
Funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany´s Excellence Strategy – EXC 2126/1– 390838866 is gratefully acknowledged.

www.econtribute.de

ECONtribute
Discussion Paper No. 151

March 2022

Luca Henkel

Experimental Evidence on the Relationship 
between Perceived Ambiguity and Likelihood 
Insensitivity 



Experimental Evidence on the Relationship between
Perceived Ambiguity and Likelihood Insensitivity

Luca Henkel

March 9, 2022

Abstract

Observed individual behavior in the presence of ambiguity is characterized by insufficient re-
sponsiveness to changes in subjective likelihoods. Such likelihood insensitivity under ambiguity
is integral to theoretical models and predictive of behavior in many important domains such as
financial decision-making. However, there is little empirical evidence on its causes and determin-
ing factors. This paper investigates the role of beliefs in the form of ambiguity perception - the
extent to which a decision-maker has difficulties assigning a single probability to each possible
event - as a potential determinant. Using an experiment, I exogenously vary the degree of ambi-
guity while eliciting measures of likelihood insensitivity and ambiguity perception. The results
provide strong support for an ambiguity perception based explanation of likelihood insensitivity.
Not only are the twomeasures highly correlated on the individual level, but changes in ambiguity
perception due to the exogenous variation also directly induce changes in likelihood insensitiv-
ity. My evidence thus substantiates the perception based interpretation of likelihood insensitivity
brought forward by multiple prior models in contrast to preference based explanations of other
commonly used models.
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1 Introduction

This paper experimentally studies the relationship between ambiguity perception and choices under
ambiguity, with a focus on the observed behavioral pattern of likelihood insensitivity. Likelihood
insensitivity is a robust empirical finding, with numerous studies emphasizing its importance and
empirical relevance, e.g., Wakker (2010), Abdellaoui et al. (2011), and Baillon et al. (2018b). It
is characterized by individuals displaying insufficient discriminatory power in differentiating the
degree of likelihood of ambiguous events, leading to insufficient responsiveness to changes in like-
lihoods. To distinguish this finding from probability insensitivity found in choices under risk, it is
commonly referred to as ambiguity-generated likelihood insensitivity (a-insensitivity).1

For a-insensitivity, a growing number of studies find (i) substantial correlations with relevant
(real-life) behavior and (ii) large degrees of systematic heterogeneity between different individuals.
For example, Dimmock, Kouwenberg, and Wakker (2016) find a significant negative relationship be-
tween a-insensitivity and stock market participation. Similarly, for stock market participants, Anan-
tanasuwong et al. (2020) find a-insensitivity to be significantly related to the choice of financial
assets. Li, Turmunkh, and Wakker (2019) show that within the context of trust games, people who
display more a-insensitivity are less likely to act on their beliefs about the trustworthiness of others.
Relatedly, Li, Turmunkh, and Wakker (2020) show that ambiguity about betrayal within social inter-
actions influences subjects’ choices through their insensitivity to the likelihoods of actions others will
make. Furthermore, Li (2017) and Gaudecker, Wogrolly, and Zimpelmann (2021) find substantial
differences in a-insensitivity among sociodemographic groups.

Despite the empirical evidence highlighting the importance of a-insensitivity, evidence on its
causes and determining factors is scarce. In particular, what is the underlying mechanism causing
observed a-insensitivity? A popular class of ambiguity models, the so-called multiple prior models
(Ghirardato, Maccheroni, and Marinacci, 2004; Chandrasekher et al., 2021), propose an answer, as
has recently been documented by Dimmock et al. (2015) and Baillon et al. (2018a). In those models,
a decision-maker has a set of beliefs (the priors) considered relevant to the decision problem, and
the size of the set is interpreted as the perceived level of ambiguity. This perceived ambiguity relates
directly to a-insensitivity: the larger the belief set, the greater is the decision-makers’ insensitivity
to changes in likelihood. The reason is that considering multiple possible probability measures leads
the decision-maker to limited confidence in a particular one, resulting in insufficient responsiveness
toward likelihood changes. Hence, this theoretical insight highlights a potential explanation for ob-
servations of a-insensitivity while generating testable predictions.

This paper empirically investigates the mechanism responsible for likelihood insensitivity pro-
posed by the multiple prior models. I experimentally measure and relate decision-makers’ perceived
ambiguity to a-insensitivity displayed in incentivized choices under ambiguity. With such a test, I
examine the extent to which a-insensitive behavior is explainable by a belief -basedmechanism. In con-
trast, alternative explanations like the decision weight interpretation (Baillon et al., 2018a) brought
forward by models such as prospect theory for ambiguity (Tversky and Kahneman, 1992) relate
a-insensitivity to psychological motives or source dependent preferences.

To test the mechanism, I conducted a preregistered experiment containing three key features that

1Insensitivity in choices under risk describes the well-known pattern of inverse-S probability weighting, where there
is insensitivity towards changes in (objective) probabilities.
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are necessary to adequately answer the research question. First, an index capturing a-insensitivity
measured on the individual level that is independent of risk-induced insensitivity and valid under
all currently popular ambiguity theories. For this purpose, I use matching probabilities following
the method proposed by Baillon et al. (2018b), which has been empirically validated (Baillon et al.,
2018b) and theoretically justified (Baillon et al., 2021).

Second, an index capturing subjects’ ambiguity perception that directly relates to multiple prior
models and is straightforward to elicit. To do so, I designed a two-stage elicitation method to elicit
subjective probability intervals. Subjects first report their best-guess probability for the occurrence
of an event. Afterward, they state their belief in the precision of the previously reported probabil-
ity, revealing the subjective probability interval. The average reported precision (i.e., the average
length of the probability intervals) is then used as measure of ambiguity perception, which maps
into representations of commonly used multiple prior models.

Third, exogenous variation in the degree of ambiguity complemented with repeated measures of
the two indices. In the experiment, subjects face future weather events. Between choice situations,
I exogenously vary the time distance to the weather events within-subject and measure subjects’
responses to this change. Since weather events becomemore ambiguous as their occurrence is pushed
further into the future, the degree of ambiguity faced by subjects plausibly increases. This variation
serves two purposes. First, I use the variation to validate the ambiguity perception index. If the index
measures ambiguity perception relevant to subjects, reported perception should rise as the degree
of ambiguity increases. Indeed, I find that subjects report a significantly higher level of ambiguity
perception for weather events occurring further into the future. Reassuringly, observed a-insensitivity
is also higher in this case, consistent with a-insensitivity being caused by the degree of ambiguity.
Second, and more importantly, I can investigate how exogenous shifts in the level of ambiguity
perceived by subjects relate to a-insensitivity to understand the causal relationship better.

With this experimental design, I present twomain findings on the relationship between stated am-
biguity perception and a-insensitivity. The first one is that increases in ambiguity perception caused
by the exogenous increases in ambiguity lead to increases in a-insensitivity. Subjects who report the
largest increases in ambiguity perception also show the largest increase in a-insensitivity, while sub-
jects who report little to no increase in ambiguity perception show no increase in a-insensitivity. As
the second main finding, I show that the indices capturing ambiguity perception and a-insensitivity
are highly positively related at the individual level. Raw correlations range between ρ = 0.40 and
ρ = 0.54. Once measurement error is taken into account, correlations increase to ρ = 0.51 and
ρ = 0.63. Regression analyses similarly show a significant positive relationship between the two
indices when observable characteristics are taken into account. At the same time, and in line with
theoretical considerations, I find no relationship between ambiguity aversion, which I also measure
using the method of Baillon et al. (2018b), and ambiguity perception, further supporting the validity
of the index. Additionally, ambiguity aversion is found to be orthogonal to a-insensitivity, replicating
the results of previous studies. Furthermore, the a-insensitivity index is nonnegative for nearly all sub-
jects, which is a necessary condition for the multiple prior explanation and consistent with previous
studies that have documented a-insensitivity using matching probabilities, as discussed later.

Overall, these findings provide strong support for an ambiguity-perception-based explanation of
a-insensitivity, as proposed by multiple prior models. My results thus support the notion that multiple
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prior models are not “as-if” revealed preference models with respect to a-insensitivity behavior, but
accurately describe the underlying mechanism that is generating a-insensitivity2. Even though these
models, like most ambiguity models, are ultimately concerned with revealed preference behavior
and not beliefs, a differentiation between explanations for a-insensitivity is nevertheless important.

Understanding the mechanisms behind observed behavior helps understand and predict said be-
havior in distinct environments and between settings. The results of my experiment show that high
degrees of a-insensitive behavior are expected in situations where individuals perceive a high degree
of ambiguity. For instance, such behavior should be observed when individuals choose between dif-
ferent investment products in high ambiguity situations but not in low ambiguity situations. The re-
sults thus help to reconcile the observation that a-insensitivity varies greatly among different sources
of uncertainty (Abdellaoui et al., 2011; Li et al., 2017; Anantanasuwong et al., 2020; Gaudecker,
Wogrolly, and Zimpelmann, 2021). Differences in ambiguity perception between the sources can
explain these differences. For example, in Anantanasuwong et al. (2020), a-insensitivity was higher
for investments into Bitcoin compared to the MSCI World index, which seems plausible since Bitcoin
as new technology is subject to more ambiguity. Even within a setting and given source, knowledge
of individual ambiguity perception can help to predict subsequent choice behavior, as demonstrated
in my experiment. Since ambiguity models are increasingly applied more broadly in many domains,
a better understanding of what behavior is expected under which conditions is advantageous.

