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the do-calculus. The Neyman-Holland causal model is based on the language of potential 
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Pearl and co-authors, relies on Directed Acyclic Graphs (DAGs) and is a popular causal 

framework in computer science. We make the case that economists who uncritically use 

these approximating frameworks often discard the substantial benefits of the econometric 

causal model to the detriment of more informative economic policy analyses. We illustrate 
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1 Introduction

Good policy analysis is causal analysis. It analyzes the factors that produce outcomes and

the role of policies in doing so. It quantifies policy impacts. It elucidates the mechanisms

producing outcomes in order to understand how they operate, how they might be improved

and which, if any, alternative mechanisms might be used to generate outcomes. It uses all

available information to give good policy advice.

It systematically explores possible counterfactual worlds. It is grounded in thought ex-

periments – what might happen if determinants of outcomes are changed. In this regard,

good policy analysis is good science. Credible hypothetical worlds are developed, analyzed,

tested in real world data.

Models and thought experiments are central to economic analysis. Persons trained in

economic theory or in the natural sciences routinely use them. Statisticians and computer

scientists have recently come to grips with the causal questions that have long being inves-

tigated by economists such as Ragnar Frisch and Trygve Haavelmo. As a result, private

languages and procedures designed to approximate econometric models have been devel-

oped without any deep understanding of the corpus of econometric theory, and sometimes

reinventing portions of it.

These private languages bear the marks of their recent birth: concepts are often not

precisely defined, and the conceptually-distinct issues of definition of counterfactuals, their

identification, and their estimation are often tangled together. In some fields heavily influ-

enced by statistics, certain estimation techniques are claimed to be central to the definition

or identification of counterfactuals when, in fact, they are at best handmaidens.

The current state of a↵airs would be of little concern if applied economists continued

to draw on and extend the standard econometric model of policy evaluation. Sadly, this is

not the case. Many econometricians and applied economists now emulate what they read



in statistics or computer science journals. They have forgotten or never learned their own

field’s foundational work to the detriment of rigorous causal policy analysis.

This paper discusses econometric policy analysis and recently developed approximations

to it. Our goal is to improve the theory and practice of economic policy analysis by acquaint-

ing economists with their own rich econometric legacy and placing the recent approximations

in the context of the econometric model.

The topic is broad and our paper is necessarily brief. We discuss some main points and

illustrate them with analyses of a few prototypical economic models for addressing policy

problems. It is impossible to convey here all of the insights of rigorous econometrics developed

in the past 90 years.

This paper unfolds in the following way. We first define causality within a model. The

concept is simple, but requires thought processes outside statistics that are, nonetheless,

quite intuitive. We discuss four distinct classes of policy problems that are addressed in

econometric analyses. Some of them are either ignored or only partly addressed in the ap-

proximating literatures. We demonstrate the conceptual clarity of the econometric approach

and contrast it with that of rival approaches.

In particular, we consider two causal approaches often advocated by statisticians and

computer scientists. The first is the Neyman-Holland model (1923; 1958; 1974; 1986; 1996),

“NR” henceforward. It uses some notions developed in rigorous econometrics but goes only

part way toward implementing the full set of tools in the econometric approach to policy

evaluation. It has important limitations for posing or analyzing routine policy problems

outside a narrow “treatment-control” paradigm. We also consider an approach to coun-

terfactuals developed in computer science (“do-calculus,” Pearl, 2012), henceforth “DoC,”

that relies critically on directed acyclic graphs (DAGs–recursive models) and statistical con-

ditional independence relationships. We demonstrate its limited capacity to address many

important economic policy questions or to utilize many standard econometric estimation and

identification tools.
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Each of the approximating approaches has value for limited classes of problems. However,

they have severe limitations when applied to the large array of problem economists routinely

confront. The danger is that sole reliance on these tools eliminates serious consideration of

important policy questions. The NR approach does not readily incorporate unobservables

and restrictions on empirical relationships produced by economic theory that are important

components of the econometric toolkit. Social interactions, peer e↵ects, and general equilib-

rium theory fall outside its purview and are currently considered frontier-topics. They are

all standard problems addressed in structural econometrics.

The DoC approach also cannot deal with the functional restrictions and covariance in-

formation routinely used in econometrics. It cannot accommodate assumptions such as

monotonicity and the separability restrictions that are essential components of the modern

instrumental variable analysis. The prototypical Generalized Roy model cannot be identi-

fied with do-calculus, although it, and more general models, can be identified using standard

econometric tools.

Each approximating approach has important conceptual and operational limitations com-

pared to the econometric approach. We display the versatility and adaptability of the econo-

metric approach and the limitations of the approximations.

This paper is organized as following. Section 2 discusses the notion of causality and

the tasks of causal inference. Section 3 presents the econometric model. Section 4 shows its

versatility and describes various identification approaches in the Generalized Roy model. Sec-

tion 5 examines how the Neyman-Rubin causal model approximates the econometric model.

Section 6 investigates how the do-calculus of Pearl (2009b) approximates the econometric

model. Section 7 examines non-recursive models. Section 8 summarizes the paper.
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2 Causality as a Thought Experiment

A formal definition of causality relies on a modification of the same thought process used to

define relationships mapping inputs X, that may contain unobserved terms, to outcomes Y

using a stable map g:

g : X ! Y over the domain of X
�
Dom(X)

�
. (1)

A map is stable if changing its arguments over the domain of X preserves the map. Another

way to express this is Y = g(X), where g may be a multi-valued correspondence.

An elementary version of (1) is:

Y = ↵ + �X, (2)

In this example, stability means that ↵ and � don’t change when X or a component of

it is changed. This is what is meant by invariance or autonomy of relationships (Frisch,

1938). It is a cornerstone of causal analysis.1 However, more than stability of maps is

required. Directionality is central. Inverting a map (when possible) may produce a stable

relationship, but it is, in general, not causal. Standard examples of (1) and (2) in economics

are production functions or demand equations.

The range of Y is a set of potential outcomes associated with X over its domain. g

may be a function or a correspondence.3 Potential outcomes associated with di↵erent values

of X are counterfactuals associated with X. The key idea in causality is the notion captured

in Alfred Marshall’s phrase, “ceteris paribus” –all other else is equal.4 Comparisons of Y

for di↵erent values of X – all other factors the same – are defined as causal e↵ects . They

are conceptual thought experiments. This definition is used explicitly in the econometric

approach regardless of what is observed, the statistical properties of X and Y , the specifi-

cation of functional forms for g, or how X is manipulated in any thought experiment. The

12 The do-calculus explicitly uses autonomous structural relationships (Pearl, 2009b).
3Multiple equilibria are produced in many econometric models. See, e.g., Mas-Colell et al. (1995).
4Marshall (1961)
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Generalized Roy model (1951) is an early example of a model of two potential outcomes

associated with the income the same person would earn in di↵erent jobs.

Issues of identification and estimation are important for making the concept of causality

empirically operational, but not for defining it. However, these auxiliary issues are some-

times assumed to be paramount in defining casuality in the recent approximating literatures.

For example, in an early version of the Neyman-Rubin model, Holland (1986) insists that

causal e↵ects are only defined for experimental manipulations of X. Issues of definition and

estimation are fruitfully distinguished and are the hallmark of the econometric approach.

To make our discussion more concrete, an example from the standard toolkit of empirical

economics is helpful.

2.1 Regression: Conditional Expectation or Thought Experi-

ment?

Consider the standard workhorse of empirical economics.5 Anticipating empirical applica-

tions, we add the distinction between observed and unobserved variables that is strictly not

required for the definition of causal parameters. Consider the regression of Y on T where

(Y, T ) are observed and U denotes an unobserved (by the analyst) variable:

Y = T� + U. (3)

In terms of (1), X = (T, U). If X is a vector of all possible causes of Y , (1) is an all

causes model and accommodates stochastic shocks. Coupled with stability, such a model

is convenient for transporting (1) to environments where di↵erent levels of T are at play

(forecasting) or in combining and summarizing evidence from di↵erent studies where T varies

(research synthesis).

A major source of confusion about causal models is that (3) is often defined by statis-

ticians as a model for describing the statistical relationship between Y and T (see e.g.,

5See Haavelmo (1943) for an early discussion of this distinction.
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Holland, 1997; Pratt and Schlaifer, 1984). Doing so uses standard statistical tools to estab-

lish an empirical relationship. Note that if conditional expectations exist, E(Y | T = t) =

t� +E(U | T = t). In this approach, the statistical model could also be equivalently defined

as U = Y � T�.

The empirical association between T and Y operates through two channels: � and

E(U | T = t) unless T is mean independent of U . Notice too that this example introduces

considerations about the properties of random variables that are unnecessary for defining

causality.

2.2 Thought Experiments

Another way to interpret Y = T� + U is to hypothetically vary T and U : (T, U) ! Y

via Y = T� + U . This is not a statistical operation and lies outside standard statistics.6

Economists (and other scientists) use hypothetical models (thought experiments) to analyze

phenomena and explore possible relationships. These and other possible relationships are

not defined by statistical operations, although they are estimated using statistical methods.

To clarify these ideas, it is helpful to introduce ✏V , ✏T , ✏U which are unobserved (by the

analyst) and mutually statistically independent random variables. They are external to the

model (exogeneous) and are not caused by T , U or Y .

Example 2.1. Consider four di↵erent possible causal models – all thought experiments:

Causal Model 1 Causal Model 2 Causal Model 3 Causal Model 4

T = fT (✏T ) T = fT (✏T , ✏V ) T = fT (✏T , U) T = fT (✏T )

U = fU (✏U ) U = fU (✏U , ✏V ) U = fU (✏U ) U = fU (✏U , T )

Y = T� + U Y = T� + U Y = T� + U Y = T� + U

In the first causal model, T does not cause U , nor does U cause T . Parameter � is the

causal e↵ect of varying T on Y for a fixed value of U . Variables T and U are statistically

6For an example of how confusing this concept is to statisticians, see Pratt and Schlaifer (1984) and
Holland (1997). Holland’s confusion is significant given that he was the person who formalized the “Rubin
model” (1986).
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independent and the parameter � can be consistently estimated by OLS. In the second causal

model, T does not cause U , nor does U cause T . Parameter � is still the causal e↵ect of T

on Y . However, T and U are not statistically independent because they share a common

confounding variable ✏V and the OLS estimator of � is biased. This model is sometimes

called a ‘common cause” model with ✏V being a common cause of T and U . The third causal

model di↵ers from the second model because U causes T . Nevertheless, the causal e↵ect

of T on Y remains �. The second and third models are statistically identical in the sense

that T and U are not statistically independent and the OLS estimator is biased. The third

model imposes a restriction on the variation in U . In the fourth model, T causes U and the

OLS estimator of the parameter � does not, in general, identify the causal e↵ect of T on Y

because T also a↵ects U . The OLS estimator of � captures both direct and indirect e↵ects

of T on Y. Let Y (✏) = t� + U be the counterfactual outcome Y when T is external set to

value t.7

Using the standard regression model as a starting point blurs the logic of this thought

process. Econometrics textbooks commonly introduce causality in the context of the linear

model (3). In this approach, the identification of causal e↵ects is often reduced to a statistical

property of the econometric model, namely, that causal e↵ects can be assessed when variables

T and U are uncorrelated. It gives rise to the practice of defining causal e↵ects as conditional

probability statements instead of statements about fixing variables in a thought experiment.

In fact, OLS is based on statistical assumptions that are void of any causal interpretation.

The OLS fitted value for the outcome Y conditioning on T = t evaluates the conditional

expectation E(Y | T = t) instead of the counterfactual expectation E(Y (t) | T = t), where

Y (t) is the value of Y when T is externally set to a value t. The causal content of the

OLS model arises only when we invoke concepts such as fixing and counterfactuals. These

concepts do not belong to the standard statistical toolkit. Whether or not we can identify

� in a sample is an entirely separate question from defining the causal impact of T on Y .

7Y (t) ?? T |U holds for the third model but not for the second model.
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Frisch, the founding father of modern econometric causal policy analysis, clearly under-

stood that causality is an exercise of abstract thought, and that “Causality is in the Mind”:

“. . . we think of a cause as something imperative which exists in the exterior world.
In my opinion this is fundamentally wrong. If we strip the word cause of its animistic
mystery, and leave only the part that science can accept, nothing is left except a certain way
of thinking. [T]he scientific . . . problem of causality is essentially a problem regarding our
way of thinking, not a problem regarding the nature of the exterior world.” — Frisch
(1930), p. 36

2.3 The Econometric Approach to Causality

The econometric approach to causality develops explicit hypothetical models where inputs

that cause outcomes. A common context is the study of policy evaluations in which eco-

nomic agents choose treatments that a↵ect economic outcomes of interest. “Treatments”

are inputs (the T ) which need not be restricted to binary or discrete valued variables. The

the mechanisms governing the choice of inputs is central to study the causal e↵ect of treat-

ment on the outcome. Identification/estimation/interpretation of empirical counterparts to

the hypothetical counterfactuals require careful accounting for unobserved (by the analyst)

variables (U) that cause both input choice and outcomes. Structural econometric models do

just that.8

2.4 Four Distinct Policy Questions

The econometric approach to causality distinguishes four distinct classes of policy problems

and addresses each of them, sometimes in the same analysis.9

P1 Evaluating the impacts of implemented interventions on outcomes in a given environ-
ment, including their impacts in terms of the well-being of the treated and society at

8Caricatures sometimes made in the approximating literatures that the choices of inputs T involve highly
stylized rational choice models or perfect information are false (see, e.g., Morgan and Winship, 2015). Some
hypothetical models might maintain those assumptions, but such assumptions are in no way essential to the
enterprise.

9See Heckman (2008a).
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large. The simplest forms of this problem are typically addressed in the approximation
literatures: does a program in place “work” in terms of policy impacts?

The approximating literatures addressing P1 identify and estimate treatment e↵ects

(most often average treatment e↵ects) without investigating how they arise or whether

alternative programs might be better or even what “better” means. In terms of our

example, it seeks to know the sign and magnitude of �. However, most policy analysts

seek greater generality for their findings. This leads to problem P2.

P2 Understanding the mechanisms producing treatment e↵ects and policy outcomes.

