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ABSTRACT
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Abadie’s Kappa and Weighting Estimators 
of the Local Average Treatment Effect*

In this paper we study the finite sample and asymptotic properties of various weighting 

estimators of the local average treatment effect (LATE), several of which are based 

on Abadie (2003)’s kappa theorem. Our framework presumes a binary endogenous 

explanatory variable (“treatment”) and a binary instrumental variable, which may only 

be valid after conditioning on additional covariates. We argue that one of the Abadie 

estimators, which we show is weight normalized, is likely to dominate the others in many 

contexts. A notable exception is in settings with one-sided noncompliance, where certain 

unnormalized estimators have the advantage of being based on a denominator that is 

bounded away from zero. We use a simulation study and three empirical applications 

to illustrate our findings. In applications to causal effects of college education using the 

college proximity instrument (Card, 1995) and causal effects of childbearing using the 

sibling sex composition instrument (Angrist and Evans, 1998), the unnormalized estimates 

are clearly unreasonable, with “incorrect” signs, magnitudes, or both. Overall, our results 

suggest that (i) the relative performance of different kappa weighting estimators varies 

with features of the data-generating process; and that (ii) the normalized version of Tan 

(2006)’s estimator may be an attractive alternative in many contexts. Applied researchers 

with access to a binary instrumental variable should also consider covariate balancing or 

doubly robust estimators of the LATE.
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1 Introduction

A large literature following Imbens and Angrist (1994) focuses on identification and estimation of
the local average treatment e↵ect (LATE), that is, the average e↵ect of treatment for “compliers,”
whose treatment status is a↵ected by a binary instrument. In an important contribution to this
literature, Abadie (2003) demonstrates how to identify any parameter that is defined in terms of
moments of the joint distribution of the data for compliers. The result is based on “kappa weight-
ing,” with weights that depend on the instrument propensity score. Abadie (2003)’s theorem has
been highly influential in applied work, and it is now routinely used to estimate mean covariate
values for compliers (e.g., Angrist et al., 2013; Dahl et al., 2014; Bisbee et al., 2017) and to ap-
proximate the conditional mean of an outcome of interest in this subpopulation (e.g., Cruces and
Galiani, 2007; Angrist et al., 2013; Goda et al., 2017). At the same time, it is surprisingly un-
common among practitioners to use methods based on kappa weighting to estimate the LATE,
even though Abadie (2003)’s result has also spurred a growing literature in econometrics, which
indeed focuses on the LATE and its quantile counterparts (e.g., Frölich and Melly, 2013; Abadie
and Cattaneo, 2018; Sant’Anna et al., 2020; Singh and Sun, 2021).

There is also an alternative way to construct weighting estimators of the LATE, which follows
from the identification result in Frölich (2007). This result implies that the ratio of any consistent
estimator of the average treatment e↵ect (ATE) of the instrument on the outcome and any consistent
estimator of its ATE on the treatment is consistent for the LATE. A simple approach is to estimate
the LATE as the ratio of two particular weighting estimators. Although the recent literature in
econometrics and statistics has adopted this approach, it focuses primarily on the ratio of two
unnormalized estimators (Tan, 2006; Frölich, 2007; MaCurdy et al., 2011; Donald et al., 2014a,b;
Abdulkadiroğlu et al., 2017), despite the fact that weighting estimators of the ATE are known to
exhibit poor properties in finite samples when they are not normalized, i.e. when their weights do
not sum to unity (Imbens, 2004; Millimet and Tchernis, 2009; Busso et al., 2014).1

In this paper we provide a comprehensive treatment of both approaches to constructing weight-
ing estimators of the LATE. We also stress the importance of normalization. We begin with an
observation that Abadie (2003)’s theorem lends itself to constructing a number of consistent es-
timators of the LATE, only one of which is normalized. We argue that this estimator, which is
di↵erent from the normalized version of Tan (2006)’s estimator, is likely to dominate the other
kappa weighting estimators in most cases, with an important exception of settings with one-sided
noncompliance. Indeed, we demonstrate that a particular unnormalized estimator is based on a
denominator that is bounded away from zero whenever there are no always-takers, that is, individ-

1An important recent exception is Heiler (2021), who considers both unnormalized and normalized weighting
while generally focusing on covariate balancing estimators of the LATE.
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uals who participate in the treatment regardless of the value of the instrument. Such boundedness
is an important property for a ratio estimator (cf. Andrews et al., 2019). Interestingly, we also show
that this particular unnormalized estimator is, in fact, identical to Tan (2006)’s original weighting
estimator. There is also another unnormalized estimator, which has not been studied before and
whose denominator is bounded away from zero whenever there are no never-takers, that is, indi-
viduals who never participate in the treatment. Finally, we study the asymptotic properties of all
the estimators under consideration. To do this, we assume that the researcher adopts a parametric
model for the instrument propensity score and estimates the unknown parameters by maximum
likelihood (cf. Sant’Anna et al., 2020). In a unified framework of M-estimation, our weighting
estimators are asymptotically normal, and we derive their asymptotic variances.

To illustrate our findings, we use a simulation study and three empirical applications. The
simulations confirm the stability of the appropriate unnormalized estimators in settings with one-
sided noncompliance. In general, however, the normalized version of Tan (2006)’s estimator is
more stable than the normalized and unnormalized kappa weighting estimators. As we show, the
instabilities are driven by near-zero denominators in a handful of replications. Thus, it is an open
question whether this issue will play a central role in applications. It turns out that, in the three
empirical applications that we consider, it does not.

Our empirical applications focus on causal e↵ects of military service (Angrist, 1990), college
education (Card, 1995), and childbearing (Angrist and Evans, 1998). In each of these applications,
we document what we consider to be superiority of normalized over unnormalized weighting. In
our replication of Angrist (1990), the unnormalized estimates are highly variable across di↵erent
specifications, which is not the case for the instrumental variables (IV) estimates or normalized
weighting. In our replication of Card (1995), the IV estimates are unreasonably large, which is not
the case for the normalized weighting estimates; the unnormalized estimates, on the other hand, are
either even larger than the IV estimates or, in fact, negative, which is unreasonable for estimates of
causal e↵ects of college education. Finally, in our replication of Angrist and Evans (1998), some
of the unnormalized estimates of the e↵ect of childbearing on log wages of mothers are positive,
which is again not believable.

We recommend that applied researchers with access to a binary instrumental variable either
restrict their attention to normalized weighting estimators or consider other flexible approaches
to estimation. These could include covariate balancing estimators of the LATE, as studied by
Sant’Anna et al. (2020) and Heiler (2021), and doubly robust estimators of this parameter, as
recommended by Tan (2006), Uysal (2011), Ogburn et al. (2015), Belloni et al. (2017), Singh and
Sun (2021), and Słoczyński et al. (2022).

The remainder of the paper is organized as follows. Section 2 introduces our framework and
provides our theoretical results. Section 3 illustrates our results with a simulation study. Section 4
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discusses our empirical applications. Section 5 concludes.

2 Theory

2.1 Setup and Notation

The framework of this paper is standard and broadly follows Abadie (2003). Let Y denote the
outcome variable of interest, D the binary treatment, and Z the binary instrument for D. We also
introduce a vector of observed covariates, X, that predict Z. Thus, the instrument propensity score
can be written as p(X) = P(Z = 1 | X).

There are two potential outcomes, Y1 and Y0, only one of which is observed for a given indi-
vidual, Y = D · Y1 + (1 � D) · Y0. Similarly, there are two potential treatments, D1 and D0, and it
is instrument assignment that determines which of them is observed, D = Z · D1 + (1 � Z) · D0.
Individuals with Z = 1 are sometimes referred to as those with the instrument “switched on” or,
without loss of generality, those who are encouraged to get treatment. It is also useful to include
Z in the definition of potential outcomes, letting Yzd denote the potential outcome that a given
individual would obtain if Z = z and D = d.

Angrist et al. (1996) divide the population into four mutually exclusive subgroups based on the
latent values of D1 and D0. Individuals with D1 = D0 = 1 are referred to as always-takers, as they
get treatment regardless of whether they are encouraged to do so or not; similarly, individuals with
D1 = D0 = 0 are referred to as never-takers. Individuals with D1 = 1 and D0 = 0 are referred
to as compliers, as they comply with their instrument assignment; they get treatment if they are
encouraged to do so but not otherwise. Analogously, individuals with D1 = 0 and D0 = 1 are
referred to as defiers, as they defy their instrument assignment.

As usual, we define the treatment e↵ect as the di↵erence in the outcomes with and without
treatment, Y1 � Y0. Following Imbens and Angrist (1994), a large literature has been concerned
with identification and estimation of the local average treatment e↵ect (LATE), defined as

⌧LATE = E (Y1 � Y0 | D1 > D0) ,

i.e. as the average treatment e↵ect for compliers or, in other words, for those individuals who would
be induced to get treatment by the change in Z from zero to one.

2.2 Identification

In this section we review a general identification result due to Abadie (2003), which we will use to
discuss identification and estimation of ⌧LATE. We begin by restating Abadie (2003)’s assumptions.
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Assumption 1. (i) Independence of the instrument: (Y00,Y01,Y10,Y11,D0,D1) ? Z | X.

(ii) Exclusion of the instrument: P(Y1d = Y0d | X) = 1 for d 2 {0, 1} a.s.

(iii) First stage: 0 < P(Z = 1 | X) < 1 and P(D1 = 1 | X) > P(D0 = 1 | X) a.s.

(iv) Monotonicity: P(D1 � D0 | X) = 1 a.s.

These assumptions are standard in the recent IV literature. Assumption 1(i) states that, conditional
on covariates, the instrument is “as good as randomly assigned.” Assumption 1(ii) implies that
the instrument only a↵ects the outcome through its e↵ect on treatment status; it follows that Y0 =

Y10 = Y00 and Y1 = Y11 = Y01. Assumption 1(iii) combines an overlap condition with a requirement
that the instrument a↵ects the conditional probability of treatment. Finally, Assumption 1(iv) rules
out the existence of defiers, and implies that the population consists of always-takers, never-takers,
and compliers. Under Assumption 1, as demonstrated by Abadie (2003), any feature of the joint
distribution of (Y,D, X), (Y0, X), or (Y1, X) is identified for compliers.

Lemma 1 (Abadie 2003, pp. 236–237). Let g(·) be any measurable real function of (Y,D, X) such
that E|g(Y,D, X)| < 1. Define

0 = (1 � D)
(1 � Z) � (1 � p(X))

p(X) (1 � p(X))
,

1 = D
Z � p(X)

p(X) (1 � p(X))
,

 = 0 (1 � p(X)) + 1 p(X) = 1 � D (1 � Z)
1 � p(X)

� (1 � D) Z
p(X)

.

