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a small bias. Our analysis goes beyond the usual uniform-quadratic setting: we un-

cover how the state-dependent bias and the non-uniform state distribution influence

the precision with which each state of the world is communicated. We illustrate the

approach by providing novel comparative statics results in different applications.

Keywords: Strategic Communication, Small Bias

JEL Classifications: C72, D82, D83

*Previous versions of this paper were titled “Slightly Biased Communication” and “Strategic Communi-

cation by Moderates and Extremists”. I thank Benjamin Born, Inga Deimen, Sidartha Gordon, Johannes

Hörner, Daniel Krähmer, Stephan Lauermann, Joel Sobel and, especially, Dezső Szalay for helpful comments
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1 Introduction

The study of strategic information transmission has proven to be useful in analyzing a

number of economic phenomena, such as central bank announcements and communication

within organizations. The analysis typically focuses, among other aspects, on understand-

ing how different primitives—such as the degree of incentive misalignment or the type

of information transmitted—affect the equilibrium communication and the corresponding

welfare implications.

Most of the cheap-talk literature (reviewed below) analyzes variations of the uniform-

quadratic case of the Crawford and Sobel (1982, henceforth CS) model.1 The main reason

for restricting the focus to the uniform-quadratic case is technical rather than concep-

tual; the discreteness of the equilibrium construction makes the analysis of more general

settings difficult and, in many cases, impossible. Still, in most cases, not only does the

restriction engender a significant loss of generality, but it also limits the potential insights

that studying strategic communication can provide.

This paper takes a different approach with the aim of deepening our understanding

of strategic communication and its implications for equilibrium behavior and welfare. We

develop new tools to provide a complete first-order characterization of equilibrium behav-

ior in a general version of the CS model, under the assumption that the conflict of interest

is small. We show that equilibrium communication can be approximated by a simple lin-

ear differential equation describing how the primitives of the model affect the imprecision

with which each state is communicated. We illustrate the usefulness of our approach by

providing new comparative statics results in different applications of the CS model.

Our analysis is useful in applications where communication between agents is plau-

sibly not very coarse. For example, institutions and contracts are designed, in part, to

improve the objective alignment of different agents, and hence improve the precision of

the information transmitted through either internal communication (e.g., intra-firm in-

formation transmission) or external communication (e.g., central bank announcements).

Reputation mechanisms (not modeled in our setting) can also align the incentives of dif-

ferent agents, and improve communication as a result.

In the general version of the CS model, a sender observes a one-dimensional state of the

world θ ∈ [0,1] distributed according to some distribution F, sends a cheap-talk message to

a receiver, and the receiver takes a one-dimensional action. Their payoff depends only on

1Some papers partially relax the uniform-quadratic assumption; see the literature review below.
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the state of the world and the action taken. The bias at each state θ—that is, the difference

between the ideal actions of the sender and the receiver when state θ is realized—is β b(t),

where β>0 is the “size of the bias” and b(θ) is the “shape of the bias”. Like the majority

of the previous literature, we focus most (but not all) of our analysis on Pareto efficient

equilibria. Our goal is to characterize communication in settings where β is small.

Our first result provides a first-order approximation of the equilibrium information

transmission. We characterize the imprecision by which each state of the world θ is com-

municated relative to the size of the bias.2 It is measured as the squared length of the

equilibrium interval containing it divided by β. When β is small, the imprecision approxi-

mates a function c(θ), called the coarseness of communication. Notably, c(·) can be obtained

solving a simple first-order linear differential equation. Such an equation establishes that

the marginal change of the coarseness of communication at θ is proportional to the differ-

ence between two terms. The first term is the shape of the bias at θ, b(θ), so a positive

bias tends to make the information transmission coarser in higher states. Intuitively, the

sender does not have the incentive to over-report (when the bias is positive) only if higher

states are communicated more coarsely. The second term depends on the distribution, and

can be interpreted as an endogenous bias of the receiver. It is given by the deviation of

the action he chooses from the center of the equilibrium interval containing θ. This term

is positive when high states are more likely; in this case the receiver tends to take higher

actions. Therefore, the net bias—the difference between the bias of the sender and the

endogenous bias of the receiver—determines the direction towards which the equilibrium

information transmission becomes less precise. If, for example, the bias is positive and the

density function is increasing, different states are communicated similarly precisely.

We next introduce the concept of communicable state: a state with zero coarseness of

communication. We prove the existence and generic uniqueness of a communicable state,

which is not necessarily the state with smallest bias. We express coarseness of communi-

cation as a cumulative process that accumulates (and sometimes de-accumulates) as the

state moves away from the communicable state. The rate at which communication dete-

riorates depends on whether the net bias at the state points toward, or in the opposite

direction of, where the communicable state. In the first case, communication becomes

more coarse at states away from it, while the reverse is true in the second case. The loca-

2As first Spector (2000) showed, the CS model admits equilibria with precise information transmission when

the preferences of the sender and the receiver are close. Our result pins down both the rate of convergence

and the state-dependent precision.
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tion of the communicable state then has a crucial role in determining the effect of changes

on the bias or the distribution of states.

Comparative statics results. We illustrate our methodology by providing two novel

comparative statics results, motivated through some applications of the CS model.

The first result characterizes the effect that reductions in the bias have on how infor-

mation is transmitted in equilibrium. We ask whether the conventional wisdom that a

higher incentive alignment leads to better communication—which is true in the uniform-

quadratic case—applies in general. We show that communication is always better, for

example, when objectives become uniformly more aligned across states. Sometimes, nev-

ertheless, decreasing the incentive misalignment in some states worsens communication,

and we characterize the conditions for this to occur. This happens, for example, when the

sender prefers actions closer to an agreement state than the receiver’s desired actions, as

when a central banker communicates with the private sector. We argue that appointing

a new central banker who is equally hawkish on high inflation but more lenient on low

inflation may worsen communication and, as a result, reduce the payoff of all agents.

Our second result characterizes the optimal role assignment of biased agents in a com-

munication setting. This corresponds, for example, to the assignment of differently effi-

cient workers to different tasks in a new project, one focussed on obtaining information

and the other focussed on deciding the joint effort. The role assignment influences the

equilibrium information transmission between them—reversing their roles reverses the

sign of the bias of the sender and also the position of the communicable state. We show

that, when the bias is monotone, the role assignment that makes bias increasing maxi-

mizes the communication efficiency. This has the implication that assigning the worker

with a lower cost of effort to be the sender is optimal.

1.1 Literature review

Our paper contributes to the cheap-talk literature on the strategic information transmis-

sion between a sender and a receiver, first formalized by Crawford and Sobel (1982). The

CS model, which has become the workhorse model of the cheap-talk literature, considers a

natural communication setting and characterizes the form of its equilibria. Still, due to its

lack of tractability, many papers have focused on their attention in the uniform-quadratic-

constant case. Some exceptions are the following. Melumad and Shibano (1991), who

show that when the bias is linear, if there is enough disagreement between the sender
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and the receiver, communication may make the sender worse off. Alonso and Matouschek

(2008) shows that, also in the case where the bias is linear, equilibria with an infinite

number of messages may exist. Gordon (2010) generalizes the finding to “outward biases”

and characterizes the conditions for the existence of equilibria with an infinite number of

states. Alternatively, Szalay (2012) studies how changes (spreads/shifts) in the distribu-

tion of states affect communication under some restrictions on the payoff and distribution

functions. Another strand of the cheap-talk literature allows for a state-dependent bias or

a non-uniform distribution of states, while changing the economic problem to be studied.

Examples are Admati and Pfleiderer (2004) and Kawamura (2015) (where the receiver

is unsure of the sender’s competence); Ottaviani (2000) (where the receiver is naive with

some probability); Morgan and Stocken (2003), Li and Madarász (2008), Dimitrakas and

Sarafidis (2005), and Deimen and Szalay (2019) (where the bias is constant but uncertain);

and Deimen and Szalay (2014) (where the sender and the receiver do not know the state

of the world and disagree on the relative importance of multiple informative signals). We

contribute to this literature by providing new techniques and results to study the basic

problem of strategic information transition between two rational agents when their con-

flict of interest is small, while keeping the model in its general form. The tractability of

our approach allows us to provide new comparative statics, which shed light on how the

different components of the model shape equilibrium communication and welfare.3

The paper is organized as follows. After this introduction, Section 2 presents the base

model and some preliminary results on the case where the bias is small. Section 3 pro-

vides the analysis and main results of the CS model with a small bias, and Section 4

presents some applications of the model and comparative statics results. Finally, Section

5 discusses the assumption of small bias and concludes. Appendix A contains the proofs of

all results in the paper. Appendix B generalizes the results to arbitrary payoff functions

and provides a characterization of inefficient equilibria.

3There are other papers where which study cheap-talk models with equilibria where information trans-

mission is very precise. For example, Battaglini (2004), Eso and Fong (2008) and Ambrus and Lu (2014),

discuss models where multiple senders imperfectly observe the state and obtain that fully revealing equi-

libria may exist. Ottaviani and Squintani (2006), Kartik, Ottaviani, and Squintani (2007), Kartik (2009)

and Chen (2011), assume that messages are payoff-relevant, effectively transforming the communication

problem into a signaling one. Models with noisy communication such as Blume, Board, and Kawamura

(2007) contain equilibria with an uncountable number of partitions. Finally, Dilmé (2018) analyzes opti-

mal languages where there is no bias between the sender and the receiver and studies the case where the

number of available messages for communication is large.
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2 Base model

2.1 Setting

We consider a setting analogous to Crawford and Sobel (1982). There is a sender and a

receiver. First, nature draws a state of the world (or type) θ from a set Θ≡ [0,1] using an

absolutely continuous distribution F with a continuous, strictly positive and differentiable

probability density function f with a bounded derivative. The sender observes the state

and chooses a message m ∈ M, where M is an infinite set. The receiver only observes the

message sent by the sender and then she chooses an action a ∈R.

