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Abstract 

Polymer electrolyte fuel cells (PEFCs) are a promising energy conversion technology that 

generates electricity from hydrogen with low noise, and less or zero emission properties. 

Phenomena during the fuel cell operation are complex, which are caused by many interrelated 

factors. In addition, the dynamic behaviors of the fuel cells will change due to different 

operating conditions and load changes. A fast response model that can predict the PEFCs 

dynamic behavior is helpful to implement optimal control to the fuel cell systems obtaining a 

desired performance.  

The aim of the thesis is to developing, analyzing and modifying a fuel cell dynamic model, 

in which a least squares support vector machine (LSSVM) is employed. The efficiency of the 

LSSVM model is first demonstrated in comparison to experimental data collected from a fuel 

cell test rig. Analyzing the model’s performance under various fuel cell load changes is carried 

out with the help of experimental data collected from our test rig and artificial data generated 

by a white-box model that based on the mechanism of the fuel cell systems. Two types of 

artificial data are generated: one is idealized artificial data with determined cell voltage and 

another one is oscillated artificial data that includes the oscillation on the cell voltage. 

Various load changes, namely current density changes, are considered in the analysis, and 

are represented by a combination of two factors called as ramp time and ramp value. Ramp time 

is used to show how fast the load is changed and ramp value is used to describe the range of 

load change. In addition, considering the data-driven nature of the LSSVM method, sampling 

interval of the test rig that determines the frequency of data collection is considered. It is found 

that the performance of the LSSVM model is better when smoother load changes are imposed 

on the system, so large ramp time and small ramp value are preferable in order to achieve good 

model accuracy. Moreover, to modeling a high dynamic fuel cell system, a high frequency 

sampling is suggested to reach a desirable model performance. 

The thesis defines a working zone for the LSSVM model when predicting the PEFCs 

dynamic response to sudden load change. Based on the acceptable error to the modeling, a set 

of workable combinations of sampling interval, ramp time and ramp value can be found. The 

working zone helps to instruct the future application of the LSSVM model when different 

operating load changes are applied. 

Last but not the least, the LSSVM model is modified in order to improve its modeling 

performance when predicting the dynamic behavior of the fuel cell. An online adaptive LSSVM 

model is developed. Determination of initial value of the internal parameters to the LSSVM 

model is optimized by employing a genetic algorithm to search global optimum instead of 

manual search. An adaptive process is carried out to update these internal parameters online. 

With a suitable starting point of the internal parameters and online updating processes, this 

online adaptive LSSVM model can well deal with complex nonlinear fuel cell systems with 

frequent load changes. 
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Kurzfassung 

Polymerelektrolyt-Brennstoffzellen (PEFCs) sind eine vielversprechende 

Energieumwandlungstechnologie, die Strom aus Wasserstoff mit geringer Lautstärke und 

wenig oder keinen Emissionen erzeugt. Phänomene während des Brennstoffzellenbetriebs sind 

komplex und werden durch viele miteinander verbundene Faktoren verursacht. Darüber hinaus 

ändert sich das dynamische Verhalten der Brennstoffzellen aufgrund unterschiedlicher 

Betriebsbedingungen und Laständerungen. Ein schnelles Reaktionsmodell, das das dynamische 

Verhalten der PEFCs vorhersagen kann, ist hilfreich, um eine optimale Steuerung der 

Brennstoffzellensysteme zu implementieren und eine gewünschte Leistung zu erzielen. 

Ziel der Arbeit ist es, ein dynamisches Modell für Brennstoffzellen zu entwickeln, zu 

analysieren und zu modifizieren, in dem eine Least-Squares-Vektor-Maschine (LSSVM) 

eingesetzt wird. Die Effizienz des LSSVM-Modells wird zunächst im Vergleich zu 

experimentellen Daten demonstriert, die von einem Brennstoffzellen-Teststand gesammelt 

wurden. Die Analyse der Leistung des Modells unter verschiedenen Laständerungen der 

Brennstoffzelle erfolgt mit Hilfe von experimentellen Daten, die von unserem Teststand 

gesammelt wurden, und künstlichen Daten, die von einem White-Box-Modell generiert wurden, 

das auf der Funktionsweise der Brennstoffzellensysteme basiert. Es werden zwei Arten von 

künstlichen Daten erzeugt: eine sind idealisierte künstliche Daten mit deterministischer 

Ausgabe und eine andere sind künstliche Daten, die Oszillationen in der Zellenspannung 

enthalten. 

Verschiedene Laständerungen, nämlich Änderungen der Stromdichte, werden in der Analyse 

berücksichtigt und durch eine Kombination von zwei Faktoren als Rampe dargestellt, nämlich 

die Dauer und die Höhe der Rampe. Die Rampendauer wird verwendet, um zu zeigen, wie 

schnell sich die Last ändert, und der Höhe der Rampe wird verwendet, um den Bereich der 

Laständerung zu beschreiben. Gemäß der datengesteuerten Natur des LSSVM-Modells wird 

außerdem das Abtastintervall des Teststandes berücksichtigt, das die Frequenz der 

Datenerfassung bestimmt. Es zeigt sich, dass die Leistung des LSSVM-Modells besser ist, 

wenn dem System moderate Laständerungen auferlegt werden. Daher führen eine hohe 

Rampendauer und eine kleine Rampenhöhe zu einer guten Modellgenauigkeit. Darüber hinaus 

wird zur Modellierung eines hochdynamischen Brennstoffzellensystems eine hohe 

Abtastfrequenz vorgeschlagen, um die Güte des Modells zu erhöhen. 

Das Manuskript definiert eine Arbeitszone für das LSSVM-Modell für den Fall, dass die 

dynamische Reaktion der PEFC auf Laständerungen vorhergesagt werden soll. Basierend auf 

einer Fehlertoleranz bei der Modellierung kann eine Reihe praktikabler Kombinationen aus 

Abtastintervall, Rampendauer und Rampenhöhe gefunden werden. Die Arbeitszone hilft dabei, 

zukünftige Anwendung des LSSVM-Modells zu konfigurieren, wenn auf Änderungen der 

Betriebslast adäquat reagiert werden soll. 

Zu guter Letzt wird das LSSVM-Modell modifiziert, um seine Qualität bei der Vorhersage 

des dynamischen Verhaltens der Brennstoffzelle zu verbessern. Ein adaptives Online-LSSVM-

Modell wird entwickelt. Die Bestimmung des Anfangswertes der internen Parameter für das 

LSSVM-Modell wird optimiert, indem an Stelle der manuellen Suche ein genetischer 

Algorithmus verwendet wird, um das globale Optimum zu ermitteln. Ein adaptiver Prozess wird 

durchgeführt, um diese internen Parameter online zu aktualisieren. Mit einem geeigneten 

Ausgangspunkt für die internen Parameter und Online-Aktualisierungsprozesse kann dieses 

adaptive Online-LSSVM-Modell auch komplexe nichtlineare Brennstoffzellensysteme mit 

häufigen Lastwechseln bewältigen. 
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1 Introduction 

Ever increasing development in economic have escalated energy demands accompanied with 

the exploitation and utilization of fossil fuels, such as petroleum, coal, naturel gas and etc., 

through which produced large amount of the greenhouse gases and pollutant, which are released 

to the environments [1,2]. Public awareness for environmental protection and overexploitation 

has risen and the development of clean and renewable energy sources has attracted increasing 

interest and attention. It is foreseen that hydrogen energy technology will play an important 

role against global warming through replacement of fossil fuels [3].  Fuel cells are 

electrochemical energy converters that convert chemical energy of fuel into electricity and have 

been regarded as a promising energy converters for the future. When hydrogen is used as fuel, 

water is the only by-product. The fuel cells combine the best features of conventional heat 

engines and batteries: as an engine, the fuel cells are able to delivery electricity as long as fuel 

is available; as a battery, no intermediate mechanical energy conversion exhibits in the fuel 

cells and the characteristics of fuel cells are similar to a battery under load changes [4].  

There are five main categories of fuel cells that have received primary efforts of research in 

recent years: 1) Polymer electrolyte fuel cells (PEFCs); 2) Direct methanol fuel cells (DMFCs); 

3) Solid oxide fuel cells (SOFCs); 4) Alkaline fuel cells (AFCs); 5) Molten carbonate fuel cells 

(MCFCs).  

Amongst, the PEFCs, due to its simplicity, viability, and quick start-up, have been considered 

as major participant in energy diversification and recommended for portable devices, space 

vehicles, military technology, stationary power and automotive vehicles [5–10]. Although 

PEFCs have passed the demonstration phase and are starting to move into the 

commercialization phase, there are still a wide range of challenges have to be overcome to 

achieve worldwide commercialization of the PEFCs. 

1.1 Polymer electrolyte fuel cells 

The polymer electrolyte fuel cells are energy converters that transform chemical energy 

directly into electrical energy. Fuel and oxygen are continually delivered to the fuel cell then 

generate electricity. The electrochemical reactions occur simultaneously on anode and cathode 

sides. Electrolyte separates the reaction spatially, which allows only protons passing through 

and not electrons. As pure hydrogen is used as fuel and oxygen as oxidant, water is the only by 

product, its reaction can be described as: 

Anode: H2 → 2H+ + 2e- 

Cathode: 
1

2
 O2 + 2H+ + 2e- → H2O 

Overall: H2 + 
1

2
 O2 → H2O 
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At the anode side, hydrogen is split by electrocatalytical processes into protons and electrons. 

The protons are passing through the membrane directly but the electrons are forced to be 

transferred through the exterior circuit. At the cathode side, oxygen enters the fuel cell and then 

combines with electrons that are delivered from the exterior circuit and protons that are passing 

through the electrolyte. 

 
Figure 1-1: The main parts of a PEFC in Forschungszentrum Jülich: Exposed fuel cell 

components. 

 

The main parts of a PEFC are illustrated in Figure 1-1. Endplates are usually used to 

compress the fuel cell stack from the outer ends of a single cell or a fuel cell stack, which 

maintain the stack structure and prevent reactant gas leakage. The materials can be stainless 

steel, aluminum, magnesium, gold-coated or carbon based composite materials [11,12]. They 

are also called as current collector plates, which conduct the electrical current from the end 

anode to the corresponding end cathode via an external circuit. Bipolar plates are traditionally 

fabricated from graphite composite as good electrical conductivity, corrosion resistance, and 

low gas permeability are required. It is also important to electrically connect the anode and the 

cathode and provide flow-fields of reactive gases [13,14]. Bipolar plates, also called gas flow 

plates, form a major part of the weight and volume of the PEFCs. They distribute the reactants 

to the cell and remove the products while conducting the electrons and heat. Insufficient supply 

of reactant gases results in fuel/oxidant starvation, reducing cell performance and durability. 

Local hot spot formation can degrade the membrane and cause pin-hole or crack formation. 

Thus, the bipolar plates must be conformable, high-strength but lightweight, thermally and 

electrically conductive, and impermeable to gases [5]. Gas diffusion layers (GDLs) provide a 

flow path for reactant supply and product removal. A porous material in the design of the GDL 

is essential. Through the vacant space of the GDL, the reactant gases move from the gas flow 

channel towards the catalyst layers, and distribute along the area, while electrons and heat can 
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be transferred through the remaining solid structure [15]. It also provides robust mechanical 

support and protection for the delicate catalyst layer and membrane during both assembly and 

operation [16]. Membrane is coated with catalyst layers on each side to form a catalyst coated 

membrane (CCM). The membrane exhibits non-electrically conducting but high ionic 

conductivity, and is designed to conduct only protons while block the transportation of electrons 

and reactant gases. The electrons are forced migrates through the external circuit but the proton 

can be transport directly through the membrane.  

1.2 PEFCs in operation 

Phenomena during fuel cell operation are complex, involved in several physical processes 

including mass/heat transfer, electrochemical reactions, ionic/electronic transport [8,17,18]. 

During the operation of the PEFCs, frequent load change is inevitable. The dynamic responses 

of the fuel cell under load changes are influenced by many highly coupled factors including the 

membrane hydration, the charge double-layer effects, the operating temperature, and the mass 

transfer mechanism. Understanding the dynamic behavior of the PEFCs is important to reach 

better performance and longer lifetime [19].  

1.2.1 Reactants flow rates 

The reactants to some extent must be supplied in excess of they have been consumed. The 

ratio between the supplied rate and the consumed rate of the reactant is called stoichiometric 

ratio or stoichiometry. Theoretically, hydrogen may be supplied at it is being consumed. But 

taking crossover permeation or internal currents into account, then the supply rate of hydrogen 

to the fuel cell is slightly higher than the consumption rate that is required by the electrical 

current demand. On cathode side, the stoichiometric ratio must greater than 1 in order to avoid 

oxygen starvation [20,21]. In addition, water is generated in cathode side; excess flow of 

reactant can flush out the water in case of water accumulation in the flow channel. 

The stoichiometry indirectly affects the voltage output and the rate of water production, 

because it governs the flow rate of reactants, in other words, adjust their partial pressures [22]. 

A small stoichiometric ratio could lead to an uneven chemical reaction that causes many critical 

issues to the fuel cell such as non-uniform water, heat and current productions, and further 

causes flooding, hotspots, and reactant starvation [23,24]. Larger stoichiometric ratio brings 

about higher fuel cell performance 1, but the excessive gases will increase the burden of the 

compressor and consume more energy. During the operation of the PEFCs, altering anode 

 

 

1 This is reported with respect to fuel cell performance later in this paper. Higher fuel cell performance indicates 

higher cell voltage. 
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stoichiometric ratio will not bring about much impact on the performance of the fuel cell, while 

the variation of cathode stoichiometry changes the fuel cell performance significantly [25]. 

1.2.2 Operating temperature and pressure 

Operating temperature and pressure are positively correlated with the fuel cell efficiency [26]. 

When the operating temperature is lower than anticipated temperature, the PEFCs will result in 

reduced performance. Generally, a higher temperature brings about a higher cell output. But if 

the fuel cell operates with temperature that is higher than required working temperature, it will 

cause not only fuel cell underperformance but also possibly permanent damage to the fuel cell 

materials [27]. In addition, the uniform temperature distribution of the PEFCs in operation 

brings in better performance and avoids the degradation of membrane and electrode caused by 

local hotpots [28]. Under some certain operating conditions, a more uniformly distributed 

temperature distribution can be achieved by increasing the operating pressure [29]. An 

increased operating pressure gains some potential then generates more power [30], but extra 

power is required when supply the PEFCs with pressurized reactant gases, which may offset 

the benefits brought by high operating pressure. So a tradeoff between the high power output 

and the system auxiliary consumption should be considered when increasing the operating 

temperature and pressure. 

1.2.3 Humidification 

In PEFCs systems, both the hydrogen and oxidant must been humidified before being 

delivered into the cell in order to prevent membrane drying out. Dehydration of the polymer 

electrolyte membrane limits the electrode kinetic reactions and brings on a makeable decrease 

in its ion conductivity, as consequence, causes energy losses due to the increase in the internal 

electrical resistance of the cell [31]. In general, the cell voltage is positive related to relative 

humidity, thus high relative humidity is preferred during fuel cell operation. Cho et al. [32] 

showed that the dynamic response of the PEFCs is optimal when both anode and cathode sides 

were fully-hydrated. In comparing with less hydrated operating conditions, smaller overshoot 

and undershoot are observed during load change at 100% relative humidity, what’s more, 

resulting a higher fuel cell voltage. However, at high levels of humidification, the cell voltage 

drops sharply with increasing relative humidity, as void space in the gas diffusion layer may be 

filled by excess water then inhibits mass transfer. 

1.2.4 Load changes 

The dynamic behavior of the PEFCs under load change varies widely at different operating 

conditions. In the meantime, changing in load affects parameters such as the gas excessive 

coefficient, the temperature, the pressure, and the humidity [19]. 
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Different load change behaviors have different effects on the fuel cell performance. 

Increasing same load range but with different time results in different dynamic response of the 

fuel cell. The shorter the time is and the faster the voltage changes, but the larger the magnitude 

of undershoot [33]. In addition, under same operating condition, increasing load from same 

staring point to different final points will lead to different fuel cell outputs. Larger load change 

value results more obvious undershoot and smaller cell voltage. Also, longer time is required 

to reach a new steady-state value [34]. 

1.3 Motivation 

Modeling is the first step for many applications such as prediction, control and optimization. 

A model that can fully reflect the dynamic behavior of the PEFCs is necessary for achieving a 

stable, accurate and desirable fuel cell dynamic performance. Mechanism-based modeling 

methods and data-driven modeling methods are widely used to characterize the fuel cell 

operating processes. The mechanism-based method often leads to complex partial differential 

equation models with unknown uncertainties and often accompanied with some assumptions. 

They often result in infinite-dimensional models, making the reduction of the models’ order 

necessary, which sacrifice the model accuracy for simplification. In addition, some 

uncertainties and disturbances showed up during the operation are impossible to be handled by 

the mechanism-based modeling methods. In contrast, the data-driven modeling methods derive 

from substantial processes, which merely rely on the prior knowledge, conceiving acceptance 

for its closeness in predicting the behavior of the fuel cell. Different from mechanism-based 

models that attempt to simulate heat transfer, mass transportation and electrochemical 

phenomena occurring within it, the data-driven modeling methods focus on the relationship 

among the fuel cell system’s operating information without having deep insight on the physical 

and electrochemical phenomena – though considering them inherently with the data. This 

property makes the data-driven methods convenient for online analyzing the PEFCs dynamic 

behavior at different operating conditions and various load changes, then implements online 

predicting for the fuel cell dynamic behaviors. Therefore, they have been widely used in 

modeling fuel cell behaviors.  

Data-driven method have many candidates. Neural networks (NNs) provides a nonlinear 

approximation which is robust against system noise  when predicting the fuel cell voltage 

reduction caused by degradation during nominal operating condition [35]. Fuzzy logic was 

proposed to describe the dynamic behavior of a PEFC system and has reached a good degree 

of approximation [36]. Principal component analysis (PCA) is capable of extracting main 

factors from multiple variable vectors which can reveal the characters of them [37]. This data 

dimensionality reduction algorithm can be applied to identify the system in a less time-

consuming way [38]. The support vector machine (SVM) method can reduce the dimensionality 
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and complexity of the system. It has been applied to predict the performance of a PEFC system, 

and the predictions by this modeling method were validated by the experimental with a 

coefficient of determination of approximately 99% [39]. Least squares support vector machines 

(LSSVM) have the ability to approximate any nonlinear system by mapping the input data in a 

primal space into a feature space [40]. They have already been used to predict the residual 

useful life of the PEFCs [41], and to build a nonlinear offline model for the PEFC stack in order 

to control the stack temperature [42]. Although the above-mentioned data-driven modeling 

methods have achieved an overall good modeling accuracy, their modeling performance under 

various load changes has not been clarified. Thus, the credibility of the data-driven modeling 

methods under different load demand (various current density changes) should be further 

discussed.  

1.4 Contributions and organization of the thesis 

The thesis will not only focus on the modeling problems of the dynamic behavior of the 

polymer electrolyte fuel cells, but also implements a systematic, qualitative and quantitative 

comprehensive evaluation on the fuel cell dynamic model.  

The objective of this thesis is to develop a dynamic fuel cell model based on the least squares 

support vector machine (LSSVM), to investigate the impacts of the load changes on the model’s 

performance, to analyze the credibility of the model in predicting the dynamic behavior under 

various load changes, to define the model’s reliable working zone which regulates the load 

behavior, and to optimize the LSSVM model to improve its modeling performance and to better 

adapt the dynamics in the fuel cell. It mainly includes:  

⚫ To provide a systematic literature survey on the dynamic modeling methods; 

⚫ To establish a LSSVM model for PEFCs to predict its dynamic behavior; 

⚫ To analyze the LSSVM model under ideal cases, in which artificial data are 

introduced; 

⚫ To analyze the LSSVM model under oscillated cases, with the help of a statistical 

analysis on the fuel cell voltage information from experiments; 

⚫ To optimize the LSSVM model in order to improve its modeling performance; 

In the following, the contents of each chapter are summarized with emphasizing the main 

contributions: 

Chapter 2 introduces the dynamic modeling methods. Their pros and cons are summarized; 

In Chapter 3, a least squares support vector machine is introduced and a dynamic model 

based on the LSSVM method for a PEFC voltage is established and validated against the 

experimental data; 

In chapter 4, a mechanism-based white-box model is first introduced, by which artificial data 

are generated. The artificial data are used to investigate the suitability of the LSSVM model. 
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Here, only ideal cases are considered, in which determined fuel cell voltage are generated by 

the white-box model; 

In chapter 5, the credibility of the LSSVM model under oscillated cases is discussed. Results 

from statistical analysis on the oscillation of the experimental cell voltage in combination with 

the artificial data generated in chapter 4 were used to generate oscillated artificial data. A 

reliable working zone for the LSSVM model is provided, by which the load changes are 

restrained; 

In chapter 6, the LSSVM is modified in order to achieve a better modeling performance. 

Determination of initial value of the internal parameters to the LSSVM model is optimized by 

employing a genetic algorithm to search the global optimum instead of manually search. A fast 

running adaptive process is carried out to update these internal parameters online; 

Chapter 7 discusses the main results; 

Chapter 8 provides conclusions and suggestions for future research.  
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2 Modeling methods for fuel cells dynamics 

Dynamic modeling methods for fuel cells are reviewed in this chapter. The modeling 

methods focusing on online prediction are classified into 3 groups: white-box models for known 

system in section 2.1, black-box models for unknown structure of system in section 2.2, and 

gray-box models for partially-known system in section 2.3. Section 2.4 draws the conclusions. 

Fuel cell models are effective tools for understanding the electrochemical reaction, thermal 

behavior, and fluid transfer mechanism in the fuel cells undergoing various load changes. The 

main advantages of employing fuel cell models including cost effective, safety insurable and 

operation flexible as they can investigate critical situations without imposing any real-life 

danger, and be used to evaluate a fuel cell system under varying working conditions [39].  

Dynamic behavior of the PEFCs can be observed at load changes [43]. The dynamic behavior 

of PEFCs is critical to evaluate the performance of the PEFCs for real application. For 

automotive application of a fuel cell, it often experiences various load changes, such as sudden 

start-up, shut-down, idle speed, and acceleration. A suddenly increase in load will lead to a fall 

of fuel cell voltage in a very short time, then gradually rose to a relatively stable state, showing 

a significant undershoot [44]. In this case, the fuel on the anode side was rapidly consumed, but 

it takes a certain time to deliver hydrogen to the active area, which results in hydrogen shortage, 

consequently, the fuel cell performance deteriorated [18]. 

Based on the models’ dependency on the system mechanism and data, the models can be 

classified into three types: (1) white-box models, (2) gray-box models, or hybrid models, and 

(3) black-box models, or data-driven models, as shown in Figure 2-1. The white-box models 

are originated from the mechanism analysis on the system under some assumptions. Despites 

there are slight difference between the models and real systems, but they can still capture the 

dominant dynamics for the systems. The data-driven models are strongly relied on the data, and 

they can be only established after experimental data are collected from the system. The hybrid 

models are regarded as a combination of the white-box model and black-box model as they rely 

on not the prior knowledge but also experimental data. Generally, the structure of the system 

can be deduced from the prior knowledge, and only some parameters remained to be estimated 

from the data. 
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Figure 2-1: Classification of dynamic models based on their dependency on mechanisms and 

data [45] 2.  

2.1 White-box models 

The white-box models are derived from the underlying science and engineering laws. With 

the help of the previous researches on physical and chemical knowledge on the system, a 

mathematical description of the system is obtained. They provide a deep understanding about 

the fuel cell dynamics, and can be used to research how operating conditions and load changes 

affect the fuel cell performance during operation. The white-box models can provide numerical 

data about the fuel cells to the development a fuel cell controller. These numerical data can be 

used to test the accuracy and robustness of the controller, by which eliminating the experimental 

uncertainties and possible safety issues before applying the fuel cell controller to the real 

application. However, the establishment of the models confronts several challenges such as 

nonlinearity, multi-scales, disturbances, highly coupled properties, and high dimensionality. 

Considering that temperature changing rate is slower than electrical changes that vary within 

milliseconds, the temperature in some models is assumed being constant. Based on whether 

temperature is considered in the model, the white models can be classified into two types: 

isothermal models and non-isothermal models. 

2.1.1 Isothermal models 

Li et al. [43] established an 1-D isothermal transient model considering gas species transport 

in porous electrode, water transport in membrane, and electrochemical reactions and current 

transport. Only single-phase flow was considered. The temperature of fuel cell was assumed be 

well controlled, which remaining constant during the whole modeling process. With their model, 

dynamic behavior of the PEFCs under multiple cathode gas humidity was studied.  

 

 

2 "Reprinted from Applied Energy, 228, Sohrab Zendehboudi, Nima Rezaei, Ali Lohi, Applications of hybrid 

models in chemical, petroleum, and energy systems: A systematic review, Pages No. 2539-2566, Copyright 

(2018), with permission from Elsevier" 
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Na et al. [46] presented a dynamic nonlinear model for a nonlinear PEFCs controller on the 

purpose of prolonging the lifetime of the fuel cell stack. In their model, the ideal gas law and 

mole conservation rule were applied and the partial pressure of water on the anode side and 

nitrogen on the cathode side were included. With the help of the nonlinear model, a controller 

was constructed that aims at controlling the pressure difference between both two sides in a 

certain small range thus to protect the membrane from damage. 

Chavan et al. [47] proposed a simple, flexible model running in Matlab/Simulink 

environment in order to evaluate the PEFCs’ performance under different hydrogen flow rates, 

humidity, and partial pressures. With the help of their model, the effects of each parameter on 

the cell performance can be easily discussed. They found that sufficient hydrogen must be 

supplied to the fuel cell to avoid voltage suddenly goes down, and well-hydrated hydrogen 

benefits the fuel cell performance because high voltage is reached by the cell with high relative 

humidity. 

Wang et al. [48,49] established a 3D transient CFD model, by which revealed the importance 

of gas transport through the gas diffusion layer (GDL), electrochemical double-layer 

discharging, and membrane hydration, especially their properties in transience. During their 

models, it took 10 s of the system to reach the steady state because the water accumulated in 

the membrane. In addition, they subsequently illustrated the interactions between the water 

transport dynamics and cell voltage response.  