Under Assumption 1,

(a) E
⇥
g(Y,D, X) | D1 > D0

⇤
= 1

P(D1>D0)E
⇥
 g(Y,D, X)

⇤
. Also,

(b) E
⇥
g(Y0, X) | D1 > D0

⇤
= 1

P(D1>D0)E
⇥
0 g(Y, X)

⇤
, and

(c) E
⇥
g(Y1, X) | D1 > D0

⇤
= 1

P(D1>D0)E
⇥
1 g(Y, X)

⇤
.

Moreover, (a–c) also hold conditional on X.

Both Abadie (2003) and the subsequent applied literature have focused on the implications of
Lemma 1(a). In particular, numerous papers have used this result to estimate mean covariate values
for compliers (e.g., Angrist et al., 2013; Dahl et al., 2014; Bisbee et al., 2017) and to approximate
the conditional mean of Y given D and X for this subpopulation (e.g., Cruces and Galiani, 2007;
Angrist et al., 2013; Goda et al., 2017). On the other hand, the implications of Lemma 1(b) and (c)
have been considered almost exclusively in the econometrics literature, where several papers have
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used these results to identify and estimate ⌧LATE and quantile treatment e↵ects (e.g., Frölich and
Melly, 2013; Abadie and Cattaneo, 2018; Sant’Anna et al., 2020; Singh and Sun, 2021).

To see how Lemma 1(b) and (c) identifies ⌧LATE, take g(Y0, X) = Y0 and g(Y1, X) = Y1, and
write:

⌧LATE =
1

P(D1 > D0)
E (1Y) � 1

P(D1 > D0)
E (0Y) . (1)

We can also rewrite equation (1) to obtain the following expression for ⌧LATE:

⌧LATE =
1

P(D1 > D0)
E [(1 � 0) Y] =

1
P(D1 > D0)

E
"
Y

Z � p(X)
p(X) (1 � p(X))

#
. (2)

As we will see later, it is useful to treat equations (1) and (2) as distinct. In any case, it is clear that
⌧LATE is identified as long as P(D1 > D0) is identified. As noted by Abadie (2003), Lemma 1(a)
implies that P(D1 > D0) = E(), which follows from taking g(Y,D, X) = 1. Similarly, however, we
can use Lemma 1(b) and (c) to obtain P(D1 > D0) = E(1) and P(D1 > D0) = E(0). This is not a
novel observation but we will provide a more comprehensive discussion of its consequences than
has been done in previous work. We begin with the following remarks.

Remark 1. E() = E(1) � E
h

Z�p(X)
p(X)

i
= E(1).

Remark 2. E(0) = E(1) � E
h

Z�p(X)
p(X)(1�p(X))

i
= E(1).

The proofs of Remarks 1 and 2 follow from simple algebra and are omitted. The facts that
E

h
Z�p(X)

p(X)

i
= 0 and E

h
Z�p(X)

p(X)(1�p(X))

i
= 0 hold by iterated expectations. It turns out that E() =

E(1) = E(0). Additionally, Lemma 1 implies that each of these objects identifies P(D1 > D0), the
population proportion of compliers.

2.3 Estimation

Given a random sample {(Di,Zi, Xi,Yi) : i = 1, . . . ,N}, equation (2) suggests that we can consis-
tently estimate ⌧LATE as follows:

⌧̂LATE =
1

P̂(D1 > D0)

2
666664N
�1

NX

i=1

Yi
Zi � p(Xi)

p(Xi) (1 � p(Xi))

3
777775 ,

where P̂(D1 > D0)
p! P(D1 > D0) > 0. Our discussion so far also implies that there are at

least three candidate estimators for P(D1 > D0), namely N�1 PN
i=1 i, N�1 PN

i=1 i1, and N�1 PN
i=1 i0,

where i = 1� Di(1�Zi)
1�p(Xi)

� (1�Di)Zi
p(Xi)

, i1 = Di
Zi�p(Xi)

p(Xi)(1�p(Xi))
, and i0 = (1 � Di)

(1�Zi)�(1�p(Xi))
p(Xi)(1�p(Xi))

. Consequently,
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we have the following consistent estimators of ⌧LATE:

⌧̂a =

2
666664

NX

i=1

i

3
777775

�1 2
666664

NX

i=1

Yi
Zi � p(Xi)

p(Xi) (1 � p(Xi))

3
777775 , (3)

⌧̂a,1 =

2
666664

NX

i=1

i1

3
777775

�1 2
666664

NX

i=1

Yi
Zi � p(Xi)

p(Xi) (1 � p(Xi))

3
777775 , (4)

⌧̂a,0 =

2
666664

NX

i=1

i0

3
777775

�1 2
666664

NX

i=1

Yi
Zi � p(Xi)

p(Xi) (1 � p(Xi))

3
777775 . (5)

One might (mistakenly, as it turns out) expect that the choice of the estimator for P(D1 > D0) is
inconsequential. We discuss this issue extensively in what follows. For now, it should su�ce to
note that N�1 PN

i=1
Zi�p(Xi)

p(Xi)
and N�1 PN

i=1
Zi�p(Xi)

p(Xi)(1�p(Xi))
are not generally equal to zero or to each other,

and hence N�1 PN
i=1 i, N�1 PN

i=1 i1, and N�1 PN
i=1 i0 will also generally be di↵erent, unlike their

population counterparts.
Lemma 1 is not the only identification result that allows us to construct consistent estimators

of the LATE. An alternative result is provided by Frölich (2007). An implication of this result
is that the ratio of any consistent estimator of the average treatment e↵ect (ATE) of Z on Y and
any consistent estimator of the ATE of Z on D is consistent for the LATE. Given our interest in
weighting estimators, a natural candidate estimator is

⌧̂t =

2
666664

NX

i=1

DiZi

p(Xi)
�

NX

i=1

Di (1 � Zi)
1 � p(Xi)

3
777775

�1 2
666664

NX

i=1

YiZi

p(Xi)
�

NX

i=1

Yi (1 � Zi)
1 � p(Xi)

3
777775 , (6)

which was first suggested by Tan (2006). This estimator is equal to the ratio of two weighting esti-
mators of the ATE of Z (on Y and D) under unconfoundedness (see, e.g., Hirano et al., 2003). The
following remark, which has not been precisely stated in previous work, clarifies the relationship
between ⌧̂t and the Abadie estimators introduced above.

Remark 3. ⌧̂t = ⌧̂a,1.

Remark 3 states that ⌧̂t and ⌧̂a,1 are numerically identical, which can be seen by plugging in the
expression for i1 into equation (4):

⌧̂a,1 =

2
666664

NX

i=1

Di
Zi � p(Xi)

p(Xi) (1 � p(Xi))

3
777775

�1 2
666664

NX

i=1

Yi
Zi � p(Xi)

p(Xi) (1 � p(Xi))

3
777775 . (7)

It is easy to see that expressions (6) and (7) are equivalent. It is also important to note that ⌧̂t (= ⌧̂a,1)
is by far the most popular weighting estimator of the LATE in the econometrics literature. It has
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been considered by Tan (2006), Frölich (2007), MaCurdy et al. (2011), Donald et al. (2014a,b),
and Abdulkadiroğlu et al. (2017), among others. As we will see in the next section, however, this
estimator has a major drawback in finite samples.

2.4 Unnormalized and Normalized Weights

Following Imbens (2004), Millimet and Tchernis (2009), and Busso et al. (2014), it is widely
understood that weighting estimators of the ATE under unconfoundedness should be normalized,
i.e. their weights should sum to unity.2 It is natural to expect that normalization will also be
important when using weighting estimators of the LATE (cf. Heiler, 2021).

It follows immediately that ⌧̂t is likely inferior to the ratio of two normalized estimators of the
ATE of Z under unconfoundedness:

⌧̂t,norm =

hPN
i=1

Zi
p(Xi)

i�1 PN
i=1

YiZi
p(Xi)
�

hPN
i=1

1�Zi
1�p(Xi)

i�1 PN
i=1

Yi(1�Zi)
1�p(Xi)

hPN
i=1

Zi
p(Xi)

i�1 PN
i=1

DiZi
p(Xi)
�

hPN
i=1

1�Zi
1�p(Xi)

i�1 PN
i=1

Di(1�Zi)
1�p(Xi)

,

which was first suggested by Uysal (2011) and subsequently applied by Bodory and Huber (2018)
and Heiler (2021). It might not be immediately obvious how the importance of normalization
a↵ects our understanding of the Abadie estimators. To see this, note that ⌧̂a, ⌧̂a,1, and ⌧̂a,0 can
equivalently be represented as sample analogues of equation (1):

⌧̂a =

2
666664

NX

i=1

i

3
777775

�1 2
666664

NX

i=1

i1Yi

3
777775 �

2
666664

NX

i=1

i

3
777775

�1 2
666664

NX

i=1

i0Yi

3
777775 ,

⌧̂a,1 =

2
666664

NX

i=1

i1

3
777775

�1 2
666664

NX

i=1

i1Yi

3
777775 �

2
666664

NX

i=1

i1

3
777775

�1 2
666664

NX

i=1

i0Yi

3
777775 ,

⌧̂a,0 =

2
666664

NX

i=1

i0

3
777775

�1 2
666664

NX

i=1

i1Yi

3
777775 �

2
666664

NX

i=1

i0

3
777775

�1 2
666664

NX

i=1

i0Yi

3
777775 .

It turns out that none of these estimators is normalized. First, ⌧̂a uses weights of
hPN

i=1 i

i�1
i1 and

hPN
i=1 i

i�1
i0, which do not necessarily sum to unity across i. Second, ⌧̂a,1 is based on weights

of
hPN

i=1 i1

i�1
i1, which are properly normalized, and

hPN
i=1 i1

i�1
i0, which are not. Finally, ⌧̂a,0

uses weights of
hPN

i=1 i0

i�1
i1, which do not necessarily sum to unity across i, and

hPN
i=1 i0

i�1
i0,

which are properly normalized.
2More recently, the importance of normalization has been stressed by Sant’Anna and Zhao (2020) and Callaway

and Sant’Anna (2021), who focus on di↵erence-in-di↵erences methods and attribute the idea of normalized weighting
estimation to Hájek (1971). See also Skinner and Wakefield (2017) for further discussion.
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It is straightforward to construct a normalized Abadie estimator of the LATE. It turns out that
the two denominators in equation (1) need to be estimated separately, using di↵erent estimators of
P(D1 > D0), N�1 PN

i=1 i1 and N�1 PN
i=1 i0. The resulting estimator becomes

⌧̂a,10 =

2
666664

NX

i=1

i1

3
777775

�1 2
666664

NX

i=1

i1Yi

3
777775 �

2
666664

NX

i=1

i0

3
777775

�1 2
666664

NX

i=1

i0Yi

3
777775 ,

where both sets of weights,
hPN

i=1 i1

i�1
i1 and

hPN
i=1 i0

i�1
i0, sum to unity across i. The nor-

malized estimator is also considered by Abadie and Cattaneo (2018) and Sant’Anna et al. (2020).
While the literature on quantile treatment e↵ects studies normalized Abadie estimators somewhat
more often (see, e.g., Frölich and Melly, 2013), the importance of normalization is also not explic-
itly recognized.

