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Abstract

We examine the system-wide effects of liquidity regulation on banks’ bal-

ance sheets. In the general equilibrium model, banks have to hold liquid assets,

and choose among illiquid assets varying in the extent to which they are difficult

to value before maturity, e.g., structured securities. By improving the liquidity

of interbank markets, tighter liquidity requirements induce banks to invest in

such complex assets. We evaluate the welfare properties of combining liquidity

regulation with other financial-stability policies, and show that it can comple-

ment ex-ante policies, such as asset-specific taxes, whereas it can undermine the

benefits of ex-post interventions, such as quantitative easing.
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1 Introduction

Banks’ liquidity management takes the center stage in policy debates on financial
stability. Their systemic importance as suppliers of liquidity to both the real and the
remaining financial sector (e.g., Kashyap, Rajan and Stein, 2002; Gatev and Strahan,
2006; Acharya and Plantin, 2021) gives rise to the need for regulation with the goal
of mitigating liquidity risk. In addition, the liquidity composition of banks’ balance
sheets is a relevant determinant of monetary-policy transmission (see, among others
Kashyap and Stein, 2000). The failure of some banks to preserve a level of liquid-
ity that would allow them to shield their operations from disruptions due to bank
funding shocks has prompted tighter liquidity regulation around the globe, in the
form of the Liquidity Coverage Ratio (LCR). While some commentators believe this
new set of liquidity regulations to have improved the resilience of banks during the
recent COVID-19 crisis (Federal Reserve, 2020), tighter liquidity regulation has also
been associated with reduced liquidity creation in non-crisis times (Roberts, Sarkar
and Shachar, 2018).

A relevant consideration affecting this trade-off is the way banks invest in as-
sets that have limited eligibility for satisfying liquidity requirements. As securiti-
zation is an important channel through which banks seek to enhance their liquidity
while accommodating risk taking in other asset classes, banks’ investment in com-
plex assets, such as structured securities, matters not only for their own solvency
but also for other banks’ ability to transfer credit risk. To shed light on the relation-
ship between liquid and complex assets on the balance sheets in the banking system,
this paper develops a general equilibrium model, and considers the effects of tighter
liquidity regulation on banks’ investment in complex assets, their provision of liq-
uidity in the interbank market, and the implications for allocative efficiency arising
from the interaction of liquidity regulation and other policies aimed at fostering
financial stability.

In the model, banks maintain a required fraction of liquid assets, similar to
the implementation of the U.S. Liquidity Coverage Ratio of 2013, which requires a
subset of bank holding companies (BHCs) to hold an amount of high quality liquid
assets (HQLA) that is sufficient to withstand their projected total net cash outflows
over a 30-day period of significant stress.1 They invest the remainder of their portfo-
lios in long-term risky assets that differ only in terms of their complexity. Complex
assets represent investments that are hard to value before maturity, such as non-

1For example, the most liquid assets that can be used to satisfy the LCR without any dis-
count include excess reserves, Treasury securities, government agency debt and MBS (not including
government-sponsored agency debt and MBS), and sovereign debt with zero risk weights.
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agency securitized assets and structured financial products.2 In contrast, simple
assets, such as corporate bonds, are relatively easy to value and exhibit an earlier
resolution of the uncertainty regarding their payoffs. Some fraction of depositors
of each bank demand liquidity depending on their intrinsic needs as well as their
confidence in their bank, which in turn can depend on the opacity of their bank’s
assets and the state of the economy. Banks with excess liquidity or shortfalls relative
to this demand can then trade in an interbank market.

Motivated by the observed illiquidity of complex assets during the crisis (Gor-
ton and Metrick, 2010), we show the existence of an equilibrium in which com-
plexity has two important implications for bank performance and the pattern of
interbank trading. First, it increases a bank’s exposure to aggregate shocks, result-
ing in a procyclical quality of liquidity provision to depositors. In good times, which
corresponds to states in which risky assets yield a high expected return, banks that
invest in complex assets perform better on average because depositors, who cannot
observe the quality of the complex assets for an individual bank but are confident
in the expected return, maintain their investment until maturity. Banks that invest
in simple assets perform worse on average because depositors run on the subset of
banks whose assets are revealed to be of low quality. In bad times, or crises, banks
that invest in complex assets perform worse on average because uncertainty about
the quality of their assets induces depositors to run. Banks that invest in simple
assets perform better on average because depositors maintain their investments in
the subset of banks whose assets are revealed to be of high quality.3

Second, complex-asset holdings also increase a bank’s capacity to respond to
liquidity stress by selling its long-term assets on the interbank market. This is be-
cause the symmetric opacity associated with complex assets reduces asymmetric
information and facilitates trade (Dang, Gorton and Holmström, 2015). However, if
a bank invests in simple assets that turn out to be of low quality, then it cannot sell
them to raise liquidity. In this manner, our model implicitly takes into account the
possibility for banks to securitize their illiquid loans, thereby making them liquid
(interbank loans), as their ability to do so is spurred by their investment in complex
assets.

2Gorton and Metrick (2012) note that in the case of collateralized debt obligations, it is difficult
to predict the payoff associated with each tranche. Additionally, Brunnermeier (2009) argues that
the illiquidity of structured products during the crisis was associated with a loss of confidence in the
ability to value these assets and in the reliability of ratings. For example, on August 9, 2007, BNP
Paribas suspended valuations of three of its investment funds due to an inability to value assets that
were exposed to the U.S. securitization market, eventually leading to a bank run on Northern Rock.

3Note that complex assets are not assumed to have procyclical inherent risk compared to sim-
ple assets. Their relatively procyclical character is solely due to how their opacity interacts with
depositor sentiment in good versus bad times.
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Figure 1: The effect of the Liquidity Coverage Ratio (LCR) on holdings of complex
assets. This figure shows the mean ratio of complex assets to illiquid assets, sepa-
rately for all bank holding companies that were subject to the LCR and those that
were exempt from it. Illiquid assets are total assets minus liquid assets, where liquid
assets consist of cash and balances due from depository institutions, federal funds
sold, securities purchased under agreement to resell, Treasury securities, and gov-
ernment agency debt and MBS (not including government-sponsored agency debt
and MBS). Complex assets consist of GSE MBS, non-agency MBS, asset-backed se-
curities, and structured financial products. The first dashed line indicates the first
quarter after the proposal of the LCR (2013Q4), and the second dashed line indi-
cates the first quarter after the implementation of the LCR (2015Q1). Data source:
FR Y-9C reports.

We use the model to analyze how liquidity regulation affects the degree to
which banks invest in complex assets. We illustrate channels by which tighter liq-
uidity regulation can either substitute for or complement investment in complex
assets. On the one hand, requiring banks to hold greater liquidity buffers reduces
the liquidity advantage of complexity in good times. On the other hand, it also
increases the supply of liquidity in bad times, which leads to an increase in asset
prices. Higher anticipated asset prices partially insure banks against runs associ-
ated with complex assets, which encourages greater ex-ante investment in the latter.
When calibrating the model to the Great Financial Crisis, tighter liquidity regula-
tion has a net positive effect on banks’ investment in complex assets, which in turn
dampens the effect of liquidity regulation in supporting asset prices during crises.
This characterization of complex and liquid assets as complements matches our em-
pirical evidence in Figure 1 that following the implementation of the LCR, affected
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banks increase the portion of complex assets in their portfolio of illiquid assets, in
comparison to banks that are exempt from the LCR.