Abovementioned models assumed that the temperature in the fuel cell has been well 

controlled. Though these models presented a series good understanding of the dynamic 

behavior of the PEFCs and how the system parameters affect the fuel cell, still, due to their lack 

of consideration on the effects of the fuel cell temperature, these models still have their 

limitations. 

2.1.2 Non-isothermal models 

Shan et al. [50–52] developed non-isothermal dynamic fuel cell models and studied the 

effects of temperature on the transient behavior of the PEFCs. A one dimensional model [50] 

for a single fuel cell was first established, in which the energy conservation equation is used to 

express thermal dynamics. They spotted the highest temperature at the cathode catalyst layer, 

and associated it with the over potential at this side is higher than the other side. Also, they 

found that the slow response of temperature to current density decrease is the reason of second 

wave of voltage overshoot. The first overshoot was caused by the variation of the proton 

concentration, while the second is due to the slow increase of temperature in all the layers. The 

effects of temperature on a PEFC stack were also discussed [51]. First, the impact of 

temperature (from 333 K to 363 K by 10 K) on the fuel cell under steady state was discussed. 

The polarization curves showed that the higher the temperature, the better the fuel cell 
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performance. Then, dynamic behavior was considered. The rising time of each cell’s 

temperature was found closely related to where a cell is located in the stack. The heat of the 

end cells can be quickly dissipated to endplates, while middle cells are stored in the cell itself, 

and as a result, the middle cell had the highest temperature among others. A two-dimensional 

model [52] considering two-phase flow was used to analyze the dynamic temperature 

distribution in the through-plane direction the fuel cell stack that had two cells. The anode side 

of cell 1 and cathode side of cell 2 were next to the endplates. The mass and charge transport 

were described by using the mass conservation equation and momentum conservation, and the 

heat flux was described by the Navier–Stokes and the energy conservation equations. Same 

increase in temperature of both cells was found when the stack got operated (temperature was 

measured within 0.1 s). The highest temperature was found in the cathode catalyst layers of two 

cells. Over time, the heat flux diffuses and the temperature of all the planes risen. The endplate 

effect became obvious from 0.2 s, as a low temperature at anode side of cell 1 was observed. 

From 0.5 s, the temperature difference on the both sides and the peak temperature values of 

both cells got larger. The temperature of cathode sides became higher than anode side, and the 

peak temperature of cell 1 was larger than that of cell 2. In the meantime, a better performance 

of cell 1 was found in comparing with cell 2, confirming that high temperature benefits the 

performance of fuel cell. The modeling results were compared with their previous model [50], 

and found that the voltage drop at the two-phase case is larger than that of at the single-phase 

flow.  

Liso et al. [53] established a nonlinear dynamic model of the fuel cell to study temperature 

variations over fast load changes. The model is developed using electrochemical, 

thermodynamic and zero-dimensional fluid mechanics principles. Gibbs free energy and three 

voltage loss (activation loss, ohmic loss, and concentration loss) were considered in the fuel 

cell model. The gas flow behavior was considered in a lumped mode, no spatial information 

were included. All gases were assumed as ideal gas and mass balance was used to calculate the 

gas flow of the fuel cell with respect to time. Thermal behavior was model based on the energy 

balance. An increase in temperature was found when load is changed then smoothly decreased.  

As the temperature changed, even under constant load condition, the value of the cell voltage 

will also change.  

Fly and Thring [54] used a lumped parameter fuel cell model validated by using an 

experimental data and to study the temperature regulation in a evaporative cooled PEFC stack. 

They found that the heat generation tripled within the stack while the temperature only 

increased by 3.5 °C, when the current density suddenly increased from 0.3 A cm-2 to 0.8 A cm-

2. It takes few seconds for the temperature to reach a steady state. When the current density 

suddenly decreased from 0.8 A cm-2 to 0.3 A cm-2, the temperature decreased by 3.5 °C. But it 

took longer time than before for the temperature to reach a steady state.  
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Rakhtala et al. [55] built a PEFC dynamic model that was made using the relationship 

between output voltage and partial pressure of oxygen, hydrogen, and water. Then, the model 

was integrated into a fuzzy PID controller, by which the voltage variation rate in response to 

the load change can be adjust at a desired level. Mahjoubi et al. [56] established a multi-physical 

fuel cell model including electrical model and thermal model. Their model can accurately and 

precisely emulate the fuel cell dynamic behavior, and the model’s estimation ability has been 

validated by the experimental data. With the help of the model, the impacts of temperature 

variation and air flow rate on the fuel cell were discussed. A best compromise between the 

temperature and air flow rate was found in order to ensure an optimal performance for their fuel 

cell. 

Huangfu et al. [57] proposed a multi-physics dynamic model for solid oxide fuel cell, 

considering electrochemical reaction, fluid properties and thermal effects. In this model, a 

parameters sensitivity study was carried out by using statistical multi parameter sensitivity 

analysis method, and then the impacts of parameters on the modeling accuracy were analyzed. 

Obtaining an accurate nominal description of a system, to most of the industry processes, is 

very difficult. Flawed theory and incomplete process knowledge result in white-box models 

with unknown model structure accompanying with unknown parameters. Beside, uncertainties 

existed in the process makes model parameters varying greatly with different working 

conditions, and then affect the accuracy of the models. 

2.2 Black-box models: data-driven methods 

Black-box models, due to its high dependency on the data collected from the system, are also 

called as data-driven methods. Specific knowledge of the intrinsic system behavior is not 

required by the black-box model. Monitored and historical data are used to learn the system’s 

behavior and use to perform the modeling and predicting process. They are appropriate to the 

complex systems whose dynamic behavior cannot be estimated and derived from the 

mechanism-based analysis. The implementation and computation of the data-driven methods 

are faster and more time-saving when comparing with other techniques [58,59]. In general, 

establishing a black-box model has following steps: data collection, analysis, filtering, model 

training and model validation, as shown in Figure 2-2. If the results satisfy the modeling 

requirements, then the model is used for prediction; otherwise, the model should be retrained. 

To establish a black-box model means the corresponding method is used for model training. 
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Figure 2-2: General processing procedure of black-box modeling. 

2.2.1 Artificial neural networks 

The human brain contains nerve cells, which are called as neurons. They are connected to 

one another, transmit and process the information received from our senses. Axons and 

dendrites are used during the information transmission and processing [60]. The connecting 

regions between axons and dendrites are referred to as synapses, and the connections are shown 

in Figure 2-3. The strengths of synaptic connections vary with regards to external stimuli. This 

variation is how learning happens in our brain [61]. 

 

Figure 2-3: Biological neural network [62]. 

 

An artificial network (ANN) that inspired by the human brain consisting of neurons or nerve 

cells, shares the same concept of the network of neurons, and is used in machine learning 

algorithm. In the artificial network, computation units, also called as artificial neurons, are 

created artificially on a computer. The connections of the artificial neuron are called as weights 

that simulate the strengths of synaptic connections in our brain. An artificial neural network is 

created by computing a function of the inputs to the output(s) from the input neurons to the 

output neurons thorough the weights as intermediate parameters. Learning takes place by 

adjusting the weights connecting the neurons, where training data containing examples of input-

output pairs is provided to artificial neural networks just as external stimuli are required for 

learning in human brain [61].  
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An ANN consists of three layers, namely input layer, hidden layer(s), and output layer. A 

typical three layers ANN is shown in Figure 2-4, in which the input layer consists of K input 

neurons, and each neuron represents an input variable x1, …, xK. N neurons are considered in 

the hidden layer, and the system has J outputs y1, …, yJ. The weights (w) that connect the 

neurons are adjusted based on training input-output pairs. 

 
Figure 2-4: Configuration of an artificial neural network with three layers: one hidden layer. 

 

The mathematical formulation for the nodes in hidden layer with K inputs is as following: 

𝑧𝑛 = 𝑔 (∑ 𝑤𝑘𝑛
(1)
𝑥𝑘

𝐾
𝑘=1 + 𝑏𝑛

(1)
)                                         ( 2-1 ) 

here, 𝑤𝑘𝑛
(1)

 denotes the controlling weight mapping input 𝑥𝑘 to the hidden node 𝑧𝑛, and 𝑏𝑛
(1)

 is 

the bias term, 𝑔(∙) stands for activation function. 

The multi-outputs are given by the following expression: 

�̂�𝑗 = 𝑓 (∑ 𝑤𝑛𝑗
(2)
𝑧𝑛

𝑁
𝑛=1 + 𝑏𝑗

(2)
)                                         ( 2-2 ) 

here, 𝑤𝑛𝑗
(2)

 denotes the controlling weight mapping hidden layer nodes 𝑧𝑛 to the ANN output 

�̂�𝑗, 𝑏𝑗
(2)

 is the bias term, 𝑓(∙) stands for transfer function. The commonly used activation and 

transfer functions are listed in Table 2-I.  
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Table 2-I: Activation and transfer functions used in the ANNs [63]. 

Activation function Formula Output range 

Step 𝑔(𝑥) = {
1 𝑥 ≤ 0
−1 𝑥 > 0

 [−1, 1] 

Bipolar step 
𝑔(𝑥) = {

1 𝑥 < 0
0 𝑥 = 0
−1 𝑥 > 0

 
[−1, 1] 

Unit step 𝑔(𝑥) = {
1 𝑥 ≤ 0
0 𝑥 > 0

 [0, 1] 

Linear 𝑔(𝑥) = 𝑥 [−∞,∞] 

Piecewise linear 
𝑔(𝑥) = {

1 𝑥 < 0
𝑥 + 1/2 −1/2 ≤ 𝑥 ≤ 1/2

0 𝑥 > 0
 

[0, 1] 

Symmetric ramp 
𝑔(𝑥) = {

𝑎 𝑥 < 𝑎
𝑥 −𝑎 ≤ 𝑥 ≤ 𝑎
−𝑎 𝑥 > 𝑎

 
[−𝑎, 𝑎] 

Sigmoid 
𝑔(𝑥) =

1

1 + 𝑒−𝑥
 

[0, 1] 

Bipolar sigmoid 
𝑔(𝑥) =

1 − 𝑒−𝑥

1 + 𝑒−𝑥
 

[−1, 1] 

Tangent hyperbolic 
𝑔(𝑥) = tanh(𝑥) =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

[−1, 1] 

Gaussian 
𝑔(𝑥) =

1

√2𝜋𝜎
𝑒
|
−(𝑥−𝜇)2

2𝜎2
|
 

[0, 1] 

 

Collecting the experimental data is the first step to build the model. And the collected data 

are randomly divided into two datasets, meaning training dataset for establishing model and 

testing dataset for validating the neural network model. The activation and transfer functions 

are critical to the establishment of neural network model. They are carefully selected based on 

different modeling problems and type of system outputs. The number of hidden layers and 

nodes used in each hidden layer are the tuning parameters in the neural network. ANNs model 

is trained by increasing the number of hidden nodes as well as the number of hidden layers from 

1 to a target number. In general, with the increasing number of hidden layers and hidden nodes, 

the model complexity increases whereas the training error decreases. Therefore, tradeoff 

between the neural network model accuracy and model complexity should be carefully 

determined. 

Barzegari et al. [64] employed an ANN method to build a model for the PEFCs stack, as 

shown in Figure 2-5. The input layer of ANN was comprised of four inputs, namely time, inlet 

reactant gases pressures, stack current and purge interval time. And stack voltage was 

considered to be the output layer of ANN. Two hidden layers were employed. This ANN model 

can be employed to guide the controller design and fault diagnosis of the PEFCs stack operating 

on pure oxygen and hydrogen in dead-end condition. 
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Figure 2-5: Two hidden layers neural network model [64] 3. 

 

 
Figure 2-6: Neural network structure for modeling the stack-humidifier [65] 4. 

 

Han et al. [65] developed an empirical model for the stack-humidifier to predict three 

variables, namely the average cell voltage of the stack (Vcell), the temperature of the stack 

exhaust gas (Tg), and the temperature of the humidified air from the humidifier (Twa). In Figure 

2-6 shows the structure of the neural network, which consists of the five input variables 

 

 

3 "Reprinted from Energy, 188, Mohammad Mahdi Barzegari, Seyed Majid Rahgoshay, Lliya Mohammadpour, 

Davood Toghraie, Performance prediction and analysis of a dead-end PEMFC stack using data-driven dynamic 

model, Pages No. 116049, Copyright (2019), with permission from Elsevier" 

4 "Reprinted from Energy Conversion and Management, 113, In-Su Han, Sang-Kyun Park, Chang-Bock Chung, 

Modeling and operation optimization of a proton exchange membrane fuel cell system for maximum efficiency, 

Pages No. 52-65, Copyright (2016), with permission from Elsevier" 
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including the stack current Is, the air flow rate to the stack Fa, the cooling water temperature Tc, 

the temperature rise of the cooling water through the stack ∆Tc, and the air temperature Ta). 

They used sigmoid formula as activation function, and linear formula as transfer function. The 

root mean squared error between the predicted and measured outputs, obtained from the neural 

network model and from the testing data set was used as the criterion to determine the optimal 

number of hidden nodes. After the model was established, the sensitivity analysis with respect 

to the system efficiency was carried. The results showed that both the air flow rate Fa and the 

cooling water temperature rise ∆Tc, have greater impact on the system efficiency than others. 

In addition, an increase in the air flow rate has either positive or negative effect on the system 

efficiency depending on the applied power load. 

2.2.2 Fuzzy logic 

When humans make decisions in their daily life, due to the imperfect senses and observation 

instruments of human beings, the decisions are not always reach an infinite precision, but with 

uncertainty. For example, when the basin is full of water, we can know the temperature of the 

water in the basin by a thermometer, and then we need to make a decision: whether it is safe to 

reach into the water. The decision making may include a range of possibilities between YES 

and NO, as listed in Table 2-II. These decisions are drawing by our “intuition” and “gut-

feelings”, which can only make after learning from experience [66]. 

Table 2-II: Fuzzy decision of humans whether they reach their hand into the water. 

Temperature Decision 

<40°C Definitely YES 

40°C ~ 45°C Possible YES 

45°C ~ 50°C Cannot Say 

50°C ~ 70°C Possibly NO 

>70°C Definitely NO 

 

Fuzzy logic (FL) was first proposed by Zadeh [67] aiming at modeling human thinking and 

reasoning, trying to equip computers with the ability of humans processing special data as well 

as making use of their experiences and insights. It is capable of expressing a complex system 

in the form of fuzzy implications and has been reported to smoothly approximate any nonlinear 

system over a large working region [68]. In general, the fuzzy logic consists of three parts: 

fuzzification unit, rule processing unit, and de-fuzzifier unit and output information [69]. A 

membership value is assigned to each numerical data (quantitative information) entering into 

the fuzzification unit. Based on the membership value, the numerical parameters of input and 

output variables were fuzzificated as linguistic classes, for example, very very low, very low, 

low, negative medium, medium, positive medium, high, very high and very very high [69]. The 
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rule processing unit forms the linguistic classes as if-then rules. The statement is: if antecedent 

proposition then consequent proposition. Results obtained using logical decision propositions 

according to the structure of the problem is sent to the de-fuzzifier unit, then each fuzzy 

information is converted into real number with scale change. 

Let X be input (regression) matrix and Y an output, x the antecedent variable representing the 

input in the fuzzy system, and y the consequent variable related to the output of the fuzzy system, 

then the linguistic fuzzy consists of rules Ri is given as [70]: 

Ri: if x is Ai then y is Bi,    i = 1, 2, …, P  

here,  𝐴𝑖  and 𝐵𝑖  being linguistic classes fuzzy sets defined by 𝜇𝐴𝑖(𝑥): 𝑋 ↦ [0, 1]  and 

𝜇𝐵𝑖(𝑦): 𝑌 ↦ [0, 1]  respectively;  𝜇𝐴𝑖(𝑥)  and 𝜇𝐵𝑖(𝑦)  are membership functions of the 

correspondent variables; 𝑅𝑖 denotes the ith rule and P is the number of rules in the rule base. 

Fuzzy logic can be effectively employed in engineering, science, and business for a variety 

of purposes such as decision making, analysis of complex problems, function approximation, 

process control, risk assessment, and classification. In addition, it can address disturbances in 

systems, so are widely used in modeling fuel cells or stacks, which can reach a good degree of 

approximation in the systems themselves [35]. 

Zhang and Gang [71] used a Takagi–Sugeno (T–S) fuzzy model to represent approximately 

the nonlinear dynamics of solid oxide fuel cells (SOFCs). Since the fuzzy model approximates 

locally and dynamically the nonlinear dynamics by a set of linear models at each sampling 

period, linear model predictive control theory can be used easily to design an offset-free fuzzy 

model predictive control for the load following of SOFCs. Within the fuzzy model, fuel 

utilization, hydrogen/oxygen ratio, and pressure difference are used to monitoring the operating 

fuel cell performance.  

Kheirandish et al. [36] established a fuzzy model for fuel cell system. Four properties were 

used to describe the fuel cell system, namely hydrogen flow rate, temperature, relative humidity, 

and efficiency of the system. The fuzzy rules were applied to explain the causes and effects 

between system properties instead of using analytical descriptions, thus eliminated the need for 

expert knowledge. 

Yang et al. [72] reported a dynamic fuzzy model of a MCFC, which consists of a voltage and 

a temperature sub-model. However, the temperature sub-model can only be valid within a 

relatively narrow temperature range. In addition, the identification procedure of the model, 

which contains an antecedent identification and a consequent identification, is complicated. 

2.2.3 Support vector machine 

Support vector machines (SVMs) were introduced in the 1960s, which apply the structural 

risk minimization rule, and exhibits good performance even with noise-contaminated data or 

high dimensional data [73]. The idea is to find a way that separates features with maximum 
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margins. As shown in Figure 2-7, there are two features in the dataset, marked as class 1 (circles) 

and class 2 (squares). The dash line separates the two features, which is called as separation 

decision. On both sides of the dash line, through the points closest to the dash line draws a solid 

line parallel to the dash line. The distance between the two solid lines is called margin. Figure 

2-7 shows two separation decisions. It can be found that the margin in Figure 2-7a is smaller 

than that of in Figure 2-7b, which means a poorer separation decision of  Figure 2-7a. 

 
Figure 2-7: Classification of class 1 (circles) and class 2 (squares) data using a line classifier, 

having: (a) the smallest margin and (b) the largest margin [74] 5. 

 

Let the training data set to be shown with {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1,2,… ,𝑁}, where 𝑥𝑖 ∈ ℝ
𝑛 is the input 

data which has d dimensions, N the number of training data points, 𝑦𝑖 that can take values of 

+1 or −1 will help to classify the input data. The decision function is then obtained as follows: 

𝑦 = sgn(〈𝜔, 𝜑(𝑥)〉 + 𝑏)                                               ( 2-3 ) 

here, 𝜔 is the weight vector in the primal weight space, and 𝑏 the bias term, 𝜑(𝑥): ℝ𝑛 → ℝ𝑛ℎ 

is a projected function mapping the input data onto a higher dimensional feature space. For a 

data point (x, y), if 𝑦 = 0, then the 𝑥 falls on the separation line that is shown by the dash line 

in Figure 2-7. If 𝑦 = 1, then the 𝑥 falls on the solid line that belongs to class 1, which if 𝑦 =

−1, 𝑥 falls on the solid line that belongs to class 2. The optimal classification is to find the 

largest margin that separates the data, then the optimization problem can be written as [75]: 

min
1

2
‖𝜔‖2                                                          ( 2-4 ) 

s.t. 𝑦𝑖(〈𝜔, 𝜑(𝑥𝑖)〉 + 𝑏) ≥ 1 

 

 

5 "Reprinted by permission from Springer nature [Support Vector Machine – An Introduction] by Vojislav 

Kecman, Copyright (2005) " 
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This optimization problem can be converted to a so-called dual problem. In the present case, 

it will turn out that it is more convenient to deal with the dual. To derive it, we introduce the 

Lagrangian multipliers (𝛼𝑖 ≥ 0) were introduced:  

min
𝜔,𝑏

ℒ(𝜔, 𝑏, 𝛼) =
1

2
‖𝜔‖2 −∑ 𝛼𝑖

𝑁
𝑖=1 (𝑦𝑖(〈𝜔, 𝜑(𝑥𝑖)〉 + 𝑏) − 1)                  ( 2-5 ) 

The objective is then to minimize Eq. 2-5 with respect to 𝜔 and 𝑏 and simultaneously require 

that the derivatives of ℒ(𝜔, 𝑏, 𝛼) with respect to all the 𝛼 vanish. The Karush-Kuhn-Tucker 

(KKT) conditions establish the requirements that need to be satisfied by an optimum solution 

to a general optimization problem. Given the optimization problem in Eq. 2-5, KKT conditions 

state that the conditions for optimality are given by:   

𝜕

𝜕𝜔
ℒ(𝜔, 𝑏, 𝛼) = 0 → 𝜔 = ∑ 𝛼𝑖𝑦𝑖

𝑁
𝑖=1 𝜑(𝑥𝑖)                                   ( 2-6 ) 

𝜕

𝜕𝑏
ℒ(𝜔, 𝑏, 𝛼) = 0 → ∑ 𝛼𝑖𝑦𝑖

𝑁
𝑖=1 = 0                                        ( 2-7 ) 

Substituting Eq. 2-6 and 2-7 into 2-5 results the formulation: 

max
𝛼
ℒ =∑ 𝛼𝑖

𝑁
𝑖=1 −

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗
𝑁
𝑖=1,𝑗=1 𝜑(𝑥𝑖)𝜑(𝑥𝑗)                      ( 2-8 ) 

s.t. ∑ 𝛼𝑖𝑦𝑖
𝑁
𝑖=1 = 0, and 𝛼𝑖 ≥ 0 

As the optimization problem depends on the dot product of the sample vectors, by employing 

kernel function 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜑(𝑥𝑖)𝜑(𝑥𝑗) that corresponds to a dot product in some expanded 

feature space, the problem of transformation to feature space can be simplified to find a kernel 

function 𝐾(𝑥𝑖 , 𝑥𝑗). A summary of common kernel functions is presented in Table 2-III data 

points with 𝛼𝑖 > 0 are called “support vectors” and they lie on either of the solid lines belonging 

to class 1 or 2, shown in Figure 2-7.  

Substituting Eq. 2-6 into the decision function Eq. 2-3, the resulting SVM model is as 

following: 

�̂� = sgn(∑ 𝛼𝑖𝑦𝑖
𝑁
𝑖=1 𝐾(𝑥𝑖, 𝑥𝑗) + 𝑏)                                       ( 2-9 ) 

Table 2-III: Commonly used kernel functions [76]. 

Kernels Formula 

Linear 𝐾(𝑥, 𝑥𝑗) = 〈𝑥, 𝑥𝑗〉 

Polynomial 𝐾(𝑥, 𝑥𝑗) = (𝑐 + (𝑥, 𝑥𝑗))
𝑎

 

Radial basis function 𝐾(𝑥, 𝑥𝑗) = exp (−
‖𝑥 − 𝑥𝑗‖

2

2𝜎2
) 

Sigmoid 𝐾(𝑥, 𝑥𝑗) = tanh(𝜂(𝑥, 𝑥𝑗) + 𝜗) 

Fourier series 𝐾(𝑥, 𝑥𝑗) =
sin(𝑎 + 1

2) (𝑥 − 𝑥𝑗)

sin (1
2(𝑥 − 𝑥𝑗))

 

Additive 𝐾(𝑥, 𝑥𝑗) =∑𝐾𝑖(𝑥, 𝑥𝑗)

𝑖
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Kheirandish et al. [39] proposed a fuel cell model using a SVM. They proposed a method of 

using SVM to predict the performance of PEMFC system for commercial electric bicycles. 

Because these units are nonlinear, multi variable system is difficult to model with the traditional 

method, so the SVM method is applicable to nonlinear condition. Bressel et al. [77] proposed 

a fuel cell model using a SVM. They suggested a method for predicting the performance of 

PEFC systems using a SVM for commercial electric bicycles. Since such units are non-linear, 

multivariable systems are hard to model by traditional methods, so the SVM method is suitable 

for nonlinear conditions. As mentioned above, the key issue of the model based approach is 

how to model the system. And as the dynamic changing of the system, the model should be 

created to be intelligent. The future direction of the model based approach would be more 

intelligent and combine with other methods. 

Li et al. [78] employed the support vector machine (SVM) to detect and isolate possible faults 

for PEFCs in real time. An offline SVM model was first trained on the basis of historical data, 

with different operating states categorized. With this diagnosis model, the real-time information 

was well-organized and the operating state determined. 