2.5 Near-Zero Denominators

Weighting estimators of the LATE, like two-stage least squares and many other IV methods, are
an example of ratio estimators. A common problem with such estimators is that they behave badly
if their denominator is close to zero. In the context of IV estimation, such behavior is usually
associated with the presence of weak instruments (see, e.g., Andrews et al., 2019).

In this section we identify two situations under which certain unnormalized estimators have the
advantage of being based on a denominator that is nonnegative by construction and bounded away
from zero in all practically relevant situations. To see this, note that Table 1 provides simplified
formulas for , 1, and 0 in each of the four subpopulations defined by their values of Z and D.
For example,  = 1 if Z = 1 and D = 1 or Z = 0 and D = 0; moreover,  = �1�p(X)

p(X) if Z = 1 and
D = 0, and  = � p(X)

1�p(X) if Z = 0 and D = 1. It follows that N�1 PN
i=1 i is the mean of a collection

of positive and negative values, and hence it can be positive, negative, or zero. This is despite

Table 1: Simplified Formulas for , 1, and 0 in Subpopulations Defined by Z and D

 sgn() 1 sgn(1) 0 sgn(0)

Z = 1,D = 1 1 + 1
p(X) + 0 0

Z = 1,D = 0 �1�p(X)
p(X) � 0 0 � 1

p(X) �

Z = 0,D = 1 � p(X)
1�p(X) � � 1

1�p(X) � 0 0

Z = 0,D = 0 1 + 0 0 1
1�p(X) +

9



the fact that N�1 PN
i=1 i is also a consistent estimator of the proportion of compliers, which is

obviously nonnegative (and, in fact, strictly positive under Assumption 1). Similarly, N�1 PN
i=1 i1

and N�1 PN
i=1 i0 are also not guaranteed to be positive or bounded away from zero.

The situation turns out to be di↵erent in settings with one-sided noncompliance, i.e. when
individuals with Z = 1 or individuals with Z = 0 fully comply with their instrument assignment. If
all individuals with Z = 1 get treatment or, equivalently, there are no never-takers, then the second
row of Table 1 is empty and P(0 � 0) = 1. This is the case, for example, in studies that use
twin births as an instrument for fertility (e.g., Angrist and Evans, 1998; Farbmacher et al., 2018).
Similarly, if there are no always-takers or, equivalently, no individuals with Z = 0 get treatment,
then P(1 � 0) = 1. This is the case, for example, in randomized trials with noncompliance that
make it impossible to access treatment if not o↵ered. An implication of these observations is that
in settings with one-sided noncompliance there exist estimators of P(D1 > D0), and perhaps also
the LATE, that have some desirable properties in finite samples.

Remark 4. If there are no always-takers, N�1 PN
i=1 i1 > P̂(D = 1) > 0.

Remark 5. If there are no never-takers, N�1 PN
i=1 i0 > P̂(D = 0) > 0.

Proof. To prove Remark 4, note that 1
p(X) > 1 by Assumption 1(iii). If there are no always-takers,

then P(Z = 0,D = 1) = 0. It follows that N�1 PN
i=1 i1 > N�1

0
BBBBBBBB@1 + 1 + · · · + 1|            {z            }

N·P̂(D=1)

+ 0 + 0 + · · · + 0|            {z            }
N·P̂(D=0)

1
CCCCCCCCA =

P̂(D = 1). The proof of Remark 5 is analogous. ⇤

Remarks 4 and 5 demonstrate that settings with one-sided noncompliance o↵er a choice of estima-
tors of P(D1 > D0) that are bounded from below by the sample proportion of treated or untreated
units. Note that this property preserves a particular logical consistency of these estimators. If there
are no always-takers and no defiers, every treated individual must be a complier. Similarly, every
untreated individual must be a complier if there are no never-takers and no defiers.

An implication of Remarks 4 and 5 is that certain unnormalized estimators have the advan-
tage of avoiding near-zero denominators in settings with one-sided noncompliance. If there are no
always-takers or never-takers, we expect ⌧̂a,1 and ⌧̂a,0, respectively, to perform relatively well in
finite samples. Whether or not this dominates the disadvantage that these estimators are unnormal-
ized is an empirical issue. Note, however, that if N�1 PN

i=1 i1 is away from zero but N�1 PN
i=1 i0

is not, then this will negatively a↵ect the performance of not only ⌧̂a,0 but also ⌧̂a,10. Likewise, if
N�1 PN

i=1 i1 is close to zero, then both ⌧̂a,1 and ⌧̂a,10 will be a↵ected.

10



2.6 Asymptotic Theory

So far, we have focused on the finite sample properties of several weighting estimators of the LATE.
In this section we move on to the asymptotic properties of these estimators, which we study in a
unified framework of M-estimation. The M-estimator, ✓̂, of ✓, a k ⇥ 1 unknown parameter vector,
can be derived as the solution to the sample moment equation

N�1
NX

i=1

 (Oi, ✓̂) = 0,

where Oi is the observed data. Thus, ✓̂ is the estimator of ✓ that satisfies the population relation
E

⇥
 (O, ✓)

⇤
= 0. (See, e.g., Huber, 1964; Stefanski and Boos, 2002; and Wooldridge, 2010 for

more on M-estimation.) Under standard regularity conditions, the asymptotic distribution of an
M-estimator is given by p

N(✓̂ � ✓) d�! N
⇣
0, A�1VA�10

⌘
(8)

with

A = E
"
@ (O, ✓)
@✓0

#
,

V = E
⇥
 (O, ✓) (O, ✓)0

⇤
.

Since all the weighting estimators considered in this paper can be represented as an M-estimator,
we can apply these general results to obtain the asymptotic distribution of each estimator.

Weighting estimators are all functions of the instrument propensity score. So far, we have
implicitly treated the instrument propensity score as known. Yet, the instrument propensity score
is generally not known and has to be estimated. From now on, we assume a parametric model,
F(X,↵), for the instrument propensity score, p(X). Thus, the LATE can be estimated by a two-step
M-estimation procedure where the parameters of the instrument propensity score are estimated
in the first step. Alternatively, one could jointly estimate ↵ and ⌧LATE within an M-estimation
framework using both moment functions related to ↵ and ⌧LATE. The moment function related to
the estimation of the parameter vector ↵ is the score of the maximum likelihood estimation. Other
moment functions are derived from identification results of the LATE. All moment functions are
summarized in Table 2. For di↵erent weighting estimators, di↵erent combinations of moment

11



Table 2: Parameters and Moment Functions

Parameter Population Relation Related Moment Condition

↵ P(Z = 1 | X) = F(X,↵)  ↵ =
(Zi�F(Xi,↵))

F(Xi,↵)(1�F(X,↵))
@F(Xi,↵)

@↵

� � = E
h
Y Z�p(X)

p(X)(1�p(X))

i
 � =

ZiYi
F(Xi,↵) �

(1�Zi)Yi
1�F(Xi,↵) � �

� � = E
h
1 � D(1�Z)

1�p(X) �
(1�D)Z

p(X)

i
 � = 1 � (1�Zi)Di

1�F(Xi,↵) �
Zi(1�Di)
F(Xi,↵) � �

�1 �1 = E
h
D Z�p(X)

p(X)(1�p(X))

i
 �1 =

ZiDi
F(Xi,↵) �

(1�Zi)Di
1�F(Xi,↵) � �1

�0 �0 = E
h
(1 � D) (1�Z)�(1�p(X))

p(X)(1�p(X))

i
 �0 =

Zi(Di�1)
F(Xi,↵) �

(1�Zi)(Di�1)
1�F(Xi,↵) � �0

�1 �1 = E(1Y)  �1 = Di
Zi�F(Xi,↵)

F(Xi,↵)(1�F(Xi,↵))Yi � �1

�0 �0 = E(0Y)  �0 = (1 � Di) (1�Zi)�(1�F(Xi,↵))
F(Xi,↵)(1�F(Xi,↵)) Yi � �0

µ1 µ1 = E(Y | Z = 1)  µ1 =
Zi(Yi�µ1)
F(Xi,↵)

µ0 µ0 = E(Y | Z = 0)  µ0 =
(1�Zi)(Yi�µ0)

1�F(Xi,↵)

m1 m1 = E(D | Z = 1)  m1 =
Zi(Di�m1)

F(Xi,↵)

m0 m0 = E(D | Z = 0)  m0 =
(1�Zi)(Di�m0)

1�F(Xi,↵)

⌧LATE ⌧LATE =
�
�
= �
�1
= �
�0
= �1
�1
� �0
�0
= µ1�µ0

m1�m0
 ⌧a =

�
�
� ⌧a

 ⌧a,1 =
�
�1
� ⌧a,1

 ⌧a,0 =
�
�0
� ⌧a,0

 ⌧a,10 =
�1
�1
� �0
�0
� ⌧a,10

 ⌧t,norm =
µ1�µ0
m1�m0

� ⌧t,norm

functions will be necessary. For example, if ⌧LATE is estimated by ⌧̂a, then

 a =

0
BBBBBBBBBBBBBBBBBB@

 ↵

 �

 �

 ⌧a

1
CCCCCCCCCCCCCCCCCCA

is used as the moment function. Under standard regularity conditions for M-estimation, all of
the LATE estimators discussed above will be asymptotically normally distributed with di↵erent

12



asymptotic variances.
Note that we introduce some additional notation in order to simplify the representation of the

asymptotic variances. Let us denote the population counterpart of the numerator of the estimators
⌧̂a, ⌧̂a,1 (= ⌧̂t), ⌧̂a,0, and ⌧̂t,norm by �, i.e.,

� ⌘ E
"
Y

Z � p(X)
p(X) (1 � p(X))

#
. (9)

Recall that the expectation on the right hand side is equal to E [(1 � 0) Y]; see equation (2). Next,
denote E(1Y) and E(0Y) by �1 and �0, respectively. Alternatively, we can write the expectation
in equation (9) as follows:

E
"
Y

Z � p(X)
p(X) (1 � p(X))

#
= E

"
YZ

p(X)

#
� E

"
Y(1 � Z)
1 � p(X)

#
.

We denote E
h

YZ
p(X)

i
by µ1 and E

h
Y(1�Z)
1�p(X)

i
by µ0. Symmetrically, we denote E

h
DZ
p(X)

i
and E

h
D(1�Z)
1�p(X)

i

by m1 and m0. Additionally, the population proportion of compliers is denoted by �, �1, or �0,
depending on which sample mean is used to estimate the population parameter, i.e.,

� ⌘ E(),

�1 ⌘ E(1),

�0 ⌘ E(0).