From a policy view, differentiating between mechanisms is indispensable for designing interven-
tions aimed at behavioral change. For example, suppose the goal is to increase stock market partici-
pation, where a-insensitivity is a significant predictor, as mentioned earlier. My results suggest that
reducing individuals perceived ambiguity concerning the stock market leads to less insensitivity and
thus could directly influence financial decision-making. In contrast, if insensitive choices would re-
flect underlying source preferences, behavioral responses to changes in perceived ambiguity would
be far more limited. Generally, if the normative objective is to have individuals discriminate appro-
priately between likelihoods, my results suggest that reducing their perceived ambiguity is key.

My experimental results add to the empirical literature investigating the determinants of likeli-
hood insensitivity for decisions made under ambiguity. Recent experiments have related the occur-
rence of a-insensitivity to impairments in cognitive processes. Baillon et al. (2018b) show experi-
mentally that inducing time pressure in decision-making increases a-insensitivity, but not ambiguity
aversion. Anantanasuwong et al. (2020) show, for a representative sample of financial investors,
that a-insensitivity is correlated with financial literacy and education. My results complement those
studies by showing that as a specific cognitive component, ambiguity perception is a mechanism
that drives a-insensitivity. Enke and Graeber (2021) relate the occurrence of (risk- and ambiguity-
generated) likelihood insensitivity to cognitive uncertainty about the optimal action. Higher uncer-
tainty then leads to compression toward a cognitive default that can result in insensitive behavior.
My paper differs by focusing on an explanation motivated by ambiguity theories rather than on the
noisy Bayesian cognition models upon which their theory and evidence are built on. My approach
differs methodologically as well since, in contrast to their paper, I focus on ambiguity-generated
insensitivity while controlling for risk-induced insensitivity and ambiguity aversion.

2They are thus, to a larger degree, homeomorphic rather than paramorphic by the notion of Harré (1970). Generally,
homeomorphicmodels are best suited for broad applications and are sought for descriptive purposes (Wakker, 2010, p. 3).
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Earlier studies on likelihood insensitivity emerged partly from the well-known finding that fi-
nancial investors prefer to invest in domestic rather than foreign stocks - the so-called home bias
(French and Poterba, 1991; Coval and Moskowitz, 1999)3. Heath and Tversky (1991) as well as
Keppe and Weber (1995) document that individuals prefer to bet on sources of uncertainty in which
they feel competent and knowledgeable. This behavior has been linked to insensitivity because ev-
idence shows that likelihood insensitivity decreases in the reported level of competence for a par-
ticular source of uncertainty (Kilka and Weber, 2001)⁴. Ambiguity perception as an explanation for
observed a-insensitivity creates a rationale for these findings.

My paper is also related to the literature on the elicitation of probabilistic statements. It has
been suggested that when asked for precise probability statements, respondents use the response
“50%” as an expression of ambiguity (Fischhoff and Bruine de Bruin, 1999; De Bruin et al., 2000;
Hudomiet and Willis, 2013). Drerup, Enke, and Gaudecker (2017) thus ask respondents about their
subjective confidence in their probabilistic stock market expectations and Giustinelli, Manski, and
Molinari (2021) ask directly for confidence in the form of probability intervals in the context of
dementia risk. I show that such expressions of confidence in probabilistic assessments have great
predictive power for decision-making behavior in an incentivized and tightly controlled setting and
directly relate to a key index in the ambiguity literature. As a consequence, my results emphasize
the importance of introducing confidence measures in surveys and show how they relate to current
theories of decision-making.

The paper is organized as follows. Section 2 describes the theoretical framework, providing the
definition of likelihood insensitivity and ambiguity perception and how they relate within the class of
multiple prior models. Subsequently, Section 3 explains the experimental design and how likelihood
insensitivity and ambiguity perception are elicited. Section 4 presents the results of the experiment
and Section 5 concludes.

2 Theoretical Background

This section establishes the paper’s theoretical background. As a starting point, I discuss modeling be-
liefs under ambiguity and provide a commonly used definition and measure of ambiguity perception.
Thereafter, I show how an index of a-insensitivity can be derived from choice behavior, following Bail-
lon et al. (2021). I then provide the details on how ambiguity perception is related to a-insensitivity
within the class of multiple prior models.

2.1 Subjective Beliefs and Ambiguity Perception

Theories and applications that consider beliefs of decision-maker usually assume that they can be
represented by a unique probability measure P on a state space S⁵. This, in turn, implies that each
eventE (subsets of S) is assigned a single probability p(E). As noted by many authors, such a unique
representation of beliefs is unrealistic for situations where no obvious and commonly agreed upon

3The first formal definitions of likelihood insensitivity were developed by Tversky and Wakker (1995), and explicitly
empirically investigated by Tversky and Fox (1995) and Wu and Gonzalez (1999).
⁴There is also a rich literature in psychology documenting that insensitivity can be influenced by affective factors such

as emotions or feelings, see e.g., Rottenstreich and Hsee (2001).
⁵Or, alternatively, that when asked to, subjects are able and willing to express their beliefs in such a probabilistic form.
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probability measure exists - i.e., ambiguity is present. Given that ambiguity is arguably prevalent
in most relevant decision environments, numerous ways to relax the restriction of a unique proba-
bility measure have been developed. A widely used approach is to assume that subjects’ beliefs are
represented by a set of priors C, which is a convex set of probability distributions over S. This repre-
sentation of priors is central to the large statistics literature on robust Bayesian analysis; see Berger
(1990) and Berger (1994) for overviews. A variety of decision theory models (Gilboa and Schmei-
dler, 1989; Ghirardato, Maccheroni, and Marinacci, 2004; Klibanoff, Marinacci, and Mukerji, 2005;
Chandrasekher et al., 2021) have been developed to derive such beliefs from revealed preferences.

A decision-maker is said to perceive ambiguity, if C contains more than one probability distribu-
tion and perceive no ambiguity if C contains solely a unique probability measure. With the presence
of a set of prior beliefs, probability intervals of the form IE = {p(E) : p ∈ C} can then be con-
structed⁶ for each event E. For the elicitation of ambiguity perception, I will focus on belief reports
that take the form of such probability intervals. Probability intervals have the crucial benefit that their
elicitation from subjects is straightforward and easy to communicate. Thus, the goal is to construct a
measure of perceived ambiguity, called the perceived level (or degree) of ambiguity, from probability
intervals.

To do so, denote upper probabilities by p∗(E) = supp∈C p(E) and lower probabilities by p∗(E) =

infp∈C p(E). Seeing the existence of ambiguity as deviations from unique events probabilities, it is
natural to define a measure of perceived ambiguity as the degree to which beliefs deviate from sin-
gle probabilities for events. In order to quantify such deviations, the average discrepancy between
the upper and lower probability, p = (p∗ − p∗), is commonly used. This approach is closely related
to the idea of confidence in probabilistic statements, formalized by Dempster (1967) and Shafer
(1976), with a subjective foundation given in Gul and Pesendorfer (2014). Accordingly, I will use p
as a measure of ambiguity perception. In the experiment, I will elicit p by directly eliciting proba-
bility intervals for a collection of events that partition the state space. It immediately follows that a
monotonic relationship exists between p and the size of the set of priors: assuming the existence of
a unique set of priors, the larger p is, the larger the set of priors C that a subject considers.

So far, no restrictions have been assumed on the set of priors. While not necessary for the exis-
tence of a monotonic relationship, putting additional structure on the set of priors enables parametric
analysis. The so-called ε-contamination model offers a tractable parameterization, and for this reason,
it has been extensively used.⁷ In the model, the decision-maker has a subjective probability distribu-
tionQ as a reference distribution in mind. However, since the decision-maker does not know the true
probabilities, distributions from the general set T of probability distributions are considered. Hence,
the set of priors takes the form C = {(1 − ε)Q + εT}. Here, ε ∈ [0, 1] governs the weight given to
T . A convenient feature of the model is that ambiguity perception is exactly pinned down by ε, since
the resulting probability intervals take the form

IE = {p : (1− ε)π(E) ≤ p ≤ (1− ε)π(E) + ε},where π ∈ Q, (1)

⁶Probability intervals IE can be defined for each event even in the absence of a set of priors and are therefore more
general. As such, the existence of probability intervals is a necessary condition for the existence of a set of priors. For an
exact mapping, it has to be specified how probability intervals relate to the probability measures that form the set of priors.
See for example Walley (2000) or Škulj (2006) for a discussion of the mathematical differences and properties of the two
measures.
⁷See OA.3. in Baillon et al. (2021) for a list of applications.
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and thus ε = p.⁸ The special feature of those intervals is that the length of an interval is always equal
to ε, independent of event E. It will later be shown that ε directly agrees with an index capturing
a-insensitive behavior (defined next) when using a subclass of the contamination model.

2.2 A-Insensitivity and Behavior under Ambiguity

While the previous section considered beliefs, this section considers choice behavior, starting with
some notation. Events are connected to a set of monetary outcomes X by acts, that map S to X.
Only binary acts are considered, denoted by γEβ, and they pay the amount γ if event E realizes
and outcome β otherwise. Similarly, a lottery that pays γ with probability p and β with probability
1−p is denoted by γpβ. A preference relation< is defined over prospects, which are acts or lotteries.
Then, define a matching probability m(E) by γEθ ∼ γm(E)θ for an event E given some amount θ.
Let Pn be a probability measure on S that will serve as ambiguity-neutral belief measure to measure
deviations from neutrality.