To the extent that the availability and use of securitization, fitting our descrip-
tion of complex assets, has enabled lending to subprime borrowers, which is seen
as a key precursor to the financial crisis (Mian and Sufi, 2009), our main result
points to a potentially destabilizing effect on the financial system as an unintended
consequence of liquidity regulation. Through the lens of our model, we then ex-
plore how liquidity regulation can be combined with other policies to counteract
this effect and foster financial stability. Liquidity regulation can be used to comple-
ment ex-ante financial-stability policies, such as asset-specific taxes. In particular,
the equilibrium degree of investment in complex assets is generically inefficient
because the interbank lending market provides incomplete insurance, resulting in
a distortionary pecuniary externality. Liquidity requirements determine how the
equilibrium investment in complex assets compares to the level chosen by a con-
strained planner.4 The constrained-efficient investment in complex assets can be
induced via asset-specific taxes, but whether simple or complex assets should be
taxed depends on the tightness of liquidity requirements.

As liquidity regulation affects banks’ liquid-asset portfolio and their willing-
ness to provide funds in the interbank market, the liquidity of which determines
the pass-through of monetary-policy rates to interbank rates (see, e.g., Bianchi and
Bigio, 2021), our model also links to monetary-policy transmission. Given central-
bank purchases of illiquid assets in the course of quantitative easing (QE), we zoom
in on the interaction between liquidity regulation and QE, which are concurrently
implemented policies not only in the U.S. but also in the euro area. We show that
tighter liquidity regulation can undermine the benefits of ex-post policies such as
QE, i.e., asset purchases by the government in bad times. QE leads to higher asset
prices to support solvent but illiquid banks, but it also involves a cost since the bond
purchases must be financed with taxes. When undertaken as a surprise, QE always
improves welfare. However, if QE is predictable, then banks respond by shifting
their portfolios towards complex assets ex ante, which has an offsetting negative ef-
fect on the complex-asset price. Because of this attenuation, the gains from QE may
wind up too small relative to its financing costs.

4To be more precise, on the one hand, the planner may have a stronger incentive to invest in
complex assets compared to the individual banks because it internalizes the full return of these
assets in the bad state, whereas the individual banks that invest in complex assets receive only a
fraction of this return based on the interbank market price. On the other hand, the planner may
have a stronger incentive to invest in simple assets because it internalizes that this would effectively
distribute more liquidity to the liquidity-shocked depositors of the distressed banks. If liquidity
requirements are sufficiently tight, each safe bank has a large amount of excess liquidity that can be
used to buy assets from the distressed banks, and the latter effect dominates.
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Relation to the literature. In this paper, we set out to analyze how liquidity regu-
lation affects banks’ balance sheets, in particular the composition of illiquid assets
that are not eligible to satisfy liquidity requirements imposed by rules such as the
Liquidity Coverage Ratio. We further consider how this channel influences the ef-
fect of liquidity regulation on interbank debt markets, welfare, and the effectiveness
of financial-stability policies in a general equilibrium model.

Allen and Gale (2017) provide a survey of the literature on liquidity regula-
tion. They remark that there is little consensus regarding the specific nature of the
market failures that it is intended to target. For example, liquidity regulations have
been motivated on the basis of correcting for fire-sale externalities in short-term
funding markets (Perotti and Suarez, 2011) as well as incomplete information of
depositors about a bank’s vulnerability to a run (Diamond and Kashyap, 2016). De-
watripont and Tirole (2018) analyze inconsistent shocks and interactions between
liquidity regulation and solvency concerns. Lutz and Pichler (2021) study optimal
liquidity regulation in an environment where banks face, unlike in our model, a lia-
bility choice and an asset choice, but only between liquid and illiquid investments,
i.e., without any further differentiation among illiquid assets as in our model.

In terms of the empirical documentation of the effects of the LCR or very sim-
ilar policies on banks’ asset portfolio and interbank markets, Banerjee and Mio
(2018) show that liquidity regulation in the UK led to higher investment in liq-
uid assets and reduced reliance on short-term intra-financial loans and wholesale
funding. Bonner and Eijffinger (2016) document that liquidity regulation in the
Netherlands led to increased demand for long-term interbank loans. In the U.S., the
LCR has been associated with reduced liquidity creation and fire-sale risk (Roberts,
Sarkar and Shachar, 2018). Afonso et al. (2020) argue that liquidity regulations may
have increased banks’ desired level of reserves, potentially contributing to the high
volatility in the U.S. repo market in September 2019. BIS (2017) argues that the
LCR may lead to segmentation in repo markets by increasing the demand for trades
that allow banks to maintain their regulatory ratios. In contrast to these existing
findings, we present motivating evidence that the LCR has increased banks’ ability
to invest in complex, hard-to-value assets, which we rationalize in our model.

Our paper also contributes to a strand of the literature on policy interven-
tions that are meant to support banks during crises, in particular quantitative eas-
ing. A natural connection to our model arises from the fact that, as pointed out
by Chakraborty, Goldstein and MacKinlay (2020), quantitative easing interacts di-
rectly with banks’ complex-asset holdings, e.g., structured securities, as the latter
were targeted during two rounds of asset purchases in the U.S. Holmstrom and Ti-
role (1998) argue that government interventions to actively manage liquidity supply
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can be welfare improving when liquidity shocks are correlated. However, Farhi and
Tirole (2012) show that the anticipation of bailouts can induce banks to take exces-
sive correlated risks.

Besides considering how liquidity regulation interacts with QE with and with-
out commitment, we also consider ex-ante financial-stability policies such as asset-
specific taxes. We show that they can be used to implement a constrained-efficient
level of investment in complex assets. As such, our paper relates to DiTella (2019)
and the characterization of optimal financial-regulation policy therein, showing
that the socially optimal allocation can be implemented with a tax on asset hold-
ings internalizing hidden-trade externalities.

More generally, our model is related to papers on financial crises, which the
literature has argued to result from either weak fundamentals or panics (Goldstein,
2012). A self-fulfilling crisis can be caused by a panic among bank depositors,
as in Diamond and Dybvig (1983), or among currency speculators, as in Obstfeld
(1996). By contrast, fundamentals-based crises are analyzed by Chari and Jagan-
nathan (1988), Jacklin and Bhattacharya (1988), Allen and Gale (1998), and Baron,
Verner and Xiong (2021) for banks, and by Krugman (1979) for currency crises.
Both of these views have also been considered in global coordination games by Mor-
ris and Shin (1998) and Corsetti et al. (2004) for currency attacks, and by Morris
and Shin (2004) and Corsetti, Guimarães and Roubini (2006) for debt crises.

Specifically, the degree of “complexity” in bank portfolios in our setting is
somewhat related to the model in Dang, Gorton and Holmström (2015), which fo-
cuses on optimal security design. They show that debt is welfare maximizing and
information insensitive, and can give rise to crises. This is because when a bad sys-
temic shock occurs, information-insensitive securities become more sensitive to in-
formation acquisition. In contrast, in our model there is no information acquisition.
More than that, simple and complex securities are identical ex ante, and neither
banks nor depositors obtain any information about complex assets prior to their
maturity. Most importantly, rather than on security design, we focus on how liquid-
ity regulation interacts with banks’ complex-asset holdings that are associated with
greater informational uncertainty, with crucial repercussions for interbank markets,
welfare, and monetary-policy transmission (quantitative easing in particular).

