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1. Introduction

The structure of social networks may entail externalities, positive or negative. Furthermore,

different societies and cultures exhibit different social preferences.1 Both affect the choice of

agents with respect to the intensity of their social interactions. However, these phenomena

are often studied with exogenous network models that neglect agents’ behavioral decisions.

Taking into account how social interactions change in response to incentives, costs, and

externalities is crucial to correctly assess the dynamics of social networks. The latter, in

turn, are crucial determinants of a variety of phenomena that range from the diffusion of

pandemics to the shape of social segregation. The goal of this paper is to provide a model in

which agents optimally choose contact probabilities, based on their social preferences, which

govern the structure of social networks through a matching process.

Specifically, we build a decision-theoretical model in which agents choose social interactions

so as to maximize their lifetime utility and internalize costs and externalities of social contacts.

We allow for the inclusion of social preferences, such as altruism, so agents can internalize the

consequences of their interactions on others. Given the optimally chosen contact probabilities,

the equilibrium is then achieved through a search and matching process. Ultimately, individual

preferences (patience), social preferences (altruism), and the technological properties of the

matching function, which captures the degree of geographical congestion, jointly affect the

equilibrium solution of the social network. Finally, through a social planner’s problem we

devise optimal policies in this framework by taking into account all the externalities of agents’

optimally chosen interactions.

While this model can have several applications (e.g., information-diffusion networks, or

networks with endogenous homophily and segregation), we apply it to the recent COVID-19

pandemic. There has been an increasing understanding that the traditional epidemiological

models are ill-equipped to make predictions due to the lack of agents’ behavioral response.

The standard SIR model2 (either with homogeneous contacts or with a network structure),

1 See, for instance, Falk et al. (2018), Hofstede (2001), or Spolaore and Wacziarg (2013) among others.
2 SIR stands for “S,” the number of susceptible, “I,” the number of infectious, and “R,” the number of

recovered, deceased, or immune individuals.
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which has been the main toolkit for predicting the spread of viral diseases since 1927, assumes

that contacts among agents are exogenous. However, human beings react to risk and to

policy decisions, and adapt their behavior accordingly. If these decisions are made in neglect

of behavioral reactions, they are most likely misguided.

Our specific model application to the pandemic features an SIR block, in which the

probability of becoming infected is endogenous. Susceptible individuals internalize the future

risk of infection and its costs, conditionally on their degree of patience. Infected individuals

internalize the infection risk only to the extent that they hold altruistic preferences. The

endogenous choice of social activity affects the probability of getting in contact with others,

and thus the matching process, which finally governs the infection probability.

We highlight the role of aggregate externalities (risk of infection), individual traits (pa-

tience), social preferences3 (altruism), and geographical features (urban congestion as captured

by the degree of homogeneity of the matching function) in affecting the optimal choice of

social interactions and, in turn, the spread of the disease. In the model, for instance, a

susceptible individual internalizes the infection risk more when being more patient. We also

consider a network variant of the model where different groups have varying contact rates,

depending on their degrees of homophily, and different recovery rates from the disease. When

a community is hit by COVID-19, age groups are differentially exposed to health risk and,

depending on the structure of the community, their interaction might be more or less intense.

In a model with dynamic choice of social interactions, the degree of homophily gives rise to

differential reciprocal relations, as, e.g., agents internalize more the future risk of infections

of those with whom they interact more frequently. So far, even more modern variants of

this class of models, which account for the heterogeneous topology of contact networks, still

assume exogenous contact rates – something that is starkly at odds with the decision process

characterizing human behavior.

Our numerical simulations show that the predictions of our model, in all of its variants,

deviate sharply from those of the näıve SIR model with exogenous contact rates, with or

without a network structure. In particular, simulations of model variants where agents adjust

3 See Berg et al. (1995), Bohnet and Frey (1999), Andreoni (1989), and Andreoni (1993).
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their social activity in response to risk, altruism, and homophily all exhibit a significantly

flattened infection curve compared to the traditional SIR model. Altruism also implies that

susceptible individuals have to reduce their social interactions by less, as part of the burden

of flattening the curve is borne by the infected individuals. A lower degree of homophily in

the SIR-network model implies that, for example, younger agents meet older agents more

frequently, so they internalize their risk by more. If they are altruistic, they take into account

the lower recovery rates of the older agents and adjust their behavior accordingly. However,

old susceptible individuals reduce their social activity relatively more due to their higher

health risk.

Equipped with this model of human behavior, we study the design of optimal policy and

its implementation through various non-pharmaceutical interventions (henceforth NPIs). In

contrast to policy decisions derived from the näıve SIR model, a social planner may still

want to restrict interactions beyond agents’ endogenous restraints. This is, however, due

to the emergence of aggregate externalities. We specifically point out the role of a static-

congestion and a dynamic-commitment inefficiency of the decentralized outcome. The planner

internalizes the effect of individual social activities on the overall congestion of a community,

which leads to a static inefficiency. The planner is also aware that her policies can affect the

future number of infected individuals, which in turn gives rise to a dynamic inefficiency.4

We decompose the two inefficiencies, and show that they depend, among others, on the

matching technology’s returns to scale, which capture location density and infrastructure. In

the SIR-network model, an additional inefficiency arises since the planner also internalizes

the differential impact that the activity of each group has on the average infection rate of the

others based on their degrees of differential attachment and, thus, contact rates.

Analytically, we show that lockdown policies targeted toward certain groups are imple-

mentable only when identification of infected individuals is possible. Simulations allow us

to quantify the optimal lockdown policies. We find that the optimal share of locked-down

activities is smaller in the presence of altruism. In the SIR-network model, a social planner

chooses stricter stringency measures for agents with higher infection probability (possibly the

4 This is similar to Moser and Yared (2020), in that we highlight a dynamic inefficiency compared to the
social planner’s commitment.
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younger ones) and when groups exhibit less differential attachment, as in that case the disease

is less likely to be confined to one group, and can spread more easily within communities.

It is important to note that while we devise our framework with a specific application in

mind, namely the pandemic, the validity of our model extends beyond and can be used to

study other social phenomena, such as information diffusion or social and racial segregation.

For instance, in a model of information diffusion, the utility cost of contact represents the

time cost of acquiring information from others, and the future spillovers could represent either

positive information externalities or the risk of competing rents from innovations. Similarly,

our model can be used to study endogenous homophily, with the utility cost representing

again the time cost of investing in relationships and the future spillovers representing costs

and benefits of reciprocity.

Relation to Literature. There is important evidence on the role and interaction between

beliefs, individuals’ optimizing decisions, and social networks (see Bailey et al. (2018)), also

during the pandemic (see Bailey et al. (2020)). Yet, the theoretical literature is lacking

corresponding advances on the front of endogenous (social) networks.

While we devise an application to the pandemic, our theory belongs and contributes to the

class of models used to study endogenous social-network formation within a search-theoretic

context. Work on social capital goes back to Becker (1996). Endogenous social interactions

were first formalized in an equilibrium model by Brock and Durlauf (2001). The impact of

social interactions on neighborhoods or social structures are covered by Case and Katz (1991)

and Glaeser et al. (1996). Closest to our model is that by Currarini et al. (2009), who study

the formation of links through utility maximization and the emergence of homophily through

a biased search and matching process. Their goal is to explain patterns of segregation and

homophily in societies. Much like them, we study endogenous social interactions also in a

network context with utility-maximizing agents and a search and matching process. Our

model differs from theirs in that our agents solve dynamic-optimization problems, and we

analyze both a decentralized equilibrium as well as the social planner’s problem. The idea

of differential homophily is also in line with the social-interaction comparative advantage
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proposed in Cicala et al. (2018). More recently, Wu and Shimer (2021) also study networks

with endogenous homophily in which agents atomistically choose the contact probability.