Baillon et al. (2021) show that it is possible to elicit two ambiguity indexes valid under nearly all
ambiguity theories from choice behavior that require only minimal assumptions about preferences
and measurement design (the collection of events used for elicitation). Preferences only need to be
complete, transitive and monotone⁹, which are standard assumptions in the literature. Further, for
every event E, there must exist a matching probability. Assumptions on the measurement design
include sufficient richness of the event space and that there are no extreme events which either have
a Pn(E) close to zero or one chosen for elicitation (see Baillon et al. (2021) for details). Under these
assumptions and defining ν as the event size1⁰, they construct the following two indices:

b = 1− 2m̄ = E [Pn(E)−m(E)] (2)

a = 1− Cov (m(E), v)

V ar (v)
≈ 1− Cov (m(E), Pn(E))

V ar (Pn(E))
. (3)

The index b represents ambiguity aversion, capturing the preference component of ambiguity atti-
tudes. Index a is called a(mbiguity-generated) insensitivity and is the focus of this paper. It captures
the degree of responsiveness of a decision-maker towards changes in the likelihood of events and is
commonly interpreted as a cognitive component. In the extreme of maximal a-insensitivity (a = 1),
the decision-maker does not respond to changes in likelihood at all, hence treating all events alike.
Baillon et al. (2021) show that the two indices are compatible with nearly all existing indexes and
ambiguity orderings proposed in the literature. In particular, under the previous assumptions, the
two indices coincide exactly with the two parameters of the neo-additive framework of Chateauneuf,
Eichberger, and Grant (2007)11. This framework is often used in empirical applications, and the two

⁸For this reason, many papers interpret ε as level of ambiguity (Walley, 1991; Ghirardato, Maccheroni, and Marinacci,
2004; Chateauneuf, Eichberger, and Grant, 2007; Gajdos et al., 2008; Hill, 2013; Giraud, 2014; Klibanoff, Mukerji, and
Seo, 2014; Alon and Gayer, 2016; Shattuck and Wagner, 2016).
⁹A preference is monotone if the following three conditions are satisfied: (1) A weak improvement of an outcome of a

prospect weakly improves the prospect, (2) a strict improvement strictly improves an act if the event is nonnull (can affect
preferences), and (3) strict improvements in outcomes with a positive probability strictly improves the lottery.
1⁰Event size is defined as ν(E) = |E|

n
, with |E| being the number of events forming the smallest nonempty intersection

of the measurement design.
11The two parameters of the neo-additive framework serve as linear approximation to the inverse S-shape commonly

found in decision-making under uncertainty (Tversky and Kahneman, 1992).
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parameters have been shown to explain choices under ambiguity very well (Abdellaoui et al., 2011;
Li et al., 2017). The next section will show how ambiguity perception and a-insensitivity are related
in the multiple prior models.

2.3 The Multiple Prior Mechanism for A-Insensitivity

Following the discussion in Section 2.1, multiple prior models distinguish themselves from other
ambiguity models by relating a decision-maker’s choice to a set of prior beliefs C. Within the class of
multiple prior models, the α-maxmin model (Hurwicz, 1951; Ghirardato, Maccheroni, and Marinacci,
2004) offers a tractable way of differentiating the impact of ambiguity preferences, represented by
an ambiguity aversion parameter α, from ambiguity perception through the size of C. Preferences
follow the α-maxmin representation if a utility function U exists such that for a prospect γEθ:

γEθ 7→W (E)U(γ) + (1−W (E))U(θ)

with W (E) = αP∗(E) + (1 − α)P ∗(E) for α ∈ [0, 1]. The responsiveness of W (E) thus depends
directly on the beliefs about the upper and lower probabilities. A subclass of the α-maxmin model,
the ε-α-maxmin model, provides a convenient characterization in which parametrized ambiguity
perception directly coincides with a-insensitivity. Conceptually, this model combines the restrictions
on the belief set of the ε-contamination model with the utility representation of the α-maxmin model.
Accordingly, the decision-makers set of priors takes the previously introduced form C = {(1− ε)Q+

εT}, and preferences follow an α-maxmin representation. There is then a direct mapping between
the model parameters to the previously established indices a and b, as Dimmock et al. (2015) showed:

b = (2α− 1)ε, (4)
a = ε (5)

Therefore, the higher the degree of ambiguity, measured by ε, the greater the decision-maker will
display insensitivity by having insufficient responsiveness toward likelihood changes. The model
thus offers an explanation of likelihood insensitivity based on ambiguity perception, with the two
coinciding for the case of the ε-α-maxmin model.

To summarize, the indices of Baillon et al. (2021) offer a way to parametrize and elicit ambiguity
behavior without committing to a specific model, which makes it possible to test for different mech-
anisms that cause observed behavior. In the experiment, I directly test the multiple prior mechanism
by eliciting ambiguity perception from reported beliefs and relating them to a-insensitivity elicited
from choice behavior.

3 Experimental Design

This section presents the experimental design. The aim of the design is to investigate empirically the
relationship between ambiguity perception and a-insensitivity, defined in the previous section.
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Table 1: Weather-Change Events in each Part

Part Time difference E1 E2 E3

Low Ambiguity Partition 1 Four days (−∞,−1.8) [−1.8, 1.8] (1.8,∞)
Low Ambiguity Partition 2 Four days (−∞,−1) [−1, 1.5] (1.5,∞)
High Ambiguity Partition 1 Eight weeks (−∞,−1.8) [−1.8, 1.8] (1.8,∞)
High Ambiguity Partition 2 Eight weeks (−∞,−1) [−1, 1.5] (1.5,∞)

Notes: Unit is degree Celsius.

3.1 Source of Ambiguity and Ambiguity Variation

The source of ambiguity in the experiment concerns future temperature movements. Using this
source has the advantage that the weather is a familiar source of ambiguity, and it is straightforward
to generate easy-to-interpret natural events from it. Specifically, the events used in the experiment
are about differences in the average daily temperature between two consecutive future days12. Such
differences have a natural interpretation: if the difference is positive, the latter day is warmer than
the previous; if negative, the latter day is colder. It is well known and embedded in most weather
reports that the further weather events are in the future, the more difficult their prediction becomes.
For example, reported confidence bounds for rain probability are higher for days further into the fu-
ture. Similarly, weather forecasts of different providers are usually much more dispersed the larger
the time distance.13 Hence, varying the distance to temperature events creates a natural and intuitive
increase in ambiguity.

In the experiment, each subject faced four decision parts. Each part contained decisions about
weather events, and the events in the parts differed only along two dimensions: (1) the time differ-
ence between the decision and occurrence of the event and (2) how the event space was partitioned.
The goal of (1) is to have an exogenous increase in the degree of ambiguity. Varying the event space
partition makes a measurement error correction possible, which is explained in more detail in Section
4.6.

Table 1 displays the events used and highlights the differences between the four parts. In Low
Ambiguity Partition 1, the time difference between the decision and the event was four days, and
the events were E1 = (−∞,−1.8), E2 = [−1.8, 1.8] and E3 = (1.8,∞), where the numbers denote
changes in degrees Celsius. For example, event E1 in this case describes the situation wherein the
average daily temperature falls by more than 1.8 degrees Celsius four days into the future compared
to three days in the future. In Low Ambiguity Partition 2, themiddle eventE2 shrinks to [−1, 1.5], with
the other two adjusted accordingly. The two High Ambiguity parts concern the same events, but with
an increased time difference between choice and event realization of eight weeks instead of the four
days in the two Low Ambiguity parts. Comparing the behavior in High Ambiguity to Low Ambiguity
thus allows the impact of a change in the degree of ambiguity to be measured. The order of the
parts was randomized. Subjects faced either the two Low Ambiguity or the two High Ambiguity parts
first, followed by the remaining two. Within each part, both a-insensitivity and ambiguity perception
using the respective events were elicited, with the order being randomized as well.

12The average temperature of a day is obtained by averaging all air temperature values measured on the hour from 12
midnight to 11 p.m.
13I verified that this was also the case for the time interval in which the experiment took place.
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3.2 Elicitation of A-Insensitivity

To elicit likelihood insensitivity, I use the method proposed by Baillon et al. (2018b), which utilizes
matching probabilities. It allows the elicitation of the two indices a and b as defined in Section 2 for
natural events such as the weather movements used in this experiment1⁴. The method identifies the
two indices independent of risk attitudes or subjective beliefs over the likelihood of events. Further-
more, the elicited indices are compatible with almost all ambiguity models developed so far, making
the elicitation method ideal for the purpose of this study. The method uses the previously described
events E1, E2, and E3 as well as their pairwise unions, i.e., E12 = E1 ∪ E2, E13 = E1 ∪ E3, and
E23 = E2 ∪ E3. For each of the six events, subjects could choose between two options, A and B.
Option A paid 10 euros if the respective event E realized and 0 euros otherwise. Option B paid 10
euros with probability p. Subjects thus could choose whether to bet on the ambiguous event or on a
lottery with a known probability1⁵. By varying p for each event Ei, it is possible to elicit the match-
ing probability m for which a subject is indifferent between receiving 10 euros under event E and
receiving 10 euros with probability m. Denote this matching probability for Ei by mi.