We first focus our analysis on the case where, for each given outcome of the game

(θ,m,a) ∈Θ×M×R, the payoff of the sender is us(θ,a)≡−(a−θ−β b(θ))2, while the payoff

of the receiver is ur(θ,a) ≡ −(a−θ)2, where β > 0 is the “size of the bias” and b :Θ→ R is

the “shape of the bias,” which is assumed to be Lipschitz-continuous and has a finite or

countable number of zeros. Paralleling the assumptions in Crawford and Sobel (1982), we

assume that θ+β b(θ) is increasing in θ. This specification allows us to focus our initial

attention on how the bias and the state distribution affect equilibrium communication.

Appendix B shows that the analysis holds for more general payoff functions.

Definition 2.1. An (Bayes-Nash) equilibrium of our game is a pair of functions µ :Θ→
∆(M) and α:M →∆(R) such that

1. Sender’s Optimality: µ ∈ argmaxµ′ Eθ,a[us(θ,a)|µ′,α] and

2. Receiver’s Optimality: α ∈ argmaxα′ Eθ,a[ur(θ,a)|µ,α′],

where Eθ,a refers to the expectation with respect to the variables θ and a.

An equilibrium 〈µ,α〉 is a partition equilibrium if the positive-measure elements of

{µ−1(m)|m ∈ M} form an interval partition of Θ (each of its elements is called a partition

element). As Crawford and Sobel (1982) shows, all equilibria are “essentially equivalent”

(i.e., generate the same joint distribution of states and actions) to partition equilibria, and

we call them just equilibria.4 We use [θn,θn+1) to denote a generic partition element of

an equilibrium. It will be convenient to use [τ(θ),τ(θ)) to denote the partition element

containing state θ. Finally, α(θn,θn+1) will denote the equilibrium action of the receiver in

[θn,θn+1), and α(θ)≡α(τ(θ),τ(θ)) the equilibrium action when the realized state is θ.

4For the payoff functions considered in this section, the crucial requirements for this result to hold are that

(i) b(θ) is only zero in a finite set, and (ii) θ+β b(θ) is increasing. See Section B.1 for the conditions in the

general case.
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3 Communication under small conflict of interest

This section characterizes the outcomes of Pareto-efficient equilibria when the bias is

small. Our results are enough to characterize the main properties of equilibrium commu-

nication in settings with low objective misalignment between the sender and the receiver.

3.1 Equilibrium construction

Before analyzing the case where the bias is small, we briefly review how equilibria are

constructed in the CS model. A standard result is that, for a given strictly increasing

tuple (θn)N
n=0, the collection {[θn−1,θn)|n=1, ..., N} is the set of partition elements for some

finite partition equilibrium if and only if θ0 =0, θN =1, and for all n there is α(θn,θn+1)

satisfying5

α(θn,θn+1) ∈ argmax
a

∫ θn+1

θn

f (θ)
F(θn+1)−F(θn)

ur(θ,a) dθ , (3.1)

us(θn,α(θn−1,θn)
)= us(θn,α(θn,θn+1)

)
. (3.2)

The first equation corresponds to the optimality condition of the receiver: she chooses an

optimal action given her belief about the realization of the state of the world. The second

equation corresponds to the sender’s optimality condition: it requires him to be indifferent

between the equilibrium actions of two consecutive intervals of the equilibrium partition

when the state of the world is their common boundary.

Equations (3.1)-(3.2) aggregate state-dependent properties (likelihood, bias,...) of the

states of each of the partition intervals. Furthermore, the boundary requirements (θ0 = 0

and θN = 1) impose a global condition. This makes it difficult, in general, to characterize

the solutions of the system of difference equations. Additionally, the discrete nature of the

difference equation implies small local changes in the primitives of the model may gen-

erate a discontinuous change in the equilibrium outcomes. Our analysis overcomes these

difficulties by transforming the system of difference equations into a single differential

equation. We obtain explicit solutions of the differential equation, which correspond to

approximate solutions of the system of difference equations when the bias is small.

5It is convenient for simplicity (and notationally) to focus the arguments in the main text on finite equilibria.

Our results also are valid when equilibria with an infinite number of partition elements are considered

(their proofs accommodate this case).
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We will focus our analysis on studying efficient equilibria, that is, equilibria satisfying

that there is no other equilibrium where both the sender and the receiver obtain a higher

payoff, one of them strictly (a standard argument involving sequences of equilibria shows

that such equilibria exist). The reasons for focussing on these equilibria are the following.

First, they give us a lower bound on the size of the distortion that strategic communication

generates, which have made them the object of study of much of the previous literature.6

Second, they provide us with a natural way to compare communication for different prim-

itives of the model, given the usual equilibrium multiplicity that communication models

have. As we will see, even though there may be multiple efficient equilibria, they all

have similar properties when the bias is small. Appendix B generalizes some results to

non-efficient equilibria.

3.2 Main result

We begin presenting our main result, which gives an approximation of how coarse com-

munication is in an efficient equilibrium as a function of the primitives of the model:

Proposition 3.1. There is some θ∗∈[0,1] such that, for any efficient equilibrium,

β−1 (τ(θ)−τ(θ))2 ≈ c(θ) ≡
∫ θ
θ∗ 8 b(θ′) f (θ′)2/3 dθ′

f (θ)2/3 for all θ ∈Θ , (3.3)

where “≈” means “equal except for terms that vanish as β→ 0.”7

Proposition 3.1 achieves a notable feat: it characterizes, in a first-order approximation,

how coarsely information is transmitted in an efficient equilibrium with a simple integral

expression. The left hand side of equation (3.3) is the square of the length of the interval

of states it communicates, that is, it measures how imprecise the information that the

message communicating state θ transmits is. On its right hand side we see that, if the

bias is small, we can approximate such imprecision with the function c(·), which we call

6In the same way that we argue that institutions (such as firms) which benefit from better communication

of their agents may try to reduce their bias (so the bias of our model is the residual bias which cannot be

eliminated through institutional design), they may also try to induce agents to play equilibria which are

not Pareto dominated.

7In the statement, “for any efficient equilibrium” means that “for any sequence (βi)i strictly decreasing to

0, corresponding sequence of efficient equilibria (indexed by i) and θ ∈ Θ, limi→∞
(

(τi(θ)−τi(θ))2

βi − c(θ)
)
= 0”.

Also, we use the conventional notation that
∫ y

x =−∫ x
y whenever x > y.
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coarseness of communication (we describe below how θ∗ is pinned down).8 We now explain

why Proposition 3.1 holds, and afterwards we exemplify how it can be used to obtain novel

economic insights.

Uniform distribution: To obtain an intuition for Proposition 3.1, we first consider the

case of a uniform distribution. Fix an equilibrium and consider two consecutive messages

with partition elements [θn−1,θn) and [θn,θn+1), respectively. If the realized state is θn,

the sender is indifferent between the actions a(θn−1,θn) and a(θn,θn+1), so they must be at

the same distance of his ideal action θn +β b(θn) (recall equation (3.2)). Since the receiver

takes the middle action in each of the intervals, it must then be that

τ(θ)+β b(θ)− τ(θ)+τ(θ)
2

= τ(θ)+τ(θ)
2

− (
τ(θ)+β b(θ)

)
(3.4)

for all θ ∈Θ, where τ(θ) indicates the upper bound of the partition element next to [τ(θ),τ(θ)),

and αs(θ) ≡ θ+β b(θ) indicates the optimal action for the sender in state θ. The previous

expression can be finally rewritten as

β−1 (τ(θ)−τ(θ))2 − (τ(θ)−τ(θ))2

τ(θ)−τ(θ)
≈ 8 b(θ) for all θ ∈Θ . (3.5)

Equation (3.3) (with f ≡ 1) follows from the previous expression. Hence, since c(θ) ≈
β−1 (τ(θ)−τ(θ))2, we have that (3.5) becomes

c′(θ)= 8 b(θ) for all θ ∈Θ . (3.6)

This equation is equivalent to equation (3.3).

Non-uniform distribution: We now consider the case where the distribution is not uni-

form. Fix a small β, an efficient equilibrium, and a state θ. The receiver’s optimal action

within an equilibrium interval is close to the center of such an interval. Indeed, since f

is differentiable, its variation in [τ(θ),τ(θ)) is small. As a result, since f is also bounded

away from 0, the receiver’s problem of choosing her optimal action within such a small in-

terval approximates the uniform-quadratic-constant case (where the optimal action is in

the middle of the interval). The following proposition shows that the deviation of the re-

ceiver’s optimal action from the middle point of the interval can be approximated without

the need of explicitly computing an efficient equilibrium:

8The fact that communication can be precise when the preferences of the sender and the receiver are close

was first established in Spector (2000).
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Proposition 3.2. For any efficient equilibrium,

β−1
(
α(θ)− τ(θ)+τ(θ)

2

)
≈ 1

12
f ′(θ)
f (θ)

c(θ)︸ ︷︷ ︸
≡α̂(θ)

for all θ ∈Θ . (3.7)

The normalized deviation of the optimal action of the receiver from the middle of the

interval, α̂(θ) defined in equation (3.7), can be interpreted as an endogenous bias of the

receiver. It encodes the effect that the distribution of states has in communication. If

the distribution is uniform, the receiver’s optimal action lies in the middle of the interval,

hence α̂(θ)=0. If, for example, f is decreasing, the receiver is willing to take a relatively

low action within each equilibrium interval in order to minimize her payoff loss, so in this

case α̂(θ)<0. Such an incentive is proportional to the coarseness of communication as,

ceteris paribus, a bigger partition element means a higher deviation of the expected state

from its center.