Our paper also relates to the literature on informal insurance in random and social networks.

This literature studies how transfers and obligations translate into global risk sharing (see

Ambrus et al. (2014), Bloch et al. (2008), or Bramoullé and Kranton (2007)). As in these

models, links, whether random or directed, have utility values, and social interactions are

chosen by sharing the infection risk within a community.

The literature on the economics of pandemics is vast. Any feasible list would be incomplete

at this point, hence we focus on the papers closely and strictly related to ours. One notion

that is rapidly gaining ground relates to the fact that any model, no matter how encompassing

in terms of agents, geographical locations, and economic sectors,5 might have low predictive

power, identification problems, and might lead to näıve policy prescriptions if it neglects the

role of agents’ reaction and, most importantly in this context, the role of social preferences.

Papers that have addressed this issue independently, also in a search-theoretic context, are

Garibaldi et al. (2020) and Farboodi et al. (2020). Note that the search-theoretic context is

crucial in addressing the coordination externalities in public health domains. These papers,

however, do not examine the network component, the role of social preferences, and their

interaction with the coordination externalities. Acemoglu et al. (2020) present an SIR-network

with multiple age groups. Contacts are exogenous. Recently, Wu and Shimer (2021) have

applied an endogenous network model to the pandemic.

2. Limitations of SIR and SIR-Network Models

Before turning to our model with optimizing social contacts, it is useful to motivate our study

and mostly our application to the pandemic by reviewing the traditional model used for

epidemics diffusion. That model can be used more generally to study diffusion, also within

5 In fact, there is already a large literature in epidemiology that studies SIR-network models with bosonic-type
reaction-diffusion processes (see, for instance, Pastor-Satorras and Vespignani (2001a,b)) or activity-driven
SIR-network models (Moinet et al. (2018) and Perra et al. (2012)).
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networked societies. However its main drawback is the exogeneity of the contact probabilities,

something which weakens its predictions abilities as well as limits its use for policy analysis.

In the basic homogeneous SIR model (see Kermack and McKendrick (1927) or Hethcote

(2000) more recently), there are three groups of agents: susceptible (S), infected (I), and

recovered (R) ones. The number of susceptible decreases as they are infected. At the same

time, the number of infected increases by the same amount, but also declines because people

recover. Recovered people are immune to the disease and, hence, stay recovered. The

mathematical representation of the model is as follows:

St+1 = St − λtItSt (1)

It+1 = It + λtItSt − γIt (2)

Rt+1 = Rt + γIt, (3)

where N = St + It + Rt is the overall population and λt is the transmission rate of the

infection.

Hence, pt = λtIt is the probability that a susceptible individual becomes infected at time

t. In the classic model, the latter is assumed to be exogenous, constant, and homogeneous

across groups. Even as agents become aware of the pandemic, it is assumed that they do not

adjust their behavior. More recent versions of the SIR model incorporate the dependence of

contact rates on the heterogeneous topology of the network of contacts and mobility of people

across locations (see Pastor-Satorras and Vespignani (2001a,b) who include bosonic-type

reaction-diffusion processes in SIR models). Other variants of the model incorporate the

dependence of infection rates on the activity intensity of each node of the network (see Perra

et al. (2012) for solving activity-driven SIR using mean-field theory and Moinet et al. (2018)

who also introduce a parameter capturing an exogenous decay of the infection risk due to

precautionary behavior).

In what follows, we develop a model of endogenous social interactions, augmented with

either a homogeneous SIR and or a SIR-network block to show how behavioural response can

change affect interactions and diffusion of disease during a pandemic.
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3. A Model of Decision Theory-Based Social

Interactions for Pandemics

We develop a model in which the contact rate results from a decision problem on the extent

of social interactions. Combining search and optimizing behavior in economics goes back to

Diamond (1982).6 We insert this optimizing search and matching structure within a SIR

structure, with three group of agents (susceptible, infected and recovered) facing different

incentives and costs for interactions. Susceptible agents internalize the probability of getting

infected, which also entail a utility cost. The dynamic optimization allows us to control also

for time discounting or patience. More patient individuals assign a higher weight to future

risk of infection. Furthermore, we consider the model in two variants: one with a single group

of individuals (which can be in either of the SIR states) and a networked structure with

multiple groups. In this second variant we will assume that agents have different costs of

contacting each other (the risk of infection and recovery in the specific epidemic application)

and that have different contact rates (either exogenously or endogenously chosen).

A key distinguishing feature of our model is the inclusion of social preferences that also

affect the choice of social interaction, and in turn of the spread of the disease. Infected

agents internalize the health risk for others only under altruistic preferences.7 In the model,

warm-glow preferences are used to capture aspects common to altruism or trust.

Importantly social externalities emerge in our model, as each individual behaviour affects

the risk of infection of others. It is this and other dynamic externalities that call for the a

planner intervention. We stress that a planner problem that neglects the behavioural response

of individuals would lead to misguided conclusions.

At last as mentioned earlier our model is amenable to other applications. In an informa-

tion diffusion model the utility cost of a contact would capture the time-cost of acquiring

information from others and future utility of becoming informed may entail information

6 See Petrongolo and Pissarides (2001) for a survey.
7 Such setup implicitly assumes that agents recognize their symptoms. As known, there are also asymp-

tomatic agents. Extending our model so as to incorporate the latter would not affect the main channels
that we discuss.
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spillovers. Similarly the model could be used to model endogenous homphily and friendship,

where again the utility cost of the contact represent the time and effort costs of maintaining

relations.

3.1. Dynamic Optimization

For exposition reasons we start with the homogeneous case where all agents in the population

are the same except that they are susceptible, infected, or recovered. We label the health

status with the index i ∈ {S, I, R}. Transitions of susceptible individuals from state S to

I depend on contacts with other people,8 and these in turn depend on the social-activity

intensity of each individual in the population and on the general matching technology.9 The

model is in discrete time, time goes up to the infinite horizon, and there is no aggregate or

idiosyncratic uncertainty.

Each agent has a per-period utility function U i
t (x

i
h,t, x

i
s,t) = ui(xih,t, x

i
s,t) − ci(xih,t, x

i
s,t),

where xih denotes home activities and xis denotes social activities. The function ui(xih, x
i
s) has

standard concavity properties and ui(xih, 0) > 0. The cost, ci(xih, x
i
s), puts a constraint on the

choice between home and social activities. At time t, a susceptible agent enjoys the per-period

utility, expects to enter the infected state with probability pt or to remain susceptible with

probability (1− pt), and chooses the amount of home and social activities by recognizing that

social activity increases the risk of infection. The value function of a susceptible individual is

as follows:

V S
t = U(xSh,t, x

S
s,t) + β[ptV

I
t+1 + (1− pt)V S

t+1], (4)

where β is the time discount factor, corresponding to Patienceg in the data, while pt is

the probability of being infected. The latter depends on the amount of social activity of

the susceptible and infected agents, on the average amount of social activity, x̄s,t, in the

8 These can arise in, e.g., entertainment activities, other outside activities, or in the workplace.
9 Transitions for individuals in the infected group I to recovery R depend only on medical conditions related

to the disease (mostly the health system) that are outside of an individual’s control.
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population, an exogenously given transmission rate η, capturing the transmissibility of the

disease, as well as on the individual shares of each group i = I, S,R in the population:

pt = pt(x
S
s,t, x

I
s,t, x̄s,t, η, St, It, Rt), (5)

where x̄s,t = x̄Ss,t
St
Nt

+ x̄Is,t
It
Nt

+ x̄Rs,t
Rt

Nt

(6)

and x̄Ss,t is the average amount of social activity of the susceptible, x̄Is,t is the average amount

of social activity of the infected and x̄Rs,t is the average amount of social activity of the

recovered.