Note that ⌧LATE =
�
�
= �
�1
= �
�0
= �1
�1
� �0
�0
= µ1�µ0

m1�m0
. When the population parameters are replaced

by their sample counterparts, we obtain the estimators ⌧̂a, ⌧̂a,1, ⌧̂a,0, ⌧̂a,10, and ⌧̂t, respectively. If
the normalized weights are used to estimate µz and mz for z = 0, 1, the resulting ratio estimator
corresponds to ⌧̂t,norm.

For the estimator ⌧̂a, we use moment functions related to the estimation of ↵, �, and �. Based
on the result given in equation (8), the asymptotic distribution of ⌧̂a can be derived as follows:

p
N (⌧̂a � ⌧LATE)

d�! N
�
0,V⌧a

�
,

where

V⌧a = �
 

1
�

E�,↵ �
⌧LATE

�
E�,↵

!
(�EH)�1

 
1
�

E�,↵ �
⌧LATE

�
E�,↵

!0

+ E
2
66664
 

1
�
 � �

⌧LATE

�
 �

!2377775
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with

 � =
ZiYi

F(Xi,↵)
� (1 � Zi)Yi

1 � F(Xi,↵)
� �,

 � = 1 � (1 � Zi)Di

1 � F(Xi,↵)
� Zi(1 � Di)

F(Xi,↵)
� �,

E�,↵ = E
"
@ �
@↵

#
= E

"
�

 
YZ

F(X,↵)2 +
Y(1 � Z)

(1 � F(X,↵))2

!
r↵F(X,↵)

#
,

E�,↵ = E
"
@ �
@↵

#
= E

" 
(1 � D)Z
F(X,↵)2 �

D(1 � Z)
(1 � F(X,↵))2

!
r↵F(X,↵)

#
,

EH = E [H(X,↵)] ,

and H(X,↵) denotes the Hessian of the log-likelihood of ↵.
The estimators ⌧̂a,1 (= ⌧̂t) and ⌧̂a,0 use the same moment functions as ⌧̂a for ↵ and �. However,

they estimate the population proportion of compliers using the moment functions derived from
population relation �1 and �0, respectively. The variances of ⌧̂a,1 and ⌧̂a,0 have the same form as
⌧̂a, where � is replaced with �1 and �0. Thus, the asymptotic distributions of ⌧̂a,1 and ⌧̂a,0 can be
summarized as follows:

p
N

�
⌧̂a,1 � ⌧LATE

� d�! N
⇣
0,V⌧a,1

⌘
,

where

V⌧a,1 = �
 

1
�1

E�,↵ �
⌧LATE

�1
E�1,↵

!
(�EH)�1

 
1
�1

E�,↵ �
⌧LATE

�1
E�1,↵

!0

+ E
2
66664
 

1
�1
 � �

⌧LATE

�1
 �1

!2377775

with

 �1 =
ZiYi

F(Xi,↵)
� (1 � Zi)Yi

1 � F(Xi,↵)
� �1,

E�1,↵ = E
"
�

 
DZ

F(X,↵)2 +
D(1 � Z)

(1 � F(X,↵))2

!
r↵F(X,↵)

#
,

and

p
N

�
⌧̂a,0 � ⌧LATE

� d�! N
⇣
0,V⌧a,0

⌘
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where

V⌧a,0 = �
 

1
�0

E�,↵ �
⌧LATE

�0
E�0,↵

!
(�EH)�1

 
1
�0

E�,↵ �
⌧LATE

�0
E�0,↵

!0

+ E
2
66664
 

1
�0
 � �

⌧LATE

�0
 �0

!2377775

with

 �0 =
Zi(Di � 1)
F(Xi,↵)

� (1 � Zi)(Di � 1)
1 � F(Xi,↵)

� �0,

E�0,↵ = E
"
@ �0

@↵

#
= E

"
�

 
(D � 1)Z
F(X,↵)2 +

(D � 1)(1 � Z)
(1 � F(X,↵))2

!
r↵F(X,↵)

#
.

The estimator ⌧̂a,10 is essentially the di↵erence of two ratio estimators whose covariance is zero.
Thus, the variance of the di↵erence is the sum of variances of the two ratio estimators. It follows
that

p
N

�
⌧̂a,10 � ⌧LATE

� d�! N
⇣
0,V⌧a,10

⌘

where

V⌧a,10 = �
 

E�1,↵

�1
� E�0,↵

�0
� �1E�1,↵

�2
1
+
�0E�0,↵

�2
0

!
(�E�1

H )
 

E�1,↵

�1
� E�0,↵

�0
� �1E�1,↵

�2
1
+
�0E�0,↵

�2
0

!0

+ E
 

1
�1
 �1 �

�1

�2
1
 �1

!2

+ E
 

1
�0
 �0 �

�0

�2
0
 �0

!2

with

 �1 = Di
Zi � F(Xi,↵)

F(Xi,↵)(1 � F(Xi,↵))
Yi � �1,

 �0 = (1 � Di)
(1 � Zi) � (1 � F(Xi,↵))
F(Xi,↵)(1 � F(Xi,↵))

Yi � �0,

E�1,↵ = E
"
@ �1

@↵

#
= E

"
�

 
DYZ

F(X,↵)2 +
DY(1 � Z)

(1 � F(X,↵))2

!
r↵F(X,↵)

#
,

E�0,↵ = E
"
@ �0

@↵

#
= E

"
�

 
(D � 1)YZ
F(X,↵)2 +

(D � 1)Y(1 � Z)
(1 � F(X,↵))2

!
r↵F(X,↵)

#
.

Finally, the estimator ⌧̂t,norm is another ratio estimator with di↵erences in the numerator and de-
nominator. Thus, the asymptotic distribution can be obtained with appropriate moment functions
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that take into account the normalization. It follows that

p
N

�
⌧̂t,norm � ⌧LATE

� d�! N
⇣
0,V⌧t,norm

⌘

where

V⌧t,norm = �
 

1
�

(Eµ1,↵ � Eµ0,↵) � �
�2 (Em1,↵ � Em0,↵)

!
(�E�1

H )
 

1
�

(Eµ1,↵ � Eµ0,↵) � �
�2 (Em1,↵ � Em0,↵)

!0

+ E
 

1
�
 µ1 �

�

�2 m1

!2

+ E
 

1
�
 µ0 �

�

�2 m0

!2

with

 µ1 =
Zi(Yi � µ1)

F(Xi,↵)
,  µ0 =

(1 � Zi)(Yi � µ0)
1 � F(Xi,↵)

,

 m1 =
Zi(Di � m1)

F(Xi,↵)
,  m0 =

(1 � Zi)(Di � m0)
1 � F(Xi,↵)

,

Eµ1,↵ = E
"
@ µ1

@↵

#
= E

"
�Z(Y � µ1)

F(X,↵)2 r↵F(X,↵)
#
,

Eµ0,↵ = E
"
@ µ0

@↵

#
= E

"
� (1 � Z)(Y � µ1)

(1 � F(X,↵))2 r↵F(X,↵)
#
,

Em1,↵ = E
"
@ m1

@↵

#
= E

"
�Z(D � m1)

F(X,↵)2 r↵F(X,↵)
#
,

Em0,↵ = E
"
@ m0

@↵

#
= E

"
� (1 � Z)(D � m1)

(1 � F(X,↵))2 r↵F(X,↵)
#
.

As we have seen, all the weighting estimators considered in this paper are asymptotically normal.
In the next section, among other things, we will evaluate the coverage rates for nominal 95%
confidence intervals based on the resulting estimators for the variances.

3 Simulation Study

In this section we use a simulation study to illustrate our findings on the properties of various
weighting estimators of the LATE. To reduce the number of researcher degrees of freedom, we fo-
cus on data-generating processes (DGPs) from Heiler (2021), a recent study of covariate balancing
estimators of the same parameter. Consequently, we have the following system of equations:

Z = 1[u < ⇡(X)],
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⇡(X) = 1/
�
1 + exp (�µz(X) · ✓0)

�
,

Dz = 1[µd(X, z) > v],

Y1 = µy1(X) + "1,

Y0 = "0,

where u and X are i.i.d. standard uniform,

0
BBBBBBBBBBB@

"1

"0

v

1
CCCCCCCCCCCA
⇠ N

0
BBBBBBBBBBB@

2
666666666664

0
0
0

3
777777777775
,

2
666666666664

1 0 0.5
0 1 0

0.5 0 1

3
777777777775

1
CCCCCCCCCCCA
, ✓0 = ln((1 � �)/�),

and � 2 {0.01, 0.02, 0.05}. What remains to be specified is three functions, namely µd(x, z), µy1(x),
and µz(x). Our choices for these functions are listed in Table 3. It is useful to note that, given these
choices and the fact that X has a standard uniform distribution, � is equal to the lowest possible
value of the instrument propensity score and (symmetrically) one minus the instrument propensity
score, that is, �  P(Z = 1 | X)  1 � �. Thus, � controls the degree of overlap in the data.

Importantly, Designs A.1, B, C, and D in Table 3 are identical to Designs A, B, C, and D,
respectively, in Heiler (2021). It is easy to see that Design A.1 corresponds to a setting with
(near) one-sided noncompliance, as P(D = 1 | Z = 1) = �(4) = 0.99997, where �(·) is the
standard normal cdf. It follows that there are essentially no never-takers in Design A.1. To illustrate
our findings from Section 2.5 on near-zero denominators, we are also interested in a design with
(nearly) no always-takers. This is accomplished by Design A.2, which is identical to Design A.1
except for a small change to µd(x, z) that reverses the direction of noncompliance. Indeed, in
Design A.2, P(D = 1 | Z = 0) = �(�4) = 0.00003, which means that there are essentially no
always-takers.

