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Abstract

This paper studies a large majority election with voters who have het-
erogeneous, private preferences and exogenous private signals. We show
that a Bayesian persuader can implement any state-contingent outcome in
some equilibrium by providing additional information. In this setting, with-
out the persuader’s information, a version of the Condorcet Jury Theorem
holds (Feddersen and Pesendorfer, 1997). Persuasion does not require de-
tailed knowledge of the voters’ private information and preferences: the
same additional information is effective across environments. The results
require almost no commitment power by the persuader. Finally, the per-
suasion mechanism is effective also in small committees with as few as 15
members.

In most elections, a voter’s ranking of outcomes depends on her information.

For example, a shareholder’s view of a proposed merger depends on her belief re-

garding its profitability, and a legislator’s support of proposed legislation depends

on her belief regarding its effectiveness. An interested party that has private infor-

mation may utilize this fact by strategically releasing information to affect voters’
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Oxford, Bonn, Yale (lunch), LSE (lunch), ESWM 2017, CRC TR224 Conference 2018, SAET
2018, ESEM 2018, ASSA meetings 2019 Atlanta, and the annual Wallis Institute conference.
This work was supported by a grant from the European Research Council (ERC 638115) and
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s
Excellence Strategy EXC 2126/1-390838866 and through the CRC TR 224 (Project B03 and
B04).

† University of Vienna, Department of Economics, carl.heese@univie.ac.at
‡ University of Bonn, Department of Economics, s.lauermann@uni-bonn.de.

1



behavior. Examples of interested parties holding and strategically releasing rele-

vant information for voters are numerous: in a shareholder vote, the management

may strategically provide information regarding the merger through presentations

and conversations; similarly, lobbyists provide selected information to legislators

to influence their votes.

We are interested in the scope of such “persuasion” (Kamenica and Gentzkow,

2011) in elections. We study this question in the canonical voting setting by

Feddersen and Pesendorfer (1997): There are two possible policies (outcomes)—

A and B. Voters’ preferences over policies are heterogeneous and depend on an

unknown state, α or β, in a general way (some voters may prefer A in state

α, some prefer A in state β, and some “partisans” may prefer one of the policies

independently of the state). The preferences are drawn independently across voters

and are each voters’ private information. In addition, all voters privately receive

information in the form of a noisy signal. The election determines the outcome

by a simple majority rule.

In this setting, Feddersen and Pesendorfer (1997) have shown that within a

broad class of “monotone” preferences and conditionally i.i.d. private signals,

all equilibrium outcomes of large elections are equivalent to the outcome with a

publicly known state (“information aggregation”). We restate their result as a

benchmark in Theorem 1.

We ask the following question: can a manipulator ensure that a majority

supports his favorite policy—potentially state-dependent—in a large election by

providing additional information to the voters? Formally, the manipulator can

choose and commit to any joint distribution over states and signal realizations

that are then privately observed by the voters. In particular, the manipulator’s

additional signal is required to be independent of the voters’ exogenous private

signals and their individual preferences (it is an “independent expansion”). The

previous result by Feddersen and Pesendorfer (1997) suggests a limited scope for

persuasion because, if voters simply ignored the additional information, the out-

come would be “as if” the state were known, and, hence, the information provided

by the manipulator would be worthless.

Our main result (Theorem 4) shows that, perhaps surprisingly, within the same

class of monotone preferences and for any state-contingent policy, there exists an

independent expansion of the voters’ exogenous i.i.d. signal and an equilibrium

that ensures that the targeted policy is supported by a majority with probability

close to one when the number of voters is large. Thus, just by providing additional
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information, a manipulator can implement, for example, a targeted policy that is,

in every state, the opposite of the outcome with full information.

The additional information affects the voters’ behavior in two ways: directly,

by changing their beliefs about the state, and indirectly, by affecting their inference

from being “pivotal” for the election outcome. While the direct effect is limited by

the well-known “Bayesian-consistency” requirement of beliefs, the pivotal inference

turns out to have no such constraint.

To explain the effectiveness of persuasion, we first consider the case in which all

information of the voters comes from a manipulator (“monopolistic persuasion”).

To invert the full information outcome, the manipulator can choose an information

structure in which, roughly speaking, signals are of two possible qualities: revealing

or obfuscating. When the signal is revealing, all voters observe the same signal, a

in state α and b in state β. The signal is revealing with probability 1− ε. Thus,

when ε = 0, the election leads to the full information outcome.

However, with probability ε, the signal is obfuscating. In this case, in both

states, almost all voters receive an uninformative signal z while a few voters receive

an “erroneous” signal, that is, they receive a in β and b in α. Hence, in this

situation, a and b carry the opposite meaning from before.

What matters for the persuasion logic is that voters react to the closeness of the

election. The closeness of the election tells voters something about the quality of

the information of the others, and, in this way, also something about the quality of

their own signal. In the equilibrium that we construct, a close election will imply

that the signal of the others is of low quality (obfuscating), meaning that almost

all received signal z, and, in this case, the meaning of an otherwise strong signal

a in favor of α will be different and interpreted as being in favor of β, and vice

versa for b.

A numerical example with 15 voters illustrates the persuasion logic. The con-

struction uses the exact same fixed-point argument as the general analysis, show-

ing that the same mechanism is already effective in small elections; see Section

4.3. Thus, even though we utilize large numbers in our formal statements, our

results may also be relevant for committees with a small or intermediate number

of members.

We argue the robustness of the persuasion logic by addressing common con-

cerns regarding the sender’s commitment power, equilibrium coordination of the

receivers, and the dependence of the mechanism on details of the environment.

We show that the sender needs very little commitment power. To model partial

3



commitment, we follow the existing literature (see e.g. Lipnowski, Ravid, and

Shishkin (2019)): The sender is committed only with probability 1−χ, and, with

probability χ, he is free to send any signals. We show that the sender can persuade

a large electorate (Proposition 1) even for arbitrarily small χ > 0.

The manipulated equilibrium has desirable properties that may facilitate the

coordination on this equilibrium. First, the equilibrium is “attracting.” In partic-

ular, its “basin of attraction” for the iterated best response dynamic is essentially

the full set of strategy profiles: if we begin with almost any strategy profile and

consider, first, the voters’ best response to it and then the voters’ best response

to this best response, then the resulting strategy profile is arbitrarily close to the

manipulated equilibrium when the number of voters is large (Proposition 3). Nev-

ertheless, we show that, given the information structure, there is also one other

equilibrium that yields the full-information outcome (Theorem 3). Second, the

behavior in the manipulated equilibrium is based on a simple line of reasoning.

In particular, voters will only need to interpret their own signal conditional on

it being “obfuscating,” and behave optimally given this interpretation (akin to

so-called “sincere voting”). By contrast, any other equilibrium hinges on detailed

calculations of pivotal likelihoods.1

We show that the same information structure can be used uniformly across

many environments, that is, the signal does not need to be tailored to the details

of the game (Wilson, 1987, “Wilson doctrine”): for any target policy, there exists

a single information structure that implements the policy for any prior about the

state and preference distribution of the voters that satisfy a weak condition; see

Proposition 2.

In the second part of the paper, we consider the setting in which voters al-

ready have access to exogenous information of the form studied in Feddersen and

Pesendorfer (1997). We show that, by adding information with the same signal

structure as before to the exogenous information, the manipulator can still per-

suade the voters effectively to elect any state-contingent policy (Theorem 4). In

particular, the additional signal structure also does not need to be finely tuned to

the details of the environment and is effective independent of the voters’ private

information. Furthermore, it is sufficient if the sender has partial information

about the state in the form of a private signal (Section 7.1).

In Section 6, we provide a stylized application to media markets. This serves

two purposes: First, we show that the main results of the paper can also be

1In Section 4.6.4, we also briefly discuss a model with some behavioral types who do not
condition on being pivotal, following Kawai and Watanabe (2013).
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obtained in a setting with normally distributed voter information. Second, within

the application, we can discuss concrete strategies of information manipulation.

In Section 8, we discuss the paper’s contribution to the existing literature on

information aggregation in elections and on voter persuasion, especially the work

by Wang (2013), Alonso and Câmara (2016), Chan, Gupta, Li, and Wang (2019)

and Bardhi and Guo (2018). This literature observed in particular that, with mul-

tiple receivers, the conditioning on being pivotal weakens the Bayesian consistency

constraint. In contrast to this prior work, which assumes that the voters’ prefer-

ences and information are commonly known, we allow for heterogeneous, privately

known preferences and exogenous information. On the one hand, this allows cap-

turing the canonical environment by Feddersen and Pesendorfer (1997) in which,

otherwise, equilibrium implies the full-information outcome. On the other hand,

the persuasion mechanism here is distinct from the persuasion logic when voters’

preferences are commonly known and voters can be targeted individually, as illus-

trated in an example in Section 7.2. Moreover, we show that voter persuasion is

robust in several dimensions (limited commitment, equilibrium coordination, and

detail-freeness).

We note two broader implications of our analysis. First, it may be difficult

for an outside observer to make a “robust” prediction. If an observer knows that

voters have access to at least the information assumed in Feddersen and Pesendor-

fer (1997), but cannot exclude that voters have access to additional information

of the type discussed here, then no outcome can be excluded as an equilibrium

prediction. Second, if one interprets an information structure with a small ε as a

small departure from common knowledge, our result adds another observation to

the literature on the effects of strategic uncertainty (Weinstein and Yildiz, 2007).

The proof for the main result with a monopolistic sender, Theorem 2, is in the

main body and the appendix. The proofs for the other results are sketched here;

details are relegated to an online appendix.

1 Model

There are 2n+ 1 voters (or citizens), two policies, A and B, and two states of the

world, ω ∈ {α, β}. The prior probability of α is Pr (α) ∈ (0, 1).

Voters have heterogeneous preferences. A voter’s preference is described by a

type t = (tα, tβ) ∈ [−1, 1]2, with tω being the utility of A in ω. The utility of B

is normalized to zero; so, tω is the difference of the utilities from A and B in ω.
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The types are independently and identically distributed across voters according

to a cumulative distribution function G : [−1, 1]2 → [0, 1], with a strictly positive,

continuous density g. The own type is the private information of the voter.

An information structure π is a finite set of signals S and a joint distribution

of signal profiles and states that is independent of G. The conditional distribu-

tion is exchangeable with respect to the voters. In particular, there is a finite

number of substates {αj}j=1,...,Nα
and {βj}j=1,...,Nβ

, such that the signals are in-

dependently and identically distributed conditional on the substates.2 Abusing

notation slightly, Pr(ωj|ω) and Pr(si|ωj) denote the corresponding probabilities of

the substates and the individual signal si, conditional on a substate. Thus, the

probability of the signal profile s = (si)i=1,...,2n+1 ∈ S2n+1 is

Pr(s|ω) =
∑
j

Pr(ωj|ω)
∏

i=1,...,2n+1

Pr(si|ωj). (1)

The observed signal is the private information of the voter.

We can show our main results already with a simple class of information struc-

tures with just two substates—{α1, α2} and {β1, β2}—and three conditionally in-

dependent signals in each substate—s ∈ {a, b, z}; this information structure is

illustrated in Figure 1.

The voting game is as follows: First, nature draws the state, the profile of

preferences types t, and the profile of signals s according to G and π. Second,

after observing her type and signal, each voter simultaneously submits a vote for

A or B. Finally, the submitted votes are counted and the majority outcome is

selected. This defines a Bayesian game.

A strategy of a voter is a function σ : S× [−1, 1]2 → [0, 1], where σ (s, t) is the

probability that a voter of type t with signal s votes for A.

We consider only weakly undominated strategies. In particular, we require

that

σ (s, t) = 0 for all t = (tα, tβ) < (0, 0) , (2)

σ (s, t) = 1 for all t = (tα, tβ) > (0, 0) ,

where t > (0, 0) and t < (0, 0) are partisans who prefer A and B, respectively,

independently of the state. Given our full support assumption on G, this rules

2The Hewitt-Savage-de Finetti theorem states that, for any exchangeable infinite sequence
of random variables (Xi)

∞
i=1 with values in some set X, there exists a random variable Y , such

that the random variables Xi are independently and identically distributed conditional on Y .
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Figure 1: The main class of information structures considered in this paper.
Each state ω has two substates {ω1, ω2}, occurring with conditional probabili-
ties Pr(ωj|ω). Conditional on the substate ωj, the distribution of the signals
si ∈ {a, z, b} is independent and identical with the marginal probabilities denoted
by Pr(s|ωj) (these marginals are degenerate in α1 and β1) .

out degenerate strategies for which either σ (s, t) = 1 for all (s, t) or σ (s, t) = 0

for all (s, t). Here, and in the following, we ignore zero measure sets when writing

“for all”.

From the viewpoint of a given voter and given any strategy σ′ used by the

other voters, the pivotal event piv is the event in which the realized types and

signals of the other 2n voters are such that exactly n of them vote for A and n for

B. In this event, if she votes A, the outcome is A; if she votes B, the outcome is

B. In any other event, the outcome is independent of her vote. Thus, a strategy

is optimal if and only if it is optimal conditional on the pivotal event.

Let Pr(α|s, piv;σ′) denote the posterior probability of α conditional on s and

conditional on being pivotal, given the measure induced by the nondegenerate

strategy σ′. The strategy σ is a best response to σ′ if and only if

Pr(α|s, piv;σ′) · tα + (1− Pr(α|s, piv;σ′)) · tβ > 0⇒ σ (s, t) = 1, (3)

and

Pr(α|s, piv;σ′) · tα + (1− Pr(α|s, piv;σ′)) · tβ < 0⇒ σ (s, t) = 0, (4)

that is, a voter supports A if the expected value of A conditional on being pivotal

is strictly positive, and a voter supports B otherwise. Note that indifference holds

7



only for a set of types that has zero measure. For all other types, the best response

is pure. It follows that there is no loss of generality to consider pure strategies

with σ (s, t) ∈ {0, 1} for all (s, t).

Thus, a symmetric, undominated, and pure Bayes-Nash equilibrium of Γ(π) is

a strategy σ : S × [−1, 1]2 → {0, 1} that satisfies (2), (3), and (4), with σ′ = σ.

We refer to such a strategy simply as an equilibrium.

2 Preliminary Observations

2.1 Inference from the Pivotal Event

When making an inference from being pivotal, voters ask which state is more likely

conditional on a tie, with exactly n voters supporting A and n supporting B. It

is intuitive that a tie is evidence in favor of the substate in which the election is

closer to being tied in expectation. Thus, conditional on being pivotal, a voter

updates toward the substate in which the expected vote share is closer to 1
2
. We

now verify this simple intuition and introduce some notation along the way.

For a strategy σ, the probability that a voter supports A in substate ωj is

q (ωj;σ) =
∑
s∈S

Pr (s|ωj) PrG ({t : σ (s, t) = 1}), (5)

where q (ωj;σ) is the expected vote share of A.

Given that the signals and the types of the voters are independent conditional

on the substate, the probability of a tie in the vote count is

Pr (piv|ωj;σ) =

(
2n

n

)
(q (ωj;σ))n (1− q (ωj;σ))n . (6)

For any two substates ωj and ω̂l, the likelihood ratio of being pivotal is

Pr (piv|ωj;σ)

Pr (piv|ω̂l;σ)
=

(
q (ωj;σ) (1− q (ωj;σ))

q (ω̂l;σ) (1− q (ω̂l;σ))

)n
. (7)

Using the conditional independence, the posterior likelihood ratio of any two sub-

states conditional on a signal s and the event that the voter is pivotal is

Pr (ωj|piv, s;σ)

Pr (ω̂l|piv, s;σ)
=

Pr(ωj)

Pr(ω̂l)

Pr(s|ωj)
Pr(s|ω̂l)

Pr (piv|ωj;σ)

Pr (piv|ω̂l;σ)
. (8)
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We record the intuitive fact that voters update toward the substate in which

the vote share is closer to 1/2, that is, the substate in which the election is closer

to being tied in expectation.

Claim 1 Take any two substates ωj and ω̂l, and any strategy σ for which Pr (piv|ω̂l;σ) ∈
(0, 1); if ∣∣∣∣q (ωj;σ)− 1

2

∣∣∣∣ < ∣∣∣∣q (ω̂l;σ)− 1

2

∣∣∣∣ , (9)

then
Pr (piv|ωj;σ)

Pr (piv|ω̂l;σ)
> 1. (10)

Proof. The function q(1 − q) has an inverse u-shape on [0, 1] and is symmetric

around its peak at q = 1
2
. So,

∣∣q − 1
2

∣∣ < ∣∣q′ − 1
2

∣∣ implies that q(1− q) > q′(1− q′).
Thus, it follows from (7) that (9) implies (10).

2.2 Pivotal Voting

Given any strategy profile σ′ used by the others, the vector of posteriors conditional

on piv and s is denoted as

ρ (σ′) = (Pr(α|s, piv;σ′))s∈S. (11)

This vector of posteriors is a sufficient statistic for the unique best response to σ′

for all nonpartisan voter types; see (3) and (4).

Thus, given some arbitrary vector of beliefs p =(ps)s∈S , let σp be the unique

undominated strategy that is optimal if a voter with a signal s believes the prob-

ability of α to be ps. That is, for all (s, t),

σp (s, t) = 1⇔ ps · tα + (1− ps) · tβ > 0, (12)

and (2) holds for the partisans.

The strategy σ is a best response to σ′ if and only if σ = σp for p = ρ (σ′).

Thus, σ∗ is an equilibrium if and only if σ∗ = σρ(σ∗). Conversely, an equilibrium

can be described by a vector of beliefs p∗ that is a fixed point of ρ(σp), that is

p∗ = ρ (σp∗) ; (13)

meaning, the belief p∗ corresponds to an equilibrium if, when voters behave op-

timally given p∗ (i.e., vote according to σp∗), the posterior conditional on being

9



pivotal is again p∗.

Equation (13) provides an equilibrium existence argument: the expression

ρ (σp) defines a finite-dimensional mapping [0, 1]|S| → [0, 1]|S| from beliefs p into

posterior beliefs ρ (σp), and this mapping is continuous.3 Thus, an application

of Kakutani’s theorem implies the existence of a fixed point p∗ that solves (13).4

The strategy σp∗ is an equilibrium.5

The possibility of writing equilibria in terms of posteriors enables us to connect

our model and results to the Bayesian persuasion literature.

2.3 Aggregate Preferences

A central object of the analysis is the aggregate preference function,

Φ(p) := PrG({t : p · tα + (1− p) · tβ > 0}), (14)

which maps a belief p ∈ [0, 1] to the probability that a random type t prefers

A under p. The function Φ proves useful to express expected vote shares: if a

strategy σ is optimal given beliefs p—i.e., σ = σp— then the expected vote share

of outcome A in substate ωj is

q (ωj;σ) =
∑
s∈S

Pr(s|ωj)Φ (ps) . (15)

Figure 2 illustrates Φ. Given p, the dashed (blue) line corresponds to the plane of

indifferent types t = (tα, tβ) with p · tα + (1 − p) · tβ = 0. Voters having types to

the north-east prefer A given p, and Φ is the measure of such types under G. The

indifference plane has a slope − p
1−p , and a change in p corresponds to a rotation

of it. Given that G has a continuous density, it follows that the function Φ is

continuous in p. Given that G has a strictly positive density on [−1, 1]2, we also

have that

0 < Φ(p) < 1 for all p ∈ [0, 1]. (16)

As observed earlier, voters having types t in the north-east quadrant prefer A

3To see why ρ (σp) is continuous in p, first, note that (12) implies that PrG({t : σp (s, t) = 1})
is continuous in p since G has a continuous density. Second, q(ωj ;σ

p) is continuous in
PrG({t : σp (s, t) = 1}), given (5). Third, ρ(σp) is continuous in q(ωj ;σ

p), given (6) and (8).
4The ability to write an equilibrium as a finite-dimensional fixed point via (13) is a significant

advantage. Similar reductions to finite dimensional equilibrium beliefs have been used in related
voting settings previously (see Bhattacharya, 2013; Ahn and Oliveros, 2012).