This asks the analyst to investigate the causes of e↵ects and is a central task of eco-

nomic theory and policy analysis.10 It embeds (3) in a model that explains how T

operates (i.e., which factors explain the Y �T relationship). It goes beyond the coarse

description of “treatment” T to explicate the factors that produce Y . It links with

P3 and P4 below to consider how alternative mechanisms generate observed outcomes

and can be used to forecast policies going forward, or explain the findings of any given

study in a particular environment.

P3 Forecasting the impacts (constructing counterfactual states) of interventions imple-
mented under one environment when the intervention is applied to other environments,
including their impacts in terms of well-being.

This goes beyond P2 to interpret why outputs vary among environments. It replaces

crude meta-analysis of treatment e↵ects with principled explanations of mechanisms

and their impacts and extrapolations of di↵erent answers to P1.11 A common struc-

tural model is a useful vehicle for summarizing evidence from multiple studies.12 Fore-

casting in new environments is a traditional problem in econometrics (see, e.g., Theil,

10Holland (1986) features the narrow goal of investigating the “e↵ects of causes” in his definition of the
Neyman-Rubin model.

11Recent work in computer science has begun to reinvent the logic of econometric forecasting using its own
colorful private language but without any fresh insights or acknowledgement of a large body of econometric
thought (see, e.g., Bareinboim and Pearl, 2016).

12See, e.g., Bursztyn and Yang (2021) or Nerlove (1967).
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1958; Hamilton, 2000; Chatfield, 2000). However, the truly ambitious problem solved

by policy analysts is P4.

P4 Forecasting the impacts of interventions (constructing counterfactual states associated
with interventions) never previously implemented to various environments, including
their impacts in terms of well-being.

This is a fundamental challenge addressed in econometric policy analysis. This problem

motivated the creation of econometric causal models.13

The original impetus for the econometric approach was to conduct policy analysis for the

post-World War II era using models fit on pre-World War II, Depression-era data. Econo-

metric policy analysis is the vehicle for framing and addressing the likely impacts of new

policies and new environments, never previously experienced. Marschak (1953) provides an

insightful discussion of this task in the context of forecasting the impact of new economic

policies using data collected in environments where the policies were not in place.14 The

famous “critique” of Lucas (1976) updates Marschak’s analysis to stochastic environments.

McFadden (1974) is a Nobel Prize winning example of how a leading economist met this

challenge in forecasting the demand for a new transportation system in the San Francisco

Bay area.

The econometric approach distinguishes three tasks of econometric causal policy analysis

that are often conflated in the approximating literatures:

13See Frisch (1930, 1933, 1938) and Tinbergen (1930).
14Knight (1921) succinctly states the problem and its solution in his enigmatic remark, “the existence of a

problem of knowledge depends on the future being di↵erent from the past, while the possibility of a solution of
the problem depends on the future being like the past.” Knight meant that analysts use ingredients estimated
on historical data to construct forecasts of the unknown. This is a task that involves judgements and insights
beyond straight applications of fitted statistical models.
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Table 1: Three Distinct Tasks in Causal Policy Analysis

Task Description Requirements Types of
Analysis

1: Model Creation Defining the class of
hypotheticals or
counterfactuals by thought
experiments (models)

A scientific theory: A
purely mental activity

Outside
Statistics;
Hypothetical
Worlds

2: Identification Identifying causal
parameters from
hypothetical population

Mathematical analysis
of point or set
identification; this is a
purely mental activity

Probability
Theory

3: Estimation Estimating parameters
from real data

Estimation and testing
theory

Statistical
Analysis

Our regression example illustrates these distinctions. The models for counterfactuals do not

require any statistical analysis. Identification is a separate issue required to recover � from

large samples where statistical variation is not an issue. Estimation considers how to recover

it in practice. Trygve Haavelmo, a student of Frisch, developed an empirically operational

econometric framework for causal policy analysis that distinguished these three tasks (1943;

1944). We now state the econometric model formally using the modern notation of graph

theory.

3 Econometric Causal Models

Econometric causal models are flexible frameworks that can be used to address a variety

economic policy problems that cannot be naturally squeezed into “treatment-control” frame-

works. They go well beyond the narrow treatment e↵ect literature to address the following

topics listed in Table 2:
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Table 2: Problems Addressed by Econometrics

(a) Investigate the causes of e↵ects, not just the e↵ects of causes – the goal of
the treatment e↵ect literature announced by Holland (1986) in defining the
“Rubin model;”

(b) Interpret empirical relationships within economic choice frameworks;

(c) Analyze data using a priori information from theory and/or previous studies
going beyond crude statistical meta-analyses;

(d) Account systematically for shocks, errors by agents, and measurement errors;

(e) Analyze dynamic models;

(f) Accommodate multiple approaches to identification beyond randomization in-
strumental variables, and matching that exploit restrictions within and across
equations on causal relationships produced by economic theory;

(g) Exploit covariance restrictions across unobservables within and across equa-
tions to identify causal parameters;

(h) Make forecasts in new environments;

(i) Synthesize evidence across studies using common conceptual frameworks;

(j) Make forecasts of new policies never previously implemented; and

(k) Analyze the interactions across agents within markets and also within social
settings (general equilibrium and peer e↵ects).

The approximating approaches address subsets of these problems using limited toolkits.

The approximating approaches were developed to address specialized classes of problems

– usually those in problem class P1. They may be very e↵ective for analyzing the e↵ects

of causes using a limited set of tools. These studies typically focus on identifying average

treatment e↵ects or treatment on the treated. They embody Marschak’s Maxim (Heckman,

2008a) that, for certain narrowly focused problems, specialized versions of the econometric

approach may be highly e↵ective. One need not necessarily implement more general models

that address a wider set of questions to address specific problems. However, they are by
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design, of limited value in addressing those wider problems. We now exposit the econometric

causal model in depth.

3.1 Econometric Causal Framework

Heckman and Pinto (2015) develop a causal framework that formalizes Frisch’s insight that

causality is in the mind and places Havelmo’s approach (1943; 1944) in the framework of

more recent policy evaluation models. They distinguish an empirical model that gener-

ates the observed data from a hypothetical model hypothetical model that formalizes the

thought experiments of manipulating inputs that defining causality. The empirical model

describes the data generating process, which di↵ers from the hypothetical model which is

an abstract model that characterizes Frish’s notion of causality. They place the definition

and operationalization of causality in a probabilistically consistent approach that does not

require special rules or procedures invented to characterize causality used in portions of the

approximating literature. Some notation is useful in describing the framework.

A causal model M is described as a system of structural equations like (1) that charac-

terizes the mapping M : T ! P(T ) between a set of variables T and its power set P(T ).

Elements in T are random variables or random vectors that may be observed or unobserved

by the analyst. It is convenient to define the set E = {✏K ;K 2 T } which contains an error

term ✏K for each K 2 T . Error term ✏K shares the same dimension as K. This term is

defined even if there are additional unobserved variables. They are technical assumptions

designed to avoid degenerate random variables.

The structural equation for a variable K 2 T is an autonomous function denoted by

fK : (M(K), ✏K) ! R|K|. Variables in M(K) are said to directly cause K. In recursive

formulations, a variable cannot directly cause itself, that is, K /2 M(K) for all K 2 T . We

relax recursivity in a later section, where we discuss simultaneous equation models where

sets of variables are jointly determined.
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Error terms are externally-specified (or exogenous). This means that error terms are not

caused by any variable in T . A variable T not caused by any variable, soM(T ) = ?, is called

external. In this case, its structural function is given by T = fT (✏T ). We impose, without

loss of generality, that error terms are mutually statistically independent.15 All variables are

defined on a common probability space (I,F , P ).

We use Te, Ee,Me, Pe, Ee for the variable set, error terms, causal model, probability, and

expectation of the empirical model. We use Th, Eh, Mh, Ph, Eh for their counterparts in the

hypothetical model.

The Generalized Roy Model

We use the Generalized Roy model as our leading example of a structural model. It is a

cornerstone of the literature of policy evaluation.16 The original Roy model of counterfactuals

(1951) analyzed earnings inequality in two sectors of the economy. All persons have two

potential incomes: Y (0) in Sector 0 and Y (1) in Sector 1. Agents choose sectors based on

their perceived net benefit I. In the simplest case, the benefit is the income gain I = Y (1)�

Y (0). More general models allow for costs, like tuition, migration costs, and psychic costs of

participation. Potential incomes (Y (0), Y (1)) depend on observed variablesX while benefit I

may depend onX and an externally specified variable Z, which may be a policy variables that

influences participation costs. The agent’s choice of sector is given by T = 1[I(X,Z) > 0].

The model has been generalized to analyze multiple sectors and dynamic discrete choices

(see Abbring and Heckman, 2007; Heckman and Vytlacil, 2007a,b).

The individual level treatment e↵ect is Y (1) � Y (0). The evaluation problem arises

because for each person we observe either Y (0) or Y (1), but not both. We observe Y (1) if

T = 1 and Y (0) if T = 0, namely Y = T · Y (1) + (1 � T ) · Y (0).17 The typical solution

15The independence among error terms comes without loss of generality as any dependence structure could
be modeled via other unobserved variables in T .

16See, e.g., Heckman and Taber (2008); Heckman and Vytlacil (2007a,b).
17This switching regression relationship was first used by Quandt (1958). See also Quandt (1988).
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is to reformulate the problem at the population level rather than at the individual level.

A common parameter of interest is the average treatment e↵ect ATE = E(Y (1) � Y (0))

which is the mean treatment e↵ect across all agents. More generally, we seek to identify the

probability distribution of the counterfactual outcomes Y (t); t 2 {0, 1}.

The early Generalized Roy model has been generalized and extended in many ways.18

The model is systematically ignored in the approximating literatures, despite its intellectual

priority and relevance.19 The Generalized Roy model allows the agent’s decision to depend

on unobserved variables V that account for subjective evaluation of the benefits of each

choice (so it a↵ects I) and to allow for multiple choices (see Heckman and Pinto, 2018;

Heckman and Vytlacil, 2007a,b).

The Generalized Roy model consists of four variables Te = {Z, V, T, Y }. Z is an external

policy vector that causes the treatment T , which in turn causes an outcome Y . Z plays the

role of an instrumental variable. It causes Y only through its e↵ects on T . V is an external

set of confounding variables that jointly cause T and Y . Variables Z, T , Y are observed

by the analyst; V is not. V is a source of selection bias in treatment choice, which makes

evaluation of the causal e↵ect of T on Y more di�cult. The observed relationship between

T and Y may be due to the common e↵ect of V on both T , Y instead of the causal e↵ect

of T on Y . For now, we suppress the X variables for the sake of notational simplicity. We

reintroduce such variables when relevant to our discussion.

The Roy model can be represented by the mappingM(Z) =M(V ) = ?,M(T ) = {V, Z},

M(Y ) = {V, T}, which imply the following structural equations:

V = fV (✏V ), (4)

Z = fZ(✏Z), (5)

T = fT (Z, V, ✏T ), (6)

18For instance, Heckman and Vytlacil (2007a) investigate multiple variations of the original model, Heck-
man et al. (2008) extend the model for ordered choice models and Heckman and Pinto (2018) and Lee
and Salanié (2018) investigate the case of unordered multiple choice models with multi-valued treatments.
Abbring and Heckman (2007) consider dynamic discrete choice models in this framework.

19See e.g., Holland (1986); Imbens and Rubin (2015); Pearl (2009b, 2012); Rubin (1974, 1978).
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Y = fY (T, V, ✏Y ). (7)

The independence of error terms ✏V , ✏Z , ✏T , ✏Y implies that Z ?? V and Y ?? Z |

(T, V ) hold where “??” denotes independence. This model is recursive. We consider fully

simultaneous models in a later section. The theory of Bayesian Networks o↵ers useful tools

for investigating the statistical properties of recursive causal models.20

We now describe some basic concepts used in that literature that underly the do-calculus

and link Pearl’s approach and the theory of Bayesian meta-analysis (Spiegelhalter et al.,

1993) to the structural economics literature. M(K) are called parents of a variable K 2 T .

Parents of K’s parents are M2(K) = [W2M(K)M(W ). Ancestors of K include all higher

order parental variables that lead to K, A(K) = [N
n=1M

n(K) for N such that MN(K)

contains only external variables.

The variables directly caused by K are called children of K, Ch(K) = {W 2 T such

that K 2 M(W )}. The second order of children of K are Ch2(K) = [W2Ch(K)Ch(W ).

Descendants of K include all the higher order children traced to K, D(K) = [N
n=1Ch

n(K)

for N such that ChN+1(K) ⇢ [N
n=1Ch

n(K).

In this notation, the Generalized Roy model is a recursive (acyclic) model in which no

variable is a descendant of itself, namely K /2 D(K) for each K 2 T . As we show below,

causality does not require recursivity.

A useful property of recursive models is the Local Markov Condition (Kiiveri et al., 1984;

Pearl, 1988). It states that a variable K is independent of its non-descendants conditional

20See Lauritzen (1996).
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on its parents:21

LMC: K ?? {T \D(K)} |M(K). (8)

For example, the outcome Y in the Generlized Roy model (4)–(7) has no descendants and

its parents are Me(Y ) = {V, T}. The LMC for Y is thus Y ?? Z | (T, V ). Z has no parents

and its descendants are T , Y . Thus, its LMC is Z ?? V . In the literature outside economics,

these recursive features are viewed by some as essential to the definition of causality when,

as we show, they are not.

Formalizing Frisch’s Insight

Frisch’s statement that “Causality is in the Mind” means that the causal analysis of treat-

ment T relies on a thought experiment that exogenously assigns values to the treatment

variable. This hypothetical manipulation of T a↵ects only the variables caused by T . Specif-

ically, changing T a↵ects its descendant Y but not its ancestors V , Z.

Frisch’s thought experiment is conceptually simple. However, it is a causal operation

outside the scope of statistical theory. In statistics, random variables are fully characterized

by their joint distributions. This information by itself is insu�cient for causal analysis as

it lacks directionality – a central feature of causal models. Frisch’s thought experiment

uses additional information on causal direction when it partitions the variables studied into

those caused by T and those that are not. In particular, assigning values to T di↵ers from

conditioning on T because conditioning changes the distribution of Z, V , whereas fixing T

does not.
21Additional independence relationships may be generated by the Graphoid Axioms of Dawid (1979).