Our model’s implications regarding fire sales in the interbank market link to
other theories of asset sell-offs during financial crises (e.g., Shleifer and Vishny,
1992,9; Kiyotaki and Moore, 1997). Fire sales can be exacerbated by predatory trad-
ing (Brunnermeier and Pedersen, 2005). In addition, a run-up in either the repo
or asset-backed commercial paper market can occur due to an increase in “money
demand” (Gorton and Metrick, 2012) or global imbalances (Caballero and Krishna-
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murthy, 2009). Adverse selection can also lead to fire sales in the interbank mar-
ket. For example, under adverse selection in secondary debt markets (Gorton and
Pennacchi, 1990), costly information acquisition (Ahnert and Kakhbod, 2018) and
information production may be destabilizing (Dang, Gorton and Holmström, 2015;
Gorton and Ordonez, 2014). In contrast, and rather complementary, to these mod-
els, our fire-sale mechanism hinges on interactions between liquidity requirements
and banks’ choice to invest in complex or simple assets.

2 Model

This section introduces a model in which liquidity risk and liquidity regulation
affect a bank’s incentive to invest the portion of its portfolio that is ineligible for
satisfying liquidity requirements in either complex or simple assets. We then char-
acterize the equilibrium, and illustrate channels by which tighter liquidity require-
ments affect asset prices and investment in complex assets. Finally, we show that
the equilibrium investment in complex assets can be either excessive or insufficient
depending on the tightness of liquidity requirements.

2.1 Environment

Overview. There are three periods, t ∈ {0,1,2}. There is a mass one of limited-
liability banks indexed by i ∈ [0,1]. At date t = 0, each bank acquires funding from
a mass one of depositors that each deposit one unit of capital. Liquidity regulations
require banks to hold a fraction of their assets in liquid investments. Banks can
invest their remaining assets in long-term, risky investments of varying complexity.

At date t = 1, the economic state ω, which is publicly observed, is realized
as either good, ω = g, or bad, ω = b. It is commonly known that the good state
is realized with probability η. Subsequently, some depositors may withdraw early.
Each bank may then have an excess or a shortfall of liquidity that it can trade against
in an interbank market. At date t = 2, asset returns are realized, interbank trades
are completed, and banks distribute any profits back to their depositors.

Depositors. There are two types of depositors. A normal (late) depositor has a
constant marginal utility of 1 for all payoffs, regardless of when they are received.
A liquidity-shocked (early) depositor experiences a liquidity shock at period 1, which
is represented by having a marginal utility that is equal to α > 1 for the first κ > 1
units of capital received in period 1, and that is equal to 1 for capital in excess of κ
in period 1 or any payoffs received in period 2. A depositor’s utility U (x) in period
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1 from consuming x can thus be summarized as follows:

U (x) = x1shocked

(
α1{x≤κ} + 1{x>κ}

)
+ x1normal.

Each depositor’s type is private information, but the fraction of liquidity-shocked
depositors φ ∈ (0,1) is publicly known.

Liquidity regulation. In period 0, each bank must invest a fraction L of its assets
in liquid investments that can be used to satisfy a regulatory liquidity requirement.
In period 1, a bank can use its liquid assets to pay depositors who withdraw early.5

We assume L > κφ to ensure that a bank has sufficient liquidity to meet the liquidity
needs of the liquidity-shocked depositors. Liquid assets that are held until period 2
yield a return that is normalized to 1.

A bank’s portfolio choice. The remaining fraction 1 − L of a bank’s portfolio can
be invested in long-term, risky investments that mature in period 2. There are two
types of investments that we denote by θ. Complex assets, denoted by θ = C, rep-
resent investments the quality of which is relatively difficult to evaluate before ma-
turity, such as securitized assets and structured financial products. Simple assets,
denoted by θ = S, represent investments the quality of which can be evaluated rel-
atively easily before maturity, such as corporate bonds. Specifically, the returns for
simple assets become public knowledge in period 1, whereas the returns for com-
plex assets are not known until they mature in period 2.

The two types of investments have identical return distributions that depend
on the realization of the economic state ω. Specifically, both yield a return of R > 0
with probability µω (depending on the economic state) and 0 otherwise, where µg >
µb.

An important feature of our model is that any bank can choose at date t = 0, by
deciding on its investment in either complex or simple assets, whether the return on
its long-term, risky assets will become public knowledge in period 1 or not. Banks
also have the option to invest their entire portfolio in liquid assets. A bank chooses
its portfolio to maximize the expected utility of its depositors.6 For simplicity of
language, we refer to banks invested in simple, complex, or liquid investments as
simple, complex, or liquid banks, respectively. A bank’s portfolio choice is publicly
observed.

5This is consistent with the guidance for the implementation of the Liquidity Coverage Ratio
articulated in Basel Committee on Banking Supervision (2013), which states that firms may tem-
porarily break the requirement during periods of financial stress.

6Each bank can be understood as being mutually owned by its depositors, like in Diamond and
Dybvig (1983).
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Debt contract. In period 0, each bank promises to pay Rd,i to depositors that with-
draw early in period 1, assuming it can meet the demand for liquidity. In period 2,
the bank pays the remaining value of its assets to depositors that withdraw late. If
the bank cannot meet the demand for liquidity in period 1, then it is said to ex-
perience a run. Specifically, the bank is liquidated in period 1, and each depositor
receives a return in proportion to the bank’s total value after liquidation.7 Any re-
maining long-term assets that are not sold in the interbank market are liquidated
and yield a return of zero. A bank chooses its early repayment to maximize the
expected utility of its depositors.

Interbank market. In period 1, an interbank market allows banks with insuffi-
cient liquidity relative to the demand from early depositors to sell their long-term
assets to banks with excess liquidity.

For convenience of notation, define a normalized unit of complex assets as the
amount that yields an expected payoff of 1. In particular, a normalized unit of
complex assets is equal to 1

µωR
units of complex assets. Denote the state-dependent

price for a normalized unit of complex assets by PC(ω). Similarly, a normalized unit
of simple assets with a high return is equal to 1

R units of simple assets. Denote the
price for a normalized unit of simple assets with a high return by PS(ω). Note that
simple assets with a low return cannot be sold since they are publicly observed to
be worthless. Normalized units will be implicitly assumed for the rest of the paper.