It is also useful to note that Designs A.1 and A.2 correspond to the case of a fully independent
instrument while in the remaining designs the instrument is conditionally independent. Addi-
tionally, in Designs A.1, A.2, and B, treatment e↵ect heterogeneity is only due to the correlation
between "1 and v; in Designs C and D, on the other hand, the dependence of µy1(X) on X constitutes
another source of heterogeneity. In the end, the linear IV estimator that controls for X is expected

Table 3: Simulation Designs

Design A.1 Design A.2 Design B Design C Design D

µd(x, z) 4z 4 (z � 1) �1+ 2x+ 2.122z �1+ 2x+ 2.122z �1+ 2x+ 2.122z

µy1(x) 0.3989 0.3989 0.3989 9 (x + 3)2 9 (x + 3)2

µz(x) 2x � 1 2x � 1 2x � 1 2x � 1 x + x2 � 1
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to perform very well in Designs A.1, A.2, and B but not necessarily elsewhere (cf. Heiler, 2021).
In our simulations, similar to Heiler (2021), we thus use the linear IV estimator as a benchmark

that the weighting estimators will not be able to outperform in Designs A.1, A.2, and B while
almost certainly being able to do so in Designs C and D. We also consider ⌧̂t,norm, ⌧̂a,10, ⌧̂a, ⌧̂a,1

(= ⌧̂t), and ⌧̂a,0 with instrument propensity scores estimated using a logit, also controlling for X.
This leads to a misspecification in Design D, where µz(X) is quadratic in X but we mistakenly omit
the quadratic term. Like Heiler (2021), we consider two sample sizes, n = 500 and n = 1,000, and
10,000 replications for each combination of a design, a value of �, and a sample size.

Our main results are reported in Tables A.1 to A.5 in the Appendix. For each estimator, we
report the mean squared error (MSE), normalized by the MSE of the linear IV estimator, the
absolute bias, and the coverage rate for a nominal 95% confidence interval.

In Design A.1, as expected, the linear IV estimator outperforms all weighting estimators of
the LATE, with MSEs of these estimators always at least 31% larger, and sometimes orders of
magnitude larger, than that of linear IV. With better overlap and larger sample sizes, all estimators
have small biases. When overlap is poor and samples small, linear IV is better than the weighting
estimators in terms of bias, too. Coverage rates are close to the nominal coverage rate for all
estimators in all cases. At the same time, in a comparison of di↵erent weighting estimators, it
turns out that three of them, ⌧̂t, ⌧̂a, and ⌧̂a,10, are very unstable when overlap is su�ciently poor,
� 2 {0.01, 0.02}, and samples are small, n = 500. This is documented by very large MSEs in these
cases. As predicted by Section 2.5, however, ⌧̂a,0 does not su↵er from instability, even in the most
challenging case with � = 0.01 and n = 500. This is because there are (nearly) no never-takers in
Design A.1. This stability is also shared by ⌧̂t,norm, which overall performs slightly better than ⌧̂a,0.

Our results for Design A.2 are generally similar, except for the relative performance of linear IV
in terms of bias and, especially, the exact list of weighting estimators that su↵er from instability.
Unlike in Design A.1, when overlap is poor and/or samples small, the bias of linear IV is not
clearly smaller than that of (most of) the weighting estimators. Also, it is ⌧̂a,0, ⌧̂a,10, and perhaps
⌧̂a that su↵er from instability in such cases—but clearly not ⌧̂t. As discussed in Section 2.5, this is
because there are (nearly) no always-takers in Design A.2. As before, ⌧̂t,norm performs marginally
better than the best unnormalized estimator (in this case, ⌧̂t).

In Design B, the instrument is no longer fully independent and noncompliance is no longer one
sided. While linear IV remains dominant in terms of MSE, it is always outperformed by most of
the weighting estimators in terms of bias, often substantially and sometimes by all of them. In
a comparison of di↵erent weighting estimators, ⌧̂t,norm remains best overall while ⌧̂t, ⌧̂a, and ⌧̂a,10

clearly su↵er from instability when overlap is su�ciently poor and samples su�ciently small. The
case of ⌧̂a,0 is borderline, which is perhaps due to the fact that there are many more always-takers
than never-takers in this design (although both groups clearly exist, unlike in previous designs).
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Next, in Design C, we introduce another source of treatment e↵ect heterogeneity through the
dependence of µy1(X) on X. The linear IV estimator is no longer consistent for the LATE, which
is illustrated by its large bias in all cases, including the least challenging case with � = 0.05 and
n = 1,000. Given that we define the coverage rate as the fraction of replications in which the
LATE is contained in a nominal 95% confidence interval, we also obtain very low coverage rates
for linear IV, never exceeding 66% and as low as 7% in one scenario. Coverage rates for all the
weighting estimators are close to the nominal level when overlap is good and samples su�ciently
large. The only weighting estimator that never su↵ers from instability is ⌧̂t,norm, except perhaps in
the case with � = 0.01 and n = 500. When overlap is good and/or samples somewhat larger, the
weighting estimators with best performance in simulations additionally include ⌧̂a,10 and ⌧̂t.

Finally, in Design D, the instrument propensity score is misspecified, as we mistakenly omit
the quadratic in X. The linear IV estimator remains inconsistent, too, and its coverage rates are as
low as 0–1% in all cases. In the end, perhaps surprisingly, ⌧̂a,10 and ⌧̂t outperform ⌧̂t,norm in terms
of both MSE and bias. At the same time, ⌧̂a and ⌧̂a,0 su↵er from the usual instability when overlap
is su�ciently poor and samples su�ciently small.

It seems natural to interpret the instability of di↵erent weighting estimators of the LATE as a
consequence of near-zero denominators, as we have done so far. To corroborate this interpreta-
tion, in Figures A.1 to A.5 in the Appendix, we present box plots with simulation evidence on all
estimators of the proportion of compliers that we consider, that is, the first-stage coe�cient on Z
in linear IV, the denominator of ⌧̂t,norm, N�1 PN

i=1 i1, N�1 PN
i=1 i0, and N�1 PN

i=1 i. A straightfor-
ward comparison of Tables A.1 to A.5 with Figures A.1 to A.5 reveals that instability of weighting
estimators of the LATE is indeed associated with situations in which the supports of their denom-
inators, the estimators of the proportion of compliers, are crossing zero. In fact, it is not negative
estimates of this proportion that are particularly problematic, even if they make no logical sense,
but rather those estimates that are very close to zero, as this results in dividing by “near zero” to
construct an estimate of the LATE, which leads to instability.

It is useful to remember that Heiler (2021)’s simulation results suggest that covariate balancing
estimators usually outperform weighting estimators based on maximum likelihood, such as ⌧̂t and
⌧̂t,norm. Yet, ⌧̂t,norm is the best-performing estimator in our simulations. Thus, a natural question
is whether all the estimators that we study should perhaps be avoided and alternative estimators,
such as those in Heiler (2021), considered instead. On the one hand, there are good reasons to
be skeptical about using simulation studies for estimator selection (cf. Advani et al., 2019) and
we treat our simulations mostly as an illustration of the results in Section 2. On the other hand,
we do not disagree that covariate balancing estimators are generally preferable. Our focus in this
paper is simply on improving our understanding of several “kappa weighting” estimators of the
LATE, based on the influential theorem in Abadie (2003). In practice, we would recommend that
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applied researchers combine weighting with regression adjustment, as in Tan (2006), Uysal (2011),
Ogburn et al. (2015), Belloni et al. (2017), Singh and Sun (2021), and Słoczyński et al. (2022),
among others.

4 Empirical Applications

In this section we use three empirical applications to illustrate our findings from Section 2 and
qualify some of our simulation results from Section 3. Our conclusions so far can be summarized
as follows. It is natural to regard ⌧̂a,10 and ⌧̂t,norm as the weighting estimators of choice, as these
estimators, unlike others, are weight normalized. On the other hand, whenever there are no always-
takers or no never-takers, respectively, ⌧̂t (= ⌧̂a,1) and ⌧̂a,0 have the advantage of being based on
a denominator that is bounded away from zero. In simulations, this property clearly translates to
numerical stability of these two estimators in settings with one-sided noncompliance. While ⌧̂t,norm

does not seem to su↵er from instability anyway, this is not generally true about ⌧̂a,10. Based on our
simulation results alone, we should perhaps use ⌧̂t,norm exclusively in all applications.

However, it is not clear whether the potential instability of some of the weighting estimators
will translate to practical problems in most cases. After all, dividing by “near zero” is still a rel-
atively infrequent phenomenon across 10,000 replications in our simulation study, and instability
problems usually disappear altogether in larger samples, with n = 1,000. Given that in mod-
ern applications samples are usually much larger than 1,000 observations, it is possible that such
problems will usually be irrelevant in practice, in which case normalization could again play a
central role, with ⌧̂a,10 and ⌧̂t,norm preferable to ⌧̂t, ⌧̂a, and ⌧̂a,0. Indeed, this is what our empirical
applications seem to suggest.

4.1 Causal E↵ects of Military Service (Angrist, 1990)

In our first empirical application, we revisit Angrist (1990)’s study of causal e↵ects of military
service using the draft eligibility instrument. In the early 1970s, during the Vietnam War period,
priority for induction was determined in a sequence of televised draft lotteries, in which an in-
teger from 1–365 was randomly assigned (without replacement) to each date of birth in a given
cohort. Subsequently, only men with lottery numbers below a ceiling determined by the Defense
Department could have been drafted. Thus, the draft eligibility instrument in Angrist (1990) takes
the value 1 for individuals with lottery numbers below the ceiling and 0 otherwise. Because the
ceilings were cohort specific, it is essential to control for age in subsequent analysis.

This study has been revisited by Kitagawa (2015) and Mourifié and Wan (2017), among oth-
ers. In what follows, we use a sample of 3,027 individuals from the 1984 Survey of Income and
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Table 4: Causal E↵ects of Military Service on Log Wages

(1) (2) (3) (4) (5)
A. IV 0.338 0.233 0.227 0.170 0.172

(0.137) (0.212) (0.229) (0.197) (0.213)

B. Normalized estimates:
⌧̂t,norm 0.338 0.234 0.202 0.170 0.145

(0.137) (0.211) (0.235) (0.196) (0.219)
⌧̂a,10 0.338 0.227 0.204 0.166 0.146

(0.137) (0.204) (0.239) (0.190) (0.223)

C. Unnormalized estimates:
⌧̂a 0.338 0.015 0.314 –0.037 0.268

(0.137) (0.203) (0.248) (0.192) (0.233)
⌧̂t = ⌧̂a,1 0.338 0.016 0.302 –0.039 0.256

(0.137) (0.216) (0.237) (0.203) (0.222)
⌧̂a,0 0.338 0.014 0.317 –0.036 0.270

(0.137) (0.196) (0.250) (0.185) (0.235)

Age X X
Cubic in age X X
Race X X X
Years of schooling X X X

Observations 3,027 3,027 3,027 3,027 3,027
Notes: The data are Mourifié and Wan (2017)’s subsample of the 1984 Survey of Income and Program

Participation (SIPP), which is based on Angrist (1990). The outcome is log wages. The treatment is an
indicator for whether an individual is a veteran. The instrument is an indicator for whether an individual
had a lottery number below the draft eligibility ceiling. “IV” is the linear IV estimate with covariates
reported in the table. The remaining estimators are defined in Section 2. They are based on an instrument
propensity score, which is estimated using a logit, also controlling for the covariates reported in the table.
Standard errors are in parentheses. For IV, we use robust standard errors. For the remaining estimators,
our standard errors are based on the asymptotic variances in Section 2.