These consist of five rules that apply for any disjoint sets of variables X,W,Z, Y ✓ T :

(A) Symmetry: X ?? Y | Z ) Y ?? X | Z.
(B) Decomposition: X ?? (W,Y ) | Z ) X ?? Y | Z.
(C) Weak Union: X ?? (W,Y ) | Z ) X ?? Y | (W,Z).

(D) Contraction: X ?? W | (Y, Z) and X ?? Y | Z ) X ?? (W,Y ) | Z.
(E) Intersection: X ?? W | (Y, Z) and X ?? Y | (W,Z) ) X ?? (W,Y ) | Z.
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Frisch’s thought experiment can be formalized and cast into a rigorous probability frame-

work by a hypothetical model that adds an externally-specified hypothetical variable T̃ which

causes the children of T (instead of T itself). The hypothetical modelMh has the same equa-

tions and the same distributions of error terms of the empirical modelMe. It di↵ers from the

empirical model by appending a hypothetical variable T̃ which replaces the T -input of vari-

ables directly caused by T . Notationally, we have that Th = Te [ {T̃} such that Mh(T̃ ) = ?

and for each K 2 T we have that Mh(K) = {T̃} [ {Me(K) \ {T}} if K 2 Che(T ) and

Mh(K) = Me(K) otherwise. Table 3 represents the empirical Generalized Roy model and

its hypothetical counterpart as DAGs (Directed acyclic graphs). Causal relationships are de-

scribed by directed arrows, circles denote unobserved (by the analyst) variables, and squares

denote observed variables. Below each DAG, we present the LMC for each variable of each

model.

Table 3: Generalized Roy Model: Empirical and Hypothetical Causal Models

Empirical Model Hypothetical Model

V

T YZ

V

T YZ T̃

LMC LMC
V : V ?? Z V ?? (Z, T̃ )
Z : Z ?? V Z ?? (V, Y, T̃ )
T : T ?? ? | (Z, V ) T ?? (T̃ , Y ) | (Z, V )
Y : Y ?? Z | (T, V ) Y ?? (Z, T ) | (T̃ , V )
T̃ : (not defined for the model) T̃ ?? (T, V, Z)

The hypothetical variable T̃ is external. Therefore it has no parents. According to (8),

the hypothetical variable T̃ is independent of all its non-descendants, and, in particular,

T̃ ?? T always holds. The hypothetical model is defined by a thought experiment, whereas

the empirical model is the data-generated process. The hypothetical model breaks the direct

T ! Y link and replaces it with a T̃ ! Y link.
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Counterfactuals are generated by hypothetical (external) manipulations of treatments.

These are produced in the hypothetical model by conditioning on the hypothetical variable

T̃ . For instance, the distribution of the counterfactual outcome Y when the treatment is

externally set to a value t 2 supp(T ) is Ph(Y | T̃ = t) and the counterfactual outcome mean

is given by Eh(Y | T̃ = t). These are in contrast to the empirical counterparts Pe(Y | T = t)

and Ee(Y | T = t).

Treatment e↵ects are often (but not inevitably) defined at the population level by ex-

pected values of counterfactual di↵erences. To fix ideas, suppose that T is a binary variable

that indicates college graduation and Y denotes adulthood income. The average treatment

e↵ect of college on income is given by ATE = Eh(Y | T̃ = 1)�Eh(Y | T̃ = 0). Treatment-on-

the-treated (TOT ) is the average causal e↵ect of college on income by those who choose to go

to college (T = 1), which is given by TOT = Eh(Y | T̃ = 1, T = 1)� Eh(Y | T̃ = 0, T = 1).

The hypothetical model describes an external manipulation that entails several causal

parameters. In the example, of the Generalized Roy model, we focus on an external variation

of the treatment variable T that causes a single variable, the outcome Y . The model is

suitable for investigating counterfactual distributions and forming ATE, TT, and several

other causal parameters. The hypothetical variable can also be used in empirical models

where the treatment directly causes multiple variables. The hypothetical model can be used

to investigate all causal links of a treatment variable or a subset of these links conditioned

on various populations.

Alternative Counterfactual Approaches

Counterfactual analysis modifies the original empirical model to characterise the causal op-

eration of external manipulation. Such modification are often a source of confusion as they

do not follow from any standard statistical tool. This is why causal analysis can be so

challenging for people trained exclusively in statistics. Using the hypothetical model is just

one of several approaches that supplement statistical theory in an e↵ort to assess causality.
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We describe two additional approaches that can be used to define counterfactuals: the fixing

operator and the do-operator of Pearl (2012). Both fix and do operators formalize the notion

of counterfactuals by suppressing some aspect of the original empirical model.

The fix operator is commonly used in economics (Heckman and Pinto, 2015). It is

implicit in Haavelmo’s pioneering paper (1943). It defines counterfactuals by deleting the

causal link between treatment T and its children. In the empirical model of equations (4)–

(7), the counterfactual outcome Y (t) is obtained by fixing the T -argument of the outcome

equation (7) to a value t 2 supp(T ), so that Y (t) = fY (t, V, ✏Y ). There is no direct empirical

counterpart to this concept without further analysis. Fixing does not eliminate the structural

equation for treatment variable T . It only modifies the outcome equation by replacing the

random variable T by a fixed treatment value t 2 supp(T ). Thus the variable T is still

present in the causal model when fixing is applied.

The do-operator of Pearl (2009b, 2012) resembles fixing in the sense that it replaces

all the T -inputs of the structural equations for all the variables directly caused by T. The

do-operator di↵ers from fixing by deleting (“shutting down”) the structural equation for

treatment variable T (Pearl, 2012).

Neither fix nor the do operator are well-defined in statistics. They di↵er from statistical

conditioning because conditioning on T = t would, in general, change the distribution of all

model variables (i.e. V, Y and Z) in the empirical model while fixing or doing T to a value

t does not change the distribution of its ancestors V , Z.

Table 4 compares the di↵erent approaches for generating counterfactuals for the Gener-

alized Roy model. The first column presents the original empirical model. The second and

third columns present the models generated by the fix and the do operators respectively.

The last column presents the hypothetical model.

The first panel of the table displays the structural equations for each model. The empirical

model is our benchmark. The fix and do operators can be understood as sub-models that
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remove some elements of the empirical model. The fix operator replaces the T -input of

the outcome equation by a value t 2 supp(T ). It has the same number of variables as

the empirical model, but (counterfactually) evaluates them for a fixed value of T . The do-

operator suppresses (“shuts down”) the treatment equations altogether. It eliminates the

treatment variable. The hypothetical model adds the hypothetical variable T̃ , which replaces

the T -input of the outcome equation.

The second panel displays the DAGs for each model. The first column displays the DAG

for the empirical model. The DAG for the fix operator (second column) removes the arrow

that arises from T into Y . Otherwise stated, the fix operator breaks the causal link of the

treatment variable but maintains all of the variables of the empirical model. The do operator

excludes the variable T . Its DAG suppresses all arrows arriving into or out of T . This is why

the commonplace concept of “treatment on the treated” is so challenging for the do-calculus

and requires special manipulations.22 The DAG of the hypothetical model is similar to the

DAG for the fix operator. It also breaks the causal link arising from T by replacing the

treatment T by the hypothetical variable T̃ .

The third panel presents the LMC of each of the model variables. The independence

conditions depend on the variables in each counterfactual model. The outcome LMC of

fixing model generates the following independence relationship:

Y (t) ?? T | V. (9)

This is sometimes called a matching condition. It states that the counterfactual outcome

Y (t) is independent of the treatment variable T conditional on the confounding variable V .

The corresponding matching condition for the hypothetical model is:

Y ?? T | (T̃ , V ). (10)

Matching conditions (9) and (10) are equivalent. They play primary roles in devising methods

to identify treatment e↵ects.

22See Shpitser and Pearl (2009).
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The do operator eliminates the treatment T from the set of model variables. It does

not generates a matching condition like that in (9) or (10). Instead, Pearl (2009b) develops

a DAG criteria to check for analogs to matching conditions in the empirical model. In

the language of the do-calculus, matching conditions (9)–(10) are described by the private

language “V d-separates Y and T .” The elimination of the treatment T from the analysis

does not permit researchers to investigate parameters such as the TOT because the treatment

e↵ect is conditioned on the values of the treatment. Shpitser and Pearl (2009) solve this

problem by supplementing the counterfactual model with additional special structure.

The last panel of the table presents the factorization of the joint distribution of the model

variables. We use Pe for the probability distribution of the empirical model, Pe⇤ for the model

generated by the fix operator, Pe† for the do operator and Ph for the hypothetical model.

The factorizations di↵er according to the number of variables in each counterfactual model.

All models share the same distributions of error terms. Consequently, the joint distri-

bution of the ancestors of T , that is (V, Z), is the same across all models. The distribution

of the counterfactual outcome Y (t) depends only on V and ✏Y . Therefore, the distribution

of the counterfactual outcomes is the same regardless of whether we use the fix or the do

operator.

One benefit of the hypothetical model is that is enables analysts to use probability to

converse with causality without introducing new (and unnecessary) concepts. It translates

the probabilistically ill-defined causal operations of fixing or doing into standard statistical

conditioning. Formally, for any set K of non-descendant variables of T̃ and any variable Y

that is a descendant of T̃ in the hypothetical model, we have that:
⇣
Y | T̃ = t,K

⌘

Mh

d
=
⇣
Y (t) | K

⌘

Me⇤
and

⇣
Y | T̃ = t,

�
K \ {T}

 ⌘

Mh

d
=
⇣
Y (t) |

�
K \ {T}

 ⌘

M
e†

(11)

where
�
Y | T̃ = t,K

�
Mh

denotes the variable Y conditional on K and on the event T̃ = t

in the hypothetical model,
�
Y (t) | K

�
Me⇤

and
�
Y (t) | K

�
M

e†
denote the counterfactual

25



outcome under fixing and doing respectively. In particular, we have that
�
Y | T̃ = t

�
Mh

d
=

�
Y (t)

�
Me⇤

d
=
�
Y (t)

�
M

e†
.

Even though all the models share many common concepts, they di↵er greatly regarding

the machinery used to identify causal e↵ects.

Identification of Counterfactual Outcomes

We now move to Task 2 in Table 1. Counterfactuals are said to be identified if they can

be expressed in terms of the probability distributions of the observed data generated by

the empirical model. Thus identification requires the analyst to connect the probability

distribution of the hypothetical model with the probability distributions of the empirical

model. A connection between empirical and hypothetical models is made if we can justify the

following criteria: for any disjoint set of variables Y,W in T and any subsetsA,A0 ⇢ supp(T )

we have that:23

Y?? eT | (T,W ))Ph

⇣
Y | eT 2A, T 2A0

,W

⌘
=Ph(Y | T 2A0

,W )=Pe(Y | T 2A0
,W ). (12)

Y??T | (eT ,W ))Ph

⇣
Y | eT 2A, T 2A0

,W

⌘
=Ph(Y | eT 2A,W )=Pe(Y | T 2 A,W ). (13)

Equations (12)-(13) state that we can move from the hypothetical model to the empirical

model whenever the independence relationships (12): Y ?? eT | (T,W ) or (13): Y ??

T | (eT ,W ) apply. The relationships are symmetric in the roles played by T and T̃ . While

Y ?? eT | (T,W ) is an independence relationship between some variable Y and eT conditioned

on T, the independence Y ?? eT | (T,W ) is an independence relationship between Y and T

conditioned on eT .

Equations (12)-(13) are useful for describing the intuitive properties of the hypothetical

model. Since the hypothetical variable eT is externally specified and independent of all its

non-descendants, which include the treatment T , K ?? eT | T holds for any variable K not

caused by T̃ . According to (13), we have that for Ph(K | T 2 A0) = Pe(K | T 2 A0) and

23See Heckman and Pinto (2015) for a proof.
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for A0 = supp(T ) we have that Ph(K) = Pe(K). In other words, hypothetical variation of

treatment does not change the distribution of its non-descendants.

Consider the hypothetical Roy model of Table 3. The LMC of Y generates the indepen-

dence relationship Y ?? T | (T̃ , V ). Variable V is a matching variable. Conditioning on it

generates the useful relation:

Ph(Y | eT = t, V ) = Pe⇤(Y (t) | V ) = Pe(Y | T = t, V ). (14)

The first equality is justified by (11). It relates conditioning in the hypothetical model to

fixing in the empirical model. The second equality is justfied by (13). If Y ?? T | (T̃ , V )

holds, we can access the counterfactual outcome by conditioning on V. Otherwise stated,

if the confounding variable V were observed and we could condition on it, we would be

able to evaluate the counterfactual outcome. Moreover, V is not a descendant of T̃ , which

implies that Ph(V ) = Pe(V ). Thus if V were observed, the probability distribution of the

counterfactual Ph(Y | T̃ = t) would be obtained by integrating Pe(Y | T = t, V = v) over

the values v in the support of V .

The econometric literature provides an unusually rich menu of strategies to eliminate the

confounding e↵ects of V not available in the approximating literature. We discuss some of

this menu in the next section.

4 Identification of Counterfactuals in the Generalized

Roy Model

The Generalized Roy model is a laboratory for exploring the large toolkit of the econometric

approach to identifying counterfactuals compared to what is possible in the approximating

paradigms. We describe several of these approaches here.

Equation (14) states that the identification of causal e↵ects in the Generalized Roy model

hinges on controlling for the unobserved confounding variables V . A popular approach to
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doing so uses instrumental variables that are independent of V . They control for V by shifting

T without a↵ecting the distribution of V. However, the IV model described by equations (4)–

(7) with Z as an instrument does not identify interesting counterfactuals without additional

assumptions.

The literature on policy evaluation in structural settings provides a large array of addi-

tional tools that facilitate identification of the causal e↵ect of T on Y . For example, the

simplest identifying assumption is linearity. If the treatment and the outcome functions are

linear, so T = ↵0 + ↵1V + ✏T , and Y = �0 + �1T + �2V + ✏Y , where ↵0, ↵1, �0, �1, �2

are scalar parameters, the causal e↵ect of T on Y is given by �1. It is identified by the

covariance ratio cov(Y, Z)/cov(T, Z) and can be estimated by the Two-Stage Least Squares

(2SLS) Regression. This tool has been available to economists since the 1950s.24

The Generalized Roy model is not captured by this simple two-equation system. The

causal e↵ect, Y (1) � Y (0) is, in general, a random variable and not a constant so that

treating �1 as a constant does not capture the essential heterogeneity of treatment e↵ects

across agents. The analogue to �1 is stochastically dependent on V . There are numerous

approaches to identifying its distribution. We start with the use of instrumental variables in

the presence of heterogenous treatment e↵ects and then consider alternative approaches.