2.2.4 Least-squares support vector machine 

The least squares support vector machine (LSSVM) approach is a machine learning 

technique which is based on the statistical learning theory and structural risk minimization 

principle. The LSSVM was derived from the SVM, and proposed by Suykens and Vandewalle 

[40,79]. As a least squares version of SVM, LSSVM inherits the superior generalization 

performance of SVM; while only solve a set of linear, rather than quadratic, equation 

programming problems. Although its precision is slightly lower than that of SVM, LSSVM 

significantly reduces computation time [80]. LSSVM is thus regarded as a powerful tool for 

modeling complex nonlinear systems and its accuracy and efficiency have been proven in many 

research and application fields [81]. The LSSVM can be expressed as follows [82]: 

𝑦 = 𝜔𝑇𝜑(𝑥) + 𝑏                                                           ( 2-10 ) 

where 𝑥 ∈ ℝ𝑛, 𝑦 ∈ ℝ,𝜑(∙):ℝ𝑛 → ℝ𝑛ℎ is a nonlinear function that maps the input space into a 

higher dimension feature space. By utilizing training data {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1,2,… ,𝑁} , the 

optimization problem of the LSSVM method is as follows [40]: 

min
𝜔,𝑏,𝑒

𝐽(𝜔, 𝑒) =
1

2
𝜔𝑇𝜔 +

𝛾

2
 ∑ 𝑒𝑖

𝑁
𝑖=1 , 𝛾 > 0                                 ( 2-11 ) 

s.t. 𝑦𝑖 = 𝜔
𝑇𝜑(𝑥𝑖) + 𝑏 + 𝑒𝑖 

where 𝛾 is the regularization term that marks a tradeoff between the model’s accuracy and its 

capacity for generalization. In order to solve this optimization function, a Lagrangian parameter 

𝛼𝑖 is defined. The conditions for optimality are as follows: 

ℒ(𝜔, 𝑏, 𝑒; 𝛼) = 𝐽(𝜔, 𝑒) − ∑ 𝛼𝑖{𝜔
𝑇𝜑(𝑥𝑖) + 𝑏 + 𝑒𝑖 − 𝑦𝑖}

𝑁
𝑖=1                ( 2-12 ) 

with Lagrangian parameter 𝛼𝑖, the conditions for this optimization are as follows: 
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{
  
 

  
 
𝜕

𝜕𝜔
ℒ = 0 → 𝜔 = ∑ 𝛼𝑖𝜑(𝑥𝑖)

𝑁
𝑖=1                     

𝜕

𝜕𝑏
ℒ = 0 → ∑ 𝛼𝑖

𝑁
𝑖=1 = 0                               

𝜕

𝜕𝑒𝑖
ℒ = 0 → 𝛼𝑖 = 𝛾𝑒𝑖                                   

𝜕

𝜕𝛼𝑖
ℒ = 0 → 𝜔𝑇𝜑(𝑥𝑖) + 𝑏 + 𝑒𝑖 − 𝑦𝑖 = 0

               ( 2-13 ) 

After eliminating 𝑒𝑖 and 𝜔, the solution for 𝛼 and b is given by a set of linear equations: 

[
0 1⃗ 𝑇

1⃗ Ω + 𝛾−1𝐼
] [
𝑏
𝛼
] = [

0
𝑦
] 

where 𝑦 = [𝑦1; … ; 𝑦𝑁], 1⃗ = [1;… ; 1], 𝛼 = [𝛼1;… ; 𝛼𝑁], while from the Mercer condition we 

get the following [83]: 

Ω =  𝜑(𝑥)𝜑(𝑥𝑖) = 𝐾(𝑥, 𝑥𝑖) 

here 𝐾(𝑥, 𝑥𝑖) is the kernel function, for which a variety of functions can also be used, see Table 

2-III. 

Then, the result for the LSSVM method is as follows: 

𝑦 = ∑ 𝛼𝑖𝐾(𝑥(𝑡), 𝑥(𝑡𝑖))
𝐿
𝑖=1 + 𝑏                                              ( 2-14 ) 

where 𝛼𝑘 and b are the solutions of Eq. (2-13). 

Based on the framework of statistical learning theory and structural risk minimization, 

LSSVM is regarded as an effective tool for establishing nonlinear models and is applied to 

various engineering problems. It can be used for both steady-state and dynamic modeling. Huo 

et al. [84] used the least squares support vector machine to establish a steady-state model of 

solid oxide fuel cells (SOFCs), in which the fuel utilization and cell current were selected as 

the model input and the cell voltage as the output. Wu et al. [85] used a least squares support 

vector machine classifier to establish a fault diagnosis model, by which the faults of the solid 

oxidant fuel cell could be identified and the remaining lifetime predicted. Zou et al. [86] 

successfully predicted the distributed temperature throughout the HT-PEFC on the basis of the 

LSSVM. 

2.3 Gray-box models: parameter estimation methods 

Gray-box models are regarded as combination of white-box models and black-box models, 

and inherit the physical significance of the white-box models and generalization capabilities of 

the black-box models. Gray-box models are suitable for the system, whose partial processes are 

known only a small part of the process is difficult to be conduct from analysis. Thus, it depends 

on not only the prior knowledge about the system but also the experimental data. To establish 

a gray-box model normally contains the following steps: to construct the physical-based model; 

to implement experiments and collect data; to adjust the model; to validate the model, as shown 

in Figure 2-8.  
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Figure 2-8: General processing procedure of gray-box modeling. 

2.3.1 N-order polynomial regression 

The n-order polynomial is an efficient modeling method to fit experimental data an predict 

mechanical properties. The standard polynomial form is [87]: 

𝑦 = 𝑓(𝑥, 𝐴) = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑛𝑥
𝑛                                 ( 2-15 ) 

where A = [a0, a1, …, an]T is the polynomial coefficient vector, x the sampled data, y the output, 

and n the order of the model. In order to obtain the polynomial coefficients in Eq. 2-70, the 

optimization objective is: 

𝐽 = min{∑ 𝑒𝑖
2𝑚

𝑖=0 } = min {∑ (𝑎0 + 𝑎1𝑥(𝑖) +⋯+ 𝑎𝑛𝑥(𝑖)
𝑛 − 𝑦)

2𝑚
𝑖=0 }         ( 2-16 ) 

where, m is the number of calculations. 

The optimization problem above can be solved when satisfied: 

𝜕𝐽

𝜕𝑎𝑗
= 2∑ 𝑥(𝑖)

𝑗
(𝑎0 + 𝑎1𝑥(𝑖) +⋯+ 𝑎𝑛𝑥(𝑖)

𝑛 − 𝑦)𝑚
𝑖=0 = 0                  ( 2-17 ) 

Linear and quadratic polynomials are commonly used to estimate system parameters and 

approximate the system process. Chavan et al. [88] presented an electrical circuit equivalent 

model of PEFCs in MATLAB. Least square optimization fitting algorithm was used to find 

parameters of equivalent circuit. Validation of simulation and practical results also presented. 

This model is most suitable to describe terminal behavior of the PEFCs. First- and second-order 

models were developed to identify which input factors affect the response variables 

significantly, in which current, hydrogen flow rate, operating temperature, and internal 

capacitance are discussed [89].  

2.3.2 Genetic algorithm 

Genetic algorithm (GA) is based on Darwin’s theory of natural selection, where the fitter 

individuals are likely to survive in a competing environment. The theory of natural selection 

includes the following three aspects: inheritance, variation, and survival struggle [90]. The 

basic procedures of the GA are shown in Figure 2-9. The parameters that need to be identified 
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are grouped together as a parameter set that is regarded as an individual in the population. Many 

such parameter sets (individuals) make up the first population, which is called as initialization 

of the population. Chromosome coding translates the parameter set into gene sequence which 

could be binary, real value or integer. Fitness function is used to label each individual in the 

population. The individual who has better performance in fitness function will be given higher 

credit, and is more likely to be selected to generate offspring. Crossover is how the population 

generating the offspring, where genes of two selected individual are exchanged. After crossover, 

bits of the gene sequence could be facing mutation that happens stochastically. Mutation 

maintains the genetic diversity of current generation to the next one.  

End condition

Initialize population

Calculate fitness

Select population

Crossover/

Mutation

Yes

No

Output

Translate DNA

 
Figure 2-9: General procedures of the genetic algorithm. 

 

Mohamed et al. [91] first applied genetic algorithm to optimize a PEFC stack design by 

finding the best configuration in terms of number of series, parallel cells and cell surface. It 

starts with generating the target parameters randomly between upper and lower limits provided 

by designer. And calculate the fitness value of each individual. The fitness was calculated as 

the difference between the fuel cell mathematical model and the experimental one. Those how 

closer to the experimental data ranked higher meaning more likely to be used to generate 

offspring. After several generations, the optimal model parameters were obtained. Li et al. [92] 

developed a novel genetic algorithm to optimize the parameter of thermal-model-oriented 

control law for PEFC stack. The thermal transfer coefficients were estimated by their algorithm, 

of which the searching time was reduced by improving the global and local searching ability. 

Nejad et al. [93] employed genetic algorithm to obtain the optimal control parameters of a PEFC, 

which overcame the improper efficiency of primary parameters in studied problem. The control 

parameters were adjusted for minimization of the voltage deviations, and then the adjusted 
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parameters were applied to the operating PEFC. Their model realized an online optimization, 

decreases the voltage deviation and improved the dynamic response in the fuel cell system. 

Kang et al. [94] used a genetic algorithm to identify the hyperparameters of the LSSVM that 

used to establish a dynamic temperature model for a SOFC. This model is able to capture the 

temperature dynamics of the SOFC with good accuracy, which benefits from the automatically 

tuning process of the hyperparameters of the LSSVM and the modeling method itself. 

2.3.3 Artificial neural networks 

In addition to establishing a black-box model, the artificial neural networks (ANNs) could 

also be used in parameter estimation. Hatti et al. [95] performed an ANN based static modeling 

of PEFC, where its critical parameters under different stoichiometric condition at different 

operating conditions is estimated. Puranik [96] et al. developed a nonlinear auto aggressive 

model of the PEFC with external inputs based on the neural networks. A recurrent feedback 

strategy was implemented to yield accurate results. More importantly, polarization curves 

obtained at different temperature has matched exactly to the real fuel cell characteristics 

reducing the error substantially. Although the PEFC model developed based on ANN 

controllers has improved the performance, the immense complexity involved critically 

questions its suitability and implementation. 

2.4 Conclusions and ideas 

An overview on advances in the dynamic modeling for the PEFCs was presented in this 

chapter. The underlying fundamental ideas, general applications, and their strength and 

weakness are also presented. Different modeling methods have been categorized into three 

groups according to their methodology, namely white-box models, gray-box models, and black-

box models. The differences among the three types of models are listed in Table 2-IV. White-

box models provide a deep understanding of the fuel cell system, and can be used beforehand 

to analysis the fuel cell system. Complex mathematical calculation is often required, and 

assumptions are made to simplify the models’ complexity. Gray-box models are suitable for 

the system that only small parts of the system remain unknown or few parameters need to be 

identified. Black-box models are independent to the system priori knowledge with high 

computation speed. In general, with sufficient data being provided to the black-box model, a 

high approximation is obtained. The high computational speed characteristic of the black-box 

models has practical advantages in on-line process control cases. 
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Table 2-IV: Different modeling methods and their properties [97]. 

Attribute Modeling methods 

White-box Gray-box Black-box 

Knowledge of process High Medium Low 

Computational burden High Medium Low 

Data demand Low Medium High 

Extrapolation capabilities High Medium Low 

 

The fuel cell’s performance in operation is not only affected by its manufacturing and 

assembling process, but also closely related to its operating conditions and load changes. An 

accurate and reliable model which has fast response to the various changes during operation 

and can fast predicting the fuel cell dynamics is necessary. Since the PEFCs system is complex, 

multivariate and strongly coupled, modeling its characteristic and predicting its performance is 

difficult. The black-box models simply consider functional relationships between system inputs 

and system outputs and do not have any physical significance to physical process parameters. 

The fuel cell dynamic model is built from abstracted parameters. But no knowledge of the 

process and highly rely on the data are also the disadvantages of black box models compared 

to white-box models. However, when the requirement is only to capture the dynamics and 

nonlinearity of the system, then the black box modeling approach is very attractive. 

The black-box models introduced in section 2.2 are summarized and compared in Table 2-V. 
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Table 2-V: Comparison among different black-box modeling methods. 

Methods Characteristics  Pros (•) and cons (∘) 

ANNs Nonlinearity; 

High flexibility; 

Weighted connections;  

 

⚫ Parallel processing capability; 

⚫ Represent complex non-linear behavior; 

⚫ Having fault tolerance; 

 Unexplained behavior of the network; 

 Determination of proper network structure; 

 Local minimum and over-fitting problems 

Fuzzy 

logic 

Flexible and easy to implement; 

Mimic the logic of human 

thought; 

 

 

⚫ Systems is easy and understandable; 

⚫ Mostly robust when no precise inputs 

required; 

⚫ Deal with the uncertainty in engineering 

 Not always accurate; 

 Incapable in pattern recognition; 

 Setting up is quite a difficult task 

SVM Structure risk minimization; 

Maximum margin hyperplane; 

Kernels; 

Non-linear separable problems; 

Inequality constraints; 

Quadratic programming 

⚫ Tolerance to noise; 

⚫ Accurate in high dimensional spaces; 

⚫ Effective when the number of features are 

larger than training samples; 

 Larger dataset accompanies with longer 

computation time; 

 Poor performance in case of overlapped 

classes 

LSSVM Structure risk minimization; 

Statistical learning theorem; 

Equality constraints; 

Linear programming 

⚫ Superior generalization ability; 

⚫ Computational attractiveness; 

 Lack of sparseness; 
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The least squares support vector machine (LSSVM), due to its excellent ability to 

approximate any nonlinear system is regarded as a solution for nonlinear complex system 

modeling like the PEFCs. Only a set of linear equations need to be solved in the LSSVM, the 

training time is largely reduced. The model structure is simple, which is ideal candidate for 

nonlinear complex system modeling like fuel cells.  

Thus, a LSSVM model for fuel cell voltage is established in chapter 3. However, for 

numerical implementation and applications, the model accuracy, suitability and credibility are 

always the priority. Then the suitability of the transient model under various working conditions 

is evaluated in chapter 4, where ideal case is considered. Based on this, the more practical 

conditions are taken into consideration in chapter 5, in which the oscillation on the cell voltage 

is included. In order to reach high model accuracy, an optimized transient model, which is based 

on LSSVM model, is established in chapter 6. 
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3 A LSSVM model for PEFCs dynamics 

This chapter focuses on the dynamic response estimation for the polymer electrolyte fuel 

cells (PEFCs), which can be used for predicting fuel cell transient voltage output. To overcome 

the complex nonlinearity, multi-physics coupled and time-varying properties, a transient 

voltage model is established, which is based on the least squares support vector machine. This 

chapter is organized as follows: Section 3.1 describes voltage behavior. Section 3.2 introduces 

basic structure of the least squares support vector machine. The experiments setup is presented 

in section 3.3. The LSSVM modeling procedures and the model performance are presented in 

section 3.4 and 3.5, respectively. Section 3.6 draws conclusions. 

3.1  Time-varying voltage behavior 

Voltage is easy to be measured in the operating PEFCs. Load changes [98], a broken balance 

inside the fuel cell [99], and fuel cell failures [100] will lead to a change in voltage, which 

makes the cell voltage an effective tool to measure the performance of the fuel cell. Thus, in 

order to well monitor the performance of operating fuel cell then achieve good performance, a 

real-time assessment of the cell voltage, and the establishment of an efficient and reliable model 

that can predict the PEFCs system output in real-time are necessary.  

The transient voltage collected in our test rig is shown in Figure 3-1, where the brown is the 

current density and the black represents the cell voltage. The current density was increased 

stepwise from 0.1 A cm-2 to its limited current density value 1.2 A cm-2 with a step of 0.2 A 

cm-2. At each current density level, holds on for 180 s. After reach the limited current density 

value, the current density was decreased stepwise from 1.2 A cm-2 to 0.1 A cm-2 by 0.2 A cm-2. 

The change in current density occurs instantly. The experiment ran 2340 s. Despite determined 

current density is applied to the fuel cell, still, oscillations are caught on the cell voltage, and 

the oscillated amplitudes vary from different current densities. At low current densities, the 

oscillations on the cell voltage are minor, but at high current densities, the oscillations are severe. 

Oxygen starvation, superfluous heat, water accumulation in flow channel and membrane 

flooding may cause the oscillations in the cell voltage, but cannot fully explain the voltage-

current characteristics. A more efficient modeling approach is necessary to address these 

complexities and contribute to a better solution to model the dynamic behavior of the PEFCs.  
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Figure 3-1: Dynamic voltage-current density profiles (Brown curve: current density; Black 

curve: cell voltage; Operating temperature: 343.15 K; RHan=100%; RHca = 100%; 

Active area: 17.46 cm2; λan = λca = 2). 

3.2 Least squares support vector machine 

The least squares support vector machine (LSSVM) is a black-box model for approximation 

and can transform the statistical learning theory into practical applications. It constructs the 

connection between the input and output instead of analyzing the physical phenomenon using 

analytical methods [101]. LSSVM modeling method is widely applied in various engineering 

applications because of its high ability to approximate the complex input/output relationship 

and predict the performance of the system. It is a machine learning technique and based on the 

statistical learning theory and structural risk minimization principle. By mapping the input data 

in a primal space into a feature space, the nonlinear relationships in the primal space between 

the input data and output data are transformed into linear relationships in the feature space. By 

this method, the complexity of the model’s calculation process is somewhat reduced, which is 

less time-consuming without a computational burden.  

The LSSVM method has the following form [82]: 

𝑦 = 𝜔𝑇𝜑(𝑥) + 𝑏                                                     ( 3-1 ) 

where 𝑥 ∈ 𝑅𝑛, 𝑥 ∈ 𝑅, 𝜑(∙): 𝑅𝑛 → 𝑅𝑛ℎ is a nonlinear function that maps the input space into a 

higher dimension feature space. Details of the LSSVM modeling method can be found from 

Eq. 2-10 to 2-14. By utilizing training data {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1,2,… ,𝑁}, and introducing Lagrangain 

multiplier 𝛼𝑖, the result of the LSSVM method is as follows: 

�̂� = ∑ 𝛼𝑖𝐾(𝑥, 𝑥𝑖)
𝑁
𝑖=1 + 𝑏                                                ( 3-2 ) 

𝐾(𝑥, 𝑥𝑖) is the kernel function, and the commonly used kernel functions are listed in Table 

2-III. There is no common conclusion for the selection of kernel function. However, the 

Gaussian radial basis function (RBF) is usually used due to following reasons [102–105]: 
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⚫ In the absence of expert knowledge about data and domain, its performance is still very 

good. And only one hyper-parameter needs to be tuned during the training process; 

⚫ The value of RBF kernel decreases as the distance between the two feature vectors increase, 

and its value varies between 0 and 1. It is a similarity measurement representation and it 

has localized an finite response along the entire space; 

The expression of the Gaussian RBF is as following: 

𝐾(𝑥, 𝑥𝑖) = exp (−
‖𝑥−𝑥𝑖‖

2

2𝜎2
)                                       ( 3-3 ) 

here, 𝜎 is called width parameter. Then, by using the RBF as kernel function in the LSSVM 

model, the model’s performance highly depends on the regularization term 𝛾 and the RBF 

kernel parameter 𝜎 that controls the width of the kernel. The regularization term determines the 

trade-off between minimizing training errors and minimizing model complexity, is important 

to increase the generalization performance of LSSVM model. The kernel parameter 𝜎 

influences directly the number of initial eigenvalues/eigenvectors. Small values of 𝜎 yield a 

large number of regressors, and eventually it can lead to over-fitting. On the other hand, a large 

value of 𝜎 can lead to a reduced number of regressors, making the model more parsimonious, 

but eventually not so accurate. 

However, there are no guidelines for choosing the parameters, but they could be selected 

through cross-validation, sometimes called rotation estimation [79]. Cross-validation can assess 

the approximating ability of a statistical analysis to an unknown dataset. It is commonly used 

in the field, where the goal is prediction, and one wants to estimate the model’s predicting 

ability.  

3.2.1 Cross-validation 

To establish a model, the dataset is divided into two parts, namely training set and testing set. 

Suppose X is the universe, and A is a non-void proper subset of X, then X\A is the 

complementary set of A in the universe X. Hence, dataset A is used in training process and X\A 

is used in testing process. A is then called as training set and X\A is called as testing set. One 

should note that only the training set can be used in the training process, and the testing set can 

only be used to validate the model’s performance after the model training process is completed. 

There are two forms of cross-validation: exhaustive cross-validation and non-exhaustive 

cross-validation. Exhaustive cross-validation methods go through all the non-void proper 

subset A of the universe X. If there are n elements in the universe X, then the selection rule for 

subset A is 2𝑛 − 2. The complexity of this method is exponential. In contrast, non-exhaustive 

cross-validation methods do not consider all possibilities of splitting the universe X. 

Leave-p-out cross-validation is an exhaustive cross-validation method. p elements in the 

universe X are selected in testing set, and the rest n-p elements are included in training set. 
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According to mathematical theorem, there are 
𝑛!

(𝑛−𝑝)!𝑝!
 ways to choose p elements. Based on 

this, the time complexity of leaving leave-p-out cross-validation is very high. When p = 1, it is 

called as leave-one-out cross-validation, which does not suffer from the intensive computation, 

as the time complexity is n. 

Hold-out method randomly divided into the universe X into two subsets A and X\A. A is 

regarded as training set and X\A as testing set. The size of training set and testing set is arbitrary 

but the training set should larger than the testing set. The advantage of the hold-out method is 

that it is simple to carry out, only need to divide the original dataset into two parts. But it is not 

essentially a cross-validation method, and its accuracy of the validation is highly depended on 

the original dataset separation. 

K-fold cross-validation is a non-exhaustive cross-validation method. The universe X is 

randomly divided into k subsets. Each subset is equal in size with |𝐴1| = |𝐴2| = ⋯ = |𝐴𝑘|. 

Now the hold-out method is repeated k times, at each time, X\𝐴𝑖 (i = 1, 2, …, k) is regarded as 

training set and used to trained the model, and then 𝐴𝑖 is used to test the model. The error 

estimation is averaged over all k trails to get total effectiveness of the model. As rule of thumb, 

k = 5 or 10 is generally preferred [106]. When k = n, it becomes to leave-one-out cross-

validation. 

3.3 Experimental setup 

The LSSVM model’s performance will be verified in the PEFCs test cell that was 

manufactured and assembled at the Forschungszentrum Jülich in Germany. The PEFC test cell 

has a power of 9 W and an active MEA area of 17.64 cm2. It utilizes a Freudenberg gas diffusion 

layer (GDL), which was loaded with 5% PTFE and coated with an MPL. The flow field consists 

of three parallel serpentine channels. The end plate was fabricated from stainless steel type 

1.4571 (316 Ti) [107,108]. Greenlight Technology’s G40 test stand was used to monitor and 

control the fuel cell, as is shown in Figure 3-2. The test stand allows for the modification of a 

number of process variables and the collecting of a set of experimental data under different 

operating conditions. It is also able to change the operating conditions, for example, gas flow 

rate, temperature and relative humidity. The working environment of the fuel cell required by 

the user can be well satisfied. The fuel cell’s current and voltage are collected by corresponding 

collectors. A manometer, on the cathode side, is used to measure the pressure drop by 

calculating the difference between the inlet/outlet pressures. The fuel cell is equipped with four 

gas flow rate sensors that are used for sensing the inlet and outlet flow rate on both sides during 

operation. The fuel cell is heated by two heaters inserted on the anode and cathode endplate, 

respectively. In the meantime, two thermocouples are inserted onto each side and are used to 

monitor the cell temperature and ensure it is kept at set temperature [107].  
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Figure 3-2: Greenlight Technology’s G40 test stand and sensors layout. 

 

The test procedures are as following: The starting point of the current density is set at 0.1 A 

cm-2, and remains at this value for 180 s. Then, the current density is increased in increments 

of 0.1 A cm-2 and remains at the current value for 180 s. These steps are repeated until it attains 

the limited current density (1.2 A cm-2). It is maintained at this limited value for 180 s, then, 

the current density is decreased at a rate of 0.1 A cm-2 by the current density measures 0.1 A 

cm-2. Repeat this process and obtain the asymmetrical profile displayed in Figure 3-3. The 

experimental data were collected with a sampling interval of ∆t = 1 s, with the experiment 

carried out for 4525 seconds. Pure hydrogen is used as fuel and air used oxidant. During the 

operation, the cell operating temperature was set to 343.15 K and the reactant gases’ relative 

humidity (RH) were set to 90%, and the stoichiometry of hydrogen (𝜆𝑎𝑛) and air (𝜆𝑐𝑎) were set 

to 2.  
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Figure 3-3: Current density profile. (Limited current density: 1.2 A cm-2; Ramp values: 0.1 A 

cm-2; Sampling interval ∆t = 1 s) 
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3.3.1 Dataset preparation 

With the experimental data collected from the test rig, the LSSVM modeling method is used 

to determine the relationship between the inputs of the fuel cell system and the output voltage. 

The experimental data were collected with constant sampling interval (Δt). Inlet reactant gases 

pressure (𝑝H2  and 𝑝air) and flow rate (�̇�H2  and �̇�air), cell current density (i) constitute the 

LSSVM model input, as 𝑢(𝑡) = [𝑖, 𝑝H2 , 𝑝air, �̇�H2 , �̇�air]. The cell voltage (v (V)) is the LSSVM 

model output, as 𝑦(𝑡) = 𝑣 (V).  The inlet pressures of both sides are shown in Figure 3-4 and 

Figure 3-5 respectively. Cell voltage is shown in Figure 3-6. 

Considering the effects of the adjacent time points, the input of the LSSVM model consists 

not only of the present variables, but also includes previous data, which is expressed as follows: 

𝑈(𝑡) = [𝑢(𝑡), 𝑢(𝑡 − 𝛥𝑡), … , 𝑢(𝑡 − 𝜏𝛥𝑡)]                                   ( 3-4 ) 

here, 𝜏 is the number of adjacent time point and in this work 𝜏 = 3. 
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Figure 3-4: Anode inlet pressure: hydrogen is fueled into the anode side (Stoichiometry of both 

side is set as 2; Relative humidity of both sides is RH = 90%; Cell temperature is 

T = 343.15 K). 
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Figure 3-5: Cathode inlet pressure: air is delivered into the cathode side (Stoichiometry of both 

side is set as 2; Relative humidity of both sides is RH = 90%; Cell temperature is 

T = 343.15 K). 
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Figure 3-6: Output of the fuel cell: black line is the cell voltage profile and brown line is the 

current density profile (Stoichiometry of both side is set as 2; Relative humidity of 

both sides is RH = 90%; Cell temperature is T = 343.15 K). 

 

Before the data are used to train the LSSVM model, each data point was normalized to the 

range [0, 1]. The goal of normalization is to change the values of different features in the input 

dataset to a common scale, without distorting differences in the ranges of values. If the scales 

of different features are widely varied, the feature with large varying range would have 

dominating influence on the result. And normalization can eliminate such influence. Min-max 

normalization is used to scale the input data, and its expression is as following: 

𝑥′ =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                                   ( 3-5 ) 
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here, x is the target data, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 the minimum and  the maximum value of x, and 𝑥′ is 

the normalized result with range [0,1]. In this case, U(t) and y(t) will be normalized, the 

normalized data then become U’(t) and y’(t). 

The workflow of how to establish the LSSVM model is presented in Appendix A.1. 