5Note that, because of the partisans, σp∗
is non-degenerate.
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tβ = −p
1−ptα
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Figure 2: The plane of indifferent types is tβ = −p
1−ptα for any given belief p =

Pr(α) ∈ (0, 1).

for all beliefs and voters having types t in the south-west quadrant always prefer B

(partisans). Voters having types t in the south-east quadrant prefer A in state α

and B in β (aligned voters), and voters having types t in the north-west quadrant

prefer B in state α and A in β (contrarian voters).

We assume throughout the paper that the distribution of types is sufficiently

rich so that there is a belief p for which a majority prefers A and a belief p′ for

which a majority prefers B,6 that is,

Φ (p′) <
1

2
< Φ (p) . (17)

3 Large Elections: Basic Results

We consider a sequence of elections along which the electorate’s size n grows.

For each 2n + 1, we fix some strategy profile σn and calculate the probability

that a policy x ∈ {A,B} wins the support of the majority of the voters in state

ω, denoted Pr (x|ω;σn, n). We are interested in the limit of Pr (x|ω;σ∗n, n), as

n → ∞, for equilibrium sequences (σ∗n)n∈N. We first state a central observation

regarding the inference from being pivotal in large elections; we then show how

this observation implies the “modern” Condorcet Jury Theorem (CJT), which we

restate as a benchmark.

6Otherwise, the analysis is trivial. If, for all beliefs p ∈ [0, 1], in expectation a majority
prefers A, then, for any information structure, the vote share of A is larger than 1

2 , and A wins
in every large election.
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3.1 Inference in Large Elections

As a first step, we study the properties of the inference from being pivotal in a

large election. We show that Claim 1 extends in an extreme form as the electorate

grows large (n → ∞): The event that the election is tied is infinitely more likely

in the (sub-)state in which the election is closer to being tied in expectation. In

fact, the likelihood ratio of the pivotal event diverges exponentially fast.

Because we want to allow the information structure to depend on n, we also

include πn in the argument. The set of substates remains fixed.

Claim 2 Consider any sequence of strategies (σn)n∈N, any sequence of informa-

tion structures (πn)n∈N, and any two substates ωj and ω̂l for which Pr (piv|ω̂l;σ, n, πn) ∈
(0, 1) for all n. If

lim
n→∞

∣∣∣∣q (ωj;σn, πn)− 1

2

∣∣∣∣ < lim
n→∞

∣∣∣∣q (ω̂l;σn, πn)− 1

2

∣∣∣∣ , (18)

then, for any d ≥ 0,

lim
n→∞

Pr (piv|ωj;σn, πn)

Pr (piv|ω̂l;σn, πn)
n−d =∞. (19)

Proof. Let

kn =
q (ωj;σn, πn)

q (ω̂j;σn, πn)

(1− q (ωj;σn, πn))

(1− q (ω̂j;σn, πn))
.

From (7), the left-hand side of (19) is (kn)n

nd
. If (18) holds, then limn→∞ kn > 1,

because of the properties of q (1− q) (inverse u-shaped around 1/2). Therefore,

limn→∞ (kn)n =∞. Moreover, (kn)n diverges exponentially fast and, hence, dom-

inates the denominator nd, which is polynomial.

3.2 Benchmark: Condorcet Jury Theorem

The model embeds a special case of the canonical voting game by Feddersen and

Pesendorfer (1997) with a binary state. In the following, we restate their full-

information equivalence result, assuming, at first, that signals are binary with

S = {u, d}.
As in Feddersen and Pesendorfer (1997), we assume that the signals are in-

dependently and identically distributed across voters conditional on the state

ω ∈ {α, β}.7 This corresponds to the case of an information structure πc with

7Feddersen and Pesendorfer (1997) assume the existence of subpopulations and allow the
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a single substate in each state; in the following, we identify the substate with this

state. The probabilities Pr(s|ω; πc) for s ∈ {u, d} and ω ∈ {α, β} satisfy

1 > Pr(u|α; πc) > Pr(u|β; πc) > 0 ; (20)

that is, signal u is indicative of α, and signal d is indicative of β. We further

assume that

Φ(p) is strictly increasing in p. (21)

We say that the aggregate preference function is monotone.8 Monotonicity (21)

and (17) together imply that Φ(0) < 1
2
< Φ(1); thus, the full information outcome

is A in α and B in β.

Theorem 1 Feddersen and Pesendorfer (1997), Bhattacharya (2013).

Suppose that Φ is strictly increasing. Then, for every sequence of equilibria (σ∗n)n∈N,

lim
n→∞

Pr (A|α;σ∗n, π
c, n) = 1,

lim
n→∞

Pr (B|β;σ∗n, π
c, n) = 1.

The proof of Theorem 1 is standard. We state it in the Online Appendix for

completeness and reference. The main observation is that the election must be

equally close to being tied in both states,

lim
n→∞

q(α;σ∗n)− 1

2
= lim

n→∞

1

2
− q(β;σ∗n). (22)

This follows in three steps. First, voters with a signal u believe state α to be

more likely than voters with a signal d do. Since the probability of signal u is

higher in α, this, (15), and the monotonicity of Φ imply a larger vote share of A

in α,

∀n ∈ N : q (α;σ∗n) > q (β;σ∗n) . (23)

Second, in equilibrium, voters do not become certain of one of the states con-

ditional on being tied. To see why, suppose that voters become certain the state

is α. That is, Pr(α|piv;σ∗n)
n→∞→ 1. Then, in both states, the vote shares would be

signal distributions to vary across these; this is not critical. Moreover, they assume a continuum
of states ω. Bhattacharya (2013) nests a binary-state version of their model. The binary state
version here is a special case of the model in Bhattacharya (2013).

8Bhattacharya (2013) says the distribution of preferences satisfies “Strong Preference Mono-
tonicity” if (21) holds. He shows that monotonicity is necessary for the Condorcet Jury Theorem.
If monotonicity fails, there are parameters and equilibria that do not imply the full information
outcome.
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close to Φ(1) for n sufficiently large; thus, given (23), for all n sufficiently large,

Φ(1) > q (α;σ∗n) > q (β;σ∗n) >
1

2
. (24)

Equation (24) means that the election is closer to being tied in β. In this case,

Claim 1 implies that voters update toward β conditional on being pivotal—a

contradiction to the voters becoming certain of state α.

Third, since voters must not become certain of the state conditional on being

pivotal, it must be that the margins of victory are equal and (22) holds. Otherwise,

Claim 2 would imply that voters become certain of the state in which the election

is closer to being tied.

Finally, (22) and (23) imply limn→∞ q(α;σ∗n) > 1
2
> limn→∞ q(β;σ∗n); thus, in

a large election, A wins in α and B wins in β, as claimed. The proof provides the

detailed argument following this outline.

Theorem 1 holds more generally for any sequence of information structures

(πn)n∈N for which the signals are independent and identically distributed condi-

tional on the state ω ∈ {α, β} (i.e., there is a single substate) and for which signals

do not become uninformative—that is,

∃s ∈ S : lim
n→∞

Pr(s|πn) > 0 and lim
n→∞

Pr(s|α; πn)

Pr(s|β; πn)
6= 1. (25)

Theorem 1’ Suppose Φ is strictly increasing. Then, for every sequence of infor-

mation structures (πn)n∈N with a single substate and satisfying (25) and for every

sequence of equilibria (σ∗n)n∈N given (πn)n∈N,

lim
n→∞

Pr (A|α;σ∗n, πn, n) = 1,

lim
n→∞

Pr (B|β;σ∗n, πn, n) = 1.

4 Monopolistic Persuasion

We now consider the case of a sender who aims to affect the election outcome by

providing information to voters, and voters have no other source of information

on their own. Thus, the sender is the monopolist for information. This is the case

studied in much of the literature on persuasion.

When the sender provides no information, the election outcome is trivially the

outcome preferred by the majority at the prior, as determined by Φ (Pr (α)). The
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sender can also implement the full information outcome with public signals by

revealing the state. What else can the sender implement?

For example, could the sender implement a constant policy that is the opposite

of what the voters prefer at the prior? Or could the sender even implement the

inverse of the full information outcome? Clearly, to implement these policies, the

sender must provide some information to the voters. And, in fact, to implement

the inverse of the full information outcome, the sender must provide sufficient

information for the voters to be able to collectively distinguish the two states. On

the other hand, the CJT suggests that providing information to voters may easily

lead to the full information outcome, thereby suggesting that the possibility of

persuasion is limited.

4.1 Result: Full Persuasion

Formally, we study what policies can be implemented in an equilibrium of a large

election for some choice of π. This determines the set of feasible policies for a

strategic sender.

The choice of the information structure π affects voters by affecting the pos-

teriors (Pr(α|s, piv;σ, π))s∈S. There are two effects of π. First, there is a direct

effect ; π pins down how voters learn from their signal. This effect is known from

the work on persuasion. Second, there is an indirect effect of π because it affects

the inference of the voters from being pivotal.

We show that there is no constraint on the set of feasible policies. For any

state-dependent policy and for large n, there is an information structure πn and

an equilibrium σn for which the targeted policy wins with a probability close to

one in the respective state.9

Theorem 2 Take any Φ and any prior Pr (α) ∈ (0, 1): for every state-dependent

policy (x (α) , x (β)) ∈ {A,B}2, there exists a sequence of signal structures (πn)n∈N
and equilibria (σ∗n)n∈N given (πn)n∈N, such that

lim
n→∞

Pr (x (α) |α;σ∗n, πn, n) = 1,

lim
n→∞

Pr (x (β) |β;σ∗n, πn, n) = 1.

In the following, we first provide a proof for a special case of the theorem in

Section 4.2 , and we then illustrate it with a numerical example in Section 4.3. In

9The sender can also implement any stochastic policy by “mixing” over information struc-
tures in the appropriate manner.
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Figure 3: The information structure πrn with ε = 1
n

and r ∈ (0, 1).

Section 4.4, we discuss a general insight for persuasion in elections that underlies

the result. Finally, we provide the proof for the general case in Section 4.5.

4.2 Proof: Constant Policy

This section proves Theorem 2 for the case in which Φ is monotonically increasing

and the targeted policy is A in both states (i.e., Φ satisfies (21) and (x (α) , x (β)) =

(A,A)). We further assume a uniform prior in order to simplify the algebra, setting

Pr (α) = 1
2
.

4.2.1 The Information Structure

We specialize the general information structure introduced in the model section to

the one defined in Figure 3. Setting ε = 1
n
, the information structure has a single

free parameter, r ∈ (0, 1), and we denote it by πrn.

As ε vanishes for large n, the signals are almost public in the following sense:

conditional on observing any signal s, a voter believes that every other voter has

received the same signal with a probability close (or equal) to one.

Furthermore, the signals a and b reveal the state (almost) perfectly. The signal

z contains only limited information since r ∈ (0, 1). When observing the signal z,

a voter knows that the substate must be either α2 or β2. Moreover, given that a

voter receives zwith a probability close to one in either substate, we have (recall
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the uniform prior),

lim
n→∞

Pr(α|z; πrn) = lim
n→∞

Pr(α|{α2, β2} , πrn) = r. (26)

4.2.2 Voter Inference

Clearly, for signal a,

Pr(α|a, piv;σn, π
r
n) = 1. (27)

Hence, in state α1, when all voters receive a, the probability that a random citizen

votes A is Φ(1) > 1
2
. It follows from the weak law of large numbers that, in any

equilibrium, A is elected with probability converging to 1 in state α1.

In state β1, all voters receive b. Conditional on the signal b alone, state β

is more likely. The remaining part of this section shows that the indirect effect

from the inference of being pivotal can dominate, such that there is an equilibrium

sequence (σ∗n)n∈N for which

lim
n→∞

Pr(α|b, piv;σ∗n, π
r
n) = 1. (28)

The proof relies on two claims. First, consider the signal z and the inference

about the relative likelihood of α2 and β2. We show that, for any strategy used by

the other voters, the pivotal event contains no information regarding the relative

probability of α2 and β2 as the electorate grows large.

Claim 3 Given any r ∈ (0, 1) and any sequence of strategies (σn)n∈N,

lim
n→∞

Pr(piv|α2;σn, π
r
n)

Pr(piv|β2;σn, πrn)
= 1. (29)

The proof is in the Appendix in Section A. The pivotal event contains no

information since the distribution of signals is almost identical in the two substates

α2 and β2 (and the distribution of preference types is identical by construction).

Therefore, for any strategy σ, the distribution of votes must be almost identical

in the two substates; in particular, the probability of a tie is also almost the same

in the two substates.10

Claim 3 and (26) imply, in particular, that for any sequence of strategies

(σn)n∈N,

10The probability that all voters receive signal z in state α2 is (1 − 1
n2 )2n and limn→∞(1 −

1
n2 )2n = 1, recalling that limn→∞(1− 1

n
1
d )2n = e−

2
d . This observation is the critical step in the

proof in the appendix.
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lim
n→∞

Pr(α|z, piv;σn, π
r
n) = r. (30)

Therefore, the sender can “steer” the behavior of voters with signal z by choosing

r.

Next, we consider signal b and the voters’ inference regarding the relative

likelihood of α2 and β1. We show that, for this signal, the inference from the

signal is dominated by the inference from being pivotal if the election is closer to

being tied in state α2 than in state β1:

Claim 4 Take any sequence of strategies (σn)n∈N such that

lim
n→∞

|q(σn;α2, π
r
n)− 1

2
| < lim

n→∞
|q(σn; β1, π

r
n)− 1

2
|; (31)

then,

lim
n→∞

Pr(α|b, piv;σn, π
r
n)

Pr(β|b, piv;σn, πrn)
=∞. (32)

Proof. The posterior likelihood ratio is

Pr(α|b, piv;σn, π
r
n)

Pr(β|b, piv;σn, πrn)
=

Pr (α)

Pr (β)

Pr (α2|α, πrn)

Pr (β1|β, πrn)

Pr (b|α2; πrn)

Pr (b|β1; πrn)

Pr (piv|α2;σn, π
r
n)

Pr (piv|β1;σn, πrn)

=
Pr (α)

Pr (β)

r 1
n

1− (1− r) 1
n

1
n2

1

Pr (piv|α2;σn, π
r
n)

Pr (piv|β1;σn, πrn)

≈ Pr (piv|α2;σn, π
r
n)

Pr (piv|β1;σn, πrn)
n−3. (33)

For the approximation on the last line we used that the prior is uniform. Given

(31), equation (32) follows from applying Claim 2 for d = 3.

Thus, for any sequence of strategies that satisfies (31), the critical posterior

with signal b satisfies the desired property (28).

4.2.3 Fixed Point Argument

By the richness assumption on Φ (see (17)), there is some r̂ such that Φ(r̂) = 1
2
.

We will show that, for the information structure πr̂n and n large enough, there

is an equilibrium in which A receives a strict majority of votes in both states in

expectation.

The basic idea is this: The choice of r̂ and (30) imply that the vote shares in

states α2 and β2 are close to Φ(r̂) = 1
2
. Moreover, in equilibrium, it will be the
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case that A receives a strict majority of votes in state β1. Hence, the election is

closer to being tied in α2 than in β1. Therefore, by Claim 4, voters with signal b

become convinced that the state is α; thus, the vote share of A in β1 is close to

Φ(1) > 1
2
.

Recall that equilibrium is equivalently characterized by a vector of beliefs,

p∗ = (p∗a, p
∗
z, p
∗
b), such that p∗ = ρ

(
σp∗
)
; see (13). Now, for any δ > 0, let

Bδ =
{
p ∈ [0, 1]3 | |p− (1, r̂, 1)| ≤ δ

}
,

so that Bδ is the set of beliefs at most δ away from (1, r̂, 1). Take any p ∈Bδ

and the corresponding strategy σp. Since Φ (1) > 1
2
, this means that A receives

a strict majority of votes in the states α1 and β1 for δ small enough. In the

states α2 and β2, (almost) all voters observe signal z, so q(α2;σp, πr̂n) ≈ Φ(r̂) and

q(β2;σp, πr̂n) ≈ Φ(r̂). Since Φ (r̂) = 1
2
, the vote share for A is approximately 1

2
.

Now, we show that our two previous claims (Claim 3 and Claim 4) imply

that—given σp—the posterior conditional on being pivotal is again in Bδ, for any

p ∈Bδ, any sufficiently small δ, and any sufficiently large n:

Claim 5 For any δ sufficiently small, there exists n(δ) s.t., for all n ≥ n(δ),

∀p ∈Bδ : ρ
(
σp; πr̂n, n

)
∈ Bδ. (34)

Proof. Take any p ∈Bδ and its corresponding behavior σp. For the posterior

following signal a it is immediate that, for all δ and n,

ρa
(
σp; πr̂n, n

)
= 1; (35)

see (27). Secondly,

lim
n→∞

ρz
(
σp; πr̂n, n

)
= r̂, (36)

follows from Claim 3 for all δ; see (30).

Finally, for δ small enough and n large enough, the election is closer to being

tied in α2 than in β1,

∀p ∈Bδ: |q(α2;σp, πr̂n)− 1

2
| < |q(β1;σp, πr̂n)− 1

2
|. (37)

To see why, note that for n large enough, q(α2;σp, πr̂n) ≈ Φ (pz) and q(β1;σp, πr̂n) =

Φ (pb) since almost all voters receive z in α2 and all voters receive b in β1. In
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addition, by the continuity of Φ, for δ small enough, we have that Φ (pz) ≈ Φ (r̂)

and Φ (pb) ≈ Φ (1). Finally, (37) follows then from Φ (r̂) = 1
2

and Φ (1) > 1
2
.

Now, it follows from (37) and from Claim 4 that

lim
n→∞

ρb
(
σp; πr̂n, n

)
= 1. (38)

Thus, the claim follows from (35), (36), and (38).

Since ρ(σp) is continuous in p by the arguments after (13), it follows from

(34) and Kakutani’s theorem that there exists a fixed point p∗n ∈ Bδ for all n large

enough. By the arguments from the proof of Claim 5,

lim
n→∞

p∗n = (1, r̂, 1) , (39)

see (35), (36), and (38). Finally, for the corresponding sequence of equilibrium

strategies, (σp∗n)n∈N, the policy A wins in both states; this follows from (39),

which implies that voters with signals a and b are supporting A with a probability

converging to Φ (1) > 1
2
, and from the weak law of large numbers.

This completes the proof of the theorem for the special case in which Φ is

monotone, the targeted policy is A in both states, and the prior is uniform. When

the prior is not uniform, the only piece of the argument that needs to be adjusted

is the choice of r. For a general prior Pr (α) 6= 1
2
, the value of r should be such

that
Pr (α) r

Pr (α) r + (1− Pr (α)) (1− r)
= r̂, (40)

with Φ(r̂) = 1
2
.

4.3 Numerical Example with 15 voters

We provide an example and show that persuasion is effective when there are at

least 2n+ 1 = 15 voters. For this example, suppose that G is such that Φ(p) = p

for all p ∈ [0, 1].11 Further, we set Pr (α) = 1
3
. Now, consider the information

structure π̃rn with r = 2
3

from Figure 4, which is as πrn from Figure 3, but with the

signal b replaced by signal a.

11In Section C.1 of the Online Appendix, we provide an explicit example of a preference
distribution G that induces Φ(p) = p for all p. Since, therefore, Pr(t : tα > 0, tβ < 0) = 1, the
example fails the assumption that G has a strictly positive density on [−1, 1]2. This simplifies
the presentation and one can find a nearby example with full support.
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Figure 4: The information structure π̃rn with ε = 1
n

and r ∈ (0, 1). The parameter
r ∈ (0, 1) controls the posterior after z.