Instrumental Variables

Heckman and Vytlacil (1999, 2005) address this problem assuming a separable choice equa-

tion. Their approach enables analysts to control for V and, in turn, identify counterfactual

outcomes. Their local Instrumental Variable (LIV) Model considers a binary treatment

T 2 {0, 1}. Their separability assumption arises from economic choice theory and states

that treatment is given by a latent threshold-crossing equation that includes instrument Z

and the confounder V ; that is, T = 1[⇣(Z) � �(V )]. Separability enables them to rewrite

24See Amemiya (1985); Hansen (2021); Theil (1953, 1958, 1971). Theil (1953) invented this method.
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the choice equation as:

T = 1
⇥
P (Z) � U

⇤
; P (Z) = Pe

�
T = 1 | Z

�
, (15)

where P (Z) = Pe(T = 1 | Z) is the propensity score. The unobserved variable U is given

by U = Fe,�(V )(�(V )) where Fe,�(V ) is the cdf of �(V ), which is monotone increasing by con-

struction. Subscript “e” denotes computation with respect to the empirical model. Variable

U has a uniform distribution if �(V ) is absolutely continuous; that is, U ⇠ unif([0, 1]).

The structural approach uses unobservables. The Neyman-Rubin approach does not. The

do-calculus uses them, but in a limited way, and rules out separability that is used to ob-

tain (15). This approach to unobservables precludes the use of methods that are fruitful in

the econometric approach.

The hypothetical and empirical models for the Generalized Roy model that include the

unobserved variable U are displayed in Table 5. The LMC of T in the hypothetical Roy model

of Table 5 implies that Y ?? T | (Z, T̃ , U). The LMC of Z implies Y ?? Z | (U, T̃ ). These

two independence relationships imply, by contraction property D, that Y ?? T | (T̃ , U).

Following the same analysis of V as (14), Y ?? T | (T̃ , U) implies that:

Ph(Y | eT = t, U) = Pe⇤(Y (t) | U) = Pe(Y | T = t, U). (16)

Otherwise stated, controlling for U enables analysts to identify counterfactual outcomes

in the same fashion that controlling for V does. Variable U is called a balancing score for V .

This means that U is a surjective function of V that preserves the independence relationship

Y ?? T | (T̃ , V ) ) Y ?? T | (T̃ , U).25

25The balancing score was introduced by Rosenbaum and Rubin (1983).
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Table 5: Binary Choice Roy Model: Empirical and Hypothetical Causal Models

Empirical Model Hypothetical Model

VU

T YZ

VU

T YZ T̃

LMC LMC
V : V ?? Z V ?? (Z, T̃ )
Z : Z ?? (U, V ) Z ?? (V, U, Y, T̃ )
U : U ?? Z | V U ?? (Y, Z, T̃ ) | V
T : T ?? V | (Z,U) T ?? (T̃ , V, Y ) | (Z,U)
Y : Y ?? (Z,U) | (T, V ) Y ?? (Z,U, T ) | (T̃ , V )
T̃ : (not defined for the model) T̃ ?? (T, V, U, Z)

The Local Instrumental Variable (LIV) model of Heckman and Vytlacil (1999) can be

used to identify probability distributions of counterfactual outcomes conditioned on U by

taking the derivative of the observed outcome with respect to the propensity score. More

generally, the counterfactual expectation Ee⇤(g(Y (t)) | U = u) for any real-valued function

g : R ! R is identified if there is su�cient variation of propensity score P (Z) around the

value u 2 (0, 1).

Identification of Eh(g(Y | T̃ = t, U = u) comes from the derivative of the expectation

(�1)1�t
Ee(g(Y )1[T = t] | P (Z)) with respect to the propensity score at the value P (Z) = u.

In particular, it can be shown that:

Eh

�
Y | T̃ = 1, U = u

�
� Eh

�
Y | T̃ = 0, U = u

�

⌘ Ee⇤
�
Y (1)� Y (0) | U = u

�
=
@Ee(Y | P (Z))

@P (Z)

����
P (Z)=u

.

(17)

where e⇤ refers to the distribution generated by fixing and e refers to the sample distribution.

Identification requires su�cient variation of the propensity score P (Z) around u 2 [0, 1]. If

P (Z) has full support, the average treatment e↵ect can be evaluated by ATE ⌘ Eh(Y | T̃ =

1)� Eh(Y | T̃ = 0) =
R 1

0

�
Eh(Y | T = 1, U = u)� Eh(Y | T = 0, U = u)

�
du.

30



Stratification

A recurrent theme in this section is that identification of counterfactual outcomes hinges on

controlling for the confounding variable V. The solution of the LIV model invokes separa-

bility assumption (15) which generates a balancing score U for V. According to (18), the

nonparametric point-identification of the counterfactual outcomes conditioned on U = u is

obtained by di↵erentiating the outcome with respect to the propensity score P (Z) at value

u 2 (0, 1).

Equation (17) assumes that the sample propensity score has enough variation around the

value u 2 (0, 1). Consequently, the equation is not directly applicable to discrete instruments.

One approach to overcome this limitation is to use the discrete counterpart of equation

(17). Heckman and Vytlacil (2005) show that for any two values z, z0 2 supp(Z) such that

P (z0) = u
0
> u = P (z) we have that:

Ee(Y | Z = z
0)� Ee(Y | Z = z)

Pe(T = 1 | Z = z0)� Pe(T = 1 | Z = z)
=

R u0

u Ee⇤

⇣
Y (1)� Y (0) | U = u

⌘
du

u0 � u

= Ee⇤(Y (1)� Y (0) | u  U  u
0).

(18)

Equation (18) states that di↵erence of mean outcomes conditional on two instrumental values

z, z
0 identifies the counterfactual outcome over an interval of U defined by the propensity

scores P (z) and P (z0). The equation evaluates a causal e↵ect that depends on the values of

the instrument. These e↵ects are called Local Average Treatment E↵ects (LATE) by Imbens

and Angrist (1994). LATE-type e↵ects di↵er from causal e↵ects such as ATE or TT, which

do not depend on the IV values.26

A consequence of (18) is that ATE can be identified if there are two instrumental variable

values z0, z1 such that z0 induces full treatment nonparticipation (P (z0) = 0), and z1 induces

full treatment participation (P (z1) = 1):

Ee(Y | Z = z1)� Ee(Y | Z = z0) = Ee⇤

⇣
Y (1)� Y (0) | 0  U  1

⌘

26Heckman et al. (2008) develop the relationship between LIV and LATE in depth.
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= Eh(Y | T̃ = 1)� Eh(Y | T̃ = 0) = ATE.

This setup is equivalent to a randomized control trial with full compliance. Mogstad and

Torgovitsky (2018) use functional form assumptions to extrapolate the estimations over

intervals of U to point estimates.

Another approach to controlling for V exploits the discrete nature of the IV to gen-

erate an alternative balancing score. Let instrument Z take values in the discrete set

supp(Z) = {z1, . . . , zN} such that P (z1) < · · · < P (zN).27 Let T (z) = 1[⇣(z) � �(V )]

be the counterfactual choice that would occur if Z were fixed at value z 2 {z1, . . . , zN}. The

response vector S = [T (z1), . . . , T (zN)]0 is the random vector of potential choices across all

Z-values.

Response vector S shares the same causal relationships of unobserved variable U in

Table 5. By this we mean that S is a function of V and that the choice T can be written as

function of Z and S:

T =
h
1[Z = z1], . . . ,1[Z = zN ]

i
· S.

Similar to U, the response vector S is a balancing score for V . The independence relationship

Y ?? T | (T̃ ,S) holds, which implies that Ph(Y | eT = t,S) = Pe(Y | T = t,S). Heckman

and Pinto (2018) show that the response vector S controls for V by generating a special

partition of its support that spans the support of V and renders choice T statistically inde-

pendent of V within each cell of the partition. Each column of S is just a list of responses

to treatments for a person of a given V .

The values of S are called response-types or strata.28 The separability assumption elimi-

nates some of potential response-types. An influential example is due to Imbens and Angrist

(1994), who investigate the case of a binary instrument and a binary treatment. There

are four possible response-types termed always-takers, compliers, never-takers and deniers.

They invoke a monotonicity condition that is equivalent to the separability assumption.

27The increasing ordering of propensity scores is assumed without loss of generality.
28The concept was developed by Robins (1986) and Frangakis and Rubin (2002).
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The assumption eliminates the defiers and enables the identification of treatment e↵ects for

the compliers. See Heckman and Pinto (2018) and Buchinsky and Pinto (2021) for general

identification results.

The Matching Assumption

A popular method for identifying treatment e↵ects assumes that a set of observed pre-

treatment variables su�ce to control for the confounding variable V . Otherwise stated, it

assumes that the observed variable X is a balancing score for the confounding variable V .

This assumption is called Matching.29 Another (structural) way to state this is that X spans

the space of V .

Table 6 presents the empirical and the hypothetical models that justify the matching

assumption. The LMC of T in the hypothetical model implies that Y ?? T | (T̃ , X).

According to (13), we have that Ph(Y | T̃ = t,X) = Pe⇤(Y (t) | X) = Pe(Y | T = t,X)

which means that the counterfactual outcome is identified by conditioning on X. Matching

variables X are assumed not to be a descendant of the hypothetical variable T̃ , thus Ph(X) =

Pe(X) and the probability distribution of the counterfactual outcome is given by Pe⇤(Y (t)) =
R
(Pe(Y | T = t,X = x)dFe,X(x).

The average causal e↵ect of a binary treatment T 2 {0, 1} is evaluated by the weighted

average of mean di↵erence between the treated and not-treated participants that match on

X, namely, ATE =
R ⇣

Ee(Y | T = 1, X = x)� Ee(Y | T = 0, X = x)
⌘
dFe,X(x).30

29Heckman et al. (1998) investigate several estimation methods that invoke the matching assumption.
30Heckman et al. (1998) incorporated additive separability between observable and unobservable variables

as well as exogeneity conditions that isolate outcomes and treatment participation into the matching frame-
work. Additionally, they compare various types of estimation methods to show that kernel-based matching
and propensity score matching have similar treatment of the variance of the resulting estimator.
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Table 6: Matching Model: Empirical and Hypothetical Causal Models

Empirical Model Hypothetical Model

VX

T Y

VX

T Y T̃

The matching assumption replaces the unobserved variable U of the Generalized Roy

model in Table 5 by the observed variable X. In practice, it assumes that potential bias gen-

erated by confounding variables can be ignored when controlling for observed pre-treatment

variables. Under matching, the identification of treatment e↵ects does not require an instru-

mental variable nor additional assumptions such as separability. This assumption enables

us to solve the problem of selection bias induced by unobserved variables V via conditioning

on the observed variables X.

The matching assumption is justified in the case of randomized controlled trials (RCTs).

In this case, the matching variables X denote the pre-treatment variables used in the ran-

domization protocol. In observational studies, a matching assumption is often rather strong.

It assumes that the analyst observes enough information to make all the agent’s unobserved

variables irrelevant (see Heckman, 2008b). Otherwise stated, matching assumes a symmetry

in information between the economic agent and the econometrician.

There are several identification approaches that acknowledge the possibility of informa-

tion asymmetries between the agent being studied and the econometrician: control function

approaches, replacement functions or proxy variables. These methods often di↵er consider-

ably in terms of assumptions and methodology. However, they all share the same identifica-

tion principle: they use observed data to evaluate a proxy variable that plays the role of a

matching variable.
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Matching on Proxied Unobservables

Matching on proxied unobservables is a version of matching that uses observed data to control

for the confounding e↵ects of V . Consider the modification of the Generalized Roy model

in Table 7. The unobserved variable Q is a balancing score for the unobserved confounder

V . The matching conditions of hypothetical model, Y ?? T | (T̃ , Q), and its respective

counterpart in the empirical model, Y (t) ?? T | Q, hold. Variable Q has two additional

properties: (1) it may cause outcome Y ; and (2) it may be measured with error by the

observed variable M .

A common setup where Q arises is in the evaluation of college returns where T denotes

college graduation, Y denotes earnings, and Q denotes unobserved abilities such as cognition

or conscientiousness. These abilities are not directly observed but measured with error by

an observed vector of variables M , such as psychological surveys or test scores. Formally,

we write M = fM(Q, ✏M). The identification strategy is to explore the structural function

M = fM(Q, ✏M) to evaluate Q, which, in turn, allows us to control for V and identify causal

e↵ects.

Matching on proxied unobservables has long been used in the economics of education (see,

e.g., the essays in Goldberger and Duncan, 1973 and Goldberger, 1972). The method is called

the latent variable approach by Heckman and Robb (1985a). This literature o↵ers several

possibilities for estimating Q (Aakvik et al., 1999, 2005; Carneiro et al., 2003; Cunha et al.,

2005). Olley and Pakes (1996) apply this method. A common parametric approach extracts

factors from psychological measurements to extract Q as a latent factor. Nonparametric

factor analysis is developed in Cunha et al. (2010); Schennach (2020). It is also possible to

condition nonparametrically on Q without knowing the functional form of fM .
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Table 7: Matching on Proxied Unobservables: Empirical and Hypothetical Causal Mod-
els

Empirical Model Hypothetical Model

VQM

T Y

VQM

T Y T̃

Control Function

The control function principle specifies the dependence of the relationship between observ-

ables and unobservables in a nontrivial fashion. The principle was introduced in Heckman

and Robb (1985b) building on earlier work by Telser (1964) and later popularized by Blun-

dell and Powell (2003). It was also applied in Carneiro et al. (2003) and Cunha et al. (2005).

Heckman’s sample selection correction (1979) is a control function.

We illustrate the control function principle using a version of the Generalized Roy model

where V is a scalar random variable and the binary choice T is given by the separable

equation T = 1[µ(Z) � V ]. Let K = fK(T, V, ✏K) represents unobserved skills caused by

the treatment T and the unobserved confounding variable V . In addition, let the outcome

equation be additive in K, that is to say that the outcome Y can be written as Y =

fY (T, ✏Y ) +  (K), The model is displayed as a DAG in Table 8. The LMC of Y in the

hypothetical model implies that Y ?? T | (T̃ , K). This means that K is a matching variable.