The pattern of trade is as follows. If the mass of withdrawals in period 1 for
bank i is equal to αi(ω), then the bank’s net liquidity position in period 1 is given by
yi(ω) = L−αi(ω)Rd,i . If a bank has a liquidity shortfall, i.e., yi(ω) < 0, then it would
like to sell −yi(ω)

Pθ(ω) of its assets to generate enough liquidity to avoid a run. However,
a bank can only sell up to 1 − L units of long-term assets, which corresponds to
µωR(1−L) normalized units of complex assets or R(1−L) normalized units of simple
assets. A bank’s supply of assets on the interbank market can be summarized by

SB,i(PC(ω)) =
[
−yi(ω)
PC(ω)

∧
(
1{θi=C}µωR+ 1{θi=S & Ri=R}R

)
(1−L)

]+

,

where A∧B denotes min{A,B} and [A]+ denotes max{0,A}.
If a bank has excess liquidity, i.e., yi(ω) > 0, then its demand for long-term

assets depends on how the return compares to the return of 1 on its liquid assets.
Specifically, in the market for long-term assets of type θ, the bank fully invests in
yi(ω)
Pθ(ω) normalized units if Pθ(ω) < 1, it is indifferent if Pθ(ω) = 1, and it will hold on

7It is mathematically equivalent to alternatively suppose that each depositor receives Rd with a
uniform probability that depends on the bank’s value after liquidation.
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to its liquid assets if Pθ(ω) > 1. A bank’s demand can thus be summarized by

Dθ,i(Pθ(ω)) = 1{Pθ(ω)<1}
yi(ω)
Pθ(ω)

+ 1{Pθ(ω)=1}[0, yi(ω)],

where [0, yi(ω)] indicates the respective range as the bank is indifferent between
investing any amount up to yi(ω) if Pθ(ω) = 1.

The price is determined by the market-clearing condition:∫
Dθ,i(Pθ(ω))di =

∫
Sθ,i(Pθ(ω))di.

Note that the interbank market can also be interpreted as a repo market with a hair-
cut of hθ(ω) = 1 − Pθ(ω), where in the repo-market interpretation Pθ(ω) represents
the price of a bond backed by assets of type θ. See Online Appendix A for details.

2.2 Equilibrium

We consider the following equilibrium.

Proposition 1 (Equilibrium). Assume the following parametric restrictions:

η(αφ+ 1−φ) + (1− η)α
ηµg + (1− η)µb

< R (1)

η(1−µg)φ(κ −L)(α − 1) + (1− η)µb(1−φ−αφ(κ − 1))

(1− η)µb(1−φκ)
< R (2)

R <
L(1−φ)

1−L
(α − 1) (3)

R <
L(1−φ)
1−Lφ

α < α (4)

(L+µbR(1−L))
(
1 +

(1− η)(1−φ)
ηφ

)
< κ (5)

κ < L+µgR(1−L). (6)

Then there exists an equilibrium in which the following hold:

1. All banks invest in long-term assets and do not hold excess liquidity.

2. Banks pay depositors that withdraw early a return of Rd = κ.

3. Liquidity-shocked depositors always withdraw early, and normal depositors with-
draw early if and only if

• the bank is complex and the economic state is bad.
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• the bank is simple and its individual return is low.

4. The price for simple assets is P ∗S(ω) = 1, and the price for complex assets satisfies
1
α <

1
R < P

∗
C(b) < P ∗C(g) = 1.

The proofs of all propositions are relegated to the Appendix.

Depositor choices. The existence of an equilibrium in which depositors run under
the described conditions follows from the stated assumptions. The assumptions in
(3) and (4) ensure that the maximal return on long-term assets R is small enough
relative to the liquidity shock α that liquidity-shocked depositors always withdraw
early. The assumptions in (5) and (6) ensure that the early payment Rd = κ is large
enough that there exists an equilibrium in which normal depositors have an incen-
tive to withdraw early under the described conditions, but small enough that there
exists an equilibrium in which normal depositors withdraw late under the described
conditions (see the proof of Lemma 2 in the Appendix for details).

Note that if all of a bank’s depositors withdraw early, then the bank experi-
ences a run.8 The feature that complex banks, i.e., banks invested in complex assets,
experience a run when the economic state is bad is consistent with the observation
that uncertainty regarding asset valuations was associated with illiquidity during
the Great Financial Crisis (Gorton and Metrick, 2012).9 The bank-run conditions
for the two types of banks are summarized in Table 1 below.

Table 1: This table indicates when a run occurs for a complex bank (left panel) and
a simple bank (right panel).

(a) Complex

Individual return
High Low

State
Good
Bad X X

(b) Simple

Individual return
High Low

State
Good X
Bad X

8For a complex bank, this follows from the assumption in (5). Specifically, (5) implies that the
liquidity demand when all depositors withdraw early, κ, is greater than the sum of the bank’s liquid
assets, L, and the funds that it can generate by selling complex assets in the bad state, P ∗C(b)µbR(1−L).
Similarly, for a simple bank that draws a low return, the assumption L < 1 < κ implies that the
liquidity demand when all depositors withdraw early, κ, is greater than sum of the bank’s liquid
assets, L, and the funds that it can generate by selling assets, which in this case is zero.

9Note that in general, the equilibrium in which depositors run on complex banks in bad times is
not unique. We choose to focus on that equilibrium to match the motivating evidence from Gorton
and Metrick (2012). It can be interpreted as a “panic” among depositors in the bad state.
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Bank choices. Banks optimally invest in one of the two types of long-term assets
because they have a higher return compared to liquid assets, which is given by the
assumption in (1).10 Banks optimally pay a return of Rd = κ to depositors that
withdraw early because the elevated marginal utility α > 1 of liquidity-shocked de-
positors creates an incentive to provide their full liquidity need κ.11

Interbank market equilibrium. The supply of simple assets is always equal to
zero. This is because only simple banks with a low return experience a run, but they
cannot sell their observably worthless assets. Therefore, the price is at the maximum
level, P ∗S(g) = P ∗S(b) = 1.

For complex assets, the price depends on the economic state. In good times, the
supply is equal to zero since complex banks do not experience a run. Therefore, the
price is at the maximum level, P ∗C(g) = 1. In bad times, complex banks experience a
run and need to raise funds by selling their assets. At the same time, simple banks
with a positive individual return have excess liquidity. Thus, the equilibrium price
P ∗C(b) may be less than 1.

More specifically, since banks are ex-ante identical and both types of risky
assets are held in equilibrium, the equilibrium price is determined by the condition
that banks are indifferent between investing in complex and simple assets.12 Given
the debt contract, Rd = κ, and bank-run conditions as described in Proposition 1,
the expected utility from investing in complex assets as a function of PC(b) can be
written as

E[UC |PC(b)] = η

 ακφ︸︷︷︸
return to shocked dep.

+L−κφ+µgR(1−L)︸                  ︷︷                  ︸
return to normal dep.


+ (1− η) (αφ+ 1−φ)︸         ︷︷         ︸

proportional distribution

L+ PC(b) µb R(1−L)︸                    ︷︷                    ︸
liquidation value

, (7)

10See the proof of Lemma 1 in the Appendix for details.
11The optimal debt contract is also supported by the assumption in (5), which ensures that the

liquidity need κ is large enough that banks are willing to experience a run in bad times in order to
meet the full need in good times. See the proof of Lemma 2 in the Appendix for details.

12Note that there does not exist an equilibrium in which all banks invest in just one of the two
types of risky assets. See the proof of Lemma 3 in the Appendix for details.
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and the expected utility from investing in simple assets can be written as

E[US |PC(b)] = η

µg( ακφ︸︷︷︸
return to shocked dep.

+L−κφ+R(1−L)︸               ︷︷               ︸
return to normal dep.