The receiver’s deviation from the center of the interval enters both sides of equation

(3.4). Proceeding as before, we can rewrite (3.6) as

c′(θ)= 8
(
b(θ)− α̂(θ)

)
for all θ ∈Θ . (3.8)

Hence, the change in the coarseness of communication is proportional to the difference

between the bias of the sender, b(θ), and the (endogenous) bias of the receiver, α̂(θ), that

is, the endogenous misalignment of interest between them.

To give further intuition for equation (3.8), take two consecutive partition elements,

[θn−1,θn) and [θn,θn+1). Consider first the case where α̂(θn) = 0 and b(θn) > 0. The sender

is indifferent between the equilibrium actions α(θn−1,θn) and α(θn,θn+1) when the state is

θn only if they are at the same distance from αs(θn) ≡ θn +β b(θn) > θn. Also, given that

α̂(θn) = 0, the action taken by the receiver in each equilibrium interval is very close to

its middle. Hence, the middle of the interval [θn−1,θn) is closer to θn than the middle of

the interval [θn,θn+1), so θn−θn−1 < θn+1−θn and therefore c′(θn) > 0. Since the sender is

positively biased, he is indifferent between reporting the low and the high message only if

the higher equilibrium interval is bigger.

A similar argument applies in the case α̂(θn) < 0 and b(θn) = 0 (so f is decreasing). In

this case, the equilibrium actions are at the left of the middle of the intervals. Thus, again,

imposing such actions to be at the same distance of the optimal action of the sender when

the state of the world is θn, we have θn−θn−1 < θn+1−θn. A decreasing state distribution

has the same effect than a positive bias: the sender is indifferent on sending the low or

the high message only if the higher equilibrium interval is bigger.
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Coarseness of communication: Equation (3.7) establishes that, since the receiver’s

endogenous bias only depends on the value of the primitives of the model “within” each

partition element, it can be approximated by the local changes of the density function.

Conversely, equation (3.8) illustrates how the change of the coarseness of communication

“between” two equilibrium intervals is shaped by the sender’s bias through the indiffer-

ence condition (3.2). Together they determine how the coarseness of communication accu-

mulates and de-accumulates through the state space, and can be written as

c′(θ)= 8
(
b(θ)− 1

12
f ′(θ)
f (θ)

c(θ)
)

for all θ ∈Θ . (3.9)

Any solution of (3.9) is characterized by its value at θ = 0, denoted c0, as follows:

c(θ; c0)= f (0)2/3

f (θ)2/3 c0 +
∫ θ

0 8 b(θ′) f (θ′)2/3 dθ′

f (θ)2/3 for all θ ∈Θ . (3.10)

It is clear that there is some c0 such that, c(θ; c0)≥ 0 for all θ if and only if c0 ≥ c0.

Communicable state: Equation (3.9) illustrates how the coarseness of communication

changes across states as a function of the primitives. Indeed, take an increasing sequence

(θn)N
n=0 satisfying the incentive equations (3.1) and (3.2). Then, if β is small enough,

c(θn;β−1 θ2
1) approximates the β−1 (θn −θn−1)2 for all n = 1, ..., N. (Note that, since θ0 = 0,

equation (3.3) establishes that c(0) is approximately equal to β−1 θ2
1.) The proof of Propo-

sition 3.1 shows that, in fact, for any c0 ≥ c0, if β is small enough there is some (not

necessarily efficient) equilibrium where the squared size of the interval containing θ is

approximately equal to β multiplied by c(θ).9

Given our focus on efficient equilibria, the coarseness of communication corresponds to

the smallest non-negative solution of equation (3.9), that is, c(·; c0). Such solution can be

written as in expression (3.3) for some (generically unique) state θ∗, called the communi-

cable state, which satisfies c(θ∗; c0)=0.

There are only few states with the potential of being the communicable state. Given

that c(θ∗) = 0 and that c(θ) ≥ 0 for all θ, the communicable state is a minimum of c(·).
From equation (3.8) and the fact that α̂(θ)=0 whenever c(θ)=0, we have that the commu-

nicable state is either 0 (only possible if b(0)≥ 0), or 1 (only possible if b(1)≤ 0), or it is an

agreement state (as defined in Gordon, 2010); that is, satisfies b(θ∗) = 0. Note that, in the

third case, the bias must be locally outward (also as defined in Gordon, 2010) with respect

9Formally, for any non-negative solution c(·; c0) of equation (3.9) and sequence (βi)i ↘ 0, there is correspond-

ing sequence of equilibria (indexed by i) and θ ∈Θ such that limi→∞
(
(τi(θ)−τi(θ))2/βi − c(θ; c0)

)= 0.

11



to the agreement state; that is, the sender prefers actions which are further away from

the agreement action a=θ∗ than the receiver.10 Intuitively, since θ∗ is a minimum of c(·),
the communication is less precise in states further away from θ∗. Such decrease in the

communication precision compensates the sender’s incentive to deviate toward messages

inducing actions further away from the agreement action a=θ∗. On the contrary, when

the bias is inward with respect to an agreement state (i.e., the sender prefers actions closer

to the agreement state), such agreement state is never a communicable state. Hence, for

example, if there is a unique agreement state θ̂, then θ∗= θ̂ if and only if and the bias is

outward with respect to θ̂.

The examples in Section 3.4 illustrate the location of the communicable state for linear

biases. Section 4 illustrates that the location of the communicable state plays a very

important role on determining the properties of equilibrium communication.

3.3 Equilibrium payoffs

The payoffs of the sender and the receiver are obtained by computing the expected payoff

loss they suffer across the state space. We define the normalized payoffs of the sender and

the receiver in an equilibrium as follows:

U s≡−β−1
∫ 1

0

(
α(θ)−θ−β b(θ)

)2 f (θ) dθ and U r≡−β−1
∫ 1

0
(α(θ)−θ)2 f (θ) dθ .

Observe that the difference between the ideal actions of the sender and the receiver is

O(β), as well as the deviation of the equilibrium action from the center of each partition

element (recall equation (3.7)). Also, the typical length of a partition element is, instead,

O(β1/2) (recall equation (3.3)). So, conditional on the state belonging to a given partition

element, the expected payoff of both the sender and the receiver is equal to the variance

of a uniform distribution in [0,1] (equal to 1
12 ) multiplied by the squared length of the

interval, that is, it can be approximated by − 1
12 β c(θ). The previous observations are

formalized in the following result about the sender’s and receiver’s equilibrium payoffs:

Proposition 3.3. The equilibrium payoffs of both the sender and the receiver in an efficient

equilibrium satisfy

U s≈U r≈−
∫ 1

0

c(θ)
12

f (θ) dθ . (3.11)

10Formally, the bias is locally outward with respect to θ∗ if there is a neighborhood (θ,θ) 3 θ∗ such that

b(θ)<0 for θ∈(θ,θ∗) and b(θ)>0 for θ∈(θ∗,θ). The definition of (locally) inward is analogous.
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Proposition 3.3 shows that the contribution of a state θ to the payoff of both the sender

and the receiver is approximately the same, and is given by the multiplication of two

terms: 1
12 c(θ) measures the coarseness of communication transmission of state θ, and f (θ)

measures how likely the state is (see Appendix B for its generalization for arbitrary payoff

functions). Hence, both the sender and the receiver benefit from better communication

(lower c), especially when communication is more precise in likely states.11

3.4 Examples

This section provides three examples to illustrate how the coarseness of communication

depends on the shape of the bias and the distribution of states.

Example 3.1 (Uniform distribution and constant bias). In order to gather some intuition

on Proposition 3.1, consider the standard case where the bias is constant, and states of the

world are uniformly distributed. This example is solved in Section 4 of Crawford and Sobel

(1982). For the sake of clarity, we fix b(·) ≡ 1 and focus on the sequence (βi)i satisfying

βi = 1
2i2 for each i ∈N. In this instance, the thresholds of the equilibrium intervals in the

unique efficient equilibrium are given by

θi
n = n2

i2 = 2 n2 βi for n = 0, ..., i.

Notice that θi
n is a quadratic function of n, so the increments θi

n+1 −θi
n are linear in n or,

equivalently, linear in (θi
n)1/2. As a result, in the efficient equilibrium, the squared length

of a partition element is given by

(θi
n+1 −θi

n)2

βi = 8 θi
n +8 (βi)1/2

√
2 θi

n +4 βi︸ ︷︷ ︸
→ 0 as i →∞

. (3.12)

In this case, θ∗ = 0 and c(θ)= 8 θ for all θ ∈ [0,1], so equation (3.3) holds.

11Under the (non-equilibrium) communication strategy α(θ)= θ, the payoff loss of the sender is O(β3/2) (note

that equation (3.11) implies that it is O(β) for efficient equilibrium communication), while the payoff loss

of the receiver is 0. Hence, Proposition 3.3 generalizes the findings of Ottaviani (2000) and Dessein (2002)

(that the receiver prefers delegation to communication when the bias is small) to a general set of payoff

functions for the sender and the receiver (our result also applies for general loss functions, see Appendix

B). We stress that this insight also applies to the sender: when the bias is small, he obtains an equilibrium

payoff lower than if the receiver was fully informed about the state of the world and she took her preferred

action.

13



θ

b

11
2

0

θ

c

10 1
2

(a) (b)

Figure 1: (a) depicts different linear biases, while in (b) we have the corresponding coarseness of

communication for a uniform distribution.

