 E07	18816*

^{*)} Quelle: Atomwirtschaft 2/2003

Tabelle 1.2-5 Ableitung radioaktiver Stoffe mit der Abluft aus Forschungszentren im Jahr 2002 (Discharges of radioactive substances with exhaust air from research centres in the year 2002)

Forschungszentrum	Edelgase	Aerosole a)	Jod-131	Jod-129	Kohlen- stoff 14	Tritium					
		Aktivität in Bq									
Forschungszentrum Karlsruhe (einschließlich Wiederaufarbeitungsanlage)	6,8 E11	3,7 E06 ^{b)}	6,9 E06	2,6 E06	2,8 E10	9,3 E11					
Forschungszentrum Jülich (einschließlich Versuchsreaktor AVR)	5,2 E11	4,7 E06	1,0 E08	-	2,8 E11	5,1 E12					
Forschungszentrum Rossendorf	9,2 E09	2,5 E06	nn	nn	3,9 E09	3,0 E10					
GKSS-Forschungszentrum Geesthacht	1,6 E12	4,2 E04	1,5 E05	-	2,0 E08	1,1 E11					
Hahn-Meitner-Institut Berlin (einschließlich Zentralstelle für radioaktive Abfälle)	2,8 E11	5,6 E03	5,2 E05	-	2,3 E09	9,5 E10					

a) Halbwertszeit > 8 Tage, ohne Jod-131, einschließlich Strontium und Alphastrahler

b) davon Alphastrahler: 1,1 E05 Bq

nn: nicht nachgewiesen (Aktivitätsableitung unter Nachweisgrenze)

Tabelle 1.2-6 Ableitung radioaktiver Stoffe mit der Abluft aus Forschungsreaktoren im Jahr 2002 (Discharges of radioactive substances with exhaust air from research reactors in the year 2002)

Forschungsreaktor	Edelgase	Aerosole	Jod-131	Kohlenstoff-14	Tritium				
	Aktivität in Bq								
Braunschweig	-	<3,3 E05	-	3,9 E08	2,4 E08				
Garching	nn	nn	nn	4,0 E07	1,1 E09				
Hannover	-	-	-	-	-				
Heidelberg	nn	4,3 E04	2,9 E03	-	3,9 E06				
Mainz	1,2 E11	nn	nn	-	4,5 E06				

- Messung / Angabe nicht erforderlich nn: nicht nachgewiesen

Die Jahresableitungen von FRJ1, FRJ2, RFR, FRG1, FRG2 und BER II sind in den Ableitungen der Forschungszentren Karlsruhe, Jülich, Rossendorf, Geesthacht und des Hahn-Meitner-Instituts Berlin enthalten (Tabelle 1.2-5). Der Forschungsreaktor Braunschweig wurde Ende 1995 endgültig abgeschaltet, der Forschungsreaktor Hannover Ende 1996, der Forschungsreaktor Heidelberg Ende November 1999 und der Forschungsreaktor Garching im Juni 2000.

Tabelle 1.2-7 Ableitung radioaktiver Stoffe mit der Abluft aus dem Endlager Morsleben im Jahr 2002

(Discharges of radioactive substances with exhaust air from the Morsleben final disposal facility in the year 2002)

Nuklid	Aktivität in Bq				
Tritium	3,16 E10				
Kohlenstoff-14	9,3 E08				
langlebige Aerosole	1,5 E06				
Radon-Folgeprodukte	9,2 E09				

Tabelle 1.2-8 Ableitung radioaktiver Stoffe (α -Aktivität) mit der Abluft aus Kernbrennstoff verarbeitenden Betrieben im Jahr 2002 (Discharges of radioactive substances - α -activity) with exhaust air from processing facilities for nuclear fuels in the year 2002)

Betrieb	Aktivität in Bq
NUKEM GmbH (Hanau) *)	2,8 E06
SIEMENS AG Brennelementewerk Hanau	
Betriebsteil MOX-Verarbeitung *)	<1,2 E03
Betriebsteil Uran-Verarbeitung *)	<5,9 E05
ANF GmbH (Lingen)	<1,4 E04
URENCO D (Gronau)	4,7 E04

^{*)} Brennelementeproduktion eingestellt

1.3 Ableitung radioaktiver Stoffe mit dem Abwasser aus kerntechnischen Anlagen (Discharges of radioactive substances with waste water from nuclear facilities)

Bearbeitet vom Bundesamt für Strahlenschutz, Fachbereich Strahlenschutz und Umwelt, Berlin

In den Tabellen 1.2-1 bis 1.2-3 sind die von den Atomkraftwerken, Forschungszentren und Kernbrennstoff verarbeitenden Betrieben in der Bundesrepublik Deutschland im Jahr 2002 mit dem Abwasser abgegebenen radioaktiven Stoffe zusammengestellt. Aus dem Kontrollbereich des Endlagers für radioaktive Abfälle Morsleben (ERAM) wurden 2002 insgesamt 6,28 m³ Abwasser abgeleitet. (Tabelle 1.3-4).

Sämtliche Abgaben radioaktiver Stoffe mit dem Abwasser aus Atomkraftwerken (Tabelle 1.3-1) liegen in der Größenordnung der Abgaben der Vorjahre und unterschreiten die entsprechenden Genehmigungswerte deutlich.

Für Druck- und Siedewasserreaktoren lagen die insgesamt abgegebenen Mengen an Spalt- und Aktivierungsprodukten bei 1,7 GBq bzw. 1,4 GBq. Die Tritiumabgaben lagen für die Druckwasserreaktoren bei 188 TBq und für die Siedewasserreaktoren bei 7,4 TBq.

Die Abgaben radioaktiver Stoffe mit dem Abwasser aus den Kernforschungszentren (Tabelle 1.3-2) und den Kernbrennstoff verarbeitenden Betrieben (Tabelle 1.3-3) liegen bezüglich der einzelnen Radionuklidgruppen ebenfalls in der Größenordnung der Abgaben der letzten Jahre.

Tabelle 1.3-1 Ableitung radioaktiver Stoffe mit dem Abwasser aus Atomkraftwerken in Deutschland im Jahr 2002 (Summenwerte, Tritium und Alphastrahler) (Discharges of radioactive substances with waste water form nuclear power plants in Germany in the year 2002 - summation values, tritium and alpha sources)

Radionuklid	Spalt- und Aktivierungs- produkte außer Tritium	Tritium	α-Strahler
Atomkraftwerk	•		
Siedewasserreaktoren			
Kahl 1)	1,1 E+07	1,5 E+07	1,3 E+04
Lingen 1)	1,3 E+06	1,1 E+08	1,1 E+08
Würgassen 1)	4,9 E+07	1,8 E+10	5,5 E+05
Brunsbüttel	3,4 E+08	1,3 E+11	
Isar 1	6,1 E+07	3,5 E+11	
Philippsburg 1	2,0 E+08	4,6 E+11	
Krümmel	9,9 E+06	6,1 E+11	
Gundremmingen 2) (Block B und C)	7,3 E+08	5,9 E+12	
Druckwasserreaktoren			
Obrigheim	6,0 E+07	5,9 E+12	
Stade	1,4 E+07	3,3 E+12	
Biblis Block A	3,0 E+08	1,7 E+13	
Biblis Block B	2,2 E+08	1,5 E+13	
Neckar 1	4,6 E+05	1,2 E+13	
Unterweser	3,9 E+08	1,2 E+13	
Grafenrheinfeld	2,3 E+07	2,1 E+13	
Grohnde	2,4 E+07	1,8 E+13	
Philippsburg 2	3,9 E+08	1,6 E+13	
Mülheim-Kärlich 1)	3,0 E+07	1,4 E+10	
Brokdorf	4,8 E+06	1,8 E+13	
Isar 2	8,3 E+04	1,9 E+13	
Emsland	1,8 E+04	1,5 E+13	
Neckar 2	1,7 E+08	1,7 E+13	
Greifswald Block 1 bis 5 1)	1,7 E+07	3,0 E+09	
Rheinsberg ¹⁾	7,1 E+06	9,4 E+09	5,6 E+04

¹⁾ Anlage stillgelegt

²⁾ Block A stillgelegt (geringfügige Ableitungen sind in den für Block B und C angegebenen Daten enthalten) Wird kein Zahlenwert angegeben, liegt die Aktivitätsableitung unterhalb der Nachweisgrenze

Tabelle 1.3-2 Abgabe radioaktiver Stoffe mit dem Abwasser aus Forschungszentren im Jahr 2002 (Discharges of radioactive substances with waste water from research centres in the year 2002)

Forschungszentrum	Spalt- und Aktivierungs- produkte (Bq) (außer Tritium)	Tritium (Bq)	Alphastrahler (Bq)
Forschungszentrum Karlsruhe (einschließlich Wiederaufbereitungsanlage)	1,7E+07	1,2E+12	1,5E+05
Forschungszentrum Jülich (einschließl. Versuchsreaktor AVR)	2,8E+08	4,4E+11	
GKSS-Forschungszentrum Geesthacht	1,7E+08	4,2E+09	6,9E+04
Hahn-Meitner-Institut Berlin (einschl. Zentral- stelle für radioaktive Abfälle)	7,0E+05	7,0E+08	
FRM Forschungsreaktor München	1,3E+06	8,4E+08	
Forschungszentrum Rossendorf 1)	1,2E+06	4,3E+10	6,8E+05

¹⁾ vormals ZfK Rossendorf

Wird kein Zahlenwert angegeben, liegt die Aktivitätsabgabe unterhalb der Nachweisgrenze

Ableitungen radioaktiver Stoffe (α-Aktivität) mit dem Abwasser aus Kernbrennstoff Tabelle 1.3-3 verarbeitenden Betrieben im Jahr 2002 (Discharges of radioactive substances - alpha activity - with waste water from nuclear fuel production plants in the year 2002)

Betrieb	Alphastrahler (Bq)
NUKEM GmbH	1,3E+08
SIEMENS AG Brennelementwerk Hanau Betriebsteil MOX-Verarbeitung ¹⁾ Betriebsteil Uran-Verarbeitung ¹⁾	4,8E+06
ANF GmbH (Lingen)	
URENCO (Gronau)	2,3E+03

¹⁾ Brennelementeproduktion eingestellt

Wird kein Zahlenwert angegeben, liegt die Aktivitätsabgabe unterhalb der Nachweisgrenze

Ableitungen radioaktiver Stoffe mit dem Abwasser aus dem Endlager Morsleben Tabelle 1.3-4 im Jahr 2002 (Discharges of radioactive substances with waste water from the final repository

Morsleben in the year 2002)

Radionuklid	Jahresaktivitätsabgabe (Bq)				
Tritium	nn *)				
Nuklidgemisch (außer Tritium)	6,77 E02				

^{*)} Nachweisgrenze Bq/l

1.4 Überwachung der Umweltmedien in der Umgebung kerntechnischer Anlagen (Monitoring of environmental media from the surroundings of nuclear facilities)

1.4.1 Luft und Niederschlag (Air and prepicipation)

Bearbeitet vom Bundesamt für Strahlenschutz, Fachbereich Strahlenschutz und Umwelt, Freiburg, und dem Deutschen Wetterdienst, Offenbach am Main

Gemäß der REI sind die Aktivitätskonzentrationen von gasförmigem lod-131 und von aerosolpartikelgebundenen Radionukliden gammaspektrometrisch zu ermitteln. Die geforderten Nachweisgrenzen liegen für I-131 bei 2 mBg/m³ und für Co-60 bei 0,4 mBg/m³.

Die Aktivitätskonzentrationen des gasförmigen Iod-131 haben sich mit den jeweils erreichten Nachweisgrenzen gegenüber dem Vorjahr nicht verändert. Lediglich an einer Messstelle des Forschungszentrums Jülich konnte wie in den vorangegangenen Jahren I-131 nachgewiesen werden (vgl. Tabelle 1.4.1-1). Als Ursprung der Aktivität werden I-131-Applikationen im Institut für Medizin angenommen.

Bezugsnuklid für die Überwachung der Aktivitätskonzentration der Luft ist Cobalt-60. Die Aktivitätskonzentrationen für Co-60 lagen 2002 an allen Messstellen unterhalb der jeweils erreichten Nachweisgrenzen (vgl. Tabelle 1.4.1-2).

Die Veränderungen der Jahresmittelwerte der γ -Ortsdosisleistung (Tabelle 1.4.1.3) sind im Vergleich zum Vorjahr im Allgemeinen gering und entsprechen den natürlichen Schwankungen. An einigen Standorten führte die starke Gewittertätigkeit in den Sommermonaten zu einer Erhöhung der Monatsmittelwerte in diesem Zeitraum.

Tabelle 1.4.1-1 Jahresmittelwerte der Aktivitätskonzentrationen des gasförmigen Jod-131 (Annual mean values for activity concentrations of gaseous iodine-131) (in Millibecquerel pro Kubikmeter, Messwerte der Betreiber)

	N	1995	1996	1997	1998	1999	2000	2001	2002
Probenahmestelle			Jod-131 (mBq/m³)						
HMI Berlin	2	<0,23	<0,22	< 0,20	<0,29	<0,31	<0,2	<0,31	<0,32
KKW Brunsbüttel	2	<0,22	<0,26	< 0,22	-	-	$[<0,2]^9$	<0,2	<0,15
KKW Brokdorf	2	<0,46	<0,54	< 0,55	-	-	<0,54	<0,43	<0,40
KKW Krümmel	3	<0,10	<0,40	< 0,40	-	-	<0,36	<0,36	<0,39
GKSS Geesthacht	1	<0,28	<0,24	< 0,50	-	-	[<0,43] ⁶	<0,45	<0,43
KKW Stade	1	<0,60	<0,53	< 0,42	[<0,38] ⁹	<0,37			
KKW Unterweser	2	<2,0	$[<2,0]^9$	< 2,00	[<2,00] ⁹	<2,00	<2,00	[<2,00] ^{6,}	<2,0
KKW Grohnde	3	<0,48	<0,43	< 0,45	<0,44	<0,47	-	[<0,69] ⁹	<0,65
KKW Emsland	2	$[<0,38]^3$	<0,43	< 0,33	<0,31	<0,37	-	[<0,31] ⁹	<0,32
KKW Würgassen	3	<1,43	*	*	*	*	*	*	*
KFA Jülich	3	<2,0	0,63**	0,33 **	0,63**	0,25**	0,76**	0,72**	0,68**
THTR Hamm-Uentrop	2	[<0,38]*	*	*	*	*	*	*	*
KKW Biblis	2	<1,2	<0,54	< 0,57	<0,50	<0,57	[<0,65] ⁹	[<0,76] ⁹	-
KKW Philippsburg	4	<0,74	<0,68	< 0,65	<0,62	<0,60	<0,62	<0,64	[<0,53] ⁹
KKW Obrigheim	3	<0,68	<0,80	< 0,78	<0,80	<0,79	<0,85	<0,86	<0,82
KKW Neckarwestheim	2	<0,74	<0,77	< 0,72	<0,68	<0,64	<0,60	<0,59	[<0,61] ⁹
KfK Karlsruhe	3	-	-	-	-	-	-	-	-
KKI Niederaichbach	3	<0,14	<0,35	< 0,36	<0,31	-	-	-	-
KKG Grafenrheinfeld	3	<0,21	<0,48	< 0,49	<0,42	-	-	-	-
KRB Gundremmingen II	3	<0,33	<0,44	< 0,32	<0,32	-	-	-	-
KKW Greifswald	2	<0,38	<0,14	< 0,10	<0,08	<0,07	<0,27	[<0,76]*	*
VKTA Rossendorf	1	<0,22	<0,14	< 0,06	<0,06	<0,06	<0,1	[<0,06] ⁹	<0,08
KKR Rheinsberg	-	-	-	-	-	-	-		-
KKW Mülheim-Kärlich	2	-	-	< 0,40	<0,36	<0,18	*	*	-

N Zahl der Messstationen

⁻ keine Messwerte

^[] i unvollständige Messreihe; mit i = Anzahl der Monate

^{*} Messungen eingestellt

^{**} Jahreswert von einer Messstelle, die Werte der anderen Messstellen lagen unterhalb der Nachweisgrenze

d zeitweiser Defekt bei Probenahme/Messung

Tabelle 1.4.1-2 Jahresmittelwerte der Aktivitätskonzentrationen von Co-60 (Annual mean values for activity concentrations of Co-60) (in Millibecquerel pro Kubikmeter, Messwerte der Betreiber)

Probenahmestelle	N	1995	1996	1997	1998	1999	2000	2001	2002	
		Co-60 (mBq/m³)								
HMI Berlin	2	<0,02	<0,016	<0,02	<0,013	<0,016	<0,08	<0,02	<0,015	
KKW Brunsbüttel	2	<0,09	<0,02	<0,10	-	-	[<0,06] ⁶	<0,06	<0,06	
KKW Brokdorf	2	<0,20	<0,24	<0,23	-	-	$[0,19]^6$	<0,19	<0,19	
KKW Krümmel	3	<0,02	<0,06	<0,08	-	-	[<0,08] ⁶	<0,07	<0,07	
GKSS Geesthacht	1	<0,09	<0,06	<0,16	-	-	[<0,19] ⁶	<0,18	<0,14	
KKW Stade	1	<0,31	<0,27	<0,25	$[<0,22]^9$	<0,21	-	-	-	
KKW Unterweser	2	<0,4	[<0,4] ⁹	<0,40	[<0,4] ⁹	<0,40	<0,40	[<0,40] ^{6,d}	<0,40	
KKW Grohnde	3	<0,20	<0,12	<0,13	<0,12	<0,12	-	[<0,12] ⁹	<0,10	
KKW Emsland	2	[<0,13] ³	<0,17	<0,16	<0,16	<0,18	-	[<0,18] ⁹	<0,18	
KKW Würgassen	2	<0,30	<0,32	<0,15	<0,10	<0,10	<0,1	<0,10	<0,10	
KFA Jülich	3	<0,40	<0,40	<0,40	<0,40	<0,40	<0,40	<0,40	<0,40	
THTR Hamm-Uentrop	2	<0,02	<0,014	<0,006	<0,04	<0,17	<0,11	<0,05	-	
KKW Biblis	3	<0,008	<0,25	<0,20	<0,18	<0,19	[<0,21] ⁹	[<0,21] ⁹	-	
KKW Philippsburg	4	<0,04	<0,046	<0,04	<0,04	<0,04	<0,04	<0,04	[<0,04] ⁹	
KKW Obrigheim	3	<0,08	<0,076	<0,08	<0,08	<0,08	<0,08	<0,08	<0,08	
KKW Neckarwestheim	2	<0,14	<0,15	<0,15	<0,14	<0,14	<0,14	<0,14	[<0,14] ⁹	
KfK Karlsruhe	3	<0,007	<0,010	<0,006	<0,006	<0,008	<0,01	<0,01	[<0,01] ⁹	
KKI Niederaichbach	3	<0,07	<0,19	<0,19	<0,19	-	-	-	-	
KKG Grafenrheinfeld	3	<0,05	<0,09	<0,10	<0,09	-	-	-	-	
KRB Gundremmingen II	3	<0,24	<0,25	<0,18	<0,20	-	-	-	-	
KKW Greifswald	2	<0,44#	<0,06	<0,07#	<0,07#	<0,13	<0,15	[<0,37]*	<0,37	
VKTA Rossendorf	3	<0,02	<0,06	<0,02	<0,02	<0,02	<0,02	$[<0,02]^9$	<0,02	
KKR Rheinsberg	2	<0,02	<0,11	<0,11	<0,11	<0,14	<0,10	<0,09	<0,10	
KKW Mülheim-Kärlich	2	-	-	<0,30	<0,29	<0,18	<0,16	0,15	<0,20	

keine Messwerte

^{[]&}lt;sup>i</sup> unvollständige Messreihe; mit i = Anzahl der Monate ^d

N Zahl der Messstationen

Maximale Nachweisgrenze aus den 4 Quartalsberichten
 zeitweiser Defekt bei Probenahme/Messung