The index capturing a-insensitivity is derived from the extent to which the matching probabili-
ties of single events deviate from composite events. The higher the insensitivity toward likelihood
changes, the less additive are the matching probabilities of two single events compared to the match-
ing probability of the respective composite event. Accordingly, define the average single event match-
ing probability as ms = (m1 +m2 +m3)/3 and the average composite event matching probability
as mc = (m12 +m23 +m13)/3. Then, the index capturing a-insensitivity is:

a = 3 ·
(

1

3
− (mc −ms)

)
(6)

Under perfect discrimination of likelihoods and ambiguity neutrality, ms = 1
3 and mc = 2

3 and thus
a = 0. The higher the difference between the two averages, the higher is a, indicating insensitivity
toward likelihood changes whenever a > 0. At maximal insensitivity (a = 1), no distinction is made
between levels of likelihood (mc − ms), e.g., all events are taken as fifty-fifty. The index can also
take negative values a < 0, which implies oversensitivity to changes in likelihoods.

The elicitation method also allows the elicitation of ambiguity aversion as motivational compo-
nent of ambiguity attitudes. The index b capturing ambiguity aversion can be defined as:

b = 1−mc −ms (7)

Intuitively, the index captures howmuch, on average, a subject prefers to bet on the ambiguous event
compared to the lottery. b = 0 means the individual is ambiguity neutral, while b > 0 corresponds to
ambiguity aversion and b < 0 to ambiguity seeking, with b = 1 corresponding to maximal ambiguity
aversion and b = −1 to maximal ambiguity seeking.

As Baillon et al. (2021) show, the two indices directly correspond to the indices defined in equa-

1⁴A benefit of using natural events is that ambiguity is not artificially created through the deliberate withholding of
relevant information such as the color composition of an urn by the experimenter.
1⁵In the experiment, the lottery was played out at the same time as when the uncertainty over the event was resolved

so that the timing of the resolution of uncertainty was kept constant. Furthermore, for each choice, subjects received their
payment via bank transfer at the same time, irrespective of which option they picked to abstract from time preferences.
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tions (2) and (3) and are independent of different state space partitions under mild regularity as-
sumptions. In order to elicit the indices, the method requires six matching probabilities, one for each
of the six events. In the experiment, these are elicited using choice lists. An example can be seen in
Figure B.1 in the appendix. In each row of the list, subjects could choose between the two options
described previously, with p varying in each row from 0% to 100% in 5% increments. To make an-
swering less strenuous and to enforce monotonicity in probabilities, subjects could fill out a choice
list with a single click: they only had to indicate their switching point by choosing either Option A or
B in the respective row, and the computer automatically filled out the rest. For example, if a subject
indicated a preference for betting on the event over the lottery with probability p = 30%, then all
input fields for Option B below 30%, and all input fields for Option A above 30% were filled out. Sub-
jects could always revise their switching point and had to confirm their final choices before moving
on. As is common in the elicitation of matching probabilities, the average of the probabilities in the
two rows defining a respondent’s switching point from Option A to B was taken as the indifference
point and thus as the matching probability for the respective event.

3.3 Elicitation of Ambiguity Perception

The subject’s degree of ambiguity perception was elicited using a two-step procedure1⁶. The goal
was to make the elicitation as easy as possible to understand and answer while still capturing ambi-
guity perception as defined in Section 2.1. As such, everything was explained to the subjects in both
intuitive and in quantitative terms.

In the first step, subjects are asked to provide for the same events E1, E2, and E3 , as in eliciting
a-insensitivity, their best-guess probability that the respective event will occur. See Figure B.2 in the
appendix for an example. It was explained in a way such that subjects unfamiliar with probabilities
and probability theory could equally give their assessments. In this first step, it was enforced that
the probabilities sum up to one.

In a second step, subjects could state their belief in the precision of the previously reported
probabilities and thus the probability interval that they consider by using a slider. The slider scale
ranges from absolutely imprecise to absolutely precise, and an example can be found in Figure B.31⁷.
Displayed below the slider was the implication of the slider movement for the considered probabil-
ity set1⁸. If a subject indicated that the guess was absolutely precise, the interval collapsed to the
probability guess stated in the first step. For each slider increment, the interval increased by one
percentage point in each direction. Therefore, by moving the slider, subjects could specify the set
[p∗i , p

∗
i ] of probabilities they considered likely for event Ei. The distance pi = p∗i − p∗i is then a

measure of perceived ambiguity for each event individually. Following the theoretical considerations
of Section 2.1, the average length across all three events then corresponds to the perceived level of
ambiguity:

1⁶Manski (2004) discusses the use of one-step questions to elicit the degree of confidence for binary events. Giustinelli,
Manski, and Molinari (2021) use a similar two-step procedure.
1⁷The slider itself only appeared once subjects clicked somewhere on the scale in order to avoid anchoring or default

effects.
1⁸The design of the slider used for the elicitation was inspired by the design of the elicitation method of Enke and

Graeber (2021).
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p =
1

3
(p1 + p2 + p3) (8)

The maximum level of ambiguity perception at p = 1 is attained when all probability ranges are
from 0 to 1, i.e., for each event, the probability set considered is the unit interval. The minimum
level of p = 0 is attained when all probability sets collapse to a single value, in which case subjects
are certain of a single probability distribution.

In the experiment, subjects stated their degree of ambiguity perception without monetary con-
sequences. Incentives would make the elicitation more complex, which is not desirable here because
the concept of ambiguity perception might already difficult conceptually for subjects. Furthermore,
incentivization combines the elicitation of beliefs with preferences over potential rewards, requir-
ing assumptions about the form of preferences and thus commitment to a specific model. Moreover,
since ambiguity perception is subjective, no true values are attainable for the experimenter that could
be used to incentive answers.1⁹. For those reasons, the elicitation of ambiguity perception was not
financially incentivized.2⁰

It should be noted that by the design of the experiment, subjects have no reason or incentive
to misreport their beliefs. For such a case, numerous studies have found that nonincentivized belief
elicitations perform well in accuracy and the extent of truth-telling compared with incentivized elici-
tations (Manski, 2004; Armantier and Treich, 2013; Trautmann and Kuilen, 2015; Danz, Vesterlund,
and Wilson, 2020). Another concern would be that because of the nonincentivization, subjects lack
motivation to take the questions seriously and thus answer randomly or inattentively. The exogenous
increase in the degree of ambiguity from Low to High Ambiguity can be used to assess this concern.
If subjects were answering randomly or inattentively, the exogenous increase should have no effect
on reported ambiguity perception. The results presented in Section 4.1 show that opposite to be the
case. I find that subjects’ answers are highly responsive to the exogenous increase and respond in the
predicted direction, implying that subjects are engaged and answer deliberately. To further alleviate
concerns about measurement errors that could result from a lack of deliberation, I purposefully de-
signed the experiment such that a measurement error correction technique could be employed. See
Section 4.6 for the details and results.

3.4 Hypotheses

The previous section has shown how the two central indices a-insensitivity a and perceived ambiguity
p are elicited using matching probabilities and hypothetical queries, respectively. The relationship
between the two will be analyzed by investigating the impact of an exogenous increase in ambiguity
on the two indices and directly assessing their correlation. To do so, the first step is to validate the
ambiguity perception index. If the index captures relevant ambiguity perception, it should respond
to exogenous variation in ambiguity. The Low Ambiguity and High Ambiguity parts were purposefully

1⁹Methods like the Bayesian Truth Serum (Prelec, 2004) and subsequent refinements do not need knowledge of true
values, but require strong assumptions on preferences such as risk-neutral expected utility or ambiguity neutrality (Karni,
2020)
2⁰Consequently, many experimental studies on insensitivity in decision-making under uncertainty have used subjective

likelihood judgments, e.g., Tversky and Fox (1995), Fox, Rogers, and Tversky (1996), Fox and Tversky (1998), Wu and
Gonzalez (1999), and Kilka and Weber (2001).
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designed to offer such an exogenous variation. Increasing the time difference for the weather event
from four days (Low Ambiguity) to eight weeks (High Ambiguity) induces higher ambiguity in the
latter. Therefore, the exogenous increase should be reflected within-subject in a higher reported
ambiguity perception in the High Ambiguity part compared to the Low Ambiguity part21.

Hypothesis 1. The index p captures relevant ambiguity perception: exogenous increases in ambiguity
increase ambiguity perception (pH > pL).

The next hypothesis then builds on the exogenous increase in ambiguity perception and relates
it to a-insensitivity. If the two are related, increases in index a due to the exogenous increase in
ambiguity should be higher if the reported increase in p is higher:

Hypothesis 2. Increases in ambiguity perception are positively related to increases in a-insensitivity:
∆p predicts ∆a.

Lastly, as a direct test of the relationship between the two indices, across all parts, the two are
expected to be significantly correlated, if the mechanism proposed by the multiple prior models is
indeed causing a-insensitivity:

Hypothesis 3. Ambiguity perception is positively related to a-insensitivity: p and a are positively cor-
related.

As mentioned previously, the indices should not depend on a particular partition of the event
space. Therefore, there should be no significant differences between the two partitions, and thus all
hypotheses can be applied to both partitions.