In Section C.1 of the Online Appendix, we show that under these primitives,

when there are at least 15 voters, there is an equilibrium σ∗n for which A is elected

with a probability larger than 99.9% in the states α1 and β1. Therefore, the overall

probability of A being elected exceeds 0.999
[

Pr(α)(1 − r
1−r

1
n
) + Pr(β)(1 − 1

n
)
]
,

which is larger than 80% when there are at least 2n+ 1 = 15 voters.

To show the result, recall that equilibrium is equivalently characterized by a

vector of induced priors p = (pa, pz) satisfying (13). We show that under the

specified primitives, when n ≥ 7, the best response maps beliefs p = (pa, pz) ∈
[0, 1]2 for which pa ≥ 0.95 and pz ∈ [0.32, 0.68] to beliefs satisfying the same

inequalities. Then, an application of Kakutani’s theorem yields an equilibrium

belief p∗n = (p∗a, p
∗
z) with p∗a ≥ 0.95 and p∗z ∈ [0.32, 0.68]. The corresponding

equilibrium σ(p∗n) is such that voters with an a-signal vote A with a probability

of at least 95%. Thus, we can utilize the exact same theoretical argument here for

the example with small numbers as we do in our general analysis.

4.4 Bayesian Consistency Constraints in Elections

As noted, voters’ behavior is determined by their critical belief, Pr(α|s, piv;σ, π),

implying a close connection to the standard information design and persuasion

model. The signal structure π affects voters’ beliefs in two ways – directly via the

inference from s and indirectly via the inference from being pivotal. Bayesian con-

sistency is understood to constrain a sender’s ability to affect the signal inference
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by choice of π; however, the indirect effect is much less constrained.

Bayesian consistency—or the law of iterated expectation—requires that

Pr(α) =
∑
s∈S

[Pr(s, piv)Pr(α|s, piv) + Pr(s,¬piv)Pr(α|s,¬piv)] , (41)

where Pr(α|s,¬piv; σ, π) is the posterior conditional on not being pivotal; we

omitted (σ, π). With a single voter, Pr(piv) = 1, and so the expected critical

belief is constrained to be the prior. However, with many voters, Pr(piv) becomes

small, and, consequently, (41) imposes only a small constraint.

The effectiveness of “pivotal persuasion” has been observed before in a setting

with known preferences and no private information by the voters; see our discus-

sion of the related literature in Section 7.2; especially Chan, Gupta, Li, and Wang

(2019) and Bardhi and Guo (2018).

Intuitively, what matters is that voters react to the closeness of the election.

The closeness of the election tells voters something about the information of others,

and, in this way, about the quality of the signal structure. The quality of the signal

structure, in turn, affects the meaning of the own information.

In our construction, one may interpret the signal structure πr as releasing

either a high quality signal—in substates {α1, β1}—or a low quality signal—in

substates {α2, β2}. The closeness of the election depends on the signal quality.

In particular, when the quality of the signal structure is high, all voters observe

the same revealing signal and the election is far from close. Conversely, when

the election is close, this is because the quality of the signal is low. In this case,

most voters learn that the signal quality is low but some may receive erroneous

messages. In particular, when the election is close and the signal quality is low,

the meaning of a b signal changes from being indicative of β to being an erroneous

signal indicative of α.

The pivotal voting model considers the extreme case in which voters react per-

fectly to the closeness of the election; it illustrates the effectiveness of persuasion

in this case. In Section 4.6.4, we discuss a model variant with some behavioral

types who do not condition on being pivotal.

4.5 Sketch of the Proof: General Policy

Now, we allow for non-monotone Φ and show that the sender can implement any

intended state-dependent policy, including the one that inverts the full-information

outcome.
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Figure 5: The information structure πx,r,yn with ε = 1
n

and (x, r, y) ∈ [0, 1]3. The
parameter r controls the posterior after z and the parameters x and y control the
beliefs after a and b, respectively, conditional on being in substate α2 or β2.

For this, we consider the information structure depicted in Figure 5. The

signals are (almost) public, similar to the information structure in the previous

section from Figure 3. Moreover, as before, the signals a and b reveal the state

(almost) perfectly. The signal z contains only limited information since r ∈ (0, 1).

When observing the signal z, a voter knows that the substate must be either α2

or β2, and her belief conditional on signal z is given by

lim
n→∞

Pr(α|z; πx,r,yn )

Pr(β|z; πx,r,yn )
= lim

n→∞

Pr(α|{α2, β2}; πx,r,yn )

Pr(β|{α2, β2}; πx,r,yn )
=

Pr(α)

Pr(β)

r

1− r
. (42)

We prove Theorem 2 by showing that by choosing the parameters (x, r, y) ∈
[0, 1]3 appropriately, the sender can implement almost any belief µα in state α and

any belief µβ in state β as n → ∞, in the sense that, with probability close to

one, almost all voters will have such beliefs conditional on being pivotal.

Lemma 1 Let r̂ solve Φ(r̂) = 1
2

and suppose r̂ /∈ {0, 1}. Take any (µα, µβ) ∈
[0, 1]2 with Φ(µα) 6= 1

2
and Φ(µβ) 6= 1

2
and choose (x, r, y) ∈ [0, 1]3 as the solutions
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to12

r̂

1− r̂
x

1− x
=

µα
1− µα

, (43)

Pr(α)

Pr(β)

r

1− r
=

r̂

1− r̂
, (44)

r̂

1− r̂
y

1− y
=

µβ
1− µβ

. (45)

Then, there exists a sequence of equilibria (σ∗n)n∈N given (πn)n∈N = (πx,r,yn )n∈N such

that

lim
n→∞

Pr (α|piv, a;σ∗n, πn) = µα, (46)

lim
n→∞

Pr (α|piv, z;σ∗n, πn) = r̂, (47)

lim
n→∞

Pr (α|piv, b;σ∗n, πn) = µβ. (48)

The lemma is proven in the Online Appendix in Section C.2, using ideas sim-

ilar to those used earlier. First, as before, voters with signals z do not update

conditional on being pivotal as n → ∞ in any equilibrium, and r is then chosen

such that, in substates α2 and β2, the vote share of A is close to 1
2

in every equi-

librium. Second, we show that there are equilibria in which voters with signals a

and b behave according to the beliefs µα and µβ. By the choice of the beliefs, with

this behavior, there is either a strict majority for A or B in the substates α1 and

β1; thus, the election is closer to being tied in α2 and β2 than in α1 and β1. Thus,

conditional on being pivotal, voters with signals a and b believe that they are in

substates α2 and β2, and, interpreting their signals conditional on these substates,

their critical posteriors are as given in the lemma.

The lemma implies Theorem 2: the richness assumption (17) states that there

is a belief p for which a majority prefers A in expectation and a belief p′ for which

a majority prefers B in expectation—that is, Φ(p) > 1
2
> Φ(p′). Thus, given

belief p′, it follows from the weak law of large numbers that B is elected with

probability converging to one. Given belief p, it follows from the weak law of large

numbers that A is elected with probability converging to one. Hence, the sender

can implement any state-contingent policy (xα, xβ) ∈ {A,B}2 by implementing

belief p in any state ω for which xω = A and by implementing belief p′ in any

state for which xω = B.

12For µα = 1, let x = 1 , and for µβ = 1, let y = 1 such that the following equations hold in
the extended reals, using the convention that 1

0 =∞.
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4.6 Robustness

In this section, we discuss the robustness of the persuasion result in Theorem 2.

In particular, we ask: Can the sender be persuasive even if his commitment power

is limited? Can he be persuasive if he does not know the exact details of the

environment? How “stable” is the equilibrium? Are there other equilibria?

4.6.1 Persuasion with Partial Commitment

We relax the assumption that the sender can perfectly commit to an informa-

tion structure. To model partial commitment, we follow Lipnowski, Ravid, and

Shishkin (2019), Min (2017), and Fréchette, Lizzeri, and Perego (2019). The

sender announces an information structure but is committed to the announced

information structure only with probability χ ∈ (0, 1); otherwise, he can freely

release any signal profile from its support.

Formally, we assume that, given some targeted state-dependent policy (x (α) , x (β)) ∈
{A,B}2, the sender’s payoff is one if the targeted policy is implemented and zero

otherwise. An information structure π with signal set S, a no-commitment strat-

egy of the sender ψ∗ : {α, β} → ∆(S2n+1), and a voter strategy σ∗ form a χ-

equilibrium (Lipnowski, Ravid, and Shishkin, 2019) if ψ∗ is a best response by the

sender given that the voters follow the strategy σ∗ and σ∗ is a voting equilibrium

given that the sender commits to π with probability χ and otherwise sends signals

according to ψ∗.

Perhaps somewhat surprisingly, it turns out that the sender needs almost no

commitment power: He can persuade voters whenever n is large for any χ > 0,

no matter how small.

Proposition 1 Suppose that the sender is committed with some probability χ >

0. Then, for every preference distribution Φ, every prior Pr (α) ∈ (0, 1), and

every state-dependent policy (x (α) , x (β)) ∈ {A,B}2, there exists a sequence of

χ-equilibria (πn, ψ
∗
n, σ

∗
n)n∈N, such that

lim
n→∞

Pr (x (α) |α; πn, ψ
∗
n, σ

∗
n, n) = 1,

lim
n→∞

Pr (x (β) |β; πn, ψ
∗
n, σ

∗
n, n) = 1.

The following discussion proves the proposition. We consider, first, the con-

stant target policy A, that is, x(α) = x(β) = A. As noted in Section 4.3, with

full commitment, this policy can be implemented by the information structure π̃rn
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from Figure 4, which sends signal a with a probability of one in substates α1 and

β1. Given π̃r̂n with φ(r̂) = 1
2
, there are voting equilibria σ∗n in which, following

signal a, the vote share of A is strictly larger than 1/2, whereas, after z, the vote

share is equal to 1/2. Now, take any χ ∈ (0, 1). Given the voting behavior σ∗n,

the best-response ψ∗ of the sender is to send signal a to all voters because signal

a leads to a higher vote share for A than signal z. Now, it turns out that, for

any χ > 0 and n large enough, there is a signal structure πχn such that πχn , χ,

and ψ∗ jointly imply the exact same distribution over signals as the original infor-

mation structure π̃rn.13 Hence, the original voting behavior σ∗n is a best response

to πχn and ψ∗. In other words, (πχn , ψ
∗, σ∗n) form a χ-equilibrium that implements

x(α) = x(β) = A as n→∞.

The construction shows that one can find such πχn whenever χ > max ( 1
n

r
1−r ,

1
n
).

Thus, the required commitment power is vanishing at rate 1/n. The key observa-

tion is that π̃rn is already sending the sender’s preferred signal a to all voters with

probability close to 1 in both states.

Second, consider the targeted policy (x (α) , x (β)) = (B,A) that inverts the

full-information outcome. Let π
(x,r,y)
n be the information structure from Figure

5. By Lemma 1 and the subsequent discussion, there are parameters (x, r, y) and

equilibria σ∗n that implement the targeted policy. The voting behavior is such

that, after a, the vote share of A is strictly smaller than 1/2, after z it is equal to

1/2, and after b it is strictly larger than 1/2. Given this voting behavior and the

targeted policy, the sender’s best response ψ∗ is to send the signal a to all voters

when the state is α and b to all voters when the state is β (recall that a majority

of the voters are voting B with an a signal and A with a b signal). Finally, for

any χ > 0 and n large enough, one can construct a modified information structure

πχn in the same way as before such that πχn , χ, and ψ∗ jointly imply the same

signal distribution as π
(x,r,y)
n ; so, σ∗n is a best response, proving the existence of a

χ-equilibrium that implements (x (α) , x (β)) = (B,A).

Numerical Example (continued). Recall the example with Φ(p) = p and

13The sender’s information structure πχn is constructed as follows: in α, he sends the signal a to

all voters with probability (1− r(α)
1−r(α)

1
n ), where r(α) solves χ(1− r(α)

1−r(α)
1
n )+(1−χ) = 1− r̂

1−r̂
1
n ;

in β, he sends the signal a to all voters with probability (1 − r(β)
1−r(β)

1
n ), where r(β) solves

χ(1− r(β)
1−r(β)

1
n ) + (1−χ) = 1− 1

n . In α, otherwise, each voter receives a signal z randomly with

probability 1− 1
n2 , and a signal a with probability 1

n2 ; in β, otherwise, all voters receive the public

signal z. This construction is feasible if χ > max ( 1
n

r̂
1−r̂ ,

1
n ), which ensures that (1 − r(α)

1−r(α)
1
n )

and (1− r(β)
1−r(β)

1
n ) are in (0, 1).
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Pr(α) = 1
3
. Given full commitment and the information structure π̃rn with r = 2

3
,

when there are at least 2n+1 = 15 voters, there are equilibria σ(p∗n) such that the

constant policy A is elected with a probability larger than 80%. The construction

of σ(p∗n) shows that, following signal a, the vote share of A is strictly larger than

0.95, whereas, after z, the vote share is in [0.3, 0.7]. Therefore, the sender’s best

response to σ(p∗n) is to send the public signal a, i.e. ψ∗(α) = ψ∗(β) = (a, . . . , a).

Again, for any χ > 1
n

r
1−r = 3

n
, there is a signal structure πχn such that πχn , χ, and ψ∗

jointly imply the exact same distribution over signals as the original information

structure π̃rn; so σ(p∗n) is a continuation equilibrium, proving the existence of a χn-

equilibrium where A is elected with a probability larger than 80% when 2n+1 ≥ 15

and χ > 3
n
.

4.6.2 Robustness: Detail-Freeness

In this section, we show that to persuade the voters, the signal structure does not

need to be finely tuned to the details of the environment. Suppose that the prior

and the preference distribution are such that

|Φ(0)− 1

2
| > |Φ(Pr(α))− 1

2
|, (49)

|Φ(1)− 1

2
| > |Φ(Pr(α))− 1

2
|; (50)

therefore, when the citizens vote optimally given their beliefs, the election is closer

to being tied when they are uninformed and hold the prior belief relative to when

they know the state.

Proposition 2 Take r = 1 and (x, y) ∈ {0, 1}2. For any prior and preference

distribution satisfying (49) and (50), there is a sequence of equilibria (σ∗n)n∈N given

the sequence of signal structures (πx,r,yn )n∈N such that

lim
n→∞

Pr (α|piv, a;σ∗n) = x, (51)

lim
n→∞

Pr (α|piv, z;σ∗n) = Pr(α), (52)

lim
n→∞

Pr (α|piv, b;σ∗n) = y. (53)

The proposition implies that the sender can implement any policy using a

single signal structure that works uniformly across the large set of priors and

preference distributions satisfying (49) and (50). For example, the constant policy

A is implemented by choosing x = y = 1, which leads to an equilibrium in which
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A has a vote share Φ(1) as the election becomes large.

The proof is in the Online Appendix in Section C.3. The basic idea is that,

given this signal, the vote shares are close to Φ(Pr(α)) in states α2 and β2. Hence,

by assumptions (49) and (50), if voters behave according to the posteriors x and

y in states α1 and β1, the election is closer to being tied in α2 and β2 than

in α1 and β1. Thus, just as before, conditional on being pivotal, voters with

signals a and b believe that they are in states α2 and β2, and—interpreting their

signals conditional on these substates—their critical posteriors are as given in the

proposition.

A similar argument implies that the signal structure from Lemma 1 is also

effective when the actual environment is slightly different: When the prior and Φ

is slightly different from the one used to calculate (x, r, y), then there is still an

equilibrium close-by with critical beliefs that are close to µα, r̂, and µβ, provided

that vote shares at the critical beliefs imply that the election is still closer to being

tied in states α2 and β2 than in states α1 and β1.

Random Signal Quality. Note that the signal from Proposition 2 matches

the description in the introduction. In particular, we can swap the timing in

the description of the signal. Rather than choosing the “quality” of the signal

after the state of nature has realized, one can first choose randomly whether the

signal is “revealing” or “obfuscating” and then, if it is revealing, send a signal

corresponding to the realized state of nature to all voters (as in substates α1 and

β1), and, if it is obfuscating, send the signals z or b in α and z or a in β (as in

substates α2 and β2 when x = 0 and y = 1).

4.6.3 Robustness: Basin of Attraction

We show that, for a large set of initial strategies, an iterated best response leads

quickly to the “manipulated equilibrium” of Theorem 2 described earlier.

Let (µα, µβ) be any pair of beliefs with Φ(µα) 6= 1
2

and Φ(µβ) 6= 1
2
. By Lemma

1, there is a sequence of information structures (πx,r,yn )n∈N and equilibria (σ∗n)n∈N

that implements the pair of beliefs as n→∞, in the sense that, with probability

close to 1, almost all voters will have such beliefs conditional on being pivotal.

Hence, by choosing (µα, µβ) appropriately, a sender can implement any desired

policy. The next result shows that, for almost any strategy σ, the twice-iterated

best response is arbitrarily close to σ∗n when n is large, in the sense that the

posteriors conditional on being tied are close to (µα, µβ).
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First, let us define the twice-iterated best response: Take any belief p and the

strategy σp that is optimal given these beliefs. Then, σρ(σp) is the best response

to σp and is optimal given the beliefs

ρ1(p) = ρ(σp), (54)

where ρ(σp) is the vector of the posteriors conditional on the pivotal event and

the signals. In the same way, σρ(σρ1(p)) is the best response to σρ1(p) (so it is the

twice-iterated best response to σp) and is optimal given the beliefs

ρ2(p) = ρ(σρ1(p)). (55)

Proposition 3 shows that for almost any p, we have |ρ2 (p)−(µα, r̂, µβ) | < ε when n

is sufficiently large. This means that the twice-iterated best response is arbitrarily

close to the manipulated equilibrium σ∗n since the equilibrium is consistent with

the belief ρ(σ∗n) ≈ (µα, r̂, µβ); see (13).

Proposition 3 Take any beliefs (µα, µβ) ∈ [0, 1]2 with Φ(µα) 6= 1
2

and Φ(µβ) 6= 1
2

and the corresponding information structures (πx,r,yn )n∈N from Lemma 1.

For any δ > 0, there is some B ⊂ [0, 1]3 with Lebesgue-measure of at least 1−δ
and some n̄ ∈ N such that, for all n ≥ n̄,

∀p ∈ B : |ρ2 (p)− (µα, r̂, µβ) | < δ. (56)

The proof is in Section C.4 in the Online Appendix. The proof also implies that,

for “almost any” strategy σ—even those that are not optimal given some belief

p—the twice-iterated best reply is arbitrarily close to the manipulated equilibrium

σ∗n when n is large, where the genericity requirement is with respect to the induced

vote shares and given by condition (100), replacing σp by σ.

Simple Reasoning. Proposition 3 illustrates that a simple reasoning un-

derlies the manipulated equilibrium σ∗n. The result loosely relates to the con-

cepts of level k-thinking and level-k-implementability (De Clippel, Saran, and

Serrano, 2019). The proposition implies that, for almost any strategy (a “behav-

ioral anchor”), the strategies that are consistent with level-2-thinking are close

to the manipulated equilibrium. In this sense, any state-dependent target policy

(x(α), x(β)) ∈ {A,B}2 is level-2-implementable.14

14De Clippel, Saran, and Serrano (2019) consider a different notion of level-2-implementability
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4.6.4 Persuasion with Behavioral Types

The pivotal voting model considers the extreme case where voters react perfectly

to the closeness of the election when interpreting their information and illustrates

the effectiveness of persuasion in this case. The empirical literature has indeed

provided evidence for strategic voting behavior.15 However, while there is often a

significant fraction of the voters that are shown to act strategically, others behave

“sincerely”.16 We follow this literature—in particular the modeling in Kawai and

Watanabe (2013)—and consider an alternative model in which citizens have not

only a preference type but also a behavioral type. Each citizen is a “sincere voter”

with a probability κ ≥ 0, and, in that case, votes A only if ptα + (1 − p)tβ ≥ 0

for p = Pr(α|s; π), where s is her private signal and π the information structure.