The control function approach seeks to control for variable V by estimating the function  (K)

of the outcome equation.

Heckman and Vytlacil (2007a,b) use the assumption of separability of observables and

unobservables in the choice equation and the outcome assumption of additivity to evaluate

 (K) as a function of the propensity score P (Z). Similar to the LIV Model, we can use

the CDF transformation to write the choice equation as T = 1[P (Z) � FV (V )], where
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FV (V ) ⇠ unif([0, 1]). Note that the expected value of the outcome conditional on T = 1

gives the conditional counterfactual mean:

Ee(Y | Z, T = 1) = Ee⇤h
�
Y (1) | Z, T = 1

�
= Eh(Y | T̃ = 1, Z, T = 1),

where the first term is observed, the second term uses fixing and the last one uses the

hypothetical model. Under separability and outcome additivity, we can express Eh(Y (1) |

T̃ = 1, Z, T = 1) as:

Eh

�
Y | T̃ = 1, Z = z, T = 1

�
= Eh

�
fY (T̃ , ✏Y ) | T̃ = 1

�
+ Eh

�
 (K) | T̃ = 1, Z = z, T = 1

�
,

= Eh

�
fY (1, ✏Y )

�
+ Eh

�
 
�
fK(1, V, ✏K)

�
| Z = z, T = 1

�
,

⇣
setting Eh(fY (1, ✏Y )) = ↵1

⌘

= ↵1 + Eh

⇣
 
�
fK(1, V, ✏K)

�
| P (z) > FV (V )

⌘
,

= ↵1 + Ee

⇣
 
�
fK(1, V, ✏K)

�
| P (z) > FV (V )

⌘
,

) Eh

�
Y | T̃ = 1, Z, T = 1

�
= ↵1 + f1(P (Z))| {z }

control function

, where f1

�
P (Z)

�
= Eh

�
 
�
fK(1, V, ✏K)

�
| Z, T = 1

�

where the first equality uses the additivity assumption, the second uses the fact the T̃ is

an external variable, the third uses the separability assumption, the fourth switches the

hypothetical model into the empirical model as V , ✏K , Z are non-descendants of T̃ . The last

equation gives the expectation Eh(Y | T̃ = 1, Z, T = 1) as a function of the propensity score

P (Z). Control function f1(P (Z)) can be estimated from observed data and the expected

value of the counterfactual outcome can be evaluated as

Eh(Y (1)) =

Z 1

0

↵1 + f1(p)dFP (Z)(p).

Table 8: Control Function: Empirical and Hypothetical Causal Models

Empirical Model Hypothetical Model

V

TZ

K

Y

V

TZ

K

Y T̃
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Panel data Analysis and Other Approaches

A commonly used panel data method is di↵erence-in-di↵erences as discussed in Heckman

and Robb (1985a), Blundell et al. (1998), Heckman et al. (1999), and Bertrand et al. (2004).

All of the estimators previously discussed can be adapted to a panel data setting. Heckman

et al. (1998) introduce di↵erence-in-di↵erences matching estimators to eliminate the bias in

estimating treatment e↵ects. Abadie (2005) extends this work. Separability between errors

and observables is a common feature of the panel data approach in its standard application.

Altonji and Matzkin (2005) and (Matzkin, 1993) present analyses of nonseparable panel

data methods. Regression discontinuity estimators, which are versions of IV estimators, are

discussed by Heckman and Vytlacil (2007b).

Table 9 summarizes some of the main identification approaches for the Generalized Roy

model discussed here. The table barely scratches the surface, but gives a sense of the broad

menu in the econometric approach. The essays in the Handbooks of Econometrics (Durlauf

et al., 2020; Heckman and Leamer, 2001, 2007) give a range of other estimation approaches.
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5 The Neyman-Rubin (NR) Causal Model

The Neyman-Rubin causal approach uses the language and framework of experimental design

developed by Neyman (1923), Fisher (1935), and Cox (1958) and popularized by Holland

(1986). It ignores essential aspects of the econometric approach to causality and conflates

distinct concepts (e.g., SUTVA).31 It does not define hypothetical models nor does it employ

structural equations to characterize causal models. It focuses on units of analysis instead of

system of equations. Causal models are characterized by statistical independence relation-

ships among counterfactual counterparts of observed variables, never precisely defined.

The NR approach lacks the clarity of interpretation o↵ered by causal models described

by structural equations. It is very often di�cult to map the independence relationships of a

NR model into the actual causal relationships produced by economic theory. In particular,

NR makes it di�cult to assess the credibility of assumptions that ensure the identification

of causal e↵ects.

Another drawback is that the NR framework lacks fundamental tools of econometric

causal analysis. It does not explicitly model unobserved variables in structural models. This

feature substantially limits the use of the tools exposited in Section 4. It rules out (or makes

cumbersome) several fruitful econometric strategies such as balancing bias within models

using compensating variations of arguments of structural functions to keep agents at the

same levels of well being,32 and cross-equation restrictions on both observable and unob-

servable model components, or functional form restrictions. In practice, the set of tractable

identification strategies that employ the NR framework is limited to a few possibilities: ran-

domized trials, IV and its many surrogates and di↵erences-in-di↵erences (see Imbens and

Rubin, 2015). This section illustrates drawbacks of NR in analyzing core policy questions.

31(Rosen, 1986) explains that SUTVA - Stable Unit Treatment Value Assumption - is a mixture of two
two distinct concepts regarding function autonomy and no interaction among agents.

32See e.g., Ekeland et al. (2004); Rosen (1986).
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The Generalized Roy Model under NR

The NR framework focuses on the unit of analysis i 2 I which usually represents an economic

agent or entity. The framework describes part of the Generalized Roy model (4)–(7) using

two counterfactuals: Ti(z) is the potential treatment when the instrument Z is set to value

z 2 supp(Z); and Yi(t, z) is the potential outcome of agent i when Z is set to value z 2

supp(Z) and choice T is set to t 2 supp(T ). It does not explicitly characterize the choice

equation. It prides itself on being nonparametric, although some proponents claim that

assuming linearity is an assumption, even when models are fundamentally nonlinear.33

The NR framework characterises the Generalized Roy model (4)–(7) by three assump-

tions:

1. An exclusion restriction states that Yi(t, z) = Yi(t, z0) for all z, z0 2 supp(Z) and for

all i 2 I.

2. IV relevance: Z is not statistically independent of T, that is Z �?? T.

3. Exogeneity condition Z ?? (Y (t), T (z)).

The exclusion restriction means that Z does not directly cause Y . Thus, we can express

the counterfactual outcome as Yi(t) instead of Yi(t, z). IV relevance means that T is caused

by Z. The exogeneity condition of the NR framework can be traced back to the independence

relationship between Z and V of the Generalized Roy model (4)–(7). In the NR framework,

the exogeneity condition is an assumption. In the Generalized Roy model, the exogeneity

condition is a consequence of the causal relation among model variables. Namely, that the

Z and V are external variables. The LMC (8) implies that Z ?? V, which, in turn, generates

the exogeneity condition.

The identification of counterfactual outcomes requires additional assumptions. A popular

assumption securing identification is the monotonicity condition (19) of Imbens and Angrist

(1994). It states that a change in an instrument induces agents to change their treatment

33Angrist and Pischke (2009). Ekeland et al. (2004) show that nonlinearity is intrinsic to hedonic models
and that linearizing it produces identification problems.
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choice towards the same direction. Notationally, for any z, z
0 2 supp(Z), we have that:

Ti(z) � Ti(z
0) 8i 2 I or Ti(z)  Ti(z

0) 8i 2 I (19)

Vytlacil (2002) shows that the monotonicity condition (19) is equivalent to the sepa-

rability assumption T = 1[⇣(Z) � �(V )]. Otherwise stated, the NR counterpart for the

Generalized Roy model separability assumption is the monotonicity condition. Each condi-

tion enables the identification of causal e↵ects of T on Y in its respective framework. At

this level, the IV models in the two frameworks are equivalent.

Model equivalence does not, however, imply that they o↵er the same analytical capac-

ities. In particular, the Generalized Roy model (4)–(7) explicitly displays the unobserved

confounding variable V, while NR does not. This feature enables analysts to further inves-

tigate the model and use other approaches for controlling for it. Section 4 shows that the

identification of counterfactual outcomes hinges on the analysts’s ability to control for the

unobserved confounding variable V. Heckman and Vytlacil (2005) use the fact that U is a

balancing score for V to define and identify a new parameter called the marginal treatment

e↵ect (MTE):

MTE(u) = Eh

�
Y | T̃ = 1, U = u

�
� Eh

�
Y | T̃ = 0, U = u

�
= Ee⇤

�
Y (1)� Y (0) | U = u

�
.

The MTE plays a primary role in generating a range of causal e↵ects commonly sought in

policy evaluations. A few of these causal parameters are presented in Table 10.

The power of analysis generated by switching from the NR framework to a structural

equation framework is substantial. The use of structural equations facilitates a richer analysis

and a deeper investigation of the properties of the Generalized Roy model. Such analyses

cannot be achieved in the NR framework because it does not include unobserved variables,

nor does it employ structural equations. This analytical deficiency of the NR framework

limits the researcher’s ability to extend causal analysis of the Generalized Roy model and

other economic models.
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Table 10: Some Causal Parameters as Weighted Average the MTE

Causal Parameters MTE Representation Weights

ATE = E(Y (1)� Y (0)) =

Z 1

0
MTE(p)WATE(p)dp WATE(p) = 1

TT = E(Y (1)� Y (0) | T = 1) =

Z 1

0
MTE(p)WTT (p)dp WTT (p) =

1� FP (p)
1R

0

�
1� FP (t)

�
dt

TUT = E(Y (1)� Y (0) | T = t0) =

Z 1

0
�MTE(p)WTUT (p)dp WTUT (p) =

FP (p)
1R

0

�
1� FP (t)

�
dt

TSLS =
Cov(Y, Z)

Cov(T, Z)
=

1Z

0

MTE(p)WTSLS(p)dp WTSLS(p) =

1R
p

�
t� E(P )

�
dFP (t)

1R

0

�
t� E(P )

�2
dFP (t)

LATE =
E(Y | Z = z1)� E(Y | Z = z0)

P (z1)� P (z0)
=

P (z1)Z

P (z0)

MTE(p)WLATE(p)dp WLATE(p) =
1

P (z1)� P (z0)

Source: Heckman and Vytlacil (2005).

The parsimonious machinery of the NR framework is often misunderstood as endowing

the Generalized Roy model with a greater level of generality. This impression is misleading

as the IV model featured in the NR framework is equivalent to the Generalized Roy model

described by equations (4)–(7) and its monotonicity criteria is equivalent to a separability

condition. Its apparent simplicity is due to its lack of explicit statement of its assumptions.

The Matching Model in the NR

A common identification approach in NR is a matching assumption on observed variabes.

It states that the treatment choice T is independent of counterfactual outcomes Y (t) when

conditioning on observed pre-treatment variables X, that is, Y (t) ?? T | X.
34 Intuitively,

the assumption states that pre-treatment variables X are su�ciently rich to account for all

the unobserved variables that jointly influence treatment choice T and outcome Y . The as-

34In the language of Pearl (2009b), X d-separates Y and T .
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sumption can be easily criticized as often being overly optimistic for the case of observational

studies (Heckman, 2008b; Heckman and Navarro, 2004).

It is natural to infer that increasing the number of matching variables may only decrease

the potential bias generated by unobserved confounders. This statement is known to be

false.35 However it is rather di�cult to investigate the truth of this claim using the NR

framework. The causal model of Table 11 clarifies this point.

Table 11: Hypothetical Matching Model

Causal Model DAG Independence Relationships
V = fV (✏V )

V

T

W X

K U

Y

J

J = fJ(✏J)
W = fW (✏W )
V = fV (✏V ) Y (t) ?? T | K
T = fT (V,W, ✏T ) Y (t) �?? T | X
K = fK(T, V, ✏K) Y (t) �?? T | (X,K)
U = fU (K, ✏U )
X = fK(W,J, ✏X)
Y = fY (T,K,U, J, ✏Y )

The causal model Table 11 comprises four observed variables: the treatment T , the

outcome Y , a pre-treatment variable X and a post-treatment variable K. The model also

contains four unobserved variables V , U , W , J . The causal relationship among observed and

unobserved variables renders Y (t) ?? T | K even though Y (t) �?? T | X. The independence

relationship that characterises the matching assumption holds for post-treatment variables,

but not for the pre-treatment variable. Moreover, adding the pre-program variable X to the

conditioning set of Y (t) ?? T | K prevents identification because Y (t) �?? T | (X,K).

The causal model of Table 11 exemplifies the di�culty of performing causal investigation

within the NR framework. The unusual properties of the model stem from the particular

causal relationships among its observed and unobserved variables. This model is not easily

35See, for instance, Greenland et al. (1999); Heckman and Navarro (2004); Pearl (2009c).
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analyzed within the NR framework because it lacks unobserved variables and suppresses the

structural equations that clearly describe the causal relationships among variables.

Mediation Models under NR: An example

Mediation models originate in the path analysis and simultaneous equations literatures.36

They trace the impacts of interventions on outcomes through their multiple channels of op-

eration. Identifying the causal models generated by NR assumptions is often a daunting task

and the economic content of these assumptions is often far from clear. We examine several

mediation models to illustrate this fact and show the power of the econometric approach

compared to an approach based on NR principles. Table 12 uses the econometric approach

to present a general mediation model in which a treatment T causes a mediator M and an

outcome Y that is caused by both T and M . V denotes a random vector that plays the role

of the unobserved confounder causing T , M and Y . The counterfactual mediator when the

treatment if fixed at t 2 supp(T ) is M(t) = fM(t,V , ✏M). The counterfactual outcome when

the treatment is fixed at t and the mediator is fixed atm 2 {0, 1} is Y (t,m) = fY (t,m,V , ✏Y ).

The counterfactual outcome when we fix only T at t is Y (t) = fY (t,M(t),V , ✏Y ).