3.5 Procedure

In total, 126 subjects (median age = 24, SD = 7.62, 75 female) participated in the experiment,
almost all being students from various study areas. They were recruited from the subject pool of the
BonnEconLab using the software hroot (Bock, Baetge, and Nicklisch, 2014), and the experiment was
conducted as a virtual lab experiment. That is, the experiment took place online but at a prespecified
time and date. For the entire time, an experimenter was available to answer questions,22 as it is usual
for laboratory experiments. Subjects were sent individual links, ensuring that everyone participated
in the experiment only once. The experiment was conducted using oTree (Chen, Schonger, and
Wickens, 2016). Subjects received 5 euros as a show-up fee, and one of their choices was randomly
selected for real implementation, where they could earn as much as 10 additional euros. On average,
subjects earned 11.27 euros, and the experiment took about 40 minutes. The translated instructions
can be found in Appendix D.

Of the 126 participating subjects, 9 violated weak monotonicity more than once; i.e., for more
than one of the four parts, set-monotonicity was violated such that a > 123. Repeated violations of

21It is possible that the relevant ambiguity increases with more information, as shown by Shishkin and Ortoleva (2021).
Thus, it is important to validate that where more information is available and less ambiguous, subjects indeed perceive
weather events closer to the present.
22Communication was possible via email or telephone, allowing for direct (anonymous) one-to-one communication.
23This is the case whenevermc < ms, meaning that matching probabilities of single events are higher than composite

events containing the very same single events.
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Table 2: Descriptive Statistics

Event Partition 1 Event Partition 2

p1 a1 b1 p2 a2 b2

Low Ambiguity

Mean 0.27 0.46 -0.13 0.27 0.51 -0.13
Median 0.20 0.45 -0.08 0.23 0.50 -0.10
Standard Deviation 0.20 0.34 0.23 0.20 0.37 0.22

High Ambiguity

Mean 0.45 0.66 -0.14 0.45 0.67 -0.11
Median 0.40 0.70 -0.13 0.41 0.75 -0.10
Standard Deviation 0.25 0.32 0.23 0.25 0.35 0.26

set-monotonicity are very difficult to rationalize under any decision rule and hence, are likely driven
by erratic answers. Following the preregistration, these subjects are excluded from the analysis. Two
subjects chose Option A for every decision, regardless of the event or the lottery option’s probability.
In accord with the preregistration, those subjects were similarly excluded from the primary analysis.
This leaves 113 subjects for the analysis discussed in the next section. None of the results change
when the full sample is analyzed instead (see Appendix C for the results).

4 Results

Table 2 shows summary statistics for the main variables in each part. Across all parts, subjects report
a considerable amount of perceived ambiguity p, with, for example, an average probability interval
of 0.27 in the two Low Ambiguity parts. Similarly, subjects display substantial a-insensitivity (index
a), consistent with earlier studies, for example work by Baillon et al. (2018b), Anantanasuwong et al.
(2020), and Gaudecker, Wogrolly, and Zimpelmann (2021). Analogous to the results obtained by
Baillon et al. (2018b), subjects are slightly ambiguity seeking (index b) on average. As expected,
behavior between the two event space partitions is quite similar, and aggregate averages are nearly
identical. In none of the four parts did more than three subjects display a negative insensitivity
parameter a. Negative values are possible with the econometric definition proposed by Baillon et al.
(2021), as displayed in Equation (3). However, for ambiguity perception as a mechanism, a must
be nonnegative. Given that fewer than 3% of subjects in each part displayed such behavior, this
constraint imposed by the multiple prior models does not seem restrictive here.2⁴

2⁴This is in line with other studies that use matching probabilities to elicit a-insensitivity. For example, Gaudecker,
Wogrolly, and Zimpelmann (2021) find a fraction of 4% that have negative a values (personal communication), and
Anantanasuwong et al. (2020) find between 5% and 12% (p. 17). Earlier studies that do not use matching probabilities
to elicit insensitivity typically find higher fractions; see, e.g., Abdellaoui et al. (2011), Li et al. (2017), and Baillon et al.
(2018a). One potential explanation for the discrepancy is the influence of risk-induced (in)sensitivity, for which matching
probabilities control. This would suggest that oversensitivity is relevant for risk but not for ambiguity.
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Figure 1: Histogram of the change in perceived ambiguity from Low Ambiguity to High Ambiguity with a bin size of 0.1.
The red dotted line represents the mean change.

4.1 Validating the Ambiguity Perception Measure

Hypothesis 1 states that ambiguity perception p should be higher in the High Ambiguity than the Low
Ambiguity part. Table 2 provides aggregate evidence that this is indeed the case. For both event space
partitions, reported ambiguity perception p is significantly higher in the High Ambiguity part (for
both partitions p < 0.001, Wilcoxon signed-rank test). On average, ambiguity perception increased
by almost a fifth of the unit interval, constituting a 67% increase. Figure 1 confirms this pattern
on the individual level. The Figure displays the change in perceived ambiguity between the High
Ambiguity and Low Ambiguity parts in a histogram. A positive change implies that a subject reported
higher perceived ambiguity in the High compared to the Low Ambiguity part. As evident from the
Figure, the overwhelming majority of subjects reported a higher perceived ambiguity in the High
Ambiguity condition. The change in perceived ambiguity is strictly positive for 79% of subjects for
the first event space partition and 77% for the second. In contrast, perceived ambiguity decreased
for only 17% and 18% of subjects. These results thus show that the ambiguity perception index is
responsive to changes in the degree of ambiguity.

4.2 Relationship between Ambiguity Perception and A-Insensitivity

Having validated that the proposed measure of ambiguity perception is related to the degree of ambi-
guity, I now turn to the relationship between a-insensitivity and ambiguity perception as formulated
in Hypotheses 2 and 3. A prerequisite for Hypothesis 2 is that the exogenous increase in ambiguity
should increase a-insensitivity. Table 2 again provides aggregate evidence. Similar to the increase in
ambiguity perception, a-insensitivity is higher in High Ambiguity than in Low Ambiguity. On average,
the index rises by about a third, a substantial and significant increase (for both partitions p < 0.01,
Wilcoxon signed-rank test). At the individual level, the increase in ambiguity induced by the High
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Figure 2: Average value of the a-insensitivity index for four bins of changes in perceived ambiguity. Each bin corresponds
to a quartile. The corresponding cutoff values are displayed on the x-axis description. Error bars show 95% confidence
intervals.

Ambiguity part leads to increased a-insensitivity for most subjects. In total, 60% of the subjects for
the first event space partition, and 55% for the second, have a positive change in a-insensitivity. Only
27% of subjects for the first partition and 35% for the second display a reduction in a-insensitivity.
Figure B.4 in the appendix shows this pattern using a histogram similar to Figure 1. Hence, the ex-
ogenous increase in ambiguity leads to an increase both in perceived ambiguity and a-insensitivity.

According to Hypothesis 2, subjects that reported a higher increase in perceived ambiguity from
Low Ambiguity to High Ambiguity are expected to show a larger increase in a-insensitivity. To assess
this hypothesis, subjects are categorized into quartiles by their change in perceived ambiguity. Using
this categorization, Figure 2 shows the average changes in a-insensitivity within each quartile. For
example, the first quartile consists of subjects with a change in perceived ambiguity ∆p between
−0.29 and 0.02 for the first partition. The average change in a-insensitivity ∆a for this quartile is
−0.03, which is statistically indistinguishable from zero. The fourth quartile, on the other hand, con-
sists of subjects with the highest increase in perceived ambiguity. For those, the a-insensitivity index
increases substantially by, on average 0.47. Overall, for both partitions, the quartiles show a mono-
tone pattern, with higher quartiles having a higher average increase in a-insensitivity. Investigating
the correlation between the two changes reveals a positive and statistically significant relationship:
For the first partition, Spearman’s rank correlation coefficient between ∆p and ∆a is ρ = 0.49, and
for the second partition, the coefficient is ρ = 0.43. Both are significant at any conventional level
(p < 0.001). Hence, the results suggest that increases in a-insensitivity are closely related to increases
in perceived ambiguity and support Hypothesis 2.

Having established the previous result, the next investigation concerns Hypothesis 3 and thus
the direct correlation between the two measures. All correlations, whether calculated for each part
individually or pooled together, are positive and significantly (p < 0.001) different from zero. When
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Figure 3: Scatter plot of the relationship between the index capturing perceived ambiguity and the index capturing a-
insensitivity. The dots represent a combination of the two indices from a subject for each part, with the Low and High
Ambiguity parts colored differently, so each subject appears four times in the plot. Each line represents an OLS-regression
of the a-insensitivity index on the perceived ambiguity index.

the parts are pooled together, the correlation coefficient is ρ = 0.50, and similar correlations are
found for each part individually. In the two Low Ambiguity parts, correlations are ρ = 0.43 for the
first event space partition, and ρ = 0.54 for the second. Correlations in the High Ambiguity parts
are ρ = 0.40 for the first partition, and ρ = 0.43 for the second. The results are visualized in Figure
3, which shows a scatterplot for each subject and part the combination of perceived level and a-
insensitivity. For the figure, the Low Ambiguity and High Ambiguity parts are displayed with separate
colors, and the corresponding regression lines are provided alongside.