To map the endogenous SIR model to the standard SIR model in equations (1) to (3), the

following convention is used: pt = λtIt. The exact functional form of pt is defined later on.

For now, it suffices to assume that ∂pt(.)

∂xSs,t
> 0 and pt(0, .) = 0.

In the baseline model, infected individuals do not have any altruistic motive. This

specification allows us to highlight clearly the role of altruism once introduced. Their Bellman

equation, in absence of altruism, is:

V I
t = U(xIh,t, x

I
s,t) + β[(1− γ)V I

t+1 + γV R
t+1]. (7)

Currently infected individuals will remain infected for an additional period with probability

(1 − γ) or will recover with probability γ.10 The value function of the recovered reads as

follows:

V R
t = U(xRh,t, x

R
s,t) + βV R

t+1. (8)

Susceptible individuals’ first-order conditions with respect to xh,t and xs,t are as follows:

∂U(xSh,t, x
S
s,t)

∂xSh,t
= 0 (9)

∂U(xSh,t, x
S
s,t)

∂xSs,t
+ β

∂pt(.)

∂xSs,t
(V I

t+1 − V S
t+1) = 0, (10)

10 Infected individuals might have a lower utility than susceptible or recovered ones due to the disease. We
capture this in our calibration of the simulated model by assigning an extra cost of being sick in the utility
function.
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where it is reasonable to assume that (V I
t+1 − V S

t+1) < 0.

Susceptible individuals internalize the drop in utility associated with the risk of infection

caused by social activity, and choose a level of social activity which is lower than the one that

they would choose in the absence of a pandemic. This parallels the empirical findings from a

companion paper of ours based on Alfaro et al. (2020) insofar as agents naturally reduce their

mobility in response to increased fear of infection. Also, individuals reduce social interactions

by more when the discount factor, i.e., β, is higher. This mirrors again the empirical results

from our companion paper based on Alfaro et al. (2020), namely that the degree of patience

reduces mobility and, thus, renders lockdown policies less effective or less necessary.

The first-order conditions of the infected with respect to xh,t and xs,t read as follows:

∂U(xIh,t, x
I
s,t)

∂xIh,t
= 0,

∂U(xIh,t, x
I
s,t)

∂xIs,t
= 0. (11)

Infected individuals choose a higher level of social activity than susceptible ones since they

do not internalize the effect of their decision on the risk of infection for others. However,

their level of social activity will in turn affect the overall infection rate. In Section 3.3, we

will assume infected individuals to hold altruistic preferences. This will induce them to also

internalize the effect of their actions on the infection rate of the susceptible.

Finally, the first-order conditions of the recovered individuals are as follows:

∂U(xRh,t, x
R
s,t)

∂xRh,t
= 0,

∂U(xRh,t, x
R
s,t)

∂xRs,t
= 0. (12)

Recovered people, assuming that they are immune to another infection, choose the same level

of social activity as they would in the absence of a pandemic.

3.2. The Matching Function, Geography, and the Infection Rate

Given the optimal choice of social-activity intensity, we can now derive the equilibrium

infection probability in the decentralized equilibrium. This involves defining a matching

function (similar to the ones in Diamond (1982) or Pissarides (2000)). The intensity of social
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interaction, xs, corresponds to the number of times people leave their home or, differently

speaking, the probability per unit of time of leaving the home. In each one of these outside

activities, individuals come in contact with other individuals. How many contacts the

susceptible individuals have with an infected individual depends on the average amount of

social activities in the population. Given (6) and normalizing the population size to one,

the latter is given by x̄s,t = Stx̄
S
s,t + Itx̄

I
s,t + Rtx̄

R
s,t. More precisely, the aggregate number

of contacts depends on a matching function, which itself depends on the aggregate average

social activity, x̄s,t, and can be specified as follows: m(x̄Ss,t, x̄
I
s,t, x̄

I
s,t) = (x̄s,t)

α.

The parameter α captures the matching function’s returns to scale, ranging from constant

to increasing. As such, this parameter captures, e.g., the geographic aspects of the location in

which the disease spreads. Cities with denser logistical structures induce a larger number of

overall contacts per outside activity. These could be, for example, cities with highly ramified

underground transportation systems. In such locations, citizens tend to use public transport

more frequently, and their likelihood of encountering infected individuals is subsequently

larger. Mapping the geographical diversity is important also since our empirical analysis

suggests that the uptake of public transit reacts more to fear (see our empirical evidence in

Alfaro et al. (2020)).

Given the aggregate number of contacts, the average number of contacts per outside

activity is given by m(x̄s,t)

x̄s,t
. Under the matching-function specification adopted above, this

can be written as (x̄s,t)
(α−1). The probability of becoming infected depends also on the joint

probability that susceptible and infected individuals both go out, which is given by xss,tx
I
s,t, on

the infection transmission rate, η, and on the number of infected individuals in the population,

It. Therefore, we can denote the infection probability in the decentralized equilibrium as:

pt(.) = ηxSs,tx
I
s,t

m(x̄Ss,t, x̄
I
s,t, x̄

R
s,t)

x̄s,t
It = ηxSs,tx

I
s,t(x̄s,t)

α−1It. (13)

Note that atomistic agents take the fraction of outside activities of other agents as given. If

α = 0, the probability pt = ηxSs,tx
I
s,tx̄
−1
s,t It is homogeneous of degree one, implying constant
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returns to scale, while if α = 1, the probability becomes a quadratic function (see Diamond

(1982)), as a consequence of which it exhibits increasing returns to scale.

The baseline SIR model in the decentralized equilibrium can now be re-written as follows:

St+1 = St − ptSt (14)

It+1 = It + ptSt − γIt (15)

Rt+1 = Rt + γIt, (16)

where St + It +Rt ≡ 1.

Definition 1. A decentralized equilibrium is a sequence of state variables, St, It, Rt, a set of

value functions, V S
t , V

I
t , V

R
t , and a sequence of home consumption, probabilities, and social

activities, pt, x
S
h,t, x

I
h,t, x

R
h,t, x

S
s,t, x

I
s,t, x

R
s,t, such that:

1. St, It, Rt solve (14) to (16), with the probability of infection given by (13)

2. V S
t , V

I
t , V

R
t solve (4), (7), and (8)

3. The sequence pt, x
S
h,t, x

I
h,t, x

R
h,t, x

S
s,t, x

I
s,t, x

R
s,t solves (9), (10), (11), and (12).