Program Participation (SIPP), which is also considered by Mourifié and Wan (2017). Our outcome
of interest is log wage. We also consider five sets of covariates: race and years of schooling, as in
Mourifié and Wan (2017); age; a cubic in age; race, years of schooling, and age; and race, years of
schooling, and a cubic in age. Summary statistics for these data are reported in Table 6 of Mourifié
and Wan (2017).

Table 4 reports our estimates of causal e↵ects of military service on log wages for each of
the five specifications. Panels A and B, which report IV and normalized weighting estimates,
respectively, suggest that these e↵ects were positive and economically meaningful in the period
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under study, with a range of estimates from 15–34 log points. The di↵erences between the IV
and weighting estimates (as well as their standard errors) are always very minor. Although the
estimated e↵ects are all positive, they are not statistically di↵erent from zero in columns 2–5, that
is, whenever we control for age, possibly among other covariates.

Panel C of Table 4 reports unnormalized weighting estimates for the same specifications. Un-
like in panels A and B, these estimates are heavily dependent on the set of covariates that we use.
When we control for race and years of schooling (column 1), the estimates and standard errors
are practically identical to the IV and normalized weighting estimates. Controlling for age sub-
stantially reduces the estimates, which are very small but remain positive when race and years of
schooling are not additionally controlled for (column 2) while becoming slightly negative when
they are (column 4). However, when age is replaced with a cubic in age, the estimates again
become positive and large in magnitude while remaining insignificant (columns 3 and 5). Impor-
tantly, the apparent fragility of the unnormalized weighting estimates is not shared by the IV and
normalized estimates in panels A and B, as discussed above.

4.2 Causal E↵ects of College Education (Card, 1995)

In our second empirical application, we revisit Card (1995)’s study of causal e↵ects of education
using the college proximity instrument. Card (1995) uses data from the National Longitudinal
Survey of Young Men (NLSYM) and restricts his attention to a subsample of 3,010 individuals who
were interviewed in 1976 and reported valid information on wage and education. His endogenous
variable of interest is years of schooling, which is instrumented by an indicator for the presence of
a four-year college in the respondent’s local labor market in 1966.

This study has been revisited by many papers, including Tan (2006), Huber and Mellace (2015),
Kitagawa (2015), Mourifié and Wan (2017), Andresen and Huber (2021), Słoczyński (2021), and
Blandhol et al. (2022). Most of these papers focus on binarized versions of Card (1995)’s main
endogenous explanatory variable of interest. Specifically, Tan (2006) and Słoczyński (2021) study
the e↵ects of having at least thirteen years of schooling (“some college attendance”) while Huber
and Mellace (2015), Kitagawa (2015), Mourifié and Wan (2017), and Andresen and Huber (2021)
focus on having at least sixteen years of schooling (“four-year college degree”). In what follows,
we consider both binarizations as well as an additional treatment, which we define as having at
least fourteen years of schooling (“two-year college degree”). Our outcome of interest is log wage.
We also consider two sets of covariates: a quadratic in experience, nine regional indicators, and
indicators for whether Black, whether lived in an SMSA in 1966 and 1976, and whether lived in the
South in 1976, as in Card (1995); and indicators for whether Black, whether lived in an SMSA in
1966 and 1976, and whether lived in the South in 1966 and 1976, as in Kitagawa (2015). Summary

22



Table 5: Causal E↵ects of College Education on Log Wages

Some college Two-year degree Four-year degree
(1) (2) (3) (4) (5) (6)

A. IV 0.661 0.575 0.741 0.637 1.392 0.991
(0.294) (0.308) (0.340) (0.352) (0.798) (0.610)

B. Normalized estimates:
⌧̂t,norm 0.331 0.356 0.377 0.400 0.619 0.628

(0.202) (0.241) (0.234) (0.275) (0.388) (0.443)
⌧̂a,10 0.346 0.293 0.391 0.339 0.586 0.836

(0.199) (0.251) (0.226) (0.307) (0.351) (0.819)

C. Unnormalized estimates:
⌧̂a –0.319 2.248 –0.362 2.597 –0.594 4.317

(0.823) (0.931) (0.932) (1.152) (1.525) (2.414)
⌧̂t = ⌧̂a,1 –0.321 2.053 –0.365 2.340 –0.601 3.651

(0.836) (0.782) (0.949) (0.941) (1.571) (1.734)
⌧̂a,0 –0.290 2.846 –0.325 3.430 –0.501 7.241

(0.722) (1.526) (0.804) (2.057) (1.209) (7.034)

Specification Card Kitagawa Card Kitagawa Card Kitagawa

Observations 3,010 3,010 3,010 3,010 3,010 3,010
Notes: The data are Card (1995)’s subsample of the National Longitudinal Survey of Young Men (NLSYM). The outcome is

log wages. The treatment is an indicator for whether an individual has at least thirteen (“some college”), fourteen (“two-year
degree”), or sixteen years of schooling (“four-year degree”). The instrument is an indicator for whether an individual grew up
in the vicinity of a four-year college. The first specification (“Card”) follows Card (1995) and includes experience, experience
squared, nine regional indicators, and indicators for whether Black, whether lived in an SMSA in 1966 and 1976, and whether
lived in the South in 1976. The second specification (“Kitagawa”) follows Kitagawa (2015) and includes indicators for
whether Black, whether lived in an SMSA in 1966 and 1976, and whether lived in the South in 1966 and 1976. “IV” is the
linear IV estimate with covariates listed above. The remaining estimators are defined in Section 2. They are based on an
instrument propensity score, which is estimated using a logit, also controlling for the covariates listed above. Standard errors
are in parentheses. For IV, we use robust standard errors. For the remaining estimators, our standard errors are based on the
asymptotic variances in Section 2.

statistics for these data are reported in Table 1 of Card (1995).
Table 5 reports our estimates of causal e↵ects of college education on log wages. As previously

noted by Słoczyński (2021), the IV estimates, as reported in panel A, are “too large,” in the sense
that it is implausible and inconsistent with the recent applied literature that some college attendance
could increase wages by 58–66 log points, with estimated e↵ects of two- and four-year degrees that
are even larger. Słoczyński (2021) argues that this is driven by a failure of Assumption 1(iv). At the
same time, Andresen and Huber (2021) argue that the “four-year college degree” treatment violates
Assumption 1(ii). Importantly, however, Andresen and Huber (2021)’s test would not reject the
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null of no violation at least for the “some college attendance” treatment.
In this paper we ignore these possible violations of Assumption 1 and instead observe that the

estimated e↵ects are no longer “too large” in panel B, which reports the normalized weighting
estimates. The substantial decrease in the magnitude of the estimated e↵ects leads to a lack of
statistical significance of these estimates. Taken at face value, however, the estimates suggest that
some college attendance increases wages by 29–36 log points while two- and four-year degrees
would increase wages by 34–40 and 59–84 log points, respectively. This is much more plausible
than the IV estimates in panel A.

Panel C of Table 5 reports the corresponding values of ⌧̂a, ⌧̂t, and ⌧̂a,0. These unnormalized
estimates are all over the place. Whenever we use the set of covariates from Card (1995), the
estimated e↵ects of college education are negative, which is not believable. When instead we use
the specification from Kitagawa (2015), the estimates are again positive but become extremely
large in magnitude, well in excess of the IV estimates that already seemed “too large.” As in
our replication of Angrist (1990), the normalized estimates do not share this evident fragility of
unnormalized weighting.

4.3 Causal E↵ects of Childbearing (Angrist and Evans, 1998)

In our third empirical application, we revisit Angrist and Evans (1998)’s study of causal e↵ects of
childbearing using the sibling sex composition and twin birth instruments. Given that fertility is
clearly endogenous in standard models of labor market outcomes, many papers have tried to iden-
tify exogenous sources of its variation. Rosenzweig and Wolpin (1980) argue that the incidence
of a twin birth provides such exogenous variation. Angrist and Evans (1998) use twinning as an
instrument for having at least three children in a sample of women with two or more children,
while considering the sex composition of the first two children as an alternative instrument, with
two boys or two girls shown to substantially increase the likelihood of having another child.

This study has been revisited by Frölich and Melly (2013), Bisbee et al. (2017), Mourifié and
Wan (2017), and Farbmacher et al. (2018), among many others. Some papers use the incidence
of a same-sex twin birth as an alternative to any twin birth. Farbmacher et al. (2018) argue that
both the twin instrument and the same-sex twin instrument are invalid, as dizygotic twinning is
known to be correlated with maternal characteristics. As an alternative, Farbmacher et al. (2018)
assume that monozygotic twinning is exogenous, and construct new instruments on the basis of
this assumption. In this paper we ignore these alternative instruments, as they are not binary, but
we acknowledge the possible concerns about independence of twinning.

In what follows, we use Farbmacher et al. (2018)’s subsample of the 1980 US Census that
consists of all women aged 21–35 with at least two children. The number of observations is
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Table 6: Causal E↵ects of Childbearing on Labor Force Participation and Log Income

Labor force participation Log income
(1) (2) (3) (4) (5) (6)

A. IV –0.081 –0.082 –0.117 –0.072 –0.112 –0.135
(0.014) (0.017) (0.025) (0.045) (0.054) (0.092)

B. Normalized estimates:
⌧̂t,norm –0.084 –0.083 –0.117 –0.079 –0.119 –0.135

(0.014) (0.017) (0.025) (0.045) (0.055) (0.092)
⌧̂a,10 –0.084 –0.083 –0.117 –0.079 –0.119 –0.132

(0.014) (0.017) (0.025) (0.045) (0.055) (0.093)

C. Unnormalized estimates:
⌧̂a –0.084 –0.083 –0.100 –0.087 –0.118 0.143

(0.014) (0.017) (0.025) (0.046) (0.055) (0.094)
⌧̂t = ⌧̂a,1 –0.084 –0.083 –0.099 –0.087 –0.118 0.140

(0.014) (0.017) (0.025) (0.046) (0.055) (0.092)
⌧̂a,0 –0.084 –0.083 –0.102 –0.087 –0.118 0.145

(0.014) (0.017) (0.026) (0.046) (0.055) (0.095)

Instrument Twins Same-sex
twins

Same-sex
siblings Twins Same-sex

twins
Same-sex
siblings

Observations 394,840 394,840 394,840 220,502 220,502 220,502
Notes: The data are Farbmacher et al. (2018)’s subsample of the 1980 US Census, which is based on Angrist and Evans (1998).
The outcome is an indicator for whether a woman worked for pay in the preceding year (“labor force participation”) or log
income. The treatment is an indicator for whether a woman has at least three children. The instrument is an indicator for whether
a woman gave birth to twins at second birth (columns 1 and 4), whether she gave birth to same-sex twins at second birth (columns
2 and 5), and whether her first two children are either two boys or two girls (columns 3 and 6). The set of covariates consists
of age, age at first birth, sex of the first and second children, and indicators for whether Black, whether Hispanic, and whether
another race. “IV” is the linear IV estimate with covariates listed above. The remaining estimators are defined in Section 2. They
are based on an instrument propensity score, which is estimated using a logit, also controlling for the covariates listed above.
Standard errors are in parentheses. For IV, we use robust standard errors. For the remaining estimators, our standard errors are
based on the asymptotic variances in Section 2.