Otherwise, with probability 1 − κ, a voter is a “pivotal voter” as in the analysis

before.

For concreteness, we discuss the effect of sincere voters in the setup of the

numerical example from Section 4.3 with Φ(p) = p, the information structure π̃rn

from Figure 4, and with Pr(α) = 1
3

and r = 2
3
. Here, signal a contains almost no

information; therefore, the vote share of A among the sincere voters is roughly 1
3
.

When n is large, this implies that the previous persuasion arguments continue to

work when κ1
3

+ (1−κ) > 1
2
, which holds if κ < 3

4
—roughly in line with estimates

from the empirical literature.17

The full analysis of a model with sincere voters may be worthwhile for future

research, especially when considering the implementation of the inverse of the full

information outcome, that is, x(α) = B and x(β) = A.

that demand that there is some behavioral anchor such that any profile of strategies that are
level-1-consistent or level-2-consistent for this anchor implement a given social choice function.
Here, almost any strategy can be such an anchor.

15See e.g. Guarnaschelli, McKelvey, and Palfrey (2000).
16See e.g. Kawai and Watanabe (2013), who provide estimates of strrategic voters ranging

from 63.4% to 84.9%, or Esponda and Vespa (2014), who provide estimates between 20% and
50%. There are also other behavioral models of voting, such as ethical voting (Feddersen and
Sandroni, 2006) or expressive voting that could be interesting as well.

17We revisit the example with sincere voters numerically in the Online Appendix in Section
F. Given the parameters Φ(p) = p and Pr(α) = 1

3 , suppose that the fraction of sincere voters is
κ = 40%. Under these primitives, we show that when there are at least 170 voters, there is an
equilibrium σ∗n for which A is elected with a probability larger than 99.9% in the states α1 and
β1.
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4.6.5 Other Equilibria

Proposition 3 shows that the basin of attraction of the iterated best response of an

arbitrarily small neighbourhood of the manipulated equilibria consists of almost

all strategies when n is large enough. However, this still leaves open the possibility

that there are other equilibria, such that if we begin exactly at such a strategy

profile, the best response dynamic stays there. In the working paper version,

(Heese and Lauermann, 2019, Theorem 4),18 we show that this is indeed the case.

There exists another equilibrium and that equilibrium is not “manipulated” but

implements the full information outcome as n→∞. We restate the result here:

Theorem 3 Let Φ be strictly increasing. For all information structures (πx,r,yn )n∈N

with (x, r, y) ∈ (0, 1)3, there exists an equilibrium sequence (σ∗n)n∈N for which the

full information outcome is elected as n→∞,

lim
n→∞

Pr(A|α;σ∗n, πn, n) = 1,

lim
n→∞

Pr(B|β;σ∗n, πn, n) = 1.

Intuition. Note that the signal πn almost always sends an (almost) perfectly

revealing signal when n is large. Hence, there is a sequence of strategies (e.g. given

by sincere voting) for which the full-information outcome is elected as n → ∞.

The question then is whether such a sequence of strategies can be an equilibrium

sequence. The theorem shows that, whenever Φ is monotone, the answer is yes.

This is easy to see in the extreme case in which voters have a common type t, and,

hence, have common interests. A result of McLennan (1998) shows that, with

common interest, the utility maximizing symmetry strategy is a symmetric equi-

librium. Hence, for this case, the existence of a sequence of strategies that yields

the full-information outcome immediately implies the existence of an equilibrium

sequence that yields it as well.

5 Persuasion of Privately Informed Voters

Recall the binary information structure from the Condorcet Jury Theorem, defined

by the signal probabilities Pr (s|ω)ω∈{α,β} for s ∈ {u, d} such that (20) holds. We

will think of this as exogenous private information that is held by the voters and

denote this information structure by πc. We say that an information structure π

18The working paper is publicly available here https://ideas.repec.org/p/bon/boncrc/

crctr224_2019_128.html.
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with signal set S is an independent expansion of πc if it is the product of πc and

some additional signal structure πp that is exchangeable, as before.19

We think of the expansion as resulting from additional information πp that

is provided by a sender to voters who also receive private signals from πc. By

considering only independent expansions, we do not allow the sender’s signal to

condition directly on the realization of πc. As before, we also do not allow the

sender to elicit the voters’ private information (the preference type and the signal).

We assume that the preferences of the voters are such that the aggregate preference

function Φ is strictly increasing so that the CJT holds (Theorem 1) and, without an

additional signal, the unique equilibrium outcome is the full information outcome

as the electorate grows large.

What outcomes can the sender implement when the voters have exogenous sig-

nals? How should the sender communicate with the voters? Clearly, to implement

any policy other than the full information outcome, the sender has to communi-

cate with the voters in some way. Consider a sender who communicates with

public signals s2 ∈ S2, meaning, that the signals are commonly received by all the

voters.20 When the voters receive a public signal s2, this shifts the common belief

from the prior Pr(α) to Pr(α|s2). Since the CJT holds for any common prior, in

the subgame following any public signal, the full information outcome is elected

with probability converging to one, as n → ∞.21 So, to implement any outcome

other than the full information outcome, the sender has to communicate privately

with the voters.

5.1 Result: Full Persuasion

The following theorem shows that there exists an independent expansion of the

private information of the voters that allows implementing any state-dependent

policy—even the policy that inverts the full-information outcome.

19More formally, π is an independent expansion if there exists an information structure πp

with signal set S2 and substates {α1, . . . , αNα} and {β1, . . . , βNβ} such that S = {u, d}×S2 and

Pr(s|ωj ;π) = Pr(s1|ω;πc)Pr(s2|ωj ;πp) (57)

for all ωj ∈ {α1, . . . , αNα} ∪ {β1, . . . , βNβ} and all s = (s1, s2) ∈ ({u, d} × S2)2n+1.
20Alonso and Câmara (2016) have studied persuasion with public signals when voters do not

have exogenous private signals.
21To be precise, the CJT only applies to any non-degenerate prior Pr(α) ∈ (0, 1). However,

if the sender reveals the state publicly, such that Pr(α|s) ∈ {0, 1}, trivially, the full-information
outcome is elected as n→∞.

32



Theorem 4 Take any exogenous private signals πc of the voters satisfying (20)

and any strictly increasing Φ. For every state-dependent policy (x (α) , x (β)) ∈
{A,B}2, there exists a sequence of independent expansions (πn)n∈N of πc and equi-

libria (σ∗n)n∈N given (πn)n∈N such that

lim
n→∞

Pr (x (α) |α;σ∗n, πn, n) = 1,

lim
n→∞

Pr (x (β) |β;σ∗n, πn, n) = 1.

The next two sections provide an extensive sketch of the arguments establishing

the theorem. In particular, the original signals from the previous section are

sufficient. That is, πrn, as in Figure 3, can be chosen as an additional signal to

implement equilibria in which A wins in both states, and πx,r,yn from Figure 5,

with x = 0 and y = 1, can be chosen to implement a policy that inverts the

full-information outcome. Thus, the sender does not need to know whether agents

have private information, or how much private information they have. The same

signal structure works uniformly across environments.

5.2 Sketch of the Proof: Constant Policy

We show that the same signal structure πrn from Figure 3 leads to an equilibrium

in which A wins in both states—even when voters have private signals.

The critical observation in the proof is that the vote shares in α2 and β2 are

uniquely determined across all equilibria and parameters by an equal-margin-of-

victory condition.

Claim 6 Let Φ be strictly increasing. Suppose that the additional information is

given by πrn, as in Figure 3. Then, there is some M with

0 < M < Φ(1)− 1

2
(58)

such that, for every r ∈ (0, 1) and every equilibrium sequence (σ∗n) given πrn,

lim
n→∞

q(σ∗n;α2, π
r
n)− 1

2
= lim

n→∞

1

2
− q(σ∗n; β2, π

r
n) = M . (59)

For the proof, see Section D.2 in the Online Appendix. The idea is the follow-

ing: Given πrn, in substates α2 and β2, every voter receives the additional signal

z with probability converging to one. Voters who received z know that either α2

or β2 holds and that almost all other voters received a signal z as well. Hence,
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from their perspective, it is close to common knowledge that the game is close to

a game with a binary state and binary signals πc, as in the original setting of the

CJT. Recall that the proof of the CJT showed that the election must be equally

close to being tied in expectation; see (22). The same arguments implies (59) here.

Now, one can show that there is a sequence of equilibria in which the vote

share of A in state β1 approaches its maximum, Φ(1), and thus

lim
n→∞

q(σ∗n; β1, πn)− 1

2
= Φ(1)− 1

2
. (60)

Comparing (59) and (60), in this equilibrium sequence, the election is closer

to being tied in α2 than in β1. Hence, it follows from Claim 2 that

lim
n→∞

Pr (piv|β1;σ∗n)

Pr (piv|α2;σ∗n)
= 0. (61)

Moreover, it also follows from Claim 2 that the inference from the pivotal event

dominates the direct inference from the signal.22 So, a voter with additional signal

s2 = b becomes convinced that the state is α2 for either realization of the private

signal s1 ∈ {u, d},
lim
n→∞

Pr (α|piv, s1, s2 = b;σ∗n) = 1. (62)

Since all voters observe the additional signal s2 = b in state β1, it follows that

the vote share converges to Φ(1), as claimed in (60). Finally, it is clear that

such an equilibrium sequence leads to outcome A in both states with probability

converging to one.

Note that the basic idea here is similar to the one in Section 4.2 without the

private signal. Here, Claim 6 pins down behavior in states α2 and β2, analogously

to the implication of the previous Claim 3. Then, there is an equilibrium in which

A receives a strict majority in β1. In both settings, the equilibrium is supported

by the fact that the election is closer to being tied in α2 than in β1, so that,

conditional on being pivotal, voters with signal b become convinced that the state

is α2.

5.3 Sketch of the Proof: General Policy

The signal πx,r,yn from Figure 5 can again be used to implement any intended

policy by the appropriate choice of (x, r, y) ∈ [0, 1]3. The proof of this general

22See the proof of the analogous Claim 4.
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result utilizes a lemma analogous to the previous Lemma 1, stated as Lemma 3 in

the Online Appendix.

In particular, as before, the policy that inverts the full-information outcome

can be implemented by choosing the additional signal with x = 0, y = 1, and

any arbitrary r ∈ (0, 1): for any such choice, we show that there is a sequence of

equilibria (σ∗n) in which the posterior probabilities conditional on being pivotal and

the additional signals a and b are close to zero and one, respectively. Moreover,

since the private signals are boundedly informative, it follows that, for s1 ∈ {a, b},

lim
n→∞

Pr (α|piv, s1, s2 = a;σ∗n) = 0, (63)

lim
n→∞

Pr (α|piv, s1, s2 = b;σ∗n) = 1. (64)

Thus, since all voters observe signals a and b in the substates α1 and β1, respec-

tively, the equilibrium vote shares converge to Φ(0) < 1/2 and Φ(1) > 1/2, with

the inequalities from Φ satisfying (17). Therefore, the weak law of large numbers

implies that B wins in state α1 and A wins in state β1, thereby establishing the

existence of an equilibrium that inverts the full-information outcome.

5.4 Robustness of Theorem 4

Partial Commitment. When the sender is only partially committed and free

to send any signal with probability χ, then full persuasion is still possible for

arbitrarily small χ > 0, even if voters have exogenous information. The argument

is the same as in Section 4.6.1, namely, the implementing signal structure is already

sending the sender’s preferred signal with probability close to 1.

Detail Freeness. Can the sender persuade the voters even when he does not

know the exact details of the environment? We argue that Proposition 2 from

the monopolistic sender setting holds in an even more general form when the

voters hold exogenous private signals: here, to be able to persuade the voters, it is

sufficient that the sender knows that Φ satisfies the monotonicity condition (21)

and the richness assumption (17).

Specifically, the sender can release information to the voters such that his

target policy is implemented uniformly, for any prior Pr(α) ∈ (0, 1), any exogenous

information πc of the voters satisfying (20), and any aggregate preference function

Φ satisfying (17) and (21). This is possible simply by choosing the parameters of

the general signal πx,r,yn with x and y in {0, 1} and any arbitrary r ∈ (0, 1). Any
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such information structure implements a targeted policy uniformly as outlined

before.

In a sense, the conditions for uniform implementability are weaker here than in

Proposition 2 in which we also required a condition on the prior. This is perhaps

surprising if one thinks of the voters’ exogenous information as a constraint on

the sender. The reason it holds is that, with exogenous private information, the

relevant “induced prior” after signal z, i.e., Pr(α|piv, z), adjusts endogenously to

ensure the equal-margin condition.

Belief Implementation. As in the monopolistic sender scenario, we provide a

result more general than Theorem 4: In the spirit of the literature on Bayesian

persuasion, we show that, for large electorates, there is a set of “implementable”

posterior belief distributions, including arbitrarily extreme beliefs. This result is

stated in Lemma 3 in the Online Appendix, and corresponds to Lemma 1 for the

monopolistic sender. However, when voters have exogenous information, not all

beliefs are implementable; this is consequential when the sender is only partially

informed, as discussed in Section 7.1.

Basin of Attraction. The results from Section 4.6.3 regarding the basin of

attraction of the manipulated equilibria for the case of a monopolistic sender do

not extend when voters have exogenous private information.23

Other Equilibria. We conjecture that there always also exists a sequence of

equilibria yielding the full-information outcome, as in the case of the monopolistic

sender (see Theorem 3). However, so far, we have not been able to prove this

result for the case with private signals.

6 Media Markets: An Application

We provide a stylized application to media markets. This serves two purposes:

first, we show that the main results of the paper can also be obtained in a setting

with normally distributed voter information. Second, within the application, we

can discuss concrete strategies of information manipulation.

23Instead, one can show the following: Let the sender release the information (πx,r,yn )n∈N to the
voters as in Lemma 3. When the electorate is large enough, for almost any initial strategy, under
the iterated best response, the voter behavior after signal z jumps back and forth indefinitely
from voting approximately according to σp, with p = Pr(α|s)s∈{a,z,b}, to voting approximately
as if one of the states is known to be the true state. We omit the proof.
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6.1 Benchmark: Exogenous Media

A media firm sends a message m = θ in α and m = −θ in β for some θ > 0. Voters

perceive the message with noise. That is, each voter receives a private signal

s = m + ε, where ε is drawn independently from a standard normal distribution;

see Figure 6.24 Each individual voter thus only holds partial information about the

state. Since the private signals s satisfy the monotone likelihood ratio property, a

higher signal leads to a higher belief in the likelihood of α.

For concreteness, suppose that voters have a common preference type: All

voters prefer A in α and B in β. They receive a payoff of tα = 1 if A is elected in

α and a payoff of tβ = −1 if A is elected in β; payoffs are normalized to zero if B

is elected. Hence, voters prefer the policy that matches the state they believe to

be more likely.

When there are 2n+ 1 voters, equilibrium can be described by a cutoff signal

s∗n that makes the voters indifferent: all voters with a signal s > s∗n assign a higher

probability to α than β and vote A and voters with a signal s < s∗n assign a higher

probability to β than α and vote B. One can show that s∗n → 0 as n→∞, for all

priors. Figure 6 illustrates the limit equilibrium. For the cutoff zero, a majority

of citizens votes A in α (shaded area) and B in β. For general preference distribu-

Figure 6: The density of the voters’ private signals in states α and β. The shaded
are shows the share of citizens voting A when n is large.

tions, in this benchmark, all equilibrium sequences aggregate information perfectly

when preferences are monotone (that is, Φ is strictly increasing). This follows from

arguments similar to the ones used for Theorem 1; see also Bhattacharya (2013).

24Gaussian information is a common way to model that voters have noisy perceptions of
political statements or states; see, e.g., the literature on electoral competition (Matějka and
Tabellini, 2016) or on media markets (Galperti and Trevino, 2018; Chen and Suen, 2019).
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6.2 Media Slant

We show that a monopolistic media firm can persuade voters to elect any constant

target policy by sometimes shifting the message towards one extreme (“slant”).

With probability 1 − χ, the media firm sends the same message as before,

m = θ in α and m = −θ in β. With probability χ > 0, the media firm sends a

shifted message, m = θ − d in α and m = −θ − d in β, for some d 6= 0. One

may think of the shift as resulting from journalists being incentivised by interested

parties. Figure 7 illustrates the signal distribution when the shift is relatively large,

d > 2θ, so that θ − d < −θ. It shows the signal distribution in each state, when

the shifted message is sent (substates α2 and β2) and when the normal message is

sent (substates α1 and β1).

Again, for concreteness, suppose that voters have a common preference type

t = (tα, tβ) = (1,−1); so, voters prefer the policy that matches the state.

Take the target policy A and consider a slant d > 2θ as in Figure 7. One can

show that for large n, there is an equilibrium in which voters use a cutoff strategy.

Denoting the signal cutoff by s∗n: all voters with a signal s > s∗n vote A and voters

with a signal s < s∗n vote B. Further, one can show that s∗n → −d as n→∞. The

shaded area in Figure 7 illustrates the voting behavior in the limit. Critically, the

median signal is to the right of −d in all substates except β2. Thus, a majority

votes A in all these substates.

Figure 7: The density of the voters’ private signals in the four substates when
there is no slant (α1 and β1) and when there is a slant −d (α2,β2).

The logic of the equilibrium is similar to the analysis in Section 5.2: For the

cutoff −d, the election is closer to being tied in α2 and β2 than in α1 and β1. Hence,

one can show that, conditional on being pivotal, voters believe that the state is

in {α2, β2}. Further, the margins of victory in α2 and β2 are asymptotically the
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same, that is, (59) holds.

In Appendix E, we consider the situation when voters have monotone prefer-

ences, that is, Φ is strictly increasing. Specifically, in Theorem 5, we show that for

every target policy x ∈ {A,B}, d can be chosen such that there is an equilibrium

sequence for which x is elected with a probability of at least 1− χ as n→∞.

6.3 Multiple Media Firms

We show that one media firm sending shifted messages can affect equilibrium out-

comes even when voters receive additional information from an exogenous media

firm. This means that manipulation of just a subset of the media landscape, for

example, by incentivising some journalists to tilt their stories, may have an effect

on elections.

Suppose that there is an exogenous “honest” media firm that sends a message

as in the benchmark, m1 = θ in α and m1 = −θ in β. A second media firm

sends in both states the same message, independently, with probability 1 − χ.

However, it sends a shifted message with probability χ > 0, that is, m2 = θ− d in

α and m2 = −θ − d in β for some d 6= 0. Each voter receives two private signals,

s1 = m1 + ε1 and s2 = m2 + ε2, where ε1 and ε2 are drawn independently from a

standard normal distribution.

We show that in this setting, when preferences are monotone, for any target

policy x ∈ {A,B}, the second media firm can chose d so that there is an equilib-

rium sequence where x is elected with probability larger 1−χ as n→∞ (Theorem

6 in Appendix E).

7 Remarks and Extensions

Here, we collect some extensions and remarks for the setup with privately informed

voters.

7.1 Partially Informed Sender

In the working paper version, Heese and Lauermann (2019), we consider a sender

who does not know the state ω ∈ {α, β}.25 Instead, the sender receives a private

signal m. Conditional on the private signal m, the sender can release signals to

the voters that are coarsenings of m.