)

+ (1−µg) (αφ+ 1−φ)︸         ︷︷         ︸
proportional distribution

L︸︷︷︸
liquidation value



+ (1− η)

µb( ακφ︸︷︷︸
return to shocked dep.

+

buy complex assets︷  ︸︸  ︷
L−κφ
PC(b)

+R(1−L)︸                          ︷︷                          ︸
return to normal dep.

)

+ (1−µb) (αφ+ 1−φ)︸         ︷︷         ︸
proportional distribution

L︸︷︷︸
liquidation value

, (8)

where the blue terms correspond to cases where there is no bank run and the red
terms correspond to cases where there is a bank run.

The relative benefit of investing in complex assets is then given by subtracting
(8) from (7):

∆(PC(b)) ≡ E[UC |PC(b)]−E[US |PC(b)]

= ηµg ∗ 0
+ η(1−µg)φ(κ −L)(α − 1)

+ (1− η)µb

[
(αφ+ 1−φ)(L+ PC(b)µbR(1−L))−

(
ακφ+

L−κφ
PC(b)

+R(1−L)
)]

+ (1− η)(1−µb)(αφ+ 1−φ)PC(b)µbR(1−L). (9)

The intuition is as follows. The first line of (9) reflects the fact that conditional on
drawing a high return in the good state, complex and simple banks both achieve the
same utility.

The second line reflects the fact that conditional on drawing a low return in the
good state, complex banks achieve a higher utility because they can still service the
full liquidity need of the liquidity-shocked depositors in period 1, whereas simple
banks experience a run.

The third line reflects the fact that conditional on drawing a high return in
the bad state, simple banks achieve a higher utility because they can service the full
liquidity need of the liquidity-shocked depositors, earn a return on asset purchases
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from the interbank market, and accrue the return on its long-term assets, whereas
complex banks experience a run.

The fourth line reflects the fact that conditional on drawing a low return in
the bad state, complex banks achieve a higher utility because they can sell assets to
reduce the liquidity shortfall in a run.

Table 2 summarizes which asset has an advantage depending on the individual
return and aggregate state.

Table 2: This table shows which type of asset (simple or complex) has an advantage
depending on the individual return and aggregate state.

Individual return
High Low

State
Good Neither Complex
Bad Simple Complex

The equilibrium complex-asset price is determined by equating the net advantage
of simple banks in the bad state to the net advantage of complex banks in the good
state. Lemma 3 in the Appendix shows that the price satisfies 1

R < P
∗
C(b) < 1. The

relationship 1
R < P

∗
C(b) is supported by the assumption in (2). The feature that the

asset price is lower in bad times compared to good times, P ∗C(b) < 1, is consistent
with the drop in asset prices that was observed during the Great Financial Crisis
(Gorton and Metrick, 2012), but also with the idea that complex banks made use of
securitization to increase their liquidity during the run-up to the crisis.

Total investment in complex assets. Finally, the complex-asset price in bad times
and the mass of investment in complex assets, which we dub the “volume of com-
plex banks” and denote by V ∗, are inversely related based on the market-clearing
condition.

Proposition 2 (Volume of complex banks). The volume of complex banks is related to
the complex-asset price in bad times as follows:

V ∗R
(
1−L

)
µb︸          ︷︷          ︸

complex-asset supply

=
(
1−V ∗

)
µb
L−κφ
P ∗C(b)︸                  ︷︷                  ︸

complex-asset demand

. (10)

2.3 The Effect of Tightening the Liquidity Requirements

This subsection illustrates channels by which tighter liquidity requirements affect
the equilibrium complex-asset price and the degree of investment in complex assets.
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First, note that the effect of tightening liquidity requirements on the equilib-
rium complex-asset price in bad times is inversely related to its effect on the incen-
tive to invest in complex assets. In particular, if tightening liquidity requirements
decreases the incentive to invest in complex assets, then the price must increase to
restore the indifference between investing in complex and simple assets in equilib-
rium.

To elaborate, recall the relative advantage of complex assets ∆ as summarized
by equation (9). Differentiating with respect to the liquidity requirement L at the
equilibrium price P ∗C(b) obtains:

∂∆
∂L

= −η(1−µg)φ(α − 1) + (1− η)µb(P
∗
C(b)R− 1)

[
−(αφ+ 1−φ) +

1
P ∗C(b)

]
. (11)

The first term −η(1 − µg)φ(α − 1) < 0 reflects the fact that tightening liquidity re-
quirements reduces complex banks’ superior ability to provide liquidity to early
depositors, by increasing the liquidity that simple banks with a low return can dis-
tribute back to investors when they experience a run.

The second term corresponding to the bad state has two subterms with oppo-
site signs. Recall that P ∗C(b)R > 1 (see Proposition 1). The first subterm, −(αφ+1−φ),
is negative and reflects the fact that tightening liquidity requirements mitigates the
advantage of complex banks relative to simple banks that draw a low return, which
is their ability to mitigate runs by selling their long-term assets. Like in good times,
tighter liquidity requirements lead to an increase in the liquidity that simple banks
with a low return can distribute back to investors when they experience a run.

The second subterm, 1
P ∗C(b) , is positive and reflects the fact that higher liquidity

mitigates the disadvantage of complex banks relative to simple banks that draw a
high return, which is their proneness to runs and subsequent inability to survive
until period 2 to accrue the yield on their long-term assets. This is because tighter
liquidity requirements lead to a reduction in the fraction of long-term assets that
simple banks can invest in.

The net effect of tightening liquidity requirements on the complex-asset price
is positive under a sufficient condition given by the following bound on the return
probabilities.

Proposition 3. If
η(1−µg )
(1−η)µb

∈
[
1, 1−1/κ

1−φ

]
, the equilibrium complex-asset price in bad times

P ∗C(b) is increasing in the liquidity level L.

The change in the complex-asset price is mediated by two mechanisms. First, liq-
uidity requirements reduce the complex-asset supply for each individual complex
bank while increasing the aggregate supply of liquidity, which directly increases the
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complex-asset price. Second, depending on how this direct effect compares to the
change in the price that is required to maintain indifference between investing in
the two types of long-term assets, banks shift either towards or away from complex
assets ex ante, which in general can lead to either a dampening or amplification of
the price response.

2.4 Planner Solution

We next show that the equilibrium is generically inefficient, and that the pattern of
inefficiency is monotonically related to the tightness of liquidity requirements.

Consider a regulator whose objective is to choose the volume of complex banks,
denoted by VW , to maximize the welfare in the economy, which is defined as the ex-
pected utility of depositors. The regulator is constrained to choices for which there
is an equilibrium in which the privately optimal debt contract and bank-run con-
ditions match the description in Proposition 1. The regulator also internalizes how
the volume of complex banks affects the endogenous determination of the complex-
asset price in interbank markets, which means that the complex-asset price in bad
times PWC (b) is related to the volume of complex assets in a manner analogous to
equation (10):

VWR
(
1−L

)
µb =

(
1−VW

)
µb
L−κφ
PWC (b)

. (12)

The welfare in the economy can then be written as

W
(
VW

)
= VWE

[
UC |PC(b) = PWC (b)

]
+
(
1−VW

)
E
[
US |PC(b) = PWC (b)

]
. (13)

The equilibrium may exhibit excessive or insufficient investment in complex assets
relative to the regulator’s solution depending on the magnitude of liquidity require-
ments relative to a threshold level.