3.4 LSSVM model 

The normalized data were randomly separated into training data and testing data at a ratio of 

4:1, as shown in Figure 3-7. The black dots in the figure represent the training data {𝑈𝑡𝑟𝑎𝑖𝑛
′

, 

𝑦𝑡𝑟𝑎𝑖𝑛
′

}, and the red dots represent the testing data 𝑈𝑡𝑒𝑠𝑡
′

, 𝑦𝑡𝑒𝑠𝑡
′

}. The training data are used to 

train and determine the model structure. Once the model has been trained, it is still not 

completely sure that the model is going to work well on data that has not been seen by the 

model before. In other words, whether the trained model has the desired accuracy and 

performance in real application remains unclear. Thus, the testing data unseen by the trained 

model are used to validate the LSSVM model’s performance to confirm if the trained model is 

eligible for further application to modeling and predicting. The necessity of the testing step is: 

testing the model’s performance with data that unseen by the trained model. A combination of 

the modeling results on both the training data and testing data is used to evaluate the overall 

performance of the LSSVM model. If the modeling error is small or is acceptable by the 

modeling requirements, then the LSSVM model is determined; otherwise, the model should be 

retrained. 

 

Figure 3-7: LSSVM determination with training and testing data (Black dots: the training data; 

Red dots: the testing data).  
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In this work, as RBF function was selected as kernel function, there are two internal 

parameters {𝛾, 𝜎} need to be pre-determined before training and testing the model. The hold-

out method is repeated with different combination of the internal parameters that the 

regularization term 𝛾 ranges from e0.1 to e10, and the kernel parameter ranges from e-1 to e2.  

The model’s performance is measured by three indices: 

e= |𝑣 − 𝑣|                                                          ( 3-6 ) 

RMSE = √
1

𝑁
∑ (𝑣(𝑡𝑖) − 𝑣(𝑡𝑖))

2𝑁
𝑖=1                                           ( 3-7 ) 

R2= 1 −
∑ (𝑣(𝑡𝑖) − 𝑣(𝑡𝑖))

2𝑁
𝑖=1

∑ (𝑣(𝑡𝑖) − �̅�(𝑡𝑖))
2𝑁

𝑖=1
⁄                           ( 3-8 ) 

where 𝑣 is the collected cell voltage from the test rig and 𝑣 the LSSVM model output voltage, 

e the absolute error e = [e1, e2,…, eN]T and N the number of the data points collected from the 

fuel cell system, RMSE the root mean square error, R2 the coefficient of determination. RMSE 

measures how concentrated the predicted data are around the experimental data, while R2 

represents how many predicted data fall within the results and is a fraction that ranges from 0 

to 1. 

This is reported with respect to model performance later in this paper. Absolute error (e (V)), 

root mean square error (RMSE) and coefficient of determination (R2) are used to measure the 

model performance. For the absolute error and RMSE, a smaller value indicates better model’s 

performance, while for the coefficient of determination, a higher coefficient results in a better 

approximation of the model.  

The overall modeling results, including training and testing results, of the LSSVM model 

with various combinations of the internal parameters are listed in Table 3-I, where the 

coefficient of determination is used. Higher value of the coefficient of determination means 

better modeling performance. From the table it can be found that the best parameters for the 

LSSVM model are {𝛾, 𝜎} = {1, 403}, which results in a coefficient of determination of 0.9984.  
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Table 3-I: Results of cross-validation (hold-out method): Coefficient of determination is used 

to evaluate the results: higher value represents better results. 

 Kernel parameter 𝜎 

e-1 e-0.1 e-0.01 e0 e0.01 e0.1 e1 e2 

R
eg

u
la

ri
za

ti
o

n
 t

er
m

 𝛾
 

e0.1 0.9924 0.9932 0.9929 0.9932 0.9932 0.9933 0.9886 0.0252 

e1 0.9952 0.9958 0.9955 0.9954 0.9953 0.9956 0.9912 0.0609 

e2 0.9964 0.9969 0.9965 0.9971 0.9971 0.9970 0.9942 0.1657 

e3 0.9977 0.9978 0.9977 0.9977 0.9976 0.9977 0.9958 0.3408 

e4 0.9977 0.9981 0.9981 0.9979 0.9979 0.9981 0.9967 0.6596 

e5 0.9984 0.9982 0.9983 0.9982 0.9983 0.9982 0.9971 0.8108 

e6 0.9982 0.9978 0.9981 0.9984 0.9983 0.9983 0.9975 0.9188 

e7 0.9979 0.9981 0.9978 0.9981 0.9980 0.9980 0.9977 0.9599 

e8 0.9975 0.9982 0.9974 0.9982 0.9978 0.9979 0.9979 0.9751 

e9 0.9961 0.9971 0.9972 0.9973 0.9971 0.9971 0.9980 0.9804 

e10 0.9940 0.9959 0.9954 0.9947 0.9968 0.9950 0.9981 0.9823 

 

3.4.1 LSSVM performance 

With the optimal internal parameters {𝛾 , 𝜎} = {1, 403} determined in last section, the 

LSSVM model (Eq. 3-2) is established. The model’s output and absolute error are shown in 

Figure 3-8, where the LSSVM model outcome 𝑣 (red line) of the fuel cell’s voltage is compared 

against the measured data v (black line). The absolute error is the difference between these two 

datasets, and is also shown in Figure 3-8b. It can be seen that at high current density, which 

results in a low cell voltage, the error tends to be larger. At this current density level, the cell 

voltage behaves more unstably due to water accumulation inside the fuel cell, which introduces 

a high degree of nonlinearity to the system. The correlation between the model output and 

experimental data is shown in Figure 3-9. The black dots represent the voltages of the LSSVM 

model output against the experimental data, while the red line is the ideal level and where the 

black dots should be located. From Figure 3-1 can be found that lower current density results 

higher cell voltage. Then, it can be concluded from Figure 3-9 that the LSSVM model shows a 

satisfactory result at a low current density (high cell voltage), with most of the black dots falling 

on part of the red line (ideal case). However, at high current densities (near the left side of 

Figure 3-9), the black points deviate from the red line, which means poor model accuracy. This 

phenomenon corresponds to the result shown in Figure 3-8. RMSE of the modeling results is 

0.0056, and coefficient of determination is 0.9974, which demonstrate an overall good model 

performance of the LSSVM model. 
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Figure 3-8: LSSVM model results: a) the model output against the experimental data; b) the 

absolute error; and c) zoomed region. 
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Figure 3-9: Correlation between the model’s output and experimental data. 

3.5 Conclusions 

In this chapter, a transient voltage model was established for the voltage transient behaviors 

in PEFCs. The model is based on least squares support vector machine (LSSVM). The time-

varying voltage was good estimated by the model. The LSSVM model’s accuracy was validated 

by comparing with the experimental data collected in our fuel cell test rig.  

A low root mean squares error (RMSE = 0.0056) and high coefficient of determination (R2 

= 0.9974) demonstrates that the LSSVM model successfully predicted the voltage dynamic 

behavior. However, when examining the prediction of the LSSVM model to the experimental 

data, the results showed that at low current densities the LSSVM model performs better 

compared to those of a high current density. It is because that at high current densities, the fuel 

cell system is more inclined to an unstable, as oxidant starvation and flooding is more likely to 
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occur in high current density levels, thus the voltage exhibits a more severe oscillation and 

abnormity. In addition, the model’s performance at each current density ramp is less efficient 

than stable current densities, as sharp increases of absolute error in each ramp are always found.  

Despite an overall good model accuracy was achieved by the LSSVM model, the difference 

of modeling performance at different loads is worthy of attention and needs to be clarified. 

Thus, the credibility of the LSSVM model under different load demand (various current density 

changes) will be further discussed.  
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4 Analysis of the suitability of the LSSVM model under ideal cases 

Results in this chapter has been published in ‘Applied Energy’ 6. The efficiency of the least 

squares support vector machine (LSSVM) model in modeling transient behavior of the polymer 

electrolyte fuel cells has been proven in chapter 3. The idea of the next two chapters is to 

quantify the accuracy of the LSSVM model under different load changes, and explore the 

limitation of the LSSVM model. In this chapter, and ideal case is considered, in which an 

idealized white-box model is used to provide the data for the LSSVM model to carry out this 

research. The next chapter will introduce the oscillation on the cell voltage to the white-box 

model, in which the LSSVM performance under oscillated cases will be investigated. 

Methodology is introduced in section 4.1. Details of the idealized white-box model are 

explained in section 4.2. Artificial data are explained in section 4.3. Factors affecting the 

model’s performance are introduced in section 4.4. The discussion on the accuracy and 

limitation of the LSSVM model can be found in section 4.5. And section 4.6 draws the 

conclusions. 

4.1 Methodology 

Although the LSSVM model has been proven to be good at approximating the fuel cell 

dynamic behaviors, but different modeling accuracies are caught at different current density 

levels. Thus, the accuracy of the LSSVM model under different loads should be investigated.  

To carry out this investigation, the LSSVM model should be examined and tested under 

various load changes. Constrained by the operating specifications of the test rig, load changes 

applied to the fuel cell system are restricted. Besides, experimental uncertainties, such as 

misoperation, will result in bad effects, for example, shortcut connections of the equipment that 

contributes to inaccurate collected information. Thus, an idealized white-box model that based 

on the mechanism of the fuel cell system is used, and generates data. These data are called as 

artificial data and used as alternative of the experimental data.  

With the help of bringing in the idea of artificial data, the investigation on the LSSVM model 

includes following steps: various load changes are considered in a white-box model, and 

corresponding artificial data are generated; then the artificial data and their operating conditions 

are forwarded to the LSSVM model; in the LSSVM model, the fuel cell dynamics are modelled 

and predicted; the LSSVM model’s results under different operating conditions are integrated, 

analyzed and summarized in combination with load change behaviors; after that, the accuracy 

 

 

6 Zou W, Froning D, Shi Y, Lehnert W. A least-squares support vector machine method for modeling transient 

voltage in polymer electrolyte fuel cells. Appl Energy 2020;271. 
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and limitation of the LSSVM model are further discussed. Framework of the methodology is 

shown in Figure 4-1 and corresponding workflow can be found in Appendix A.2. 

 

Figure 4-1: Framework of the methodology. (The LSSVM model in this chapter is the same as 

in the previous chapter). 

4.2 White-box model 

The establishment of an idealized white-box model is the first step to carry out the 

investigation on the accuracy of the LSSVM model, by which the artificial data are generated. 

A simplified nonlinear dynamic white-box model for PEFCs is developed with a set of 

assumptions: 

⚫ The system is isothermal and the temperature throughout the fuel cell is assumed to 

be constant; 

⚫ The relative humidity can be well controlled maintaining at set value, and liquid water 

is perfectly managed and the water-flooding effects are well controlled; 

⚫ A continuous supply of reactants is fed to the fuel cell to allow operation at a 

sufficiently high flow rate; 

⚫ Pure hydrogen (>99.99%) is fueled to anode side of the fuel cell. The air is uniformly 

mixed with oxygen and nitrogen by a ratio of 21:79 and fueled to the cathode side. 

The reactants are uniformly saturated with vapor; 

⚫ Ideal and uniformly distributed gases; 

⚫ Constant pressures in the fuel cell gas flow channels. 

The modeling concept of the white-box model is shown in Figure 4-2, in which voltage, 

anode, cathode and membrane modules are included. The ideal gas law and mass balance law 

are used here. All of the gases are assumed as ideal gases, and the liquid water is assumed to 

not leave the cell. In Figure 4-2, �̇�H2  and �̇�air  are the flow rates of hydrogen and air 

respectively (g s-1); Tan and Tca are the temperature of both sides (K); I(t) is the current of the 

cell (A); 𝑝𝑎𝑛,𝑖𝑛 and 𝑝𝑐𝑎,𝑖𝑛 are the inlet gas pressures of both sides (Pa); 𝜙𝑎𝑛 and 𝜙𝑐𝑎 are the 
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relative humidity of anode and cathode respectively; �̇�𝑣,𝑚𝑒𝑚  is the water transport ratio 

through membrane (g s-1) and the positive direction here is assumed from cathode to anode; 

𝑝𝑣,𝑎𝑛 and are 𝑝𝑣,𝑐𝑎 are the partial pressure of water vapor of both sides (Pa); 𝑝H2 and 𝑝O2 are 

the partial pressure of hydrogen and oxygen respectively (Pa); v(t) is the cell voltage (V). 

Details of each module and relationship between each module are introduced in Appendix 

A.3 (page: 115). 
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Figure 4-2: Configuration of the fuel cell system simulation (Four modules are included: 

voltage, anode, cathode and membrane module) [108]. 

 

By integrating the anode, cathode and membrane module, the white-box model for PEFCs 

dynamic is then constructed. The white-box model that followed the physical and 

electrochemical law of the fuel cell was simulated in a Matlab/Simulink environment, and the 

schematic of the white-box model is presented in Figure 4-3. The reactant gases are humidified 

and the relative humidity of both sides is 100%. The stoichiometry of anode and cathode side 

is set as 2. The flow rates of both sides are changing in the simulation as constant stoichiometry 

of both sides is used. The parameters used in the white-box model are listed in Table 4-I and 

the operating conditions are listed in Table 4-II. A Nafion membrane is considered [109] in this 

simulation.  
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Table 4-I: Parameters used in the white-box model [107–109]. 

Parameter Value 

𝐿 (m) 178×10-6 

A (m2) 1.746×10-3 

𝑖𝑚𝑎𝑥 (A cm-2) 1.22 

𝑉𝑎𝑛 (m3) 10-6 

𝑉𝑐𝑎 (m3) 10-6 

𝜌𝑚,𝑑𝑟𝑦 (kg m-3) 20 

𝑀𝑚,𝑑𝑟𝑦 (kg mol-1) 1.1 

 

Table 4-II: Operating conditions [108]. 

Anode Anode reactant Hydrogen 

 λ𝑎𝑛 2.0 

 Temperature (Tan) 343.15 K 

 Relative humidity 100% 

Cathode Cathode reactant Air 

 λ𝑐𝑎 2.0 

 Temperature (Tca) 343.15 K 

 Relative humidity 100% 

 

In order to validate the efficiency of the white-box model, a same operating condition was 

also applied in our test rig (Figure 3-2) to obtain the experimental data. The experiments were 

carried out in the fuel cell test rig that was manufactured and assembled at Forschungszentrum 

Jülich, details can be found in section 3.3.  

The artificial cell voltage against the real cell voltage collected from the experiment is shown 

in Figure 4-4. The load change profile is shown at the top of Figure 4-4. With this load, the cell 

voltage collected from the test station is the black line in Figure 4-4, and the cell voltage 

calculated by the white-box model is marked as green line in Figure 4-4. Relative error is used 

here to validate the model’s efficiency, as following: 

𝜀 =
|𝑣−�̂�|

𝑣
× 100%                                                       ( 4-1 ) 

here, v is the cell voltage (V) collected from the test station (black in Figure 4-4),  𝑣 is the 

white-box model output ((V), green line in Figure 4-4). 

It can be seen from Figure 4-4 that the artificial data approximates the experimental data very 

well with small difference, which means the white-box model is able to catch the fuel cell 

dynamics. Also, the relative error in Figure 4-5 indicates a good model performance with the 

maximum absolute is lower than 10%. Thus, the artificial data is eligible to be used as an 

alternative to the experimental data. 
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Figure 4-4: Artificial data approximates against the experimental data (Brown line: current 

density; Black line: voltage collected from the test station; Green line: cell voltage 

calculated by the white-box model). Details can be found in section A.3. 
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Figure 4-5: Relative error of the white-box model (Eq.4-1).  

4.3 Artificial data 

As an alternative to experimental data, artificial data is able to provide data of fuel cells under 

sharp and extreme load changes, which are prohibited by the fuel cells test rig and harmful to 

the fuel cells. Also, employing artificial data has an advantage over experimental data because 

it is timesaving. The load changes are constructed through load ramp time and ramp value. 

Ramp time indicates how fast the load is changing and ramp value represents the amplitude of 

the load change. Twelve ramp times are considered, namely tin = 1 s, 5 s, 10 s, 20 s, 30 s, 60 s, 

90 s, 120 s, 150 s, 180 s, 210 s and 240 s. Ten values of the ramp time ∆i, also referred as 

current density change are employed and listed in Table 4-III [108]. Besides, considering the 

LSSVM model is a data-driven method which is highly rely on the data that used in the model, 
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four sampling intervals are chosen (∆t = 1 s, 3 s, 5 s and 8 s) in order to illustrate the system’s 

setup on the performance of the LSSVM method. 

Table 4-III: Ramp values: Amplitude of current density change. 

Case 1 2 3 4 5 6 7 8 9 10 

∆i (A cm-2) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 

 

Sampling interval 

Dynamic behavior and operating information of the operating fuel cell are collected and 

preserved by the fuel cell system with a pre-set sampling interval. The sampling interval should 

be adjusted according to different dynamic properties of the fuel cell during operation and 

different research purposes and accuracy. A high frequency sampling procedure provides 

detailed information on the system but always accompanies by storage issues, as a large storage 

space is required. Moreover, it also brings about a processing issue when analyzing the sizeable 

amount of data, as more computation time is required for the analysis, with a corresponding 

increase in the control system’s price. Thus, the tradeoff between detailed system information 

and economics should be taken into account. 

Using the white-box model to generate artificial data, one of the current density ramp profiles 

applied to the white-box model is shown in Figure 4-6. Initially, the current density is set to 0.1 

A cm-2 and remains for 180 s. The current density is then increased from 0.1 A cm-2 to 0.5 A 

cm-2 in 60 s. The ramp time tin and ramp value ∆𝑖 in Figure 4-6 remain constant (tin= 60 s, ∆i = 

0.4 A cm-2). When the current density reaches its limited value (1.19 A cm-2), the current density 

is progressively decreased until it equals 0.1 A cm-2. Increasing the current from 0.1 A cm-2 to 

1.19 A cm-2 then decreasing it from 1.19 A cm-2 to 0.1 A cm-2 is called as one loop. Repeating 

the loop until the entire process covers a period of 5400 s.  
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Figure 4-6: Current density profile with ramp value ∆t = 0.4 A cm-2, ramp time tin = 60 s.  The 

artificial data was collected with a sampling interval of ∆t = 1 s (Operating 

condition is listed in Table 4-II). 
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An intensive sampling procedure provides detailed information on the system and enables a 

high degree of accuracy. However, it is always accompanied by storage and processing issues 

when dealing with the sizeable amounts of data, as a large storage space and more computation 

time are required. For example, if we use sampling interval ∆t = 1 s to collect and store the data, 

we will obtain 5400 data points, while a sampling interval of ∆t = 5 s to collect and store the 

data will result in 1080 data points. With a small value of sampling interval, large storage is 

required. Moreover, collecting data with small value of sampling interval also brings about a 

heavy computational burden when analyzing these data, as more time is required for the 

analysis, with a corresponding increase in the control system’s price. Thus, the tradeoff between 

model accuracy and economics should be taken into account. 

0.8

0.7

0.6

0.5

0.4

C
el

l 
v
o
lt

ag
e 

(V
)

Time (s)

C
el

l 
v
o
lt

ag
e 

(V
)

Time (s)

C
el

l 
v
o
lt

ag
e 

(V
)

a)

b)

c)

a.1)

a.2)

0        1000       2000      3000      4000      5000

3650                3700                3750                3800   

0.6

0.55

0.5

0.45

0.4

Time (s)

0        1000      2000      3000    4000      5000

0.8

0.7

0.6

0.5

0.4

3650                3700                3750                3800   

0.6

0.55

0.5

0.45

0.4

Δt = 5 s

Δt = 8 s

0        1000      2000      3000    4000      5000

0.8

0.7

0.6

0.5

0.4

 

Figure 4-7: Artificial data collection with different intervals: a) ∆t = 1 s with zoomed region 

marked; b) ∆t = 3 s; and c) ∆t = 8 s; a.1) zoomed region, 1 s and 3 s; a.2) zoomed 

region, 1 s and 8 s (Operating condition is listed in Table 4-II). 

 

Figure 4-7 illustrates how data are collected with different sampling intervals. The black line 

in Figure 4-7a is the cell voltage generated by the white-box model with current density profile 

showed in Figure 4-6, in which the artificial data is preserved with the sampling interval ∆t = 1 
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s. Another two intervals ∆t = 5 s (blue dots in Figure 4-7b) and ∆t = 8 s (red dots in Figure 4-7c) 

are selected to show the differences created by the sampling. In Figure 4-7a, a region spanning 

3650 to 3800 s is marked and zoomed out in Figure 4-7a.1 and a.2. The blue dots (Figure 4-7a.1) 

and red dots (Figure 4-7a.2) represent the data collected at sampling intervals ∆t = 5 s and ∆t = 

8 s, respectively. It should be noted that with large value of sampling interval, the amount of 

data is significantly reduced. 

 

Ramp time 

Two load change profiles with ramp time tin = 60 s and tin = 180 s and their corresponding 

output voltages are shown in Figure 4-8 and Figure 4-9, respectively. At the beginning of both 

processes, the current density was set to 0.1 A cm-2 and remained so for 180 s, at which point 

it was increased by ∆i = 0.2 A cm-2. In Figure 4-8, the increase takes 60 s, and in Figure 4-9, 

the increase takes 180 s. This process was repeated until the current density reached to 1.19 A 

cm-2. After that, the decrease in current density continued at the same decrement of ∆i = 0.2 A 

cm-2 at 60 s in Figure 4-8 and at 180 s in Figure 4-9, step by step, until it reached 0.1 A cm-2, 

with each process lasting 5400 s [125]. 
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Figure 4-8: Artificial data with ramp value ∆i = 0.2 A cm-2, ramp time tin = 60 s: a. current 

density; b. cell voltage (Operating condition is listed in Table 4-II). 

 



4 Analysis of the suitability of the LSSVM model under ideal cases 

52 

 

1

0.5

C
u

rr
e
n

t 
d

e
n

si
ty

(A
 c

m
-2

)


i

180 s

0            1000           2000          3000          4000           5000
Time (s)

0            1000           2000          3000          4000           5000
Time (s)

V
o

lt
a
g

e
 (

V
)

0.8

0.6

0.4

tin = 180 s

a)

b)

 
Figure 4-9: Artificial data with ramp value ∆i = 0.2 A cm-2, ramp time tin = 180 s: a. current 

density; b. cell voltage (Operating condition is listed in Table 4-II). 

 

Ramp value 

Two load change profiles with ramp value ∆i = 0.3 A cm-2 and ∆i = 0.5 A cm-2 are shown in 

Figure 4-10 and Figure 4-11, respectively. The ramp time for both cases is tin = 60 s. At the 

beginning of both processes, the current density was set to 0.1 A cm-2 and remained so for 180 

s, at which point it was increased by ∆i = 0.2 A cm-2 in Figure 4-10 and by ∆i = 0.5 A cm-2 in 

Figure 4-11. Both increases take 60 s. This process was repeated until the current density 

reached to 1.19 A cm-2. After that, the decrease in current density continued at the same 

decrease time 60 s with decrement of ∆i = 0.2 A cm-2 in Figure 4-10 and of ∆i = 0.5 A cm-2 in 

Figure 4-11, step by step, until it reached 0.1 A cm-2, with each process lasting 5400 s. The 

voltage profiles of both cases are also showed in Figure 4-10 and Figure 4-11, respectively. 

As four sampling intervals, twelve ramp times and ten ramp values were considered, 480 sets 

of artificial data were then obtained. 
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Figure 4-10: Artificial data with ramp value ∆i = 0.3 A cm-2, ramp time tin = 60 s (a. current 

density; b. cell voltage). 
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Figure 4-11: Artificial data with ramp value ∆i = 0.5 A cm-2, ramp time tin = 60 s (a. current 

density; b. cell voltage). 

4.4 The LSSVM model performance 

The LSSVM model performances under different load changes with different sampling 

intervals are discussed. Details of the LSSVM model were introduced in section 3.4. 

4.4.1 Sampling interval 

Absolute error is used to compare the impacts of different sampling intervals on the LSSVM 

model’s performance, four sampling intervals are considered (∆t = 1 s, 3 s, 5 s, 8 s). The 

modeling results at sampling intervals ∆t = 3 s and ∆t = 8 s are shown in Figure 4-12 and Figure 
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4-13 under load changes profiles (tin = 60 s and ∆i = 0.4 A cm-2), respectively. The black dots 

on the left-hand diagrams show the collected data at each sampling interval, while the red dots 

are the model output. At sampling interval ∆t = 3 s, the maximum absolute error is around 0.08 

V, with an average of 0.04 V, but with ∆t = 8 s, this value is about 0.12 V at an average of 0.09 

V. It is clear that the model’s accuracy when using intensive sampling datasets is superior to 

that of a sparse sampling dataset.  

In Figure 4-12 and Figure 4-13, it can be seen that the changes in voltage at high current 

density are larger than those at low current density. In both figures, the absolute error (top right 

in Figure 4-12 and Figure 4-13) increases sharply at each ramp. The absolute errors are also 

larger at high current density than at low current density (e.g., i > 0.8 A cm-2). At a low current 

density with high cell voltage, the absolute error is around 0.04 V, but at high current density 

it becomes 0.07-0.085 V. These behavior could be explained by the nature of the data-driven 

methods,  of which dependence on the collected data makes the LSSVM model sensitive to 

data fluctuation, as the collected data, when high current density is applied, is obviously sparser 

than that of at low current density; see Figure 4-12 and Figure 4-13. In addition, at high current 

density, i.e. that which exceeds 0.8 A cm-2, the absolute error at the up-ramp (the red diamonds 

in Figure 4-12 and Figure 4-13) is larger than that at the down-ramp (blue diamonds in Figure 

4-12 and Figure 4-13). When comparing the up-ramp with the down-ramp in the load range, 

the data from the up-ramp is first processed by the model, followed by the down-ramp process. 