Note that underlying the decentralized economy is a Nash symmetric equilibrium in the

choice of social intensity.11

3.3. Altruism of Infected Individuals

Our empirical results have highlighted that the degrees of altruism and trust matter. Those

two traits include variants of more or less selfish thinking. Altruism might arise from the pure

pleasure of doing good, while trust embeds some degree of future reciprocation and is more

generalized towards strangers.12 In the model, we aim to mimic these traits. Specifically,

warm-glow preferences are used to capture common features of altruism and trust, namely

the utility enhancement of doing good. It is reasonable to conjecture that infected individuals

hold some altruistic preferences. These attitudes may include both warm-glow preferences

11 Ultimately, this can be micro-founded with global-games and higher-thinking considerations.
12 See Berg et al. (1995), Bohnet and Frey (1999), Andreoni (1989), or Andreoni (1993).
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towards relatives and friends (see Becker (1974))13 or general unconditional altruism and

social preferences.14 For this reason, we now extend the per-period utility so as to incorporate

altruistic preferences by defining it as follows:

U(xIh,t, x
I
s,t) = u(xIh,t, x

I
s,t)− c(xIh,t, xIs,t) + δV S

t . (17)

While infected individuals do not internalize the effect of their social activities on the infection

rate fully, as they are already immune in the near future, they do hold an altruistic motive

towards the susceptible, which is captured by a weight δ ∈ (0, 1). The first-order condition

with respect to the social activity changes to:

∂U(xIh,t, x
I
s,t)

∂xIs,t
+ δβ

∂pt(.)

∂xIs,t
(V I

t+1 − V S
t+1) = 0. (18)

Now the optimal level of social activity chosen by infected individuals is lower than the one

obtained under (11) since they partly internalize the risk of infecting susceptible individuals,

who then turn into infected ones next period. Time discounting is also relevant in this context:

more patient individuals tend to internalize the impact of their social activity on the infection

probability by more.

3.4. Extension to an SIR-Network Model

Within communities there are different groups that have different exposure or contact rates

to each one of the other groups. The intensity of these contacts across groups can be

characterized by the degree of homophily. It describes “the tendency of various types of

individuals to associate with others who are similar to themselves” (Currarini et al. (2009)).15

In networks, a high degree of homophily implies that two nodes (groups) are linked only

to a small degree to each other. Currarini et al. (2009) show that social networks exhibit

typically both high homophily and reciprocity. In our context with dynamic decisions on

13 Warm-glow preferences have a long-standing tradition in economics. Besides Becker (1974)’s original
work, see Andreoni (1989) as well as Andreoni (1993).

14 See, for instance, Bolton and Ockenfels (2000) or Andreoni and Miller (2002).
15 See also Fehr and Schmidt (1999) or Fehr and Gächter (2000).
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social interactions and externalities, the degree of homophily can be linked to the extent of

reciprocity towards individuals of one’s own and of other groups. If two groups have lower

homophily, and, hence, have more frequent contacts with other groups, they will internalize

their relative risk of infection. We extend the SIR model so as to include different groups of

the population that experience different contact rates due to differential degrees of homophily.

These groups could correspond to, e.g., the age structure, different strengths in ties, or closer

face-to-face interactions in the workplace. The underlying idea is that contact rates tend to

be higher among peer groups.

Consider a population with different groups j = 1, ..., J . The number of people in each

group is Nj. Groups have different probabilities of encounters with the other groups. The

contact intensity between group j and any group k is ξj,k. The latter captures differential

degrees of attachment within groups. Younger individuals tend to meet other young ones,

i.e., their peers, more often. Also, workers in face-to-face occupations enter more often in

contacts with workers performing similar tasks. This implies that the infection outbreak may

be concentrated among members of the same group. Whether the outbreak then spreads to

the rest of the network, and how fast it does so, depends on the relative degree of attachment

of the initially infected group to the other groups. At last, in our simulations we realistically

allow for differential recovery rates in different age groups, with older agents being more

fragile than younger ones.

Each susceptible individual of group j experiences a certain number of contacts per outing

with infected individuals of his own group, but also of the other groups. Reflecting our

discussion in Section 3.2, the number of contacts experienced by group j depends on the

average level of social activity in each group k weighted by the contact intensity across groups,

and is equal to:

mj(x̂js,t) = mj

(∑
k

ξj,k(x̄
S,k
s,t S

k
t + x̄I,ks,t I

k
t + x̄R,ks,t R

k
t )

)
. (19)
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As before, the matching function can be specified asmj(x̂js,t) =
(∑

k ξj,k(x̄
S,k
s,t S

k
t + x̄I,ks,t I

k
t + x̄R,ks,t R

k
t )
)α

.

The probability of infection of a susceptible person in group j is modified as follows:

pjt(.) = xS,js,t

[∑
k

ηξj,kx
I,k
s,t

mj(x̂js,t)

x̂js,t
Ikt

]
, (20)

where k = 1, .., J and ξj,j = 1. The underlying rationale is equivalent to the one described in

the single-group case, except that now the probability of meeting an infected person from

any other group k is weighted by the likelihood of the contacts across groups, ξj,k.

The SIR model for each group j then reads as follows:

Sjt+1 = Sjt − p
j
t(.)S

j
t (21)

Ijt+1 = Ijt + pjt(.)S
j
t − γjI

j
t (22)

Rj
t+1 = Rj

t + γjIjt , (23)

where
∑

j(S
j
t + Ijt +Rj

t ) ≡ 1 and γj are the group-specific probabilities to recover.

As before, atomistic individuals take the average social activity and the average social

encounters as given. The first-order condition for social activity of susceptible individuals

belonging to group j now reads as follows:

∂U(xS,jh,t , x
S,j
s,t )

∂xS,js,t
+ β

[∑
k

ηξj,kx
I,k
s,t

mj(x̂js,t)

x̂js,t
Ikt

]
(V I,j

t+1 − V
S,j
t+1) = 0. (24)

Each susceptible agent takes the average level of social activity by the others as given. It

becomes clear that the differential impact of her social activity on the various groups affects

her optimal choice. We can now derive the first-order conditions of the infected. For this

purpose, we assume altruistic preferences, which means that infected agents internalize, at

least partly, with the weight δ, the impact of their choices on the susceptible agents of all

other groups. The first-order condition with respect to social activity is:

∂U(xI,jh,t, x
I,j
s,t )

∂xI,js,t
+ δβ

∑
k

xS,ks,t S
kηξk,j

mk(x̂ks,t)

x̂ks,t
Ijt (V

I,k
t+1 − V

S,k
t+1) = 0, (25)
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where now they internalize the impact of their choices on all three groups, weighted by their

respective shares Sk. The first-order conditions for the recovered individuals are the same as

in (12), but separately for each group j.

Definition 2. A decentralized equilibrium for the SIR-network model is a sequence of

state variables, Sjt , I
j
t , R

j
t , a set of value functions, V S,j

t , V I,j
t , V R,j

t , and a sequence of home

consumption, probabilities, and social activities, pjt , x
S,j
h,t , x

I,j
h,t, x

R,j
h,t , x

S,j
s,t , x

I,j
s,t , x

R,j
s,t , such that:

1. Sjt , I
j
t , R

j
t solve (28) to (30) for each group j, with the probability of infection given by

(27) for each group j

2. V S,j
t , V I,j

t , V R,j
t solve (4), (7), and (8), now defined separately for each group j

3. The sequence pjt , x
S,j
h,t , x

I,j
h,t, x

R,j
h,t , x

S,j
s,t , x

I,j
s,t , x

R,j
s,t solves (24), (25) , (9), the second part of

(11), and (12) for each group j.