Messungen eingestellt

Tabelle 1.4.1-3 Umgebungsstrahlung bei Kernkraftwerken und Forschungsreaktoren (Ambient radiation from nuclear power plants and research reactors) (γ-Dosisleistung in nSv pro Stunde, Messwerte der Betreiber)

	N	1995	1996	1997	1998	1999	2000	2001	2002
Probenahmestelle			nSv/h						
HMI Berlin	2	83	79	72	73	70	71	71	71
KKW Brunsbüttel	2	83	[90] ⁹	72	75	78	75	85	[83] ⁶
KKW Brokdorf	2	65	62	62	60	61	61	60	[60] ³
KKW Krümmel	3	66	[68] ⁹	63	71	68	53	56	[59] ⁶
GKSS Geesthacht	1	80	80	84	[80] ⁹	84	84	84	84
KKW Stade	1	165	196	60 ^x	[50] ⁹	[85] ¹¹			[77] ⁹
KKW Unterweser	2	54	[54] ⁹	90	[90] ⁹	83	87	[90] ⁶	90
KKW Grohnde	3	91	88	88	85	85		[88]	84
KKW Emsland	2	[75] ³	73	66	66	66		[65] ⁹	65
KKW Würgassen	3	105	104	*	*	*	*	*	*
KFA Jülich	12	63	59	55	64	64	61	59	58
THTR Hamm-Uentrop	2	83	92	92	90	90	89	88	87
KKW Biblis	3	73 - 128	93	85	88	88	[88] ⁹	[90] ⁹	-
KKW Philippsburg	4	99	112	109	105	105	105	100	[98] ⁹ 82 ^{MT}
KKW Obrigheim	2	73	78	75	73	72	70	70	82 ^{M1}
KKW Neckarwestheim	2	54	58	61	58	56	56	56	[55] ⁹
KfK Karlsruhe	6	86	96	85	84	84	82	82	[81] ⁹
KKI Niederaichbach ^a	3	79	80	68	67		-	-	-
KKG Grafenrheinfeld ^a	3	117	118	97	109	-	-	-	-
KRB Gundremmingen II ^a	3	88	89	79	77		-	-	-
KKW Greifswald	20	71	54 - 81	70	72	71	71	77	81
VKTA Rossendorf	3	116	113	110	110	112	106	[109] ⁹	112
KKR Rheinsberg	4	-	110	105	101	100	99	99	98
KKW Mülheim-Kärlich	2						110	114	113

- keine Messwerte
- Ersatzwert Sonde NLÖ unweit defekter Sonde X *
- Messungen eingestellt
- []ⁱ unvollständige Messreihe; mit i = Anzahl der Monate
- teilw. Überwachung durch unabhängige Sachverständige
- Zahl der Messstationen Ν
- MT Austausch des Messsystems

Niederschlag

Gemäß der REI ist die Aktivitätskonzentration des Niederschlags gammaspektrometrisch zu ermitteln. Aus den Aktivitätskonzentrationen und der Niederschlagsmenge wird die Deposition berechnet. Aus den Monatsdepositionen in Becquerel pro Quadratmeter wird der Jahresmittelwert gebildet und berechnet. Bezugsnuklid ist Cobalt-60.

Die geforderte Nachweisgrenze bezieht sich auf die Konzentrationsmessung und liegt für Co-60 bei 0,05 Bq/l. Die Monatsniederschlagshöhen liegen zwischen 10 und im Extremfall 200 Liter pro Quadratmeter.

1.4.2 Boden, Bewuchs und Milch (Soil, vegetation and milk)

Bearbeitet vom Institut für Chemie und Technologie der Milch der Bundesanstalt für Milchforschung, Kiel

Hinsichtlich der radioökologischen Situation in der Umgebung kerntechnischer Anlagen und den beobachteten Schwankungen der Messwerte in diesen Bereichen gelten die gleichen Ausführungen, die bereits in den Kapiteln I 3.2 und I 3.4.2 gemacht wurden. Auch in der Umgebung kerntechnischer Anlagen ist die Situation nach wie vor durch die zurückliegenden Depositionen nach den Kernwaffenversuchen der sechziger Jahre und nach dem Tschernobylunfall im Jahre 1986 geprägt.

Die Ergebnisse der Überwachung nach der Richtlinie zur Emissions- und Immissionsüberwachung kerntechnischer Anlagen sind für Boden und Bewuchs in den Tabellen 1.4.2-1 und 1.4.2-2, für Milch in Tabelle 1.4.2-3 zusammengefasst. Die vorliegenden Messwerte lassen im Vergleich mit anderen Orten in der Bundesrepublik keine Erhöhung der Radioaktivität erkennen.

Tabelle 1.4.2-1 Radioaktivität des Bodens in der näheren Umgebung kerntechnischer Anlagen (Radioactivity of the soil in the vicinity of nuclear power plants)

Bundesland	Jahr	Aktivität in Bq/kg TM						
kerntechnische Anlage		N	Mittelwert (Bereich)	N	Mittelwert (d) (Bereich)		
			Cs-137		Pu-238	Pu-239/240		
Baden-Württemberg								
FZ Karlsruhe	2000	11	19,3	7	<0,18	<0,39		
	2001	11	26,5	7	<0,26	<0,65		
	2002	7	18,5 (5,2 - 45,0)	3	<0,10	0,32 (0,06 -0,74)		
					(<0,02 - 0,25)			
						-90		
	2000			3	2,6			
	2001			3	2,7 (1,8 - 3,8)			
	2002			3	0,8 (0,3 - 1,0)			
Kernkraftwerk	2000	8	11,3					
Obrigheim	2001	8	12,7					
	2002	8	11,4 (4,1 - 19,5)					
Kernkraftwerk	2000	8	10,3					
Neckarwestheim	2001	8	11,1					
	2002	4	13,3 (10,3 - 17,2)					
Kernkraftwerk	2000	8	14,4	a)				
Philippsburg	2001	8	14,6	/				
	2002	6	11,3 (4,8 - 24,0)					
			,- (,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,-					
Kernkraftwerk	2000	8	32,9					
Beznau/Leibstadt	2001	8	30,5					
Schweiz	2002	8	30,9 (17,8 - 42,0)					
Kernkraftwerk	2000	4	10,7					
Fessenheim	2000							
		4	9,6					
Frankreich	2002	a)						

Bundesland	Jahr		Aktiv	/ität in	Bq/kg TM		
kerntechnische Anlage		N	Mittelwert (Bereich)	N	Mitte	elwert d)	(Bereich)
			Cs-137			Sr-90)
TRIGA	2000	2	b) 17,0; 18,0				
Heidelberg	2001	2	b) 11,9;14,0				
	2002	1	19,9				
Bayern							
Kernkraftwerk	2000	3	23,3				
Kahl	2001	a)					
	2002	a)					
Kernkraftwerk	2000	12	52,4				
Gundremmingen	2000	a)	32,4				
Gundrenningen	2001	a) a)					
	2002	a)					
Kernkraftwerk	2000	12	49,3				
Isar	2001	a)					
	2002	a)					
Kernkraftwerk	2000	10	8,0				
Grafenrheinfeld	2001	a)					
	2002	a)					
Forschungsreaktor	2000	2	b) 38,0; 74,0				
München	2001	a)	-,, - , -				
	2002	a)					
		,			Pu-238	3	Pu-239/240
KWU	2000	4	21,0	2	<0,025	0	,19 (N=4)
Erlangen	2001	a)		a)			, , ,
	2002	a)		a)			
					U-235	U-238	Am-241
	2000			4	< 0,23	6,1	< 0,07
	2001			a)	0,20	0, .	3,37
	2002	a)		a)			
	2002	u)		"	Pu-238	3 P	u-239/240
KWU	2000	2	16,5	1	< 0,1		0,13
Karlstein	2001	a)		a)			
	2002	a)		a)			
					U-235	U-238	Am-241
	2000			2	b)0,1;0,37 b)3,8;8,1	a)
	2001			a)			
	2002	a)		a)			
			Gesamt-α-Aktivität			Sr-90	<u> </u>
SBWK	2000	a)					
Karlstein	2001	a)					
	2002	a)					

Bundesland	lesland Jahr Aktivität in Bq/kg TM						
kerntechnische Anlage		N	Mittelwert (Bereich)	N	Mittelwert d		
B			Cs-137		Sr-9	90	
Berlin	2000	0	46.0				
Forschungsreaktor BER II	2000 2001	8 8	16,8 14,2				
DEK II			13,4 (7,0 - 20,8)				
	2002	8	13,4 (1,0 - 20,0)				
Brandenburg							
Kernkraftwerk	2000	8	11,1				
Rheinsberg	2001	8	10,0 (5,7 - 13,0)				
	2002	8	8,3 (5,9 - 12,0)				
Hessen							
Kernkraftwerk	2000	10	9,4				
Biblis	2001	9	6,5 (3,1 - 8,9)				
	2002	a)					
			Gesamt-α-Aktivität in Bq/kg Asche		Rest-ß-Aktivität in Bq/kg Asche	Pu-239/240 in Bq/kg Asche	
Nuklearbetriebe	2000	8	880	4		0,35	
Hanau	2001	8	816)	3		<0,15	
	2002	a)					
			Cs-137	-	U-2	35	
Mecklenburg-Vorp.							
	2000	29	10,8	18	0,9		
Kernkraftwerk	2001	28	11,2	18	0,9		
Greifswald	2002	29	7,1 (0,2 -20,0)	9	0,8 (0,4 - 2,0)		
Zwischenlager Nord	2000	42	<5,7				
	2001	42	4,8				
	2002	41	5,8 (0,3 - 22,0)				
Niedersachsen					Sr-9	90	
Kernkraftwerk	2000	14	11,0	a)			
Stade	2001	14	12,2	a)			
	2002	8	10,3 (4,0 - 22,0)	a)			
Kernkraftwerk	2000	12	20,5	a)			
Unterweser	2001	12	18,6 (6,5 - 43,0)	a)			
	2002	6	24,9 (10,3 - 49,4)				
Kernkraftwerk	2000	10	21,0	a)			
Grohnde	2001	10	18,3	a)			
	2002	4	11,5 (10,5 - 12,9)				
Kernkraftwerk	2000	10	26,3	a)			
Emsland	2001	8	17,0	a)			
	2002	10	19,1 (9,4 - 35,2)				

Bundesland	Jahr		Aktiv	/ität in	Bq/kg TM		
kerntechnische Anlage		N	Mittelwert (Bereich)	N	Mittelwe	rt d) (Bere	eich)
			Cs-137			Sr-90	
Zwischenlager	1999	22	29,6	4	0,8		
Gorleben	2000	22	36,6	4	0,7		
	2001	26	25,7	4	4,6		
	2002	a)		a)	_		
	0000		Pu-238	-		-239/240	
	2000	2	<0,037	2 2	<0,037		
	2001	2	<0,1		<0,1		
	2002	a)		a)			
			Cs-137		Gesam	t-α-Aktivi	tät
FMRB	2000	8	36,7	a)			
Braunschweig	2001	8	20,8	a)			
	2002	6	15,1 (8,5 - 23,0)				
Cabaabt Kanyad II a)	2000	4	40.0		,	Sr-90	
Schacht Konrad II c)	2000	4 6	16,8 18,2 (8,0 - 26,0)	a) a)			
			10,2 (0,0 - 20,0)				
	2002	a)		a)	U-234	U-235	U-238
Advanced	2000	a)	a)	2	5,7	<0,1	4,8
Nuclear Fuels	2001	12	15,2	2	2,7	<0,06	2,5
Lingen	2002	a)	-,	a)	,	,,,,,,	,-
	2002	α,	Pu-238	 	P	Pu-239	
	2000	2	<0,082	2	<0,082		
	2001	2	<0,096	2	<0,095		
	2002	a)		a)			
			Cs-137		;	Sr-90	
Nordrhein-Westfalen							
KFA Jülich	2000	10	8,6	6	1,3		
	2001	10	5,8	6	1,2		
	2002	8	< 7,2 (<0,3 - 11,0)	6	1,4 (0,4 - 2,3	3)	
Kernkraftwerk	2000	20	18,8				
Würgassen	2001	17	15,1				
	2002	20	16,3 (5,9 - 44,0)				
Kernkraftwerk	2000	8	18,7	a)			
Uentrop	2001	8	18,3	a)			
	2002	8	24,9 (6,0 - 42,5)	_			
		_	Cs-137	╛╻		Sr-90	
Zwischenlager	2000	5	10,3	5	0,9		
Ahaus	2001	5	10,9	5	1,7		
	2002	5	11,3 (7,4 - 16,9) U-238	5	0,6 (0,3 - 1,3	5)	
UAG Gronau	2000	10	<0,2	 			
	2001	10	<0,2				
	2002	10	<0,3 (<0,3 - <0,3)				

Bundesland	Jahr		Aktiv	vität in	Bq/kg TM	
kerntechnische Anlage		N	Mittelwert (Bereich)	N	Mittelwert o	d) (Bereich)
			Cs-137		Sr-	-90
Rheinland-Pfalz	2000	8	11,3			
Kernkraftwerk	2001	8	16,4			
Mülheim-Kärlich	2002	6	7,9 (1,2 - 19,3)			
Kernkraftwerk	2000	a)		a)		
Cattenom	2001	a)		a)		
Frankreich	2002	a)		a)		
Sachsen						
Rossendorf	2000	16	8,6			
	2001	4	11,0 (8,5 - 16,0)			
	2002	a)				
Sachsen-Anhalt			-		Sr-90	Gesamt-β-Aktivi- tät
Endlager Morsleben	2000	8	9,6	4	0,9	670
	2001	8	9,1	4	0,4	620
	2002	6	7,6 (2,8 - 12,0)	4	0,3 (0,3 - 0,4)	620 (560 - 690)
				•	Sr-	-90
Schleswig-Holstein						
GKSS	2000	10	12,2	2	0,5	
Geesthacht	2001	10	14,4	2	0,5	
	2002	5	12,5 (6,9 - 18,0)	1	0,4	
Kernkraftwerk	2000	8	31,8	2	b) 1,0; 3,4	
Brunsbüttel	2001	8	32,8	2	b) 1,0; 3,5	
	2002	3	29,8 (12,5 - 51,8)	2	b) 0,9; 3,5	
Kernkraftwerk	2000	12	8,6	6	0,9	
Krümmel	2001	13	8,0	7	0,8	
	2002	6	8,1 (6,1 - 11,0)	3	1,1 (0,6 - 1,8)	
Kernkraftwerk	2000	16	19,7	8	2,7	
Brokdorf	2001	16	18,9	8	2,4	
	2002	8	19,3 (7,9 - 33,0)	4	2,3 (0,9 - 3,9)	

- Daten lagen nicht vor a)
- b)
- Mittelwertberechnung nicht sinnvoll im Genehmigungsverfahren befindliches Endlagerprojekt Weicht die Anzahl einzelner Messungen in dieser Spalte vom angegebenen N ab, ist sie getrennt aufgeführt c) d)

Tabelle 1.4.2-2 Radioaktivität des Bewuchses in der näheren Umgebung kerntechnischer Anlagen (Radioactivity of vegetation in the vicinity of nuclear power plants)

Bundesland	Jahr			Aktivit	ät in Bq/kg TM	
kerntechnische Anlagen		N	Mittelwert (Bereich)	N	Mittelwe	rt (Bereich)
			Cs-137		Pu-238	Pu-239/240
Baden-						
Württemberg	2000	6	1,2	4	<0,06	<0,03
FZ Karlsruhe	2001	6	1,0	4	<0,10	<0,08
	2002	2	1,1 (1,0 - 1,1)	a)		
IZ a mal master man	0000	_	-0.4		9	6r-90
Kernkraftwerk	2000	8	<0,4			
Obrigheim	2001	8	<0,5			
	2002	8	<0,9 (<0,2 - 3,2)			
Kernkraftwerk	2000	8	<0,5			
Neckarwestheim	2001	8	<0,3			
	2002	4	0,4 (0,2 - 0,5)			
Kernkraftwerk	2000	8	2,2	a)		
Philippsburg	2001	8	2,2	a)		
	2002	6	<1,1 (<0,2 - 4,2)	a)		
Kernkraftwerk	2000	8	1,7			
Beznau/Leibstadt	2001	8	1,5			
Schweiz	2002	8	1,5 (0,5 - 3,0)			
Kernkraftwerk	2000	4	<0,5			
Fessenheim	2001	4	2,5 (0,3 - 7,9)			
Frankreich	2002	a)				
TRIGA Heidelberg	2000	2	0,2			
9	2001	2	0,5 (0,3 - 0,6)			
	2002	1	0,6			
Bayern						
Kernkraftwerk	2000	3	<0,8			
Kahl	2001	a)				
	2002	a)				
Kamalana fi	0000	40	-4.5			
Kernkraftwerk	2000	12	<1,5			
Gundremmingen	2001	a)				
	2002	a)				
Kernkraftwerk						
Isar	2000	12	<1,6			
	2001	a)	, , , , , , , , , , , , , , , , , , ,			
	2002	a)				
		,				
Kernkraftwerk	2000	10	<0,4			
Grafenrheinfeld	2001	a)				
	2002	a)				