Table 3 confirms the previously found pattern using an OLS-regression. In column (1), the index
capturing perceived ambiguity is regressed on the index capturing a-insensitivity, pooling over all
parts. The effect is sizable, suggesting that an increase from no perceived ambiguity (p = 0) to
maximum perceived ambiguity (p = 1) leads to an increase of 0.70 in the a-insensitivity index.
Since the a-insensitivity index similarly attains its maximum at a = 1, this corresponds to a sizable
increase in a-insensitivity. The estimate is unaffected by the inclusion of controls, as can be seen
in column (2). The controls added are subjects’ age, gender, final high school grade, and current
subject of studies. In columns (3) and (4), interaction effects for the individual parts are added.
Reassuringly, there are no significant differences in the relationship between the two different event
partitions. When looking at differences between Low Ambiguity and High Ambiguity, the relationship
between perceived ambiguity and a-insensitivity is lower in the High Ambiguity condition compared
to Low Ambiguity, mainly because more variance in perceived ambiguity exists in the former. All in
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Table 3: OLS-Regression of A-Insensitivity on Perceived Ambiguity

Dependent variable:

A-Insensitivity Index a
(1) (2) (3) (4)

Perceived Ambiguity Index p 0.704∗∗∗ 0.697∗∗∗ 0.816∗∗∗ 0.816∗∗∗
(0.066) (0.066) (0.111) (0.117)

High Ambiguity 0.160∗∗∗ 0.165∗∗∗
(0.056) (0.055)

Partition 2 0.004 0.007
(0.039) (0.039)

Perceived Ambiguity×High Ambiguity −0.299∗∗ −0.307∗∗
(0.130) (0.132)

Perceived Ambiguity×Partition 2 0.056 0.048
(0.085) (0.085)

Constant 0.321∗∗∗ 0.350∗ 0.256∗∗∗ 0.288
(0.035) (0.186) (0.045) (0.184)

Controls X X
Observations 452 452 452 452
Subjects 113 113 113 113
R2 0.238 0.256 0.254 0.273

Notes: The table displays OLS-estimates. Robust standard errors (in parentheses) are clustered at the subject level. Controls
include age, gender, final high school grade, and current subject of studies. Significance levels are ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.

all, I find evidence for all three hypotheses and therefore strong support for the perceived ambiguity
mechanism as driving force of a-insensitivity.

4.3 Testing the Predictions of the α-ε-Maxmin Model

Having established the existence of a tight empirical relationship between perceived ambiguity and
a-insensitivity, I now turn to investigate two specific predictions that the ε-α-maxmin model makes.
As highlighted in Section 2, the model predicts that: (i) the perceived level of ambiguity is uniform
across different events within each part (see Equation 1), and (ii) the two indices coincide exactly,
i.e., a = ε (see equation 5). My experimental design makes it possible to test both predictions, the
first by testing for deviations from uniformity using the proposed elicitation of perceived ambiguity2⁵,
the second by comparing both indices directly.

To quantify deviations from uniformity, I define the following simple distance measure, with pi
as the perceived ambiguity measures for each event:

Distance to uniformity =

√
1

3

(
(p1 − p2)

2 + (p2 − p3)
2 + (p1 − p3)

2
)

2⁵Note that this is not a strict model test, since the model is written for revealed preferences, not belief data. However,
given the strong association between beliefs and behavior, I would argue that this test is still informative for the underlying
assumptions of the model.
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The measure evaluates differences between the three individual levels of perceived ambiguity for
each event using a least-squares criterion. Higher values mean larger deviations from uniformity,
with the maximum at 1 and 0 indicating full uniformity.

In all parts, perceived ambiguity appears to be close to uniformity, with the median being below
0.1 for all parts and averages ranging from 0.12 to 0.15. For only 15% of subjects, the measure is
larger than 0.4 at least once, with only 8% showing this sizable deviation within each part2⁶. See
Figure B.5 in the appendix for the full distribution of themeasure for each part. One-way ANOVA tests
using the four conditions as factors and ambiguity perception as dependent variable further reveal
that the null-hypothesis of uniformity can neither be rejected for the two Low Ambiguity conditions
(p = 0.62 and p = 0.35) nor for the High Ambiguity conditions (p = 0.25 and p = 0.85). Similarly, a
Kruskal-Wallis test yields the same conclusion. Consequently, assuming a uniform level of perceived
ambiguity across events appears well supported by the experimental evidence.

Regarding the second testable prediction of the ε-α-maxminmodel, Figure 3 provides a first graph-
ical impression. If the two indices coincide (a = ε), one should observe that the dots in the graph
are close to the 45-degree line. Instead, most dots appear to be quite far from the line, with few bor-
dering or being on the line. Figure B.6 in the appendix quantifies these deviations with histograms
of the absolute differences on the individual level between the two indices for each part. For most
subjects, the absolute differences are substantial, being around 0.3 on average. Only for a minority
of subjects, about 16% to 27%, is the absolute difference between the two indices smaller than 0.1.
Similarly, a Kolmogorov-Smirnov test rejects, for each part, that the two distributions of indices come
from the same distribution (all p-values < 0.001). Therefore, it appears that the two indices do, in
general, not coincide exactly. However, the assumption of a monotone relationship between the two
indices seems well justified given the results.

4.4 Relationship between Perceived Ambiguity and Ambiguity Aversion

Theoretically, a-insensitivity and ambiguity aversion are orthogonal, as can be seen from Equations
(2) and (3). Similarly, ambiguity perception and preferences are interpreted as distinct components.
While this does not necessarily rule out an empirical relation, my findings support the separation
by also finding orthogonality empirically. First, the exogenous increase in ambiguity from the Low
Ambiguity to the High Ambiguity part had no effect on average ambiguity aversion. As Table 2 shows,
the average ambiguity aversion index in the Low Ambiguity parts for both partitions is −0.13, nearly
identical to the averages in the High Ambiguity parts, with −0.15 for the first partition, and −0.11

for the second. Further, there are no significant differences in distributions (p = 0.60 for the first
partition, and p = 0.19 for the second, Wilcoxon signed-rank test).

Second, the overall correlation between ambiguity aversion and perceived ambiguity is almost
exactly zero when pooling over all parts at ρ = −0.02. Within each part, correlations are small and
do not point systematically in one direction. Correlations are ρ = −0.07 (p = 0.42) and ρ = −0.24

(p = 0.01) for the two Low Ambiguity parts and ρ = 0.14 (p = 0.13) and ρ = 0.10 (p = 0.31)
for the High Ambiguity parts. The correlations between a-insensitivity and ambiguity aversion are
looking similar, and are not significant at any conventional level, in line with the findings of Baillon

2⁶Furthermore, the measure is highly correlated on the individual level, i.e., subjects that deviate more from uniformity
in one part are significantly more likely to do so in the other parts.
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et al. (2018b) and other studies. In the appendix, Figures B.7 and B.8 replicate Figures 2 and 3 from
the main text for ambiguity aversion instead of a-insensitivity. Similarly, Table A.1 in the appendix
repeats the analysis of Table 3 with ambiguity aversion as dependent variable. As expected, perceived
ambiguity and ambiguity aversion are not related.

4.5 Order Effects

One potential concern is that the method for eliciting the perceived level of ambiguity affects the
measurement of a-insensitivity. Recall that in the former, subjects are asked to state their best guess
probability for each event. The guesses have to add to one, constituting a proper probability measure.
This might induce a tendency to act (or think) in accordance with this measure, for example, through
priming or anchoring effects, that would not happen in the absence of the elicitation method. This
could distort subjects behavior displayed during the measurement of a-insensitivity. To test for this
possibility, the order of elicitation was randomized in the experiment. Half of the subjects first faced
the elicitation of ambiguity perception, while for the other half, a-insensitivity was elicited first.
Therefore, it is possible to test between-subject whether eliciting ambiguity perception has an effect
on the measurement of a-insensitivity.

Looking at the parts individually, a-insensitivity is slightly lower on average in the two Low Am-
biguity parts when elicited before, compared with after the perceived level of ambiguity, with the
average decreasing from 0.49 to 0.44 for the first partition, and 0.51 to 0.50 for the second. For
the two High Ambiguity parts, the opposite holds, with averages increasing when a-insensitivity is
elicited first, from 0.62 to 0.70 for the first partition, and 0.60 to 0.74 for the second. Contrarily, the
perceived level in the two Low Ambiguity parts is lower when elicited first (differences are −0.02

and −0.002 for the two partitions) and higher in the two High Ambiguity parts (differences are 0.06

and 0.07 for the two partitions). The use of Mann-Whitney U tests for each part reveals that these
differences are not significant for neither of the two relevant measures2⁷. As a result, all results are
robust to the order of elicitation.

Another kind of order effect might be of potential concern. It is possible that through learning or
experience effects on the elicitation methods, the timing of the parts itself affects decision-making.
If a-insensitivity and the perceived level are partly driven by confusion or unfamiliarity with the
elicitation method, both indices could be initially higher. Contrary to this hypothesis, both indices are
slightly increasing in the order they appear. For example, a-insensitivity increases by about 0.06 when
elicited the second time, while the perceived level index increases by 0.004. Table A.2 in the appendix
shows that this pattern also holds for the other parts. In fact, the relationship between ambiguity
perception and a-insensitivity becomes stronger the more parts subjects complete. Ordering the parts
in sequence as they appear to subjects reveals an increasing pattern. The correlation between the
two indices when elicited for the first time is ρ = 0.42. The correlation increases to ρ = 0.49 when
looking at the second time the two indices are elicited, and then further to ρ = 0.54 and ρ = 0.56

for the third and fourth time, respectively. These results suggest that the relationship I find is not an
artifact that vanishes with experience in the elicitation methods.