This means that the collected data in the up-ramp changes are new to the model, and during the 

up-ramp this kind of data has been well-processed by the model; then, at the near down-ramp 

change, the model can effectively deal with the collected data, as this kind of data had already 

been incorporated into it. After the current density reaches the minimum value, another round 

of changing the current density process commences. When the fuel cell system reaches a high 

current density the second time, the absolute error is still large. This is because if the online 

property of the model is used, only a subset of recent data is processed in it. 
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Figure 4-12: The LSSVM model performance with data preserved with sampling interval ∆t = 

3 s: a) Model output approximated against artificial data; b) absolute error (Eq. 3-

6); c) zoomed region [108]. 
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Figure 4-13: The LSSVM model performance with data preserved with sampling interval ∆t = 

3 s: a) Model output approximated against artificial data; b) absolute error (Eq. 3-

6); c) zoomed region [108]. 
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The integrated error (V s) and the coefficient of determination (Eq. 3-8) are used to compare 

the LSSVM model’s performance. The integrated error is defined as: 

𝐸 = ∑ 𝑒(𝑡𝑖)  ∙ ∆𝑡
𝑁
𝑖=1                                                ( 4-2 ) 

where 𝑒 is the absolute error (V) (Eq. 3-6), ∆𝑡 is the value of its sampling interval, N the number 

of data point used. This is reported with respect to model performance later in this thesis. For 

the integrated error, a smaller value indicates better model performance. 

The integrated error and R2 of each dataset from four different sampling intervals is presented 

in Figure 4-14 (tin = 60 s, ∆i = 0.4 A cm-2). From this, it can be seen that a sparser sampling 

procedure results in poorer performance, as the integrated error increases with a larger sampling 

interval. With sampling intervals increasing from 1 s to 8 s, the integrated error grows steadily 

and the coefficient of determination drops, meaning that the predicted cell voltage deviates 

from the experimental data with a larger sampling interval. 
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Figure 4-14: Performance comparison at different sampling intervals (∆t = 1, 3, 5, 8 s) [108]. 

 

To summarize, intensive sampling results in better model performance. When the experiment 

was carried out with a specific sampling interval, the changes in the operating condition, as 

well as the amplitude of the data variation in the system, exerted apparent effects on the model’s 

performance and the effect of the ramp value on the model’s performance being smaller at low 

current densities than that at the higher one.  

4.4.2 Ramp value 

The absolute error (V) (Eq. 3-6) is used to compare the impact of ramp value on the LSSVM 

model performance. Two ramp values, namely ∆i = 0.2 A cm-2 (Case 1) and ∆i = 0.5 A cm-2 

(Case 4) are considered. The ramp time of both cases is tin = 60 s. The current density profiles 

of the two cases are shown in Figure 4-15. The LSSVM model’s results under these two cases 

are provided in Figure 4-16 and Figure 4-17, respectively. The maximum absolute error of Case 

1 is approximately 0.04 V, but that of Case 4 is 0.07 V. Furthermore, a lower root mean square 

error (RMSE = 9.47×10-5) and higher coefficient (R2 = 0.9916) in Case 1 confirm that the 

LSSVM model performs better with smaller load changes. Many sharp increases in the absolute 
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error can be found in Figure 4-16 and Figure 4-17, which share a similar pattern to the results 

in Figure 4-12 and Figure 4-13. However, when comparing this with the absolute error of the 

two model results, it can be seen that in Figure 4-16, at a high current density, the absolute error 

in the up-ramp is larger than that in the down-ramp. However, in Figure 4-17, no similar trends 

were observed, as there was no noticeable difference between the up-ramp and down-ramp at 

a high current density. This is because in this region, the changes in current density are smaller 

than the anticipated ramp value of 0.5 A cm-2, as the maximum current density value is set as 

1.19 A cm-2 in the white-box model. 
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a. Case 1 (∆i = 0.2 A cm-2)                                b. Case 4 (∆i = 0.5 A cm-2) 

Figure 4-15: Current density with ramp ramp time tin = 60 s (Operating condition is listed in 

Table 4-II). 
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Figure 4-16: LSSVM model performance – Case 1 (∆ i = 0.2 A cm-2): a) Model output 

approximated to artificial data; b) absolute error; c) zoomed region [108]. 
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Figure 4-17: Model performance – Case 4 (∆i = 0.5 A cm-2): a) Model output approximated to 

artificial data; b) absolute error; c) zoomed region [108]. 

 

The integrated error and coefficient of determination are employed to discuss the impacts of 

the ramp value on the LSSVM model’s performance. The modeling results of the LSSVM 

model under 10 cases (listed in Table 4-III) are shown in Figure 4-18. It can be found from this 

figure that as the ramp value increases, the integrated error increases correspondingly, but the 

coefficient of the determination decreases. This indicates that a smaller change in the current 

density brings about more satisfactory model results. At large ramp values resulting in an even 

larger change in voltage, the LSSVM model perform less accurate compared with the model’s 

results when small ramp values were loaded. 
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Figure 4-18: Effects of ramp value on the LSSVM model performance [108]. 
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4.4.3 Ramp time 

The impacts of the ramp time on the LSSVM model’s performance are investigated here. All 

of the numerical experiments were carried out at a constant sampling interval of ∆t = 3 s and 

ramp value ∆i = 0.2 A cm-2. The LSSVM model’s results of both processes are also presented 

in Figure 4-19 and Figure 4-20, respectively. The middle column of both figures shows the 

predicted cell voltage (red line) against the artificial data (black line). A small difference is 

found between these two lines, which indicate a good modeling performance of the LSSVM 

model. But a small horizontal shift is observed. The shift in Figure 4-19 is slightly larger than 

that of in Figure 4-20 meaning that the fuel cell system is more likely to be characterized by the 

LSSVM model, when the load change has a longer ramp time. The absolute error of the LSSVM 

model at the ramp times tin = 60 s and tin = 180 s are also provided in the bottom column of 

Figure 4-19 and Figure 4-20, respectively. As is presented in the figures, the longer ramp time 

(tin = 180 s) results in a smaller absolute error. In Figure 4-20, with tin = 180 s, the maximum 

absolute error is lower than 0.02 V, but in Figure 4-19 with tin = 60 s, the value almost triples 

to reach 0.06 V. Abrupt increases in the absolute error were observed in every ramp period. 

Furthermore, at a high current density, the absolute error at the up-ramp is larger than that at 

the down-ramp, which is consistent with the conclusions in the sampling interval and ramp 

value sections. In addition, the smaller RMSE and larger R2 in Figure 4-20 compared to Figure 

4-19 shows that the LSSVM model output is more likely to approximate the correct voltages 

with a longer ramp time. 
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Figure 4-19: Performance analysis of the LSSVM model: tin = 60 s (Top row: current density 

profile; Middle row: the black line is an artificial voltage and the red line is the 

LSSVM model’s output; Bottom row: the absolute error of the model) [108]. 
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Figure 4-20: Performance analysis of the LSSVM model: tin = 180 s (Top row: current density 

profile; Middle row: the black line is an artificial voltage and the red line is the 

LSSVM model’s output; Bottom row: the absolute error of the model) [108]. 
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Figure 4-21: Effect of the ramp time on the LSSVM model’s performance [108]. 

 

By implementing the LSSVM model under 12 processes, each with its corresponding ramp 

time tin = 1 s, 5 s, 10 s, 20 s, 30 s, 60 s, 90 s, 120 s, 150 s, 180 s, 210 s, and 240 s, respectively, 

the effects of the ramp time on the LSSVM model’s performance are summarized, as shown in 

Figure 4-21. The integrated error and coefficient of determination are used. As the ramp time 

becomes longer, the integrated error decreases accordingly, but the coefficient of the 

determination increases. This means that a longer time for the changing of the current density 
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brings about more satisfactory model results. In particular, when the ramp time is short, i.e., 

less than 30 s, a small change in the ramp time will lead to a significant improvement in the 

model’s performance. 

4.5 Analysis on the LSSVM model 

Sampling interval 

In Figure 4-22, the coefficient of determination (Eq. 3-8), amongst all sampling intervals, 

ramp times and ramp values, are summarized. First, with an intensive sampling interval such 

as ∆t =1 s (Figure 4-22a), the coefficients of the determinations are more likely to approximate 

a value of one, which means a better model performance compared to the other three sampling 

intervals (Figure 4-22b, Figure 4-22c, and  Figure 4-22d). Moreover, with a sparser sampling 

interval, increasing the ramp time has less of an impact on the model’s performance when the 

ramp value is small. As can be seen in each sub-figure in Figure 4-22, when the ramp value is 

less than 0.5 A cm-2 (three lines at the top of each sub-figure), ramp time increases, while the 

changes in R2 are not as obvious as with large ramp values (∆i ≥ 0.6 A cm-2). 
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Figure 4-22: The coefficient of determination(R2) among three effect factors: sampling interval 

(from Figure 4-22a to Figure 4-22d), ramp time (x-axis) and ramp value: A cm-2 

(different colored lines). Higher R2 represents better model’s performance [108]. 
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As mentioned above, with sampling interval ∆t = 3 s, the model not only performs well, but 

is also economical. Following the discussion, the numerical experiments were carried out at ∆t 

= 3 s.  

Here, we defined the minimum, maximum and average R2 as a function of the ramp time and 

ramp value as follows: 

interval: 𝒂= [1,3,5,8], 𝒂 ∈ ℝ1×4, j = 1,…,4; 𝑎𝑗  ∈  𝒂 in (s) 

ramp value: 𝒃 =[0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1], 𝒃 ∈ ℝ1×10, k = 1,…,10, 𝑏𝑘  ∈

 𝒃 in (A cm-2); 

ramp time: 𝒄 = [1, 3, 5, 10, 30, 60, 90, 120, 150, 180, 210, 240], 𝒄 ∈ ℝ1×12, l = 1,…,12 𝑐𝑙  ∈

 𝒄 in (s); 

 

Ramp value 

In order to discuss the impacts of the ramp value on the model performance, minimum, 

maximum and average coefficient of determination R2 (Eq. 3-8) for each ramp value: 

𝑹𝟐min
𝒃
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Figure 4-23: Performance comparison with different ramp values [108]. 

 

In Figure 4-23, the bar chart shows the coefficient of the determination of R2 (Eq. 3-8) of 

each voltage modeled from Case 1 to Case 10 (see Table 4-III) with the ramp value moving 

from 0.2 A cm-2 to 1.1 A cm-2 by 0.1 A cm-2. The blue bar represents the minimum R2 (Eq. 4-

3), the yellow bar represent the maximum R2 (Eq. 4-4) and the red line is the average R2 (Eq. 

4-5). With the increase in the ramp value, the LSSVM model’s performance is reduced. When 

compared with the maximum of each ramp value, only a slight difference is observed, as the 
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entire maximum R2 is close to 1. However, a large difference can be found when comparing the 

minimum R2 amongst the other results (the dark blue part in Figure 4-23). It can be noticed that 

with the ramp value of ∆i = 0.6 A cm-2, the minimum R2 drops sharply when compared with 

the model result under the ramp value  ∆i = 0.5 A cm-2. When the ramp value exceeds 0.6 A 

cm-2, a further increase in it has less of an effect on the model’s performance. 

 

Ramp time 

In order to discuss the impacts of the ramp time on the model performance, defines minimum, 

maximum and average R2 of each ramp time as following: 

𝑹𝟐min
𝒄
 = min{𝑹𝟐𝑘

𝒄
}, k = 1, …,10                                          ( 4-6 ) 
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}, k = 1, …,10                                          ( 4-7 ) 
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In Figure 4-24, the bar chart shows the coefficient of determination R2 (Eq. 3-8) of each 

voltage model with the ramp time increasing from 1 s to 240 s. The blue bar represents the 

minimum R2 (Eq. 4-6), the yellow bar represent the maximum R2 (Eq. 4-7) and the red line is 

the average R2 (Eq. 4-8). It can be seen that a longer ramp time brings about a larger R2; in other 

words, a better model performance. Moreover, with the increase in the current density in a short 

time period, such as tin ≤ = 30 s, the differences between the maximum R2 and minimum R2 are 

large (the yellow part of each bar). This means that with a short ramp time, the ramp value has 

a large impact on the model’s performance. In addition, it can be seen in Figure 4-24 that once 

the ramp time exceeds 90 s (tin ≥ 90 s), a further increase in the ramp time has less of an impact 

on the model’s performance, as the variation of maximum, minimum and average R2 tends to 

be small. When applying the LSSVM method in the real application, if the load change step is 

severe or the working zone of the current density is wide, a longer ramp time should be 

considered to ensure the model’s efficiency.  
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Figure 4-24: Performance comparison with different ramp times [108]. 
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4.6 Conclusions 

The accuracy of the LSSVM model was evaluated in this chapter. The idea of introducing 

artificial data eliminates the experimental uncertainties. A protocol of 480 numerical tests was 

implemented to evaluate the impacts of the system’s setup and load changes on the LSSVM 

model. Four sampling intervals, ten ramp values, and twelve ramp times were considered, while 

the absolute error, root mean square error, coefficient of determination and integrated error 

were employed to define and compare the model’s performance. The results show that the low 

frequency sampling results in poor model performance. With a determined sampling interval, 

the effect of the ramp value on model performance is smaller at a low current density than at a 

high one. Moreover, the changes in the current density have a noticeable impact on the model’s 

performance. A small step in the ramp value brings about satisfactory model results and a longer 

time for the changing of the current density results in satisfactory model performance. In 

addition, the effect of the ramp value on the model’s performance is larger than the influence 

of the ramp time change. 
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5 Credibility of the LSSVM model under oscillation cases 

Results in this chapter have been submitted to the journal ‘Applied Energy’, and accepted by 

the journal. The focus of this chapter is the analysis on the LSSVM model’s credibility and 

definition of its reliable working zone regarding to various load changes. Although the effects 

of the system’s setup and exterior load change on the LSSVM model’s performance have been 

discussed in chapter 4, but conclusions drawn from chapter 4 was derived from the analysis of 

the ideal cases, which means it is not enough to characterize the real state of the fuel cells’ 

operating conditions. Thus, a more accurate definition of the working domain of the transient 

voltage model under more practical operating condition are presented in this chapter, including 

the following parts: Section 5.1 introduces the data preparing process, oscillation on cell voltage 

is analyzed; impacts of system’s setup and load changes on the LSSVM model’s performance 

are illustrated in Section 5.2; the working zone which regulates the impact factors to the 

LSSVM model can be found in Section 5.3; and Section 5.4 draws the conclusions. 

5.1 Artificial data preparation 

A wide range of operating conditions should be considered when discussing the suitability of 

the transient voltage model, which means a large number of data should be provided. 

Significant efforts are required when sufficient and comprehensive experiments are carried out 

to cover almost all possible operating conditions. However, running this bunch of experiments 

is time consuming and there are some limitations of the test rig, for example, extreme operating 

conditions should be avoided to protect the fuel cell, which contributes to data-missing. Thus, 

a simulation based on physical and electrochemical law was run in Simulink to generate 

artificial data. 
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Figure 5-1: Voltage-current density profiles: collected from test rig (Brown line: current density; 

black line: cell voltage; operating temperature: 343.15 K; λan = 2.0, λca = 2.0; RHan 

= 90%, RHca = 90%). 
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In section 4.3, the white-box model was carried out to generate a deterministic voltage to a 

given current density, in which only idealized state was considered. However, in real operating 

fuel cells, an oscillated voltage is always observed, as shown in Figure 5-1. In order to make 

the artificial data able to reflect the practical oscillation on voltage, statistical analysis on the 

practical cell voltage is carried out and added on the artificial data generated in section 4.3. The 

workflow of how to process the data and carry out the analysis is presented in Appendix. It 

includes the following main ideas: 

⚫ A set of experiments are carried out, and the practical cell voltages are collected; 

⚫ A Fourier transform is applied to the cell voltage, and the voltage is decomposed into 

its constituent frequencies. High frequencies are selected, and considered as the 

oscillation that are caused by fuel cell system abnormality; 

⚫ The Inverse Fourier transform is applied to the high frequencies information, and the 

results are the amplitude of the oscillation on the cell voltage; 

⚫ These oscillation values are classified according to their corresponding current 

density and voltage properties.  

5.1.1 Experiments  

The experiments are running in our test rig, details can be found in section 3.3, and the 

operating conditions are listed in Table 5-I. Twelve experiments are implemented to the 

statistical analysis, with different current density profiles, as listed in Table 5-II. Three current 

density ramp value (i = 0.2 A cm-2, 0.5 A cm-2, and 0.8 A cm-2), and four ramp time (tin = 1 s, 

20 s, 30 s, and 120 s) are chosen.  

Table 5-I: Operating conditions. 

Anode Anode reactant Hydrogen 

λ𝑎𝑛𝑜𝑑𝑒 2.0 

Temperature 343.15 K 

Relative humidity 90% 

Cathode Cathode reactant Air 

 λ𝑐𝑎𝑡ℎ𝑜𝑑𝑒 2.0 

 Temperature 343.15 K 

 Relative humidity 90% 

 

Table 5-II: Properties of current density profiles in test rig. 

Experiments No. 1 2 3 4 5 6 7 8 9 10 11 12 

Ramp value  

(A cm-2) 

0.2 0.2 0.2 0.2 0.5 0.5 0.5 0.5 0.8 0.8 0.8 0.8 

Ramp time (s) 1 20 30 120 1 20 30 120 1 20 30 120 

 

The starting current density is always 0.1 A cm-2 and remains for 180 s, then the load ramps 

in a specific ramp value with given time, and remains at the current value for 180 s. These steps 
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are repeated until the limited current density (1.2 A cm-2) is reached. Maintaining at the limited 

value for 180 s, then, the current density is decreased at a rate of the specific ramp value with 

given time, until the current density measures 0.1 A cm-2. Two cycles are applied in each 

experiment. The experimental voltage and current density profiles of No. 3, No. 6, and No. 9 

are shown in Figure 5-2a, b, c, and d respectively. It can be found in the figure that the 

oscillation amplitude on the cell voltage varies by different current densities. At low current 

densities level, a slight oscillation can be found on voltage, while at high current densities, a 

more sever oscillation is observed. As sharp increase in current density is applied in 

experiments No. 1 and No.9, a more severe overshoot and undershoot are found in Figure 5-2a 

and Figure 5-2d when comparing with Figure 5-2b and Figure 5-2c. 
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5.1.2 Oscillation analysis 

In theory, for a given current density, the voltage should be stable without oscillation. There 

are many reasons for voltage oscillation, such as oxygen starvation, superfluous heat, water 

droplet accumulation in flow channel, membrane flooding, etc. [110,111]. The impacts of these 

factors on the cell voltage are regarded as noise or disturbance affecting the fuel cell system. 

And the cell voltage with oscillation is regarded as signal requiring denoising. In order to extract 

this kind of noise from the cell voltage, Fourier transform is first applied to the cell voltage, 

which is a mathematical transform which turns a function of time into a function of frequency. 

After the Fourier transform, frequency spectrum of the cell voltage is obtained. A low-pass 

filter that passes signals with a frequency lower than a selected cutoff frequency and eliminates 

all frequencies above the cutoff frequency is applied. As only low frequencies can pass through 

the filter, the oscillations in the cell voltage are eliminated and smooth cell voltage is obtained. 

Fourier transforms: 

𝐹(𝜁) =  ∫ 𝑓(𝑡)𝑒−2𝜋𝑖𝜁𝑡𝑑𝑡
∞

−∞
                                               ( 5-1 ) 

Inverse Fourier transforms: 

𝑓(𝑡) =  ∫ 𝐹(𝜁)𝑒2𝜋𝑖𝜁𝑡𝑑𝜁
∞

−∞
                                             ( 5-2 ) 

here, t represents time, and f(t) a function of time, here is the cell voltage of the fuel cell; 𝜁 ∈ ℝ 

represents frequency in units of Hz, and i is the imaginary number, i2 = -1. 

Fourier transform to cell voltage: 

𝑉(𝜁) =  ∫ 𝑣(𝑡)𝑒−2𝜋𝑖𝜁𝑡𝑑𝑡
∞

−∞
                                            ( 5-3 ) 

Inverse Fourier transform with high frequencies are removed: 

𝑣(𝑡) =  ∫ 𝑉(𝜁)𝑒2𝜋𝑖𝜁𝑡𝑑𝜁
20

−∞
                                             ( 5-4 ) 

here, v(t) is the experimental cell voltage, 𝑉(𝜁) is the frequency spectrum of cell voltage, the 

cutoff frequency is set as 20 Hz, and 𝑣(𝑡)  the smooth cell voltage after removing high 

frequency spectrum of cell voltage. 

The filtering results of two cell voltages, experiment No.1 and No.5 in Table 5-II, are shown 

from Figure 5-3 to Figure 5-6. The ramp times of both experiments are 1 s while the ramp value 

is different. The ramp value of No.1 is 0.2 A cm-2, and No.5 is 0.5 A cm-2.The blue lines in 

Figure 5-3 and Figure 5-5 are the smooth cell voltages after filter high frequencies in 

experimental cell voltage. The value of extracted noises from the experimental voltage of No.1 

and No.5 (Table 5-II) are shown in Figure 5-4 and Figure 5-6, respectively. It can be found in 

these two figures that the noise at high current densities is larger than that of at low current 

densities. The sudden changes in current density bring about overshoot and undershoot in cell 

voltage, and consequently result in large noise values. 
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Figure 5-3: Filtering results of cell voltage, experiment No.1 in Table 5-II (Brown line: current 

density, black line: cell voltage collected from the test rig, blue line: smooth cell 

voltage removed oscillation). 
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Figure 5-4: Extracted noise from cell voltage, experiment No.1 in Table 5-II. 
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Figure 5-5: Filtering results of cell voltage, experiment No.5 in Table 5-II (Brown line: current 

density, black line: cell voltage collected from the test rig, blue line: smooth cell 

voltage removed oscillation). 
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Figure 5-6: Extracted noise from cell voltage, experiment No.5 in Table 5-II. 

5.1.3 Artificial data validation 

After the extracted noises of the 9 experiments are calculated, analysis on these noises is 

carried out, in order to find a pattern of voltage oscillation relating current density value and 

current density changes. The noise is assumed to be white noise. The amplitude of the noises 

at each current density is calculated, and the correlation between the ramp value and amplitude 
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is considered. The analyzed results are listed in Table 5-III. The analyzed noises are added to 

the deterministic voltage generated by Simulink simulation in section 4.2 to get artificial results 

realistic oscillations as observed in the experiment. The artificial data against experimental data 

is shown in Figure 5-7, in which the experiment No.1 is employed. The current density profile 

is marked in brown, and the experimental cell voltage is black. The green line represents the 

artificial data including voltage oscilation. The zoomed in region in Figure 5-7 shows that the 

artificial data approximates the real experimental data very well as the difference between these 

two profiles are very small. The absolute error between the experimental and artificial data is 

presented in Figure 5-8 where the maximum value is smaller than 0.08 V and most absolute 

error is smller than 0.03 V. And considering the voltage varying between 0.4 and 0.85 V, such 

error is within the acceptable range, which means that the artificial data can be used as 

alternative to experimental data. 

Table 5-III: Analyzed noises amplitude at different current densities [112]. 

Current density (A cm-2) Noise amplitude (mV) 

0.1 [-3.2, 3.2] 

0.3 [-4.5, 4.5] 

0.5 [-7.9, 7.9] 

0.7 [-8.9, 8.9] 

0.9 [-10.5, 10.5] 

1.1 [-13, 13] 

1.2 [-15.1, 15.1] 
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Figure 5-7: Artificial data against experimental data, experiments No.1 in Table 5-II (Brown 

line: current density; Black line: cell voltage collected from the test rig; Green line: 

artificial data with oscillation). 



5 Credibility of the LSSVM model under oscillation cases 

73 

 

Time (s)

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0
0            1000           2000           3000           4000     

A
b

so
lu

te
 e

rr
o

r 
(V

)

 
Figure 5-8: Absolute error between experimental data and artificial data. 

5.2 Impacts of factors on the LSSVM model 

With sufficient artificial data, the accuracy of the LSSVM model under various load changes 

is evaluated and the limitation of the model is explored. Sampling intervals and load changes 

are employed as impact factors. Here, four sampling intervals, nine ramp values and twelve 

ramp times are considered. In total a protocol of 432 numerical tests was conducted. 

5.2.1 System’s setup 

In the test station, sampling interval should be pre-determined before running the 

experiments, by which the parameters’ state are collected, analyzed and controlled by the fuel 

cell system. When a high degree of accuracy of the system is required, an intensive sampling 

should be considered so that more information on the system is provided. But in this case, a 

large storage space is demand and always brings out heavy-computation burden. Thus, due to 

different properties and requirements on the experiments, the sampling interval could be 

different. For a fast-dynamic system, intensive sampling interval should be used to catch its 

transient behaviors. And a sparse sampling interval could be taken into consideration when it 

is an inertial system. Considering the oscillation on the cell voltage are mainly caused by the 

water transportation in the fuel cell, and the transport lag in fuel cells to be about 10 s [113], 

then, four sampling intervals are chosen to discuss their effect on the LSSVM model 

performance, which are 1 s, 3 s, 5 s, 8 s. Figure 5-9 illustrates how sampling intervals affects 

the collected data. The current density and voltage profiles preserved with sampling interval Δt 

= 1 s are shown in Figure 5-9a and Figure 5-9b respectively. The preserving processes with 

intervals Δt = 3 s and Δt = 8 s are shown in Figure 5-9c and Figure 5-9d. The results information 

from the data preserving processes under two sampling intervals (Δt = 3 s and Δt = 8 s) can be 

found in Figure 5-9e and Figure 5-9f, respectively, and the red line is the artificial data with Δt 
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= 3 s and the blue line with Δt = 8 s. From Figure 5-9, it can be found that sparse sampling 

interval will cause the information of the system missing and the artificial data are partially 

incomplete.  
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Figure 5-9: Data collecting with different intervals : (a) current density; (b) cell voltage with ∆t 

= 1 s; (c) zoomed region, 3 s; (d) zoomed region, 8 s; (e) cell voltage with ∆t = 3 s; 

(f) cell voltage with ∆t = 8 s (Tan  = 343.15 K, Tca = 343.13 K, λan = λca = 2,  

RHan=100% and RHca = 100%). 