Bundesland	Jahr		Aktivität in Bq/kg TM							
kerntechnische Anlagen		N	Mittelwert (Bereich)	N	Mittelwert	t (Bereich)				
Forschungsreaktor	2000	2	b) <1,2; 4,9							
München	2001	a)	b) 11,2, 4,0							
	2002	a)								
		۵,	Cs-137		Pu-238	Pu-239/240				
KWU Erlangen	2000	4	<1,3	2	b)<0,003;<0,005	<0,01 (N=4)				
	2001	a)	, -	a)	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,				
	2002	a)		a)						
IZANI IZA IZA IZA	0000	0	100447	4	.0.4	.0.000				
KWU Karlstein	2000	2	b)0,4; 1,7	1	<0,1	<0,003				
	2001	a)	a)	a)						
	2002	a)	a) Gesamt-α-Aktivität	a)	Q _r	<u> </u> -90				
SBWK	2000	a)	Gesaint-a-Aktivitat		31	-90				
Karlstein	2001	a)								
Ranston	2002	a)								
	2002	u)	Cs-137							
Berlin			00 101							
Forschungsreaktor	2000	7	<1,3							
BERII	2001	8	<1,9							
	2002	7	<1,6 (<0,6 - 3,0)							
Brandenburg	2000	0	4.4							
Kernkraftwerk	2000 2001	8 8	4,4 6,2							
Rheinsberg	2001	8	5,7 (0,8 - 14,0)							
Hessen	2002	0	5,7 (0,6 - 14,0)							
Kernkraftwerk	2000	10	<0,4	a)						
Biblis	2001	10	<0,4	a)						
Dibilo	2002	a)	٠٠,٠	a)						
		۵,	Gesamt-α-Aktivität in Bq/kg Asche	۵,	Rest-ß-Aktivität in Bq/kg Asche	Pu-239/240 in Bq/kg Asche				
Nuklearbetriebe	2000	6	220	2	-4-9/1001	b)<0,05; <0,73				
Hanau	2001	6	160	2		b)<0,02; 0,04				
	2002	a)		a)		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
		•	Cs-137	•	Sr	-90				
Mecklenburg-Vorp.										
Kernkraftwerk	2000	20	<1,1							
Greifswald	2001	20	<0,6							
	2002	20	<0,7 (<0,1 - 2,7)							
Zwischenlager	2000	36	<1,2							
Nord	2001	36	<1,0							
	2002	36	<2,4 (0,1 - 14,0)							
			, (-,,-,							

Jahr			Aktivit	tät in Bq/kg TN	1		
	Ν	Mittelwert (Bereich)	N	M	littelwert	(Bereic	h)
2000	14	<1,1					
2001	14	<0,8					
2002	8	<0,5 (<0,2 - 1,5)					
2000	12	<0,9	a)				
2001	12	<1,3	a)				
2002	a)		a)				
2000	10	<1,0	a)				
2001	10	0,4	a)				
2002	4	<0,4 (<0,4 - 0,5)	a)				
2000	10	1,2					
2001	10	1,5					
2002	10	<1,3 (<0,3 - 3,4)					
2000	16	15,1	4	0,8			
2001	20	17,3	4	5,4			
2002	a)		a)				
2000	6	20,7					
2001	6	4,4					
2002	3	4,8 (1,0 - 11,0)					
		Cs-137		Sr-90)	Gesai	mt-α-Aktivität
2000	4	0,7	a)				
		<4,3					
2002	a)		a)	Du_23	<u> </u>	D	u-239/240
2000	4	4.6	1		<u> </u>		
					kaFM)		02 (Bq/kgFM)
2001	·	1,1 (0,7 2,0)		U-234			U-238
2002	a)		1	56 (Bq/kgFM)	1,5 (Bq/k	gFM)	40 (Bq/kgFM)
					Sr-	90	
2000	10	<0,4					
2002	9	<0,3(<0,2 – 0,5)	1	0,8			
2000	12	<0,5					
			4	0,32			
2002	12	<0,6 (<0,2 - 1,6)					
2000	8	<2,7					
	8						
2002	8	<2,3 (<0,3 - 6,0)					
	2000 2001 2002 2000 2001 2002 2000 2001 2002 2000 2001 2002 2000 2001 2002 2000 2001 2002 2000 2001 2002 2000 2001 2002 2000 2001 2002	N 2000 14 2001 14 2002 8 2001 12 2002 10 2001 10 2001 10 2002 4 2000 16 2001 20 2002 a) 2002 6 2001 6 2002 3 2000 4 2001 6 2002 a) 2002 4 2001 4 2002 a) 2001 10 2001 8 2002 15 2002 12 2001 15 2002 8 2001 8 2001 8 2001 8 2001 8 2001 8 2001 8 2002 8 2003	N Mittelwert (Bereich)	N Mittelwert (Bereich) N	N Mittelwert (Bereich) N N N N N N N N N	N Mittelwert (Bereich) N Mittelwert	N Mittelwert (Bereich) N Mittelwert (Bereick)

Bundesland	Jahr			Aktivi	tät in Bq/kg TM			
kerntechnische Anlagen		N	Mittelwert (Bereich)	N	Mittelwert	(Bereich)		
Zwischenlager	2000	10	<1,8	9	2,1			
Ahaus	2001	9	<1,5	8	0,4			
	2002	10	1,2 (0,1 - 2,2)	9	1,3 (0,7 - 1,8)			
			U-238		Uran Bq/kg TM	Fluor mg/kg TM		
UAG Gronau	2000	4	<0,3	12	<0,34	1,7		
	2001	5	<0,2	12	<0,46	<2,0		
	2002	3	<0,5 (<0,5-<0,5)	12	<0,29(<0,23-0,89)	<1,6(<1,5 - 3,0)		
			Cs-137		Sr-9	90		
Rheinland-Pfalz								
Kernkraftwerk	2000	8	<0,7					
Mülheim-Kärlich	2001	8	<0,5					
	2002	6	<0,3 (<0,1 - <0,6)					
Kernkraftwerk	2000	a)		a)				
Cattenom	2001	a)		a)				
Frankreich	2002	a)		a)				
Sachsen-Anhalt					Gesamt-β-Aktivität			
Endlager	2000	8	<0,4	4	1070			
Morsleben	2001	8	<0,7	4	1180			
	2002	8	<0,5 (0,1 - 1,1)	4	1180 (1000 - 1400)			
Sachsen					Sr-S	90		
Rossendorf	2000	16	6,5					
	2001	4	14,8 (1,1 - 44,0)					
	2002	a)						
Schleswig-Holst.								
GKSS	2000	8	2,8					
Geesthacht	2001	8	2,2					
	2002	4	2,3 (1,6 - 3,4)					
Kernkraftwerk	2000	8	<0,4	a)				
Brunsbüttel	2001	8	<0,3	a)				
	2002	4	<0,4 (<0,3 - 0,6)	a)				
Kernkraftwerk	2000	8	0,5	6	2,7			
Krümmel	2001	9	<0,5	7	2,0			
	2002	4	0,5 (0,4 - 0,9)	3	2,7 (1,7 - 3,3)			
Kernkraftwerk	2000	14	<1,5	a)				
Brokdorf	2001	14	<0,6	a)				
	2002	7	0,9 (0,3 - 2,8)	a)				

- a)
- Messwerte lagen nicht vor ; Mittelwertberechnung nicht sinnvoll b)
- Im Genehmigungsverfahren befindliches Endlagerprojekt
- c) d) Weicht die Anzahl einzelner Messungen in der letzten Spalte vom angegebenen N ab, ist sie getrennt aufgeführt

Tabelle 1.4.2-3 Radioaktive Kontamination der Milch aus unmittelbarer Nähe kerntechnischer Anlagen
(Radioactive contamination of milk from the close vicinity of nuclear power plants)

Bundesland kerntechnische	Jahr	N	Mittelwert in Bq/l (Bereich)	N	Mittelwert in Bq/l (Bereich)	N	Mittelwert in Bq/l (Bereich)
Anlagen			Sr-90	1	Cs-137		I-131
Baden-Württemberg							
FZ Karlsruhe	2001	2	0,04	2	<0,04	a)	
	2002	2	<0,03 (<0,006 - 0,05)	2	<0,04 (0,03 - <0,05)	a)	
Kernkraftwerk	2001	4	0,03	4	<0,05	10	<0,007 - <0,013
Obrigheim	2002	4	0,03 (0,02 - 0,05)	4	<0,04 (0,04 - <0,05)	10	<0,009 - <0,010
Kernkraftwerk	2001	4	0,02	4	<0,05	10	<0,008 - <0,012
Neckarwestheim	2002	4	0,03 (0,02 - 0,03)	2	<0,04 (<0,04 - <0,04)	10	<0,008 - <0,012
Kernkraftwerk	2001	4	0,03	4	<0,03	12	<0,005 - <0,011
Philippsburg	2002	4	0,03 (0,02 - 0,04)	3	<0,02 (<0,02 - <0,03)	11	<0,005 - <0,012
Kernkraftwerk	2001	5	0,05	5	<0,05	11	<0,007 - <0,016
Beznau/Leibstadt, Schweiz	2002	2	0,05 (0,04 - 0,07)	a)		6	<0,006 - <0,011
Kernkraftwerk	2001	4	0,03	4	<0,09	8	<0,004 - <0,012
Fessenheim, Frankreich	2002	1	0,02	1	<0,05	1	<0,007
Bayern							
Kernkraftwerk	2001	a)		a)		a)	
Gundremmingen	2002	a)		a)		a)	
Kernkraftwerk	2001	a)		a)		a)	
Isar	2002	a)		a)		a)	
Kernkraftwerk	2001	a)		a)		a)	
Grafenrheinfeld	2002	a)		a)		a)	
Brandenburg							
Kerkraftwerk	2001	4	0,02	4	<0,09	a)	
Rheinsberg	2002	4	0,02 (0,01 - 0,04)	4	<0,10 (<0,08 - <0,12)	a)	
Hessen							
Kernkraftwerk	2001	10	0,03	10	<0,09	25	<0,006 - <0,010
Biblis	2002	a)		a)		a)	
Mecklenburg - Vor- pommern							
Kernkraftwerk	2001	6	0,03	6	<0,13	6	<0,09 - <0,14
Greifswald	2002	6	0,02 (0,01 - 0,03)	6	<0,29 (<0,10 - 1,10)	6	<0,11 - <0,12

Bundesland kerntechnische	Jahr	N	Mittelwert in Bq/I (Bereich)	N	Mittelwert in Bq/l (Bereich)	N	Mittelwert in Bq/l (Bereich)
Anlagen			Sr-90		Cs-137		I-131
Niedersachsen							
Kernkraftwerk	2001	4	0,02	4	<0,07	12	<0,005 - <0,013
Stade	2002	a)		a)		a)	
Kernkraftwerk	2001	4	0,02	4	<0,07	12	<0,006 - <0,011
Unterweser	2002	a)		a)		a)	
Kernkraftwerk	2001	4	0,02	4	<0,07	12	<0,004 - <0,012
Grohnde	2002	a)		a)		a)	
Kernkraftwerk	2001	4	0,02	4	<0,10	12	<0,005 - <0,015
Emsland	2002	4	0,02 (0,02 - 0,03)	4	<0,09 (0,07 - 0,13)	12	<0,005 - <0,012
Schacht Konrad II b)	2001	a)		6	<0,10		
	2002	a)		a)			
							I - 129 μBq/l
Zwischenlager	2001	12	0,03	24	0,36	2	17
Gorleben	2002	a)		a)		a)	
Nordrhein-Westfalen							I - 131 Bq/I
KFA Jülich	2001	2	0,04	2	<0,07	35	< 0,01 - < 0,01
	2002	2	0,03 (0,02 - 0,03)	4	<0,06 (<0,03 - <0,09)	41	<0,002 - <0,01
Kernkraftwerk	2001	a)		a)			
Würgassen	2002	a)		a)			
Kernkraftwerk	2001	a)		a)			
Hamm-Uentrop	2002	a)		a)			
114000	0004	40	Uran Bq/I	40	Fluor mg/l		
UAG Gronau	2001 2002	12 11	<0,23 <0,23	12 11	<0,42 <0,42 (<0,42 - <0,42)		
			(<0,23 - <0,23)				I-131
Rheinland-Pfalz			Sr-90		Cs-137		1-131
Kernkraftwerk	2001	4	0,04	4	0,03	a)	
Mülheim-Kärlich	2002	4	0,09 (0,02 - 0,23)	4	<0,04 (<0,02 - 0,10)	a)	
Kernkraftwerk	2001	a)		a)		a)	
Cattenom	2002	a)		a)		a)	
Frankreich				,		,	
Sachsen-Anhalt							
Endlager Morsleben	2001	a)		4	<0,13		
	2002	a)		4	<0,18 (<0,10 - <0,30)		
Sachsen							
Rossendorf	2001	2	b) 0,03; 0,03	4	<0,33	2	<0,05 - <0,07
	2002	a)		a)		a)	

Bundesland	Jahr	N	Mittelwert in Bq/l	N	Mittelwert in Bq/I	N	Mittelwert in Bq/I
kerntechnische			(Bereich)		(Bereich)		(Bereich)
Anlagen			Sr-90		Cs-137		I-131
Schleswig-Holstein							
GKSS Geesthacht	2001	4	0,05	4	<0,13	12	<0,006 - <0,009
	2002	2	0,04 (0,04 - 0,05)	2	<0,19 (<0,08 - 0,30)	8	<0,003 - <0,009
Kernkraftwerk	2001	4	0,04	4	0,08	32	<0,007 - <0,01
Brunsbüttel	2002	2	0,04 (0,04 - 0,05)	2	0,08 (0,05 - 0,12)	16	<0,007 - <0,01
Kernkraftwerk	2001	8	0,03	8	0,08	23	<0,008 - <0,01
Krümmel	2002	4	0,03 (0,01 - 0,08)	4	0,16 (0,03 - 0,36)	16	<0,008 - <0,01
Kernkraftwerk	2001	8	0,04	8	<0,07	24	<0,008 - <0,01
Brokdorf	2002	4	0,03 (0,03 - 0,04)	4	<0,06 (<0,03-0,12)	16	<0,008 - <0,01

a) Messwerte lagen nicht vorb) Im Genehmigungsverfahren befindliches Endlagerprojekt

1.4.3 Oberflächenwasser und Sediment der Binnengewässer (Surface water and sediment from inland waters)

Bearbeitet von der Bundesanstalt für Gewässerkunde, Koblenz

Der vorliegende Beitrag enthält die Ergebnisse der Radioaktivitätsmessungen an Wasser- und Sedimentproben aus dem aquatischen Nahbereich kerntechnischer Anlagen gemäß der Richtlinie zur Emissionsund Immissionsüberwachung kerntechnischer Anlagen (REI) aus dem Jahr 2002. In die Auswertung wurden insgesamt 3.585 (2001: 2.625) Einzelwerte von 267 (2001: 259) Probenentnahmestellen einbezogen; sie erfolgte entsprechend den Hinweisen in Teil I Abschnitt 3.3.1 dieses Berichts.

Die Auswirkungen kerntechnischer Anlagen waren in Oberflächenwasser aus dem Nahbereich der jeweiligen Standorte allenfalls in Einzelfällen nachweisbar. Erhöhte Tritium-Gehalte (H-3) wurden in Stichproben gemessen, die unmittelbar am Auslaufbauwerk genommen wurden. Die Werte betrugen hier im Mittel bis zu 2.330 Bq/l (Ems, KKW Emsland). In Folge der Durchmischung entlang der Fließstrecke gingen die H-3-Konzentrationen aber wieder zurück (siehe auch Teil I Abschnitt 3.3.1). Die Nuklidgehalte anderer relevanter Spalt- und Aktivierungsprodukte unterschritten in der Regel die Nachweisgrenze der REI von 0,05 Bq/l oder waren wegen der Vorbelastung, insbesondere Strontium-90 (Sr-90) und Cäsium-137 (Cs-137) bis 0,01 Bq/l aus anderen Quellen - Kernwaffen-Fallout und Reaktorunfall in Tschernobyl -, praktisch nicht aufzeigbar. Dies gilt auch für Iod-131 (I-131), das meist von nuklearmedizinischen Anwendungen stammen dürfte. Einzelne Bestimmungen von Plutonium-238 (Pu-238) und Pu-239/240 an Wasserproben ließen wegen der niedrigen Werte (unter 0,0002 Bq/l) kaum Auswirkungen der jeweiligen Anlage im Vorfluter erkennen (Elbe/KKW Brunsbüttel).

In Sedimentproben aus dem Nahbereich kerntechnischer Anlagen lagen die mittleren Gehalte der anlagenspezifischen Radionuklide überwiegend unterhalb der Nachweisgrenze der REI von 5 Bq/kg TM. In wenigen direkt an Auslaufbauwerken entnommenen Sedimentproben wurden geringfügig höhere mittlere Gehalte an Kobalt-60 (Co-60) gemessen: bis 16 Bq/kg TM in der Weser/KKW Würgassen. Auf Grund der vergleichsweise hohen Vorbelastung an Cs-137 waren Auswirkungen dieses Radionuklids von kerntechnischen Anlagen auch hier praktisch nicht aufzeigbar. Für Alpha-Strahler wurden etwas erhöhte Werte der Gesamt-Alpha-Aktivität (Ga) bis ca. 560 Bq/kg TM im Mittel im Hirschkanal/Forschungszentrum Karlsruhe gemessen; hier konnte zudem Americium-241 (Am-241) bis 6,4 Bq/kg TM nachgewiesen werden. Vereinzelt durchgeführte Messungen von Pu-238 und Pu-239/240 ergaben Gehalte bis höchstens 0,05 bzw. 0,25 Bg/kg TM (Elbe/KKW Brunsbüttel).

Zu bedenken ist, dass von den kerntechnischen Anlagen mit den Abwässern abgegebene Radionuklide, im Allgemeinen an Schwebstoff sorbiert, über große Fließstrecken verfrachtet werden können, um in Stillwasserbereichen (Häfen, Stauhaltungen, Altarmen, Buhnenfeldern, Uferböschungen u. a.) zu sedimentieren. In Falle einer Nutzung oder bei erforderlichen Ausbaumaßnahmen (Schifffahrt) müssen solche Flussabschnitte u. U. mit zu den "ungünstigsten Einwirkungsstellen" gezählt werden.