2⁷For a-insensitivity, p-values are 0.52 and 0.79 for the two Low Ambiguity parts, and 0.19 and 0.08 for the two High
Ambiguity parts. Similarly, the p-values for testing differences for the perceived level of ambiguity are 0.72 and 0.95 for
the two Low and 0.18 as well as 0.10 for the two High Ambiguity parts.
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4.6 Correcting for Measurement Error

Measurement error in elicitation methods can decrease observed correlations between twomeasures.
If the error is sufficiently strong, one might conclude from a low correlation that the two are distinct
variables when they in fact measure the same underlying concept. Such measurement error is in-
evitably present, be it by variations in subjects’ attention and focus or induced by the experimental
design. For example, the matching probabilities in the experiment are discrete approximations since
they are elicited using 5% probability increments.

To correct for such measurement error, I use the Obviously Related Instrumental Variables (ORIV)
technique of Gillen, Snowberg, and Yariv (2019)2⁸. The technique relies on duplicated elicitations
of the same variable. Under the assumption that the measurement error of duplicated elicitations is
orthogonal, the technique provides a more efficient estimator of correlations between two variables.
For that purpose, in the experiment, I used two different event space partitions. As noted in Section 2,
under minimal assumptions on the event space, the elicitation of ambiguity attitudes is not affected
by changes in the event space partition. Therefore, theoretically, the elicitation of the indices for
different partitions is a duplicated measurement of the same indices. As such, ORIV can be used.

Applying ORIV, I find, as expected, that the correlation between the perceived level of ambiguity
and a-insensitivity becomes even stronger once measurement error is taken into account. Correla-
tions are ρORIV = 0.63 for the Low Ambiguity part and ρORIV = 0.51 for the High Ambiguity part.
Reassuringly, the correlation between ambiguity aversion and perceived ambiguity is unaffected by
the measurement error correction and remains close to zero. The correlations are ρORIV = −0.07

for the Low Ambiguity part and ρORIV = 0.06 for the High Ambiguity part. Therefore, it is not the
case that measurement error is falsely responsible for the low correlations between the twomeasures,
providing further evidence for the theoretically predicted orthogonality.

5 Conclusion

Using an experiment, I assessed the interpretation of a-insensitivity behavior as ambiguity perception,
a hypothesis brought forward by multiple prior models. I indeed find strong empirical support for the
hypothesis, with elicited measures of a-insensitivity behavior and ambiguity perception being highly
correlated and causally related. The results emphasize the role of ambiguity perception in shaping
decision behavior under ambiguity. They can can be used to better predict such behavior in different
situations. They can also be used to inform and refine models of decision-making under ambiguity
that have a descriptive goal.

The findings open the door for a couple of potentially interesting directions. For one, there seems
to be a lot of heterogeneity in ambiguity perception between subjects for a given situation. Some
subjects report high confidence in a proper probability measure, while others perceive a high de-
gree of ambiguity. A natural question to ask is whether these perceptions are purely determined by
the source of ambiguity to which different subjects respond differently or whether there are more
fundamental determinants of ambiguity perception. Combining the evidence discussed in the intro-
duction that a-insensitivity is related to cognitive function (Baillon et al., 2018a; Anantanasuwong
et al., 2020) with the findings obtained in this paper, it does seem that ambiguity perception is at

2⁸See Sargan (1958) or Hansen (1982) for earlier work from which the technique can be derived.
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least partly cognitive. What exact cognitive processes are responsible for it remains to be explored.
This is related to the question of how subjects form beliefs in situations where ambiguity is present,
which remains imperfectly understood.
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Appendix

A Additional Tables

Table A.1: OLS-Regression of Ambiguity Aversion on Perceived Ambiguity

Dependent variable:

Ambiguity Aversion Index b
(1) (2) (3) (4)

Perceived Ambiguity Index p 0.029 0.057 −0.066 −0.027
(0.067) (0.064) (0.086) (0.088)

High Ambiguity −0.071∗ −0.075∗
(0.040) (0.040)

Partition 2 0.029 0.032
(0.022) (0.022)

Perceived Ambiguity×High Ambiguity 0.192∗∗ 0.189∗∗
(0.091) (0.092)

Perceived Ambiguity×Partition 2 −0.037 −0.048
(0.049) (0.050)

Constant −0.140∗∗∗ −0.129 −0.121∗∗∗ −0.115
(0.031) (0.082) (0.034) (0.087)

Controls X X
Observations 452 452 452 452
Subjects 113 113 113 113
R2 0.001 0.037 0.011 0.047

Notes: The table displays OLS-estimates. Robust standard errors (in parentheses) are clustered at the subject level. Controls
include age, gender, final high school grade, and current subject of studies. Significance levels are ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.
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Table A.2: OLS-Regression of Order Effects

Dependent variable:

Perceived Ambiguity Index p A-Insensitivity Index a
(1) (2)

Constant (First Part) 0.338∗∗∗ 0.515∗∗∗
(0.020) (0.032)

Second Part 0.004 0.063∗∗
(0.012) (0.030)

Third Part 0.044 0.095∗∗
(0.028) (0.040)

Fourth Part 0.043 0.083∗
(0.026) (0.045)

Controls X
Subjects 113 113
R2 0.007 0.011

Notes: The table displays OLS-estimates. Robust standard errors (in parentheses) are clustered at the subject level. Controls
include age, gender, final high school grade, and current subject of studies. Significance levels are ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.
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B Additional Figures

Figure B.1: Screenshot of a choice list used to elicit a-insensitivity
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Figure B.2: Screenshot of the questions used to elicit ambiguity perception (step 1)
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Figure B.3: Screenshot of the questions used to elicit ambiguity perception (step 2)

29



Figure B.4: Histogram of the change in a-insensitivity from the Low Ambiguity to the High Ambiguity part with a bin size
of 0.1. The red dotted line represents the mean change.

Figure B.5: Histogram of the distance to uniformity measure defined in Section 4.3 with a bin size of 0.1. The red dotted
line represents the mean of the measure.
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Figure B.6: Histogram of the absolute difference between the index capturing ambiguity perception and the index captur-
ing a-insensitivity on the individual level with a bin size of 0.1. The red dotted line represents the mean absolute difference.

Figure B.7: Average value of the ambiguity aversion index for four bins of changes in perceived ambiguity. Each bin
correspond to a quartile. The corresponding cutoff values are displayed on the x-axis description. Error bars show 95%
confidence intervals.
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Figure B.8: Scatter plot of the relationships between the index capturing perceived ambiguity and ambiguity aversion.
The dots represent a combination of the two indices from a subject for each part, with the Low and High Ambiguity
parts colored differently, so each subject appears four times in the plot. Each line represents an OLS-regression of the
a-insensitivity index on the ambiguity aversion index.
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C Full Sample Results

This section replicates the main results of the paper using the full sample of 126 subjects. As with
the sample used in the main text, reported ambiguity perception p is significantly higher in the High
Ambiguity part compared to the High Ambiguity part, confirming Hypothesis 1: average ambiguity
perception increases from 0.28 to 0.44 for the first event partition, and from 0.28 to 0.45 for the second
(both p < 0.001, Wilcoxon signed-rank test). Regarding Hypothesis 2, the correlation between ∆p

and ∆a is ρ = 0.44, and for the second the coefficient is ρ = 0.44, both being significant at any
conventional level (p < 0.001), just like with the main sample.

Assessing Hypothesis 3, the direct correlations between ambiguity perception and a-insensitivity
are ρ = 0.44 for Low Ambiguity Partition 1, ρ = 0.52 for Low Ambiguity Partition 2, ρ = 0.29 for
High Ambiguity Partition 1 and ρ = 0.38 for High Ambiguity Partition 2, all significant (p < 0.001).
Pooled together, the correlation coefficient amounts to ρ = 0.45, which is fairly close to the one
reported in the main text. When applying the same measurement error correction used in Section
4.6, correlations increase to ρORIV = 0.62 for the Low Ambiguity and ρORIV = 0.44 for the High
Ambiguity part. Again, the correlations are substantial and closely resemble those reported in the
main text. Table C.1 replicates Table 3 of the main text using the full sample.

Table C.1: OLS-Regression of A-Insensitivity on Perceived Ambiguity (Full Sample)

Dependent variable:

A-Insensitivity Index a
(1) (2) (3) (4)

Perceived Ambiguity Index p 0.672∗∗∗ 0.662∗∗∗ 0.864∗∗∗ 0.849∗∗∗
(0.077) (0.077) (0.132) (0.135)

High Ambiguity 0.202∗∗∗ 0.200∗∗∗
(0.058) (0.057)

Partition 2 −0.008 −0.007
(0.037) (0.038)

Perceived Ambiguity×High Ambiguity −0.445∗∗∗ −0.432∗∗∗
(0.142) (0.140)

Perceived Ambiguity×Partition 2 0.087 0.082
(0.084) (0.085)

Constant 0.380∗∗∗ 0.423∗∗ 0.297∗∗∗ 0.348∗
(0.041) (0.201) (0.050) (0.199)

Controls X X
Observations 504 504 504 504
Subjects 126 126 126 126
R2 0.186 0.230 0.209 0.251

Notes: The table displays OLS-estimates. Robust standard errors (in parentheses) are clustered at the subject level. Controls
include age, gender, final high school grade, and current subject of studies. Significance levels are ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01

Lastly, I report the results from comparing ambiguity perception with ambiguity aversion as done
in Section 4.4 using the full sample. Pooling all parts together, the correlation is again almost exactly
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zero with ρ = −0.01. For the individual parts, correlations are ρ = −0.08 (p = 0.41, Spearman
correlation) and ρ = −0.18 (p = 0.04, Spearman correlation) for the two Low Ambiguity parts and
ρ = 0.13 (p = 0.16, Spearman correlation) and ρ = 0.09 (p = 0.32, Spearman correlation) for the
Low Ambiguity parts.