Example 3.2 (Uniform distribution and linear bias). Figure 1 illustrates how the shape

of the bias determines communication by providing some examples of linear biases.When

the bias is constant, the coarseness of communication increases in the direction of the bias

(dotted and dashed lines). When the bias is increasing (black line), the sender has the

incentive to exaggerate the states towards extreme states. This implies that equilibrium

partition elements need to be bigger in more extreme states while intermediate states can

be communicated very precisely. The gray lines of the figure show that when, instead, the

bias is decreasing with a zero at 1
2 , c(·) is increasing for low states, while it is decreasing

when the state is above 1
2 , so information is more coarsely transmitted in intermediate

states. In this case, the coarseness of communication reaches its maximum when the bias

is smallest (in absolute value), that is, when θ = 1
2 .12

Example 3.3 (Constant bias and linear distribution). We finally consider the case of a

constant bias and a probability density of the form fλ(θ) ≡ 2λ+ 2 (1− 2λ) θ for all θ ∈
Θ, for some λ ∈ [0,1]. Figure 2 depicts fλ for some values of λ and the corresponding

coarseness of communication cλ, for a constant bias b = 1 (and so θ∗ = 0).13 When λ= 1
2

12Note that in this case there are two communicable states, 0 and 1. As Proposition 3.1 states, this is a non-

generic case. Indeed, the fact that c(0) = c(1) = 0 is a consequence of the (anti)symmetry of the bias with

respect to the middle of the state space. Kawamura (2015) makes similar observations as our example (for

“overconfident” and “underconfident” senders instead of “outward” and “inward” biases).

13Note that this specification does not satisfy our assumptions; namely, that fλ is not strictly positive when

λ ∈ {0,1}. Nevertheless, it is not difficult to see that, as λ tends to 0 or 1, the corresponding coarseness of

communication converges to the illustrated value.
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Figure 2: (a) depicts fλ for different values of λ (see Example 3.3), while in (b) we have the

corresponding coarseness of communication for b = 1.

the distribution of states is uniform, and so Example 3.2 applies. In this case, c(θ) =
8 θ. When λ=0, the distribution function is increasing, and α̂(·) is positive as a result.

Hence, the sender’s bias and the endogenous bias of the receiver have the same sign. Such

endogenous objective alignment improves communication with respect to the case λ= 1
2 .

Finally, when λ=1, the density function is decreasing, and so α̂(·) is negative. In this case,

the decreasing distribution increases the difference between the sender’s and receiver’s

biases, hence making equilibrium communication worse than for the previous cases.

4 Comparative statics

4.1 Lowering the objective misalignment

In strategic communication models, the size of the bias is typically perceived to be the

main source of the inefficiency of the equilibrium information transmission between the

sender and the receiver. This common view, which is right when the bias is constant,

suggests that if the conflict of interest between the sender and the receiver decreases,

there are equilibria where both of them are better off.14 This section analyzes how this

view extends to a non-constant bias and obtains that, in some cases, a lower incentive

alignment may lead to worse communication.

To study the effect of reducing the conflict of interest, we define a reduction of the

14In the uniform-quadratic-constant case, for example, increasing the absolute value of the bias reduces the

maximum number of messages used in equilibrium, and makes communication less precise.
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bias as follows. A reduction of the bias b in a set Θ′ ⊂ [0,1] is a bias function b̂ such that

b̂(θ)= b(θ) for all θ ∉Θ′ and b̂(θ)= ν(θ) b(θ) for some ν(θ) ∈ (0,1] for all θ ∈Θ′. Notice that a

reduction of the bias (weakly) lowers the objective misalignment between the sender and

the receiver, as it makes their (state-dependent) ideal actions closer. Notice also that a

reduction of the bias does not change the sign of the bias, but only the size of the incentive

misalignment between the sender and the receiver. The following result characterizes the

effect of a reduction of the bias:

Proposition 4.1. Consider a reduction of the bias in a set Θ′ ⊂ [0,1] which does not change

the communicable state θ∗. Then, if the bias is inward with respect to θ∗ in Θ′, the coarse-

ness of communication weakly increases in all states of the world [0,1]. The opposite is true

if the bias is outward with respect to θ∗ in Θ′.

We begin with two observations that shed light on Proposition 4.1. The first observa-

tion is that if the communicable state is unique (which happens generically), small bias

reductions leave the communicable state the same. In fact, it is not difficult to see that,

if b is weakly increasing, then (not necessarily small) bias reductions never change the

communicable state, while when b is decreasing they may change the communicable state

from one extreme to the other. The second observation is that, by the expression for c(·)
in equation (3.3), the coarseness of communication in a given state of the world θ is de-

termined by the shape of the bias between the state and the communicable state. As a

result, a local change in the value of the bias around a state θ only affects the coarseness

of communication of the states further away from the communicable state. This implies

that, for example, if there is a reduction of the bias in some set [0,θ]⊂ [0,θ∗] which keeps

θ∗ the same, such a reduction does not affect the coarseness of communication of states

in [θ,1]. The position of θ∗ is then crucial to determine how equilibrium communication

changes when the bias function changes.15

Proposition 4.1 is particularly relevant when the sender has an inward bias with re-

spect to some state θ̂. This is perceived to be the case, for example, for the communication

from central bankers to the private sector. The state θ can be a short-term optimal policy

given the state of the economy, such as the optimal investment level, or interest/exchange

15Note that when the bias is single-signed then it is always outward with respect to the communicable

state. In this case, Proposition 4.1 establishes that reductions of the bias always improve communication.

This result is consistent with the findings in Chen and Gordon (2015), who analyze a version of the CS

model where the sender and the receiver hold different prior beliefs. They show that when the objective

misalignment decreases (they use “nestedness”) the receiver’s expected equilibrium payoff increases.
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Figure 3: Illustration of Proposition 4.1. Subfigure (a) plots four biases, all inward with respect

to 3
5 , where the gray, dashed and dotted line are biases resulting from local reductions of the black

line. In (b) we depict the corresponding coarseness of communication. In (c) we depict the coarse-

ness of communication corresponding to switching the roles of the agents, that is, multiplying by

−1 all the biases.

rate, while θ̂ may be the long-term goal. The action a corresponds to the response of the

private sector to the announcement (e.g., investment). While, under an adequate normal-

ization, the private sector may prefer investments that match θ, the forward-looking cen-

tral bank prefers a combination between the short-term and long-term efficient policies.

Hence, the bias of the sender is “inward” toward the state θ̂.16

For a bias inward with respect to θ̂, communication is most precise at the extremes.

Indeed, the incentive of the central banker to lie towards θ̂ is prevented, in equilibrium,

by making communication of middle states less precise. Figure 3 provides an example of

the bias and the coarseness of communication (black solid lines in subfigures (a) and (b)).

Assume now the central banker is replaced. The new central banker is equally con-

cerned about low states (e.g., concerned about depressions or high inflation), but more

16See Blinder, Ehrmann, Fratzscher, De Haan, and Jansen (2008) for an extensive survey of central bank

communication. They explain that “as it became increasingly clear that managing expectations is a central

part of monetary policy, communication policy has risen in stature from a nuisance to a key instrument in

the central banker’s toolkit”, and acknowledge that moderating or stabilizing the market’s behavior is one

of the implicit, and sometimes explicit, goals of central bankers. Knütter, Mohr, and Wagner (2011) and

Born, Ehrmann, and Fratzscher (2014) provide empirical evidence that central bank’s communication has

important effects on stock prices and financial stability. See Stein (1989) and Moscarini (2007) for cheap-

talk models of central banks’ communication where the central bank, instead of aiming at stabilizing the

exchange rate or inflation and has, as a result, the incentive to downplay its private information.
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lenient on high states. This corresponds to the dotted lines in Figure 3 (a) and (b). It is

then intuitive that the communication of states in [0, θ̂] remains the same: the incentive

compatibility constraints do not change in this region. However, this implies that higher

states are communicated less precisely. The reason is the following. If the precision of

communication for higher states were to remain the same, the new central banker would

have the incentive to over-state the value of θ.17 In the new equilibrium, the incentives

of the central banker are kept by slowing the rate at which the precision communication

increases in the upper region of the state space.

Figure 3 (b) illustrates that communication improves for all states if the new central

banker is instead more lenient in low states (gray lines). Now, the incentive constraints

are relaxed for lower states, which implies that middle states are communicated more pre-

cisely, and the communication of high states is also more precise as a result. If we keep

shrinking the central banker’s bias in lower states, there is a moment where the communi-

cation of the highest states becomes very precise. Formally, the communicable state jumps

from 0 to 1 at this point. After this point, the logic described above applies for lower states:

making the central banker more lenient on lower states worsens communication. Even if

the bias is very small for lower states (dashed lines), their equilibrium communication

needs to be imprecise to keep the incentive compatibility constraints of the central banker

at middle and high states.

When, on the contrary, the sender has an outward bias (with respect to a state θ̂),

reducing the size of the bias always improves communication. Indeed, in this case, the

communicable state coincides with θ̂, which implies that the coarseness of communication

increases toward extreme states (see equation (3.3)). As a result, any reduction of the bias

lowers the distortion that extreme states generate, which results in an improvement of

the equilibrium communication. By Proposition 3.3, such improvement of the equilibrium

communication increases the payoffs of both the sender and the receiver.

Figure 3 (c) shows the effect of the previous reductions of the bias if all the biases in

Figure 3 (a) are multiplied by −1, which is equivalent to assume that the sender and the

receiver swap their roles. In this case the bias is outward with respect to θ̂, which now

coincides with the communicable state. By Proposition 4.1, all local reductions of the bias

17Intuitively, for two consecutive equilibrium intervals of high states, the action corresponding to the higher

interval is closer to the threshold state than the action corresponding to the lower interval, because the

bias is negative on [θ̂,1]. If the sender becomes less biased on [θ̂,1], the threshold type becomes more

willing to take the upper action, hence the upper interval becomes larger in equilibrium.
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improve communication. Notice that, when the reduction is extreme in one of the sides of

the communicable state (dashed line), communication becomes very precise in this side of

the state space.