Strahlenexposition

Die durch Ableitungen radioaktiver Abwässer aus kerntechnischen Anlagen verursachte Aufstockung der Gehalte an Spalt- und Aktivierungsprodukten in Oberflächenwasser ist aus radiologischer Sicht vernachlässigbar. Geringfügig erhöhte H-3-Gehalte traten als Folge von Ableitungen aus dem französischen KKW Cattenom in der Mosel auf mit Jahresmittelwerten bis ca. 24 Bq/l (siehe Teil I Abschnitt 3.3.1). Unter der Annahme, dass Oberflächenwasser dieses Flussabschnittes unaufbereitet als Trinkwasser genutzt würde, ergibt sich die auf dem "Trinkwasser-Pfad" für Erwachsene (> 17 a; 700 l/a Konsum) von H-3 resultierende effektive Dosis zu ca. 0,30 μ Sv/a. Für Kleinkinder (<= 1 a; 340 l/a Konsum) beträgt der entsprechende Wert 0,52 μ Sv/a. Hierdurch würde der Dosisgrenzwert von 300 μ Sv/a nach § 47 der Strahlenschutzverordnung (StrlSchV) von 2001 zu 0,1 bzw. 0,17% ausgeschöpft werden.

Mittlere Gehalte an Co-60 von 16 Bq/kg TM konnten an Sedimentproben aus der Weser gemessen werden. Für den Fall, dass derartiges Sohlenmaterial gebaggert und an Land gelagert werden würde, lässt sich die auf dem sensitiven Expositionspfad "Aufenthalt auf Spülfeldern" zu erwartende zusätzliche externe effektive Dosis für Erwachsene (> 17 a) für Standardbedingungen zu ca. 5 μ Sv/a abschätzen. Sie liegt damit ebenfalls weit unter dem Dosisgrenzwert nach § 47 StrlSchV von 300 μ Sv/a.

Tabelle 1.4.3-1 Überwachung der Gewässer in der Umgebung kerntechnischer Anlagen gemäß der REI (Monitoring of bodies of water in the surroundings of nuclear facilities in accordance with the REI)

Gewässer	Nuklid	Ort, Fluss-km			Aktivität	skonzentratio	n	
Umweltmedien			N	<nwg< th=""><th>Einzelw</th><th>erte 2002</th><th>Jahresn</th><th>nittelwerte</th></nwg<>	Einzelw	erte 2002	Jahresn	nittelwerte
					Min.Wert	Max.Wert	2002	2001
RHEIN / KKW B	eznau und Le	ibstadt (Schweiz)		<u>I</u>		l .		
Oberflächen-	H-3	vor Aare-Einmündung	3	3	<8,0	<8,0	nn	nn
wasser (Bq/I)		vor KKW Leibstadt	3	3	<8,0	<8,0	nn	nn
		nach KKW Leibstadt	3	3	<8,0	<8,0	nn	nn
	Co-60	vor Aare-Einmündung	3	3	<0,015	<0,023	nn	nn
		vor KKW Leibstadt	3	3	<0,018	<0,041	nn	nn
		nach KKW Leibstadt	3	3	<0,017	<0,027	nn	nn
	Cs-137	vor Aare-Einmündung	3	3	<0,014	<0,017	nn	nn
		vor KKW Leibstadt	3	3	<0,015	<0,041	nn	nn
		nach KKW Leibstadt	3	3	<0,017	<0,023	nn	nn
Sediment	Co-58	nach KKW Leibstadt	0	0				0,41
(Bq/kg TM)	Co-60	vor Aare-Einmündung	2	2	<0,49	<0,58	nn	nn
		vor KKW Leibstadt	2	2	<0,61	<0,72	nn	nn
	0- 407	nach KKW Leibstadt		2	<0,42	<0,47	nn	0.0
	Cs-137	vor Aare-Einmündung vor KKW Leibstadt	2	0	4,66	6,59	5,63	9,0
		nach KKW Leibstadt	2	0	7,1 5,2	16,5 7,42	11,8 6,31	7,9 7,6
RHEIN / KKW Fe	ssenheim (F			0	5,2	7,72	0,01	7,0
Oberflächen-	H-3	Weil	9	8	<8,0	<8.0	nn	nn
wasser (Bg/l)		Breisach	9	9	<8.0	<10,0	<8.2	nn
(4)	Co-60	Weil	9	9	<0,014	<0,032	nn	nn
		Breisach	9	9	<0,013	<0,034	nn	nn
	Cs-137	Weil	9	8	0,012	<0,026	<0.019	nn
		Breisach	9	9	<0,010	<0,032	nn	nn
Sediment	Co 60	Grissheim, km 206,5	a)					nn
(Bq/kg TM)		Breisach, km 232,0	a)					nn
	Cs-137	Grissheim, km 206,5	a)					3,9
		Breisach, km 232,0	a)					4,2
RHEIN / Forschi	ungszentrum	Karlsruhe						
Oberflächen-	H-3	Rheinniederungskanal, vor	a)					nn
wasser (Bq/l)		Auslaufbauwerk						.00 =
		Rheinniederungskanal, nach Auslaufbauwerk	a)					<26,7
	0- 00		- >					
	Co-60	Rheinniederungskanal, vor Auslaufbauwerk	a)					nn
		Rheinniederungskanal, nach	a)					nn
		Auslaufbauwerk	ω,					• • • • • • • • • • • • • • • • • • • •
	Cs-137	Rheinniederungskanal, vor	a)					nn
		Auslaufbauwerk	,					
		Rheinniederungskanal, nach	a)					nn
		Auslaufbauwerk						
Sediment	$G\alpha$	Hirschkanal	3	0	490	630	563	
(Bq/kg TM)	Gβ	Hirschkanal	3	0	1200	1400	1270	1250
	Cs-137	Rheinniederungskanal, vor	a)					8,9
		Auslaufbauwerk						
		Rheinniederungskanal, nach	a)					6,2
		Auslaufbauwerk Hirschkanal	2	0	140	160	153	352
	D., 000		3	U	140	160	153	353
	Pu-238	Rheinniederungskanal, 100 m unterhalb Auslaufbauwerk	a)					0,07
	Du 220/240		2)					0.20
	Pu-239/240	Rheinniederungskanal, 100 m unterhalb Auslaufbauwerk	a)					0,29
	Am-241	Hirschkanal	3	0	6,0	6,4	6,2	
	AIII-24 I	i ili sul ikaliai	J	U	0,0	0,4	0,2	-

Gewässer	Nuklid	Ort, Fluss-km	Aktivitätskonzentration						
Umweltmedien			N	<nwg< th=""><th colspan="3">Einzelwerte 2002 Jah</th><th colspan="2">hresmittelwerte</th></nwg<>	Einzelwerte 2002 Jah			hresmittelwerte	
					Min.Wert	Max.Wert	2002	2001	
RHEIN / KKW PI		1					I I		
Oberflächen- wasser (Bq/l)	H-3	vor Auslaufbauwerk am Auslaufbauwerk	9	9 4	<8,0 <8,9	<8,9 130	nn 46,8	nn <9,6	
	Co-60	vor Auslaufbauwerk	2	2	<0,018	<0.020	nn	nn	
	00 00	am Auslaufbauwerk	2	2	<0,014	<0,017	nn	nn	
	Cs-137	vor Auslaufbauwerk	2	2	<0,012	<0,019	nn	nn	
		am Auslaufbauwerk	2	2	<0,011	<0,015	nn	nn	
Sediment (Bq/kg TM)	Co-58	vor Auslaufbauwerk am Auslaufbauwerk	- 2	0 0	1.40	5,0	2.25	3,40	
	Co-60	vor Auslaufbauwerk	2	2	1,49 <1,02	<2,08	3,25 nn	4,13 nn	
	00-00	am Auslaufbauwerk	3	0	4,91	6,15	5,53	7,30	
	Cs-137	vor Auslaufbauwerk	2	0	12,9	19,2	16,1	16,3	
		am Auslaufbauwerk	3	0	12,9	25,1	19,4	20,0	
RHEIN / KKW Bi		<u>, </u>							
Oberflächen-	H-3	am Auslaufbauwerk	a)					nn	
wasser (Bq/I)	Co-60	am Auslaufbauwerk	a)					nn	
Codino out	Cs-137	am Auslaufbauwerk	a)					nn	
Sediment (Bq/kg TM)	Co-60	vor Auslaufbauwerk nach Auslaufbauwerk	a) a)					nn nn	
(Eq/itg 1111)	Cs-137	vor Auslaufbauwerk	a)					6,00	
		nach Auslaufbauwerk	a)					13,0	
RHEIN / KKW M	ülheim-Kärlid	ch (außer Betrieb)							
Oberflächen-	H-3	vor Auslaufbauwerk, km 604,5	3	0	4,5	6,3	5,2	5,8	
wasser (Bq/I)		nach Auslaufbauwerk,		0	5 0	0.0	- 0	5 0	
	Co 60	km 605,9 vor Auslaufbauwerk, km 604,5	3	0	5,6 <0,020	6,2 <0,030	5.9	5,9	
	Co-60	nach Auslaufbauwerk,	3	3	<0,020	<0,030	nn	nn	
		km 605,9	3	3	<0,020	<0,030	nn	nn	
	Cs-137	vor Auslaufbauwerk, km 604,5	3	3	<0,020	<0,020	nn	nn	
		nach Auslaufbauwerk,	3	3	<0.020	<0.020	20		
Sediment	Co-60	km 605,9 vor Auslaufbauwerk, km 596,5	2	2	<1,02	<2,08	nn nn	nn nn	
(Bq/kg TM)	00-00	nach Auslaufbauwerk,	_	_	1,02	٠2,00	1111	1111	
, , ,		km 621,4	2	0	1,1	1,3	1,2	1,35	
	Cs-137	vor Auslaufbauwerk, km 596,5	2	0	12,9	19,2	16,1	13,0	
		bzw. 604,5 nach Auslaufbauwerk,	2	0	11,0	13,0	12,0	14,0	
		km 621,4	_	· ·	11,0	10,0	12,0	14,0	
NECKAR / KKW	Neckarwest	heim					<u>. </u>		
Oberflächen-	H-3	vor Auslaufbauwerk I und II	2	2	<8,0	<8,0	nn	nn	
wasser (Bq/I)	0 - 00	am Auslaufbauwerk I und II	2	0	74,0	90,0	82,0	28,3	
	Co-60	vor Auslaufbauwerk I und II am Auslaufbauwerk I und II	2	2 2	<0,020 <0,015	<0,024 <0,023	nn nn	nn nn	
	Cs-137	vor Auslaufbauwerk I und II	2	2	<0,015	<0,023	nn	nn	
		am Auslaufbauwerk I und II	2	2	<0,014	<0,019	nn	nn	
Sediment	Co-60	vor Auslaufbauwerk	2	2	<0,58	<0,62	nn	-	
(Bq/kg TM)	0.46=	nach Auslaufbauwerk	2	2	<0,54	<0,67	nn	-	
	Cs-137	vor Auslaufbauwerk nach Auslaufbauwerk	2	0 0	4,48 5,43	6,57 11,4	5,48 8,42	6,5 5,3	
NECKAR / KKW	Obriaheim (Taon / taolaarbauwon		0	0,-10	11,⊸r	5,72	0,0	
Oberflächen-	H-3	vor Auslaufbauwerk	3	3	<8,0	<8,0	nn	<8,5	
wasser (Bq/I)	-	am Auslaufbauwerk	3	0	18,0	35,0	24,0	16,0	
	Co-60	vor Auslaufbauwerk	3	3	<0,017	<0,024	nn	nn	
	0 10-	nach Auslaufbauwerk	3	3	<0,016	<0,021	nn	nn	
	Cs-137	vor Auslaufbauwerk am Auslaufbauwerk	3	3 3	<0,017 <0,014	<0,022 <0,019	nn nn	<0,016	
		am Ausiauibauweik	ی	J	~ 0,014	~U,U 18	1111	nn	

Gewässer	Nuklid	Ort, Fluss-km			Aktivitätskonzentration				
Umweltmedien			N	<nwg< th=""><th colspan="3">Einzelwerte 2002 Jahresmitte</th><th>nittelwerte</th></nwg<>	Einzelwerte 2002 Jahresmitte			nittelwerte	
					Min.Wert	Max.Wert	2002	2001	
Sediment	Co-60	vor Auslaufbauwerk	2	2	<0,55	<0,65	nn	nn	
(Bq/kg TM)	0- 407	nach Auslaufbauwerk	2	2	<0,81	<0,84	nn 0.47	nn 4.00	
	Cs-137	vor Auslaufbauwerk nach Auslaufbauwerk	2	0 0	0,42 9,2	0,53 10,0	0,47 9,6	1,06 12,5	
MAIN / KKW Gra	fonrheinfold			U	9,2	10,0	9,0	12,5	
Oberflächen-	H-3	vor Auslaufbauwerk, km 324,6	a)						
wasser (Bq/I)		nach Auslaufbauwerk, km 323,6	a)						
	Co-60	vor Auslaufbauwerk, km 324,6	a)						
		nach Auslaufbauwerk, km 323,6	a)						
	Cs-137	vor Auslaufbauwerk, km 324,6	a)						
		nach Auslaufbauwerk, km 323,6	a)						
Sediment	Co-60	vor Auslaufbauwerk, km 324,6	a)						
(Bq/kg TM)		nach Auslaufbauwerk, km 323,6	a)						
	Cs-137	vor Auslaufbauwerk, km 324,6	a)						
		nach Auslaufbauwerk, km 323,6	a)						
KINZIG / DOPPE	LBIERGRAB	EN / Nuklearbetriebe Hanau-W	olfgar	ng					
Oberflächen-	Gα	Ablauf Kläranlage Hanau	a)					0,13	
wasser (Bq/I)	Sr-90	Kinzig, Hanau	a)					nn	
	Cs-137		a)					nn	
	U-234		a)					0,010	
	U-235		a)					nn	
	U-238		a)					<0,0054	
	Pu-238 Pu-239/240		a) a)					nn nn	
Sediment	Gα	Kinzig, vor Einleitung	a)						
(Bq/kg GR)	3 a	Doppelbiergraben	a)						
(GR =		Kinzig, nach Einleitung	a)						
Glührückstand)		Doppelbiergraben	a)						
		Doppelbiergraben	a)						
	Cs-137	Kinzig, Hanau	a)					4,81	
	U-234	Doppelbiergraben	a)						
	U-235		a)						
	U-238 Pu-238		a) a)						
	Pu-239/240		a) a)						
MOSEL / KKW (Cattenom	1					I		
Oberflächen-		keine Werte / s. a. Teil I	a)						
wasser (Bq/I)		Abschnitt 3.3.1							
Sediment		keine Werte / s. a. Teil I	a)						
(Bq/kg TM)	<u> </u>	Abschnitt 3.3.1							
DONAU / KKW (-	,	1	1		1		
Oberflächen- wasser (Bq/I)	H-3	vor Auslaufbauwerk Staustufe Faimingen, km 2546,0	a) a)						
	Co-60	vor Auslaufbauwerk	a)						
		Staustufe Faimingen, km 2546,0	a)						
	Cs-137	vor Auslaufbauwerk	a)						
		Staustufe Famingen, km 2546,0	a)						
Sediment	Co-60	vor Auslaufbauwerk	a)						
(Bq/kg TM)		Staustufe Faimingen, km 2548,5	a)						

Gewässer Umweltmedien	Nuklid	Ort, Fluss-km	Aktivitätskonzentration						
			N	<nwg< th=""><th></th><th>erte 2002 Max.Wert</th><th></th><th>mittelwerte</th></nwg<>		erte 2002 Max.Wert		mittelwerte	
	Cs-137	vor Auslaufbauwerk	a)		Min.Wert	wax.vvert	2002	2001	
		Staustufe Faiminge, km 2548,5	a)						
ISAR / KKW Isai	r 1 und 2						•	•	
Oberflächen-	H-3	vor Auslaufbauwerk 1	a)						
wasser (Bq/I)		Staustufe Niederaichbach, km 60,0	a)						
	Co-60	vor Auslaufbauwerk 1 Staustufe Niederaichbach, km 60,0	a) a)						
	Cs-137	vor Auslaufbauwerk 1 Staustufe Niederaichbach, km 60,0	a) a)						
Sediment (Bq/kg TM)	Co-60	vor Auslaufbauwerk1 Staustufe Niederaichbach, km 60.0	a) a)						
	Cs-137	vor Auslaufbauwerk 1 Staustufe Niederaichbach, km	a) a)						
	agraaktar M	60,0						1	
ISAR / Forschur Oberflächen-	H-3	Ismaninger Brücke, km 133,7	a)						
wasser (Bq/l)		Grünecker Brücke, km 124,6	a)						
	Co-60	Ismaninger Brücke, km 133,7 Grünecker Brücke, km 124,6	a) a)						
	Cs-137	Ismaninger Brücke, km 133,7 Grünecker Brücke, km 124,6	a) a)						
Sediment (Bq/kg TM)	Co-60	Ismaninger Brücke, km 133,7 Grünecker Brücke, km 124,6	a) a)						
	Cs-137	Ismaninger Brücke, km 133,7 Grünecker Brücke, km 124,6	a) a)						
EMS / KKW Ems	sland					I.			
Oberflächen- wasser (Bq/I)	H-3	vor Auslaufbauwerk am Auslaufbauwerk	4 4	4 0	<10,0 130	<10,0 6700	nn 2330	nn 3220	
	Co-60	vor Auslaufbauwerk am Auslaufbauwerk	4 4	4 4	<0,0065 <0,0071	<0,014 <0,012	nn nn	nn nn	
	Cs-137	vor Auslaufbauwerk am Auslaufbauwerk	4 4	4 4	0,0052 <0,0074	<0,012 <0,011	nn nn	nn nn	
Sediment (Bq/kg TM)	Co-60	vor Auslaufbauwerk, km 84,7 nach Auslaufbauwerk, km 106,3	4	4 4	<0,22 <0,66	<0,37 <0,69	nn nn	nn nn	
	Cs-137	vor Auslaufbauwerk, km 84,7 nach Auslaufbauwerk, km 106,3	4 4	0	6,6 50,0	23 54	13,2 52	12,0 61,0	
WESER / KKW \	Niiraasson		<u> </u>				<u> </u>	1	
Oberflächen-	H-3	vor Auslaufbauwerk	4	4	<10,0	<10.0	nn	nn	
wasser (Bq/I)		am Auslaufbauwerk	4	4	<10,0	<10,0	nn	nn	
	Co-60	vor Auslaufbauwerk am Auslaufbauwerk	4	4 4	<0,050 <0,050	<0,050 <0,050	nn nn	nn nn	
	Cs-137	vor Auslaufbauwerk am Auslaufbauwerk	4 4	4 4	<0,050 <0,050	<0,050 <0,050	nn nn	nn nn	
Sediment (Bq/kg TM)	Co-60	Herstelle, km 47,2 am Auslaufbauwerk, km 49,6	2 2	2	<1,30 13	<2,10 18	nn 16	nn 34,5	
	0- 407	Wehrden, km 60,2	2	2	<1,0	<2,0	nn 40	nn 10.0	
	Cs-137	Herstelle, km 47,2 am Auslaufbauwerk, km 49,6 Wehrden, km 60,2	2 2 2	0 0 0	16 20 13	20 32 23	18 26 18	19,0 38,5 13,0	