D Experimental Instructions

D.1 Introduction

Welcome to the study

Welcome and thank you for your interest in today’s online study!

For completing the study in full, you will receive 5 Euros. In this study, you will make decisions on
the computer. You can make additional money through your choices. You will receive all payments,
i.e. both the payment for your participation and any additional payments based on your decisions,
by bank transfer.

In order to participate in today’s study, you must consent to the processing of your personal data. To
do this, check the box next to "Declaration of consent". If you do not consent to the processing of
your data, you will unfortunately not be able to participate in this study.

Because the payment is made by bank transfer and therefore your bank details are required, the
data collection in this study is not carried out completely anonymously - unlike usual. Your personal
data will, of course, be treated confidentially and will not be passed on to third parties under any
circumstances. They will only be used to conduct the payment in this study. Both the data analysis
and the possible publication of the results of this study are carried out anonymously.

[Data protection form and declaration of consent]

Structure of the study and your payout

Today’s study consists of several sections. In each, you will make different decisions. The decisions
in each section may sound similar but are independent of each other. Your decisions in one section
will not affect the consequences or payouts in other sections, nor does a similar-sounding decision-
making situation necessarily imply that your decision should be similar.

From all decisions with monetary consequences that you will make today, one decision will be ran-
domly selected by a computer. The consequence of the decision will be implemented exactly as de-
scribed in the corresponding decision. Each of your decisions has the same chance of being selected.
So since one of your decisions will actually be implemented, you should think carefully about each
decision and treat each decision as if it were actually implemented.
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Please note: All decisions concern your personal assessment and preference. Therefore, there is no
"right" or "wrong" in any decision to be made. Furthermore, all statements made in the instructions
are true. In particular, all consequences of actions are carried out exactly as they are described. This
applies to all studies of the Bonn Laboratory for Experimental Economic Research (BonnEconLab)
and therefore also to this study.

Events

Your decisions in this study will revolve around specific weather events. These weather events deal
with changes in the average daytime temperature.

The average daily temperature is the average of all hourly measured air temperatures of a day and
thus describes how warm a day is on average. For the change in the average daytime temperature,
the average daytime temperature for a certain day is compared with the average daytime tempera-
ture of the previous day. If the change is positive, the day has become warmer than the previous day.
If the change is negative, the day has become colder compared to the previous day.

Example: On a day X, an average daily temperature of 20◦ C was measured. The day before, an
average daily temperature of 17◦C was measured. The change in the average daily temperature on
day X compared to the previous day is, therefore 20◦C - 17◦C = 3◦C. Day X has become 3◦C warmer
on average.

An example of a weather event that revolves around a change in the average daytime temperature
is: "The average daytime temperature on dd.mm. increases by 1◦C compared to the lecture". The
event occurs when the measured temperature on the dd.mm. is on average 1◦C higher than the
temperature on dd.mm.

D.2 Elicitation of A-Insensitivity

Your next decisions

In the next decisions in this section, you will have the choice to bet on either a weather event or
a computer-generated lottery with given probabilities. The weather event concerns changes in the
average daytime temperature in Bonn (weather station Cologne/Bonn Airport) on a certain day
compared to the previous day. As just explained, the change in the average daytime temperature
describes whether a day has become warmer or colder compared to the previous day.

Each of the choices on the next few screens consist of the following two options:

Option A

If you choose option A, you win 10 Euros if the weather event specified in the decision occurs on the
day described.
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A possible event of a decision is for example "on dd.mm. does the average daytime temperature
decrease by more than 1.8◦C". For this event to occur, the average daytime temperature in Bonn
must be on dd.mm. fall by more than 1.8◦C compared to the previous day (dd.mm). To illustrate
this with a numerical example, assume that the average daytime temperature on dd.mm is 18◦C. If
the average daytime temperature on dd.mm. drops to, for example, 15◦C, i.e. dropped by 3◦C, you
would receive 10 Euros. On the other hand, if the average daytime temperature on dd.mm. is 17◦C,
you would receive 0 Euros, since the average daytime temperature in this case has only dropped by
1◦C.

Option B

If you choose option B, you win 10 Euros with a probability of p% and receive 0 Euros with the
opposite probability (1-p)%. The probability p varies in every decision and takes values between 0
and 100. For example, with p = 60% you would have a 60 percent chance of winning 10 Euros,
while with a 40% chance you would get 0 Euros. So the higher the probability p, the higher the
chance that you will win 10 Euros. The resulting lottery is computer-generated and played out with
the respective probability.

Payment

If you choose option A, the average daily temperature measured by the German Weather Service
for the day described in the event is compared with the temperature of the previous day. It is then
checked whether the respective event has occurred and whether you have won 10 Euros as a result. If
you choose option B, a computer-generated decision is made at the same time to determine whether
you have won 10 Euros with the respective probability p%.

If you have won the prize of 10 Euros by choosing one of the two options, you will receive the 10
Euros by bank transfer (in addition to your payment for participation). Note that the timing of when
you receive the payment does not depend on your decision.

On the next screen you can see an example of the next decisions.

Automatic completion help

In order for you to have to click less, a fill-in help has been activated for all decisions of a single
decision screen. With this completion help, you can fill in the lists of decisions on a screen with just
one click of your mouse. Therefore, you don’t have to click in for each line one of the two options.

All you have to do is decide for what amount of money you want to switch from option A to option B
and choose option B in the corresponding decision. It is then assumed that you also choose option B
for all decisions on the respective screen page for which the monetary amount of option B is higher,
and choose option A for all options for which the monetary amount of option B is lower.
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Of course, you can change your decisions at any time. The best thing to do in the example below is
to click several times on different options on different lines so that you can familiarize yourself with
the mechanism.

[Example of the matching probability elicitation]

To check your understanding, please answer the following questions. You can make your decisions
on the next few screens once you have correctly answered all of the questions.

[Comprehension questions]

[Matching probability choices]

D.3 Elicitation of Ambiguity Perception

Your next decisions

The next decisions in this section are about your assessment of various weather events. These events
again relate to changes in the average daily temperature in Bonn (weather station Cologne/Bonn
Airport) on a specific day compared to the previous day. As just explained, the change in average
daytime temperature describes whether a day has become warmer or colder compared to the previ-
ous day.

You give your assessment of the weather events in two steps:

• Step 1: You give your assessment of the probability of occurrence of various weather events.

• Step 2: You give your assessment of how accurate you consider the probability of occurrence
given in the first step to be.

The two steps in detail are:

Step 1

In the first step, you will be asked for three different events how likely you think it is that a certain
temperature change will occur.

To do this, you can specify a probability as a percentage (0% - 100%) for each event. The higher
your stated probability, the more likely you think the event will occur. A probability of 0% implies
that you believe that the event will not occur under any circumstances. A 100% probability implies
that you believe the event is certain to happen.

For example, a possible event is "on dd.mm. does the average daytime temperature increases by
more than 1.8◦C". Your assessment is then about how likely you think it is that the average daytime
temperature on dd.mm. will increase by more than 1.8◦C compared to the previous day, i.e. that the
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temperature on dd.mm. will be more than 1.8◦C higher than on dd.mm.

A given probability of, for example, 0% implies that you believe that under no circumstances will
the average daily temperature increase by more than 1.8◦C compared to the previous day during the
given period. In other words, you believe that under no circumstances will the dd.mm. be warmer
than the day before. On the other hand, a probability of 90% implies that you consider it very likely
that the average daytime temperature on dd.mm. will rise by more than 1.8◦C compared to the
previous day, so the day will most likely be warmer.

Step 2

The second step relates to the probabilities you specified in the first step. You may be unsure whether
the probabilities you have specified correspond exactly to the probability with which the event will
occur. Step 2 is, therefore, about the accuracy of your stated probabilities in step 1. In this step, you
can use a slider to specify how accurate you consider the probability of occurrence given in step 1 to
be.

For example, you may find your probability statement for some events very accurate, while you are
rather uncertain about other events. Suppose you think it is rather unlikely that on dd.mm. the av-
erage daytime temperature will increase by more than 1.8◦C compared to the previous day. Because
of this, you have stated a probability of 15% in the first step. In your opinion, the probability could
just as easily be 14%, 15% or 17%. However, you are sure that the probability is not too high, for
example, not higher than 30%. You can specify this degree of accuracy in the second step.

On the next two screen pages you can see an example of how you can give your assessment in the
two steps.

[Example]

To check your understanding, please answer the following questions. You can make your assessments
on the next screen pages as soon as you have correctly answered all questions.

[Comprehension questions]

[Ambiguity perception elicitation]
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