3.5. Allowing for Differential Inter-Group Contact Choices

The networked variant of the model considered above allows for the choice of the general

degree of social interaction, but assumes that inter-group contact rates are exogenous. This

is empirically plausible: the extent to which age peers interact more than cross-age groups

is effectively dictated by structural factors, such as the daily family and work routine of

individuals, and contains not much of a choice. Our model can, however, be also extended to

the case in which individuals choose to differentiate their interactions across groups. Here, we

derive such an extension and discuss possible differences with the previous case, which arise

mainly in the individual group dynamic, whereas the aggregate dynamic is in fact similar

across the two models.

As before, each susceptible individual of group j experiences a certain number of contacts

per outing with infected individuals of her own group, but also of the other groups. Contrary
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to before, each susceptible agent chooses the average level of social activity with every other

group. Hence, the matching function for each group j reads as follows:

mj(x̂js,t) = mj

(∑
k

(x̄S,jks,t S
k
t + x̄I,jks,t I

k
t + x̄R,jks,t Rk

t )

)
, (26)

where x̄S,jks,t , x̄I,jks,t , and x̄R,jks,t are the respective intensities of social activity between each

group j and each group k. As before, the matching function can be specified as mj(x̂js,t) =(∑
k(x̄

S,jk
s,t S

k
t + x̄I,jks,t I

k
t + x̄R,jks,t Rk

t )
)α

. The probability of infection of a susceptible person in

group j, who gets in contact with infected individuals in all groups k, is modified as follows:

pjt(.) =

[∑
k

ηxS,jks,t x
I,kj
s,t

mj(x̂jks,t)

x̂jks,t
Ikt

]
, (27)

where mj(x̂jks,t) defines the contacts between persons from group j and group k, with k = 1, .., J .

The SIR model for each group j then reads as follows:

Sjt+1 = Sjt − p
j
t(.)S

j
t (28)

Ijt+1 = Ijt + pjt(.)S
j
t − γjI

j
t (29)

Rj
t+1 = Rj

t + γjIjt , (30)

with
∑

j(S
j
t + Ijt +Rj

t ) ≡ 1.

As before, atomistic individuals take the average social activity of each group vis-à-vis

any other group as given. The first-order condition for the social activity of susceptible

individuals belonging to group j vis-à-vis group k now reads as follows:

∂U(xS,jh,t , x
S,jk
s,t )

∂xS,jks,t

+ βηxI,kjs,t

mj(x̂jks,t)

x̂jks,t
Ikt (V I,j

t+1 − V
S,j
t+1) = 0. (31)

The condition is equivalent to that in (24), except that now we have k such first-order

conditionss.
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Similarly, for infected individuals with altruistic preferences, the first-order condition with

respect to social activity of each individual j vis-à-vis any other individual in group k is:

∂U(xI,jh,t, x
I,jk
s,t )

∂xI,jks,t

+ δβxS,kjs,t η
mk(x̂kjs,t)

x̂kjs,t
Ijt (V

I,k
t+1 − V

S,k
t+1) = 0. (32)

The first-order conditions for the recovered individuals are the same as in (12), but separately

for each group j.

Definition 3. A decentralized equilibrium for the SIR-network model with a differential

choice of group interactions is equivalent to Definition 2, augmented by the k equations (31)

and (32) replacing the previous first-order conditions (24) and (25).

3.6. Social Planner

As noted before, when each person chooses her optimal social activity, she does not consider

its impact on the average level of social activity nor on the future course of the number of

infected individuals. A social planner takes both into account. The planner’s problem is

derived for both the homogeneous SIR and the networked SIR with the choice of the average

level of social interaction. For the network case we focus on this variant of the model as this

already captures the main sources of externality.

The planner is aware of how the average social activity is affected by the density of the

matching function (corresponding to, e.g., the geography of the city) and of the future course

of infected individuals.16 The planner knows that in a Nash equilibrium each agent chooses

the same amount of social activity, so individual and average social interactions are now the

same, hence xSs,t = x̄Ss,t and xIs,t = x̄Is,t. This implies that the equilibrium infection rate is

given by:

pPt (.) = ηxSs,tx
I
s,t(Stx

S
s,t + Itx

I
s,t +Rtx

R
s,t)

(α−1)It. (33)

Definition 3: Social Planner in the Homogeneous SIR Model. The social planner

16 The planner is aware of the SIR structure, namely the technological constraints, and can decide on policies
taking into account the transitions across the different health states.
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chooses the paths of home and social, i.e., outside, activities for each agent by maximizing

the weighted sum of the utilities of all agents. The planner is aware of the dependence of

the value function of susceptible individuals on the total number of infected and susceptible

individuals. Hence, we distinguish between the value function in the decentralized equilibrium

and in the planner economy, with the latter denoted as V̂ i where i = I, S,R. The planner

chooses the sequence [St+1, It+1, Rt+1, x
S
h,t, x

I
h,t, x

R
h,t, x

S
s,t, x

I
s,t, x

R
s,t]
∞
t=0 at any initial period t to

maximize:

V̂ N
t = StV̂

S
t (St, It) + ItV̂

I
t +RtV̂

R
t (34)

with

V̂ S
t (St, It) = U(xSh,t, x

S
s,t) + β[pPt (.) ˆV I

t+1 + (1− pPt (.))V̂ S
t+1] (35)

V̂ I
t = U(xIh,t, x

I
s,t) + δV̂ S

t (St, It) + β[(1− γ)V̂ I
t+1 + γV̂ S

t+1] (36)

V̂ R
t = U(xRh,t, x

R
s,t) + βV̂ R

t+1 (37)

subject to
St+1 = St − pPt (.)St (38)

It+1 = It + pPt (.)tSt − γIt (39)

Rt+1 = Rt + γIt, (40)

where St + It +Rt ≡ 1.

Proposition 1. The planner reduces social interactions on top and above the decentralized

equilibrium. She does so due to a static and a dynamic externality.

Proof. The first-order conditions for home activities of susceptible and infected individuals

and for all activities of the recovered remain the same as in the decentralized equilibrium.

The choices of the social activities of susceptible and infected agents are derived in Appendix

A. The size of the aggregate inefficiency is obtained from the difference between the first-order

conditions for social activities of susceptible and infected individuals in the decentralized
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equilibrium, (10) and (18), and the corresponding ones for the social planner’s solution, (60)

and (61):

χSt = β

[
∂pPt (.)

∂xSs,t
− pt
xSs,t

]
[V̂ I
t+1 − V̂ S

t+1] + β(1− pPt (.))

[
∂V̂ S

t+1

∂St+1

∂St+1

∂xSs,t
+
∂V̂ S

t+1

∂It+1

∂It+1

∂xSs,t

]
= 0 (41)

χIt = δ

{
β

[
∂pPt (.)

∂xIs,t
− pt
xIs,t

]
[V̂ I
t+1 − V̂ S

t+1] + β(1− pPt (.))

[
∂V̂ S

t+1

∂St+1

∂St+1

∂xIs,t
+
∂V̂ S

t+1

∂It+1

∂It+1

∂xIs,t

]}
= 0,

(42)

where pPt (.) is given by (33).

These differences can be decomposed into two parts corresponding to a static and a

dynamic inefficiency.17 First, atomistic agents do not internalize the impact of their decisions

on the average level of social activity, while the planner does. In other words, when choosing

their social activity, the atomistic agents take into account the infection rate given by (13),

while the social planner takes into account the infection rate given by (33). Hence, the static

inefficiency is given by:

ΦS
t = β

[
∂pPt (.)