Gewässer	Nuklid	Ort, Fluss-km				skonzentratio		
Umweltmedien			N	<nwg< th=""><th>Einzelw</th><th>erte 2002</th><th></th><th>nittelwerte</th></nwg<>	Einzelw	erte 2002		nittelwerte
					Min.Wert	Max.Wert	2002	2001
WESER / KKW (40.0	100	1 1	
Oberflächen- wasser (Bg/l)	H-3	vor Auslaufbauwerk am Auslaufbauwerk	4 4	4 1	<10,0 <10,0	<10,0 410	nn 206	nn 74,7
wasser (bq/i)	Co-60	vor Auslaufbauwerk	4	4	<0,0066	<0.019	nn	nn nn
	C0-00	am Auslaufbauwerk	4	4	<0,0000	<0,019	nn	nn
	Cs-137	vor Auslaufbauwerk	4	4	<0.0057	<0,017	nn	nn
		am Auslaufbauwerk	4	4	<0,0063	<0,010	nn	nn
Sediment	Co-60	Grohnde, km 122	4	4	<0,28	<0,59	nn	nn
(Bq/kg TM)		Hameln, km 135	4	4	<0,48	<0,64	nn	nn
	Cs-137	Grohnde, km 122	4	0	1,5	13	9,1	17,0
		Hameln, km 135	4	0	16	19	18	19,0
UNTERWESER /							1 1	
Sediment	Co-60	vor Auslaufbauwerk, km 44,1 nach Auslaufbauwerk, km 60,0	4 4	1 0	<0,23	0,76 0,77	0,54 0,62	0,92 0,57
(Bq/kg TM)	Cs-137	vor Auslaufbauwerk, km 44,1	4	0	0,51 4,9	11,0	7,5	9,1
	CS-131	nach Auslaufbauwerk, km 60,0	4	0	4,9 5,6	11,0	8,3	9, i 8,6
RUR / Forschun	aszentrum .l	1 '			0,0	11,0	0,0	0,0
Oberflächen-	H-3	Selhausen	4	4	<10,0	<10,0	nn	nn
wasser (Bq/I)		Jülich-Süd	4	4	<10,0	<10,0	nn	nn
` ' '	Co-60	Selhausen	4	4	<0,050	<0,050	nn	nn
		Jülich-Süd	4	4	<0,050	<0,050	nn	nn
Sediment	Co-60	Selhausen	2	2	<2,30	<3,0	nn	nn
(Bq/kg TM)		Jülich-Süd	2	2	<1.40	<4,9	nn	nn
	Cs-137	Selhausen	2	0	13	18	16	20,5
000000000000000000000000000000000000000		Jülich-Süd	2	0	28	36	32	25,5
		rungsanlage Gronau		4	10,000	0.000	0.070	-0.005
Oberflächen- wasser (Bq/l)	Gα	Retentionsanlage unterhalb der Straßenkreu- zung	4 12	1 12	<0,060 <0,060	0,090 <0,060	0,076 nn	<0,065 nn
Sediment (Bq/kg TM)	Co-60	Retentionsanlage Dinkel, nach Kläranlage Gro- nau	2 2	2 2	<1,30 <1,20	<2,30 <2,20	nn nn	nn nn
	Cs-137	Retentionsanlage Dinkel, nach Kläranlage Gro- nau	2 2	0 0	29 31	61 34	45 33	84 34,0
	Uran	Retentionsanlage unterhalb der Straßenkreu- zung	a) a)					0,79 0,92
AHAIISER AA /	MOORBACH	/ Brennelement-Zwischenlager	· Ahaı	ıs				
Oberflächen-	Gα	Ahauser Aa	4	4	<0,20	<0,20	nn	nn
wasser (Bq/I)	Rβ	,aaoo, , .a	4	4	<0,20	<0,20	nn	nn
,	H-3		4	4	<10,0	<10,0	nn	nn
	Co-60		4	4	<0,050	<0,050	nn	nn
	Cs-137		4	4	<0,050	<0,050	nn	nn
Sediment	Co-60	Moorbach	4	4	<2,0	<5,0	nn	nn
(Bq/kg TM)		Ahauser Aa	4	4	<2,0	<4,0	nn	nn
	Cs-137	Moorbach	4 4	0 0	27 36	37 68	34	38,5
ELBE / Farachii		Ahauser Aa	4	U	30	00	54	56,0
ELBE / Forschu	_			4	-10.0	<10,0		
Oberflächen- wasser (Bq/I) H-3 Co-60		vor Auslaufbauwerk, km 578,6 nach Auslaufbauwerk, km 579,6	4 4	4 4	<10,0 <10,0	<10,0	nn nn	nn nn
		vor Auslaufbauwerk, km 578,6 nach Auslaufbauwerk,	4 4	4 4	<0,020 <0,027	<0,042 <0,042	nn nn	nn nn
	Cs-137	km 579,6 vor Auslaufbauwerk, km 578,6 nach Auslaufbauwerk,	4	4 4	<0,023 <0,019	<0,045 <0,049	nn nn	nn nn

Gewässer	Nuklid	Ort, Fluss-km			Aktivität	skonzentratio	n	
Umweltmedien			N	<nwg< th=""><th>Einzelw</th><th>erte 2002</th><th>Jahresr</th><th>nittelwerte</th></nwg<>	Einzelw	erte 2002	Jahresr	nittelwerte
					Min.Wert	Max.Wert	2002	2001
Sediment (Bq/kg TM)	Co-60	vor Auslaufbauwerk, km 578,6 nach Auslaufbauwerk, km 579,6	1	1	<0,87 <0,98	<0,87 <,98	nn nn	nn nn
	Cs-137	vor Auslaufbauwerk, km 578,6 nach Auslaufbauwerk, km 579,6	1 1	1 1	<0,49 <0,73	<0,49 <0,73	nn nn	1,07 nn
ELBE / KKW Kri	immel							
Oberflächen- wasser (Bq/I)	H-3	vor Auslaufbauwerk, km 568,9 nach Auslaufbauwerk, km 588,3	12 12	12 12	<6,5 <6,5	<6,5 <6,5	nn nn	nn nn
	Co-60	vor Auslaufbauwerk, km 568,9 nach Auslaufbauwerk, km 588,3	12 12	12 12	<0,0072 <0,0070	<0,015 <0,012	nn nn	nn nn
	Cs-137	vor Auslaufbauwerk, km 568,9 nach Auslaufbauwerk, km 588,3	12 12	12 12	<0,0080 <0,0079	<0,016 <0,015	nn nn	nn nn
Sediment (Bq/kg TM)	Co-60	vor Auslaufbauwerk, km 578,8 nach Auslaufbauwerk, km 582,9	4 4	4 4	<0,82 <0,73	<1,00 <1,00	nn nn	nn nn
	Cs-137	vor Auslaufbauwerk, km 578,8 nach Auslaufbauwerk, km 582,9	4 4	0 0	0,62	1,30	0,85	2,28 0,81
ELBE / KKW Bro	kdorf							
Sediment (Bq/kg TM)	Co-60	vor Auslaufbauwerk, km 678-682,5 nach Auslaufbauwerk,	6	6	<0,78 <0,91	<1,20 <1,40	nn nn	nn nn
	Cs-137	km 683,3-688,8 vor Auslaufbauwerk,	6	2	<0,81	18,0	6,98	4,20
	03-107	km 678-682,5 nach Auslaufbauwerk, km 683,3-688,8	6	2	<0,92	4,50	2,95	<2,14
ELBE / KKW Sta	de	, , .					I	
Oberflächen- wasser (Bq/l)	H-3	vor Auslaufbauwerk, km 635 am Auslaufbauwerk	4	4 3	<10,0 <10,0	<10,0 18,0	nn <12,0	nn <13,0
	Co-60	vor Auslaufbauwerk, km 635 am Auslaufbauwerk	4 4	4 3	<0,0055 <0,0051	<0,010 <0,010	nn <0,0071	nn nn
	Cs-137	vor Auslaufbauwerk, km 635 am Auslaufbauwerk	4 4	4 4	<0,0050 <0,0050	<0,0089 <0,0099	nn nn	nn nn
Sediment (Bq/kg TM)	Co-60	vor Auslaufbauwerk, km 654 nach Auslaufbauwerk, km 660	4 4	4 4	<0,13 <0,33	<0,41 <0,51	nn nn	<0,32 0,45
	Cs-137	vor Auslaufbauwerk, km 654 nach Auslaufbauwerk, km 660	4	0 0	1,70 6,40	13,0 11,0	5,13 9,35	5,6 10,5
ELBE / KKW Bru		File a Line 200			.e =	-0.4	I .	
Oberflächen- wasser (Bq/l)	H-3	Elbe, km 690 Elbe, km 693 Elbe, km 698	4 2 2	4 2 2	<5,7 5,7 <5,8	<6,1 <6,1 <6,1	nn nn nn	nn nn nn
	Co-60	Elbe, km 690 Elbe, km 693 Elbe, km 698	4 2 2	4 2 2	<0,0069 <0,0069 <0,0074	<0,011 <0,0074 <0,0079	nn nn nn	nn nn nn
	Sr-90	Elbe, km 690 Elbe, km 693 Elbe, km 698	4 2 2	0 0 0	0,0049 0,0049 0,0051	0,0052 0,0052 0,0051	0,0050 0,0051 0,0051	0,0050 0,0049 0,0050
	Cs-137	Elbe, km 690 Elbe, km 693 Elbe, km 698	4 2 2	4 2 2	<0,0074 <0,0080 <0,0084	<0,011 <0,0081 <0,0089	nn nn nn	<0,0098 0,011 nn
	Pu-238 Pu-239/240	Elbe, km 690 Elbe, km 690	1 1	1 1	<0,00009 <0,0001	<0,00009 <0,00001	nn nn	nn 0,00008

Sediment Co-60	Gewässer	Nuklid	Ort, Fluss-km				skonzentratio		
Sediment Co-60	Umweltmedien			N	<nwg< th=""><th>Einzelwe</th><th>erte 2002</th><th>Jahresn</th><th>nittelwerte</th></nwg<>	Einzelwe	erte 2002	Jahresn	nittelwerte
Baylang Tampa Auslaurbauwerk 4 4 4 4 4 4 4 4 4								2002	2001
Auslaufbauwerk, 5 m unterhalb		Co-60		-	•		-		nn
Cs-137	(Bq/kg TM)			-		*	,		nn
Auslaurbauwerk		Co 127			-		•		
Auslaufbauwerk, 5 m unterhalb		CS-137	1 · · · · · · · · · · · · · · · · · · ·		-		*		2,20 4,20
Am Auslaufbauwerk, 5 m unterhalb				-	-				1,60
Auslaufbauwerk, 5 m unterhalb 1		Pu-238	Auslaufbauwerk, 5 m oberhalb	1	0	0,0093	0,0093	0,0093	0,0057
Pu-339/240					0	,	,	- , -	0,034
man uslaufbauwerk			· ·		_				0,019
Auslaufbauwerk, 5 m unterhalb 1		Pu-239/240		-	_	*	*	· ' I	0,042
Note Section H-3				-	-			· ·	
Deerflächen-wasser (Bqrl)	HAVEL / KKW R	heinshera (a)		'	U	0,013	0,013	0,013	0,11
wasser (Bq/I) nach Auslaufbauwerk vor Auslaufbauwerk nach Auslaufbauwerk 4 4 4 <5,0 <5,6 nn nn Co-60 vor Auslaufbauwerk nach Auslaufbauwerk nach Auslaufbauwerk 4 4 4 <0,0018				4	4	<5.0	<4.0	nn	nn
Co-60		110				,	,		nn
Cs-137	` ' '	Co-60	vor Auslaufbauwerk	4	4	<0,0017	<0,0022	nn	nn
Sediment Co-60 vor Auslaufbauwerk 4 0 0,0060 0,010 0,0083 0,0			nach Auslaufbauwerk	4	4	<0,0018	<0,0024	nn	nn
Sediment (Bq/kg TM)		Cs-137	vor Auslaufbauwerk	4	0	*	0,0090	0,0087	0,0077
Bqr/kg TM Cs-137					0	•			0,0086
Cs-137		Co-60							0,15
Rach Auslaufbauwerk 2	(Bq/kg TM)	0.407		_		*	-	· · · · · · · · · · · · · · · · · · ·	0,25
Sediment Co-60 Vor Auslaufbauwerk A A Co-14 Co-60 Vor Auslaufbauwerk A A Co-60 Vor Auslaufbauwerk		Cs-137							
Deerflachen-wasser (Bq/I)	CDEIESWAI DEI	P RODDEN / I			U	2,1	1,1	5,2	0,00
wasser (Bq/l) nach Auslaufbauwerk 12 4 2,7 5,5 3,6 <3,5					3	2.5	11	33	<33
Co-60		п-3			_				
Nach Auslaufbauwerk		Co-60						,	nn
Sediment Co-60 Vor Auslaufbauwerk 12 0 0,023 0,038 0,028 0,006 0,0						,	,		nn
Sediment (Bq/kg TM)		Cs-137	vor Auslaufbauwerk	12	0	0,0052	0,028	0,019	0,023
Reg/kg TM Cs-137			nach Auslaufbauwerk	12	0	0,023	0,038	0,028	0,031
Cs-137		Co-60		-	•		•		nn
Nach Auslaufbauwerk 4 0 3,21 8,27 5,38 5,2	(Bq/kg TM)								nn
ALLER / Endlager Morsleben Oberflächen-wasser (Bq/I)		Cs-137							6,70 5.25
Note	ALLED / Endlag	or Morelobon		4	U	3,21	0,27	5,36	5,25
wasser (Bq/I)				1	1	<3.0	<10	nn	nn
Co-60		п-3					,		nn
Nach Auslaufbauwerk	(= 4, ,)	Co-60		4	4		*		nn
Sediment Co-60 Schwanefeld 1 1 1 1 1 1 1 1 1			nach Auslaufbauwerk	4					nn
Sediment Co-60 Schwanefeld 1 1 0 7,7 7,7 7,7 8,5		Cs-137	vor Auslaufbauwerk	4	4	<0,005	<0,006	nn	nn
Cs-137 Schwanefeld 1 0 7,7 7,7 7,7 7,7 7,7 7,7 8,5			nach Auslaufbauwerk	4	4	<0,005	<0,006	nn	nn
Co-60 Dittersbach Forschungszentrum Cos-137 Co-60 Kalter Bach Co-60 Co-60 Kalter Bach Co-60	Sediment	Co-60		1	1	<0,18	<0,18	nn	nn
Co-60				1		7,7	7,7	7,7	8,5
Wasser (Bq/I) Kalter Bach Elbe, oberhalb Wesenitz 4 0 34,0 910 295 36,0 Elbe, oberhalb Wesenitz Elbe, unterhalb Wesenitz 2 2 <5,8				Ross	endorf				
Elbe, oberhalb Wesenitz 2 2 2 2 3,8 nn nn nn nn nn nn nn		H-3							nn
Elbe, unterhalb Wesenitz 2 2 <5,8 nn nn nn nn nn nn nn	wasser (Bq/I)					-			•
Co-60			1			-			nn nn
Kalter Bach 4 0 0,014 0,043 0,023 0,028 nn		Co-60				-			
Elbe, unterhalb Wesenitz 2 2 <0,0024 <0,0024 nn						,	0,043		0,018
Cs-137 Kalter Bach 3 0 0,0046 0,016 0,0091 0,0000 Co -60 Kalter Bach 2 0 2,2 3,5 2,9 1,8 Sediment Cs-137 Dittersbach 2 0 3,0 7,2 5,1 9,1			1						
Co -60 Kalter Bach 2 0 2,2 3,5 2,9 1,8 Sediment Cs-137 Dittersbach 2 0 3,0 7,2 5,1 9,1									
Sediment Cs-137 Dittersbach 2 0 3,0 7,2 5,1 9,1						*			0,016
									1,80
		Cs-137							9,10
	(Bq/kg TM)		Kalter Bach	2	0	12,0	13,0 4.8	12,5	19,0 6,4

1.4.4 Fische und Wasserpflanzen (Fish and aquatic plants)

Bearbeitet von der Bundesforschungsanstalt für Fischerei, Hamburg

Der vorliegende Beitrag enthält Messergebnisse der Radioaktivität in Fischen und Wasserpflanzen, die im Rahmen der Umgebungsüberwachung kerntechnischer Anlagen (nach REI) von den Messstellen der Länder und den Betreibern erhalten wurden. Im Berichtsjahr 2002 wurden für 19 kerntechnische Anlagen γ -spektrometrische Messungen (vor allem Cäsium-137) an 82 Fischfleischproben und 8 Wasserpflanzenproben, sowie für 2 Anlagen Strontium-90-Messungen an 15 Fischfleischproben durchgeführt. Hinsichtlich der Fischarten ergab sich, dass Proben von 9 Süßwasserfischarten, von Mischungen verschiedener Süßwasserfischarten inkl. "Friedfisch" und "Raubfisch", 4 marine Arten aus Flussunterläufen bzw. Ästuaren sowie nicht arten-spezifiziert untersucht wurden. Die Wasserpflanzen wurden ebenfalls nicht spezifiziert. Die statistische Auswertung der Daten wurde wie im Teil I 3.4.3 beschrieben durchgeführt.