Proposition 4 (Welfare-maximizing volume of complex banks). Let L̂ = κ
(
1− (1−φ)(1−η)µb

(1−µg )η

)
.

When liquidity requirements are tight, L > L̂, then there is excess investment in com-
plex assets, i.e., VW < V ∗. Moreover, the welfare-maximizing complex-asset price in
bad times is equal to the maximum level of 1, i.e., PWC (b) = 1 > P ∗C(b). When liquid-
ity requirements are loose, L < L̂, then there is underinvestment in complex assets, i.e.,
VW > V ∗. Moreover, the welfare-maximizing complex-asset price in bad times PWC (b)
satisfies 0 < PWC (b) < P ∗C(b).

The equilibrium is generically inefficient because the interbank lending market pro-
vides incomplete insurance. Banks do not take into account the impact of their port-
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folio choice on the interbank complex-asset price, and how that affects the quality
of insurance that can be achieved on the interbank market.13

The intuition for the pivotal role of the tightness of liquidity requirements is
as follows. On the one hand, the planner may have a stronger incentive to invest
in complex assets compared to the individual banks because it internalizes the full
return of these assets in the bad state, whereas the individual banks that invest in
complex assets receive only a fraction of this return based on the interbank mar-
ket price. On the other hand, the planner may have a stronger incentive to invest
in simple assets because it internalizes that this would effectively distribute more
liquidity to the liquidity-shocked depositors of the distressed banks. If liquidity
requirements are sufficiently tight, each safe bank has a large amount of excess liq-
uidity that can be used to buy assets from the distressed banks, so the latter effect
dominates. Otherwise, the former effect dominates.14

3 Calibration

As argued in Section 2.3, the relationship between tighter liquidity regulation and
banks’ investment in complex assets is ambiguous, and depends on which one of the
following two effects dominates: a reduction in the comparative liquidity-provision
advantage of complex banks or the greater insurance against runs associated with
complex assets thanks to higher asset prices. To quantify the net effect of tighter
liquidity regulation on banks’ investment in complex assets, we calibrate our model
to the Great Financial Crisis (GFC). At the calibrated parameters, the volume of
complex assets and the interbank complex-asset price in bad times are increasing in
the tightness of liquidity requirements, while welfare is decreasing.

We calibrate the eight parameters R, L, κ, η, µg , µb, α, φ to satisfy the six

13This is similar to the result in Geanakoplos and Polemarchakis (1985), which states that in the
presence of incomplete markets, a competitive equilibrium is generically constrained inefficient.

14An alternative explanation that is slightly more mathematical is the following. The regulator’s
incentive to increase the complex-asset price is increasing in the level of the equilibrium complex-
asset price. This is because increasing the price improves the performance of complex banks, which
sell assets, but decreases the performance of simple banks that draw a high return, which buy assets.
The marginal benefit of increasing the price is constant since it enters linearly into the complex-
bank return (see equation (7)), whereas the marginal cost is decreasing in the level of the price since
it enters hyperbolically into the simple-bank return (see equation (8)). Hence, the marginal net
benefit of increasing the price is increasing in the level of the price. Now, consider a case in which
the equilibrium complex-asset price in bad times P ∗C(b) is increasing in the liquidity ratio L (see
Proposition 3). If liquidity requirements exceed L̂, then the equilibrium complex-asset price is high
enough that the marginal net benefit of further increasing the complex-asset price is positive. In that
case, the planner has an incentive to increase the complex-asset price relative to the equilibrium by
reducing the volume of complex banks. An analogous argument holds if the liquidity level is lower
than L̂.
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parametric restrictions in Proposition 1 and to match five empirical counterparts:

• The long-term return R is calibrated to match 1.067, which is approximately
the mean of the 30-year fixed-rate mortgage rate in September 2008 (1.06)15

and Moody’s medium-grade corporate bond yield in September 2008 (1.073).16

• The short-term interest rate RD = κ is calibrated to match 1.018, which is the
federal funds rate in September 2008.17

• The liquidity level L is calibrated to match 0.176, which is approximately
the ratio of total liquid assets to total assets based on 2008Q3 FR Y-9C fil-
ings for bank holding companies. Liquid assets include cash and balances
due from depository institutions, federal funds sold, securities purchased un-
der agreement to resell, Treasury securities, and government agency debt and
mortgage-backed securities (not including government-sponsored agency (GSE)
debt and MBS).18

• The complex-asset price in bad times P ∗C(b), which is also the ratio of the
complex-asset price in bad times to the complex-asset price in good times, is
calibrated to match 0.966, which corresponds to the ratio of the 3-month U.S.
dollar LIBOR-OIS spread at its peak on October 10, 2008 (1/1.0364 ≈ 0.965)
to its level just before the onset of the GFC in the summer of 2007 (1/1.0008 ≈
0.999). The LIBOR-OIS spread corresponds to the premium for lending short-
term funds in the interbank market relative to the expected policy rate (Gorton
and Metrick, 2012).

• The fraction of complex assets V ∗ is calibrated to match 0.133, which is the ra-
tio of complex assets to total illiquid assets based on 2008Q3 FR Y-9C filings.
Illiquid assets are defined as assets minus liquid assets, as given above. Com-
plex assets include GSE MBS, non-agency MBS, and asset-backed securities.19

Table 3 presents the calibrated parameters, and Table 4 compares the empirical and
model-generated values for the observables.

In this calibration, the threshold level of liquidity is L̂ = 0.209, which is greater
than L = 0.176. Therefore, Proposition 4 implies that, perhaps surprisingly, there

15Data: FRED series MORTGAGE30US.
16Data: FRED series BAA.
17Data: FRED series FEDFUNDS.
18This definition of liquid assets is an approximation for the set of (level 1) high quality liquid

assets that can be used to satisfy the LCR without any discount, which includes excess reserves,
Treasury securities, government agency debt and MBS (not including government-sponsored agency
debt and MBS), and sovereign debt with zero risk-weights.

19Note that structured financial products are omitted for this exercise since banks were not re-
quired to report them at the time.
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Table 3: Calibrated parameters.

Parameter Value

High return (R) 1.067
Liquidity ratio (L) 0.176
Short-term return (κ) 1.018
Probability of good state (η) 0.999
Probability of high return in good state (µg) 0.999
Probability of high return in bad state (µb) 0.8
Fraction of liquidity-shocked depositors (φ) 0.007
Marginal utility from liquidity shock (α) 6.1

Table 4: Comparison of empirical and model-generated variables.

Variable Empirical Model

High return 1.067 1.067
Liquidity ratio 0.176 0.176
Short-term return 1.018 1.018
Price in bad times 0.966 0.964
Fraction of complex assets 0.133 0.166

was underinvestment in complex assets during this time. Following the reasoning
in Section 2.4, this is because the gains for the buyers in the interbank market as-
sociated with increasing the volume of complex banks, and hence decreasing the
complex-asset price during the crisis, was larger than the losses for the sellers.