∂xSs,t
− pt(.)

xSs,t

]
[ ˆV I
t+1 − ˆV S

t+1] (43)

ΦI
t = δβ

[
∂pPt (.)

∂xIs,t
− pt(.)

xIs,t

]
[ ˆV I
t+1 − ˆV S

t+1], (44)

where pt(.)

xis,t
= ∂pt(.)

∂xis,t
, for i = S, I. The static inefficiency is affected by the matching function’s

returns to scale. In places with more dense interactions, the spread of the disease is faster

and the size of the inefficiency is larger. This implies that the social planner will adopt

stringency or non-pharmaceutical interventions (henceforth NPIs) on top and above the

restraints applied by both the susceptible and the infected.

17 These inefficiencies are also considered in Garibaldi et al. (2020) in a different model setup.
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The second components that distinguish (60) and (61) from (10) and (18) are:

ΨS
t = β(1− pPt (.))

[
∂V̂ S

t+1

∂St+1

∂St+1

∂xSs,t
+
∂V̂ S

t+1

∂It+1

∂It+1

∂xSs,t

]
(45)

ΨI
t = δβ(1− pPt (.))

[
∂V̂ S

t+1

∂St+1

∂St+1

∂xIs,t
+
∂V̂ S

t+1

∂It+1

∂It+1

∂xIs,t

]
. (46)

These terms identify a dynamic inefficiency, which arises since the planner acts under com-

mitment. The planner recognizes that next period’s number of infected and susceptible

individuals is going to have an effect on the value function of the susceptible individuals

through future infection rates.

Definition 4: Social Planner in the SIR-Network Model. In the SIR-network

model, the social planner maximizes the sum of future discounted utilities of all groups in

the population, taking as given that the infection rates depend on the Nash equilibrium of

social interactions. This implies that the infection rates in the networked SIR equilibrium

are given by:

pPjt (.) = xS,js,t

∑
k

ηξj,kx
I,k
s,t

mj
(∑

k ξj,k(x
S,k
s,t S

k
t + xI,ks,t I

k
t + xR,ks,t R

k
t )
)

∑
k ξj,k(x

S,k
s,t S

k
t + xI,ks,t I

k
t + xR,ks,t R

k
t )

Ikt

 . (47)

The planner now chooses the sequence [Sjt+1, I
j
t+1, R

j
t+1, x

S,j
h,t , x

I,j
h,t, x

R,j
h,t , x

S,j
s,t , x

I,j
s,t , x

R,j
s,t ]∞t=0 at any

initial period t and for all j to maximize:

V̂ N
t =

∑
j

[Sjt V̂
S,j
t + Ijt V̂

I,j
t +Rj

t V̂
R,j
t ] (48)

with
V̂ S,j
t (Sjt , I

j
t ) = U(xS,jh,t , x

S,j
s,t ) + β[pPjt V̂ I,j

t+1 + (1− pPjt )V̂ S,j
t+1] (49)

V̂ I,j
t = U(xI,jh,t, x

I,j
s,t ) + δ

∑
j

V̂ S,j
t (Sjt , I

j
t ) + β[(1− γ)V̂ I,j

t+1 + γV̂ S,j
t+1] (50)

V̂ R,j
t = U(xR,jh,t , x

R,j
s,t ) + β[V̂ R,j

t+1 ] (51)
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subject to

Sjt+1 = Sjt − p
Pj
t (.)Sjt (52)

Ijt+1 = Ijt + pPjt (.)Sjt − γI
j
t (53)

Rj
t+1 = Rj

t + γIjt , (54)

where
∑

j(S
j
t +Ijt +Rj

t ) ≡ 1. The full set of first-order conditions can be found in Appendix B.

Proposition 2. The inefficiencies in the SIR-network model are larger than in the homoge-

neous SIR model, and also take into account the reciprocal relations.

Proof. The first-order conditions of the planner problem can be found in Appendix B.

Comparing those, i.e., (62) and (63), with the corresponding ones from the decentralized

equilibrium of the SIR-network model, we obtain the following aggregate inefficiencies for

each group j:

ΩS,j
t = β

[
∂pPjt (.)

∂xS,js,t
− ∂pjt

∂xS,js,t

]
[V̂ I,j
t+1−V̂

S,j
t+1]+β(1−pPjt (.))

∑
k

[
∂V̂ S,j

t+1

∂Skt+1

∂Skt+1

∂xS,js,t
+
∂V̂ S,j

t+1

∂Ikt+1

∂Ikt+1

∂xS,js,t

]
= 0

(55)

ΩI,j
t = δβ

∑
k

{[
∂pPkt (.)

∂xI,js,t
− ∂pkt
∂xI,js,t

]
[V̂ I,k
t+1 − V̂

S,k
t+1 ] + (1− pPkt (.))

∑
n

[
∂V̂ S,k

t+1

∂Snt+1

∂Snt+1

∂xI,js,t
+
∂V̂ S,k

t+1

∂Int+1

∂Int+1

∂xI,js,t

]}
= 0.

(56)

For the SIR-network model, the inefficiencies contain additional components. First of all,

the static inefficiency is summed across all groups j. Second, the dynamic inefficiency is

weighted by a probability that takes into account the summation of the infection rates across

groups. These additional terms capture a reciprocity externality. The planner is aware that

the social activity has a differential impact across age groups, which is reflected in the size of

the externality.

Having characterized the inefficiencies, we turn to discussing actual implementation

policies in the homogeneous SIR and the SIR-network model, and their suitability to close

the inefficiencies.
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3.7. Implementability: Partial Lockdown in the Homogeneous SIR

Model and Targeted Lockdown in the SIR-Network Model

In this section, we examine which lockdown policies are efficient. In particular, we consider

partial and targeted lockdown policies.

Partial Lockdown in SIR. A partial lockdown can be examined also in the simple

homogeneous SIR model. θ is defined as the fraction of social activity that is restricted. The

planner can enforce two different lockdown policies, θS and θI , only if there is the possibility

to identify infected individuals. Let us first assume they cannot be identified, so the social

activity of all agents will be restricted.18 Furthermore, there is only a unique θ. Then, a

partial lockdown policy affects the infection probability in the decentralized economy as

follows:

pt(θ, .) = η(1− θ)xSs,t(1− θ)xIs,t
m((1− θ)x̄s,t)

(1− θ)x̄s,t
It. (57)

Lemma 2. The partial lockdown policy is efficient only in the presence of the means to

identify infected individuals, such as universal testing.

Proof. The partial lockdown policy would be efficient if it set the aggregate inefficiencies

equal to zero, that is:

β

[
∂pPt (.)

∂xSs,t
− pt
xSs,t

]
[V̂ I
t+1 − V̂ S

t+1] + β(1− pPt (.))

[
∂V̂ S

t+1

∂St+1

∂St+1

∂xSs,t
+
∂V̂ S

t+1

∂It+1

∂It+1

∂xSs,t

]
= 0 (58)

δβ

{[
∂pPt (.)

∂xIs,t
− pt
xIs,t

]
[V̂ I
t+1 − V̂ S

t+1] + (1− pPt (.))

[
∂V̂ S

t+1

∂St+1

∂St+1

∂xIs,t
+
∂V̂ S

t+1

∂It+1

∂It+1

∂xIs,t
]

]}
= 0. (59)

Equations (58) and (59) include both the static and the dynamic inefficiency. If the planner

is endowed with a single instrument, i.e., a single lockdown policy applied equally to both

susceptible and infected individuals, she cannot close these two inefficiencies at once. Only in

18 Some individuals might not have any symptoms and are not tested.
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the presence of a second instrument, specifically a measure to identify infected individuals,

she can target policies toward agents in these two states and set the inefficiencies to zero.