 

The cell voltage predicted by the LSSVM model against the artificial data is shown in Figure 

5-10, in which the sampling interval is 3 s. The black line in Figure 5-10 is the artificial data 

and the red line is the predicted cell voltage by LSSVM model. The zoomed region illustrates 
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that the LSSVM model smooths the artificial data, but the sharp peak of the artificial cell 

voltage after the load change is not resolved. The model results against the artificial with 

interval 8 s are shown in Figure 5-11, in which the black line is the artificial data and the blue 

line is the model output. In contrast to the data in Figure 3-8, the zoom into a ramp region shows 

a larger deviation between the input data (experimental or artificial) and the modeled data when 

the sampling interval was increased in Figures 5-10 and 5-11. When comparing the two black 

lines Figure 5-10 and Figure 5-11, it can be found that the artificial data in Figure 5-11 is 

smoother than in Figure 5-10.  In the zoomed region of Figure 5-11, no sharp peak is caught 

from the black line, indicating that the large sampling interval will result in missing system 

information. In Figure 5-10, it takes a certain time of red curve to reach the same level of black 

line, but it takes even longer for blue line in Figure 5-11 to reach the level of black curve. This 

time is caused by the missing information of the fuel cell voltage when large sampling interval 

is employed, and is positively related to the sampling interval. Also, when comparing 

approximation performance of the model output in Figure 5-10 (red line) and Figure 5-11 (blue 

line), it is clear that the model’s prediction ability in dealing with data preserved by interval Δt 

= 3 s shows better consistency with the artificial data (black line) than that of data preserved by 

interval Δt = 8 s. 
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Figure 5-10: Model performance under sampling interval Δt = 3 s. 
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Figure 5-11: Model performance under sampling interval Δt = 8 s. 

 

Table 5-IV: Indices for the model by four sampling intervals. 

∆t 1 s 3 s 5 s 8 s 

Integrated error (Vs) 21.75 36.68 50.55 72.69 

RMSE (10-4) 0.943 2.190 3.254 5.105 

R2 0.9919 0.9811 0.9720 0.9558 

 

The integrated error, root mean square error (RMSE) and coefficient of determination (R2) 

of model results of four sampling intervals (Δt = 1, 3, 5, 8 s) are listed in Table 5-IV. A smaller 

integrated error and RMSE represent better model performance, but a larger R2 value represents 

better model performance. From Table 5-IV it can be concluded that a sparser sampling 

procedure results in poorer performance, because the highest integrated error and RMSE and 

lowest coefficient of determination are found in the results from sampling interval Δt = 8 s. 

5.2.2 Load changes 

As the effect of the sampling intervals of the system on the LSSVM model performance has 

been clarified, considering the tradeoff between the cost of storage and model error, sampling 

interval ∆t = 3 s is chosen for the analysis of system dynamics. How the load change affects the 

model’s performance is discussed on two factors: the ramp value and ramp time. 

5.2.2.1 Ramp value 

A protocol of artificial data with 9 different ramp values was conducted. Each process begins 

with the current density at 0.1 A cm-2 and runs for 5400 s. The constant values of current density 

change (i) of each case are listed in Table 5-V. The time used for the current density change is 

set constant here, which is tin = 30 s for each test (Case 1-9).  

Table 5-V: Ramp value in current density. 

Case 1 2 3 4 5 6 7 8 9 

(A cm-2) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
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The current density profile and model results from two cases (Case 1 and Case 3) are shown 

in Figure 5-12 and Figure 5-13 respectively. The maximum absolute error when modeling Case 

1 is about 0.07 V, but the maximum value in Case 3 model result is around 0.11 V. In addition, 

at each current density change process, the absolute errors become larger than that of at constant 

current density operating conditions. Meanwhile, when comparing the absolute error of the two 

cases with each load changes, it can be found that the value of Case 1 is smaller than the value 

of Case 3. In the zoomed regions of Figure 5-12 and Figure 5-13, the oscillations of the artificial 

voltage are in the same order of magnitude as the oscillations of the LSSVM model. The sharp 

peak of the cell voltage after a ramp change cannot be resolved completed by the LSSVM model. 
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Figure 5-12: Model performance Case 1, ramp value Δi = 0.2 A cm-2: (a) current density; (b) 

model output against the artificial voltage; (c) absolute error of the modeling 

results [112]. 
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Figure 5-13: Model performance Case 3, ramp value Δi = 0.4 A cm-2: (a) current density; (b) 

model output against the real voltage; (c) absolute error of the modeling results 

[112]. 

 

Then, the integrated error and coefficient of determination are used to compare the model 

performance when dealing with different load change values. The results obtained by nine cases 

are listed in Figure 5-14. As smaller integrated error and larger R2 represent a better model 

performance, it can be found from Figure 5-14 that the LSSVM model can predict the cell 

voltage more precisely when smooth load change is applied. The worst performance happened 

in dealing with severe load change, with i = 1.0 A cm-2, but the coefficient of determination is 

0.930, which still shows a good approximation ability of the LSSVM to catch the cell voltage 

transient behavior when large current density changes are loaded. 
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Figure 5-14: Model results of nine cases. 

5.2.2.2 Ramp time 

A protocol of artificial data with 12 different ramp values was conducted, as listed in Table 

5-VI. Each process begins with current density at 0.1 A cm-2 and runs for 5400 s, and were 

carried out under constant sampling interval t = 3 s and ramp value ∆i = 0.2 A cm-2.  

Table 5-VI: Ramp times. 

Case 1 2 3 4 5 6 7 8 9 10 11 12 

 (s) 1 3 5 10 30 60 90 120 150 180 210 240 

 

Two model results with ramp time tin = 30 s and tin = 180 s are shown in Figure 5-16 and 

Figure 5-16, respectively. In the top row of Figure 5-15 is the current density profile of the 

modeling processes with ramp time tin = 30 s, and the process begins with current density at 0.1 

A cm-2 and increased stepwise to 1.2 A cm-2 by a step of 0.2 A cm-2, after each increase the 

current density hold at this value for 180 s. Until the current density reach its limited value 1.2 

A cm-2, the current desnity was decreased stepwise to 0.1 A cm-2 by 0.2 A cm-2. The whole 

process runs for 5400 s. The middle row of Figure 5-15 shows the model predicted voltage (red 

line) against the real voltage value (black line). The cell voltage of both processes are well 

predicted by the model as the difference between these two lines are relatively small. The 

zoomed regions share similar oscillation in the real voltage and the output of the transient mdoel. 

But a small horizontal shift is observed. In the top row of Figure 5-16 is the current density 

profile of the modeling processes with ramp time tin = 180 s. The current density increased 

stepwise from 0.1 A cm-2 to 1.2 A cm-2 by a step of 0.2 A cm-2, and each increase takes 180 s. 

When the limited current density is reached, then decrease the current density symmetrically. 

The whole process runs for 5400 s. The middle row of Figure 5-16 shows the model predicted 

voltage (red line) against the real voltage value (black line). The cell voltage of both processes 

are well predicted by the model as the difference between these two lines are relatively small. 
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The zoomed regions share similar oscillation in the real voltage and the output of the transient 

mdoel. Still, a small horizontal shift is observed [112].  

When comparing the absolute error of the two modeling results, bottom columnm in Figure 

5-15 and Figure 5-16, it can be found that the absolute errors in Figure 5-16 are smaller than 

the error in Figure 5-15 in gerenal. In brief, the slower the load changes, the better the model 

performance.  
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Figure 5-15: Performance analysis of the LSSVM model: tin = 30 s (Top row: current density 

profile; Middle row: black line is artificial voltage and red line is LSSVM model 

output; Bottom row: the absolute error of the model) [112]. 
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Figure 5-16: Performance analysis of the LSSVM model: tin = 180 s (Top row: current density 

profile; Middle row: black line is artificial voltage and red line is LSSVM model 

output; Bottom row: the absolute error of the model) [112]. 
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Figure 5-17: Effect of ramp time on LSSVM model performance [112]. 

 

Figure 5-17 shows the integrated error and the coefficient of determination of each voltage 

model with the ramp time changing from 1 s to 240 s. As the ramp time becomes longer, the 

coefficient of determination increases correspondently, from 0.981 to 0.998, meanwhile, the 

integrated error decreases from 36.7 V s to 19.2 V s. This also proves that a longer time for the 

changing of the current density brings about more satisfactory model results. In particular, when 

the ramp time is short, such as less than 20 s, a small increase in the ramp time will improve 

the model’s performance significantly. 
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5.3 Working zone for the LSSVM model 

The combined effects of the sampling interval, ramp value and ramp time are discussed 

detailed here. The coefficient of determination, maximum absolute error and average absolute 

error of each modeling process are shown in Figure 5-18, Figure 5-19, and Figure 5-20, 

respectively. x-axis is the sampling interval, y-axis the ramp time and the colored lines represent 

ramp values. It should be noted that, for better visibility, the sampling interval has different 

direction in Figure 5-18 compared to Figure 5-19 and Figure 5-20.  

z-axis in Figure 5-18 is the coefficient of determination R2. Comparing the coefficient of 

determination (R2) in x-axis direction, it can be found that larger sampling interval (e.g. ∆t = 8 

s) results in lower value of R2 when comparing the corresponding value from sampling interval 

1 s, 3 s and 5 s. With ∆t = 1 s, the lowest value of yellow line is about 0.94, but with ∆t = 8 s, 

this value drops to 0.65. Moreover, by analyzing the R2 in y-axis direction and among four 

sampling intervals, it is clear that when the sampling interval is large, extending the ramp time 

can largely improve the model accuracy. Because the R2 increases more obviously with 

increased ramp time in sampling interval ∆t = 8 s than sampling interval ∆t = 1 s. From this 

figure, the load change behavior can be classified into two types, smooth ramp change and 

sharp ramp change. The ramp values (∆i = 0.6 A cm-2) above the green dash line are called 

smooth change and below the green dash line are called sharp change. When the fuel cell ramp 

value ∆ i exceeds 0.6 A cm-2, the effect of ramp value on model performance becomes 

insignificant, as R2 value of those processes are almost the same. 
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Figure 5-18: The value of coefficient of determination (R2) among three effect factors: sampling 

interval (x-axis, positive direction: from right to left), ramp time (y-axis: positive 

direction: from outside to inside) and ramp value (different colored lines). Higher 

R2 represents better model’s performance [112]. 
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Figure 5-19: The value of maximum absolute error among three effect factors: sampling interval 

(x-axis, positive direction: from left to right), ramp time (y-axis: positive direction: 

from inside to outside) and ramp value (different colored lines). Lower maximum 

absolute error represents better model’s performance. (The red plane shows the 

expected maximum absolute of 0.15 V; the possible cases are under this plane) 

[112]. 
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Figure 5-20: The value of average absolute error among three effect factors: sampling interval 

(x-axis, positive direction: from right to left), ramp time (y-axis: positive 

direction: from inside to outside) and ramp value (different colored lines). (The 

red plane shows an example of expected average absolute error of 0.015 V; 

Possible cases are under this red plane) [112]. 

 

z-axis in Figure 5-19 is the maximum absolute error. It is clear that the change in sampling 

interval has less effect on the reduction of the maximum absolute error. But the increasing in 

ramp time largely helps to reduce the maximum value especially in short ramp time, which is 

more obviously when intensive sampling interval is used. When large sampling interval is used 

(e.g. ∆t = 3 s, 5 s, 8 s), the effect of ramp value on maximum absolute error begins to become 

larger.   

Figure 5-20 shows the average absolute error from each model result. From this point of view, 

the effect of sampling interval is very clear. With the increase in sampling interval, the average 

error increases significantly. All the errors in sampling interval ∆t = 1 s are lower than 0.01 V, 

but the most of errors in sampling interval ∆t = 8 s are larger than 0.01 V. Moreover, the effect 

of ramp value on model performance is more important than ramp time. In four sampling 

intervals, the increasing in ramp value (different colored lines) always accompanies with an 

increase in error but the increasing in ramp time is less significantly. 

To make sure that the model satisfies different model accuracy requirements under various 

load changes, a guideline for applying the LSSVM model to fuel cell transient voltage modeling 

is given by Figure 5-19 and Figure 5-20. If the modeling process only has the requirement on 
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the maximum absolute error, for example maximum absolute error is set as 0.15 V, then the 

possible combinations of sampling interval, ramp time and ramp value are located under the 

red plane in Figure 5-19. Or if the modeling process only has a requirement on the average 

absolute error, for example the average absolute should be smaller than 0.015 V, then the 

possible combinations of sampling interval, ramp time and ramp value are located under the 

red plane in Figure 5-20. When both maximum absolute error and average absolute error are 

required by the modeling process, for example the maximum absolute error of the modeling 

process should be smaller than 0.15 V and the accepted average absolute error is set as 0.015 

V, the possible combinations of sampling interval, ramp time and ramp value should be under 

the red plane in Figure 5-19 and Figure 5-20 at the same time.  

5.4 Conclusions 

A comprehensive investigation of the credibility of the LSSVM model in dealing with a 

variety of load changes was carried out in this chapter, and the effects of fuel cell system’s 

setup (sampling interval) and exterior loads’ properties (ramp time and ramp value) were 

presented. The artificial data were generated on the basis of the white-box model proposed in 

chapter 4 while combined statistical analysis results on the cell voltage oscillation.  

A protocol of 432 numerical tests was implemented to evaluate the impacts of the system’s 

setup and load changes on the LSSVM model in this chapter, as four sampling interval, nine 

ramp values and twelve ramp times were considered. The modeling results, when a sampling 

interval of 1 s is employed, are better than that of under other sampling values (Δt = 3 s, 5 s, 8 

s). Thus, system with strong dynamic properties should consider small sampling interval in 

order to acquire detailed information and obtain desirable modeling and performance. When 

same sampling interval is selected, the model performs well when a smooth load changes are 

applied, which means smaller ramp value and longer ramp time bring about better model 

performance. In addition, the results also found that the model performance is more sensitive 

to the load change when high current density is loaded. Moreover, the effect of the changes of 

ramp value on the model’s performance is larger than the influence of the ramp time. 

A working zone that regulates the choice of sampling interval and the variation of the ramp 

time and ramp value was presented, and a suggestion to find the working zone was given. Two 

criteria can be used to find the working zone, one is the maximum absolute error and the other 

is average absolute error. According to different modeling requirements, these two criteria can 

be used separately or simultaneously. Based on the acceptable error to the fuel cell system, a 

set of workable combinations of sampling interval, ramp time and ramp value can be found 

from the guidance, which can be used to instruct the future application of the LSSVM model 

when dealing with different load changes of the fuel cells are applied. 
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6 An online adaptive model for nonlinear dynamics of fuel cell 

Results in this chapter have been submitted to the journal ‘Applied Energy’. An online 

adaptive model is proposed in this chapter, which is based on least squares support vector 

machine. Parameters involved in the LSSVM method itself is initialized by a genetic algorithm, 

then, the parameters are updated online by gradient method. The genetic algorithm can 

effectively avoid the initial parameters falling into local minimum, and the online updating for 

the parameters makes the proposed model more adaptive to the real-time changes of the fuel 

cell system. The methodology of the proposed model is introduced in section 6.2. Section 6.3 

illustrates the online adaptive model. Section 6.4 gives the model performance analysis. And 

section 6.5 draws the conclusions. 

6.1 Problem description  

Voltage is easy to be measured, which makes it one of the candidates to indicate the 

performance of the fuel cell. Majority failures of the fuel cell lead to a drop or abnormality in 

voltage [114]. For a long-term running fuel cell, degradation in power output is evitable, which 

is caused by many factors, as shown in Figure 6-1. Water content has strong impact on the cell 

performance, which causes specific losses [115]. It has significant effects on catalyst and 

membrane degradation, which causes mechanical stress leading membrane failure and reactant 

starvation inducing catalyst support inactivity [110,116]. In addition, dynamic load change also 

impact the fuel cell performance, as the cell voltage loss is much better at constant current 

density than that of at varying current [117].  

Voltage

(time-varying)

Water 

management

Dynamic 

load

Catalyst 

decay

Reactant 

starvation

...

... ...

...

 
Figure 6-1: Factors affecting the fuel cell performance [118]. 

 

As the output of the PEFC fuel cell, voltage should be well modeled, predicted and controlled 

to provide a stable power output. But modeling and predicting the PEFC voltage are very 

challenging due to: 

⚫ Fuel cell mechanism is too complex and difficult to be online modeled and predicted; 

⚫ Complex systems with multiple components are coupled;  
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⚫ Strong nonlinearity dynamics; 

⚫ Time-varying properties due to degradation, water flooding and electrochemical 

reaction etc.; 

⚫ Impacts of load changes, for example, current density ramp value and ramp time. 

In chapter 3, the LSSVM model was established to model the cell voltage. Despite a good 

model accuracy was achieved by the LSSVM model, it has a disadvantage in dealing with 

various load changes, as different model’s accuracy is found at different current densities. In 

addition, the selection of the parameters of the LSSVM model itself is also a problem. Trial-

and-error method is widely used but is inefficient. Therefore, the selection process for the 

internal parameters, and the LSSVM model established in chapter 3 needs to be optimized in 

order to find optimal internal parameters and adapt various load changes.  

6.2 Methodology 

Despite the LSSVM method has a good approximation ability to the fuel cell voltage, which 

has been proven in previous 3 chapters, still, the performance of the LSSVM method depends 

highly on the selection of the LSSVM model’s internal parameters [119]. In general, trivial grid 

search methods are used to find feasible parameters of the LSSVM by minimizing the cross-

validation prediction value. This trial-and-error method is indeed workable but not a practical 

solution, because the limited resolution of the grid doesn’t provide a way of finding optimal 

parameters from various possible combinations of the parameter. In addition, due to the data-

driven property of the LSSVM method, its performance depends highly on the data used in the 

model training process. However, the strong nonlinearity and complex mechanism of the PEFC 

bring great challenging in the modeling process, when the LSSVM method is used. Historical 

information from the fuel cell cannot well reflect current transient behavior, as long-term 

operating causes ageing process that is detrimental to fuel cells and changes fuel cell behaviors, 

making the previous selection of the LSSVM parameters itself less efficient. Thus, an online 

updating for the LSSVM internal parameters is necessary [118].  

 
Figure 6-2: Procedure of the developed adaptive LSSVM method. 
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Accordingly, an adaptive online model that can self-adjust the model’s internal parameters 

and deal with nonlinear dynamics is proposed, as shown in Figure 6-2. Thus, the modeling 

procedure is as following: 

⚫ Initialization: Genetic algorithm is used to determine the initial value of the online 

model’s internal parameters, and pre-existing data are used to learn the initial 

parameters; 

⚫ Model establishment: LSSVM method is then used to learn the time-varying 

nonlinearity of the system. The modeling process is divided into several sub-

processes. In each sub-process, the internal parameters will be updated adaptively by 

gradient method; 

⚫ Adaptability: Gradient method is employed to update the internal parameters of each 

sub-process with online data. 

The LSSVM method has the following form [82]: 

𝑦 = 𝜔𝑇𝜑(𝑥) + 𝑏                                                 ( 6-1 ) 

where 𝑥 ∈ 𝑅𝑛, 𝑥 ∈ 𝑅, 𝜑(∙): 𝑅𝑛 → 𝑅𝑛ℎ is a nonlinear function that maps the input space into a 

higher dimension feature space. By utilizing training data {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1,2,… ,𝑁} , and 

introducing Lagrangain multiplier 𝛼𝑖, the result of the LSSVM method, details can be found in 

section 2.2.4, is as follows: 

�̂� = ∑ 𝛼𝑖𝐾(𝑥, 𝑥𝑖)
𝑁
𝑖=1 + 𝑏                                                ( 6-2 ) 

where 𝑥𝑖 is the model input, �̂� the model output, 𝐾(𝑥, 𝑥𝑖) the kernel function. 𝛼𝑖 and 𝑏 is the 

solution of the LSSVM method. Considering the superior properties in handling nonlinearity 

and complexity [102–104], Gaussian RBF kernel function is chosen 𝐾(𝑥, 𝑥𝑖) =

exp (−
‖𝑥−𝑥𝑖‖

2

2𝜎2
) . Then, two internal parameters, namely regularization term 𝛾  and width 

parameter 𝜎, need to be determined. 

6.2.1 Genetic algorithm 

Selection of a proper parameter set {𝛾, 𝜎} is the key to achieve an accurate LSSVM model 

and good performance. But currently no efficient guidelines have been published in finding the 

optimal parameters. And the manual adjustment of the parameters takes a lot of time and often 

misses the optimal parameter set [80,120]. Therefore, genetic algorithm (GA) is used here to 

find the global optimal internal parameters of the LSSVM model. The parameters of genetic 

algorithm itself need to be set, as shown in Table 6-I. The diagram of the GA is shown in Figure 

6-3 with following steps [118]: 

1. Initialization population: population size is set to 80. For each individual in the 

population, it has its own DNA, and the DNA is a sequence of only 1’s and 0’s. These 

80 sequences compose the initial population; 
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2. Translation DNA: the DNA was decoded and translated into the parameter set {𝛾, 𝜎}. At 

first, the DNA sequence is decoded following the law of binary to decimal conversion 

and two decimal digitals are obtained consequently. Then, these two decimal digitals are 

scale up or down linear within the range of 𝛾 and 𝜎 respectively. After the translation, 

the internal parameters are forwarded to next process;  

3. Calculate fitness: fitness is used to score the behavior of individual parameter set {𝛾, 𝜎}. 

After each {𝛾, 𝜎} has been used to train the LSSVM model, model error is used to grade 

the parameter set {𝛾, 𝜎} (individual DNA), and one with lower model error are labeled 

higher fitness; 

4. Selection population: selection is based on the fitness of each DNA. The goal is to 

minimize the model error, so the DNA with higher fitness is more likely to be selected 

into new population; 

5. End of condition: 100 generations are used here to judge the end of genetic algorithm, if 

the GA process has been ran for 100 generations, jump to step 7, otherwise, move to next 

step; 

6. Crossover and mutation: as shown in crossover is used to combine the DNA of two 

randomly selected individual then generates an offspring. Crossover rate is set 0.3, which 

means for the selected individual 1, 30% of its DNA will be replaced by the DNA from 

the selected individual 2; mutation is used to preserve and introduce diversity of the 

population. Mutation possibility is set 0.01, which means for each individual, it has 1% 

chance that mutation will happen. When mutation happens, one position in the DNA 

sequence will be replaced by its opposite, for example 0 is replaced by 1 or 1 replaced 

by 0. After the new population is generated, back to step 2; 

7. Export the results: the DNA of individual with highest fitness in the final population is 

exported as the initial parameter set of the online adaptive method. 

Table 6-I: Parameters of GA. 

Parameter Value 

Population size 80 

Number of generation 100 

Crossover rate 0.3 

Mutation possibility 0.01 

Range of 𝛾 [1,10000] 

Range of 𝜎 [0.01,10] 
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Figure 6-3: Procedures of the genetic algorithm. 

 

 

Figure 6-4: Schematic diagram of crossover and mutation in the genetic algorithm. 

6.2.2 Gradient method 

With the initial parameters of the adaptive model were obtained by the genetic algorithm, the 

first sub-model is then established. Loss function is used to evaluate the model performance, 

which is defined as: 

𝐽(𝛾, 𝜎) =  
1

2
[�̂� − 𝑦]2                                                         ( 6-3 ) 

where �̂� is the LSSVM model output and y is the real value from experiment. 

Updating the internal parameters in each sub-model is then achieved by 

𝛾(𝑘+1) = 𝛾(𝑘) − 𝜂∆𝛾(𝑘)                                                      ( 6-4 ) 

𝜎(𝑘+1) = 𝜎(𝑘) − 𝜂∆𝜎(𝑘)                                                     ( 6-5 ) 

where k is the number of iteration and 𝜂 is step size that indicates how fast the parameters 

change. 10 iterations are used and step size is set as 0.5. And Δ𝛾𝑘 =
𝜕𝐽

𝜕𝛾
, Δ𝜎𝑘 =

𝜕𝐽

𝜕𝜎
, with 

𝜕𝐽

𝜕𝛾
=

𝑒(∑ 𝑒𝑖𝐾(𝑥, 𝑥𝑖)
𝑁
𝑖=1 ),  

𝜕𝐽

𝜕𝜎
= 2𝑒 (∑ 𝛼𝑖 ∙ exp (−

(𝑥−𝑥𝑖)
2

𝜎2
) ∙

(𝑥−𝑥𝑖)
2

𝜎3
𝑁
𝑖=1 ) 
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6.3 Online adaptive model 

With gradient method, once the internal parameters are updated in current sub-model, for 

example sub-model s, they are immediately employed in next sub-model (sub-model s+1). The 

configuration of the online adaptive LSSVM model is described in Figure 6-5, which has 

following steps [118]: 

Data collection: two types of data are collected. One is pre-existing data from chapter 3 and 

5 that are used to initialize the online adaptive model. The other one is the real-time data that is 

used in online modeling and updating process. Current and voltage collectors, gas flow rate 

sensors, pressure sensors and relative humidity sensors are located surround the fuel cell to 

collect the real-time data at a regular sampling interval. Input parameters are organized as u(t) 

and output is y(t); 

GA Initialization: pre-existing data are learned and processed by GA to find the initial 

parameters {𝛾0, 𝜎0}. The parameter set {𝛾0, 𝜎0} is used to establish the first sub-LSSVM model;  

Online updating: after the sub-model was established, gradient method is used to update the 

internal parameters (Eq. 6-4 and 6-5). The updated internal parameters {𝛾1, 𝜎1} will be used in 

sub-LSSVM model 2; 

Sub-LSSVM models: only the most recent data is used in each sub-LSSVM model, which 

eliminates the effects of irrelevant information that has less impact on the fuel cell at present. 

The data used in two adjacent models will partially overlap. In each sub-LSSVM model, the 

internal parameters have been updated by previous sub-model. 

The workflow of how to establish the online adaptive model for nonlinear dynamics of the 

PEFCs is presented in Appendix. 

 
Figure 6-5: Configuration of the proposed method [118]. 
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6.4 Model validation 

6.4.1 Validation based on experimental data 

In this section, the PEFC test cell which was assembled at the Forschungszentrum Jülich in 

Germany is used to verify the proposed model performance, details can be found in section 3.3. 

Greenlight Technology’s G40 test rig is used to monitor the fuel cell, as shown in Figure 3-2. 

In the operating test fuel cell, the current and voltage is collected by corresponding collector. 

Four gas flow rate sensors are used to collect the inlet and outlet gas flow rate of both anode 

and cathode side. Two heaters are inserted into anode and cathode sides respectively in order 

to keep the fuel cell at a desirable working temperature. The operating conditions are listed in 

Table 6-II. 