25Available at https://ideas.repec.org/p/bon/boncrc/crctr224_2019_128.html.
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Suppose that the sender’s signal is binary, m ∈ {`, h}. Then, we show the

following: If the sender is the monopolistic information provider (voters receive

no private information), then the sender can implement any policy as a function

of the own signal, i.e., for any (x(`), x(h)) ∈ {A,B}2, the sender can ensure that

a majority votes for x(`) given the information released to voters after the own

signal ` and for x(h) after the own signal h. This is, in fact, implied by the

analysis of the current paper. To see this, note that the sender’s own signal m

simply assumes the role of the state of nature ω in the current setting, and we can

“integrate out” the state to rewrite the voters’ preferences in terms of {`, h}.
However, when the voters have private information as well, the analysis is more

subtle. Suppose voters observe an exogenous private signal πc as in the CJT set-

ting and the sender can release additional information in the form of a coarsening

of the own noisy signal. For this case we show that, whenever the sender’s own

information is sufficiently precise relative to πc, then again the sender can imple-

ment any policy as a function of the own signal, (x(`), x(h)) ∈ {A,B}2; see Heese

and Lauermann (2019, Theorem 7). For example, if the voters’ signals {u, d} are

symmetric across states, then it is sufficient that the sender’s own information is

at least as informative as the joint signal of two voters (in the Blackwell sense).26

7.2 Known Preferences: Targeted Persuasion

When the types of the voters are known to a potential sender, voters can be

“targeted” with recommendations; formally, a revelation principle applies saying

that any equilibrium is equivalent to a recommendation policy that will be followed

by the voters. Below, we show that when the preference types are known, there is

a simple way in which the sender can persuade the voters to elect a constant policy

via private recommendations.27 We also show that, with known preferences, the

possibility of persuasion is unaffected by the presence of a private signal of the

voters.

Suppose that the voters’ preference types ti = (tiα, t
i
β) are commonly known

for any i ∈ {1, . . . , 2n + 1}. The voters receive exogenous private signals as in

the setting of the CJT (Section 3.2). The following result extends when these

26This is shown in Heese and Lauermann (2019, Remark 2). The key step in the proof is
the observation that, when the sender’s signal is sufficiently precise, then the sender can induce
beliefs that are “implementable” in the sense of Lemma 3 from the current Online Appendix.

27This has been observed by Chan, Gupta, Li, and Wang (2019) and in Bardhi and Guo (2018)
in similar settings. Therefore, the main parts of these papers consider settings with voting costs
(“expressive voting”) and unanimity, respectively.
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exogenous signals are uninformative. Suppose that the voters 1, . . . ,m prefer A

in α and B in β—that is tiα > 0 and tiβ < 0—and without loss let m > n. The

remaining voters m + 1, . . . , 2n + 1 prefer B in α and A in β, that is tiα < 0 and

tiβ > 0.28

The following recommendation policy implements the outcome A with proba-

bility of at least 1− ε in an equilibrium, for arbitrarily small ε > 0: in both states,

with probability 1− ε, all voters receive the recommendation “vote A” (signal a).

In state α, with the remaining probability ε, a random subset of size n+ 1 of the

voters 1, . . . ,m receives the recommendation “vote A” and the remaining n voters

receive the recommendation “vote B” (signal b). In state β, with the remaining

probability ε > 0, a random subset of size n + 1 of the voters 1, . . . ,m receives b

and the remaining n voters receive a.

Voting A after an a-signal and B after a b-signal constitutes an equilibrium:

Given this strategy, denoted by σ, voters i ∈ {1, . . . ,m} with an a-signal are only

pivotal in α, and voters i ∈ {1, . . . ,m} with a b-signal are only pivotal in β—

that is Pr(α|piv, a, i ≤ m;σ) = 1 and Pr(α|piv, b, i ≤ m;σ) = 0. Hence, voting

A after a and B after b is a strict best response for any voter i ∈ {1, . . . ,m}.
Voters i ∈ {m + 1, . . . , 2n + 1} are never pivotal if the other voters follow the

recommendations. Hence, following the recommendation is a also best response

for them, and, therefore, σ is an equilibrium. Since with probability 1 − ε all

citizens vote A, given σ, the recommendation policy implements the outcome A

with a probability of at least 1− ε.
Note how the signal structure above is finely tuned to the details of the setting.

By way of contrast, we show that persuasion is effective even if information can-

not be tailored to a specific preferences profile. In fact, we show that information

does not even need to be tailored to the distribution of preferences. The mech-

anism driving persuasion is fundamentally different from the one described here.

This difference may be most salient with exogenous private information where the

equilibrium behavior of the voters adjusts endogenously to maintain the critical

“equal-margin condition” across environments.

7.3 Bayes Correlated Equilibria

The Bayes correlated equilibria given some exogenous information structure πc

are the Bayes-Nash equilibria that arise from expansions π of πc (see Bergemann

and Morris (2016) for the definition of an expansion and the characterization of

28The example can be extended to include “partisans”.
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Bayes correlated equilibria). In terms of Bayes correlated equilibria, Theorem 4

means that for any state-dependent outcome function (x (α) , x (β)) ∈ {A,B}2,

there exists a sequence of Bayes correlated equilibria given πc that leads to this

outcome as n→∞.

8 Related Literature

Voter Persuasion Literature. The paper is related to work on information

design in general (see Bergemann and Morris (2019) for a survey), especially with

multiple receivers (e.g., Mathevet, Perego, and Taneva (2020)).

Previous work on persuasion in an election context has studied persuasion in

settings in which the preferences of the voters are commonly known and voters have

no access to exogenous private signals. The previous work has considered public

signals by the sender (Alonso and Câmara, 2016), persuasion with conditionally

independent private signals by the sender (Wang, 2013), and targeted persuasion

with private signals by the sender (Bardhi and Guo, 2018; Chan, Gupta, Li, and

Wang, 2019). We discussed persuasion when the preferences of the voters are

known in Section 7.2, and we showed how the persuasion mechanism and its logic

are quite different.

In contrast to the existing literature, we revisit the general voting setting

of Feddersen and Pesendorfer (1997) with private preferences: In this setup, as

a consequence of the Condorcet Jury Theorem, there is no scope for persuasion

with public signals and also no scope for persuasion with conditionally independent

private signals; see Theorem 1.

More generally, most of the Bayesian persuasion literature assumes that the

sender has extensive knowledge of the environment; in particular, perfect knowl-

edge about the state and receiver types is typically assumed.29 In this paper, the

informational requirements for persuasion are significantly weaker. We allow for

private preferences and exogenous private signals of the receivers; we also consider

the case in which the sender has incomplete information regarding the prior prob-

abilities of the state, the distribution of the private preference types of the voters,

or the distribution of the private signals of the voters (see Section 4.6.2 and Sec-

tion 5.4). In the working paper version, Heese and Lauermann (2019), we consider

the case in which the sender’s information regarding the state is incomplete (see

29Exceptions are Guo and Shmaya (2019) and Kolotilin, Mylovanov, Zapechelnyuk, and Li
(2017), who study persuasion of a single, privately informed receiver.
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Section 7.1). Further, we show that persuasion requires almost no commitment

power.

Several other papers study how groups can be influenced through strategic

information transmission, but are less closely related: For example, Kerman, Her-

ings, and Karos (2020) study targeted persuasion via private signals when the

sender is restricted to use signals that induce the voters to behave sincerely; com-

pare to the discussion of targeted persuasion in Section 7.2. Levy, Moreno de

Barreda, and Razin (2018) study persuasion of voters with correlation neglect.

Schipper and Woo (2019) study the persuasion of voters who are unaware of cer-

tain features. Schnakenberg (2015) studies a cheap talk setting in which an expert

tries to manipulate a voting body. Salcedo (2019) studies persuasion of subgroups

of receivers via private messages in a setting in which each receiver’s payoff de-

pends only on his own action and the state.

More distantly related is work on the design of an elicitation mechanism to ob-

tain information from multiple experts for an adversary to use (Gerardi, McLean,

and Postlewaite, 2009; Feng and Wu, 2019).

Information Aggregation Literature. Voting theory has identified several

circumstances in which information may fail to aggregate. We discuss the studies

that are most closely related: Feddersen and Pesendorfer (1997) (Section 6) show

that an invertibility problem causes a failure when there is aggregate uncertainty

with respect to the preference distribution conditional on the state. We have

already mentioned that Bhattacharya (2013) shows that information may fail to

aggregate when preference monotonicity is violated.

In a pure common-values setting, Mandler (2012) shows that a failure can oc-

cur when there is aggregate signal uncertainty conditional on the state. There is

a sense in which such aggregate uncertainty is necessary for a failure of informa-

tion aggregation, in the sense that if there is a single substate, the CJT applies

(Theorem 1 and the subsequent discussion). Here, as in his model, the voters’

updating about the signal distribution of others conditional on a close election

is important.30 Note that the pure common-values assumption implies that this

setting is a special case of a setting in which the individual voters’ preference type

is known (discussed in Section 7.2). In contrast to Mandler (2012), we consider a

setting in which voters do not have common values; rather than perturbing that

30Uncertainty regarding the signal distribution and updating about it is also central in
Acharya and Meirowitz (2017), in which aggregate uncertainty supports sincere voting. Other
recent contributions on the conditions for information aggregation are Kosterina (2019) and
Barelli, Bhattacharya, and Siga (2019).
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original signal, we study the effect of an additional signal in the canonical setting

by Feddersen and Pesendorfer (1997).

Additional related models, which show that elections perform poorly in ag-

gregating information are include Razin (2003), Acharya (2016), Ekmekci and

Lauermann (2019), Ali, Mihm, and Siga (2018) and Bhattacharya (2018).

9 Conclusion

In the canonical voting setting by Feddersen and Pesendorfer (1997), informa-

tion aggregation may be upset by an interested sender who provides additional

information to the voters. We have shown how an interested sender can exploit

strategic voters by manipulating their inference from the election being close. In

equilibrium, the closeness of the election tells voters something about the quality

of the information of the other voters, and, because signals are correlated, also

about the quality of their own signal. This way the sender can “steer” the meaning

of signals and make voters elect even the inverse of the full-information outcome.

What is particularly striking about the result is its robustness; almost no com-

mitment power of the sender is required. The resulting equilibrium is simple and

selected by an iterated best response dynamic. The sender does not need precise

knowledge of the environment (“detail-freeness”). In fact, the same information

structure that implements a given policy in the monopolistic sender setting also

implements the policy when voters have private information. Even a manipulator

with very limited knowledge about the state itself can persuade a large electorate.

We discuss concrete information strategies within an application to media mar-

kets. For example, we show that a media firm can persuade voters by broadcasting

news that is biased towards one extreme relative to the exogenous media.

Conceptually, our results also mean that equilibrium outcomes in the setting

by Feddersen and Pesendorfer (1997) can be hard to predict for an outside observer

without precise knowledge of the voters’ information. The outside observer must

be able to exclude the possibility that voters have access to additional information

of the form discussed here.

Information aggregation has also been studied in (double-) auctions, a setting

that shares some features with elections. An interesting question may be whether,

in auctions, information aggregation is an “informationally robust” prediction or

whether bidders having additional information can also upset it. Information

design in auction settings has been studied by Bergemann, Brooks, and Morris
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(2016), Du (2018), and Yamashita et al. (2016), among others, but mostly with a

focus on revenue and efficiency.

The pivotal voting model considers the extreme case in which voters react

perfectly to the closeness of the election when interpreting their information and

illustrates the effectiveness of persuasion in this case. One may conjecture that,

in a setting in which voters react less sensitively, persuasion is still effective but,

presumably, less so. We provide some initial observations on this conjecture here.

Appendix

A Monopolistic Persuasion: Proof of Claim 3

Without loss of generality, suppose σn is such that q(α2 ;σn)(1 − q(α2 ;σn)) <

q(β2;σn)(1− q(β2;σn)) for all n. It follows directly from (7) that

lim
n→∞

Pr(piv|α2;σn, πn)

Pr(piv|β2;σn, πn)
≤ 1. (65)

We now show that the reverse inequality also holds and thereby finish the proof of

the lemma. For this, we show the following. There exists some L > 0 and M > 0

such that, for all n and all σn satisfying the ordering above,

Pr(piv|α2;σn, πn)

Pr(piv|β2;σn, πn)
≥
(

1− L

Mn2

)n
. (66)

First, it follows from (15) that the expected vote share for A in α2 differs from

the expected vote share for A in β2 maximally by the probability that b is observed

in α2, that is, by ε2 = 1
n2 ; so,

|q(α2 ;σn)− q(β2 ;σn)| ≤ ε2, (67)

for all n. Second, recall that Φ(0) < q(ωj;σ) < Φ(1) for any strategy and any

substate ωj, and note that the derivative of h(q) = q(1 − q) is bounded by some

L > 0 on the compact interval [Φ(0),Φ(1)]. These observations taken together

imply that

h(q(β2 ;σn))
∣∣∣h(q(α2 ;σn))

h(q(β2 ;σn)
− 1
∣∣∣ = |h(q(α2 ;σn))− h(q(β2 ;σn))| ≤ Lε2. (68)
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for all n. Since 0 < Φ(0) < q(α2 ;σn) < Φ(1) and h is inverse U-shaped with

maximum at 1
2
, this bound implies

h(q(α2 ;σn))

h(q(β2 ;σn)
≥ 1− L

h(q(β2 ;σn))n2
≥ 1− L

Mn2
(69)

for M = min (h(Φ(0)), h(Φ(1))) and all n. Now, (66) follows from (7).

Finally, since limn→∞(1− L
Mn2 )n = 1, (66) implies that

lim
n→∞

Pr(piv|α2;σn, πn)

Pr(piv|β2;σn, πn)
≥ 1. (70)

To see why limn→∞(1− L
Mn2 )n = 1, note that limn→∞(1− L

Mn2 )2n = limn→∞(1−
√
L√
Mn

)2n(1+
√
L√
Mn

)2n = e2
√

L
M e−2

√
L
M = e0 = 1 where we used limn→∞(1+ x

n
)n = ex.

This finishes the proof of Claim 3.
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Online Appendix

B Proof of the Condorcet Jury Theorem

Step 1 For all n and every equilibrium σ∗n, the vote share of A is larger in α than

in β,

0 < q(β;σ∗n, n) < q(α;σ∗n, n) < 1. (71)

This ordering of the vote shares follows from the likelihood ratio ordering of the

signals. In particular, recall the expression (8) for the posterior likelihood ratio of

two states conditional on a given voter’s signal s and the event that the voter is

pivotal,

Pr (α|s, piv;σ∗n, n)

1− Pr (α|s, piv;σ∗n, n)
=

Pr (α)

Pr (β)

Pr (piv|α;σ∗n, n)

Pr (piv|β;σ∗n, n)

Pr(s|α; πc)

Pr(s|β; πc)
, (72)

where Pr (piv|β;σ∗n, n) > 0 because σ∗n is nondegenerate by (2). Therefore, Pr(u|α;πc)
Pr(u|β;πc)

>
Pr(d|α;πc)
Pr(d|β;πc)

implies that Pr (α|u, piv;σ∗n, n) > Pr (α|d, piv;σ∗n, n). Now, (71) follows

from (15) and the monotonicity of Φ. Intuitively, the expected posterior in state

α is higher and this translates into a larger set of types preferring A given the

monotonicity of Φ.

Step 2 Voters cannot become certain of the state conditional on being pivotal,

that is, the inference from the pivotal event must remain bounded,

lim
n→∞

Pr (piv|α;σ∗n, n)

Pr (piv|β;σ∗n, n)
∈ (0,∞) , (73)

for every convergent subsequence in the extended reals.

Suppose not and suppose instead, for example, that conditional on being pivotal,

voters become convinced that the state is β, i.e., η = limn→∞
Pr(piv|α;σ∗n,n)
Pr(piv|β;σ∗n,n)

= 0. This

would imply limn→∞ Pr (α|s, piv;σ∗n, n) = 0 for s ∈ {u, d}. Then, given Φ (0) < 1
2
,

a strict majority would support B in both states. However, the election is then

closer to being tied in state α and voters would update toward state α conditional

on being pivotal, in contradiction to η = 0.

Formally, if η = 0 for some converging subsequence, then limn→∞ q(ω;σ∗n) =

Φ (0) < 1
2

for ω ∈ {α, β}. Therefore, for large enough n, (71) implies that

q(β;σ∗n) < q(α;σ∗n) < 1/2. Now, Claim 1 implies that voters update toward

state α, that is, Pr(piv|α;σ∗n,n)
Pr(piv|β;σ∗n,n)

≥ 1, in contradiction to η = 0.
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Step 3 In every equilibrium sequence (σ∗n)n∈N, the limit of the vote share of A is

larger in α than in β,

lim
n→∞

q(α;σ∗n) > lim
n→∞

q(β;σ∗n). (74)

From (73) and (72), we have that the limits of the posteriors conditional on being

pivotal and s ∈ {u, d} are interior and hence ordered,

0 < lim
n→∞

Pr (α|d, piv;σ∗n, n) < lim
n→∞

Pr (α|u, piv;σ∗n, n) < 1.

Now, (74) follows from (15) since Φ is strictly increasing.

Step 4 The election is equally close to being tied in expectation, that is, (22)

holds:

lim
n→∞

q(α;σ∗n)− 1

2
= lim

n→∞

1

2
− q(β;σ∗n).

Since voters must not become certain conditional on being pivotal by (73), Claim

2 requires that

lim
n→∞

∣∣∣∣q(α;σ∗n)− 1

2

∣∣∣∣ = lim
n→∞

∣∣∣∣q(β;σ∗n)− 1

2

∣∣∣∣ . (75)

Given the ordering of the limits of the vote shares from (74), the equation (75)

implies (22).

It follows from Step 4 and (74) that

lim
n→∞

q(α;σ∗n) >
1

2
> lim

n→∞
q(β;σ∗n).

Therefore, by the weak law of large numbers, A wins in state α with probability

converging to 1 as n → ∞ and B wins in state β with probability converging to

1 as n→∞. This proves Theorem 1.

Sketch of the proof of Theorem 1’. To see why the theorem is true, note

that, given the binary state, the signals can be taken to be ordered by the mono-

tone likelihood ratio, without loss of generality. For any fixed information structure

π and any equilibrium σ∗n, it then follows from (72) that the distribution of poste-

riors Pr(α|piv, s;σ∗n, π, n) in the state α (as implied by the distribution over s) first

order stochastically dominates the distribution of posteriors Pr(α|piv, s;σ∗n, π, n)

in the state β. Then, given that Φ is monotone, it follows from (15) that the vote

shares satisfy the ordering (71). From (71) onward none of the arguments use that

the signals are binary.
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By the same line of argument, Theorem 1 holds even when we allow the informa-

tion structure πn with a single substate to vary with n (keeping the signal set S

fixed), as long as the limit information structure is not completely uninformative.

C Monopolistic Persuasion

C.1 Numerical Example

Note that one example of a distribution G on [0, 1]× [−1, 0] that induces a uniform

distribution of ‘thresholds of doubt’, i.e. Φ with Φ(p) = p for all p ∈ [0, 1] is given

by the density31

g(tα, tβ) =


√

1 + (
tβ
tα

)2
−1

· (2 ·
∫
|tα|>|tβ |

√
1 + (

tβ
tα

)2
−1

dt)−1 if
−tβ
tα−tβ

≤ 1
2
,√

1 + ( tα
tβ

)2
−1

· (2 ·
∫
|tα|>|tβ |

√
1 + (

tβ
tα

)2
−1

dt)−1 if
−tβ
tα−tβ

≥ 1
2
.

We utilize the following auxiliary result.

Lemma 2 Consider any sequence of strategies (σn)n∈N and any sequence of in-

formation structures (πn)n∈N with a common set of substates across n. Then, for

any substates ωi, ω
′
j ∈ {α1, . . . , αNα} ∪ {β1, . . . , βNβ} and any n ∈ N,

Pr(piv|ωi;σn, πn)

Pr(piv|ω′j;σn, πn)
=
[
1 +

(q(ω′j;σ
p)− 1

2
)2 − (q(ωi;σ

p)− 1
2
)2

1
4
− (q(ω′j;σ

p)− 1
2
)2

]n
(76)

Proof. Let xn = q(ωi;σn)− 1
2

and yn = q(ω′j;σn)− 1
2
. Then,

q(ωi;σn)(1− q(ωi;σn))

q(ω′j;σn)(1− q(ω′j;σn))
=

(1
2

+ xn)(1
2
− xn)

(1
2

+ yn)(1
2
− yn)

=
1
4
− y2

n + y2
n − x2

n
1
4
− y2

n

= 1 +
y2
n − x2

n
1
4
− y2

n

The claim follows from (8).