Targeted Lockdown Policies in the SIR-Network Model. In the SIR-network model,

the planner could consider targeted policies, i.e., different degrees of stringency measures

targeted at different groups.

Lemma 3. Implementable targeted lockdown policies require differentiated fractions θSj and

θIj for susceptible and infected individuals of each group. This can be achieved only with the

additional instrument of testing.

Proof. Targeted lockdown policies would be efficient if they could set to zero the aggregate

inefficiencies stemming from (55) and (56). This would imply different θSj and θIj that can

close the 2j inefficiencies. This can be achieved only by means of identifying and isolating

infected from susceptible individuals.

4. Simulations

In this section, we simulate different variants of our model, for both the decentralized

equilibrium and the social planner’s equilibrium. The primary goal is to ascertain the

impact of social-activity choices on the dynamics of infections by comparing our baseline

optimizing SIR model to the traditional version with exogenous contact rates. Furthermore,

by comparing the simulations of the homogeneous SIR model with and without altruism, we

assess the latter’s importance. Finally, simulations of the SIR-network model highlight the

role of reciprocity and homophily.

Overall, all model variants in which agents adjust their social activity in response to

risk, altruism, and homophily exhibit a flattened infection curve compared to the traditional

SIR model. This enhances the salience of our model implications. Policymakers designing

mitigation policies shall be aware of the agents’ responses to risk, also conditional on their

social, cultural, and community traits.
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4.1. Comparison Homogeneous SIR Model with Optimizing

Individuals and Standard SIR Model

The model is solved numerically through a classical Newton-Raphson algorithm that computes

the transition from one steady state to the next, with the latter induced by an infection

shock leading to changes in the number of infected individuals in the population. The model

calibration is as follows. The instantaneous utility of the susceptible and infected is a function

of their social activities xSs,t and xIs,t, respectively.19 The functional forms read as follows:

U(xSs,t) = xSs,t −
(xSs,t)

2

2cS
and U(xIs,t) = xIs,t −

(xIs,t)
2

2cI
− CI , where CI is the cost of being sick,

and we set cS = 1 and cI = 0.3. The latter implies that some infected individuals might

not feel well and, therefore, on average have a lower level of social activity. In general,

CI might depend on the congestion of the health system, which in turn depends on the

number of infected individuals. We abstract from this dependence, but note that its inclusion

would actually strengthen our conclusions: infected individuals aware of the health-system

congestion would reduce their social activity even more.

The cost of being sick is set equal to 10. This is a relatively high value, which reflects fear

of severe long-term health complications or even death. Recall that for simplicity, in our

analytical derivations we have assumed a death rate of zero, so it is reasonable to include

its impact among the costs of the infection. Following Newman (2018), we set the recovery

rate γ to 0.4. Furthermore, β is set to 0.96, α to 1, and δ to 0.5. Following Garibaldi et al.

(2020), we set η = 2.4, which combines a constant term from the matching function and the

exogenous transmission rate of COVID-19.

Figure 1 below compares the dynamics of the numbers of infected, susceptible, and

recovered individuals both in our homogeneous SIR model with endogenous social activity

and in the traditional SIR model with exogenous contact rates. For the sake of comparison, in

the latter the social activity is set to a constant value equal to the average steady-state social

activity, i.e., 0.65. The other parameters are the same across the two models. Furthermore,

19 We assume that in steady state the utility functions of recovered and susceptible individuals are the same.
Recovered individuals do not modify their social activity since they become immune. This is realistic at
least for a certain length of time. Furthermore, in the simulations we do not analyze the home activities
since they do not matter for our results.
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Figure 2 shows the dynamics of social activity chosen by susceptible and infected individuals

relative to the steady state levels and compares the models with and without altruism.

First and foremost, Figure 1 shows that the peak of the infection curve (middle panel) is

significantly flattened in the model with endogenous social activity. The number of susceptible

individuals remains higher in the optimizing SIR model. As the disease takes its course, the

number of infected individuals increases more sluggishly over time. An exact quantification

of this effect could be useful for the planning of health care units. Second, Figure 2 shows

that the social interaction of infected individuals (left panel) is unchanged over time in the

absence of altruism, while it decreases significantly in the presence of altruism. Interestingly,

in the presence of altruism, susceptible individuals decrease their social contacts by less, since

a large part of the burden is carried by the infected individuals.
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Figure 1
Comparison of the Homogeneous SIR Model with Endogenous Social Activity and

the Traditional SIR Model with Constant Exogenous Contact Rates
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Figure 2
Comparison of Social Activity of Infected and Susceptible Individuals in the

Homogeneous SIR Model with (right panel) and without Altruism (left panel)

4.1.1. Comparison SIR-Network Model with Endogenous Social Activity and

Standard SIR-Network Model

In the SIR-network model, three age groups are included.20 Following Acemoglu et al. (2020),

the three groups are the young (20− 49 years), middle-aged (50− 64 years), and old (65+

years). The respective population shares are set to Ny = 53%, Nm = 26%, and No = 21%.

The network adjacency or homophily matrix is calibrated so that all groups have a contact

rate, ξj,k, equal to 1 with their peers and equal to 0.7 (or later on 0.4) with the other

groups. The matrix is symmetric, reflecting reciprocal contact rates between groups. This

calibration is similar to that in Acemoglu et al. (2020), which facilitates the comparison

of our SIR-network model with endogenous social activity and other SIR-network models

with exogenous contact rates and similar age structures. Realistically, different age groups

have different recovery rates. For the middle-aged group, we set γm = 0.4, a number that

is standard in the literature; for the younger group, a slightly faster recovery γy = 0.45 is

chosen, and for the older group, we set γo = 0.35. All other parameters are kept as in the

benchmark homogeneous SIR model.

Figure 3 compares the dynamics of infected, susceptible, and recovered individuals in our

SIR-network model (thicker lines) with those in the exogenous SIR-network model (thinner

20 An extension to more groups is feasible, but would not change the main implications.
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lines).21 The latter case is obtained by setting the social activity of each group equal to their

respective steady-state values. The comparison is again revealing. In our SIR-network model,

the curves for the infected of all age groups are much flatter than those in the exogenous

SIR-network model. Figure 4 displays the social activity of susceptible individuals of all three

age groups for our model. While young, middle-aged, and old agents all reduce their social

activities, the old group reduces it by more since its agents are more exposed to the severe

health risk and the corresponding utility loss due to their lower recovery rate.
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Figure 3
Comparison of SIR-Network Models with Endogenous Social Activity vs. Constant

Exogenous Contact Rates
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Figure 4
Dynamics of Social Interactions of Age Groups in the SIR-Network Model with

Endogenous Social Activity

21 The initial infection shock is set to 0.001 and takes place in the young group, i.e., the group with a
presumably higher social-activity intensity.
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4.1.2. SIR-Network Model with Endogenous Choice of Group-Differentiated

Social Activity

Thus far, we have kept the reciprocal degree of contact across groups, ξjk, fixed and allowed

for an endogenous decision of the general intensity of social interactions. The rationale for

this is that interactions vis-à-vis specific groups are partly the result of organizational and

societal practices, culture, and attitudes, which prevail above and beyond agents’ decisions

on a daily basis. We are, however, interested in assessing the performance of our model along

several possible dimensions, including the case in which agents endogenously choose even

the degree of social interactions for each specific group. In Section (3.5), we have shown how

the analytics of the model would change in this case: an important insight from equation 31

is that an agent choosing social intensity with group k internalizes only the infection risk

toward this group, as opposed to the sum (as per equation (24)). This changes the incentives

as our simulations will further clarify.