Table 12: Mediation Model with Confounding Variable

Causal Model DAG
V = fV (✏V ) V

MT Y

T = fT (V , ✏T )
M = fM(T,V , ✏M)
Y = fY (T,M,V , ✏Y )

The goal of mediation models is to decompose the total e↵ect of T on Y into an indirect

e↵ect that includes the e↵ect of T on M and M on Y and a direct e↵ect not mediated by M .

To facilitate the discussion, let T and M denote binary variables taking values in {0, 1}. The
36See Bollen (1989); Klein and Goldberger (1955); Wright (1921, 1934).
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average (total) e↵ect of T on Y is Ee⇤(Y (1)� Y (0)). We can also define the average direct

e↵ect of T on Y as Ee⇤(Y (1,M)�Y (0,M)) =
P1

m=0 Ee⇤(Y (1,m)�Y (0,m))Pe(M = m) and

the average indirect e↵ect as Ee⇤(Y (T, 0)�Y (T, 1)) =
P1

t=0 Ee⇤(Y (t, 1)�Y (t, 0))Pe(T = t).37

Table 13 displays there hypothetical models suitable for examining the total, direct and

indirect e↵ects. The first DAG corresponds to the total e↵ect. The hypothetical variable

T̃ replaces the T -input of both the mediator M and the outcome Y equations. The second

DAG corresponds to the indirect e↵ect only and the hypothetical variable replaces only the

T -input of the mediator equation. The last DAG corresponds to the direct e↵ect only where

the hypothetical variable T̃ replaces only the T -input of outcome equation.

Table 13: Hypothetical Models for the Mediation Model: Total, Direct and Indirect
E↵ects

Total E↵ect Indirect E↵ect Direct E↵ect

V

MT Y

T̃ V

MT Y

T̃ V

MT Y

T̃

The confounding variable V prevents the identification of the counterfactual means

Ee⇤(M(t)) and Ee⇤(Y (t,m)). A solution to this identification problem using NR is the

Sequential Ignorability (SI):38

�
Y (t0,m),M(t)

�
?? T, (22)

Y (t0,m) ?? M(t) | T, (23)

37Alternatively, we can then define the direct e↵ect and indirect e↵ects for a given t by (20) and (21)
respectively.

DE(t) = Ee⇤
�
Y (1,M(t))� Y (0,M(t))

�
=

Z
Ee⇤

�
Y (1,m)� Y (0,m)

�
dFM(t)(m) (20)

IE(t) = Ee⇤
�
Y (t,M(0))� Y (0,M(1))

�
=

Z
Ee⇤(Y (t,m))dFM(1)(m)�

Z
Ee⇤(Y (t,m))dFM(0)(m). (21)

38See Imai et al. (2011, 2010) for the properties of these assumptions.
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for any t, t
0 2 supp(T ) and m 2 supp(M). SI (22)–(23) enables analysts to identify counter-

factual means by statistical conditioning Ee(M(t)) = Ee⇤(M | T = t) and Ee⇤(Y (t,m)) =

Ee(Y | T = t,M = m).

SI assumptions (22)–(23) can be understood as an application of the matching condi-

tion to mediation models. Assumption (22) states that the choice T is exogenous with

respect to the outcome and mediator counterfactuals. The assumption would be justified

if T were randomly assigned by a RCT experiment. The interpretation of assumption (23)

is less straightforward. It states that the counterfactual mediator M(t) is independent of

the counterfactual outcome Y (t,m) when conditioned on T . The assumption cannot be di-

rectly tested even in randomized experiments (Imai et al., 2010). SI assumptions (22)–(23)

are much more easily interpreted using structural equations. The assumptions rule out any

confounding variable V, generating the model in Table 14.

Table 14: Mediation Model with No Confounding Variables

Causal Model DAG
T = fT (✏T ) MT Y
M = fM(T, ✏M)
Y = fY (T,M, ✏Y )

SI assumptions (22)–(23) are rather strong. They can be weakened if instrumental vari-

ables are available as depicted in Table 15. We use the model to exemplify a case in which

NR assumptions are logically possible but generate a causal model that is di�cult to justify

using any plausible argument. The structural model enables the analyst to interpret the

statistical assumptions using behavioral theory.
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Table 15: Mediation Model with Instrumental Variables

Causal Model DAG
V = fV (✏V ) V

MT YZ

Z = fZ(✏Z)
T = fT (Z,V , ✏T )
M = fM(T,V , ✏M)
Y = fY (T,M,V , ✏Y )

The mediation model with IV has four counterfactuals, T (z), M(t), Y (t), Y (t,m) pre-

viously defined. In language of NR, the model would be characterized by IV exogeneity

condition Z ?? (T (z),M(t), Y (t), Y (t,m)). The condition holds due to the independence of

Z and V .
39. Suppressing Y generates an IV model where M plays the role of the outcome.

To dig more deeply, investigate the case of a binary instrument Z 2 {0, 1}. The response

vector Si = [Ti(0), Ti(1)]0 denotes the vector of treatment choices that agent i would take

if it were assigned to each of the instrumental values. Section 4 shows that, given S, the

treatment choice T depends only on the instrument Z. The exogeneity condition states Z

is independent of the counterfactual outcome Y (t). Thus

T ?? Y (t) | S. (24)

S is a balancing score for V .

Yamamoto (2014) uses the language of NR to identify mediation e↵ects using instrumen-

tal variables. His solution merges SI (22)-(23) with the matching property of the response

vector S in (24). He advocates an assumption that he terms the local average causal medi-

ation e↵ects (LACME) assumption:

(Y (t,m),M(t0)) ?? T | (S = [0, 1]0), (25)

Y (t,m) ?? M(t0) | (T,S = [0, 1]0). (26)

39Note that if we were to suppress M from the DAG of Table 15, we would obtain the empirical model of
Table 3
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LACME (25)–(26) adds the the response vector S as an additional conditioning variable

to the SI independence relationships in (22)-(23). Assumption (25) is a simple extension

of the matching property of S from the IV model of Table 14 to the mediator model of

Table 15. Under monotonicity (19), the LACME assumption identifies the direct and indirect

mediation e↵ects for compliers.

It is easy to interpret LACME in terms of NR assumptions: assumptions(25)–(26) are a

weaker version of SI (22)-(23) that incorporates the LATE analysis of Imbens and Angrist

(1994). On the other hand, it is di�cult to gauge how the LACME assumptions fit into

the mediation model of Table 12. It is even harder to interpret the causal content of these

assumptions.

Table 16 presents two DAGs that use the structural approach to clarify the causal content

of LACME. The first DAG places the unobserved response vector S into the mediation model

of Table 12. The response vector S plays the role of a balancing score for V only for choice

T .40 The addition of the response vector does not result in any loss of generality. The

second DAG displays the mediation model under LACME. According to assumption (26),

the response vector S plays the role of a balancing score for T and M . In addition, LACME

prevents V from jointly causing M , Y and implies that S directly causes M , Y . It is hard

to translate LACME into credible causal relationships.

S = [T (0), T (1)]0 is expressed as a function of the confounding variable V because T (z)

is a function of V . Note that the choice T is expressed as a function of S and Z because

T =
⇥
1[Z = 0],1[Z = 1]

⇤
S. The response vector S = [T (0), T (1)]0 is expressed as a function

of the confounding variable V because T (z) is a function of V . The resulting DAG does not

include more information than the original model of Table 12 because S is unobserved.

The second DAG displays the mediation model under LACME. From assumption (26),

the response vector S plays the role of a matching variable for the causal e↵ect of M on Y .

It plays the role of a balancing score for V for T,M, and Y . The assumption prevents V

40This property is based on the discreteness of the instrument.
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from jointly causing M,Y and implies that S directly causes M , Y . It is hard to produce

interpretable models that justify S as a cause of M or Y . LACME is an unmotivated but

statistically useful assumption.

Table 16: Mediation Model including S and the Mediation Model under LACME As-
sumption

General DAG with IV DAG under LACME

VS

MTZ Y

VS

MTZ Y

Using Structural Equations to Identify the Mediation Model with IV

Dippel, Gold, Heblich, and Pinto (2020) study the identification of causal e↵ects for the me-

diation model with an instrumental variable. Their analysis illustrates the gain in clarity and

scrutiny when a causal model is expressed by structural equations instead of NR statistical

independence relationships.

A typical empirical setting of an IV model consist of one instrument and various out-

comes. A mediation model with an instrument arises when treatment causes an intermediate

outcome (the mediator), which in turn causes a final outcome. The DAG of this empirical

model is presented in the first column of Table 17.

The second column of Table 17 presents the DAG generated by suppressing the final

outcome. The resulting DAG is an IV model like that examined in Section 3. The causal

e↵ect of T on M can be identified by the methods discussed in Section 4. The third column

of Table 17 suppresses the mediator M. The resulting model is also an IV model. This

means that the total e↵ect of T on Y can also be identified by the methods of Section 4.
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Unfortunately, the IV does not identify the causal e↵ect ofM on Y . Consequently, mediation

analysis cannot be conducted without further assumptions.

Table 17: Dissecting the Mediation Model

Original Model Suppressing the Outcome Suppressing the Mediator

V

MTZ Y

V

MTZ

V

T YZ

Dippel, Gold, Heblich, and Pinto (2020) address the question of whether it is possible to

use an instrumental variable Z to nonparametrically identify the causal chain connecting T ,

M , Y while maintaining the endogeneity of the treatment T with respect to the mediator M

and outcome Y . They show that the only solution to this problem is to assume the partially

confounded mediation model of Table 18.

Table 18: Partially Confounded Model with Instrumental Variables

Causal Model DAG
VT = fVT (✏VT ) VT

TZ M Y

VYVY = fVY (✏VY )
Z = fZ(✏Z)
T = fT (Z,VT , ✏T )
M = fM(T,VT ,VY , ✏M)
Y = fY (T,M,VY , ✏Y )

The partially confounded assumption is that VT ?? VY . The assumption generates

an additional exogeneity condition (M(z), Y (m, t)) ?? Z | (T = t) while maintaining the

endogeneity of the treatment T with respect to M and Y . This means that Z is a valid

instrument for identifying the causal e↵ect of M on Y when conditioning on the treatment

variable T . If the assumption holds, the causal e↵ect of M on T can be evaluated by

the methods of Section 4. Dippel, Gold, Heblich, and Pinto (2020) discuss the intuition,

plausibility, and estimation of the partially confounded mediation model. They illustrate a

51



range of examples where the partially confounding assumption may hold and where it does

not.

6 The Do-Calculus and the Hypothetical Model

This section compares the do-calculus (DoC) of Pearl (2009b) with the Neyman-Rubin (NR)

framework of Holland (1986); Imbens and Rubin (2015) and the Hypothetical Model (HM)

approach of Heckman and Pinto (2015).

The DoC was first presented in Pearl (1995). The method employs graph theory-based

algorithms to identify the probability distribution of counterfactual variables in causal models

represented by DAGs.41 In contrast with NR, DoC is based on autonomous structural

equations. The method clearly describes the causal relationships between model variables

and does not encounter the problematic causal interpretations of the NR approach.

The DoC applies to any nonparametric and recursive system of structural equations.

Similar to the HM, DoC allows for unobserved variables. It can be applied to multiple

equation causal models and a range of causal inquiries.

The HM and the DoC di↵er greatly regarding counterfactual manipulations. To address

the causal operation of fixing, the HM solution uses a hypothetical model that formalizes the

notion of thought experiments and places it on a sound probabilistic footing. Contrary to

HM, DoC defines hypothetical models by making manipulations within the empirical model.

The method implements the notion of setting or fixing using a set of rules that combine

graphical analysis, independence relationships and probability equalities.

Some notation is required to explain the method. LetG denote a DAG that represents the

original causal model. Let Y , K, X, T denote disjoint variable sets in T . In DoC notation,

T (X) denotes the variables in T that do not directly or indirectly cause X. The DoC uses

41For a recent book on the graphical approach to causality, see Peters et al. (2017), and for related works on
causal discovery, see Glymour et al. (2014), Heckman and Pinto (2015), Hoyer et al. (2009), and Lopez-Paz
et al. (2017).

52



GK̄ for the derived DAG that deletes all causal arrows arriving at K in the original DAG G.

GT denotes the DAG that deletes all causal arrows emerging from T . In this notation, GK,T

stands for the derived DAG that suppresses all arrows arriving at K and emerging from

T , while GK,T (X) deletes all arrows arriving at K in addition to arrows arriving at T (X),

namely, arriving at variables in T that are not ancestors of X.

The DoC uses three rules. Each rule combines a graphical condition and a conditional

independence relation that, when satisfied, imply a probability equality:

The Three DoC Rules

1. Rule 1: if Y ?? T | (K,X) holds in GK , then P (Y | do(K), T,X) = P (Y |
do(K), X),

2. Rule 2: if Y ?? T | (K,X) holds in GK,T , then P (Y |do(K), do(T ), X) = P (Y |
do(K), T,X),

3. Rule 3: if Y ?? T | (K,X) holds in GK,T (X), then P (Y |do(K), do(T ), X) = P (Y |
do(K), X),

The process of checking if a causal e↵ect is identified requires reiterative use of these rules.

We present several examples of how to use the DoC method below.

In computer science, the DoC is said to be “complete.” This is di↵erent from the notion

of completeness as defined in simultaneous equations theory discussed in Section 7. The DoC

notion is that if a causal e↵ect is identifiable, it can be identified by the iterative application

of some sequence of the three rules (Huang and Valtorta, 2006; Shpitser and Pearl, 2006).

A major limitation of do-calculus is that it only applies to non-parametric models that

can be fully characterized by a DAG. Otherwise stated, the method does not account for

assumptions about the functional forms of the structural equations or cross covariance re-

strictions. This limitation hinders the application of most of the popular econometric tools

used in empirical economics such as cross equation restrictions, separability, additivity or

monotonicity assumptions. For instance, the Generalized Roy model is not identified by

DoC because it requires assumptions such as separability. The same is true of the IV model.
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Separability cannot be characterized by conditional independence assumptions generated by

a DAG. By the rules of do-calculus, the IV model and the Roy model are not identified. We

now demonstrate these points.

Using Do-Calculus to Investigate the Roy Model

We show the limitations of the DoC for identifying the Roy model.