The effect of a reduction of the bias affecting both inward and outward states with

respect to θ∗ is, in general, ambiguous. In the case of a uniform reduction of the bias–i.e.,

multiplying the bias in all states by the same multiplying factor in (0,1)–, the effect is

nevertheless clear: it decreases the coarseness of communication in all states by the same

multiplying factor. There is then a sense in which the conventional wisdom that a higher

objective alignment improves communication.

4.2 Role assignment for better communication

In this section we study situations where the assignment of the roles of sender and re-

ceiver to agents is a choice variable of a third party. Re-assigning roles changes the sign

of the relative bias of the sender and the receiver, and therefore the communicable state

and equilibrium information transmission. We ask which role assignment minimizes the

payoff loss from communication (recall that, by equation (3.11), the sender’s and receiver’s

payoffs are approximately proportional to the negative of the expected coarseness of com-

munication).

Proposition 4.2. Let f be uniform and let c(·;b) denote the coarseness of communication

for each bias shape b. Then, if b is increasing, E[c(θ̃;b)]≤ E[c(θ̃;−b)].

Proposition 4.2 may be surprising at first sight, since both the state space and the dis-

tribution function are symmetric around state 1
2 . Nevertheless, note that the monotonicity

of b determines whether the bias points toward the states with more agreement or not,

and hence is preserved under reversals of the state space.18 When b is increasing, the

communicable state is equal to 0 if b is always positive, equal to the agreement state if b

has a zero, and equal to 1 if b is always negative (see, for example, Figure 1). Hence, if b

is increasing, the bias is outward with respect to the communicable state, which coincides

a the state with highest objective agreement (i.e., θ∗ is a minimum of |b(·)|). When b is

decreasing, instead, the communicable state is equal to 1 if b is always positive, equal to

either 0 or 1 if b has a zero, and equal to 0 if b is always negative. A decreasing bias is

then inward with respect to the communicable state.

18Indeed, reversing the state space through the transformation ρ(θ)= 1−θ implies that the new bias at θ is

1−θ−β b(1−θ)− (1−θ)=−β b(1−θ). Then, if b is strictly increasing, so is −b◦ρ, and c(θ;b)=c(ρ(θ);−b◦ρ).
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To provide an intuition for Proposition 4.2, consider the following example. A firm has

to assign two workers (managers) to different tasks (divisions) for a new project. One task

(sender) involves obtaining and transmitting information about the output-maximizing

effort level, θ, while the other task (receiver) requires acquiring the expertise of how to

implement the joint effort, and deciding its level a. Absent of effort costs, both workers

want the effort to match the state. Nevertheless, we assume that each worker i ∈ {1,2}

incurs a small quadratic cost of effort ki a2, where ki≥0. We assume that k1<k2, so agent

1 is more efficient than agent 2. Their utility functions are:

ui(θ,a) = −(a−θ)2 −ki a2 = − ki
1+ki

θ2 − (1+ki)
(
a− 1

1+ki
θ
)2 .

If the more efficient worker is assigned to be the sender, the bias is positive and in-

creasing (and equal to
( 1

1+k1
− 1

1+k2

)
θ), hence the communicable state is θ∗=0. Low states

are communicated precisely and the incentive to over-report the state is prevented, in

equilibrium, with a coarser communication of high states. Importantly, the increase in the

coarseness of communication is slow in low states, since the bias is small in this region.

If, instead, the less efficient worker is the sender, the bias is multiplied by −1, and the

communicable state becomes θ∗ = 1. In this case, the incentive to under-report implies

that low states are communicated less precisely. Crucially, now the increase of the coarse-

ness toward low states is fast in the states which are communicated more precisely.19 As

a result, the overall coarseness of communication is higher in the second case, and hence

both agents are better off when the more efficient agent is assigned to be the sender.

The previous example can be generalized to the case where workers differ on the cost

of choosing a state different from some state θ̂i∈Θ (in the previous example, θ̂1=θ̂2=0):

ui(θ,a) = −(a−θ)2 −ki (a− θ̂i)2 .

The state θ̂i could be interpreted as a long-term idiosyncratic goal, while ki ≥ 0 captures

the willingness to compromise long-term versus short-term optimal investments.20 In

19Intuitively, when the sender is the efficient worker, the “most disruptive” states (the ones with the high-

est objective misalignment) are at the opposite extreme of the state space than the communicable state,

and therefore the distortion they generate in communication is minimal. The opposite occurs when the

inefficient worker is the sender: in this case, the bias is maximal at the communicable state.

20The differences in θ̂’s and k’s could follow from the workers being at different stages of their career. For

example, Ottaviani and Sørensen (2006) show that, in a contest (winner takes all) theory of forecasting,

forecasters may have the incentive to exaggerate their information, while in a reputational theory of

forecasting, they have the incentive to shade it towards the prior mean.
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this case, it is easy to see that assigning the less foresighted agent (with smaller ki) to

be the sender improves communication, irrespective of the value of θ̂1 and θ̂2. The bias is

small at the communicable state under this role assignment, so the overall coarseness of

communication increases slower than when the roles are reversed.

5 Conclusions

Our paper shows that studying communication under the assumption that the bias is

small preserves the fundamental tradeoffs that strategic communication transmission in-

volves while significantly adding tractability to the analysis. We shed light on the sub-

tleties that studying communication implies.

When the bias is not big, neighboring states should be communicated with similar pre-

cision since, otherwise, the sender has the incentive to deviate when the realized state

is supposed to be communicated imprecisely. Similarly, the incentive to over- or under-

report the state is prevented, in equilibrium, by an increasing or decreasing imprecision

of the language, respectively. These two intuitive rules sometimes interact in non-trivial

ways. In central bank communication, a smaller bias in some states may make the in-

formation transmission more coarse. In joint projects, assigning more efficient or less

forward-looking workers to undertake tasks involving communication may improve the

project’s output.

The application of the new tools and results to other cheap-talk settings, such as com-

munication with multiple senders or dynamic information transmission, is left to future

research.
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A Proofs

A.1 A preliminary result

We begin with a preliminary result in our base model which is going to be useful for the rest of the

proofs. The result claims that, for a fixed shape of the bias b and decreasing sequence of bias sizes

(βi)i, the size of the largest interval of a sequence of equilibria decreases at most as fast as (βi)1/2.

Lemma A.1. Fix a sequence (βi)i converging to 0 from above, and a corresponding sequence of (not-

necessarily efficient) equilibria, where for each i ∈N we use {θi
n|n = 0, ..., N i} to denote the set interval

thresholds of the i-th equilibrium (in the model with bias βi b(·)). Then, we have

lim inf
i→∞

maxn
∣∣θi

n+1 −θi
n
∣∣

(βi)1/2 > 0 .

Proof. Assume, for simplicity, that
∫ 1

0 |b(θ)| dθ = 1 (note that b and β can be normalized so that

this condition is satisfied). Fix a sequence (βi)i and a corresponding sequence of equilibria. Fix a

state θ̄ ∈ (0,1) such that |b(θ̄)| > 1/2. Assume, for simplicity, that θ̄ can be chosen so that b(θ̄) > 0

(otherwise the argument is analogous). It is convenient to use [θi
0,θi

1) to denote the equilibrium

interval containing θ̄ in the i-th equilibrium, while allowing the index a partition element to be

negative, so the i-the equilibrium thresholds are {θi
n|n =−N i−, ..., N i+}.

Step 1: We first prove that liminfi→∞
maxn(θi

n+1−θi
n)2

(βi)2 > 0. By the indifference condition of the sender

(equation (3.2)) and the symmetry of his payoff function we have, for all n = N i−+1, ..., N i+−1,

θi
n +βi b(θi

n)−α(θi
n−1,θi

n)=α(θi
n,θi

n+1)−θi
n −βi b(θi

n) ,

where α is defined in equation (3.1). Since α(θi
n−1,θi

n) ∈ (θi
n−1,θi

n) and α(θi
n,θi

n+1) ∈ (θi
n,θi

n+1) for all

n,21 we have that

θi
1 −θi

0 >α(θi
0,θi

1)−θi
0 = θi

0−α(θi
−1,θi

0)+2 βi b(θi
0)≥ 2 βi b(θi

0)>βi .

So, it follows that liminfi→∞
maxn(θi

n+1−θi
n)2

(βi)2 ≥ liminfi→∞
(θi

1−θi
0)2

(βi)2 ≥ 1> 0.

Step 2: We now assume that liminfi→∞
maxn(θi

n+1−θi
n)2

(βi)2 = q2, for some q ∈R++. Fix Q ≡ dqe ∈N. Notice

that, since θ̄ ∈ (0,1), Q is independent of i. For this reason, if i is large enough, θi
−Q > 0. Using the

sender’s indifference condition at the bounds of the equilibrium intervals (equation (3.2)) and the

fact that, for all n,

α(θi
n,θi

n+1)= θi
n +θi

n+1

2
+O((θi

n+1 −θi
n)2)

21This is a consequence of the single peakedness of ur and the fact that, for each given state θ, the action

which minimizes the payoff loss of the receiver is a = θ.
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we obtain:

α(θi
−Q ,θi

−Q+1)+θi
−Q+1 +βi b(θi

−Q+1)= θi
−Q+1 +βi b(θi

−Q+1)−α(θi
−Q+1,θi

−Q+2)

⇒ θi
−Q+1 −θi

−Q = θi
−Q+2 −θi

−Q+1 −4 βi b(θi
−Q+1)+ o(βi) .