In the operating fuel cell, the current density is used as exterior load change, as shown in 

Figure 6-6. In this figure, the blue line is the current density and the black line is the 

corresponding cell voltage. The measured data are acquired in the measured process with 

sampling interval Δt = 3 s, and 2400 samples are collected in the experiment and the experiment 

last for 2 hours. The starting current density is 0.1 A cm-2, and holds at this value for 180 s. 

Then, the current density was increased to 0.3 A cm-2 by a step of 0.2 A cm-2. Holding the 

current density for 180 s, and then increase the current density stepwise to its limited value by 

a step of Δi = 0.2 A cm-2. After the current density reach its limited value, decrease the current 

density stepwise with same ramp value until the current density becomes 0.1 A cm-2. 

 

Table 6-II: The fuel cell’s operating condition. 

Anode Reactant gas Hydrogen 

 𝜆𝑎𝑛 1.2 

 Relative humidity 90% 

 Temperature 343.15 K 

Cathode Reactant gas Air 

 λ𝑐𝑎 2.5 

 Relative humidity 90% 

 Temperature 343.15 K 
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Figure 6-6: Current density profile and corresponding cell output voltage (Operating condition: 

Table 6-II) [118]. 

 

The relative error is employed to evaluate the proposed model’s performance of each 

generation, which is defined as: 

𝜀 =
|𝑦𝑖−�̂�𝑖|

𝑦𝑖
× 100%                                                     ( 6-6 ) 

here �̂� is the model output, y the experimental data. A lower value represents a better model 

performance.  

The genetic algorithm is used to find the global optimal parameters for the LSSVM method, 

and the results (Eq.6-6) of each generation are shown in Figure 6-7. Despite the well-known 

fact that an infinite number of generations bring about a perfect solution, but it can be seen in 

Figure 6-7 that after 25 generations, the relative error levels off. Thus, in our case, the 100 

generations are enough to obtain global optimal solution. After the initial parameters were 

found by genetic algorithm, it is forwarded to the proposed online adaptive model. The 

computation time to initialize parameters under different generations is listed in Table 6-III, 

and the simulation processes are running on Matlab. The computation time of the process with 

25 generations has been defined as basis computation time as T. It can be concluded from Table 

6-III that the number of generation and its corresponding computation time are linearly related. 
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Figure 6-7: Relative error of each generation (Genetic algorithm) [118]. 

 

Table 6-III: Computation time of generations (Calculation was implemented using Matlab on a 

desktop computer with a 3.40 GHz Intel® Core™ i7-2600 CPU and with 16GB 

RAM) [118]. 

Number of generation Computation time (s) 

25 75.02 T 

50 150.24 2T 

75 233.10 3.1T 

100 302.21 4T 

 

As the entire process is decomposed by time into several sub-processes, the LSSVM model 

to characterize sub-process’s voltage can effectively enhance the accuracy of the model. The 

overall online adaptive voltage model is obtained by integrating every sub-model. In our case, 

50 data points are used to establish the sub-LSSVM model, after the sub-model was trained; it 

is used to predict the fuel cell voltage at the next 12 data points. Then, parameters have been 

updated after each sub-LSSVM model using the gradient method and these newly calculated 

parameters are used in the next sub-LSSVM model. The updating parameters 𝛾 and 𝜎 at each 

GA generation after each updating process are shown in Figure 6-8 and Figure 6-9, respectively. 

Calculation time of the updating process for sub-LSSVM model is shown in Figure 6-10, and 

it can be found from the figure that the calculation time of the parameter updating (𝛾 and 𝜎) is 

relatively small and lower than 9 millisecond. As each sub-LSSVM model lasts for 162 seconds, 

the time-consumption of updating process for model’s parameters is negligible relative to the 

sub-model simulation [118]. 
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Figure 6-8: Updating process of 𝛾 (Eq. 6-4) [118]. 
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Figure 6-9: Updating process of 𝜎 (Eq. 6-5) [118]. 
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Figure 6-10: Calculation time of each updating process (Calculation was implemented using 

Matlab on a desktop computer with a 3.40 GHz Intel® Core™ i7-2600 CPU and 

with 16GB RAM) [118]. 

 



6 An online adaptive model for nonlinear dynamics of fuel cell 

97 

 

The model output against experimental data is shown in Figure 6-11 and the relative error is 

shown in Figure 6-12, respectively. The red line in Figure 6-11 is the predicted cell voltage 

from the proposed model and the black line is the measured data from experiment. It can be 

seen that at low cell voltage, the relative error tends to be larger, as the cell voltage at this low 

level presents more oscillations due to water management insufficient inside the fuel cell.  
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Figure 6-11: Model performance: prediction by the model against the real experimental data 

[118]. 
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Figure 6-12: Relative error of the modeling results (Eq. 6-6) [118]. 

 

More load behaviors were implemented to test and compare the model’s adaptability to 

different load changes, then four cases are used and their current density properties are listed in 

Table IV. Here we defined that the current density profile in Figure 6-6 as case 1, with ramp 

value 0.2 A cm-2, and ramp time 1 s. Then, the ramp value in case 2 is A cm-2 and ramp time is 

60 s, as shown in Figure 6-13. Case 3 has the ramp value 0.5 A cm-2 and ramp time is the same 

as case 1, as shown in Figure 6-14. In case 4, the ramp time is setting as 0.5 A cm-2 and ramp 

time is 60 s, as shown in Figure 6-15. 
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Table 6-IV: Current density change characteristic of four cases. 

 Ramp time tin (s) Ramp value ∆i (A cm-2) 

Case 1 1 0.2 

Case 2 60 0.2 

Case 3 1 0.5 

Case 4 60 0.5 
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Figure 6-13: Case 2, ramp value ∆i = 0.2 A cm-2 and ramp time tin = 60 s (Blue line: current 

density profile; Black line: cell voltage collected from experiment; Operating 

condition: Table 6-II) [118]. 
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Figure 6-14: Case 3, ramp value ∆i = 0.5 A cm-2 and ramp time tin = 1 s (Blue line: current 

density profile; Black line: cell voltage collected from experiment; Operating 

condition: Table 6-II) [118]. 
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Figure 6-15: Case 4, ramp value ∆i = 0.5 A cm-2 and ramp time tin = 60 s (Blue line: current 

density profile; Black line: cell voltage collected from experiment; Operating 

condition: Table 6-II) [118]. 

 

The online adaptive model performance is then compared with other modeling methods that 

two references models are used. Reference model 1 is also called GA initialization model, 

which used genetic algorithm to find the initial parameters {𝛾0 , 𝜎0}, but skip the online 

updating process for the internal parameters. As the parameters in the GA initialization model 

are fixed, it could be used to verify the advantage of the online updating process for parameters 

{𝛾, 𝜎}. Reference model 2 is called online updating model, in which the initial parameters{𝛾0, 

𝜎0} are tuned manually based on cross validation instead of automatically by GA. After the 

initial parameters {𝛾0, 𝜎0} has been tuned manually, online updating process is employed to 

update these parameters {𝛾, 𝜎}. As GA initialization has been skipped in the online updating 

model, it could be used to discuss the efficiency of finding a good start point for LSSVM 

method. The difference between the online adaptive model and the reference models are listed 

in Table 6-V. 

Table 6-V: Properties of reference models in comparison with the proposed model. 

 Genetic algorithm 

(GA) 

Parameters updating 

{𝛾, 𝜎} 

Adaptive online model √ √ 

GA initialization model √ × 

Online updating model × √ 

 



6 An online adaptive model for nonlinear dynamics of fuel cell 

100 

 

The coefficient of determination (R2) and the mean absolute percentage error (MAPE) are 

employed as indexes to evaluate and compare the models’ performance, which is defined as:  

𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)

2𝑁
𝑖=1

∑ (𝑦𝑖−𝑦�̅�)
2𝑁

𝑖=1

                                                        ( 6-7 ) 

MAPE =
1

𝑁
∑

|𝑦𝑖−�̂�𝑖|

𝑦𝑖
× 100%𝑁

𝑖=1                                                 ( 6-8 ) 

𝑦�̅� is the average value of the experimental data, N the number of data point, here is 2400. R2 

ranges from 0 to 1, and a higher R2 means a better model performance, and a lower MAPE 

represent a better model performance.  

The coefficient of determination and MAPE of the adaptive online model, the GA 

initialization model and the online updating mode on four current profiles (Case 1, 2, 3, 4)  are 

shown in Figure 6-16 and 6-17, respectively. Overall, the adaptive online model has better 

model performance than other models in four cases. When comparing the performance of the 

adaptive online model with the GA initialization model, it can be seen that the difference 

between red bar and blue bar is quite small in case 2 and 4, but obvious in case 1 and 3. It 

indicates that the online updating for the internal parameters increases the model’s performance 

and is especially necessary when load changes are large. When comparing the performance of 

the adaptive online model and the online updating model, it can be found a large difference 

between red bar and black bar in all four cases, which indicates the searching of a good start 

point for the LSSVM method largely improves its model performance [118]. 
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Figure 6-16: Coefficient of determination (R2): higher value represents better model 

performance (Case 1: tin = 1 s, ∆i = 0.2 A cm-2; Case 2: tin = 60 s, ∆i = 0.2 A cm-

2; Case 3: tin = 1 s, ∆i = 0.5 A cm-2; Case 4: tin = 60 s, ∆i = 0.5 A cm-2) [118]. 
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Figure 6-17: Mean absolute percentage error (MAPE): higher value represents poorer model 

performance (Case 1: tin = 1 s, ∆i = 0.2 A cm-2; Case 2: tin = 60 s, ∆i = 0.2 A cm-2; 

Case 3: tin = 1 s, ∆i = 0.5 A cm-2; Case 4: tin = 60 s, ∆i = 0.5 A cm-2) [118]. 

6.4.2 Validation based on artificial data 

In this section, the artificial data generated in Chapter 5 is used to verify the online adaptive 

LSSVM model. Details of the artificial data can be found in section 5.1. 108 sets of artificial 

data are considered, including nine ramp values (listed in Table 5-V) and twelve ramp times 

(listed in Table 5-VI). The artificial data of each process were collected with sampling interval 

Δt = 3 s. 

The online adaptive LSSVM is compared with the LSSVM model with the help of coefficient 

of determination (Eq. 6-7), as shown in Figure 6-18 and Figure 6-19 respectively. The colored 

lines in the figures represent different ramp values, the horizontal axis represents the ramp time, 

and the vertical axis represents the coefficient of determination. The improvement of the online 

adaptive LSSVM model to the LSSVM model is shown in Figure 6-20, which is obtained by 

the following equation:  

𝜛 =
𝑅𝑜𝑛𝑙𝑖𝑛𝑒−𝑅𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙

1
× 100%                                     ( 6-9 ) 

here, 𝑅𝑜𝑛𝑙𝑖𝑛𝑒 is the modeling results (coefficient of determination in Figure 6-18) of the online 

adaptive model, 𝑅𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is he modeling results (coefficient of determination in Figure 6-19 ) 

of the LSSVM model. 1 represents the maximum value of the coefficient of determination. A 

larger value in Figure 6-20 means a better improvement in model performance by using the 

online adaptive LSSVM model. 
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Figure 6-18: Coefficient of determination (R2) of the online adaptive LSSVM model: with 

oscillated artificial data collected by sampling interval Δt = 3 s. 
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Figure 6-19: Coefficient of determination (R2) of the LSSVM model: with oscillated artificial 

data collected by sampling interval Δt = 3 s. 

 

It can be found that compared with the values in Figure 6-19, the values in Figure 6-18 are 

more likely to approximate a value of one, which indicates that the performance of the online 

adaptive model is better than LSSVM model. When the ramp time is small, for example tin ≤ 

30 s, the modeling performance is significantly improved by using the online adaptive model, 

because the values in Figure 6-20 when tin ≤ 30 s are basically greater than the values when tin > 

30 s. In addition, it can be found that when the ramp time becomes large (tin > 180 s), the 

improvement of the online adaptive online model becomes small, and seems like to be flat and 

no longer decrease. It indicates that with large ramp time that meaning smooth load change, 

using the online adaptive model will not greatly improve the modeling accuracy. This 

conclusion can be validated by the red-dot line in Figure 6-20, of which the ramp value is Δi = 
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0.2 A cm-2. Small ramp value means smooth load change as well. It can be found that in Figure 

6-20, the corresponding y-axis of the red-dot line is relatively small when compared with the 

rest lines.  
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Figure 6-20: Improvement of the online adaptive model (Eq. 6-9).  

 

There is an obvious gap in Figure 6-20. The colored lines at the top of Figure 6-20 can be 

grouped as high ramp value group (group 1: Δi ≥ 0.6 A cm-2), and the colored lines at the bottom 

of Figure 6-20 are then grouped as low ramp value group (group 2: Δi ≤ 0.5 A cm-2). 

Considering the value in group 1 is larger than that of in group 2, it can be concluded that the 

improvement in modeling accuracy is more obvious when dealing with more severe load 

changes. In other words, it is more necessary to use the online adaptive model when the load 

change is more drastically 

In summary, the online adaptive model has an overall improvement in modeling accuracy. 

The online adaptive can improve the modeling accuracy by up to 5%. The improvement is more 

obvious when the load changes drastically.  

6.5 Conclusions  

In this chapter, an adaptive online model for polymer electrolyte fuel cell was developed, 

which is based on the least squares support vector (LSSVM). The internal parameters in the 

LSSVM is first tuned automatically then updated in real-time. The genetic algorithm was used 

to find initial parameters of the model by using pre-existing data from the previous experiments. 

Then, the initial parameters are used to establish the first sub-LSSVM model for the fuel cell 

transient voltage. The gradient method was used to update the internal parameters online. The 

whole process was divided into several sub-sections over time. The internal parameters have 

been updated in each sub-model and forwarded to the next sub-model.  
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The efficiency of the adaptive online model had been validated by comparing with the 

experimental data collected from the test rig. The results indicate that the proposed model has 

a good approximation ability and high model accuracy in modeling fuel cell transient voltage. 

When comparing the adaptive online model with other models, the necessary of finding the 

initial internal parameters and online updating these parameters is confirmed. The superiority 

of using genetic algorithm to automatically tune the parameters is obvious, because the model’s 

performance is significantly improved when the genetic algorithm was applied. In addition, the 

advantage of online updating model’s internal parameters is also confirmed by the high 

determination of coefficient and low MAPE of the modeling results from the adaptive online 

model when comparing with the GA initialization model.  

The improvement of the online adaptive model to the LSSVM model in modeling accuracy 

was confirmed by using the artificial data generated in chapter 5. The modeling accuracy was 

improved by up to 5%. The results shows that the online adaptive model improves the modeling 

accuracy more obvious when drastic load changes are applied to the fuel cell. 
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7 Discussions 

The purpose of this thesis was to apply the machine learning in modeling of the dynamics of 

the PEFC. This chapter includes a discussion of major findings as related to the establishment 

of the LSSVM model to predict the dynamic behaviors of the PEFC, identification of the 

credibility and limitation of the model, and modify the model in order to improve its modeling 

accuracy. The chapter concludes with a discussion of the limitations of the study, areas for 

future research and a brief summary. 

This chapter contains discussion and future research possibilities to help answer the research 

questions: 

⚫ What is the limitation of the LSSVM method when modeling and predicting the 

dynamic behaviors of the PEFCs? 

⚫ How does the load change affect the performance of the LSSVM model? 

⚫ How to regulate the system’s setup and load changes in order to ensure a satisfactory 

modeling accuracy of LSSVM model? 

⚫ How to improve the modeling accuracy when LSSVM method is used? 

The limitation of the LSSVM method is comprised of two themes in this study: a) idealized 

cases and b) oscillated cases. Both are with the help of artificial data generated by a white-box 

model that followed the physical and electrochemical law of the fuel cells. One relates primarily 

to the theoretical operation of the PEFCs with determined output, which is commonly used to 

investigate the impacts of fuel cell parameters by models [121–123]. The other relates to the 

real operation of the PEFCs, in which the oscillation on the cell voltage was included. The 

oscillation in voltage exists commonly in the application of the PEFCs. 

The results from both studies on the idealized cases indicate that a higher frequency sampling 

results in a better model performance. Four sampling intervals are considered, namely Δt = 1 s, 

3 s, 5 s, 8 s. Large value of sampling interval, for example 8 s considered in the thesis, leads to 

incomplete information as sharp peak of the fuel cell dynamic behaviors would be missed. This 

results in poor modeling performance. Consistent conclusions can be drawn from Figure 4-14 

and Table 5-IV, as the value of the sampling interval increases, the coefficient of determination 

of the LSSVM model results under the corresponding sampling interval decreases while the 

integrated error increases. In addition, the analysis on the LSSVM model’s performance under 

load changes supports the theory that the LSSVM model can predict the cell voltage more 

precisely when smooth load change is applied. This result builds on existing evidence of 

identical conclusion drawn from Figure 4-18 and Figure 5-14 when the effects of ramp value 

on the performance of the LSSVM model, and from Figure 4-21 and Figure 5-17 when the 

effects of ramp time is discussed. As the ramp value increases, the integrated error and 

coefficient of determination trends of the two cases are very similar. A large difference in the 
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LSSVM modeling error is found when ramp value less than 0.5 A cm-2 and larger than 0.5 A 

cm-2 are applied to the fuel cell load, respectively. The LSSVM model’s performance drops 

significantly when the ramp value increase from 0.5 A cm-2 to 0.6 A cm-2, as the integrated 

error increased by 50% and the coefficient of determination decreased by 0.03-0.04. However, 

when the ramp value is larger than 0.5 A cm-2, and then continue to increase the ramp value, 

the performance of the LSSVM model does not change much. The results indicate that the ramp 

value Δi = 0.5 A cm-2 could be regarded as a turning point. Although the performance of the 

model when the ramp value Δi is greater than 0.5 A cm-2 is worse than when it is less than 0.5 

A cm-2, the LSSVM model performance is still very good overall, however, thoughtful decision 

should be given if a larger ramp value is applied to the fuel cell load. The performance of the 

LSSVM model under the two cases shares similar trend when the effects of the ramp time are 

discussed. As the ramp time increases, the integrated error decreases and the coefficient of 

determination increase. When the ramp time is less than 30 s, slightly increase the ramp time, 

the performance of the LSSVM model will be significantly improved. The longer the ramp time, 

for example Δt > 120 s, the increase in ramp time will not significantly improve the LSSVM 

model’s performance.  

The combined effects of the sampling interval, ramp value and ramp time are discussed in 

chapter 5. When higher frequency sampling is used to collect the data of the PEFCs during 

operation, as it provides detailed information of the PEFCs to the LSSVM model, the prediction 

of the model is more accurate than if low frequency sampling is considered. Also, when high 

frequency sampling is applied, the impacts of the load change on the model’s performance 

become are smaller than that of when low frequency sampling is applied. As discussed in Figure 

5-18, with sampling interval ∆t = 1 s, the coefficient of determination ranges from 0.930 to 

0.999, but with ∆t = 8 s, this value ranges from 0.650 to 0.990. This result indicates that if the 

load variation of a PEFC changes drastically, a high frequency sampling should be considered 

to offset the impact of the drastic load change on the modeling performance of the LSSVM 

model. From Figure 5-18, the load change behavior can be classified into two types, smooth 

ramp change and sharp ramp change. The ramp values less than 0.5 A cm-2 are called smooth 

change and larger than 0.5 A cm-2 are called sharp change. When the fuel cell ramp value ∆i 

exceeds 0.5 A cm-2, the effect of ramp value on model performance becomes insignificant, as 

R2 value of those processes are almost the same. This result is consistent with the previous 

conclusion. 

Accuracy is the key to a model, and is commonly used to evaluate the fuel cell model. The 

models’ accuracy have been discussed in many cases [86,124,125], but there discussed the 

model’s accuracy only in one load behavior. However, in automotive application of the PEFCs, 

it often experience various load changes, such as sudden start-up, shut-down, idle speed, and 

acceleration [44]. In chapter 5, an investigation on the LSSVM model’s accuracy under various 
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load variations was implemented. And a systematical way has been applied to analyze the 

performance of the LSSVM model; no similar works have been done before. The result suggest 

that no matter how strong approximation ability of a modeling method is, it is still necessary to 

identify the model’s limitation in order to ensure that the anticipated modeling accuracy is 

achieved. In order to ensure the accuracy of the LSSVM model, a working zone for regulating 

the sampling interval, load changes were provided. It is easy to define the working zone when 

the anticipated modeling error or the maximum tolerable error is provided. 

The improvement of the LSSVM model was presented in chapter 6 and comprised of two 

steps in this study: a) a genetic algorithm and b) gradient method. Parameters involved in the 

LSSVM method itself is initialized by a genetic algorithm, then, the parameters are updated 

online by gradient method. Kang et al. [94] and Acuña et al. [126] have used the genetic 

algorithm to tune the parameters for the LSSVM model. After the parameters were adjusted by 

the genetic algorithm, they are used in the LSSVM model for modeling and predicting. Despite 

the inaccuracy caused by manual adjustment of the parameters has been overcame by genetic 

algorithm, these tuned parameters remain fixed throughout the modeling process, which may 

not be optimal value over time. But the calculation time for running the genetic algorithm is 

quite long, which is not suitable for an operating fuel cell that requiring online modeling and 

prediction. Thus, the gradient method, which requires less calculation time, is used to realize 

online updating for the internal parameter set. Two parameters are involved in the LSSVM 

model. The results indicate that a suitable parameter set {𝛾, 𝜎} is of great importance in getting 

good model performance, and it can be realized by using genetic algorithm. Although online 

updating by gradient method can improve the model accuracy, it is important to choose suitable 

internal parameters as a starting point. In addition, the modeling performance of the online 

adaptive was test by oscillated artificial data generated in chapter 5. An improvement in model 

performance of the online adaptive LSSVM model was proved when comparing its modeling 

results with the LSSVM model, especially when drastic load changes were applied to the PEFCs. 

The online adaptive improves the modeling accuracy by up to 5% when comparing the LSSVM 

model established in chapter 3. This adaptive online model can also be applied to other research 

fields when model’s internal parameters have large impact on the model performance and 

severe change of the system parameters is evitable to the system. 

Further investigations on the machine learning in modeling of the dynamics of polymer 

electrolyte fuel cells are necessary. There are some challenges which have not been well studied 

in this work. 

Due to the complexity of the fuel cells, different dynamic behavior is shown under different 

operating conditions and load changes. The analysis on the LSSVM model considered only one 

operating condition in this work. Under this operating condition, impacts of load changes were 

carried out. How the LSSVM model works in different operating conditions, namely relative 
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humidity, temperature and pressure, is a remaining problem. Generally speaking, more data at 

a wide range of operating conditions are needed. 

White-box model is an efficient approach to provide data that needed for the investigation on 

the performance of the LSSVM model. Most of the existing white-box models can only work 

under some assumptions. How to get a detailed model that can describe the fuel cells very well 

and provide accurate data of the fuel cell is a challenge.  The identification of the fuel cell 

system based on the mechanism in combination with experimental research is a promising 

approach.  

Optimal experiment design (both to experiment in test station and numerical experiment in 

simulation) to obtain informative data is very important for parameter estimation and system 

approximation. The selection of the methods may be also included in this topic. Whether the 

method can be extended to other application is still an open question. 
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8 Conclusions 

The studies of polymer electrolyte fuel cells (PEFCs) become more and more active and 

import because of clean energy needs in the industry. Nonlinear dynamics considered in the 

thesis is a crucial issue in the application of the PEFCs. Modeling is required by predicting, 

controlling and optimizing the PEFCs system. The complex characteristics, such as multi-

physics coupling, nonlinearity, time-varying, unknown disturbances and various working 

conditions make the modeling of the fuel cell system difficult and challenging. 

This thesis is focused on the dynamic modeling to the PEFCs system with the help of a data-

driven method, and the performance of the data-driven method under various load changes are 

discussed based on the statistical analysis. The main attributions and conclusions made in this 

thesis are as following: 

⚫ An accurate and fast responsive model was established, which overcomes the 

complex nonlinear, time-varying properties in fuel cells. The model is based on the 

least squares support vector machine (LSSVM), which has the ability to approximate 

any nonlinear system by a simple model structure. With this model, the dynamic 

behavior of the PEFCs is descripted. Due to its fast reaction to the load change, it 

bridges the gap between complex physical phenomena and fast transient response; 

⚫ Artificial data was generated by a white-box model that follows physical and 

electrochemical laws. The artificial data were regarded as an alternative to 

experimental data, which is able to provide numerical data of fuel cells under sharp 

and extreme load changes that are prohibited by the fuel cells test rig and harmful to 

the fuel cells. Two types of artificial data were obtained: one is idealized artificial 

data that have been used to investigate the LSSVM model’s performance under 

theoretical operation; another is oscillated artificial data with oscillations based on the 

analysis of fluctuations in experimental data. 

⚫ The effects of fuel cell system’s setup (sampling interval) and exterior loads’ 

properties (ramp time and ramp value) on the LSSVM model were thoroughly 

investigated. The results showed that a low frequency sampling lead to incomplete 

information because the sharp peak of the system would be missed, as consequence, 

causes poor modeling performance. And the LSSVM model performs well when a 

smooth load changes are applied, which means smaller change step of the current 

density and longer time for the current density change bring about better model 

performance, when the data used have same sampling interval; 

⚫ A working zone intended to ensure the LSSVM model’s accuracy was presented. The 

working zone regulates the selection of sampling interval, ramp time and ramp value. 

Based on maximum absolute error and average absolute error that are acceptable by 
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the fuel cell system, a set of possible combination of sampling interval, ramp time and 

ramp value can be found from the working zone; 

⚫ An online adaptive LSSVM model was proposed in order to overcome the limitations 

of the LSSVM model in dealing with various load changes and unforeseen change in 

the fuel cell behavior over time. The proposed model used genetic algorithm to search 

the internal parameters of the model instead of manual selection, which avoids the 

model suffering from local minima. In addition, the internal parameters were updated 

online according to adjacent fuel cell system information, by which the effects of 

uncertainties and online disturbance on the LSSVM model’s performance can be 

solved.  

The effectiveness of the LSSVM model and the online adaptive model has been verified on 

our test rig. They have the following advantages: i). little process knowledge. They are data-

driven modeling and do not require priori knowledge on the system; ii). simple nonlinear 

structure. They are mapping the original data from the primal space into the feature space with 

the help of kernel functions. As a consequence, the dimensionality is then largely reduced, 

which are suitable for the industry application. Besides, the online adaptive model has the 

advantage on the selection and optimization of the internal parameters, which was implemented 

by the combination of the genetic algorithm and gradient method.  