Table 19: Using Do-Calculus to Investigate the Roy Model

Original DAG G Derived DAG GZ Derived DAG GT Derived DAG GT ,Z

V

YTZ

V

YTZ

V

YTZ

V

YTZ

The first column of Table 19 presents the DAG of the original Roy model, which is

denoted by G. The second column displays the DAG GZ which suppresses the arrow arising

from Z. The LMC of Z on DAG GZ is Z ?? (Y, T ). From Rule 2 of DoC, we obtain

P (T | do(Z)) = P (T | Z). Summarizing:

GZ ) T ?? Z,) by Rule 2 P
�
T | do(Z)

�
= P (T | Z). (27)

This says that Z is statistically independent of T when we fix Z. In the NR framework,

this is the exogeneity condition T (z) ?? Z, namely, that the instrument Z is independent of

the counterfactual choice T (z). Instrument Z in DAG GZ is independent of both T and Y .

Thus we can replace T by Y in (27) to obtain P (Y | do(Z)) = P (Y | Z). This means that

conditioning on Z is equivalent to fixing Z. Indeed the instrument Z is an external variable

and the causal operation of fixing is translated to standard statistical conditioning.

The third column of Table 19 displays the DAG GT which suppresses the arrow arriving

at T . LMC of Z on GT implies Z ?? Y . By Rule 1 of DoC, we have that P (Y | do(T ), Z) =

P (Y | do(T )). Summarizing:

GZ ) Y ?? Z,) by Rule 1 P (Y | do(T ), Z) = P
�
Y | do(T )

�
. (28)
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This means that Z is statistically independent of Y when we fix T. This statement refers to

the exogeneity condition Y (t) ?? Z or the independence relationship Y ?? Z | T̃ of the HM

framework.

The last column of Table 19 displays the DAG GT ,Z which suppresses the arrow arriving

at T and arising from Z. Note that the DAGs GT ,Z and GT are the same. The LMC of Z

for GT implies Z ?? Y . By Rule 1 of DoC, we have that P (Y | do(T ), Z) = P (Y | do(T )).

In summary:

GZ ) Y ?? Z,) by Rule 1 P (Y | do(T ), Z) = P
�
Y | do(T )

�
. (29)

This means that Z is statistically independent of Y when we fix T . This statement is the

exogeneity condition Y (t) ?? Z or the independence relationship Y ?? Z | T̃ of the HM

framework. The LMC of Z is Z ?? (T, Y, V ) which implies that Z ??| T holds. Using Rule

2 of the DoC we obtain:

GT ,Z ) Y ?? Z | T, so Rule 2 P (Y | do(T ), do(Z)) = P (Y | do(T ), Z). (30)

Combining P (Y | do(T ), Z) = P (Y | do(T )) in (29) with P (Y | do(T ), do(Z)) = P (Y |

do(T ), Z) in (30) we obtain P (Y | do(T ), do(Z)) = P (Y | do(T )). This means that the

probability distribution of the outcome Y when we fix both Z, T is the same as the counter-

factual outcome generated by fixing only the choice T . In the NR framework, this property

refers to the exclusion restriction Yi(t, z) = Yi(t, z0) for all z, z0 2 supp(Z).

These statements exhaust the analysis of the Roy model analysis that can be performed

using DoC. DoC describes some key properties of the Roy model, but application of its

rules alone cannot deliver identification of treatment e↵ects. Unfortunately, the type of

assumptions that would secure the identification of treatment e↵ects in the Roy model are

ruled out by DoC.
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The Front-door Model

To make a more positive statement, it is useful to compare the identification machinery of

the DoC and HM using a causal model when treatment e↵ects are identified by DoC. We

use the Front-Door model of Pearl (2009b) to illustrate the di↵erences in the approaches.

The Front-Door model (31)–(34) consists of three observed variables T,M, Y and an

unobserved confounding variable V. Treatment T causes a mediator M which in turn causes

outcome Y. Confounding variable V causes T, Y but not M.
42

V = fV (✏V ) (31)

T = fT (V, ✏T ) (32)

M = fT (M, ✏M) (33)

Y = fY (M,V, ✏Y ) (34)

The causal e↵ect of T on Y in the Front-door model is identified. This result arises from

the fact that the causal e↵ect of T on M is not confounded by V , and therefore it is identified

by standard methods. Also, conditioning on T blocks the e↵ect of the confounder V on M .

Thus, we can identify the causal e↵ect of M on Y conditional on T . The causal e↵ect of T

on Y can be evaluated as the compound e↵ect of T on M and M on Y .

42As before, the error terms ✏V , ✏T , ✏M , ✏Y in the front-door model (31)–(34) are mutually statistically
independent.

56



Table 20: Using Do-Calculus to Identify the Causal E↵ect of T on Y in the Front-Door
Model

Front-Door Model G Derived DAG GT Derived DAG GM

V

M YT

V

M YT

V

M YT

Derived DAG GM Derived DAG GT ,M Derived DAG GT ,M

V

M YT

V

M YT

V

M YT

We illustrate how to use DoC to identify the distribution of the counterfactual outcome

Ph(Y (t)). For sake of notational simplicity, suppose that all variables are discrete. The

do-calculus is cumbersome. The method requires the five derived DAGs displayed in Ta-

ble 20. The identification formula of the counterfactual outcome is obtained by the following

sequence of steps:

1. T ?? M in GT holds, thus by Rule 2 we have that Pe†(M | do(T )) = Pe(M | T ).

2. M ?? T in GM holds, thus by Rule 3 we have that Pe†(T | do(M)) = Pe(T ).

3. M ?? Y | T in GM holds, thus by Rule 2 we have that Pe†(Y | T, do(M)) = Pe(Y |

T,M)

4. Adding these results, we have that:

) Pe(Y | do(M)) =
X

t

Pe†(Y | T = t, do(M))Pe†(T = t | do(M))

by Law of Iterated Expectations (L.I.E.)

=
X

t

Pe(Y | T = t,M)Pe(T = t) by steps 1,2, and 3

5. Y ?? M | T in GT ,M holds, thus by Rule 2, Pe†(Y | M, do(T )) = Pe†(Y | do(M), do(T ))

6. Y ?? T | M in GT ,M holds, thus by Rule 3, Pe†(Y | do(T ), do(M)) = Pe†(Y | do(M))
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7. Collecting these results, we have that Pe†(Y | Z, do(T )) = Pe†(Y | do(Z), do(T )) =

Pe†(Y | do(M)).

8. Finally, we can use previous results to obtain the following equation:

) Pe†(Y | do(T ) = t) =
X

m

Pe†(Y | M = m, do(T ) = t)Pe†(M = m | do(T ) = t) by L.I.E.

=
X

m

Pe†(Y | do(M)=m, do(T )= t)Pe†(M=m | do(T )= t) by step 5

=
X

m

Pe†(Y | do(M) = m)Pe†(M = m | do(T ) = t) by step 7

=
X

m

✓X

T=t0

Pe(Y | T = t
0
,M=m)P (T = t

0)

◆
Pe(M=m | T = t) by step 4

The Front Door Model in the Hypothetical Model Framework

We now investigate the same front-door model using the hypothetical framework. Table 22

displays the hypothetical model associated with the Front-door model (31)–(34) as a DAG.

The bottom panel of Table 22 presents the LMC for both models.

Table 21: The Empirical and Hypothetical Front-door Models1

Empirical Model Hypothetical Model

V

M YT

V

M YT

T̃

LMC LMC
V ?? �|� V ?? (M, T̃ )

T ?? �|V T ?? (M,Y, T̃ )|V
M ?? V | T M ?? (T, V )|T̃

Y ?? T | (V,M) Y ?? (T, T̃ ) | (V,M)

T̃ ?? (T, V )
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We seek to identify the counterfactual outcome Ph(Y | T̃ = t), i.e., to express Ph(Y | T̃ =

t) in terms of the observed distribution Pe(T,M, Y ). Identification requires us to connect

the probability distributions of the hypothetical and the empirical models. To do so we seek

independence relationships that contain T and T̃ , that is, so that Y ?? T̃ | (M,T ) and

M ?? T | T̃ hold.43 It is also the case T ?? T̃ holds as T̃ is externally specified (exogenous)

and does not cause T . We can then apply rules (12)–(13) to generate the following probability

equalities:

Y ?? eT | ( T , M ) ) Ph

�
Y | eT , T = t0 ,M

�
= Pe

�
Y | T = t0 ,M

�
(35)

M ?? T | eT ) Ph

�
M | eT = t , T

�
= Pe

�
M | T = t

�
(36)

T ?? eT | T ) Ph

�
T = t0 | eT

�
= Pe

�
T = t0

�
(37)

The causal e↵ect of T on Y of the Front-door model is identified through the following

logic:

Ph

�
Y | eT = t

�
=
X

t0,m

Ph

�
Y | m,T = t0 , eT = t

�
Ph

�
m | T = t

0
, eT = t

�
Ph

�
T = t0 | eT = t

�
(38)

=
X

t0 ,m

Pe

�
Y | m,T = t0

�
Pe

�
m | T = t

�
Pe

�
T = t0

�
(39)

Equation (38) is a sum of probabilities defined in the hypothetical model by to applica-

tion of the law of iterated expectation over T and M . Equation (39) replaces each of the

hypothetical model probabilities with empirical model probabilities using rules (12)-(13).

Understanding the Identification Criteria

The identification of the counterfactual outcomes in the Front-door Model stems from the

three independence relationships in (35)–(37). These independence relationships comply

with two general properties that facilitate the identification of the counterfactual outcome.

We clarify the underlying properties that secure identification.

43The first independence condition is due to the LMC Y ?? T̃ | M and (T̃ ,M) ?? (T, V ). The second one
is due to the LMC of M .
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The first property is called alternate conditionals. It refers to the fact that the first

relationship (35) is an independence relationship regarding T conditional on eT . The

second relationship (36) is an independence relationship of eT conditional on T . The last

relationship (37) cycles back. It is an independence relationship regarding T conditional on

eT . This property enables us to translate the probabilities of the hypothetical model into

the probabilities of the empirical model via the connection rules (12)–(13).

The property of alternate conditionals describes an alternating feature to the identifica-

tion equation (39). The first term of (39) is conditioned on T = t0 which refers to the first

conditional T in (35). The identification equation (39) sums t0 over the support of T . The

second term of (39) is conditioned on the treatment value T = t . which refers to the second

conditional T in (36). The value t remains fixed in the summation as it is the value used

to define the counterfactual (Y | T̃ = t ). The last term in (39) alternates. It is conditioned

on T = t0 which refers to the last conditional T in (37) and t0 varies in the summation.

The second property of the set of independence relationships is called bridging and it

refers to the variables other than (T, eT ). The first independence relationship (35) starts with

the outcome Y and conditions on the variable M . The second relationship (36) starts with

M and conditions on no other variable besides T or eT ). We say that variable M bridges

the path between Y and (T, eT ), that is, Y ⇢ M ⇢ (T, eT ). In general terms, bridging

refers to a sequence of nested sets T1 ⇢ · · · ⇢ TK of observed variables in T such that the

property of alternate conditionals Y ?? T̃ | (T, TK), (TK \ TK�1) ?? T | (T̃ , TK�1), . . . , until

T1 ?? T | (T̃ ), or T1 ?? T̃ | T holds. Identification is secured whenever a set of conditional

independence relationships among observe variables in the hypothetical model exhibits the

alternate conditionals and the bridging properties.

We illustrate these ideas for the complex mediation model of Table 22. The model

has three observed mediating variables M1, M2, M3 (instead of M) and three unobserved,

confounding variables V1, V2, V3 (instead of V ).
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Table 22: Using the HM to Identify Counterfactuals

Directed Acyclic Graph of the Empirical Model

V1 V2

T M1 M2 M3 Y

V3

Directed Acyclic Graph of the Hypothetical Model

eT V1 V2

T M1 M2 M3 Y

V3

The following conditional independence relationships hold for the hypothetical model:

Y ?? eT | ( T , M3 ,M2,M1) (40)

M3 ?? T | ( eT , M2 ,M1) (41)

M2 ?? eT | ( T , M1 ) (42)

M1 ?? T | eT (43)

T ?? eT | T (44)

The set of independence relationships (40)–(44) is a set of alternate conditionals. The

first relationship is conditioned on T , the second on eT , followed by T and so on.

The bridging property also holds. The right-hand variable of each independence relation-

ship gives the bridging sequence: Y ⇢ M3 ⇢ M2 ⇢ M1 ⇢ T. We can define the nested

sets T1 = {M1}, T2 = {M1,M2}, T3 = {M1,M2,M3}, to rewritten (40)–(44) as:

Y ?? eT | ( T , T3 ) (45)

T3 \ T2 ?? T | ( eT , T2 ,M1) (46)
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T2 \ T1 ?? eT | ( T , T1 ) (47)

T1 ?? T | eT (48)

T ?? eT | T (49)

The law of iterated expectations and independence relationships (40)–(44) enable us to

express the counterfactual probability Ph(Y | eT ) as:

Hypothetical Model Ph(Y | eT = t ) =
P

t0 ,m3,m2,m1
Ah · Bh · Ch ·Dh · Eh,

where: Ah = Ph(Y | m3,m2,m1, T = t0 , eT = t )

Bh = Ph(M3 = m3 | m2,m1, T = t0 , eT = t )

Ch = Ph(M2 = m2 | m1, T = t0 , eT = t )

Dh = Ph(M1 = m1 | T = t0 , eT = t )

Eh = Ph(T = t0 | eT = t )

The connection rules (12)–(13) enable us to translate hypothetical probabilities into em-

pirical probabilities. The identification equation displays the alternative pattern of values t

and t
0 in the same fashion as the identification equation of the Front-door model:

Empirical Model Pe(Y ( t )) =
P

t0 ,m3,m2,m1
Ae · Be · Ce ·De · Ee,

where: Ae = Pe(Y | m3,m2,m1, T = t0 )

Be = Pe(M3 = m3 | m2,m1, T = t )

Ce = Pe(M2 = m2 | m1, T = t0 )

De = Pe(M1 = m1 | T = t )

Ee = Pe(T = t0 )

Comparing DoC and HM Frameworks

Both DoC and HM employ structural equations and describe causal models with both ob-

served and unobserved variables. They clearly separate the task of defining counterfactuals

and identifying them. Both frameworks enable analysts to disentangle the tasks of causal
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analysis in Table 1. Both frameworks employ scientific knowledge to define causal models

(Task 1) and the structural equations that underlie the approach.