As i increases, since b is Lipchitz continuous with a Lipchitz constant independent of i, we have

that βi b(θi
n)=βi b(θi

0)+ o(βi) for all n ∈ {−Q, ...,0}. Thus, recursively using the previous formula Q

times, we obtain

θi
−Q+1 −θi

−Q = θi
1 −θi

0 −4

=Q βi b(θi
0)+o(βi)<Q βi /2+o(βi)︷ ︸︸ ︷
0∑

n=−Q+1
βi b(θi

n) +o(βi)

< θi
1 −θi

0 −Q 2 βi + o(βi) < 0 .

This is a clear contradiction.

Step 3: Assume finally liminfi→∞
maxn(θi

n+1−θi
n)2

βi = 0 but liminfi→∞
maxn(θi

n+1−θi
n)2

(βi)2 = +∞. Let us

define, for each i ∈ N, Q i ≡ ⌈
(βi)−1/2⌉

. Since, by assumption, θi
1 − θi

0 = o((βi)1/2), we have that

limi→∞θi
0 −θi

−Q i = 0, so in particular β bi(θi
n) > βi/4 for all n =−Q i, ...,0 if i is high enough. Using

again the indifference condition for the receiver we now have that, as i →∞,

θi
−Q i+1 −θi

−Q i = θi
1 −θi

0 −
Q i∑

n=1
4 βi b(θi

−n)+ o(βi)

< θi
1 −θi

0 −
1

(βi)1/2 4
βi

4
+ o((βi)1/2)= θi

1 −θi
0 − (βi)1/2 + o((βi)1/2) .

This is a contradiction again since, when i is high enough, the right hand side of the previous

expression is negative.

A.2 Proofs of the results in Section 3

Proof of Propositions 3.1-3.3

Proof. We fix a sequence (βi)i strictly decreasing to 0 and a bias function b. It is convenient to

define ∆i ≡ (βi)1/2 for all i.

Lemma A.1 shows that, as i increases, the length of the longest equilibrium interval of an

equilibrium decreases at most as fast as ∆i. In this proof, we show that for any sequence of efficient

equilibria such a length decreases exactly as ∆i, and we use it to prove statements of Propositions

3.1-3.3 and B.2 (steps 5 to 8).

Step 1: The difference equation. Fix some γ0 ∈R++. We now fix some i, and the corresponding

∆i. Then, we define θi
0 = 0 and γi

0 = γ0 and, for all n ∈N, we define θi
n and γi

n iteratively from θi
n−1

and γi
n−1 as follows:
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1. θi
n ≡ θi

n−1 +∆i γi
n−1.

2. Using the previous equation for θi
n, γi

n is obtained solving

θi
n + (∆i)2 b(θi

n)−α(θi
n−1,θi

n)=α(θi
n,θi

n +∆i γi
n)− (θi

n + (∆i)2 b(θi
n)) (A.1)

when it exists, where α is defined in equation (3.1). Notice that for any given θi
n−1 and θi

n, if

γi
n solving (A.1) exists, it is uniquely defined, since α(θi

n, ·) is strictly increasing. A value γi
n

solving (A.1) does not exist only if one of the following two cases holds. The first case is when

the right hand side of the equation is bigger than the left hand side even when θi
n+∆i γi

n = 0:

in this case we set γi
n =−θi

n/∆i, so θi
n′ = 0 and γi

n′ = 0 for all n′ > n. The second case is when if

the right hand side is smaller than the left hand side even when θi
n +∆i γi

n = 1: in this case

we set γi
n = 1−θi

n
∆i , so θi

n′ = 1 and γi
n′ = 0 for all n′ > n.

For each pair (θ,γ) ∈ Θ×R, let gi(θ,γ) be such that equation (A.1) holds when θi
n−1, θi

n and

γi
n are replaced, respectively, by θ, θ+∆i γ and γ+∆i gi(θ,γ) (with the values described above

when no solution of (A.1) exists). Note that, while γi
n ≡ θi

n−θi
n−1

∆i is indicative of how fast θ changes,

g(θi
n−1,γi

n−1)≡ γi
n−γi

n−1
∆i is indicative of how fast γ changes.

The first-order condition for the receiver’s optimality (equation (3.1)) is

0=
∫ θi

n+1

θi
n

f (θ̃)
F(θn+1)−F(θn)

2 (θ̃−α(θi
n,θi

n+1)) dθ̃ .

The previous integral can be approximated using a first-order approximation of the distribution

function. Hence, replacing f (θ̃) by f (θn)+ (θ̃−θn) f ′(θn)+O((θ̃−θn)2), we obtain

α(θi
n,θi

n+1)− θi
n+θi

n+1
2 = 1

12
f ′(θi

n)

f (θi
n)

(θi
n+1 −θi

n)2 +O((θi
n+1 −θi

n)3) (A.2)

as i →∞. Using this approximation and equation (A.1), we can also approximate g as

gi(θ,γ)= 4 b(θ)− γ2

3
f ′(θ)
f (θ)

+O(∆i) ,

which allows us to write the system of difference equations described above as

θi
n+1 = θi

n +∆i γi
n , (A.3)

γi
n+1 = γi

n +∆i
(
4 b(θi

n)− (γi
n)2

3
f ′(θi

n)

f (θi
n)

)
+ o(∆i) . (A.4)

Step 2: Solution to the difference equation as i → 0. We now apply standard difference

equations analysis to approximate the solution to the difference equation by a differential equation.
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It then follows (see Theorem 1.1 in Iserles (2009)) that there exist two functions θ̃(·) and γ̃(·) such

that, for all s > 0 we have22

lim
i→∞

max
s′∈[0,s]

(|θi
ds′/∆ie− θ̃(s′)|+ |γi

ds′/∆ie− γ̃(s′)|)= 0 ,

and θ̃ and γ̃ satisfy the following differential equations for all s > 0 such that θ̃(s) ∈ (0,1)

θ̃′(s)= γ̃(s) , (A.5)

γ̃′(s)= 4 b(θ̃(s))− γ̃(s)2

3
f ′(θ̃(s))
f (θ̃(s))

, (A.6)

with initial conditions θ(0) = 0 and lims↘0 θ̃
′(s) = γ̃(0) = γ0, and γ(s′) = 0 for all s′ > s whenever

θ̃(s) ∈ {0,1} for some s > 0. From now on, we use (θ̃(·;γ0), γ̃(·;γ0)) to denote the solutions of (A.5)-

(A.6) satisfying such boundary conditions.

Step 3: Existence of θ∗ (as defined in Proposition 3.1). The following result establishes that

there is some value γ̄0 such that, for all γ0 > γ̄0 we have that θ̃(·;γ0) is strictly increasing. As

indicated in the proof, this implies the existence of θ∗.

Lemma A.2. There exists some γ̄0 ≥ 0 such that: γ0 > γ̄0 if and only if there exists some s∗(γ0) > 0

satisfying θ̃(s∗(γ0);γ0)= 1 and γ̃(s;γ0)> 0 for all s ∈ [0, s∗(γ0)].

Proof. For a fixed γ0 > 0, let’s define

s∗(γ0)= sup
{

s
∣∣ θ̃(s′;γ0)< 1 and γ̃(s′;γ0)> 0 for all s′ ∈ [0, s]

} ∈ R̄++ .

So, θ̃(·;γ0) is strictly increasing in (0, s∗(γ0)). Then, we can rewrite equation (A.6) in terms of

c̃(θ;γ0)≡ γ̃(θ̃−1(θ;γ0);γ0)2, so it is easy to verify that c̃(·;γ0) satisfies equation (3.9) on (0, s∗(γ0)).

Note first that two of different solutions of (3.9) cannot coincide in a state since, otherwise,

by the Picard-Lindelöf theorem, they would coincide everywhere. As a result, for all θ, c̃(θ;γ0) is

strictly increasing in γ0. Now, for the sake of contradiction, assume that limγ0→∞ c̃(θ;γ0) = K <∞
for some θ ∈ Θ. Standard ODE analysis guarantees that there is a solution of the equation (3.9)

satisfying c̃(θ;γ0) = K + ε for all ε > 0, which is a contradiction. So, if γ0 is high enough, the

solution of (3.9) satisfies c̃(θ;γ0) > 0 for all θ ∈ Θ, and as a result γ̃(s;γ0) > 0 for all s ∈ [0, s∗(γ0)]

and θ̃(s∗(γ0);γ0) = 1. We then have that γ̄0 = inf{γ0 > 0|c̃(θ;γ0) > 0 ∀θ ∈ [0,1]}, so we have that

c̃(θ; γ̄0)≥ 0 and c̃(θ∗; γ̄0)= 0 for a (generically unique) state θ∗ ∈Θ.

22Notice that the right hand side of equation (A.4) is not Lipschitz-continuous, since the partial derivative

with respect to γi
n when it is large is unbounded. Nevertheless, one can make it Lipschitz-continuous by

simply replacing “(γi
n)2” by “max{K , (γi

n)2} for some big K > 0, to then, one can apply Theorem 1.1 in Iserles

(2009). Given that, in an equilibrium, c is bounded, it is easy to see that if K is big enough this has no

effect on our results.
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Step 4: Properties of γ̄0. We now present some properties of γ̄0. Fix some γ0 > γ̄0. Let N i(γ0)

be the smallest so that the right hand side of equation (A.1) (for n = N i(γ0)) is higher than the left

hand side even when θN i(γ0)+1 = 1. Notice that, given our previous results, N i(γ0) exists if i is high

enough, and N i(γ0)=O((∆i)−1). In fact, N i(γ0) can be approximated as follows:

N i(γ0)=
N i(γ0)∑
n=1

1=
N i(γ0)∑
n=1

∫ θi
n

θi
n−1

1
θi

n −θi
n−1

dθ = 1
∆i

∫ 1

0

1
γ̃(θ;γ0)

dθ+O((∆i)0) . (A.7)

Note further that, if γ0 > γ′0 > γ̄0 and i is high enough, then N i(γ0)< N i(γ′0).