Die Radioaktivitätsdaten in Fischen und Wasserpflanzen sind in Tabelle 1.4.4-1 - nach Fließgewässer und überwachter Anlage sortiert - zusammengefasst worden. In Fließgewässern wurde Cäsium-134 im Fisch nicht mehr nachgewiesen. Für die niedrigen Cs-137-Gehalte in Fischen ist 2002 gegenüber dem Vorjahr bei einem anlagenweisen Vergleich ein etwa 10-prozentiger Rückgang zu verzeichnen. Die im Messprogramm für das außer Betrieb befindliche Kernkraftwerk Rheinsberg erhaltenen höheren Cs-137-Gehalte im Fisch sind darauf zurückzuführen, dass die Proben nicht einem Fließgewässer, sondern aus Seen (Stechlinsee und Ellbogensee) entnommen wurden. Cs-134 wurden auch in Fischen aus diesen Seen nicht mehr nachgewiesen. Bedingt durch den Ostsee-Einfluss im Greifswalder Bodden weisen die dort im Überwachungsprogramm des außer Betrieb befindlichen Kernkraftwerks Greifswald genommenen Proben ebenfalls höhere Cäsium-Gehalte auf.

Bei den wenigen in Tabelle 1.4.4-1 mit aufgenommenen Messdaten von Wasserpflanzen, die als Indikatoren für im Wasser vorhandene künstliche Radionuklide dienen, insbesondere aus Ableitungen kerntechnischer und klinischer Anlagen, sind keine Besonderheiten festzustellen.

Tabelle 1.4.4-1 Spezifische Aktivität von Fischen und Wasserpflanzen 2002 (im Rahmen der Umgebungsüberwachung kerntechnischer Anlagen)

(Specific activity in fish and aquatic plants in the year 2002 - within the framework of ambient surveillance for nuclear plants)

Pu-239 steht für die Summe Pu-239 + Pu-240)

Gewässser	Anlage	Radionuklid	N	nn	Min. Wert	Max. Wert	Medianwert
		Fisch (I	3q/kg	FM)			
Donau	KRB II Gundremmingen		a)				
Elbe	GKSS Geesthacht	Cs-137	6	0	0,20	0,44	0,34
	KKK Krümmel	Cs-137	4	0	0,21	0,27	0,24
	PKA Gorleben	Cs-137	3	0	0,21	0,53	0,22
	KKS Stade	Cs-137	4	0	0,18	0,68	0,28
	KBR	Sr-90	6	4	<0,0052	0,055	0,0044
	Brokdorf	Cs-137	6	0	0,17	0,83	0,32
	KKB	Sr-90	9	9	<0,0091	<0,016	<0,012
	Brunsbüttel	Cs-137 Pu-239	11	0	0,25	0,74	0,31
Ems	KKE Emsland	Cs-137	8	0	0,18	1,4	0,55
Greifswalder Bodden	Greifswald	Cs-137	4	0	1,3	14	5,8

Gewässser	Anlage	Radionuklid	N	nn	Min. Wert	Max. Wert	Medianwert
Griebnitzsee	HMI Berlin	Cs-137	1	0	1,4	1,4	1,4
Isar	KKI 1/2 Isar		a)				
	FRM		a)				
Main	KKG		a)				
	Grafenrheinfeld						
	VAK		a)				
	Kahl						
Neckar	GKN	I-131	1	1	<0,13	<0,13	<0,13
	Neckarwestheim	Cs-137	3	0	0,094	0,20	0,15
	KWO	Cs-137	4	3	<0,10	0,13	<,07
. .	Obrigheim	0 407			0.00	0.00	0.00
Rhein	Beznau/Leibstadt (Schweiz)	Cs-137	1	0	0,20	0,20	0,20
	Biblis		a)				
	Fessenheim		a)				
	(Frankreich)						
	KKP	Cs-137	2	0	0,11	0,15	0,13
	Philippsburg						
	Mülheim-Kärlich	Cs-137	2	0	0,16	0,16	0,16
Rheinniede-	FZK		a)				
rungskanal	Karlsruhe						
Rur	FZ	Cs-137	3	0	0,24	0,55	0,28
	Jülich						
Stechlinsee	KKR	Cs-137	5	0	7,1	47	40
	Rheinsberg		_	_			
Ellbogensee	KKR	Cs-137	3	0	7,5	11	11
	Rheinsberg	0 407			0.044	0.000	0.050
Weser	KWG Grohnde	Cs-137	6	0	0,044	0,083	0,059
		0- 407	_	0	0.40	0.44	0.00
	KKU Unterweser	Cs-137	6	0	0,13	0,41	0,22
	Onterweser	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			a \		
A1	LAL	Wasserpflan			•	0.4	0.4
Ahauser Aa	Ahaus	I-131 Cs-137	1	0	8,4 0,25	8,4 0,25	8,4 0,25
Moorbach	Abaua	Cs-137 Cs-137	1	0	· ·	· ·	·
Moorbach	Ahaus	US-13/		U	0,19	0,19	0,19
Isar	FRM		a)				
	Garching		- \				
	KKI 1/2 Isar		a)				
Stechlinsee		Sr-90	6	_	0,41	2.6	2.2
Stechinisee	KKR Rheinsberg	Cs-137	6	0	1,6	3,6 25	2,3 7,2
		03-13/	U	U	1,0	20	۷,۷

a) Daten lagen nicht vor

1.4.5 Grundwasser und Trinkwasser (Groundwater and drinking water)

Bearbeitet vom Bundesamt für Strahlenschutz, Fachbereich Strahlenschutz und Umwelt, Berlin

Im Rahmen der Überwachung von Grund- und Trinkwasser nach der Richtlinie zur Emissions- und Immissionsüberwachung kerntechnischen Anlagen sind im Jahr 2002 von den amtlichen Messstellen der Länder Messwerte mitgeteilt worden, die in Tabelle 1.4.5-1 zusammengefasst sind. Aufgeführt sind die Anzahl der untersuchten Proben, die Anzahl der Messwerte oberhalb der Nachweisgrenze, der Minimal- und der Maximalwert sowie der Median der Aktivitätskonzentration.

Grundwasser

Im Rahmen der Umgebungsüberwachung kerntechnischer Anlagen wurden Messwerte von 128 Grundwasserentnahmestellen gemeldet.

Für Cäsium-137 liegen 4 Messwerte zwischen 0,29 mBq/l und 8,3 mBq/l. Der Median aller mitgeteilten Werte liegt bei < 23 mBq/l (2001: < 25 mBq/l).

Die Werte für die Strontium-90-Aktivitätskonzentrationen (57% der Messwerte über der Nachweisgrenze) liegen zwischen 0,89 mBq/l und 12 mBq/l (2001: 0,90 bis 6,1 mBq/l). Der Median liegt bei 3,4 mBq/l (2001: < 1,6 mBg/l).

Die berichtete Gesamt- α -Aktivitätskonzentration liegt zwischen 0,024 Bq/l und 0,22 Bq/l (2001: 0,034 bis 4,4 Bq/l), mit einem Median sämtlicher Werte von 0,061 Bq/l (2001: 0,16 Bq/l).

Die Rest-β-Aktivitätskonzentration wurde in 12 Proben gemessen. Alle Werte lagen unterhalb der gefundenen Nachweisgrenzen (2001: alle Werte unterhalb der Nachweisgrenze). Der Median aller Werte beträgt < 0.10 Bg/l (2001: < 0.10 Bg/l).

In 23% der untersuchten Wasserproben wurde Tritium im Konzentrationsbereich von 0,51 Bq/l bis 280 Bq/l nachgewiesen (2001: 0,46 Bq/l bis 410 Bq/l), der Median aller Werte liegt bei < 9,0 Bq/l (2001: < 9,7 Bq/l). Die Werte liegen damit teilweise deutlich über den derzeitigen Werten im Niederschlag, die zwischen 1 und 2 Bq/l liegen.

Die maximalen Tritiumkonzentrationen von bis zu 280 Bq/l (2001: bis 410 Bq/l) wurden - wie in den vergangenen Jahren - an Probenentnahmestellen für oberflächennahes Grundwasser auf dem Gelände des Freilagers für radioaktive Abfälle des Forschungszentrums Rossendorf gefunden. Bei diesen Stichproben wurden auch Kobalt-60-Kontaminationen von bis zu 0,32 Bq/l (2001: 0,44 Bq/l) ermittelt. Die erhöhten Tritiumund Co-60-Werte im Grundwasser sind auf eine Kontamination des Untergrundes auf dem Betriebsgelände infolge von Leckagen an (inzwischen nicht mehr genutzten) Beton-Abklingbecken für kontaminierte Wässer zurückzuführen. Alle Proben außerhalb des Forschungsstandortes weisen Tritium-Werte unterhalb der Nachweisgrenze von 5,0 Bq/l auf.

Die im Rahmen der Umgebungsüberwachung der Schachtanlage Asse festgestellten Radionuklide sind natürlichen Ursprungs oder im Fall von Sr-90 eine Folge des globalen Fallouts.

Trinkwasser

Im Jahr 2002 wurden im Rahmen der Umgebungsüberwachung kerntechnischer Anlagen Messwerte von 14 Reinwasser- und 18 Rohwasser-Entnahmestellen beprobt.

Für Cäsium-137 wurde kein Messwert oberhalb der jeweiligen Nachweisgrenzen von 0,086 mBq/l bis 60 mBq/l (2001: 0,35 mBq/l bis 60 mBq/l) ermittelt. Der Median aller Cs-137-Werte liegt bei < 16 mBq/l (2001: < 20 mBq/l).

Die Aktivitätskonzentrationen für Strontium-90 liegen zwischen 0,31 mBq/l und 5,4 mBq/l (2001: 0,33 bis 13 mBq/l), mit einem Median aller Werte von 3,0 mBq/l (2001: 2,5 mBq/l).

Die Gesamt- α -Aktivität ist natürlichen Ursprungs. Der Messwert liegt bei 65 mBq/l (2001: 34 mBq/l bis 100 mBg/l). Der Median sämtlicher Werte lag 2001 bei 73 mBg/l.

In 26 Proben (von 77 gemessenen Proben) wurde Tritium in Konzentrationen zwischen 0,79 Bq/l und 78 Bq/l (2001: 0,82 bis 78 Bq/l) nachgewiesen, der Median aller Werte liegt bei < 5,8 Bq/l (2001: < 8,0 Bq/l). Die über den derzeitigen Werten im Niederschlag zwischen 1 und 2 Bq/l liegenden Werte sind auf den Eintrag von Oberflächenwasser (z. B. als Uferfiltrat) zu erklären, das durch H-3-Emissionen aus dem Abwasser kerntechnischer Anlagen belastet ist.

Alle Werte über 10 Bq/l stammen aus Einzelwasserversorgungen in der Nähe eines Altrheinarms, der in der Fließrichtung von Grund- und Oberflächenwasser des Forschungszentrums Karlsruhe liegt. Das Trinkwasser aus öffentlichen Wasserversorgungen in den Ortschaften beim Forschungszentrum weist lediglich Tritiumkonzentrationen von < 2,5 Bq/l auf. Selbst unter der Annahme, dass der gesamte Trinkwasserbedarf mit Wasser aus den Einzelwasserversorgungen gedeckt würde, ergäbe sich nur eine unwesentliche Erhöhung gegenüber der natürlichen Strahlenexposition für die betroffenen Personen.

Eine Strahlenexposition der Bevölkerung durch künstliche radioaktive Stoffe auf dem Wege über das Trinkwasser ist auf Grund der vorliegenden Daten gegenüber der natürlichen Strahlenexposition vernachlässigbar klein.

Tabelle 1.4.5-1 Umgebungsüberwachung von kerntechnischen Anlagen 2002 (Grundwasser und Trinkwasser)

(Surveillance of the surroundings of nuclear facilities in 2002 - groundwater and drinking water)

Land	Nuklid	Anzahl gesamt b)	Anzahl <nwg< th=""><th>Minimal- wert a)</th><th>Maximal- wert a)</th><th>Mittel- werte a)</th><th>Mediane</th></nwg<>	Minimal- wert a)	Maximal- wert a)	Mittel- werte a)	Mediane
Grundwasser in Bq/l							
Bundesrepublik	K-40	126	60	0,011	1,2	0,3	0,36
Deutschland	Co-60	326	309	0,013	0,32		<0,034
	Cs-137	228	224	0,00029	0,0083		<0,023
	H-3	315	242	0,51	280		<9,0
	Sr-90	39	17	0,00089	0,012	0,0042	<0,0034
	R-Beta	12	12				<0,1
	G-Alpha	27	12	0,024	0,22	0,073	0,061
Trinkwasser in Bq/I							
Bundesrepublik	K-40	56	40	0,026	0,41		<0,33
Deutschland	Co-60	70	70				<0,015
	Cs-137	71	71				<0,013
	H-3	77	51	0,79	78		<5,8
	Sr-90	26	17	0,00031	0,0054	0,065	0,003
	G-Alpha	1	0	0,065	0,065		0,065

- a) Liegen mehr als 50% der gemessenen Werte unterhalb der Nachweisgrenze, werden nur der Minimalwert- und der Maximalwert angegeben. Der arithmetische Mittelwert wurde aus den Messwerten ohne Berücksichtigung der Nachweisgrenzen errechnet.
- b) Gemäß REI-Messprogramm ist bei der γ-Spektrometrie die Einhaltung der Nachweisgrenze nur für das Radionuklid Co-60 vorgeschrieben, d.h. für andere γ-strahlende Radionuklide müssen die Nachweisgrenzen von der Messstelle nicht angegeben werden. Da nicht alle Messstellen die Nachweisgrenzen für Cs-137 und K-40 mitteilen, ist für diese Nuklide die Anzahl der gemeldeten Werte kleiner als bei Co-60.

1.4.6 Pflanzliche Nahrungsmittel (Foodstuffs of vegetable origin)

Bearbeitet vom Institut für Chemie und Technologie der Milch der Bundesanstalt für Milchforschung, Kiel

Hinsichtlich der radioökologischen Situation in der Umgebung kerntechnischer Anlagen und den beobachteten Schwankungen der Messwerte in diesen Bereichen gelten die gleichen Ausführungen, die bereits in den Kapiteln I 3.2 und I 3.4.2 gemacht wurden. Auch in der Umgebung kerntechnischer Anlagen ist
die Situation nach wie vor durch die zurückliegenden Depositionen nach den Kernwaffenversuchen der
sechziger Jahre und nach dem Tschernobylunfall im Jahre 1986 geprägt.

Die Ergebnisse der Überwachung nach der Richtlinie zur Emissions- und Immissionsüberwachung kerntechnischer Anlagen sind für Gemüse und Getreide in den Tabellen 1.4.6-1 und 1.4.6-2, für Obst in Tabelle 1.4.6-3 zusammengefasst. Die vorliegenden Messwerte lassen im Vergleich mit anderen Orten in der Bundesrepublik keine Erhöhung der Radioaktivität erkennen.

Tabelle 1.4.6-1 Radioaktivität der pflanzlichen Nahrungsmittel in der näheren Umgebung kerntechnischer Anlagen: Gemüse (Radioactivity of food of vegetable origin in the vicinity of nuclear facilities: vegetables)

Bundesland	Jahr		Aktivitä	it in Bq/k	g FM
Kerntechnische		N	Mittelwert (Bereich)	N	Mittelwert (Bereich)
Anlagen					b)
Baden-Württemberg			Cs-137		Sr-90
FZ Karlsruhe	2000	19	<0,07	4	0,20
	2001	19	<0,06	6	0,10
	2002	11	<0,04 (<0,02 - 0,06)	5	<0,11(<0,02 - 0,26)
Kernkraftwerk	2000	17	<0,13	9	0,16
Obrigheim	2001	19	<0,07	8	0,12
	2002	17	<0,07 (<0,04 - <0,11)	12	0,09 (0,01 - 0,19)
Kernkraftwerk	2000	15	<0,13	10	0,12
Neckarwestheim	2001	19	<0,08	11	0,13
	2002	18	<0,09 (<0,04 - 0,52)	12	0,11 (0,02 - 0,23)
Kernkraftwerk	2000	8	<0,07	5	0,08
Philippsburg	2001	9	<0,06	5	0,11
	2002	3	<0,06 (<0,04 - <0,10)	2	0,14(0,11 - 0,17)
Kernkraftwerk	2000	12	<0,14	9	0,35
Beznau/Leibstadt	2001	16	<0,07	7	0,16
Schweiz	2002	8	<0,07 (<0,03 - <0,11)	7	0,25 (0,07 - 0,64)
Kernkraftwerk	2000	13	<0,14	6	0,16
Fessenheim	2001	15	<0,09	7	0,12
Frankreich	2002	8	<0,09 (<0,06 -<0,16)	2	0,31 (0,30 - 0,32)
Bayern					
Kernkraftwerk	2000	2	<0,23	2	0,12
Gundremmingen	2001	a)		a)	
	2002	a)		a)	

Bundesland	Jahr		Aktivitä	t in Bq/k	g FM	
Kerntechnische Anlagen		N	Mittelwert (Bereich)	N	Mittelwert b	
			Cs-137		Sr-	90
Kernkraftwerk	2000	1	<0,2	1	0,19	
Isar	2001	a)		a)		
	2002	a)		a)		
Kernkraftwerk	2000	2	<0,1	2	0,10	
Grafenrheinfeld	2001	a)		a)		
	2002	a)		a)		
Berlin						
Forschungsreaktor	2000	6	<0,09	3	0,17	
BER II	2001	12	<0,17	4	0,43	
	2002	14	<0,20 (<0,03 - 1,20)	5	0,23 (0,08 -	0,64)
Brandenburg						
Kernkraftwerk	2000	8	<0,11	8	0,12	
Rheinsberg	2001	11	<0,13	11	0,24	
	2002	11	<0,13 (<0,08 - <0,19)	11	0,32 (0,04 -	1,10)
Hessen						
Kernkraftwerk	2000	10	<0,04	10	0,08	
Biblis	2001	9	<0,09	9	0,09	
	2002	a)		a)		
			Gesamt-α-Aktivität Bq/kg		Pu-238	Pu-239/240
			Asche		Bq/kg Asche	Bq/kg Asche
Nuklearbetriebe	2000			1	<0,04	<0,04
Hanau	2001			1	<0,05	0,12
	2002		0- 407	a)	0	00
Mecklenburg-Vorp.			Cs-137		Sr-	90
Kernkraftwerk	2000	9	<0,08	9	0,25	
Greifswald	2001	5	<0,06	5	0,27	
Ciciowaid	2002	7	<0,09 (<0,05 - 0,14)	6	0,20 (0,16 -	0,26)
Niedersachsen						
Kernkraftwerk	2000	7	<0,08	6	0,14	
Emsland	2000	7	<0,00	7	0,14	
Lilisialiu	2001	7	<0,10	7	0,14	0,91)
Kornkroftwork	2000	2/		2)		
Kernkraftwerk	2000	a)	~0.00	a)	0.20	
Grohnde	2001 2002	6 a)	<0,08	5 a)	0,20	
Kornkroftwork	2000	_	<0.00	_	0.40	
Kernkraftwerk	2000	5	<0,09	5	0,19	
Stade	2001 2002	6 a)	<0,07	6 a)	0,10	