There are, however, some distinct practices in DoC and HM. When DoC fixes a treatment

variable, it eliminates the variable from the joint distribution of variables. All the DoC

analysis is done within the empirical model so generated.

HM does not eliminate the equation for the treatment variable. Instead, it adds a hy-

pothetical variable. The presence of both treatment and hypothetical variables in the HM

framework facilitates the study of the causal e↵ects. They readily analyze both external

manipulation and conditioning, such as the treatment on the treated, whereas this is outside

the scope of DoC. It facilitates examination of causal inference for direct and indirect e↵ects

in which the hypothetical variable replaces some but not all the treatment inputs of the

structural equations. DoC needs to invent new rules to undertake those tasks. For each

combination of conditioning variables.

The identification of causal e↵ects (Task 2) requires connecting the hypothetical model

with the empirical model. HM employs two statistical implications to connect the probability

distributions of the hypothetical and empirical models. HM implications remain within the

realm of standard statistical theory and do not require invocation of non-probabilistic DAG-

based rules.

The DoC machinery consists of three DAG-based rules. It constructs a series of possible

DAGs. Each of them constitutes a causal model that modifies the empirical model. Each

modification of the empirical model corresponds to introducing a new set of conditional

independence relationships. The search for the combinations of DAGs and conditional in-

dependence relationships are required to identify counterfactuals grows exponentially. An

algorithm has been developed to perform this task.44 Calculations with HM are simpler than

those based on DoC. They rely on a single modification of the original DAG, as encoded in

44See Pearl (2009b).

63



the hypothetical model instead of a growing list of DAGs to implement the three guiding

rules of DoC.

DoC relies critically on DAGs, conditional independence relationships, and a special set

of rules. The HM machinery remains within the statistical realm to make statistics converse

with causality. In doing so, the method is capable to accommodate assumptions that explore

functional form restrictions or distributional assumptions outside the scope of DoC.

7 Simultaneous Causality

The Generalized Roy model is usually expressed as a recursive model.45 However, simulta-

neous causality is a property of many economic models. Examples of such models include

social interactions, general equilibrium, Walrasian market clearing, or simultaneous play in

Nash models of industrial organization are staples of economic theory (see, e.g., Mas-Colell

et al., 1995). These type of models are ignored in most discussions of causality in the NR lit-

erature. The NR approach commonly invokes the Stable Unit Treatment Value Assumption

(SUTVA), which excludes the possibility of interaction between agents.46

It is instructive to consider these models because they challenge the approximating ap-

proaches in the literature, but are easily analyzed in econometric causal policy analysis. The

pioneering econometric models featured simultaneity. Many of the core ideas are ignored or

remain unknown to the followers of the approximating approaches, which rely on recursive

formulations, and are considered as essential features of causal models. In fact, these are at

best only convenient assumptions for analyzing causal models, used as special by economists

for generations.47

45See, however, Brock and Durlauf (2007); Heckman (1978).
46See, for instance, Imbens and Rubin (2015).
47See Strotz and Wold (1960).
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Simultaneous causality is an essential feature of structural equation models.48 The LIS-

REL model of Jöreskog (1973) allows for simultaneity, measurement error and latent variables

proxied by measurements as discussed in Section 4.

The structural systems typically consist of two parts: (a) an autonomous system ex-

pressed in terms of latent variables (Bollen, 2002) and (b) a measurement system. The

measurement system proxies the latent variables. The first part of the structural system

consists of structure for person i:

⌘i = ↵⌘ + �⌘i + ��i + !i (50)

where ⌘i, "i, �i are vectors of latent variables. The measurement system consists of vectors

of measurements:

Measurement:

8
>><

>>:

yi = ↵y +⇤y⌘i + "i (measurement for ⌘i)

�i = ↵x + �xU = ⇠i (measurement for �i)

These models have been extended to time series and panel data settings (see e.g. Bollen,

1989; Goldberger and Duncan, 1973).

In a valuable paper, Bollen and Pearl (2013) exposit this system of equations as a causal

model with simultaneity and show how various measurent systems use factor models and

other approaches to proxy the latent variables which may be the variables measured with

error or omitted variables, like ability in an earnings equation, or technical e�ciency in

a production function. They dispel many misguided criticisms of the structural approach

lodged by advocates of the NR approach. These systems are equipped to use cross equation

restrictions and covariance restrictions to secure identification of causal parameters.

This literature is rich and we lack the space to exposit it thoroughly. We note that

these systems illustrate–in linear equation models–an approach for proxying V as previously

discussed. It is also an approach for studying mediation where analysts can study how

48See Goldberger (1972) and Goldberger and Duncan (1973).
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interventions on �i percolate through equation system (43). Schennach (2020) summarizes

a large literature on nonparametric factors and proxy models.

Instead of a general exposition of these systems, we consider a simple simultaneous equa-

tions model due to Haavelmo (1944). We consider a system of two autonomous causal

(structural) equations:

Y1 = gY1(Y2, X1, U1, ✏1) (51)

Y2 = gY2(Y1, X2, U2, ✏2) U1 �?? U2. (52)

We use this system to demonstrate how causality can be analyzed in simultaneous systems.

This system of equations gives two maps: gY1 : (Y2, X1, U1) ! Y2; gY2 : (Y1, X1, U2) ! Y2.

Y1 and Y2 could be actions of a pair of interacting agents.49 To simplify the discussion,

we assume that both equations are twice continuously di↵erentiable. This is a convenience

and not a necessity. The model of equations (51)–(52) are treated in a special way in the

DoC approach. We focus on a two equation system to simplify the exposition. Models with

multiple simultaneous equations are standard in the literature (see, e.g., Bollen, 1989; Fisher,

1966; Goldberger and Duncan, 1973; Koopmans et al., 1950; Theil, 1958, 1971).

Equations (51) and (52) are assumed to be structural, i.e., invariant under manipulations

of their arguments, so they are stable, autonomous maps. Policies consist of manipulations

of their arguments.

In the classical model of market clearing equilibrium, Y1 is price; Y2 is quantity and X1,

X2, U1, and U2 are causal determinants. Equations (51) and (52) are generated by thought

experiments varying the arguments and tracing out the outcomes. Thus, (51) is the market

price that is consistent with hypothetical values Y2, X1, U1. (52) is the analogous relationship

for quantity. The addition of unobserved (by the economist) variables U1 and U2 is made in

anticipation of empirical applications. In the peer e↵ects literature, Y1 and Y2 are behaviors

of two interacting agents (e.g., smoking or drug use).

49In the literature on peer e↵ects, simultaneous equation problems are relabeled “reflection problems.”
See Manski (1993); Mo�tt (2001).
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In terms of our previous notation, the variable set is Te = {Y1, Y2, X1, X2, U1, U2}.

Me(Y1) = {Y2, X1, U1}) andMe(Y2) = {Y1, X2, U2}). The empirical and hypothetical models

are displayed as DAGs in Table 23 given by:

Table 23: Empirical and Hypothetical Causal Models

Empirical Model Hypothetical Model

X2 Y2 Y1 X1

U2 U1

Ỹ2Ỹ2

X2 Y2 Y1 X1

U2 U1

Ỹ2Ỹ1

The LMC condition breaks down so the Bayesian net approach fails. “Fixing” and the

hypothetical model approach readily extend to a system of simultaneous equations for Y1 and

Y2, whereas the fundamentally recursive methods based on DAGs require special treatment.

7.1 Completeness

“Completeness” assumes the existence of at least a local solution for Y1 and Y2 in terms of

(X1, X2, U1, U2):

Y1 = �1(X1, X2, U1, U2) (53)

Y2 = �2(X1, X2, U1, U2). (54)

These are reduced form equations (see, e.g., Koopmans et al., 1950; Matzkin, 2008, 2013).

They inherit the autonomy properties of the structural equations. Completeness is a property

that guarantees the conceptual possibility of simultaneity, which is not necessarily guaran-

teed. If it fails, the existence of consistent solutions to (51) and (52) is not guaranteed.

Nonetheless autonomous correspondences may still exist and they can be used to make set-

valued causal inferences.50

50See, e.g., Heckman (1978); Quandt (1988); Tamer (2003).
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The causal e↵ect of Y2 on Y1 when Y2 is fixed at y2 is generated by

Y1(y2) = gY1(y2, X, U1).

Symmetrically, the causal e↵ect of Y1 on Y2 when Y1 is fixed at y1 is generated by:

Y2(y1) = gY2(y1, X, U2).

The relationships (51) and (52) can be defined even if they might not be identified or

estimated. The completeness assumption says that there are values of X1, X2, U1, U2 that

generate values of Y1, Y2 consistent with (51) and (52). These involve hypothetical variations.

For certain models no such sets of variables may exist.

7.2 Can We Hypothetically Vary Y2 and Y1?

If Y2 and Y1 are simultaneously determined, the notion of varying Y2 to change Y1 may seem

impossible. Pearl (2009a) preserves his focus on recursive models and addresses this problem

in a very special way by assuming structural invariance and “shutting one equation down,”

assuming the rest of the system remains unchanged. Thus, for example, equation (52) is

suspended, but (51) is maintained. This is consistent with the logic of do-calculus, which

eliminates relationships from systems, assuming invariance of the remaining system. He

sets Y2 to a constant that can be manipulated in (51). This thought experiment converts

a simultaneous system into a recursive system with all other equations assumed to hold as

before.

This approach is cumbersome and strains credibility in many interlinked economic con-

tents (e.g., person 1 influences 2, but not vice versa) but is logically possible. It is unnecessary

if exclusions in (51) and (52) are used. To show this, we define exclusion of X2 in (51) as
@gY1

@X2
= 0 for all (Y2, X1, X2, U1).51 Exclusion of X1 in (52) is defined as

@gY2

@X1
= 0 for all

(Y1, X1, X2, U2). Implicit is the assumption that components of X1 and X2 can be varied.

Under completeness and exclusion X2 from (52), by the chain rule, the causal e↵ect of Y2 on

51Or more generally, X2 is not an argument of gYN .
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Y1 is

@gY1

@Y2
=
@Y1

@X2

�
@Y2

@X2
=
@'1

@X2

�
@'2

@X2
.

We may define and identify causal e↵ects for Y1 on Y2 in an analogous fashion. Variations

in X1 and X2 that respect completeness define the causal parameters when the components

ofX1 andX2 can be independently varied.52 No implausible “shutting down” of any equation

in a system and assuming autonomy of the remaining system is required.

This logic is now standard and is the basis for an estimation technique, “indirect least

squares” (see Theil, 1958 and Tinbergen, 1930, 1939). It demonstrates the flexibility of

the econometric approach for defining and identifying causal parameters outside the narrow

world of DAGs. Fisher (1966) gives a range of approaches for identifying systems like (51)

and (52) using restrictions within and across equations for observables and unobservables.

7.3 Econometric Mediation Analysis

We have already discussed mediation analyses in recursive models. These notions extend to

models with simultaneity. Under completeness, reduced forms (53) and (54) estimate the

net e↵ect of a policy change X1:

@Y1

@X1
=
@�1(X1, X2, U1, U2)

@X1
. (55)

Following Klein and Goldberger (1955) and Wright (1921, 1934), we can conduct “medi-

ation analyses” that address problem P-2 and trace the impact of an externally manipulated

X1 on Y1, both through its direct e↵ect on (51) and its indirect e↵ect through Y2:

@Y1

@X1
=

✓
@gY1

@Y2

◆

| {z }
From

Structure

✓
@Y2

@X1

◆

| {z }
From Reduced

Form| {z }
Indirect e↵ect
through Y2

+
@gY1

@X1|{z}
From Structure| {z }
Direct e↵ect

=
@�1(X1, X2, U1, U2)

@X1

52Assuming that the completeness condition is part of the thought experiment. In some contexts it may
be ruled out as not credible.
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This approach can be readily applied to recursive systems and general multiple equation

systems. Reliance on linear equations, while traditional in the literature, is not necessary

and nonparametric approaches are available.53

Mediation is a staple of econometric policy evaluation to examine all channels of influence

of variables (see, e.g., Theil, 1958). All of the tools used to analyze simultaneous equations

are available to estimate these models (See e.g., Amemiya, 1985; Fisher, 1966; Matzkin,

2007).

8 Conclusion

This paper presents the basic framework of the econometric model for causal policy analysis.

We discuss the definition of causal parameters and approaches to their identification within

it. We consider two approximations to it that are current in the literature on causal inference

and their relationship with the econometric approach.

The econometric model is based on clearly stated and interpretable models of behavior

that adequately characterize the lessons of economic theory and allow for testing it, for syn-

thesizing evidence on it from multiple sources, constructing credible policy counterfactuals,

including forecasting policy impacts in new environments and forecasting the likely impacts

of policies never previously implemented. The econometric approach delineates the definition

of causal parameters and their identification as two separate tasks.

The two approximating approaches are: (a) the Neyman-Rubin approach rooted in the

statistics of experiments, and (b) the do-calculus that originated in computer science. Both

arc recent developments that attempt to address some of the same problems tackled by

the econometric approach. Each has important, but di↵erent, limitations. Neither has the

flexibility or clarity of the econometric approach.

53See Matzkin (2008, 2013, 2015) for nonparametric analyses of such systems.
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All start from the basic intuitive definition of a causal e↵ect as a ceteris paribus conse-

quence of a policy change. However, the rules of constructing and identifying counterfactuals

are very di↵erent.

The do-calculus invokes a special set of rules for identifying causal parameters that lie

outside of probability theory and that use a limited class of identifying assumptions for be-

havioral equations. It relies heavily on recursive directed acyclic graphs and assumptions

about conditional independence. Its rigid rules preclude the use of many traditional tech-

niques of identification and estimation.

The Neyman-Rubin approach eschews the benefits of structural equations and many

fruitful strategies for their identification. Reflecting its origins, it casts all policy problems

into a “treatment-control” framework. In some versions, it conflates issues of definition

with issues of identification. Its lack of reliance on structural equations with explicit links

to theory and explicit analyses of unobservables, makes it di�cult to interpret estimates

obtained from it or to analyze well-posed economic questions with it using the large toolkit

of modern econometrics.

Economics has a rich body of theory and tools to address policy problems. Applied

economists would do well by using the impressive set of conceptual tools available from

econometric theory.
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