394,840, which is nearly identical to the sample size in Angrist and Evans (1998). Summary
statistics for these data are reported in Table 2 of Angrist and Evans (1998). Our outcomes of
interest are log income and an indicator for labor force participation. The treatment is having
more than two children. The set of covariates consists of age, age at first birth, sex of the first and
second children, and indicators for whether Black, whether Hispanic, and whether another race.
The instruments are indicators for whether the mother gave birth to twins at second birth, whether
the mother gave birth to same-sex twins at second birth, and whether the first two children are
of the same sex. Clearly, both twin birth instruments only allow for one-sided noncompliance,
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and it is impossible to be a never-taker. (If a woman gives birth to twins at second birth, she will
necessarily have more than two children.)

Table 6 reports our estimates of causal e↵ects of childbearing on labor market outcomes. Panels
A and B, which report IV and normalized weighting estimates, respectively, suggest that these
e↵ects are negative and economically meaningful, although some of the e↵ects on log income
are not statistically di↵erent from zero. As in our replication of Angrist (1990), the di↵erences
between the IV and weighting estimates (as well as their standard errors) are always very minor.

Panel C of Table 6 reports the unnormalized estimates. Interestingly, in columns 1–5, these es-
timates and their standard errors are also very similar to the estimates and standard errors in panels
A and B. These cases correspond to the e↵ects on labor force participation using any instrument
and the e↵ects on log income using the twin birth instruments. When instead we focus on causal
e↵ects of childbearing on log income using the sibling sex composition instrument (column 6), it
turns out that the unnormalized estimates become positive and similar in magnitude to the (nega-
tive) IV and normalized estimates. However, it is clearly not believable that childbearing improves
female labor market outcomes, which again illustrates the fragility of unnormalized weighting.

5 Conclusion

In this paper we study the finite sample and asymptotic properties of several weighting estima-
tors of the local average treatment e↵ect (LATE), which are based on the identification results of
Abadie (2003) and Frölich (2007). We stress the importance of normalization, which is widely
acknowledged in the context of weighting estimation under unconfoundedness (cf. Imbens, 2004;
Millimet and Tchernis, 2009; Busso et al., 2014) but is not properly appreciated, as we argue, in the
context of instrumental variables estimation. We also demonstrate that, perhaps counterintuitively,
two unnormalized weighting estimators of the LATE have an important advantage of being based
on a denominator that is bounded away from zero in settings with one-sided noncompliance.

We illustrate our findings with a simulation study and three empirical applications. The sim-
ulation study suggests that the performance of di↵erent weighting estimators varies with features
of the data-generating process, with the normalized version of Tan (2006)’s estimator performing
relatively well in every setting under consideration. In empirical applications, each of the unnor-
malized estimators appears to be unreliable in at least some cases, with high variability of estimates
across di↵erent specifications as well as several occurrences of “incorrect” signs, magnitudes, or
both, including negative estimates of the e↵ects of education on earnings and positive estimates
of the e↵ects of fertility on female labor market outcomes. It is particularly interesting that these
issues are present in three of the classic examples of instrumental variables estimation, namely in
studies of causal e↵ects of military service using the draft eligibility instrument (Angrist, 1990),
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causal e↵ects of college education using the college proximity instrument (Card, 1995), and causal
e↵ects of childbearing using the sibling sex composition instrument (Angrist and Evans, 1998).

Ultimately, we recommend that practitioners with an interest in the LATE either restrict their
attention to normalized weighting or instead consider covariate balancing (Sant’Anna et al., 2020;
Heiler, 2021) or doubly robust estimators (e.g., Tan, 2006; Uysal, 2011; Ogburn et al., 2015; Bel-
loni et al., 2017; Singh and Sun, 2021; Słoczyński et al., 2022) of this parameter. The usefulness of
such flexible approaches to estimation is particularly apparent given the recent pessimistic results
on the interpretation of linear IV estimands in Słoczyński (2021) and Blandhol et al. (2022).
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Appendix

Table A.1: Simulation Results for Design A.1

Normalized estimators Unnormalized estimators
IV ⌧̂t,norm ⌧̂a,10 ⌧̂a ⌧̂t = ⌧̂a,1 ⌧̂a,0

� = 0.01
n = 500 MSE 1 2.63 1093.84 14.16 1304.62 3.12

|B| 0.0095 0.0216 0.1852 0.0365 0.1813 0.0333
Coverage rate 0.95 0.92 0.93 0.94 0.94 0.93

n = 1,000 MSE 1 2.72 4.11 3.45 4.36 3.07
|B| 0.0052 0.0080 0.0359 0.0096 0.0357 0.0130

Coverage rate 0.95 0.93 0.94 0.94 0.95 0.93

� = 0.02
n = 500 MSE 1 1.91 20.87 2.94 20.67 2.11

|B| 0.0097 0.0153 0.0492 0.0211 0.0495 0.0215
Coverage rate 0.95 0.93 0.94 0.94 0.94 0.93

n = 1,000 MSE 1 1.88 2.14 2.00 2.18 2.03
|B| 0.0027 0.0056 0.0148 0.0058 0.0149 0.0082

Coverage rate 0.95 0.94 0.95 0.95 0.95 0.94

� = 0.05
n = 500 MSE 1 1.32 1.43 1.36 1.46 1.37

|B| 0.0016 0.0024 0.0089 0.0025 0.0088 0.0036
Coverage rate 0.94 0.94 0.94 0.94 0.95 0.94

n = 1,000 MSE 1 1.31 1.38 1.33 1.39 1.36
|B| 0.0022 0.0001 0.0024 0.0001 0.0024 0.0009

Coverage rate 0.95 0.95 0.95 0.95 0.95 0.95
Notes: The details of this simulation design are provided in Section 3 (in particular, Table 3). “MSE” is the mean squared error

of an estimator, normalized by the mean squared error of linear IV. “|B|” is the absolute bias. “Coverage rate” is the coverage rate
for a nominal 95% confidence interval. “IV” is the linear IV estimator that controls for X. The remaining estimators are defined in
Section 2. They are based on an instrument propensity score, which is estimated using a logit, also controlling for X. To calculate
the coverage rate, we use robust standard errors (IV) or standard errors based on Section 2 (weighting estimators). Results are based
on 10,000 replications.
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Table A.2: Simulation Results for Design A.2

Normalized estimators Unnormalized estimators
IV ⌧̂t,norm ⌧̂a,10 ⌧̂a ⌧̂t = ⌧̂a,1 ⌧̂a,0

� = 0.01
n = 500 MSE 1 2.78 2.30e+04 6.83 3.09 2.52e+04

|B| 0.0023 0.0028 0.4066 0.0046 0.0025 0.4334
Coverage rate 0.95 0.93 0.93 0.96 0.93 0.94

n = 1,000 MSE 1 2.60 3.03 2.92 2.72 3.26
|B| 0.0017 0.0010 0.0008 0.0006 0.0011 0.0008

Coverage rate 0.95 0.94 0.94 0.96 0.94 0.95

� = 0.02
n = 500 MSE 1 1.91 2.32 2.16 2.00 2.44

|B| 0.0029 0.0025 0.0026 0.0034 0.0028 0.0031
Coverage rate 0.95 0.93 0.94 0.95 0.94 0.95

n = 1,000 MSE 1 1.84 1.92 1.90 1.88 1.96
|B| 0.0019 0.0032 0.0035 0.0034 0.0034 0.0035

Coverage rate 0.95 0.94 0.95 0.95 0.94 0.95

� = 0.05
n = 500 MSE 1 1.31 1.36 1.34 1.32 1.39

|B| 0.0008 0.0013 0.0018 0.0016 0.0015 0.0017
Coverage rate 0.95 0.94 0.94 0.94 0.94 0.95

n = 1,000 MSE 1 1.30 1.31 1.31 1.31 1.32
|B| 0.0003 0.0008 0.0007 0.0007 0.0010 0.0005

Coverage rate 0.95 0.95 0.95 0.95 0.95 0.95
Notes: The details of this simulation design are provided in Section 3 (in particular, Table 3). “MSE” is the mean squared error

of an estimator, normalized by the mean squared error of linear IV. “|B|” is the absolute bias. “Coverage rate” is the coverage rate
for a nominal 95% confidence interval. “IV” is the linear IV estimator that controls for X. The remaining estimators are defined in
Section 2. They are based on an instrument propensity score, which is estimated using a logit, also controlling for X. To calculate
the coverage rate, we use robust standard errors (IV) or standard errors based on Section 2 (weighting estimators). Results are based
on 10,000 replications.
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Table A.3: Simulation Results for Design B

Normalized estimators Unnormalized estimators
IV ⌧̂t,norm ⌧̂a,10 ⌧̂a ⌧̂t = ⌧̂a,1 ⌧̂a,0

� = 0.01
n = 500 MSE 1 2.74 189.22 210.94 761.97 4.02

|B| 0.0614 0.0103 0.0490 0.0927 0.0059 0.0197
Coverage rate 0.95 0.94 0.95 0.95 0.94 0.94

n = 1,000 MSE 1 2.51 6.59 3.20 7.00 2.82
|B| 0.0551 0.0024 0.0323 0.0094 0.0340 0.0065

Coverage rate 0.94 0.94 0.95 0.95 0.95 0.94

� = 0.02
n = 500 MSE 1 1.93 11.76 2.61 16.46 2.09

|B| 0.0498 0.0117 0.0534 0.0186 0.0568 0.0142
Coverage rate 0.95 0.94 0.95 0.95 0.95 0.94

n = 1,000 MSE 1 1.80 2.20 1.96 2.23 1.92
|B| 0.0473 0.0058 0.0182 0.0075 0.0180 0.0069

Coverage rate 0.95 0.95 0.95 0.96 0.96 0.95

� = 0.05
n = 500 MSE 1 1.30 5.79 1.36 5.22 1.34

|B| 0.0334 0.0014 0.0141 0.0022 0.0137 0.0016
Coverage rate 0.95 0.95 0.95 0.95 0.96 0.95

n = 1,000 MSE 1 1.29 1.36 1.31 1.37 1.33
|B| 0.0335 0.0040 0.0073 0.0041 0.0073 0.0041