Bundesland	Jahr		Aktivitä	it in Bq/k	g FM	
Kerntechnische Anlagen		N	Mittelwert (Bereich)	N	Mittelwert b	
			Cs-137		Sr-	·90
Kernkraftwerk	2000	2	<0,07	2	0,08	
Unterweser	2001	4	<0,08	4	0,10	
	2002	a)		a)		
Schacht Konrad II c)	2000	1	<0,07	1	0,18	
	2001	a)		a)		
	2002	a)		a)		
Nordrhein-Westfalen						
KFA Jülich	2000	3	<0,08	3	0,25	
	2001	a)		5	<0,34	
	2002	5	<0,20 (<0,15 - <0,32)	5	0,20 (0,14 –	
			Fluor (mg/kg TM)		Uran (Bq/kg TM)	U-238 (Bq/kg TM)
UAG Gronau	2000	2	3,3	2	0,64	<0,5
	2001	6	<2,6	6	<0,46	b)<0,5; <0,5 (N=2)
	2002	2	2,9 (1,5 - 4,2)	2	0,30	
					(0,23 -0,38)	
			Cs-137		Sr-	.90
Rheinland-Pfalz						
Kernkraftwerk	2000	1	<0,04			
Mülheim-Kärlich	2001	a)				
	2002	a)				
Sachsen						
Rossendorf	2000	5	<0,10	a)		
	2001	1	<0,09	1	0,19	
	2002	a)		a)		
Sachsen-Anhalt						
Endlager Morsleben	2000	2	<0,15	1	0,16	
	2001	2	<0,21	1	0,36	
1	2002	2	<0,14 (<0,08 - <0,19)	1	0,13	
Schleswig-Holstein						
GKSS	2001	1	<0,09	1	0,13	
Geesthacht	2002	1	<0,14	1	0,11	
Kernkraftwerk	2000	1	0,06	1	0,10	
Krümmel	2001	2	<0,08	2	0,10	
	2002	1	0,07	1	0,14	

<sup>a) Daten lagen nicht vor
b) Weicht die Anzahl einzelner Messungen vom angegebenen N ab, ist sie getrennt aufgeführt
c) Im Genehmigungsverfahren befindliches Endlagerprojekt</sup>

Tabelle 1.4.6-2 Radioaktivität der pflanzlichen Nahrungsmittel in der näheren Umgebung kerntechnischer Anlagen: Getreide (Radioactivity of foodstuffs of vegetable origin in the vicinity of nuclear facilities: cereals)

Bundesland	Jahr		Aktivit	ät in Bq/k	g FM
Kerntechnische Anlagen		N	Mittelwert (Bereich)	N	Mittelwert (Bereich) b)
Baden-Württemberg			Cs-137		Sr-90
FZ Karlsruhe	2000	9	<0,11	3	0,36
	2001	8	<0,09	3	0,46
	2002	9	<0,08 (<0,05 - 0,14)	1	0,22
Kernkraftwerk	2000	6	<0,14	3	0,12
	2000	6	<0,07	3	0,12
Obrigheim					0,13
	2002	3	<0,07 (<0,06 - <0,08)	a)	
Kernkraftwerk	2000	6	<0,14	3	0,14
Neckarwestheim	2001	6	<0,08	3	0,12
	2002	3	<0,07 (<0,06 - <0,09)	a)	
Kernkraftwerk	2000	4	<0,11	a)	
Philippsburg	2001	2	<0,07	a)	
ppobarg	2002	4	<0,08 (<0,05 - <0,10)	1	0,07
	2002	7	10,00 (10,00 10,10)		0,07
Kernkraftwerk	2000	5	<0,13	3	0,29
Beznau/Leibstadt	2001	5	<0,09	5	0,25
Schweiz	2002	2	<0,07 (<0,06 - <0,08)	2	0,19 (0,17 - 0,20)
Kernkraftwerk	2000	4	<0,17	3	0,18
Fessenheim	2001	3	<0,10	2	0,20
Frankreich	2002	3	<0,06 (0,04 - 0,07)	2	0,14 (0,12 - 0,15)
T Tallia Glori	2002	Ü	0,00 (0,01 0,01)	_	0,11 (0,12 0,10)
Bayern					
Kernkraftwerk	2000	8	<0,21	8	0,15
Gundremmingen	2001	a)	a)	a)	
	2002	a)	a)	a)	
Kernkraftwerk	2000	5	<0,23	5	0,15
Isar	2001	a)	-, -	a)	, -
	2002	a)		a)	
	2002	u,		(a)	
Kernkraftwerk	2000	2	<0,10	2	0,11
Grafenrheinfeld	2001	a)		a)	
	2002	a)		a)	
0.500			Gesamt-α-Aktivität] .	Sr-90
SBWK	2000	a)		a)	
Karlstein	2001	a)		a)	
	2002	a)		a)	

Bundesland	Jahr	Aktivität in Bq/kg FM				
Kerntechnische Anlagen		N	Mittelwert (Bereich)	N		rt (Bereich) b)
Berlin			Cs-137		S	r-90
Forschungsreaktor	2000	a)				
BERII	2001	a)				
	2002	a)				
Hessen						
Kernkraftwerk	2000	9	<0,05	8	0,22	
Biblis	2001	9	<0,16	9	0,08	
	2002	a)		a)		
			Gesamt-α-Aktivität		Pu-238	Pu-239/240
	0000		Bq/kg Asche	-	Bq/kg Asche	Bq/kgAsche
Nuklearbetriebe	2000			1	<0,03	<0,02
Hanau	2001			1	<0,05	<0,04
	2002			a)		
			Cs-137		S	r-90
Mecklenburg-Vorp.						
Kernkraftwerk	2000	5	<0,14	5	0,16	
Greifswald	2001	6	<0,15	6	0,40	
	2002	8	<0,13 (<0,10 - <0,17)	4	0,40 (0,28 - 0),51)
Niedersachsen						
Kernkraftwerk	2000	2	<0,10	1	0,58	
Emsland	2001	1	0,69	1	0,16	
	2002	a)		a)		
Kernkraftwerk	2000	7	<0,09	6	0,16	
Grohnde	2001	1	0,94	1	0,39	
	2002	a)		a)	.,	
Kernkraftwerk	2000	1	<0,07	1	<0,13	
Stade	2001	a)	-0,07	a)	30,10	
Clado	2002	a)		a)		
		۵,		۵,		
Kernkraftwerk	2000	2	<0,10	2	<0,10	
Unterweser	2001	1	<0,15	1	0,31	
	2002	a)		a)		
Schacht Konrad II c)	2000	5	<0,16	4	0,19	
,	2001	6	<0,11	2	0,32	
	2002	a)		a)		
Nordrhein-Westfalen						
Zwischenlager Ahaus	2000	1	<0,25	1	0,93	
	2001	a)	-,	a)		
	2002	a)		a)		
		,		/		

Bundesland	Jahr		Aktivitä	Aktivität in Bq/kg FM				
Kerntechnische Anlagen		N	Mittelwert (Bereich)	N		rt (Bereich) b)		
			Cs-137		S	r-90		
KFA Jülich	2000	a)		a)				
	2001	a)		a)				
	2002	4	<0,22 (<0,12 - <0,31)	4	0,14 (0,03 - 0),22)		
			Fluor (mg/kg TM)		Uran (Bq/kg TM)	U-238 (Bq/kg TM)		
UAG Gronau	2000	18	<1,22	18	<0,23	<0,5 N=4		
	2001	22	<1,44	22	<0,23	<0,5 N=4		
	2002	18	<1,5(<1,5-<1,5)	18	<0,30			
					(<0,23-0,74)			
			Cs-137		S	r-90		
Rheinland-Pfalz								
Kernkraftwerk	2000	a)		a)				
Mülheim-Kärlich	2001	a)		a)				
	2002	a)		a)				
Sachsen-Anhalt								
Endlager Morsleben	2000	4	<0,16	2	0,15			
	2001	3	<0,17	1	0,07			
	2002	5	<0,16 (<0,11 - <0,21)	1	0,06			
Schleswig-Holstein								
GKSS	2000	1	0,18	1	0,45			
Geesthacht	2001	1	<0,17	1	0,24			
	2002	1	<0,11	1	0,27			
Kernkraftwerk	2000	2	<0,13	2	0,09			
Brunsbüttel	2001	2	<0,13	2	0,10			
	2002	2	<0,09 (<0,08 - <0,10)	2	0,06 (0,06 - 0),06)		
Kernkraftwerk	2000	2	<0,07	2	0,30			
Krümmel	2001	2	<0,09	2	0,29			
	2002	2	<0,06 (<0,02 - <0,09)	2	0,18 (0,17 - 0),18)		

<sup>a) Daten lagen nicht vor
b) Weicht die Anzahl einzelner Messungen vom angegebenen N ab, ist sie getrennt aufgeführt
c) Im Genehmigungsverfahren befindliches Endlagerprojekt</sup>

Tabelle 1.4.6-3 Radioaktivität der pflanzlichen Nahrungsmittel in der näheren Umgebung kerntechnischer Anlagen: Obst
(Radioactivity of foodstuffs of vegetable origin in the vicinity of nuclear facilities: fruit)

Bundesland	Jahr		Aktivität	in Ba/k	g FM
Kerntechnische Anlagen		N	Mittelwert (Bereich)	N	Mittelwert (Bereich) b)
Baden-Württemberg			Cs - 137		Sr - 90
FZ Karlsruhe	2000	7	<0,08	2	0,76
	2001	2	0,02		
	2002	5	<0,02 (<0,01 - <0,05)	2	0,15 (0,01 - 0,28)
Kernkraftwerk	2000	8	<0,13	3	0,13
Obrigheim	2001	a)		a)	
	2002	5	<0,06 (<0,04 - <0,07)	2	0,13 (0,08 – 0,17)
Kernkraftwerk	2000	6	<0,11	3	0,32
Neckarwestheim	2001	a)		a)	
	2002	3	<0,06 (<0,03 - <0,08)	a)	
Kernkraftwerk	2000	6	<0,09	3	0,08
Philippsburg	2001	4	<0,03	2	0,72
	2002	5	<0,06 (<0,04 - <0,11)	3	0,19 (0,13 - 0,23)
Kernkraftwerk	2000	8	<0,10	a)	
Beznau/Leibstadt	2001	1	<0,10		
	2002	4	<0,05 (<0,04 - <0,06)		
Kernkraftwerk	2000	3	<0,15	1	0,02
Fessenheim	2001	a)		a)	
Frankreich	2002	3	<1,06 (<0,06 - 3,04)	a)	
Bayern					
Kernkraftwerk	2000	2	<0,2	2	0,17
Gundremmingen	2001	a)		a)	
	2002	a)		a)	
Kernkraftwerk	2000	2	<0,15	2	0,05
Grafenrheinfeld	2001	a)		a)	
	2002	a)		a)	
Berlin					
Forschungsreaktor	2000	8	<0,09	9	<0,06
BER II	2001	9	<0,10	5	0,11
	2002	7	<0,13 (<0,06 - 0,46)	6	0,07 (0,05 - 0,10)
Brandenburg					
Kernkraftwerk	2000	1	<0,12	1	0,10
Rheinsberg	2001	1	<0,12	1	0,07
	2002	1	<0,14	1	0,15

Bundesland	Jahr		Aktivität	in Bq/k	g FM	
Kerntechnische Anlagen		N	Mittelwert (Bereich)	N	Mittelwe	rt (Bereich) b)
Hessen			Cs-137		S	r-90
Kernkraftwerk	2000	6	<0,11	6	0,02	
Biblis	2001	7	<0,03	7	0,02	
	2002	a)		a)		
Mecklenburg-Vorp.						
Kernkraftwerk	2000	15	<0,06	13	0,06	
Greifswald	2001	15	<0,16	14	0,12	
	2002	15	<0,14 (<0,05 - 0,71)	10	<0,15 (0,02	: - 0,74)
Niedersachsen						
Kernkraftwerk	2000	a)		a)		
Emsland	2001	a)		a)		
	2002	a)		a)		
Kernkraftwerk	2000	1	<0,06	1	0,04	
Grohnde	2001	2	<0,032	1	0,04	
	2002	a)		a)		
Kernkraftwerk	2000	2	<0,09	1	0,03	
Stade	2001	5	<0,04	1	0,03	
	2002	a)		a)		
Kernkraftwerk	2000	1	<0,04	1	0,05	
Unterweser	2001	2	<0,06	2	0,05	
	2002	a)		a)		
Schacht Konrad II c)	2000	1	<0,05	1	0,05	
	2001	3	<0,09	2	0,02	
	2002	a)		a)		
Nordrhein-Westfalen						
KFA Jülich	2000	4	<0,10	4	0,36	
	2001	a)		a)		
	2002	a)		a)		
		,	Fluor (mg/kgTM)		Uran (Bq/kgTM)	U-238 (Bq/kgTM)
UAG Gronau	2000	2	2,20	2	<0,23	<0,5 N=4
	2001	4	<1,50	4	<0,23	<0,5 N=4
	2002	a)		a)	·	·
Rheinland-Pfalz			Cs-137	-	S	r-90
Kernkraftwerk	2000	8	<0,02	8	0,02	
Mülheim-Kärlich	2001	8	<0,03	8	0,03	
	2002	a)	-,	a)	-,	

Bundesland	Jahr		Aktivität in Bq/kg FM				
Kerntechnische Anlagen		N	Mittelwert (Bereich)	N	Mittelwert (Bereich) b)		
Sachsen			Cs-137		Sr-90		
Rossendorf	2000	2	<0,11	1	0,01		
	2001	1	<0,09	1	0,03		
	2002	a)		a)			
Sachsen-Anhalt							
EndlagerMorsleben	2000	4	<0,12	2	<0,05		
	2001	4	<0,12	2	<0,04		
	2002	5	<0,15 (<0,11 - <0,19)	3	<0,05 (<0,04 - 0,05)		
Schleswig-Holstein							
Kernkraftwerk	2000	3	<0,04	3	0,07		
Krümmel	2001	3	<0,03	2	0,05		
	2002	a)		a)			

- a) Daten lagen nicht vor
- b) Weicht die Anzahl einzelner Messungen vom angegebenen N ab, ist sie getrennt aufgeführt
- c) Im Genehmigungsverfahren befindliches Endlagerprojekt

Tabelle 1.4.6-4 Radioaktivität der pflanzlichen Nahrungsmittel in der näheren Umgebung kerntechnischer Anlagen: Kartoffeln (Radioactivity of food stuffs of vegetable origin in the vicinity of nuclear facilities: potatoes)

Bundesland	Jahr		Aktivität	t in Bq/kg	FM
Kerntechnische Anlagen		N	Mittelwert (Bereich)	N	Mittelwert (Bereich)
Baden-Württemberg			Cs-137		Sr-90
FZ Karlsruhe	2000	3	<0,03	3	<0,07
	2001	2	<0,03	a)	
	2002	4	<0,05 (<0,03 - 0,07)	1	0,01
Kernkraftwerk	2000	3	<0,13	3	0,03
Obrigheim	2001	a)		a)	
	2002	1	<0,07	1	0,02
Kernkraftwerk	2000	3	<0,13	3	0,03
Neckarwestheim	2001	a)		a)	
	2002	3	<0,06 (<0,05 - <0,06)	3	0,03 (0,02 - 0,04)
Kernkraftwerk	2000	a)		a)	
Philippsburg	2001	1	<0,05	1	0,02
	2002	1	<0,03	1	0,03
Kernkraftwerk	2000	4	<0,09	4	0,05
Beznau/Leibstadt	2001	a)		a)	
Schweiz	2002	a)		a)	

Bundesland	Jahr	Aktivität in Bq/kg FM			·M
Kerntechnische Anlagen		N	Mittelwert (Bereich)	N	Mittelwert (Bereich)
Bayern			Cs-137		Sr-90
Kernkraftwerk	2000	2	<0,08	2	0,06
Fessenheim	2001	a)		a)	
Frankreich	2002	1	<0,08	1	0,04
Kernkraftwerk	2000	5	<0,25	5	0,13
Gundremmingen	2001	a)		a)	
	2002	a)		a)	
Berlin					
Forschungsreaktor	2000	1	0,08	1	0,02
BER II	2001	2	<0,07	1	0,17
	2002	1	0,19	a)	
Brandenburg					
Kernkraftwerk	2000	a)		a)	
Rheinsberg	2001	a)		a)	
J	2002	a)		a)	
Hessen					
Kernkraftwerk	2000	4	<0,04	4	0,05
Biblis	2001	4	<0,04	4	0,03
2.30	2002	a)	0,0 .	a)	0,00
Mecklenburg-Vorp.					
Kernkraftwerk	2000	2	<0,12	2	0,02
Greifswald	2001	2	<0,09	2	0,01
Grensward	2002	2	<0,07 (0,06 - <0,09)	1	0,02
Niedersachsen					
Kernkraftwerk	2001	1	0,08	1 1	0,05
Grohnde	2002	a)	0,00	a)	0,00
Groffinge	2002	u)		u)	
Kernkraftwerk	2001	1	<0,08	1	0,07
Unterweser	2002	a)		a)	
Kernkraftwerk	2001	1	0,07	1	0,05
Stade	2002	a)		a)	
Kernkraftwerk	2002	1	0,2	1	0,03
Emsland					
Nordrhein-Westfalen					
KFA Jülich	2000	2	<0,01	2	0,03
	2001	a)	,	a)	,
	2002	a)		a)	
		,			

Bundesland	Jahr	Aktivität in Bq/kg FM			FM
Kerntechnische Anlagen		N	Mittelwert (Bereich)	N	Mittelwert (Bereich)
Rheinland-Pfalz					
Kernkraftwerk	2000	a)		a)	
Mülheim-Kärlich	2001	1	0,04	1	0,04
	2002	a)		a)	

a) Daten lagen nicht vor

1.5 Strahlenexposition durch kerntechnische Anlagen (Radiation exposures from nuclear facilities)

Bearbeitet vom Bundesamt für Strahlenschutz, Fachbereich Strahlenschutz und Umwelt, Oberschleißheim und Berlin

Die für das Jahr 2002 ermittelten Daten über die Ableitung radioaktiver Stoffe mit Abluft und Abwasser aus kerntechnischen Anlagen sind in den Abschnitten II 1.2 bzw. 1.3 zusammengefasst. Sie dienen als Grundlage für die Berechnung der Strahlenexposition der Bevölkerung in der Umgebung der einzelnen Anlagen. Diese Berechnung wurde entsprechend der "Allgemeinen Verwaltungsvorschrift zu § 47 StrlSchV: Ermittlung der Strahlenexposition durch die Ableitung radioaktiver Stoffe aus kerntechnischen Anlagen oder Einrichtungen" durchgeführt.