Fixed Point Argument.

31To see why, note that for each t >> 0, d(t) =
[√

1 + ( tαtβ )2
]

is the length of the indifference

plane of t. By setting the density of types proportional to 1
d(t) , integrating over each indifference

plane gives the same number such that types are uniformly distributed across indifference planes.
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Consider a belief p = (pa, pz) with

pa ≥ 0.95, (77)

pz ∈ [0.32, 0.68]. (78)

Consider the information structure π̃rn from Figure 4. Then, we have the following

bounds for n ≥ 7:

q(ω1;σp, n) ≥ 0.95 for ω1 ∈ {α1, β1}, (79)

q(α2;σp, n) > 0.3 (80)

q(β2;σp, n) ≤ 0.7. (81)

In the following, we omit the dependence on σp and on πn most of the time.

Step 1 For any n ∈ N and any ω1 ∈ {α1, β1}, ω′2 ∈ {α2, β2},

Pr(piv|ω′2)

Pr(piv|ω1)
≥ (4.4)n (82)

Indeed,

Pr(piv|ω′2)

Pr(piv|ω1)

≥ [1 + min
ω1,ω′2

(q(ω1;σp)− 1
2
)2 − (q(ω′2;σp)− 1

2
)2

1
4
− (q(ω1;σp)− 1

2
)2

]n

≥ (1 + (
( 9

20
)2 − ( 4

20
)2

1
4
− ( 9

20
)2

))

≥ (1 +
65

19
)n

≥ (4.42)n. (83)

where we used Lemma 2 for the inequality on the second line.

Step 2 For n ≥ 7: ρa(σ
p) ≥ 0.95, and ρz(σ

p) ∈ [0.32, 0.68].

First,

ρa(σ
p)

1− ρa(σp)
≥ p0

1− p0

Pr(α2|α) Pr(b|α2) Pr(piv|α2)

Pr(β1|β) Pr(b|β1) Pr(piv|β1)

≥ 1

2

2
n

1
n2

(1− 1
n
)
(4.42)n

≥ 82 for n ≥ 7.
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where we used (83) for the inequality on the second line. Hence, for n ≥ 7,

ρ(σp)a ≥
82

83
> 0.95. (84)

Second,

Pr(piv|α2)

Pr(piv|β2)
≤ [1 +

|(q(β2;σp)− 1
2
)2 − (q(α2;σp)− 1

2
)2|

1
4
− (q(β2;σp)− 1

2
)2

]n

≤ (1 +
1
n4 + 1

n2

1
4
− 16

400

)n

≤ 2. for n ≥ 7.

where we used Lemma 2 for the inequality on the first line. For the inequality

on the second line, we used that z is sent with probability 1 − 1
n2 in both α2

and β2 such that the difference in the squared margins of victory cannot exceed

(x+ 1
n2 )2 − x2 ≤ 2x

n2 + 1
n4 where x is the minimum margin of victory in the states

α2, β2. Finally, the inequality follows since the margin of victory in both α2 and

β2 is bounded by 0.2. So,

ρz(σ
p)z

1− ρz(σp)
=

Pr(α)

Pr(β)

Pr(α2|α)

Pr(β2|β)

Pr(z|α2)

Pr(z|β2)

Pr(piv|α2)

Pr(piv|β2)

= (1− 1

n2
)
Pr(piv|α2)

Pr(piv|β2)

≤ 2 for n ≥ 7.

Consequently, for all n ≥ 7,

ρ(σp)z ≤
2

3
. (85)

Third,

Pr(piv|α2)

Pr(piv|β2)
≥ (1−

|(q(β2;σp)− 1
2
)2 − (q(α2;σp)− 1

2
)2|

1
4
− (q(β2;σp)− 1

2
)2

≥ (1−
1
n4 + 1

n2

1
4
− 16

400

)n

≥ 0.48 for n ≥ 7. (86)
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So, for all n ≥ 7,

ρ(σp)z
1− ρ(σp)z

= (1− 1

n2
)
Pr(piv|α2;σp)

Pr(piv|β2;σp)
≥ 0.471.

This gives for all n ≥ 7,

ρ(σp)z ≥
0.471

1 + 0.471
≥ 0.32. (87)

The claim follows from (84), (85)), and (87).

Step 3 For n ≥ 7, there is an equilibrium σ∗n which satisfies (79) - (81).

It follows from Step 2 that, for any n ≥ 7, the continuous map that sends p to

ρ(σp) is a self-map on the set of beliefs that satisfy (77) - (78). It follows from the

Kakutani fixed point theorem that there exists fixed points p∗n that satisfy (77) -

(78). The corresponding strategies σp∗n are equilibria (compare to (13)) and they

satisfy (79) - (81).

Step 4 Given the equilibrium σ∗n for n ≥ 7, the probability that A is elected is

larger than 80%.

Evaluation of the binomial distribution shows that Pr(B(2n + 1, x)) > n) ≥
0.999999 if n ≥ 7 and x ≥ 0.95. Hence, given σ∗n, A is elected with probabil-

ity larger than 99.9% in the states α1 and β1. Finally, the claim follows since the

probability of the substate being α1 or β1 is Pr(α)(1− r
1−r

1
n
)+Pr(β)(1− 1

n
), which

is larger than 0.8 when n ≥ 7, given that Pr(α) = 1
3

and r = 2
3
. The fourth step

finishes the calculations for the example.

C.2 Proof of Lemma 1

C.2.1 Preliminaries: Voter Inference

The basic arguments of the previous discussion of the voters’ inference from Section

4.2.2 extend to the general case.

Consider the signal z and the inference about the relative likelihood of α2

and β2. As in Claim 3, for any strategy used by the other voters, the pivotal

event contains no information about the relative probability of α2 and β2 as the

electorate grows large.
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Claim 7 Given any parameters (x, r, y) ∈ [0, 1]3 and any sequence of strategies

(σn)n∈N,

lim
n→∞

Pr(piv|α2;σn, π
x,r,y
n )

Pr(piv|β2;σn, π
x,r,y
n )

= 1. (88)

The arguments from the proof of the analogous Claim 3 hold verbatim with the

required changes in notation; therefore, the proof is omitted. Claim 7 and (42)

imply, in particular, that

lim
n→∞

Pr(α|z, piv;σn, π
x,r,y
n )

Pr(β|z, piv;σn, π
x,r,y
n )

=
Pr(α)

Pr(β)

r

1− r
. (89)

Next, we consider a signal s ∈ {a, b} and the voters’ inference about the relative

likelihood of α and β. We show that, analogous to Claim 4, for this signal, the

inference from the signal is dominated by the inference from being pivotal if the

election is closer to being tied in states α2 and β2 than in the states α1 and β1.

Claim 8 Take any sequence of strategies (σn)n∈N such that

lim
n→∞

max
ω2∈{α2,β2}

|q(σn;ω2, π
x,r,y
n )− 1

2
|

< lim
n→∞

min
ω1∈{α1,β1}

|q(σn;ω1, π
x,r,y
n )− 1

2
|; (90)

then, for s ∈ {a, b},

lim
n→∞

Pr({α2, β2}|s, piv;σn, π
x,r,y
n )

Pr({α1, β1}|s, piv;σn, π
x,r,y
n )

=∞. (91)

The claim follows from the same arguments as Claim 4, and we omit this proof as

well.

For any sequence of strategies that satisfies (90), Claims 7 and 8 imply that,

for signal a,32

lim
n→∞

Pr(α|a, piv;σn, π
x,r,y
n )

Pr(β|a, piv;σn, π
x,r,y
n )

=
Pr(α2|{α2, β2}, a;σn, π

x,r,y
n )

Pr(β2|{α2, β2}, a;σn, π
x,r,y
n )

=
Pr(α)

Pr(β)

r

1− r
x

1− x
(92)

32Recall the convention 1
0 = ∞, such that, for x = 1, the following equalities hold in the

extended reals.
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and that for signal b,

lim
n→∞

Pr(α|b, piv;σn, π
x,r,y
n )

Pr(β|b, piv;σn, π
x,r,y
n )

=
Pr(α2|{α2, β2}, b;σn, πx,r,yn )

Pr(β2|{α2, β2}, b;σn, πx,r,yn )

=
Pr(α)

Pr(β)

r

1− r
y

1− y
. (93)

C.2.2 Implementable Beliefs

We use that an equilibrium is equivalently characterized by a vector of beliefs,

p∗ = (p∗a, p
∗
z, p
∗
b) such that p∗ = ρ

(
σp∗
)
; see (13). Take any δ > 0 and let

Bδ =
{
p ∈ [0, 1]3 | |p− (µα, r

′, µβ)| ≤ δ
}

, (94)

so that Bδ is the set of beliefs at most δ away from (µα, r
′, µβ).

We show that Claim 7 and 8 imply that there is a large set of belief triples

(µα, r
′, µβ) such that, given σp, the posterior conditional on being pivotal is again

in Bδ, for any p ∈Bδ, any sufficiently small δ and any sufficiently large n.33

Claim 9 Let (µα, µβ) ∈ [0, 1]2 and r′ ∈ (0, 1) with

|Φ(µα)− 1

2
| > |Φ(r′)− 1

2
| and |Φ(µβ)− 1

2
| > |Φ(r′)− 1

2
|. (95)

For any δ > 0 small enough, there exists n(δ) such that for all n ≥ n(δ),

∀p ∈Bδ : ρ (σp; πx,r,yn , n) ∈ Bδ (96)

for (x, r, y) being the solutions to Pr(α)
Pr(β)

r
1−r

x
1−x = µα

1−µα , Pr(α)
Pr(β)

r
1−r

y
1−y =

µβ
µβ

, and
Pr(α)
Pr(β)

r
1−r = r′

1−r′ .

Proof. Let πn = πx,r,yn . Take any p ∈ Bδ and consider the corresponding strategy

σp. The condition (95) implies that for δ small enough, the election is closer to

being tied in the states α2 and β2 than in the states α1 and β1 in expectation as

n→∞:

∀p ∈Bδ: lim
n→∞

max
ω2∈{α2,β2}

|q(ω2;σp, πn)− 1

2
|

< lim
n→∞

min
ω1∈{α1,β1}

|q(ω1;σp, πn)− 1

2
|. (97)

33In the following, we use the convention that dividing by zero yields a result of infinity such

that formulas like Pr(α)
Pr(β)

r
1−r

x
1−x = µα

1−µα make sense for µα ∈ {0, 1}.
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To see why, note that for n large enough, q(α2;σp, πn) ≈ Φ (pz) and q(β2;σp, πn) ≈
Φ (pz) since almost all voters receive z in α2 and β2. Also, q(α1;σp, πn) = Φ (pa)

since all voters receive a in α1 and q(β1;σp, πn) = Φ (pb) since all voters receive

b in β1. In addition, by the continuity of Φ, for δ small enough, we have that

Φ (pz) ≈ Φ (r′), Φ (pa) ≈ Φ (µα) and Φ (pb) ≈ Φ (µβ). Finally, (97) follows then

from Φ (r̂) = 1
2

and Φ (µω) 6= 1
2

for ω ∈ {α, β}. Now, it follows from (97), Claim

8, and its implications (92) and (93) that

lim
n→∞

ρa (σp; πn, n) = µα, (98)

lim
n→∞

ρb (σp; πn, n) = µβ. (99)

for any δ > 0 small enough. Thus, the claim follows from (89), (98) and (99).

We finish the proof of Lemma 1. Let r = Pr(α)r̂
Pr(α)r̂+(1−Pr(α))(1−r̂) with Φ(r̂) = 1

2
;

see (40). Take any (µα, µβ) with Φ(µα) 6= 1
2

and Φ(µβ) 6= 1
2
. Then, given Claim

9, ρ(σp) is a self-map on Bδ for δ small enough and n ≥ n(δ). Since ρ(σp) is

continuous in p, it follows from Kakutani’s theorem that there exists a fixed point

p∗n ∈ Bδ for all n large enough, i.e., p∗n = ρ(σp∗n) and the corresponding behavior

σp∗n forms a sequence of equilibria. Lemma 1 follows from (98) and (99).

C.3 Proof of Proposition 2

We provide the proof for the constant target policyA in both states, i.e., (x(α), x(β)) =

(A,A). Let the sender use the information structures πn = πx,r,yn with x = y = 1

and r = 1
2
. It follows from Claim 9 that, for any Φ for which (49) and (50) hold,

there is a δ small enough such that ρ(σp) is a self-map on Bδ = {p ∈ [0, 1]3 :

|p− (1,Pr(α), 1)| ≤ δ} for all n large enough.

Since ρ(σp) is continuous in p, it follows from Kakutani’s theorem that there

exists a fixed point p∗n ∈ Bδ for all n large enough, i.e., p∗n = ρ(σp∗n) and the

corresponding behavior σp∗n forms a sequence of equilibria that implements the

beliefs (µα, µβ) = (1, 1). Given (σp∗n)n∈N, the policy A wins in both states; this

follows since voters with an a and b-signal are supporting A with a probability

converging to Φ(1) > 1
2

and from the weak law of large numbers. The other cases

are analogous. This finishes the proof of the lemma.
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C.4 Proof of Proposition 3 (Basin of Attraction)

Recall that for any strategy σ, the distance between the margin of victory in α2

and β2 is smaller than 2
n2 in expectation since the probability that a voter receives

the signal z is at least 1 − 2
n2 in both the substates. Now, consider any belief

p ∈ [0, 1]3 such that under the corresponding strategy σp the margins of victory

differ by at least δ > 0 for any other pair of substates. The theorem follows from

the following claim: we show that for any such belief p, the twice-iterated response

is δ-close to the manipulated equilibrium when n is large enough.

Claim 10 Take any beliefs (µα, µβ) ∈ [0, 1]2 with Φ(µα) 6= 1
2

and Φ(µβ) 6= 1
2

and

the corresponding information structures (πx,r,yn ) from Lemma 1.

For any δ > 0, there exists n̄ ∈ N s.t., for any p ∈ [0, 1]3 for which∣∣∣|q(ωi, σp, πn)− 1

2
| − |q(ω′j, σp, πn)− 1

2
|
∣∣∣ > δ, (100)

for all ωi ∈ {α1, α2, β1, β2} and ω′j ∈ {α1, β1} with ωi 6= ω′j, it holds that, for

n ≥ n̄,

|ρ2 (p)− (µα, r̂, µβ) | < δ. (101)

The claim implies Proposition 3 because δ can be chosen arbitrarily small.

Proof. Take any p ∈ [0, 1]3 such that (100) holds and consider the corresponding

behavior σp. Denote the best response to σp by σ̃ = σρ(σp;πn,n) and let πn = πx,r̂,yn

with x = µα and y = µβ. The critical step is to show that σ̃ satisfies (90), i.e., the

expected margin of victory in the states α1 and β1 is larger than in the states α2

and β2. We show one part of (90), namely,

lim
n→∞

max
ω2∈{α2,β2}

|q(σ̃;ω2, πn)− 1

2
| < lim

n→∞
|q(σ̃;α1, πn)− 1

2
|. (102)

The proof for the second part, the analogous statement where we replace α1 by β1,

is verbatim with the required changes in notation. To prove (102), we distinguish

two cases.

Case 1 limn→∞ |q(σp;ω2, πn)− 1
2
| < limn→∞ |q(σp;α1, πn)− 1

2
|.

Given (100), the difference is at least δ. Since almost all voters receive signal z in

α2 and β2, the expected vote shares in α2 and β2 differ by much less than δ
2

for n

large enough. So, the expected margin of victory in α1 is larger than the expected
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margin of victory in both α2 and β2 for n large enough. It follows from Claim 2

that for any ω2 ∈ {α2, β2} for which Pr(a|ω2; πn, n) > 0,

lim
n→∞

Pr (ω2|piv, a;σp, πn)

Pr (α1|piv, a;σp, πn)
=∞. (103)

Since all voters receive a in α1, it holds q(α1; σ̃, πn) = Φ(ρa(σ
p)). Since almost

all voters receive z in α2 and β2 (see Figure 5), it holds q(α2; σ̃, πn) ≈ Φ(ρz(σ
p))

and q(β2; σ̃, πn) ≈ Φ(ρz(σ
p)). It follows from (103) and Claim 7, which says that

conditional on α2 and β2, there is nothing to be learned from the pivotal event,

that, when a voter observes signal a, the inference from the signal probabilities

in the states α2 and β2 pins down the limits of the beliefs conditional on being

pivotal,

lim
n→∞

Pr(α|a, piv;σp, πn) = lim
n→∞

Pr(α|a, {α2, β2};σp, πn)

= µα; (104)

compare to (92). Finally, (102) follows from (104) and (89) together with Φ(µα) 6=
1
2

and Φ(r̂) = 1
2
. This finishes the first case.

Case 2 limn→∞ |q(σp;ω2, πn)− 1
2
| > limn→∞ |q(σp;α1, πn)− 1

2
|

Given (100), the difference is at least δ. Since almost all voters receive signal z in

α2 and β2 (see Figure 5), the expected vote shares in α2 and β2 differ by much less

than δ
2

for n large enough. So, the expected margin of victory in α1 is smaller than

the expected margin of victory in both α2 and β2 for n large enough. It follows

from Claim 2 that for ω2 ∈ {α2, β2},

lim
n→∞

Pr (piv|α1;σp, πn)

Pr (piv|ω2;σp, πn)
=∞. (105)

Therefore,

lim
n→∞

ρa(σ
p; πn, n)

1− ρa(σp; πn, n)

≥ lim
n→∞

Pr(α) Pr(α1|α) Pr(a|α1) Pr (piv|α1;σp, πn)∑
j=1,2 Pr(β) Pr(βj|β) Pr(a|βj) Pr(piv|βj, a;σp, πn)

,

=
Pr(α)

Pr(β)

(1− r
n2 )

(1− r) 1
n

1

(1− x) 1
n2

Pr (piv|α1;σp, πn)

Pr (piv|β2;σp, πn)

= ∞, (106)
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where the equality on the third line follows since the probability of signal a is zero

in β1 and where we used (105) for the equality on the last line.

We will show now that (106) implies (102): to see why, recall that for n large

enough, q(α2; σ̃, πn) ≈ Φ(ρz(σ
p; πn, n)) and q(β2; σ̃, πn) ≈ Φ(ρz(σ

p; πn, n)) since

almost all voters receive z in α2 and β2. Also, q(α1; σ̃, πn) = Φ(ρa(σ
p; πn, n))

since all voters receive a in α1. In addition, we have that ρz(σ
p; πn, n) ≈ r̂ by (89)

and ρa(σ
p; πn, n) ≈ 1 by (106). Finally, (102) follows since Φ(r̂) = 1

2
and since

Φ(1) 6= 1
2
. This finishes the second case.

Now, we finish the proof of Claim 10. Since we just showed that, given σ̃ =

σρ(σp;πn,n), the expected margin of victory in α1 and β1 is larger than in α2 and

β2, it follows from Claim 8 that

lim
n→∞

Pr ({α2, β2}|piv, s; σ̃, πn, n)

Pr ({α1, β1}|piv, s; σ̃, πn, n)
=∞ (107)

for any s ∈ {a, b}. It follows from (107) and Claim 7, which says that conditional

on α2 and β2, there is nothing to be learned from the pivotal event, that, given σ̃;

when a voter observes signal a, the inference from the signal probabilities in the

states α2 and β2 pins down the limits of the beliefs conditional on being pivotal,

such that (92) and (93) hold for σn = σ̃. This, together with (89) yields Claim 10.