Coverage rate 0.95 0.95 0.95 0.95 0.95 0.94
Notes: The details of this simulation design are provided in Section 3 (in particular, Table 3). “MSE” is the mean squared error

of an estimator, normalized by the mean squared error of linear IV. “|B|” is the absolute bias. “Coverage rate” is the coverage rate
for a nominal 95% confidence interval. “IV” is the linear IV estimator that controls for X. The remaining estimators are defined in
Section 2. They are based on an instrument propensity score, which is estimated using a logit, also controlling for X. To calculate
the coverage rate, we use robust standard errors (IV) or standard errors based on Section 2 (weighting estimators). Results are based
on 10,000 replications.
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Table A.4: Simulation Results for Design C

Normalized estimators Unnormalized estimators
IV ⌧̂t,norm ⌧̂a,10 ⌧̂a ⌧̂t = ⌧̂a,1 ⌧̂a,0

� = 0.01
n = 500 MSE 1 3.82 4.95e+04 2010.01 4.92e+04 219.70

|B| 4.6994 0.7951 7.2628 2.5596 7.2227 2.4048
Coverage rate 0.36 0.81 0.83 0.96 0.83 0.93

n = 1,000 MSE 1 1.47 95.93 23.83 96.38 38.68
|B| 4.7053 0.3865 0.8366 1.4317 0.8403 1.1897

Coverage rate 0.08 0.87 0.88 0.97 0.88 0.94

� = 0.02
n = 500 MSE 1 1.82 20.02 52.38 20.36 53.85

|B| 3.9155 0.4455 0.4929 1.8419 0.4898 1.5703
Coverage rate 0.49 0.87 0.89 0.96 0.89 0.94

n = 1,000 MSE 1 0.97 1.30 7.64 1.30 24.19
|B| 3.8732 0.1724 0.2335 0.7179 0.2337 0.5279

Coverage rate 0.19 0.91 0.92 0.96 0.92 0.94

� = 0.05
n = 500 MSE 1 1.13 1.44 7.88 1.44 24.77

|B| 2.6174 0.1026 0.1662 0.5601 0.1662 0.2450
Coverage rate 0.72 0.93 0.94 0.96 0.94 0.95

n = 1,000 MSE 1 0.65 0.74 4.29 0.74 13.98
|B| 2.6376 0.0267 0.0896 0.2007 0.0896 0.1781

Coverage rate 0.48 0.94 0.95 0.95 0.95 0.95
Notes: The details of this simulation design are provided in Section 3 (in particular, Table 3). “MSE” is the mean squared error

of an estimator, normalized by the mean squared error of linear IV. “|B|” is the absolute bias. “Coverage rate” is the coverage rate
for a nominal 95% confidence interval. “IV” is the linear IV estimator that controls for X. The remaining estimators are defined in
Section 2. They are based on an instrument propensity score, which is estimated using a logit, also controlling for X. To calculate
the coverage rate, we use robust standard errors (IV) or standard errors based on Section 2 (weighting estimators). Results are based
on 10,000 replications.

31



Table A.5: Simulation Results for Design D

Normalized estimators Unnormalized estimators
IV ⌧̂t,norm ⌧̂a,10 ⌧̂a ⌧̂t = ⌧̂a,1 ⌧̂a,0

� = 0.01
n = 500 MSE 1 7.06 0.56 2.69e+05 0.32 1.75e+04

|B| 17.6766 4.2538 0.6328 102.1049 0.7344 82.6915
Coverage rate 0.00 0.85 0.74 0.89 0.74 0.89

n = 1,000 MSE 1 3.98 2.64 1.44e+04 0.12 1.91e+05
|B| 17.5275 6.1215 1.9581 46.4263 2.4469 46.6605

Coverage rate 0.00 0.92 0.79 0.84 0.78 0.80

� = 0.02
n = 500 MSE 1 0.40 0.21 7978.30 0.16 1.12e+04

|B| 14.1078 4.0708 1.3718 17.2744 1.3659 40.6513
Coverage rate 0.00 0.90 0.83 0.85 0.82 0.83

n = 1,000 MSE 1 0.27 0.09 10.24 0.09 25.76
|B| 13.9940 4.7912 2.0494 35.2345 2.0476 51.9944

Coverage rate 0.00 0.91 0.84 0.73 0.84 0.69

� = 0.05
n = 500 MSE 1 0.24 0.12 5.29 0.12 11.84

|B| 9.1248 2.2158 0.8328 16.2061 0.8329 24.8334
Coverage rate 0.01 0.92 0.91 0.78 0.91 0.77

n = 1,000 MSE 1 0.15 0.06 4.01 0.06 8.93
|B| 9.0882 2.3384 0.9488 15.9981 0.9488 24.1247

Coverage rate 0.00 0.90 0.91 0.55 0.91 0.52
Notes: The details of this simulation design are provided in Section 3 (in particular, Table 3). “MSE” is the mean squared error

of an estimator, normalized by the mean squared error of linear IV. “|B|” is the absolute bias. “Coverage rate” is the coverage rate
for a nominal 95% confidence interval. “IV” is the linear IV estimator that controls for X. The remaining estimators are defined in
Section 2. They are based on an instrument propensity score, which is estimated using a logit, also controlling for X. To calculate
the coverage rate, we use robust standard errors (IV) or standard errors based on Section 2 (weighting estimators). Results are based
on 10,000 replications.
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Figure A.1: Simulation Results for the Proportion of Compliers in Design A.1
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Notes: The details of this simulation design are provided in Section 3 (in particular, Table 3). “Linear IV” is the first-stage coe�cient on Z
in linear IV, controlling for X. “Normalized IPW” is the denominator of ⌧̂t,norm. “Mean of 1,” “Mean of 0,” and “Mean of ” correspond
to N�1 PN

i=1 i1, N�1 PN
i=1 i0, and N�1 PN

i=1 i, respectively. N�1 PN
i=1 i1 is the implicit estimator of the proportion of compliers in ⌧̂a,10 and

⌧̂a,1 (= ⌧̂t). N�1 PN
i=1 i0 is the implicit estimator of the proportion of compliers in ⌧̂a,10 and ⌧̂a,0. N�1 PN

i=1 i is the implicit estimator of the
proportion of compliers in ⌧̂a. These estimators, as well as the denominator of ⌧̂t,norm, are based on an instrument propensity score, which is
estimated using a logit, also controlling for X. Results are based on 10,000 replications.
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Figure A.2: Simulation Results for the Proportion of Compliers in Design A.2
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Notes: The details of this simulation design are provided in Section 3 (in particular, Table 3). “Linear IV” is the first-stage coe�cient on Z
in linear IV, controlling for X. “Normalized IPW” is the denominator of ⌧̂t,norm. “Mean of 1,” “Mean of 0,” and “Mean of ” correspond
to N�1 PN

i=1 i1, N�1 PN
i=1 i0, and N�1 PN

i=1 i, respectively. N�1 PN
i=1 i1 is the implicit estimator of the proportion of compliers in ⌧̂a,10 and

⌧̂a,1 (= ⌧̂t). N�1 PN
i=1 i0 is the implicit estimator of the proportion of compliers in ⌧̂a,10 and ⌧̂a,0. N�1 PN

i=1 i is the implicit estimator of the
proportion of compliers in ⌧̂a. These estimators, as well as the denominator of ⌧̂t,norm, are based on an instrument propensity score, which is
estimated using a logit, also controlling for X. Results are based on 10,000 replications.
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Figure A.3: Simulation Results for the Proportion of Compliers in Design B
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Notes: The details of this simulation design are provided in Section 3 (in particular, Table 3). “Linear IV” is the first-stage coe�cient on Z
in linear IV, controlling for X. “Normalized IPW” is the denominator of ⌧̂t,norm. “Mean of 1,” “Mean of 0,” and “Mean of ” correspond
to N�1 PN

i=1 i1, N�1 PN
i=1 i0, and N�1 PN

i=1 i, respectively. N�1 PN
i=1 i1 is the implicit estimator of the proportion of compliers in ⌧̂a,10 and

⌧̂a,1 (= ⌧̂t). N�1 PN
i=1 i0 is the implicit estimator of the proportion of compliers in ⌧̂a,10 and ⌧̂a,0. N�1 PN

i=1 i is the implicit estimator of the
proportion of compliers in ⌧̂a. These estimators, as well as the denominator of ⌧̂t,norm, are based on an instrument propensity score, which is
estimated using a logit, also controlling for X. Results are based on 10,000 replications.
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Figure A.4: Simulation Results for the Proportion of Compliers in Design C
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Notes: The details of this simulation design are provided in Section 3 (in particular, Table 3). “Linear IV” is the first-stage coe�cient on Z
in linear IV, controlling for X. “Normalized IPW” is the denominator of ⌧̂t,norm. “Mean of 1,” “Mean of 0,” and “Mean of ” correspond
to N�1 PN

i=1 i1, N�1 PN
i=1 i0, and N�1 PN

i=1 i, respectively. N�1 PN
i=1 i1 is the implicit estimator of the proportion of compliers in ⌧̂a,10 and

⌧̂a,1 (= ⌧̂t). N�1 PN
i=1 i0 is the implicit estimator of the proportion of compliers in ⌧̂a,10 and ⌧̂a,0. N�1 PN

i=1 i is the implicit estimator of the
proportion of compliers in ⌧̂a. These estimators, as well as the denominator of ⌧̂t,norm, are based on an instrument propensity score, which is
estimated using a logit, also controlling for X. Results are based on 10,000 replications.
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Figure A.5: Simulation Results for the Proportion of Compliers in Design D
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Notes: The details of this simulation design are provided in Section 3 (in particular, Table 3). “Linear IV” is the first-stage coe�cient on Z
in linear IV, controlling for X. “Normalized IPW” is the denominator of ⌧̂t,norm. “Mean of 1,” “Mean of 0,” and “Mean of ” correspond
to N�1 PN

i=1 i1, N�1 PN
i=1 i0, and N�1 PN

i=1 i, respectively. N�1 PN
i=1 i1 is the implicit estimator of the proportion of compliers in ⌧̂a,10 and

⌧̂a,1 (= ⌧̂t). N�1 PN
i=1 i0 is the implicit estimator of the proportion of compliers in ⌧̂a,10 and ⌧̂a,0. N�1 PN

i=1 i is the implicit estimator of the
proportion of compliers in ⌧̂a. These estimators, as well as the denominator of ⌧̂t,norm, are based on an instrument propensity score, which is
estimated using a logit, also controlling for X. Results are based on 10,000 replications.
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