In the system of difference equations (A.3)-(A.4), (θi
n,γi

n) are continuous functions of γ0. As a

result, for a fixed γ0 ≥ γ̄0, there exists a sequence (γi
0)i converging to γ0 such that θi

N i(γ0) = 1, that

is, where the strictly increasing sequence (θi
n)N i(γ0)

n=0 forms the thresholds of the partition elements

of an equilibrium for each i. This indicates that, for any γ0 ≥ γ̄0 and sequence ∆i ↘ 0, there exists a

sequence (γi
0)i converging to γ0 and a sequence of equilibria such that θi

1−θi
0 = γi

0 ∆i. Furthermore,

for any sequence of such equilibria, θi
n+1−θi

n =∆i γ̃(θ̃−1(θi
n);γi

0)+o(∆i) for all n. It is also clear that,

if γ0 < γ̃0, there is no such a sequence, since γ̃(θ,γ0)< 0 for some θ ∈Θ.

Fix γ0 ≥ γ̄0 and a sequence of equilibria such that limi→∞
θi

1−θi
0

∆i
= γ0. Recall that, as we defined

in the proof of Lemma A.2, c̃(θ;γ0) = γ̃(θ̃−1(θ;γ0);γ0)2, and that γ̃(θ̃−1(θ;γ0);γ0) is increasing in γ0

for all θ ∈ [0,1]. Also, we have that (τi(θ)−τi(θ))2 = c̃(θ;γ0) (∆i)2 + o((∆i)2). We can then compute

the payoff of the receiver as follows:∫ 1

0
ur(θ,α(τi(θ),τi(θ))) f (θ) dθ =−

∫ 1

0

(τi(θ)+τi(θ)
2

−θ
)2

f (θ) dθ+ o((∆i)2)

=−
∫ 1

0

(τi(θ)+τi(θ)
2

−θ
)2

f (τi(θ)) dθ+ o((∆i)2)

=−
∫ 1

0

(
τi(θ)−τi(θ)

)2

12
f (τ(θ)) dθ+ o((∆i)2)

=−(∆i)2 1
12

∫ 1

0
c(θ;γ0) f (θ) dθ+ o((∆i)2) (A.8)

where, for the third equality, we used that
∫ τi(θ)
τi(θ)

(
τ(θ)+τ(θ)

2 − θ̃
)2

dθ̃ = 1
12 (τi(θ)−τi(θ))2. The expected

payoff loss of the sender can be calculated analogously. Hence, for any two values γ0 > γ′0 ≥ γ̄0, and

for two sequences of equilibria with γi
0 = γ0 + o((∆i)0) and γ′i0 = γ′0 + o((∆i)0), respectively, we have

that there is some ī such that the i-th equilibrium the second sequence gives a higher payoff to

both the sender and the receiver than the i-th equilibrium in the first sequence for all i ≥ ī.

Step 5: Proof of Proposition B.2. The first statement in Proposition B.2 follows from Step 4.

The following lemma implies the second statement of Proposition B.2:

Lemma A.3. Fix, for each i ∈N, an equilibrium in the model with bias bi(·) = (∆i)2 b(·). Let N i be

number of messages used the i-th equilibrium, assume it is finite for each i, and that N i →∞ as
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i →∞. Then, if limi→∞∆i N i = 0, then there exists some k′>0 such that

lim
i→∞

(τi(θ)−τi(θ)) N i

f (θ)1/3 = k′ for all θ ∈Θ. (A.9)

In this case, the equilibrium payoff loss of both the sender and the receiver are O((N i)−2)>O((∆i)2)

as i →∞.

Proof. Fix some γ0 ∈R++ and some function h :R++ →R++ such that limx↘0 h(x)/x =+∞. Consider,

for each i, a pair sequences (θi
n)n and (γi

n)n following the equation

θi
n ≡ θi

n−1 +h(∆i) γi
n−1

and equation (A.1). Define ∆̃i ≡ h(∆i), so note that ∆i = o(∆̃i). It is easy to see that the difference

equations (A.3) and (A.4) now hold identically replacing ∆i by ∆̃i, with the exception that the term

“4 b(θi
n)” is now equal to 0 (since this term is O(∆i) while the rest are O(∆̃i)). This implies that

equation (A.6) now is γ̃′(s)=− γ̃(s)2

3
f ′(θ̃(s))
f (θ̃(s)) , so γ̃(s)= C1 f (θ̃(s))1/3 for some C1 > 0.

The number of partition elements of each equilibrium satisfies equation (A.7) replacing ∆i by

∆̃i, so limi→∞∆i N i = 0. Hence, proceeding as in the first part of the proof, it is then easy to see

that equation (A.9) holds.

Finally, the equation for the payoff (A.8) is the same, but since now c(θ) = O((∆̃i)2) (instead of

O((∆i)2), as before) we have that the payoff is itself O((∆̃i)2), that is, O((N i)−2).

Step 6: Proof of Proposition 3.1. We prove that any sequence of efficient equilibria satisfy

θi
n+1 −θi

n

∆i → γ̄0 . (A.10)

The results in the previous parts of the proof imply that there are sequences of equilibria satis-

fying equation (A.10). Furthermore, if a sequence of equilibria is such that equation (A.10) is not

satisfied (so there is a sequence of equilibria where limi→∞
θi

n+1−θi
n

∆i = γ0 ∈ (γ̄0,+∞]), then there is a

(potentially large) ī ∈N such that the payoff of the ī-th equilibrium is strictly lower than the payoff

of the ī-th equilibrium of any fixed sequence of equilibria satisfying equation (A.10) (this follows

from Step 4, Lemma A.3 and the fact that, by equation (A.8), the payoff loss is increasing in γ0).

Step 7: Proof of Proposition 3.2. Steps 4 and 6 establish that equation (A.2) holds in a sequence

of efficient equilibria. This equation is equivalent to equation (3.7), and so Proposition 3.2 holds.

Step 8: Proof of Proposition 3.3. The proof follows immediately from Step 6 and equation

(A.8).
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A.3 Proofs of the results in Section 4

Proof of Proposition 4.1

Proof. Solving equation (3.9) we have that the coarseness of communication established in Propo-

sition 3.1 can be written as

c(θ;b)=
∫ θ
θ∗ 8 b(θ′) f (θ′)2/3 dθ′

f (θ)2/3 ,

where we make the dependence on the bias function explicit.

Let b̂ be a reduction of b in some set Θ′ ⊂Θ which does not change the communicable state θ∗.

Assume first that Θ′ ⊂ [θ∗,1] and b is inward with respect to θ∗ in Θ′, that is, b(θ)≤ 0 for all θ ∈Θ′.

Then, it is clear that c(θ; b̂) = c(θ;b) for all θ < inf(Θ′), and c(θ; b̂) ≥ c(θ;b) for all θ ≥ inf(Θ′). The

result for a general Θ′ and for an outward bias are proven analogously.

Proof of Proposition 4.2

Proof. Assume b is increasing. Switching roles and reversing the state space if necessary, assume

that also b(1) > 0.23 This implies that θ∗ < 1, and that θ∗ > 0 only if b(0) < 0. Also notice that the

bias is outward from the communicable state in this case, so using the same notation as in the

proof of Proposition 4.1 we have c(θ;b) ≤ max{c(0;b), c(1;b)}. Notice further that, using equation

(3.9), since the distribution of states is uniform we have that c(·;b)+ c(·;−b) is constant, and then

necessarily equal to max{c(0;b), c(1;b)}. Finally, we have that c′(·;b) is increasing for θ > θ∗ and

decreasing for θ < θ∗, so c(·;b) is convex. The result is then clear, since∫ 1

0
c(θ;b) dθ ≤

∫ θ∗

0

c(0;b) (θ∗−θ)
θ∗

dθ+
∫ 1

θ∗

c(1;b) (θ−θ∗)
θ∗

dθ ≤ max{c(0;b), c(1;b)}
2

.

Hence, since c(·;b)+ c(·;−b)=max{c(0;b), c(1;b)}, we have∫ 1

0
c(θ;−b) dθ =max{c(0;b), c(1;b)}−

∫ 1

0
c(θ;b) dθ ≥ max{c(0;b), c(1;b)}

2
.

The inequalities are strict if b is strictly increasing.

23If b(1) ≤ 0 (so b(0) < 0) then switching roles and reversing the state space (that is, applying the map

θ 7→ 1−θ) generates the bias b̂(θ)≡−b(1−θ), which is increasing and satisfying b̂(1)> 0.
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B Extensions

This appendix extends our analysis in two directions. First, it generalizes the results in Section

3 to a more general set of payoff functions. Second, it discusses the limits of non-efficient equilibria

as the bias gets small. The proofs of the results are in Section B.3.

B.1 General payoff functions

This section illustrates how the analysis of the small bias case can be extended to general payoff

functions. Thus, we consider the same setting as in Section 2, the only difference being in the

payoff functions of both the sender and the receiver.

Fix an outcome of the game (θ,m,a) ∈Θ×M×R. Now, the payoff of the sender is us(θ,a−β b(θ)),

while the payoff of the receiver is ur(θ,a), where b : Θ→ R satisfies the same conditions as in

our base model. We assume that, for each θ ∈ Θ, us(θ, ·) and ur(θ, ·) are single peaked, and that

both are maximized when the second component is θ, that is, us(θ,a−β b(θ)) is maximized when

a = θ+β b(θ), while ur(θ,a) is maximized at a = θ.24 Also, without loss of generality, it is convenient

to normalize us(θ,θ) = ur(θ,θ) = 0 for all θ ∈ Θ. We assume that both us and ur are three-times

differentiable in each variable, and we define, for each k ∈ {0,1,2,3},

us
k(θ)≡ 1

k!
∂kus(θ,a)

∂ak

∣∣∣
a=θ+β b(θ)

and ur
k(θ)≡ 1

k!
∂kur(θ,a)

∂ak

∣∣∣
a=θ

,

and assume that ur
2(θ),us

2(θ) < 0 for all θ ∈Θ. Finally, to ensure that all equilibria are essentially

equivalent to partition equilibria, we assume that d2

dθda us(θ,a−β b(θ))> 0 and d2

dθda ur(θ,a)> 0.