To isolate the specific effects of the endogenous differential contacts, the steady state is

calibrated so as to make the new model variant comparable to the previous one.22 The levels

of the infection probabilities are lower in the new model (see Figure 9 in Appendix C). As

agents now decide on differential contacts, they can also avoid the most dangerous group, the

young ones in our case, that interacts the most. The young ones can also differentiate and,

more specifically, avoid contact with the most fragile group.

While the levels of the infection probabilities are lower, their changes are larger. This

is so, since, as highlighted in the analytical part, individuals choosing group-based social

intensity now internalize the risk vis-à-vis specific groups as opposed to the aggregate. In

other words, in this new variant of the model, individuals only consider direct exposure to

each group separately and neglect the indirect exposure through the rows of the network

matrix, as before.23

22 Specifically, xS,jj
s,t = 1 and xS,jk

s,t = 0.7 in the steady state. As before, the steady-state levels of social
activity for infected individuals are multiplied by 0.3 to take into account that the symptomatic ones can
isolate themselves.

23 As this form of neglect might not be completely realistic, we adjust the cost of infections to CI = 20. This
is economically equivalent to having individuals internalize infection costs, such as hospital congestion.
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Beyond the aggregate dynamic, it is of interest also to examine the activity of each group.

Figure 5 shows the social-activity intensities of young, middle-aged, and old susceptible agents

vis-à-vis the three different groups relative to their steady-state levels. First, all three groups

reduce their contacts to the young the most, as those are the most significant spreaders.24

Second, each group reduces significantly the contacts with their peers: social interactions

along the diagonal of the adjacency matrix are the most intense to start with, hence they are

more conducive to risk. Figure 6 shows the aggregate level of social-activity intensity of all

three susceptible age groups relative to the steady state. The aggregate dynamic is strikingly

similar to the one in Figure 4, which depicts the previous model variant. However, we have

seen that the aggregate may mask individual group dynamics which can differ significantly

between the two models.
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Figure 5
Differentiated Social Activities relative to Steady-State Levels in the SIR-Network

Model with Endogenous Group-Differentiated Social Activity

24 Figure 10 in Appendix C displays the pandemic’s dynamic. The young ones are in the group with the
highest share of infected agents.
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Aggregate Social Activities relative to Steady-State Levels in the SIR-Network

Model with Endogenous Group-Differentiated Social Activity

4.2. Optimal Lockdown Policy in the Homogeneous SIR and the

SIR-Network Model: Social Planner’s Solution

We now quantify the optimal lockdown policy and its dependence on the preference and

community structure, for both the homogeneous SIR and the networked SIR model.25 Figure

7 plots the optimal lockdown policy as captured by the fraction θ chosen by the planner (right

panel) and the resulting social interactions of the susceptible individuals in our homogeneous

SIR model with optimizing agents. The parameters are as before with δ set to 0.5 and

0 for the model variants with and without altruism, respectively. Each panel of Figure 7

compares the cases with (dashed line) and without (solid line) altruism. Interestingly, and in

accordance with our empirical results, the planner chooses a smaller fraction of locked-down

activities when individuals are altruistic. Again, social interactions of susceptible individuals

are higher in the altruistic case. This is because infected individuals adjust their interactions

already by themselves in consideration of other people’s infection risk.

Figure 8 plots the optimal lockdown policy (right panel) and the resulting social interactions

of susceptible agents (left panel) for the planner’s solution in the SIR-network model. Here,

lockdown policies are set differentially across age groups. While a full lockdown of a single

group (sequestering) jointly with full freedom for the others would be unethical, joint burden

25 Since qualitatively the responses of social activities are similar, we use the SIR-network model with fixed
degrees of homophily in this section.
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sharing with differential protective NPIs across groups is desirable in light of the different

recovery rates.26 A practical implementation of this policy would include more extensive leave

of absence for workers in older age groups or in groups with pre-existing health conditions.

Our results point to two main conclusions. First, stringency measures are stricter for the

greatest risk spreaders, namely the age group in which the infection shock happened and

which has a higher social-activity intensity. Second, each panel compares the cases where

individuals hold different degrees of homophily, by setting ξ = 0.7 (lower homophily, black

lines) and ξ = 0.4 (higher homophily, blue lines). Interestingly, stringency measures are

generally stricter in the case of lower homophily. Lower homophily implies that an infection

outbreak, occurring within one group, spreads faster to the other groups. Hence, in order to

curb the epidemic, the planner optimally shall restrict social activity in the affected group by

more.
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Figure 7
Social Activity of Susceptible Individuals and Optimal Lockdown Depending on

Degree of Altruism of Infected Individuals

26 Recall that different recovery rates also implicitly capture different mortality rates.
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Social Activity of Susceptible Individuals and Optimal Differentiated Lockdown

Policies for Different Degrees of Group Connections

5. Concluding Remarks

While envisaging a return to freedom of mobility and to past customs, though hopefully with

fading fears, understanding the determinants of people’s behavior in the face of catastrophic

events is important along at least two dimensions. First, it is difficult to accurately forecast

the spread of a disease with models that do not account for human behavior. Second, as

policymakers seek advice on exit strategies that could mitigate both the loss of lives and

the economic consequences, understanding individuals’ behavior, even as lockdowns or other

stringency measures are lifted, is informative. Excessive precautionary behavior is likely to

trigger demand spirals which might slow down the recovery process.

One of the initial approaches to contain the pandemic, suggested by experts, has been a

“one size fits all” response, namely a full lockdown. We uncover important heterogeneities in

individuals’ behavior as well as in the efficacy of stringency measures with respect to regional

differences in time and space. Our findings suggest that a balanced approach involving

a joint interaction of stringency measures, in respect of human dignity, and responsible

social preferences can help mitigate both the public health crisis and the economic costs. A
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social planner does wish to impose stringency measures, due to various externalities, but

they depend on the social, cultural, and community traits. Stringency measures are stricter

for agents with high social intensity and when groups exhibit less homophily, i.e., when

the disease is less likely to be confined to one group, and can spread more easily within

communities.
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A. First-Order Conditions of the Social Planner in the

Homogeneous SIR Model

The first-order conditions for the social planner’s problem in Definition 3 for the home activity

of infected and susceptible individuals and for the home and outside activities of recovered

individuals are equivalent to the ones obtained under the decentralized equilibrium. For the

social activity of susceptible and infected individuals, however, we have:
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B. First-Order Conditions of the Social Planner in the

SIR-Network Model

The first-order conditions for the social planner’s problem in Definition 4 for the home activity

of infected and susceptible individuals and for the home and outside activities of recovered

individuals are equivalent to the ones obtained under the decentralized equilibrium. For the

social activity of susceptible and infected individuals in each group j, however, the first-order

conditions are as follows:
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C. Additional Figures
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Figure 9

Dynamics of Infection Probabilities in the SIR-Network Model
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Figure 10
Comparison of SIR-Network Models with Endogenous Group-differentiated Social

Activity vs. Constant Exogenous Contact Rates
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