Berechnete obere Werte der Strahlenexposition

Die in den Tabellen 1.5-1 bis 1.5-6 angegebenen Expositionswerte für die kerntechnischen Anlagen stellen obere Werte dar, da sie gemäß § 47 Abs. 2 StrlSchV für eine Referenzperson an den ungünstigsten Einwirkungsstellen ermittelt wurden. Die Referenzperson ist eine fiktive Person, für die in der Strahlenschutzverordnung (Anlage VII, Teil A bis C) die zu berücksichtigenden Expositionspfade, Lebensgewohnheiten und übrigen Annahmen festgelegt sind mit dem Ziel, dass bei deren Anwendung die Strahlenexposition des Menschen nicht unterschätzt wird. Die ungünstigsten Einwirkungsstellen sind die Stellen in der Umgebung einer Anlage, bei denen auf Grund der Verteilung der abgeleiteten radioaktiven Stoffe in der Umgebung durch Aufenthalt oder durch Verzehr dort erzeugter Lebensmittel die höchste Strahlenexposition der Referenzperson zu erwarten ist. Nach der Strahlenschutzverordnung darf die effektive Dosis hierbei höchstens 300 Mikrosievert, die Schilddrüsendosis höchstens 900 Mikrosievert und die Knochenoberflächendosis höchstens 1800 Mikrosievert pro Jahr betragen.

Tabelle 1.5-1 enthält die Ergebnisse aus den Berechnungen der Strahlenexposition der Bevölkerung im Jahr 2002 in der Umgebung von Atomkraftwerken durch die Ableitung radioaktiver Stoffe mit der Abluft. Angegeben ist die effektive Dosis für Erwachsene (Altersgruppe >17 Jahre) und Kleinkinder (Altersgruppe >1 bis ≤ 2 Jahre) sowie die Schilddrüsendosis für Kleinkinder. Tabelle 1.5-1 zeigt als größten Wert der effektiven Dosis für Erwachsene 6 µSv (2% des Grenzwertes nach Strahlenschutzverordnung) und für Kleinkinder 10 µSv (rund 3% des Dosisgrenzwertes) beim Kernkraftwerk Obrigheim. Der größte Wert der Schilddrüsendosis für Kleinkinder ergibt sich mit 9 µSv (rund 1% des Dosisgrenzwertes) ebenfalls beim Kernkraftwerk Obrigheim.

In Tabelle 1.5-2 sind die aus den Ableitungen radioaktiver Stoffe mit dem Abwasser aus Atomkraftwerken resultierenden oberen Werte der effektiven Dosis für Erwachsene und Kleinkinder zusammengestellt. Hierbei wurden ungünstige Verzehrs- und Lebensgewohnheiten angenommen, insbesondere für Erwachsene ein hoher Konsum an Flussfisch, der in der Kühlwasserfahne gefangen wird, und für beide Personengruppen der Aufenthalt von 1000 Stunden am Flussufer oder auf Wiesen in Flussnähe. Der größte Wert der effektiven Dosis beträgt 0,8 μ Sv für Kleinkinder (entsprechend ca. 0,3 % des Grenzwertes) am Standort des Kernkraftwerkes Emsland.

Entsprechend der Allgemeinen Verwaltungsvorschrift zu § 47 Strahlenschutzverordnung wurde die Strahlenexposition am Unterlauf der Flüsse näher betrachtet, wobei jeweils sämtliche Emittenten berücksichtigt wurden. Für das Mündungsgebiet des Neckar wurde eine effektive Dosis von etwa 1 μ Sv für Erwachsene und 1,8 μ Sv für Kleinkinder ermittelt; für den Unterlauf der Weser wurde für beide Personenpruppen 0,3 μ Sv bzw. 0,5 μ Sv berechnet; an Rhein und Main liegen die effektiven Dosen bei 0,2 μ Sv bzw. 0,4 μ Sv und an der Donau bei 0,3 μ Sv bzw. 0,6 μ Sv. Zu diesen Werten trägt vor allem die äußere Bestrahlung auf Überschwemmungsgebieten bei, die im Wesentlichen durch Ablagerungen aus früheren Jahren bedingt ist.

Tabelle 1.5-1 Strahlenexposition im Jahr 2002 in der Umgebung von Atomkraftwerken durch die Ableitung radioaktiver Stoffe mit der Abluft in Mikrosievert (Radiation exposures in the surroundings of nuclear power plants in the year 2002 due to the discharge of radioactive substances with exhaust air, expressed in microsievert)

	Oberer Wert ^{a)}					
Kernkraftwerk	der effekti	der Schilddrüsendosis für Kleinkinder				
	für Erwachsene (μSv)	für Kleinkinder (µSv)	(μSv)			
Kahl	< 0,1	< 0,1	< 0,1			
Rheinsberg ^{b)}	< 0,1	< 0,1	< 0,1			
Lingen	< 0,1	< 0,1	< 0,1			
Obrigheim	6	10	9			
Stade	0,2	0,4	0,4			
Würgassen	0,2	0,3	0,3			
Greifswald b)	< 0,1	< 0,1	< 0,1			
Biblis A, B	0,4	0,8	0,7			
Neckar 1, 2	1	2	2			
Brunsbüttel	0,6	1	1			
Isar 1, 2	4	7	6			
Unterweser	0,3	0,5	0,5			
Philippsburg 1, 2	4	7	7			
Grafenrheinfeld	0,8	1	1			
Krümmel	0,4	1	3			
Gundremmingen A, B, C	4	7	7			
Grohnde	0,4	0,6	0,6			
Hamm-Uentrop	< 0,1	< 0,1	< 0,1			
Mülheim-Kärlich	< 0,1	< 0,1	< 0,1			
Brokdorf	0,4	0,6	0,6			
Emsland	0,4	0,7	0,6			

a) berechnet für eine Referenzperson an den ungünstigsten Einwirkungsstellen

b) Die Strahlenexposition konnte für Expositionspfade, bei denen Radionuklide in den Vorjahren akkumuliert wurden, nur unvollständig berechnet werden, da bei diesen Kernkraftwerken Werte für die Ableitung radioaktiver Stoffe mit der Abluft aus den Jahren vor 1990 (Greifswald) bzw. vor 1984 (Rheinsberg) nicht vorliegen.

Tabelle 1.5-2 Strahlenexposition im Jahr 2002 in der Umgebung von Atomkraftwerken durch die Ableitung radioaktiver Stoffe mit dem Abwasser (Radiation exposures in the surroundings of nuclear power plants in the year 2002 due to the discharge of radioactive substances with waste water)

Kernkraftwerk	Oberer Wert der effektiven Dosis für Erwachsene	Oberer Wert der effektiven Dosis für Kleinkinder
	μSv	μSν
Kahl	< 0,1	< 0,1
Gundremmingen A, B und C	0,4	0,4
Obrigheim	0,2	0,3
Stade	< 0,1	< 0,1
Würgassen	< 0,1	< 0,1
Biblis A und B	0,1	0,4
Neckar 1 und 2	0,6	1,1
Brunsbüttel	< 0,1	< 0,1
Isar 1 und 2	0,2	0,4
Unterweser	0,1	0,1
Philippsburg 1 und 2	0,1	0,2
Grafenrheinfeld	0,4	0,6
Krümmel	< 0,1	< 0,1
Grohnde	0,2	0,4
Mülheim-Kärlich	< 0,1	< 0,1
Brokdorf	< 0,1	0,1
Emsland	0,5	0,8
Rheinsberg *)	0,1	0,2
Greifswald *)	< 0,1	< 0,1

^{*)} Bei der Berechnung der Strahlenexposition konnten für Expositionspfade, bei denen die effektive Dosis durch langjährige Ablagerungen von Radionukliden bedingt ist, nur die seit 1990 mit dem Abwasser abgeleiteten radioaktiven Stoffe berücksichtigt werden.

Die in Tabelle 1.5-3 angegebenen Werte für die entsprechenden Strahlenexpositionen durch die Ableitung radioaktiver Stoffe mit der Abluft aus Forschungszentren stammen aus den Jahresberichten der Forschungszentren Karlsruhe, Jülich, Rossendorf, Geesthacht und des Hahn-Meitner-Instituts Berlin. Die Tabelle weist für die effektive Dosis im Jahr 2002 als höchsten Wert 17 μ Sv (rund 6% des Grenzwertes) für Erwachsene und 25 μ Sv (rund 8% des Grenzwertes) für Kleinkinder beim Forschungszentrum Jülich auf. Der höchste Wert der Schilddrüsendosis für Kleinkinder ergibt sich mit 23 μ Sv (rund 3% des Grenzwertes) ebenfalls beim Forschungszentrum Jülich. Für die Strahlenexposition über das Abwasser aus Forschungszentren infolge der jährlichen Ableitungen radioaktiver Stoffe der Forschungszentren Karlsruhe, Rossendorf, Geesthacht und Jülich sind die oberen Werte für die effektive Dosis im Jahr 2002 in Tabelle 1.5-4 aufgeführt. Der höchste Wert der effektiven Dosis für Erwachsene wurde mit 13 μ Sv beim Forschungszentrum Rossendorf berechnet.

Tabelle 1.5-3 Strahlenexposition im Jahr 2002 in der Umgebung von Forschungszentren durch die Ableitung radioaktiver Stoffe mit der Abluft *)

(Radiation exposures in the surroundings of research centres in the year 2002 due to the discharge of radioactive substances with exhaust air)

Forschungseinrichtung	Oberer Wert				
	der effektiven	Dosis (µSv)	der Schilddrüsendosis (µSv)		
	für Erwachsene	für Kleinkinder	für Kleinkinder		
Forschungszentrum Karlsruhe (einschl. Wiederaufarbeitungsanlage)	0,9	1,2	2,2		
Forschungszentrum Jülich (einschl. Versuchsreaktor AVR)	17	25	23		
Forschungszentrum Rossendorf (FZR)	0,5	0,8	0,8		
GKSS-Forschungszentrum Geesthacht	0,2	0,3	0,3		
Hahn-Meitner-Institut Berlin (einschl. Zentralstelle für radioaktive Abfälle)	0,2	0,3	0,5		

^{*)} Entnommen den Jahresberichten 2002 der Forschungszentren Karlsruhe, Jülich, Rossendorf, Geesthacht und des Hahn-Meitner-Instituts Berlin

Tabelle 1.5-4 Strahlenexposition im Jahr 2002 in der Umgebung von Forschungszentren durch die Ableitung radioaktiver Stoffe mit dem Abwasser *)

(Radiation exposures in the surroundings of research centres in the year 2002 due to the discharge of radioactive substances with waste water

Forschungseinrichtung	Oberer Wert der effektiven Dosis für Erwachsene (μSv)
Forschungszentrum Karlsruhe (einschl. Wiederaufarbeitungsanlage)	0,000015
Forschungszentrum Jülich (einschließl. Versuchsreaktor AVR)	0,8
Forschungszentrum Rossendorf	13
GKSS-Forschungszentrum Geesthacht	< 100

^{*)} Entnommen den Jahresberichten 2002 der Forschungszentren Karlsruhe, Jülich und Rossendorf

Für die Kernbrennstoff verarbeitenden Betriebe in Hanau, Lingen und Gronau sind in Tabelle 1.5-5 die für eine Referenzperson an den ungünstigsten Einwirkungsstellen berechneten oberen Werte der effektiven Dosis für Erwachsene und Kleinkinder, sowie die oberen Werte der Knochenoberflächendosis für Kleinkinder durch die Ableitungen radioaktiver Stoffe mit der Abluft angegeben. Die höchsten Werte der Strahlenexposition einer Referenzperson ergeben sich beim Betrieb NUKEM infolge von Abrissarbeiten, die im Vergleich zum Vorjahr zu höheren Emissionen führten. Der berechnete Wert der effektiven Dosis für Erwachsene beträgt 1 μ Sv (rund 0,3% des Grenzwertes) und für Kleinkinder 3 μ Sv (1% des Grenzwertes). Die Knochenoberflächendosis für Kleinkinder errechnet sich zu 70 μ Sv (rund 4% des Grenzwertes).

Tabelle 1.5-5 Strahlenexposition im Jahr 2002 in der Umgebung der Kernbrennstoff verarbeitenden Betriebe durch die Ableitung radioaktiver Stoffe mit der Abluft (Radiation exposures in the surroundings of processing facilities for nuclear fuels in the year 2002 due to the discharge of radioactive substances with exhaust air)

Betrieb	Oberer Wert		
	der effektiven Dosis (µSv)		der Knochenoberfläche (μSv)
	für Erwachsene	für Kleinkinder	für Kleinkinder
NUKEM GmbH (Hanau)	1	3	70
SIEMENS AG			
Brennelementewerk Hanau			
Betriebsteil MOX-Verarbeitung	<0,1	<0,1	<0,1
Betriebsteil Uran-Verarbeitung	<0,1	<0,1	<0,2
ANF GmbH (Lingen)	<0,1	<0,1	<0,1
URENCO D (Gronau)	<0,1	<0,1	0,1

Die durch die Ableitungen von Alphastrahlern mit dem Abwasser bedingten Werte der effektiven Dosis von Erwachsenen und Kleinkindern in der Umgebung Kernbrennstoff verarbeitender Betriebe sind in Tabelle 1.5-6 aufgeführt. Wie in den Vorjahren liegen die Werte bei jeweils weniger als 0,1 μSv.

Tabelle 1.5-6 Strahlenexposition im Jahr 2002 in der Umgebung Kernbrennstoff verarbeitender Betriebe durch die Ableitung radioaktiver Stoffe mit dem Abwasser (Radiation exposures in the surroundings of processing facilities for nuclear fuels in the year 2002 due to the discharge of radioactive substances with waste water)

Betrieb	Oberer Wert der effektiven Dosis für Erwachsene und Kleinkinder (µSv)
NUKEM GmbH Hanau (einschließlich HOBEG)	< 0,1
SIEMENS AG Brennelementwerk Hanau	
Betriebsteil MOX-Verarbeitung	< 0,1
Betriebsteil Uranverarbeitung	< 0,1
ANF GmbH (Lingen)	< 0,1
URENCO D (Gronau)	< 0,1

Die Strahlenexposition in Folge der Ableitung radioaktiver Stoffe mit der Abluft und mit dem Abwasser aus dem Endlager für radioaktive Abfälle Morsleben (ERAM) ist in Tabelle 1.5-7 aufgeführt. Der durch die Ableitung radioaktiver Stoffe mit der Abluft ermittelte obere Wert der effektiven Dosis für Erwachsene betrug 2002 0,2 μ Sv, für Kleinkinder (Altersgruppe 1 bis 2 Jahre) 0,6 μ Sv und für mit Muttermilch ernährte Säuglinge 1,9 μ Sv; dies sind ca. 0,1%, 0,2% bzw. 0,6% des Grenzwertes nach der Strahlenschutzverordnung. Die Dosis des kritischen Organs (rotes Knochenmark) errechnete sich zu 0,4 μ Sv für Erwachsene, 1,7 μ Sv für Kleinkinder (Altersgruppe 1 - 2 Jahre) und 5,9 μ Sv für mit Muttermilch ernährte Säuglinge (ca. 0,1%, 0,6% bzw. 2,0% des Grenzwertes). Aus den Ableitungen radioaktiver Stoffe mit dem Abwasser wurden 2002 obere Werte der effektiven Dosis unterhalb von 0,1 μ Sv für Erwachsene und Kleinkinder berechnet.

Tabelle 1.5-7 Strahlenexposition im Jahr 2002 in der Umgebung des Endlagers Morsleben durch die Ableitung radioaktiver Stoffe mit der Abluft und dem Abwasser (Radiation exposure in the surroundings of the Morsleben final repository in the year 2002 due to the discharge of radioactive substances with exhaust air and waste water)

	Abluft Oberer Wert (μSv)		Abwasser Oberer Wert der eff. Dosis (μSv)
	der effektiven Dosis	der Organdosis	Βοσίο (μον)
Erwachsene	0,2	0,4	< 0,1
Kleinkinder (Altersgruppe 1 bis 2 Jahre)	0,6	1,7	< 0,1
Mit Muttermilch ernährte Säuglinge	1,9	5,9	< 0,1

Der Betrieb kerntechnischer Anlagen in Nachbarländern (Teil II 1.1, Tabelle 1.1-4) führte 2002 bei Berechnung nach der Allgemeinen Verwaltungsvorschrift zu § 47 StrlSchV für eine Referenzperson auf Bundesgebiet zu oberen Werten der effektiven Dosis bis zu 20 µSv. Für die Schilddrüsendosis eines Kleinkindes über sämtliche relevanten Expositionspfade errechnen sich obere Werte von bis zu 30 µSv pro Jahr; den größten Beitrag zur Schilddrüsendosis liefert der Weide-Kuh-Milch-Pfad. Bei den im Rahmen der Umgebungsüberwachung durchgeführten Messungen des Radiojodgehaltes von Milchproben aus grenznahen Weidegebieten wurde Jod-131 im Jahr 2002 in Milch nicht nachgewiesen.

Bewertung

Die für 2002 aus den Jahresableitungen nach der Allgemeinen Verwaltungsvorschrift zu § 47 StrlSchV berechneten Werte der Strahlenexposition haben die in der Strahlenschutzverordnung festgelegten Dosisgrenzwerte nicht überschritten. Sie liegen im Bereich der entsprechenden Werte des Vorjahres und betragen in der Regel bei der effektiven Dosis und bei den einzelnen Organdosen weniger als 10% des jeweiligen Dosisgrenzwertes. Damit sind die oberen Werte der Strahlenexposition durch Ableitungen radioaktiver Stoffe aus kerntechnischen Anlagen kleiner als die Schwankungsbreite der natürlichen Strahlenexposition in der Bundesrepublik Deutschland.

Der Beitrag der kerntechnischen Anlagen in der Bundesrepublik Deutschland sowie im angrenzenden Ausland zur mittleren effektiven Dosis der Bevölkerung der Bundesrepublik Deutschland lag auch im Jahr 2002 deutlich unter 10 µSv pro Jahr.