The next result generalizes Proposition 3.1 by characterizing the coarseness of communication

c for general payoff functions, and also generalizes the result in Proposition 3.3 for the equilibrium

payoff.

Proposition B.1. Assume that the payoff loss functions of the sender and the receiver satisfy the

conditions above. Let c ∈C 1(Θ,R+) be the unique solution of

c′(θ)= 8 b(θ)− 2 c(θ)
3

( f ′(θ)
f (θ)

+ ur
2
′(θ)

ur
2(θ)︸ ︷︷ ︸
(∗)

+ ur
3(θ)

2ur
2(θ)

− us
3(θ)

2us
2(θ)︸ ︷︷ ︸

(∗∗)

)
(B.1)

satisfying that c(θ) ≥ 0 for all θ ∈Θ and c(θ∗) = 0 for a (generically unique) state θ∗ ∈Θ. Then, for

any efficient equilibrium, we have β−1 (τ(θ)−τ(θ))2 ≈ c(θ). Furthermore, the normalized equilibrium

24Our parametrization, which is innocuous for a fixed bias function b, is convenient to obtain results “for

small biases” while keeping the rest of the primitives (and, in particular, the shape of the payoff functions

around the ideal action) fixed.
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payoffs are given by

U s ≈
∫ 1

0
us

2(θ)
c(θ)
12

f (θ) dθ and U r ≈
∫ 1

0
ur

2(θ)
c(θ)
12

f (θ) dθ . (B.2)

There are two extra terms (∗) and (∗∗) inside the parenthesis on the right hand side of equation

(B.1) with respect to the right hand side of equation (3.7). These terms incorporate, respectively,

the effect of the change in the curvature of the payoff loss function of the receiver, and the effect

the skewness of both payoff loss functions.

The effects on equilibrium communication of changes in the (state-dependent) curvature of the

payoff function of the receiver, ur
2, are similar to those of a state-dependent likelihood of the states.

To see this, assume that the distribution of states is locally uniform, f ′(θ) = 0, and the convexity

of the payoff loss function of the receiver (or her risk aversion) is increasing (in absolute value) in

θ, so its derivative is negative, ur
2
′(θ) < 0. This implies, similarly to the case where the likelihood

of the states is increasing, that action taken by the receiver in equilibrium within the interval of

the partition containing θ is relatively high. The reason is that when ur
2
′(θ) < 0, the higher the

realization of the state of the world, the higher the receiver’s payoff loss from taking an action at a

given distance from it. As a result, the receiver takes a high action in order to avoid a large loss in

the case that the state of the world is in the high side of the interval.

The skewness terms of the sender and the receiver push the derivative of the coarseness of

communication in opposite directions. Consider, for example, ur
3(θ)< 0 for some θ ∈Θ. In this case

the payoff loss of the receiver is skewed to the right: for a fixed action a, the payoff loss is higher

if the state of the world is a+ ε than when it is a− ε, for ε > 0 small. This induces the receiver

to take a relatively high action in the interval of the partition containing θ. Analogously, assume

us
3(θ) < 0, so when the realized state is θ ∈Θ, the sender’s payoff loss is higher if the action of the

receiver is θ+β b(θ)+ε than if it is θ+β b(θ)−ε. Similarly to when the bias is positive, the action

of the receiver needs to be shifted to the left in order to keep the sender’s indifference condition at

the boundary of equilibrium intervals.25

We see in equation (B.2) that, for a fixed c, the payoff losses of the sender and the receiver

only differ because of the different curvature of their payoff functions, ut
2. Now, in addition to the

coarseness with which a state θ is communicated and its likelihood, the contribution of a state to

the payoff loss is multiplied by the local sensitivity of the payoff to deviations from the optimal

25Notice equation (B.1) does not contain any term similar to (∗) involving, instead, the curvature of the

sender’s payoff function us
2(θ). The reason is that the indifference condition of the sender at the boundary

of two equilibrium intervals is not directly affected by the symmetric part of its payoff function. If, for

example, the payoff function us(θ, ·) is symmetric around θ+β b(θ) for any θ, the indifference condition

only requires α(θn−1,θn) and α(θn,θn+1) to be at the same distance of θn +β b(θn), independently of the

state-dependent curvature.
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action. In this case, even though the sender and the receiver’s payoff functions differ, they both

benefit from a better communication: both payoffs are decreasing in the coarseness of communica-

tion c.

B.2 Inefficient equilibria

The main focus of our previous analysis is on characterizing efficient equilibria. As we argued,

focussing on this class of equilibria is useful to obtain the limits of strategic communication and

to compare equilibrium outcomes for different bias functions. Still, the CS model features a large

number of equilibria, which can be grouped, for each fixed primitives of the model, in terms of “es-

sential equivalence” (i.e., same joint distribution of states and actions) in a discrete set of “equiva-

lence classes”, each of them containing one partition equilibrium.

When the bias is small, efficient equilibria satisfy equation (3.3). The proofs of Propositions 3.1

and 3.2 additionally show that sequences of equilibria featuring the maximum number of messages

satisfy equation (3.11), that is, they are asymptotically efficient.26 We now consider properties of

equilibria with a lower number of messages. We do this by considering sequences of decreasing

biases and corresponding equilibria where the number of messages increases at a rate lower than

that for efficient equilibria.27 The following result characterizes the limit behavior of the corre-

sponding equilibria with an increasingly large number of used messages.

Proposition B.2. Fix a sequence (βi)i strictly decreasing toward 0 and a sequence of corresponding

equilibria. Let N i be number of messages used the i-th equilibrium, assume it is finite for each i,

and that N i →∞ as i →∞. Then, limi→∞(βi)1/2 N i<∞, and

1. if limi→∞(βi)1/2 N i =k for some k>0, then (βi)−1 (τi(θ)−τi(θ))2 ≈ ck(θ) as i→∞, where ck is

the solution of (3.9) satisfying
∫ 1

0 ck(θ)−1/2 dθ=k, and

2. if limi→∞(βi)1/2 N i = 0, then there exists some k′>0 such that

lim
i→∞

(τi(θ)−τi(θ)) N i

f (θ)1/3 = k′ for all θ ∈Θ.

In this case, the equilibrium payoff loss of both the sender and the receiver are O(N−i) >
O((βi)1/2) as i →∞.

26In the CS model it is ensured that, under the so-called condition M, it is the case that both the sender

and the receiver prefer equilibria with more interval partitions. In our model this may not hold but, as

we show, equilibria with the most number of partitions give the seller and the buyer the same asymptotic

payoff than efficient equilibria.

27The CS model with a fixed number of messages N ∈N and no conflict of interest is analyzed in Sobel (2015).

See also Dilmé (2018) for an analysis of costly information transmission without conflict of interest and a

large number of messages available for communication.
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Proposition B.2 characterizes equilibrium communication depending on how the number of

messages relates to the bias size. It first considers the case where the number of messages used

in equilibrium increases fast, that is, the square size of the partition elements remains O(βi) (as

in a sequence of efficient equilibria). In this case, the coarseness of communication still follows

equation (3.9), but the coarseness of communication is higher than for efficient equilibria and,

as a result, there may not be a communicable state. If, instead, the number of messages used

in communication increases at a rate slower than the square root of the bias, the bias becomes

increasingly less important to determine equilibrium information transmission. In this case the

precision with which a state is communicated is approximated by a function of its likelihood. The

equilibrium communication becomes increasingly close to optimal information transmission in the

absence of conflict of interest, but with a limited number of messages.

B.3 Proofs of the results in Appendix B

Proof of Proposition B.1

Proof. The proof is analogous to the proof in Appendix A.2. The proof only changes due to the fact

that there is an additional term in equation (3.7) owed to the fact that the receiver’s payoff function

curvature is state-dependent and it is skewed, so we have

β−1
(
α(θ)− τ(θ)+τ(θ)

2

)
≈ 1

12

( f ′(θ)
f (θ)

+ ur
2
′(θ)

ur
2(θ)

+ ur
3(θ)

2 ur
2(θ)

)
c(θ)︸ ︷︷ ︸

≡α̂(θ)

,

and since the payoff function of the sender is skewed, the limit equation for indifference condition

(3.8) now is given by

c′(θ)= 8
(
b(θ)+ 1

12
us

3(θ)
us

2(θ)
c(θ)− α̂(θ)

)
.

We compute the payoff of the receiver generalizing the argument in equation (A.8):∫ 1

0
ur(θ,α(τ(θ),τ(θ))) f (θ) dθ =

∫ 1

0
ur

2(τ(θ))
(τ(θ)+τ(θ)

2
−θ

)2
f (θ) dθ+ o(β)

=
∫ 1

0
ur

2(τ(θ))
(τ(θ)+τ(θ)

2
−θ

)2
f (τ(θ)) dθ+ o(β)

=
∫ 1

0
ur

2(τ(θ))

(
τ(θ)−τ(θ)

)2

12
f (τ(θ)) dθ+ o(β)

= β

12

∫ 1

0
us

2(θ) c(θ) f (θ) dθ+ o(β)

where, for the third equality, we used that
∫ τ(θ)
τ(θ)

(
τ(θ)+τ(θ)

2 − θ̃
)2

dθ̃ = 1
12 (τ(θ)−τ(θ))2. The expected

payoff loss of the sender can be calculated analogously.

32



Proof of Proposition B.2

Proof. See Appendix A.2.
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