Because almost no system knowledge is involved in the modeling process, the data used in 

the models play an important role in the models’ modeling and predicting performance. Thus, 

sampling interval, which defines the level of detail of the system information obtained by the 

model, should be determined before running the fuel cell system. System with strong dynamic 

characteristics should consider high frequency sampling to obtain detailed information for the 

model in order to achieve desirable modeling performance. But high frequency sampling brings 

about the problem of storage and computation burden, thus, a tradeoff between economic and 

accuracy should be balanced.  

The proposed online adaptive model makes it feasible to tune the hyper parameters of the 

LSSVM model from time by time to overcome unforeseen changes in the fuel cell 

characteristics. 
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Appendix 

A.1  Workflow of the modeling process in chapter 3 

The workflow of the modeling process in chapter 3 is shown in Figure A-1. The meaning of 

each icon used in the figure is shown in Table A-I. If same icon appears in the workflow, it 

means they represent the same thing. The arrow represents the direction of the process. Arrows 

with dash line mean that there is data transmission between the steps.  

Data collection: raw data is first collected from our test rig; 

Data analysis: during this step, raw data are processed into a readable form to the modeling 

software; 

Data filtering: the data that have a larger impact on the system are selected and preserved. 

Those filtered data are separated into two parts: one is called training data that are used to train 

the model and the other one is called testing data that are used to validate the model’s efficiency; 

Modeling training: model is trained here; 

Model validation: the testing data are used here to validate the model, the model’s accuracy 

will be judged with criteria. The criteria vary from different modeling purposes. If the model’s 

accuracy satisfies the modeling requirement, then the model structure is determined and will be 

used to predict the system future behaviors; however, if the model’s accuracy is not satisfactory, 

then the model needs to be retrained; 

Prediction: after the model structure is determined, the model is used to predict the behavior 

of the system. The model inputs are the same as the system input to the experiments. 

 
Figure A-1: Workflow of the LSSVM modeling process. 
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Table A-I: Icons in Figure A-1 and their meaning. 

Icon Meaning 

 

:represents experimental processes where the raw data coming from 

 

:represents raw data collected from experiments that may not be recognized by 

computer/processor/controller 

 

:represents processed data that could be read by computer/processor/controller 

 

:represents filtered data that will be employed to establish model and validate 

the model; those data are separated into two parts: training data and testing data 

 

:represents the model 
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A.2  Workflow of the modeling process in chapter 4 

The workflow for chapter 4 is shown in Figure A-2. The meaning of each icon used in the 

figure is shown in Table A-II. The arrow represents the direction of the process. Arrows with 

dash line mean that there is data transmission between the steps.  

Data collection: artificial data are generated by Simulink simulation. Large amount of 

artificial data that cover various load changes are generated; 

Data analysis: during this step, artificial data were processed into a readable form to the 

modeling software; 

Data filtering: the data that have a greater impact on the system were selected and preserved. 

Those filtered data are regarded as the model input; 

Modeling results: The model used here is the trained model in chapter 3, and artificial data 

are used here. The model predicts the corresponding output based on different inputs, and the 

prediction values are evaluated by comparing with the artificial data; 

Results analysis: the predicted outputs are compared with the data that generated by the 

Simulink simulation and analysis on those modeling results are carried out. 

System input: the analysis will be used to regulate the system input in order to maintain a 

reliable forecasting result by the model. 

 
Figure A-2: Workflow of the suitability analysis on the LSSVM model (ideal cases). 
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Table A-II: Icons in Figure A-2 and their meaning. 

Icon Meaning 

 

: represents Simulink process where the artificial data are generated 

 

:represents artificial data generated by Simulink simulation 

 

:represents processed data that could be read by 

computer/processor/controller 

 

:represents filtered data that have a greater impact on the system 

 

:represents the model, which has been determined in the chapter 3 

  

:represents the analysis process on the modeling results 

 

:represents experimental processes where the raw data coming from 
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A.3  White-box model for generating artificial data 

A.3.1  Voltage module 

The theoretical fuel cell potential is calculated corresponding to Gibbs free energy, as follows: 

𝐸 = −
∆𝐺

𝑛𝐹
+
𝑅𝑇

𝑛𝐹
ln (

𝑝𝐻2𝑝𝑂2
0.5

𝑝𝐻2𝑂
)                                             ( A-1 ) 

 ∆𝐺 = ∆𝐻 − 𝑇∆𝑆                                                         ( A-2 ) 

here, ∆𝐺  is the Gibbs free energy, ∆𝐻  is the difference between the heats of formation of 

products and reactants, and ∆𝑆 is the difference between entropies of products and reactants, n 

is the number of electrons per molecule of reactant, F is Faraday’s Constant (96485 C mol-1), 

R is the universal gas constant (8.31 J kg-1 K-1), 𝑇 is the temperature (K) and 𝑝𝐻2 , 𝑝𝑂2and 𝑝𝐻2𝑂 

are the partial pressure of hydrogen, oxygen and vapor, respectively. 

However, in practice the cell potential is always lower than the theoretical potential, as there 

are many kinds of voltage losses in a fuel cell. Three main voltage losses are considered here, 

namely activation loss, ohmic loss and concentration loss. At low current densities, the main 

loss in the fuel cell is the activation loss, which is due to sluggish electrode kinetics. This loss 

occurred on both sides, but a much slower reaction was on the cathode side; therefore, only the 

cathode side is considered in this model. The Ohmic loss is caused by the resistance to ion 

transportation in the electrolyte and electrons transferring through the conductive. Moreover, 

the concentration loss is caused by the limitation of mass transport. Thus, the cell voltage can 

be expressed as follows: 

𝑉𝑐𝑒𝑙𝑙 = 𝐸 − ∆𝑉𝑎𝑐𝑡 − ∆𝑉𝑜ℎ𝑚𝑖𝑐 − ∆𝑉𝑐𝑜𝑛𝑐                                           ( A-3 ) 

here, 𝐸 is the theoretical potential Eq. A-1, which is largely depend on the temperature and 

pressure, ∆Vact is activation loss, ∆Vohmic the ohmic loss and ∆Vconc the concentration loss.  

Activation loss occurs on both sides. Due to a much faster electrochemical reaction on the 

anode side, only the cathode side is considered here. The Tafel equation is used to calculate the 

activation loss 

∆𝑉𝑎𝑐𝑡 = 𝑎 + 𝑏ln(𝑖)                                                          ( A-4 ) 

where i is the current density. a and b for the white-box model were obtained by fitting the 

experimental data collected from our test rig. a = 0.2267 and b = 0.0298. 

The Ohmic can be expressed as: 

∆𝑉𝑜ℎ𝑚 = 𝐼(𝑅𝑖 + 𝑅𝑒 + 𝑅𝑐)                                                    ( A-5 ) 

where I is the current, 𝑅𝑖 is the ionic resistance, 𝑅𝑒 is the electronic resistance and 𝑅𝑐 is the 

contact loss. Electronic resistance is neglected here, and so the membrane resistivity can be 

expressed as [127]: 

𝑅𝑟𝑒𝑠𝑖𝑠 =
𝑟𝑚

𝐴
∙ 𝐿                                                            ( A-6 ) 
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where L is the thickness of the membrane (L = 178×10-6 m), here the Nafion membrane is 

considered [109]. 𝐴 is the active area (1.746×10-3 cm2) and 𝑟𝑚 (Ω cm) is the specific resistivity 

for the flow of hydrated protons, which can be calculated as [128]: 

𝑟𝑚 =
181.6(0.03

𝐼

𝐴
+1+0.062(

𝑇

303
)
2
(
𝐼

𝐴
)
2.5
)

(𝜆𝑚−0.634−3
𝐼

𝐴
)∙𝑒

4.18
(𝑇−303)

𝑇

                          ( A-7 ) 

where 𝜆𝑚 is the membrane water content, which is a function of water vapor activity, the details 

of which are described in the membrane model section. 

The concentration loss increases when the reactant is rapidly consumed, so that the 

concentration gradients appear. This causes a sharp drop in voltage at high current density, with 

the calculation given as: 

∆𝑉𝑐𝑜𝑛𝑐 =
𝑅𝑇

𝑛𝐹
ln (

𝑖𝑚𝑎𝑥

𝑖𝑚𝑎𝑥−𝑖
)                                                       ( A-8 ) 

The concentration loss increases when the reactant is rapidly consumed, so that the 

concentration gradients appear. This causes a sharp drop in voltage at high current density. imax 

is the limiting current density, here imax = 1.22 A cm-2. 

A.3.2  Anode module 

Mass conservation principle is employed to establish the anode module,  ∑(�̇�𝑖)𝑖𝑛 =

∑(�̇�𝑖) + ∑(�̇�𝑖)𝑜𝑢𝑡. Pure hydrogen is delivered to the anode side, and before it entering the 

fuel cell, it will be humidified.  Then, the states of hydrogen and water are as follows: 

𝑑𝑚H2

𝑑𝑡
= �̇�H2,𝑖𝑛 − �̇�H2,𝑢𝑠𝑒𝑑 − �̇�𝐻2,𝑜𝑢𝑡                                             ( A-9 ) 

𝑑𝑚𝐻2𝑂,𝑎𝑛

𝑑𝑡
= �̇�𝐻2𝑂,𝑎𝑛,𝑖𝑛 − �̇�𝐻2𝑂,𝑚𝑏𝑟 − �̇�𝐻2𝑂,𝑎𝑛,𝑜𝑢𝑡 − �̇�𝐻2𝑂,𝑎𝑛,𝑙                   ( A-10 ) 

where 𝑚𝐻2 is the mass of hydrogen inside the fuel cell, �̇�𝐻2,𝑖𝑛 is the mass flow of hydrogen at 

inlet, �̇�𝐻2,𝑢𝑠𝑒𝑑  is the consumption rate of hydrogen during the electrochemical reaction, 

�̇�𝐻2,𝑜𝑢𝑡 is the hydrogen mass flow at outlet, 𝑚𝐻2𝑂,𝑎𝑛 is the mass of water on the anode side, 

�̇�𝐻2𝑂,𝑎𝑛,𝑖𝑛 is the water mass flow at inlet,  �̇�𝐻2𝑂,𝑚𝑏𝑟 is the mass flow rate of water transport 

through the membrane, �̇�𝐻2𝑂,𝑎𝑛,𝑜𝑢𝑡 is the outlet mass flow of water, �̇�𝐻2𝑂,𝑎𝑛,𝑙 is the liquid 

water flow rate; the mass of each gas has units of kg, and all flow rates have units of kg s-1. 

The consumption rate of hydrogen is determined by Faraday’s Law: 

�̇�𝐻2,𝑢𝑠𝑒𝑑 =𝑀𝐻2
𝐼

2𝐹
                                                       ( A-11 ) 

where 𝑀𝐻2 is the molar mass of hydrogen, 0.002 kg mol-1; 

The flow rate of hydrogen and water leaving the anode side can be calculated by: 

�̇�𝐻2,𝑜𝑢𝑡 =
1

1+𝜔𝑎𝑛,𝑜𝑢𝑡
�̇�𝑎𝑛,𝑜𝑢𝑡                                                  ( A-12 ) 

�̇�𝐻2𝑂,𝑎𝑛,𝑜𝑢𝑡
= �̇�𝑎𝑛,𝑜𝑢𝑡 − �̇�𝐻2,𝑜𝑢𝑡

                                            ( A-13 ) 
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The calculations of hydrogen and water mass are used to compute the partial pressure of the 

substance existing on the anode side. The ideal gas law is applied: 

𝑝𝑉 = 𝑛𝑅𝑇                                                                  ( A-14 ) 

Hydrogen partial pressure: 

𝑝𝐻2 =
 𝑚𝐻2

 𝑀𝐻2

𝑅𝑇

𝑉𝑎𝑛
                                                              ( A-15 ) 

Vapor partial pressure at anode side: 

𝑝𝑣,𝑎𝑛 =
 𝑚𝐻2𝑂,𝑎𝑛 

 𝑀𝑣

𝑅𝑇

𝑉𝑎𝑛
                                                        ( A-16 ) 

The humidity ratio is then: 

𝜔𝑎𝑛,𝑜𝑢𝑡 =
𝑀𝑣

𝑀𝐻2

𝑝𝑣,𝑎𝑛

𝑝𝐻2
                                                       ( A-17 ) 

where 𝑀𝑣 is the molar mass of vapor, 0.018 kg mol-1. 

Water transport through the membrane �̇�𝐻2𝑂,𝑚𝑏𝑟, is introduced in the membrane module, 

details of which can be found in section A.3.4. The temperature is assumed to be perfectly 

controlled as a constant, T = 343.15 K. 

A.3.3  Cathode module 

The mass conservation law is also used to construct the cathode module. Here assumed that 

air is delivered to the cathode side as oxidant, thus, the mass balance of oxygen, nitrogen and 

water are considered. Water flow across the membrane will be introduced later, in section A.3.4. 

The states of oxygen, water and nitrogen are as follows: 

𝑑𝑚𝑂2

𝑑𝑡
= �̇�𝑂2,𝑖𝑛 − �̇�𝑂2,𝑢𝑠𝑒𝑑 − �̇�𝑂2,𝑜𝑢𝑡                                      ( A-18 ) 

𝑑𝑚𝐻2𝑂,𝑐𝑎

𝑑𝑡
= �̇�𝐻2𝑂,𝑐𝑎,𝑖𝑛 + �̇�𝐻2𝑂,𝑔𝑒𝑛 + �̇�𝐻2𝑂,𝑚𝑏𝑟 − �̇�𝐻2𝑂,𝑐𝑎,𝑜𝑢𝑡 − �̇�𝐻2𝑂,𝑐𝑎,𝑙         ( A-19 ) 

𝑑𝑚𝑁2

𝑑𝑡
= �̇�𝑁2,𝑖𝑛 − �̇�𝑁2,𝑜𝑢𝑡                                                    ( A-20 ) 

where 𝑚𝑂2 is the mass of oxygen inside the fuel cell, �̇�𝑂2,𝑖𝑛 the mass flow of oxygen at inlet, 

�̇�𝑂2,𝑢𝑠𝑒𝑑 is the consumption rate of oxygen, �̇�𝑂2,𝑜𝑢𝑡 is the mass flow of oxygen leaving the 

fuel cell, 𝑚𝐻2𝑂,𝑐𝑎 is the water mass in the cathode side, �̇�𝐻2𝑂,𝑐𝑎,𝑖𝑛 is the mass flow of water at 

inlet of the cathode side, �̇�𝐻2𝑂,𝑔𝑒𝑛 is the rate of water generated during the electrochemical 

reaction, �̇�𝐻2𝑂,𝑐𝑎,𝑜𝑢𝑡 is the mass flow of water leaving the cathode side, �̇�𝐻2𝑂,𝑐𝑎,𝑙 is the liquid 

water flow rate on the cathode side, 𝑚𝑁2 is the mass of nitrogen inside the fuel cell, �̇�𝑁2,𝑖𝑛 the 

nitrogen mass flow rate at inlet, �̇�𝑁2,𝑜𝑢𝑡 the nitrogen mass flow rate leaving the fuel cell. 

The consumption of hydrogen is: 

�̇�𝑂2,𝑢𝑠𝑒𝑑 =𝑀𝑂2
𝐼

4𝐹
                                                      ( A-21 ) 

The water generated on the cathode side is: 

�̇�𝐻2𝑂,𝑔𝑒𝑛 =𝑀𝑣  
𝐼

2𝐹
                                                      ( A-22 ) 

 

Oxygen partial pressure: 
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𝑝𝑂2 =
 𝑚𝑂2

 𝑀𝑂2

𝑅𝑇

𝑉𝑐𝑎
                                                          ( A-23 ) 

Vapor partial pressure on the cathode side: 

𝑝𝑣,𝑐𝑎 =
 𝑚𝐻2𝑂,𝑐𝑎 

 𝑀𝑣

𝑅𝑇

𝑉𝑐𝑎
                                                     ( A-24 ) 

Nitrogen partial pressure: 

𝑝𝑁2 =
 𝑚𝑁2

 𝑀𝑁2

𝑅𝑇

𝑉𝑐𝑎
                                                         ( A-25 ) 

where 𝑀𝑁2is the molar mass of nitrogen (0.028 kg mol-1); 

The humidity ratio is then: 

𝜔𝑐𝑎,𝑜𝑢𝑡 =
𝑀𝑣,𝑐𝑎

𝑀𝑑𝑟𝑦,𝑐𝑎,𝑜𝑢𝑡

𝑝𝑣,𝑐𝑎

𝑝𝑑𝑟𝑦,𝑐𝑎,𝑜𝑢𝑡
                                            ( A-26 ) 

where 𝑝𝑑𝑟𝑦,𝑐𝑎,𝑜𝑢𝑡 is the partial pressure of dry gas on the cathode side and 𝑀𝑑𝑟𝑦,𝑐𝑎,𝑜𝑢𝑡 is the 

molar mass of dry gas. 

𝑝𝑑𝑟𝑦,𝑐𝑎,𝑜𝑢𝑡 = 𝑝𝑂2 + 𝑝𝑁2                                                  ( A-27 ) 

𝑀𝑑𝑟𝑦,𝑐𝑎,𝑜𝑢𝑡 = 𝑦
𝑜2,𝑑𝑟𝑦

× 𝑀𝑂2
+ (1 − 𝑦

𝑜2,𝑑𝑟𝑦
) × 𝑀𝑁2

                       ( A-28 ) 

The flow rate of oxygen and water leaving the cathode side can be calculated by: 

�̇�𝑑𝑟𝑦,𝑜𝑢𝑡 =
1

1+𝜔𝑐𝑎,𝑜𝑢𝑡
�̇�𝑐𝑎,𝑜𝑢𝑡                                              ( A-29 ) 

�̇�𝑂2,𝑜𝑢𝑡 = 𝑥𝑜2,𝑑𝑟𝑦�̇�𝑑𝑟𝑦,𝑜𝑢𝑡                                                 ( A-30 ) 

𝑥𝑜2,𝑑𝑟𝑦 =
𝑦𝑜2,𝑑𝑟𝑦×𝑀𝑂2

𝑦𝑜2,𝑑𝑟𝑦×𝑀𝑂2
+(1−𝑦𝑜2,𝑑𝑟𝑦)×𝑀𝑁2

                            ( A-31 ) 

𝑦𝑜2,𝑑𝑟𝑦 =
𝑝𝑂2

𝑝𝑁2
+𝑝𝑂2

                                                                 ( A-32 ) 

A.3.4  Membrane module 

Water transport through the membrane is a function of the current density and the relative 

humidity at the anode and cathode sides. There are two forms of water transport through the 

membrane: electro-osmotic drag (𝑁𝑣,𝑜𝑠𝑚𝑜𝑡𝑖𝑐 (mol s-1 cm-2)) and back diffusion (𝑁𝑣,𝑑𝑖𝑓𝑓 (mol s-

1 cm-2)). Then, the water transport through the membrane can be described as [129]: 

𝑁𝑣,𝑚𝑒𝑚𝑣𝑟 = 𝑁𝑣,𝑜𝑠𝑚𝑜𝑡𝑖𝑐 −𝑁𝑣,𝑑𝑖𝑓𝑓                                     ( A-33 ) 

where the positive direction is defined from the anode to cathode. 

Electro-osmotic drag is attributed to the proton across the membrane from the anode to the 

cathode accompanied with water molecules dragged. It can be calculated by: 

𝑁𝑣,𝑜𝑠𝑚𝑜𝑡𝑖𝑐 = 𝑛𝑑
𝑖

𝐹
                                                 ( A-34 ) 

here, 𝑛𝑑 is the electro-osmotic drag coefficient, as following [130]: 

𝑛𝑑 = 0.0029𝜆𝑚
2 + 0.05𝜆𝑚 − 3.4 × 10

−19                                   ( A-35 ) 

where 𝜆𝑚 is the membrane water content that is a function of the water vapor activity: 
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𝜆𝑥 = {
0.0443 + 17.81𝑎𝑥 + 39.85𝑎𝑥

2 + 36𝑎𝑥
3,

1.4(𝑎𝑥 − 1) + 14                                           
   
𝑎𝑥 ≤ 1
𝑒𝑙𝑠𝑒

                   ( A-36 ) 

where x stands for an, ca and m, which represent the anode, cathode and membrane. 𝑎𝑥 is water 

vapor activity, which is: 

𝑎𝑎𝑛 =
𝑝𝑣,𝑎𝑛

𝑝𝑠𝑎𝑡,𝑎𝑛
                                                           ( A-37 ) 

𝑎𝑐𝑎 =
𝑝𝑣,𝑐𝑎

𝑝𝑠𝑎𝑡,𝑐𝑎
                                                           ( A-38 ) 

𝑎𝑚 = 1

2
(𝑎𝑎𝑛 + 𝑎𝑐𝑎)                                                     ( A-39 ) 

The back diffusion is caused by a gradient of water concentration across the membrane, 

which is expressed as: 

𝑁𝑣,𝑑𝑖𝑓𝑓 = 𝐷𝑤
𝑑𝑐𝑣

𝑑𝑦
                                                        ( A-40 ) 

here 𝐷𝑤 is the diffusion coefficient, 𝑐𝑣 is the water concentration and y is the distance of the 

water transport through the membrane. Only linear function is considered here, 𝑁𝑣,𝑑𝑖𝑓𝑓 =

𝐷𝑤
𝑐𝑣,𝑐𝑎−𝑐𝑣,𝑐𝑎

𝑡𝑚
. 

The diffusion coefficient is: 

𝐷𝑤 = 𝐷𝜆 ∙ 𝑒
2416( 1

303
−
1
𝑇
)                                                  ( A-41 ) 

where: 

𝐷𝜆 =

{
 
 

 
 10

−6                                           
(1 + 2(𝜆𝑚 − 2)) × 10

−6      

(3 − 1.67(𝜆𝑚 − 3)) × 10
−6

1.25 ×× 10−6                          

        

𝜆𝑚 <  2           
2 ≤ 𝜆𝑚 ≤ 3   
3 < 𝜆𝑚 < 4.5
𝑒𝑙𝑠𝑒                 

                      ( A-42 ) 

The water concentration is: 

𝑐𝑣,𝑥 =
𝜌𝑚,𝑑𝑟𝑦

𝑀𝑚,𝑑𝑟𝑦
𝜆𝑥                                                         ( A-43 ) 

here, 𝜌𝑚,𝑑𝑟𝑦is the membrane density (kg m-3), 𝑀𝑚,𝑑𝑟𝑦 is the molecular weight of membrane 

(kg mol-1). 

The mass flow rate of water across the membrane is: 

�̇�𝐻2𝑂,𝑚𝑏𝑟 = 𝑁𝑣,𝑚𝑒𝑚𝑣𝑟 ∙ 𝑀𝐻2𝑂 ∙ 𝐴                                        ( A-44 ) 

Combining equations from A-33 to A-44, the mass flow transport through the membrane is 

then calculated. 
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A.4  Workflow of the modeling process in chapter 5 

The workflow of the modeling process in chapter 5 is shown in Figure A-3. The meaning of 

each icon used in the figure is shown in Table A-III. The arrow represents the direction of the 

process. Arrows with dash line mean that there is data transmission between the steps.  

Historical data: historical data collected from our test rig were retrieved, and then the 

oscillations on the cell voltage are analyzed;  

Data analysis: statistical analysis on the oscillation on cell voltage is carried out; 

Data collection: statistical results were combined with the Simulink simulation. Then, 

bunches of raw data that cover various load changes were generated, where the oscillation on 

the cell voltage is considered; 

Data analysis: during this step, artificial data were processed into a readable form to the 

modeling software; 

Data filtering: the data that have a greater impact on the system were selected and preserved. 

Those filtered data are regarded as the model input; 

Modeling results: The model used here is the trained model in chapter 3, and artificial data 

considered oscillation are used here. The model predicts the corresponding output based on 

different inputs, and the prediction values are evaluated by comparing with the artificial data; 

Results analysis: the predicted outputs are compared with the data that generated by the 

Simulink simulation and analysis on those modeling results are carried out. 

System input: the analysis will be used to regulate the system input in order to maintain a 

reliable forecasting result by the model. 
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Table A-III Icons in Figure A-3 and their meaning. 

Icon Meaning 

 

:represents data collected from experiments 

 

: represents statistical results on the historical data 

 

: represents Simulink process where the artificial data are generated 

 

:represents data collected from experiments or generated by Simulink 

simulation 

 

:represents processed data that could be read by 

computer/processor/controller 

 

:represents filtered data that have a greater impact on the system 

 

:represents the model, which has been determined in the chapter 3 

  

:represents the analysis process on the modeling results 

 

:represents experimental processes where the raw data coming from 
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A.5  Workflow of the modeling process in chapter 6 

An online adaptive model is developed in chapter 6. The workflow of the modeling process 

in chapter 6 is shown in Figure A-4. The meaning of each icon used in the figure is shown in 

Table A-IV. The arrow represents the direction of the process. Arrows with dash line mean that 

there is data transmission between the steps.  

Historical data: historical data collected from our test rig were retrieved; 

Genetic algorithm: this gray-box method is used to find optimal parameters for the model;   

Data collection: raw data is first collected from our test rig; 

Data analysis: during this step, raw data are processed into a readable form to the modeling 

software; 

Data filtering: the data that have a higher impact on the system are selected and preserved. 

Those filtered data are separated into two parts: one is called training data that are used to train 

the model and the other one is called testing data that are used to validate the model’s efficiency; 

Modeling training: model is trained here; 

Model validation: the testing data are used here to validate the model, the model’s accuracy 

will be judged with criteria that vary from different modeling purposes. If the model’s accuracy 

satisfies the modeling requirement, then the model structure is determined and will be used to 

predict the system future behaviors; however, if the model’s accuracy is not satisfactory, then 

the model needs to be retrained; 

Prediction: after the model structure is determined, the model is used to predict the behavior 

of the system. The model inputs are the same as the system input to the experiments. 
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Figure A-4: Workflow of the online adaptive model (chapter 6).  
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