D Persuasion of Privately Informed Voters

This section proves the following lemma that shows the “implementability” of a

large set of beliefs by an appropriate choice of (x, r, y) ∈ (0, 1)3.

Lemma 3 Take any exogenous private signals πc of the voters satisfying (20) and

any strictly increasing Φ. There exist 0 < λα < λ < λβ < 1 such that, for any

(µα, µβ) ∈ [0, 1]2 satisfying µα /∈ [λα, λ] and µβ /∈ [λ, λβ], when (x, y) ∈ [0, 1]2 are

given by

xλ

xλ+ (1− x) (1− λ)
= µα, (108)

yλ

yλ+ (1− y) (1− λ)
= µβ, (109)
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and r ∈ (0, 1), there exists a sequence of equilibria (σ∗n) given πx,r,yn such that

lim
n→∞

Pr (α|piv, s2 = a;σ∗n) = µα, (110)

lim
n→∞

Pr (α|piv, s2 = z;σ∗n) = λ, (111)

lim
n→∞

Pr (α|piv, s2 = b;σ∗n) = µβ. (112)

In particular, µα ∈ {0, 1} and µβ ∈ {0, 1} satisfy the conditions of the lemma.

This implies Theorem 4.

D.1 Preliminaries

We provide a compact representation of equilibrium as a belief vector, similar to

before in (13). Given any strategy σ′ used by the others, the vector of posteriors

conditional on piv and the additional signal s2 ∈ S2 is denoted as

ρ̂(σ′; π, n) = (Pr(α|s2, piv;σ′, π))s2∈S2 , (113)

and called the vector of induced priors.34 It follows from the independence of

the additional information and the exogenous information πc that the vector of

induced priors pins down the full vector of the critical beliefs: for any s2 ∈ S2 and

any s1 ∈ {u, d},

Pr(α|s1, s2, piv;σ′, π) =
ρ̂s2(σ

′; π, n) Pr(s1|α)

ρ̂s2(σ
′; π, n) Pr(s1|α) + (1− ρ̂s2(σ′; π, n)) Pr(s1|β)

. (114)

Recall that the vector of beliefs (Pr(α|s1, s2, piv;σ′, π))(s1,s2)∈{u,d}×S2 is a sufficient

statistic for the unique best response to σ′ for all types; see (11). Hence, the

vector of induced priors pins down the best response for all types. Slightly abusing

notation, for any p = (pa, pz, pb) ∈ [0, 1]3, we let σp be the unique strategy that is

optimal given the induced prior p, i.e., when a voter with signal (s1, s2) believes

the probability of α is

ps2 Pr(s1|α)

ps2 Pr(s1|α) + (1− ps2) Pr(s1|β)
. (115)

34We adopt the terminology from Bhattacharya (2013).
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Figure 8: The function q̂(α; p, πc) of the implied vote share in state α and the
function q̂(β; p, πc) of the implied vote share in state β given an induced prior
p ∈ (0, 1).

Equilibrium can be equivalently characterized by a vector of induced priors p∗ =

(p∗a, p
∗
z, p
∗
b) such that

p∗ = ρ̂(σp∗ ; π, n); (116)

as before; see (13).

For any induced prior p ∈ (0, 1),

q̂(ω; p, πc) =
∑

s1∈{u,d}

Pr(s1|ω; πc)Φ(
pPr(s1|α)

pPr(s1|α) + (1− p) Pr(s1|β)
), (117)

is the probability that a voter with induced prior p draws a type t and a signal

s1 ∈ S1 for which she votes for the outcome A in state ω. Figure 8 illustrates the

functions q̂(ω; p, πc).
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Since Φ is continuous and strictly increasing, it follows from (17) and the

intermediate value theorem that there exists a unique belief λ such that the implied

vote shares satisfy

q̂(α;λ, πc)− 1

2
=

1

2
− q̂(β;λ, πc); (118)

see Figure 8. Let M = q̂(α;λ, πc)− 1
2
.

The boundaries λα and λβ are such that all beliefs outside the intermediate

intervals [λα, λ] and [λ, λβ] imply margins of victory that are larger than the ones

implied by λ in any state ω ∈ {α, β}, i.e., larger than M . Formally, λα and λβ

are given by

q(α;λα, π
c) = q(β;λ, πc), (119)

q(β;λβ, π
c) = q(α;λ, πc). (120)

Figure 8 illustrates the boundaries λα and λβ. For a belief p > λβ,

q̂ (β; p,π1)− 1

2
> M (121)

Similarly, for p > λ,

q̂ (α; p,π1)− 1

2
> M (122)

Note that when the exogenous information πc of the voters becomes revealing

(the signal likelihood ratios of d and u go to 0 and ∞, respectively), then

λα → 0, and λβ → 1. (123)

D.2 Proof of Claim 6

The Claim 6 in the main text is stated for the information structure πr. Claim 11

below shows the analogous statement for the information structure πx,r,y, noting

(125). The same arguments imply Claim 6, and we will therefore omit its proof.

D.3 Voter Inference

We show that, when the sender provides additional information (πx,r,yn )n∈N, the

induced prior after z—and thereby the margin of victory in the states α2 and

β2—is the same across all equilibrium sequences and determined uniquely by the

exogenous information πc of the voters.
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Claim 11 Suppose the additional information is given by (πx,r,yn )n∈N for some

(x, y) ∈ [0, 1]2 and r ∈ (0, 1), and consider the induced sequence (πn)n∈N of inde-

pendent expansions of πc. For any equilibrium sequence (σ∗n) given (πn),

lim
n→∞

ρ̂z(σ
∗
n, πn, n) = λ. (124)

Proof. The key idea is that, for any equilibrium sequence (σ∗n)n∈N, the election is

equally close to being tied in expectation in α2 and β2 as n→∞.

lim
n→∞

q(σ∗n;α2, πn)− 1

2
= lim

n→∞

1

2
− q(σ∗n; β2, πn), (125)

by arguments similar to those from the proof of the CJT; see (22).

Since almost all voters receive z in α2 and β2, the expected vote share in

these states converges to the vote share implied by the induced prior after z; for

ω2 ∈ {α2, β2},

lim
n→∞

q(σ∗n;ω2, πn) = lim
n→∞

q̂(ω; ρ̂z(σ
∗
n; πn, n), πc). (126)

Recall that λ is the unique induced prior such that the margins of victory are

equal given the implied vote shares; see (118). So, (125) and (126) imply the

claim, (124). It remains to show (125).

Step 1 For all n and every equilibrium σ∗n, voters with a (z, u)-signal are more

likely to vote A than voters with a (z, d)-signal when n is large enough, i.e.

Φ(ρz,u(σ
∗
n)) > Φ(ρz,d(σ

∗
n)). (127)

This ordering follows from the likelihood ratio ordering of the signals u and d, i.e.,
Pr(u|α;πc)
Pr(u|β;πc)

> Pr(d|α;πc)
Pr(d|β;πc)

, and the independence of πx,r,yn and πc. Using (115), we have

Pr (α|z, u, piv;σ∗n, πn, n) > Pr (α|z, d, piv;σ∗n, πn, n). Now, (127) follows from the

monotonicity of Φ.

Step 2 For all n and every equilibrium σ∗n, the vote share of A is at most 1
n2

smaller in α2 than in β2,

q(α2;σ∗n)− q(β2;σ∗n) ≥ − 1

n2
(128)

For signals (a, b), the ordering may be the reverse of (127). However, in α2 and

β2, the likelihood that a voter does not receive signal z is smaller than 1
n2 . So, this
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follows from (15), given (20) and (127).

Step 3 For every equilibrium sequence (σ∗n),

lim
n→∞

ρ̂z(σ
∗
n; πn, n) /∈ {0, 1}. (129)

We have

ρ̂z(σ
∗
n; πn, n)

1− ρ̂z(σ∗n; πn, n)
=

Pr(α)

Pr(β)

Pr(α2|α; πn)

Pr(β2|β; πn)

Pr(piv|α2;σ∗n, πn, n)

Pr(piv|β2;σ∗n, πn, n)
. (130)

Suppose that limn→∞ ρ̂z(σ
∗
n; πn, n) = 0. We show that this implies

lim
n→∞

Pr(piv|α2;σ∗n, πn, n)

Pr(piv|β2;σ∗n, πn, n)
≥ 1; (131)

a contradiction. Since almost all voters receive z in α2 and β2 and since Φ(0) < 1
2
,

the hypothesis limn→∞ ρ̂z(σ
∗
n; πn, n) = 0 implies that

lim
n→∞

q(α2, σ
∗
n) = lim

n→∞
q(β2, σ

∗
n) <

1

2
. (132)

Recall that Φ(0) < q(ωj;σ) < Φ(1) for any strategy and any substate ωj and

note that the derivative of h(q) = q(1 − q) is bounded below by some Lipschitz

constant L > 0 on the compact interval [Φ(0),Φ(1)]. Hence, (128) implies

h(q(β2, σ
∗
n))(

h(q(α2, σ
∗
n))

h(q(β2, σ∗n))
− 1) = h(q(α2, σ

∗
n))− h(q(β2, σ

∗
n)) ≥ − L

n2
. (133)

Recall that the function h(q) = q(1 − q) is inverse U -shaped with a peak at

q = 1
2

and note that it follows from (17) and Φ being strictly increasing that

0 < Φ(0) < 1
2

and Φ(1) > 1
2
. Since Φ(0) < q(β2;σ∗n) < Φ(1),

h(q(α2, σ
∗
n))

h(q(β2, σ∗n))
≥ 1− L

h(q(β2 ;σn))n2
≥ 1− L

Mn2
(134)

forM = min (h(Φ(0)), h(Φ(1))) and all n. It follows from (7) that Pr(piv|α2;σ∗n,πn,n)
Pr(piv|β2;σ∗n,πn,n)

≥
(1 − L

Mn2 )n. Now, (131) follows since limn→∞(1 − L
Mn2 )n = 1; see the analo-

gous argument at the end of the proof of Claim 3. A similar argument excludes

limn→∞ ρ̂z(σ
∗
n; πn, n) = 1 (using the analogous bound to (128)). This finishes the

proof of the step.

Step 4 In every equilibrium sequence (σ∗n)n∈N, the limit of the vote share of A is
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larger in α2 than in β2,

lim
n→∞

q(α2;σ∗n) > lim
n→∞

q(β2;σ∗n). (135)

Since almost all voters receive z in α2 and β2, we have

lim
n→∞

q(α2;σ∗n) = lim
n→∞

q̂(α; ρ̂z(σ
∗
n, πn, n)), (136)

lim
n→∞

q(β2;σ∗n) = lim
n→∞

q̂(β; ρ̂z(σ
∗
n, πn, n)). (137)

From (129), the limits of the posteriors conditional being pivotal, the signal z and

the signals s ∈ {u, d} are interior, and hence, strictly ordered,

0 < lim
n→∞

Pr (α|z, d, piv;σ∗n, πn, n) < lim
n→∞

Pr (α|z, u, piv;σ∗n, πn, n) < 1. (138)

Now, (135) follows from (136), (137), and (117), given (20), (138), and since Φ is

strictly increasing.

We now finish the proof of Claim 11. It follows from (129) that voters must

not become certain conditional on being pivotal and the substate being α2 or β2,

i.e., limn→∞ Pr(α|{α2, β2}, piv;σ∗n, πn) /∈ {0, 1}. Hence, Claim 2 requires that

lim
n→∞

∣∣∣∣q(α2;σ∗n)− 1

2

∣∣∣∣ = lim
n→∞

∣∣∣∣q(β2;σ∗n)− 1

2

∣∣∣∣ . (139)

Given the ordering of the limits of the vote shares from (135), the equation (139)

implies (125). As noted, this completes the proof of Claim 11.

Consider a voter who received an additional signal s2 ∈ {a, b}. The following

result shows that the inference from the signals is dominated by the inference from

the pivotal event if the election is closer to being tied in states α2 and β2 than in

the states α1 and β1. The arguments are analogous to the ones from the proof of

Claims 4 and 8; we therefore omit the proof.

Claim 12 Suppose that the additional information is given by (πx,r,yn )n∈N for some

(x, y) ∈ [0, 1]2 and r ∈ (0, 1), and consider the corresponding sequence (πn)n∈N of

independent expansions of πc. Take any sequence of strategies (σn)n∈N such that

lim
n→∞

min
ω1∈{α1,β1}

|q(σn;ω1, πn)− 1

2
| > lim

n→∞
max

ω2∈{α2,β2}
|q(σn;ω2, πn)− 1

2
|; (140)
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then, for any s ∈ {u, d} × {a, b},

lim
n→∞

Pr({α2, β2}|s, piv;σn, πn)

Pr({α1, β1}|s, piv;σn, πn)
=∞. (141)

Now, take any sequence of equilibria (σ∗n)n∈N that satisfies (140). Claim 12

implies that

lim
n→∞

Pr(α|a, piv;σ∗n, πn, n)

Pr(β|a, piv;σ∗n, πn, n)
= lim

n→∞

Pr(α2|a, piv;σ∗n, πn, n)

Pr(β2|a, piv;σ∗n, πn, n)
(142)

In the following formula, we omit the dependence on σ∗n and πn. Using Bayes’

rule,35

lim
n→∞

Pr(α2|a, piv)

Pr(β2|a, piv)
= lim

n→∞

Pr(α)

Pr(β)

Pr(α2|α)

Pr(β2|β)

Pr(a|α2)

Pr(a|β2)

Pr(piv|α2)

Pr(piv|β2)

= lim
n→∞

Pr(α|{α2, β2}, piv)

Pr(β|{α2, β2}, piv)

Pr(a|α2)

Pr(a|β2)
. (143)

Note that limn→∞ ρ̂z(σ
∗
n; πn, n) = limn→∞ Pr(α|{α2, β2}, piv;σ∗n, πn, n) such that

Claim 11 implies

lim
n→∞

Pr(α|{α2, β2}, piv;σ∗n, πn, n) = λ. (144)

Using (142), (143), (144), and the definition of the information structure πx,r,yn , we

conclude

lim
n→∞

Pr(α|a, piv;σ∗n, πn)

Pr(β|a, piv;σ∗n, πn)
=

x

1− x
λ

1− λ
. (145)

Similarly, for the additional signal b,

lim
n→∞

Pr(α|b, piv;σ∗n, πn, n)

Pr(β|b, piv;σ∗n, πn, n)
=

y

1− y
λ

1− λ
. (146)

D.4 Fixed Point Argument

In this section, we prove Lemma 3, using the observations from the preceding

section. Let us consider some belief µα /∈ [λα, λ] and some belief µβ /∈ [λ, λβ] with

λ, λα, and λβ given by (118), (119) and (120).

35As before, if x = 1, that is if Pr(a|β2) = 0, using the convention 1
0 = ∞, the following

equality holds in the extended reals.
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Recall from Section D.1 that equilibrium can be equivalently characterized by a

vector of beliefs p∗ = (p∗a, p
∗
z, p
∗
b) such that p∗ = ρ̂(σp∗ ; π, n); see (116). Now, take

any δ > 0 and let

Bδ =
{
p ∈ [0, 1]3 | |p− (µα, λ, µβ)| ≤ δ

}
.

Take any p ∈Bδ and the corresponding strategy σp. We define a constrained

best-response function as its “truncation” to Bδ:

ρ̂tra (σp) =


µα − δ if ρ̂a(σ

p) < µα − δ,

µα + δ if ρ̂a(σ
p) > µα + δ,

ρ̂a(σ
p) else.

(147)

The components ρ̂trz and ρ̂trb are defined in the analogous way. The function ρ̂tr(σp)

is continuous in p such that Kakutani’s theorem implies that ρ̂tr(σp) has a fixed

point p∗ ∈ Bδ.

Any fixed point p∗ of ρ̂tr is shown to be in the interior of Bδ when n is large

enough and δ is small enough, i.e., ρ̂tr(σp∗) = ρ̂(σp∗):

Claim 13 Consider any µα /∈ [λα, λ] and any µβ /∈ [λ, λβ]. Consider the sequence

of independent expansions (πn)n∈N of πc with additional information (πx,r,yn )n∈N

where µα = xλ
xλ+(1−x)(1−λ)

and µβ = yλ
yλ+(1−y)(1−λ)

and r ∈ (0, 1).

For any δ > 0 small enough, there exists n(δ) ∈ N such that for all n ≥ n(δ),

any fixed point of ρ̂tr is in the interior of Bδ.

Proof. Pick some p for which pz is on the boundary. We show p cannot be a fixed

point for n large enough and δ small enough. First, suppose pz = λ−δ. Then, given

σ and as n → ∞, the margin of victory in α2 is strictly smaller than the margin

of victory in β2, given the definition of λ; see (118). Hence, Claim 2 implies that

limn→∞
Pr(piv|α2;σp,πx,r,yn ,n)
Pr(piv|β2,σp,πx,r,yn ,n)

=∞. This implies, limn→∞ ρ̂z(σ
p; πx,r,yn , n) = 1. For any

n large enough this contradicts pz = λ− δ and so p is not a fixed point of ρ̂tr(σp).

In the same way we can exclude that pz = λ+δ for any n large enough. In general,

the same argument implies that, for n large enough, for any fixed point p∗,

ρ̂z(σ
p∗) ≈ λ. (148)

Given the assumptions on µα, µβ, we can choose δ > 0 small enough such that, for

any p ∈ Bδ and the corresponding behavior σp, the expected margins of victory
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in the states α2 and β2 are strictly smaller than the expected margins of victory

in the states α1 and β1, i.e., σp satisfies (140). Therefore, it follows from Claim

12 and (148) that (145) and (146) hold; hence, given the definition of ρ̂

ρ̂a(σ
p∗) ≈ µα, (149)

ρ̂b(σ
p∗) ≈ µβ. (150)

We conclude that any fixed point p∗ of ρ̂tr is interior when δ is small enough and

n is large enough.

Now, we finish the proof of Lemma 3. Note that the strategy σp∗ corresponding

to any interior fixed point p∗ of ρ̂tr is an equilibrium. Therefore, Claim 13 implies

the existence of a sequence of equilibria (σ∗n)n∈N for which (148), (149), and (150)

hold. This finishes the proof of Lemma 3.

E Media Markets: An Application

Recall the setting from Section 6.2. With probability 1− χ, the media firm sends

the message m = θ in α and m = −θ in β. With probability χ > 0, the media

firm sends a shifted message, m = θ − d in α and m = −θ − d in β for some

d 6= 0. Voters perceive the message m with noise, that is, each voter receives a

private signal s = m+ ε where ε is drawn independently from a standard normal

distribution. The information structure of the voters thus has four substates

ωi ∈ {α1, β1, α2, β2}, one for each of the four messages of the firm. Denote by

m(ωi) the message in substate ωj; we label the substates so that

m(ωi) =



θ if ωi = α1,

−θ if ωi = β1

θ − d if ωi = α2,

−θ − d if ωi = β2.

(151)

Theorem 5 Consider the setting from Section 6.2. Take any strictly increasing

Φ satisfying (17). Let d > 2θ. For every constant policy x ∈ {A,B}, there is a

sequence of equilibria (σ∗n)n∈N given d such that

lim
n→∞

Pr (x|σ∗n, d, n) ≥ 1− χ. (152)
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We provide the proof for x = A. The case x = B is analogous. Recall that

the collection of critical beliefs (Pr(α|s, piv;σ))s∈R is a sufficient statistic for the

best response; see (3) and (4). For the purpose of this proof, it will turn out

more convenient to conduct the analysis in the space of vectors of expected vote

shares (q(ωj;σ))ωj∈{α1,α2,β1,β2} rather than the space of critical beliefs.36 For any

strategy σ, the vector (q(ωj;σ))ωj∈{α1,α2,β1,β2} is a sufficient statistic for the pivotal

likelihood in each state, and therefore for Pr(α|s, piv;σ), for any s ∈ R. We con-

clude that the vote share vector is also a sufficient statistic for the best response.