Across rows and in this order, Figure 2 shows how the complex-asset price
in bad times, the gross rate of return on complex-asset purchases, the volume of
complex banks, and welfare vary with L in the equilibrium solution, the planner
solution, and the difference between them (across columns).20 Note that the figure
only shows values of L that are greater than the calibrated value, since the calibrated
L is at the boundary of the parameter space that is consistent with the restrictions
stated in Proposition 1. The equilibrium price and the volume of complex banks are
both increasing in L at these parameters, which is consistent with the motivating
empirical observation in Figure 1.21

The last row of Figure 2 also indicates that the optimal level of liquidity re-
quirements L that maximizes welfareW is given by the left boundary in the figure.

20It also shows the haircut if the interbank market is interpreted as a repo market. See Online
Appendix A for details about how the haircut is defined.

21In Online Appendix C.1, we present additional suggestive evidence that tighter liquidity re-
quirements are associated with higher complex-asset prices in bad times.
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This is true whether the fraction of complex assets is determined in equilibrium or
chosen by the planner. This reflects in part the opportunity cost associated with
holding low-yielding liquid assets in states where a bank does not experience a run,
which is the most likely outcome given the high calibrated values for the probability
of the good state η and the probability of receiving a high return in the good state
µg .

Figure 2: Variation in L. This figure shows how the complex-asset price in bad
times, the gross rate of return on complex-asset purchases, the haircut, the volume
of complex banks, and welfare vary with L in the equilibrium, the planner solution,
and the difference between them.
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Figure 3 shows how the optimal liquidity level that maximizes welfare in the
planner solution, L∗, varies with the long-term return R and the probability of the
good state η locally around the calibrated values. The other parameters are fixed
at the calibrated values. For all of the simulated parameter values, the optimal L∗

is equal to the minimum value that is consistent with the parametric restrictions
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described in Proposition 1. To understand how this boundary solution varies with
the parameters, note that the restriction in (4) is binding for L∗ at the calibrated pa-
rameters. This implies that L∗ must increase with R to maintain this restriction. The
intuition is that increasing R increases the incentive for liquidity-shocked deposi-
tors to withdraw late. This implies that L must simultaneously increase to reduce
the payoff from withdrawing late in order to maintain an equilibrium in which de-
positors withdraw under the conditions described in Proposition 1.

Similarly, L∗ is constant in η for values of η such that the binding restriction is
(4). For η sufficiently high, however, (2) becomes the binding restriction, in which
case L∗ increases with η to maintain the restriction. The intuition is that increasing η
increases the incentive to invest in complex banks due to their superior performance
in the good state. This requires the equilibrium complex-asset price in bad times
P ∗C(b) to decrease to maintain the indifference between investing in either type of
long-term asset. If the equilibrium price is equal to the lower bound 1

R , then L must
alternatively increase to reduce the advantage of complex banks in good times, so
that the equilibrium price satisfies the bound.

Figure 3: This panel shows the optimal liquidity level that maximizes welfare in the
planner solution L∗ as a function of the long-term return R (left) and the probability
of the good state η (right).
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Online Appendix B calibrates the model to the COVID-19 crisis. We compare
the GFC and the COVID-19 crisis since they are two major crises that occurred
before and after the introduction of the Liquidity Coverage Ratio. We find that
there was overinvestment in complex assets during the COVID-19 crisis. However,
the comparative statics with respect to L are qualitatively similar.
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4 Financial-stability Implications of Different Policies

The previous analysis has uncovered the conditions under which tighter liquidity
requirements give rise to greater investment in complex assets, with potential reper-
cussions for financial stability. This section describes how liquidity regulation in-
teracts with three alternative policies aimed at fostering financial stability: uncon-
ventional monetary policy in the form of quantitative easing, an ex-ante insurance
system, and asset-specific taxes.

4.1 Quantitative Easing

By affecting interbank trading, our model naturally connects with the transmission
of monetary policy through banks’ funding costs, which are (at least partially) de-
termined on the interbank market, and through the extent to which they are finan-
cially constrained, which is reflected by the liquidity composition of their asset side.
Since the Great Financial Crisis, central banks around the world have responded by
implementing unconventional monetary policies. In particular, quantitative easing
(QE) refers to asset purchases by central banks. QE has been implemented by the
Federal Reserve in the U.S. during both the Great Financial Crisis and the COVID-19
crisis to stabilize asset prices. This section analyzes how QE interacts with liquid-
ity regulation, and describes conditions under which it may or may not improve
welfare.

QE general implementation. To characterize the implementation of QE, we first
enrich the model. We assume that at the beginning of period 1 each depositor ran-
domly receives an income shock ν̂ ∈ {0,ν}, where it is commonly known that the
probability of receiving ν is equal to δ. We assume δ is sufficiently small, so that
all of the previous results still hold. After potentially paying an income tax, the
depositors deposit their income in banks.

The government only charges a tax if the aggregate state is bad. Specifically,
the government requires all depositors with a positive income shock to pay a tax τ ,
which creates a total tax revenue of τδ. The government then uses the tax income
to buy complex assets from the distressed banks. If the volume of complex banks at
tax level τ is equal to V (τ), then the resulting equilibrium complex-asset price P τC (b)
satisfies

V (τ)R
(
1−L

)
µb︸             ︷︷             ︸

complex-asset supply

=
(
1−V (τ)

)
µb
L−κφ
P τC (b)︸                    ︷︷                    ︸

complex-asset demand from simple banks

+
τδ
P τC (b)︸︷︷︸

complex-asset purchase by gov.

. (14)
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Finally, in period 2 the government returns these assets to the late depositors as a
lump sum. Given the debt contract and bank-run conditions in Proposition 1, the
expected utility from investing in complex assets as a function of the complex-asset
price in bad times PC(b) can now be written as

E[UC |PC(b)] = η

 ακφ︸︷︷︸
return to shocked dep.

+L−κφ+µgR(1−L)︸                  ︷︷                  ︸
return to normal dep.

+ δv︸︷︷︸
income


+ (1− η) (αφ+ 1−φ)︸         ︷︷         ︸

proportional distribution

L+ PC(b) µb R(1−L) + δ(ν − τ)︸                                  ︷︷                                  ︸
liquidation value

+ (1− η)
τδ
P τC (b)︸         ︷︷         ︸

gov. payoff

,

(15)

and the expected utility from investing in simple assets can now be written as

E[US |PC(b)] = η

µg( ακφ︸︷︷︸
return to shocked dep.

+L−κφ+R(1−L)︸               ︷︷               ︸
return to normal dep.

+ δν︸︷︷︸
income

)

+ (1−µg) (αφ+ 1−φ)︸         ︷︷         ︸
proportional distribution

(L+ δν)︸  ︷︷  ︸
liquidation value



+ (1− η)

µb( ακφ︸︷︷︸
return to shocked dep.

+

buy complex assets︷  ︸︸  ︷
L−κφ
PC(b)

+R(1−L)︸                          ︷︷                          ︸
return to normal dep.

+δ(ν − τ)︸  ︷︷  ︸
income

)

+ (1−µb) (αφ+ 1−φ)︸         ︷︷         ︸
proportional distribution

(L+ δ(ν − τ))︸         ︷︷         ︸
liquidation value

+ (1− η)
τδ
P τC (b)︸         ︷︷         ︸

gov. payoff

. (16)

We distinguish the welfare implications of QE based on whether it is undertaken
with or without commitment.