Given some arbitrary vector of vote shares q, let p(q) = (Pr(α|s, piv;q)s∈R be the

collection of posteriors induced by q and σq = σp(q) the unique best response in

undominated strategies given p(q); compare to (12). A strategy σ∗ is an equi-

librium if and only if σ∗ = σq for q = (q(ωj;σ
∗))ωj∈{α1,α2,β1,β2}. Conversely, an

equilibrium can be described by a vector of vote shares q∗ that is a fixed point of

q→ q(ωj;σ
q)ωj∈{α1,α2,β1,β2}. (153)

Take δ > 0. For any q, we consider a constrained variant of the map (153),

denoted

ψ(q)→ q̂(ωj;σ
q)ωj∈{α1,α2,β1,β2} (154)

and defined sequentially across substates:

q̂(β2;σq) = min (
1

2
, q(β2;σq)),

q̂(α2;σq) = max (
1

2
, q(α2;σq)),

and

q̂(β1;σq) = max (q(β1;σq), q̂(α2;σq) + δ),

q̂(α1;σq) = max (q(α1;σq), q̂(β1;σq) + δ).

36This is because there are infinitely many critical priors, given that the distribution of the
signal s is continuous. In contrast, the vote shares vector q(ωj ;σ) is finite-dimensional. Further,
the best response is not necessarily cutoff strategies (in s, for fixed t) and working with vote
shares helps because it “integrates out”.
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By definition, ψ maps to the set of vectors q = (q(ωj))ω∈{α,β},j∈{1,2} satisfying

q(β2) ≤ 1

2
≤ q(α2), (155)

q(α2) + δ ≤ q(β1), (156)

q(β1) + δ ≤ q(α1) (157)

and we denote ψres
n its restriction to this domain, adding the subscript n for the

dependence on the electorate size. Note that ψres
n is a continuous self-map, such

that Kakutani’s fixed point theorem implies that it has a fixed point.

Proof of Theorem 5.

Step 1 For any sequence (qn)n∈N of fixed points of ψres
n ,

lim
n→∞

|qn(α2)− 1

2
| = lim

n→∞
|1
2
− qn(β2)|, (158)

and there is λ̄ ∈ (0, 1), so that for all s ∈ R

lim
n→∞

Pr(α|piv, s;qn, d, n)

Pr(β|piv, s;qn, d, n)
=

λ̄

1− λ̄
f(s|α2; d)

f(s|β2; d)
. (159)

Proof. It follows from the analogue of Claim 2 for the posteriors p(qn) and from

(155) - (157) that limn→∞
Pr(piv|{α2,β2};qn,d,n)
Pr(piv|{α1,β1};qn,d,n)

=∞. Hence,

lim
n→∞

Pr({α1, β1}|piv;qn, d, n) = 0. (160)

Denote by f(s|ωi; d) the density of the voter’s private signal s conditional on

the substate ωi. Given (160),

lim
n→∞

Pr(α|piv, s;qn, d, n)

Pr(β|piv, s;qn, d, n)
= lim

n→∞

Pr(α)

Pr(β)

Pr(α2|α)

Pr(β2|β)

Pr(piv|α2;qn, d, n)

Pr(piv|β2;qn, d, n)

f(s|α2; d)

f(s|β2; d)
.(161)

Recall that the substate ω2 in which the firm uses the slant −d has the same

probability in each state ω ∈ {α, β}, that is, Pr(α2|α)
Pr(β2|β)

= 1. Given (161),

lim
n→∞

Pr(α|piv, s;qn, d, n)

Pr(β|piv, s;qn, d, n)
=

λ

1− λ
f(s|α2; d)

f(s|β2; d)
, (162)

for λ
1−λ = limn→∞

Pr(α)
Pr(β)

Pr(piv|α2;s;qn,d,n)
Pr(piv|β2;s;qn,d,n)

.37

37We use the convention 1
0 =∞.
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Now, we show (158). Suppose that

lim
n→∞

|qn(α2)− 1

2
| > lim

n→∞
|1
2
− qn(β2)|. (163)

Claim 2 implies λ = 0. Together with (162), this implies

lim
n→∞

Pr(α|piv, s;qn, d, n) = 0 (164)

for all s ∈ R. Given (164), the vote shares of the best response satisfy limn→∞ q(β2;σqn) =

limn→∞ q(α2;σqn) = Φ(0). Since Φ(0) < 1/2 by assumption and since the con-

strained best response ψ restricts the vote shares in α2 to be weakly larger than

1/2, limn→∞ q̂(α2;σqn) = 1
2
. Since qn is a fixed point, qn(α2) = q̂(α2;σqn), so that

limn→∞ qn(α2)− 1
2

= 0, which yields a contradiction to (163).

Suppose that

lim
n→∞

|qn(α2)− 1

2
| < lim

n→∞
|1
2
− qn(β2)|. (165)

Claim 2 implies λ = 1. Together with (162), this implies

lim
n→∞

Pr(α|piv, s;qn, d, n) = 1 (166)

for all s ∈ R. Given (166), the vote shares of the best response satisfy limn→∞ q(β2;σqn) =

limn→∞ q(α2;σqn) = Φ(1). Since Φ(1) > 1/2 by assumption and since the con-

strained best response ψ restricts the vote shares in β2 to be weakly smaller than

1/2, limn→∞ q̂(β2;σqn) = 1
2
. Since qn is a fixed point, qn(β2) = q̂(β2;σqn), so that

limn→∞ qn(β2)− 1
2

= 0, which yields a contradiction to (165).

Now, we prove (159): Note that (159) follows from (162) if we establish that

λ /∈ {0, 1}. Suppose that λ = 0. We just gave an argument showing that this

implies limn→∞ qn(α2) = 1
2

and limn→∞ q(β2;σqn) = Φ(0). Since Φ(0) < 1/2

and since qn is a fixed point, qn(β2) = q(β2;σqn) when n is large. Altogether,

this implies limn→∞ |qn(β2) − 1
2
| > limn→∞ |qn(α2) − 1

2
|, a contradiction to (158).

Hence, λ 6= 0. Suppose that λ = 1. We just gave an argument showing that

this implies limn→∞ qn(β2) = 1
2

and limn→∞ q(α2;σqn) = Φ(1). Since Φ(1) > 1/2

and since qn is a fixed point, qn(α2) = q(α2;σqn) when n is large. Altogether,

this implies limn→∞ |qn(β2) − 1
2
| < limn→∞ |qn(α2) − 1

2
|, a contradiction to (158).

Hence λ 6= 1.
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Step 2 If m(ωj) > m(ωi): For any sequence (qn)n∈N of fixed points of ψres
n ,

limn→∞ q(ωj;σ
qn) > limn→∞ q(ωi;σ

qn).

Proof. Take a sequence of fixed points qn. In the following, sometimes we drop

the dependence on qn, d and n from the notation. Consider the limit vote shares

of the best response,

lim
n→∞

q(ωi;σ
qn) = lim

n→∞

∫
s∈R

Φ(Pr(α|piv, s;qn, d, n))f(s|ωi; d)ds,

for ωi ∈ {α1, β1, α2, β2}. We rewrite

lim
n→∞

q(ωi;σ
qn) =

∫
s∈R

lim
n→∞

Φ(Pr(α|piv, s;qn, d, n))f(s|ωi; d)ds,

=

∫
s∈R

Φ( lim
n→∞

Pr(α|piv, s;qn, d, n))f(s|ωi; d)ds, (167)

where we apply the dominated convergence theorem for the first equality and for

the second equality we use that Φ is continuous.Recall that the signal distributions

in the substates are normal distributions with the same variance and shifted mean.

In particular, f(s|ωi; d) = f(s + m(ωj) − m(ωi)|ωj; d) for substates ωi 6= ωj.

Therefore,

lim
n→∞

q(ωi) =

∫
s∈R

Φ( lim
n→∞

Pr(α|piv, s))f(s+m(ωj)−m(ωi)|ωj; d)ds

=

∫
s′∈R

Φ( lim
n→∞

Pr(α|piv, s′ −m(ωj) +m(ωi)))f(s′|ωj; d)ds′(168)

substituting s′ = s+m(ωj)−m(ωi). Now,

lim
n→∞

q(ωj) =

∫
s′∈R

Φ( lim
n→∞

Pr(α|piv, s′))f(s|ωj)ds′

>

∫
s′∈R

Φ( lim
n→∞

Pr(α|piv, s′ −m(ωj) +m(ωi)))f(s′|ωj)ds′ (169)

where the equality simply restates (167) and we claim that the inequality (169)

holds if m(ωj) > m(ωi). To see why (169) holds, recall (159), which says that there

is λ̄ ∈ (0, 1) so that limn→∞
Pr(α|piv,s′)
Pr(β|piv,s′)

= λ̄
1−λ̄

f(s|α2;d)
f(s|β2;d)

for all s′ ∈ R. The likelihood

ratio f(s|α2;d)
f(s|β2;d)

is strictly increasing in s since the mean of the normal in α2 is higher

than the mean of the normal in β2. Together, we obtain limn→∞ Pr(α|piv, s′) >

limn→∞ Pr(α|piv, s′−m(ωj)+m(ωi)) for all s′ ∈ R if m(ωj) > m(ωi). This implies
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the inequality (169) since we assumed that Φ is strictly increasing. Finally, (168)

and (169) together show limn→∞ q(ωj;σ
qn) > limn→∞ q(ωi;σ

qn).

Step 3 For any sequence (qn)n∈N of fixed points of ψres
n ,

lim
n→∞

q(α2;σqn) >
1

2
> lim

n→∞
q(β2;σqn). (170)

Proof. Suppose that limn→∞ q(α2;σqn) ≤ 1/2. Then, limn→∞ q̂(α2;σqn) = 1/2

by the definition of q̂. Given (151), m(α2) > m(β2), so that Step 2 implies

limn→∞ q(β2;σqn) < 1/2. But this means that (158) does not hold, , which cannot

be. Hence, limn→∞ q(α2;σqn) > 1/2. Similarly, suppose that limn→∞ q(β2;σqn) ≥
1/2. Then, limn→∞ q̂(β2;σqn) = 1/2. Since m(α2) > m(β2), Step 2 implies

limn→∞ q(α2;σqn) > 1/2. But this means that (158) does not hold, which cannot

be. Hence, limn→∞ q(β2;σqn) < 1/2.

Step 4 For any sequence (qn)n∈N of fixed points of ψres
n , there is n̄ ∈ N so that

for n ≥ n̄, the fixed point qn is interior.

Proof. The assumption d > 2θ implies θ − d < −θ so that the messages in the

substates are ordered as

m(β2) < m(α2) < m(β1) < m(α1), (171)

given (151). Applying Step 2,

lim
n→∞

q(β2;σqn) < lim
n→∞

q(α2;σqn) < q(β1;σqn) < q(α1;σqn). (172)

So, the limit vote shares differ pair-wise by at least some δ′ > 0. We claim that

δ′ > 0 does not depend on the bound δ > 0 in the definition of ψres
n , so that we can

choose δ < δ′/2. To see why, note that the limit vote share in ωi only depends on

λ̄, on the message m(ωi), and on the preference distribution Φ, given (162) and

(167). Further, λ̄ is fixed by the equal-margin condition (158). We conclude that

differences in the limit vote shares do not depend on δ.

The inequalities (172) and (170) together with the lower bound δ′ > 0 and δ <
δ′

2
imply that the vector of vote shares q(ωi;σ

qn) satisfies (155) - (157) when n is

large enough. Since qn is a fixed point of ψres
n , this implies that q(ωi;σ

qn) = qn(ωi)

for all ωi ∈ {α1, α2, β1, β2}, meaning that the fixed point of ψres
n is interior.

We finish the proof of Theorem 5. Take any sequence of fixed points (qn)n∈N of

ψres
n . Step 4 implies that the fixed point qn corresponds to an equilibrium σqn when
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n is sufficiently large. This shows the existence of an equilibrium sequence, and

this sequence satisfies (170) and (172). It follows from the law of large numbers

that policy A is elected with probability converging to 1 as n→∞ in each of the

sub-states α1, α2, and β1, which occur with a joint probability larger than 1− ψ.

This proves the claim (173) of Theorem 5.�

E.1 Multiple Media Firms

Theorem 6 Consider the setting from Section 6.3. Take any strictly increasing

Φ satisfying (17). Let d > 2θ. For every constant policy x ∈ {A,B}, there is a

sequence of equilibria (σ∗n)n∈N given d such that

lim
n→∞

Pr (x|σ∗n, d, n) ≥ 1− χ. (173)

The proof of Theorem 6 is almost verbatim to the proof of Theorem 5, and there-

fore omitted.

The key observation is that in the setting with multiple media firms, there are

still the four relevant substates from the setting with a monopolistic media firm

and we can work with the vector of vote shares in the same way as in the proof of

Theorem 5 for the monopolistic case. Additionally, we note that for each substate

ωi and pair s = (s1, s2),

f(s|ωi; d) = f(s1|ωi)f(s2|ωi; d)

since the signals s1 and s2 are independent conditional on the state; further, the

relevant substitution in the analogue of (168) is s′2 = s2 +m2(ωj)−m2(ωi). That

is, in the analogous step, we leverage that f(s2|ωi) = f(s2 +m2(ωj)−m2(ωi)|ωj),
which holds by the definition of the distribution of the private signal s2 in the

substates.

F Persuasion of Behavioral Types: Numerical

Example

Consider a belief p = (pa, pz) and the corresponding strategy σp. Consider the

information structure πn = π̃rn from Figure 4. In the following, we omit the
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dependence on σp and on πn most of the time. We have

Pr(α|z; π̃rn)

Pr(β|z; π̃rn)
=

Pr(α)

Pr(β)

Pr(α2|α)

Pr(β2|β)

Pr(z|α2)

Pr(z|β2)
(174)

=
1

2
2(1− 1

n2
), (175)

and

Pr(α|a; π̃rn)

Pr(β|a; π̃rn)
=

Pr(α)

Pr(β)

∑
i=1,2 Pr(αi|α) Pr(a|αi)∑
i=1,2 Pr(βi|α) Pr(a|βi)

(176)

=
1

2

(1− 3
n
) + 3

n3 )

1− 1
n

. (177)

Let q(ωi;σ
p, κ, n) the expected vote share in a substate ωi when there is a frac-

tion κ = 0.4 of sincere voters, who vote according to σp′ for p′ = (Pr(α|a),Pr(α|z)),

and a fraction 1 − κ = 0.6 of pivotal voters who vote according to σp. Simi-

larly, ρ(σp) = (Pr(α|a, piv;σp, κ),Pr(α|z, piv;σp, κ)) is the vector of induced pri-

ors given by the vote shares q(ωi;σ
p, κ, n) through (6) and (7).

Fixed Point Argument. Take any p = (pa, pz) with

pa ≥ 0.99, (178)

pz ∈ [0.475, 0.525]. (179)

For n ≥ 84 and κ = 0.4, we have the following bounds for the expected vote

share for policy A:

q(ω1;σp, κ, n) ≥ κ0.328 + (1− κ)0.99 (180)

≥ 0.725 for ω1 ∈ {α1, β1}, (181)

q(α2;σp, κ, n) > 0.475 (182)

q(β2;σp, κ, n) ≤ 0.525. (183)

Step 1 For any n ≥ 84 and any ω1 ∈ {α1, β1}, ω′2 ∈ {α2, β2},

Pr(piv|ω′2)

Pr(piv|ω1)
≥ (1.25)n (184)
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The step follows from,

Pr(piv|ω′2)

Pr(piv|ω1)

≥ [1 + min
ω1,ω′2

(q(ω1;σp)− 1
2
)2 − (q(ω′2;σp)− 1

2
)2

1
4
− (q(ω1;σp)− 1

2
)2

]n

≥ (1 + (
( 9

40
)2 − ( 1

40
)2

1
4
− ( 9

40
)2

))

≥ (1 +
80

319
)n

≥ (1.25)n. (185)

where we used Lemma 2 and that 0.725 = 29
40

, 0.475 = 19
40

, and 0.525 = 21
40

for the

inequality on the second line, and dropped κ and n from the notation for the vote

shares.

Step 2 For n ≥ 84: ρa(σ
p) ≥ 0.99, and ρz(σ

p) ∈ [0.475, 0.525].

First,

ρa(σ
p)

1− ρa(σp)
≥ p0

1− p0

Pr(α2|α) Pr(b|α2) Pr(piv|α2)

Pr(β1|β) Pr(b|β1) Pr(piv|β1)

≥ 1

3

3
n

1
n2

(1− 1
n
)
(1.25)n

≥ 100 for n ≥ 84,

where we used (83) for the inequality on the second line. Hence, for n ≥ 84,

ρ(σp)a ≥
100

101
> 0.99. (186)

Second,

Pr(piv|α2)

Pr(piv|β2)
≤ [1 +

|(q(β2;σp)− 1
2
)2 − (q(α2;σp)− 1

2
)2|

1
4
− (q(β2;σp)− 1

2
)2

]n

≤ (1 +
1
n4 + 1

n2

1
4
− 81

402

)n

≤ 1.08. for n ≥ 84.

where we used Lemma 2 for the inequality on the first line. For the inequality

on the second line, we used that z is sent with probability 1 − 1
n2 in both α2
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and β2 such that the difference in the squared margins of victory cannot exceed

(x+ 1
n2 )2 − x2 ≤ 2x

n2 + 1
n4 where x is the minimum margin of victory in the states

α2, β2. Finally, the inequality follows since the margin of victory in both α2 and

β2 is bounded by 0.2. So,

ρz(σ
p)z

1− ρz(σp)
=

Pr(α)

Pr(β)

Pr(α2|α)

Pr(β2|β)

Pr(z|α2)

Pr(z|β2)

Pr(piv|α2)

Pr(piv|β2)

= (1− 1

n2
)
Pr(piv|α2)

Pr(piv|β2)

≤ 1.08 for n ≥ 84.

Consequently, for all n ≥ 84,

ρ(σp)z ≤
1.08

2.08
< 0.52 (187)

Third,

Pr(piv|α2)

Pr(piv|β2)
≥ (1−

|(q(β2;σp)− 1
2
)2 − (q(α2;σp)− 1

2
)2|

1
4
− (q(β2;σp)− 1

2
)2

≥ (1−
1
n4 + 1

n2

1
4
− 81

402

)n

≥ 0.934 for n ≥ 84. (188)

So, for all n ≥ 84,

ρ(σp)z
1− ρ(σp)z

= (1− 1

n2
)
Pr(piv|α2;σp)

Pr(piv|β2;σp)
≥ 0.93.

This gives for all n ≥ 84,

ρ(σp)z ≥
0.93

1 + 0.93
≥ 0.48. (189)

The claim follows from (186), (187)), and (189).

Step 3 For n ≥ 84, there is an equilibrium σ∗n which satisfies (180) - (183).

It follows from Step 2 that, for any n ≥ 84, the continuous map that sends p to

ρ(σp) is a self-map on the set of beliefs that satisfy (178) - (179). It follows from

the Kakutani fixed point theorem that there exists fixed points p∗n that satisfy
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(178) - (179). The corresponding strategies σp∗n are equilibria (compare to (13))

and they satisfy (180) - (183).

Step 4 Given the equilibrium σ∗n for n ≥ 84, the probability that A is elected is

larger than 99.9%.

Evaluation of the binomial distribution shows that Pr(B(2n + 1, x)) > n) ≥
0.999999 if n ≥ 84 and x ≥ 0.725. Hence, given σ∗n, A is elected with proba-

bility larger than 99.9% in the states α1 and β1. Finally, the claim follows since

these states occur with probability (1− r
1−r

1
n
) = (1− 2

n
) and (1− 1

n
) respectively.

The fourth step finishes the calculations for the example.
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