QE without commitment. When implementing QE without commitment, or in a
manner that comes as a surprise in period 1 after bank portfolios have already been
determined, the government takes as given the volume of complex banks that would
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occur if banks expected no tax, V (0), and chooses the tax τ to maximize welfare:

W (τ) = V (0)E
[
UC |PC(b) = P τC (b)

]
+ (1−V (0))E

[
US |PC(b) = P τC (b)

]
. (17)

Charging a higher tax rate allows the government to accrue more funds that it can
use to buy complex assets, which in turn increases the complex-asset price.

Proposition 5. If QE is undertaken without commitment and P τC (b) < 1, then the equi-

librium complex-asset price is increasing in the tax τ : ∂P
τ
C (b)
∂τ > 0.

Increasing the complex-asset price has the benefit of mitigating the severity of runs
on complex banks during bad times, which always outweighs the cost of the tax
when QE is undertaken without commitment.

Proposition 6 (QE without commitment). If QE is implemented without commitment,
then the optimal tax is positive and equal to the minimum of income ν and the minimum
tax necessary to increase the complex-asset price in bad times P τC (b) to 1.

Figure 4 shows how features of the model vary with L in equilibrium, under optimal
QE without commitment, and the difference between them. Note that ν = 1, δ =
0.01, and the remaining parameters are the same as in the baseline calibration (see
Table 3).

QE with commitment. When implementing QE with commitment, or in a manner
that can be predicted when banks choose their portfolios in period 0, the govern-
ment internalizes the fact that increasing the price of complex assets in bad times
affects the volume of banks that invest in complex assets, V (τ). Welfare then be-
comes

W (τ) = V (τ)E
[
UC |PC(b) = P τC (b)

]
+ (1−V (τ))E

[
US |PC(b) = P τC (b)

]
. (18)

When undertaken with commitment, QE increases both the complex-asset price and
the volume of complex banks.

Proposition 7. If QE is undertaken with commitment and P τC (b) < 1, then

(a) the equilibrium complex-asset price is increasing in the tax τ : ∂P
τ
C (b)
∂τ > 0, and

(b) the equilibrium volume of complex banks is increasing in the tax τ : ∂V (τ)
∂τ > 0.

Part (a) has a similar intuition as Proposition 5. Part (b) follows from the fact that
increasing the complex-asset price partially insures against the runs experienced
by complex banks in bad times. In contrast to the case without commitment, the
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Figure 4: Variation in L under QE without commitment. This figure shows how
the complex-asset price in bad times, the gross rate of return on complex-asset pur-
chases, the haircut, the volume of complex banks, and welfare vary with L in equi-
librium, under optimal QE without commitment, and the difference between them.
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anticipation of QE strengthens the incentive for banks to invest in complex assets
ex ante.

This, in turn, has an offsetting negative effect on the complex-asset price.
Therefore, when QE is undertaken with commitment, the attenuated benefit of in-
creasing the complex-asset price in bad times can be smaller than the cost associated
with the tax.

Proposition 8 (QE with commitment). Under QE with commitment, the optimal tax
can in general be either positive or zero. If the liquidity level L is sufficiently high, then
the optimal tax is zero.

The intuition is that QE with commitment has a weaker effect on the complex-asset
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price than QE without commitment since it encourages more banks to invest in com-
plex assets. When liquidity requirements are tight, then this shift towards complex
assets reduces welfare since there is overinvestment in complex assets in equilib-
rium (see Proposition 4).22 Moreover, tightening liquidity requirements decreases
the extent to which banks rely on interbank markets for managing their liquid-
ity. For sufficiently tight liquidity requirements, the benefit of QE increasing the
complex-asset price falls short of the financing costs.

Figure 5 shows how features of the model vary with L in equilibrium, under
optimal QE with commitment, and the difference between them. Note that QE with
commitment improves welfare for values of L near the calibrated value. Tighter
liquidity requirements increase the effect of QE on asset prices but decrease the
overall contribution to welfare, since banks are less reliant on asset prices as a means
to respond to liquidity stress.23

4.2 Ex-ante Insurance

We next turn to an ex-ante insurance policy that always improves welfare. Consider
the original environment as introduced in Section 2.2. If in period 1 the state is
good, then in period 2 the government taxes high-return banks at the rate τ and
distributes the proceeds equally to low-return banks. The tax is predictable in pe-
riod 0. The tax rate is τ = 1− µg , which sets equal the after-tax long-term return in
good times for all banks:

(1− τ)R(1−L)︸           ︷︷           ︸
return of a high return bank

= τ
µg

1−µg
R(1−L)︸             ︷︷             ︸

return of a low return bank

= µgR(1−L). (19)

Note that the government must implement this arrangement since banks with a
high realized return would have no incentive to honor a promise to pay the banks
with a low realized return. This policy always improves welfare.

Proposition 9 (Ex-ante insurance). Implementing the ex-ante insurance policy (i) in-
creases the equilibrium complex-asset price in bad times, (ii) decreases the volume of

22Note that when liquidity requirements are loose, this shift towards complex assets improves
welfare since there is underinvestment in complex assets in equilibrium.

23Tightening liquidity requirements amplifies the effect of QE on asset prices when QE is imple-
mented with commitment since it attenuates the complementarity between QE and investment in
complex assets. In particular, it reduces the volume of complex assets an individual bank can hold,
which reduces the benefit of the anticipated price support associated with QE. The weaker degree
of substitution with complex assets therefore leads to a weaker reduction in the price relative to the
direct effect of QE. Online Appendix C.2 presents suggestive evidence that asset prices were more re-
sponsive to QE announcements after the implementation of the LCR compared to before, consistent
with this mechanism.
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Figure 5: Variation in L under QE with commitment. This figure shows how the
complex-asset price in bad times, the gross rate of return on complex-asset pur-
chases, the haircut (or “hair.”), the volume of complex banks, and welfare vary with
L in equilibrium, under optimal QE with commitment (“Policy” or “Pol.”), and the
difference between them.
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complex banks, and (iii) increases overall welfare.

The intuition is as follows. The ex-ante insurance policy increases the period-2
income of simple banks with a low return such that they no longer experience a run.
This directly increases the expected utility from investing in simple assets since by
avoiding runs in the good state, it shifts a greater share of the expected return of a
simple bank to liquidity-shocked depositors with a higher marginal utility.

Since the policy is predictable, it additionally motivates banks to switch to
simple assets ex ante, which allows a greater fraction of banks to benefit from the
redistribution in the good state.24 This shift away from complex assets, in turn,

24Note that as more banks switch to simple assets, the price for complex assets in bad times in-
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leads to a reduction in liquidity demand during bad times and, thus, an increase in
the equilibrium complex-asset price. Note that there is no incentive to implement
an analogous redistribution in the bad state because the average return is less than
the promised repayment to the early depositors due to the parametric assumption
in (5). In particular, committing to redistribute in the bad state would trigger a run
on all banks.

Figure 6 shows how features of the model vary with L in equilibrium, under
the ex-ante insurance policy, and the difference between them. Note that this exer-
cise is conducted using the calibrated parameters (see Table 3).

4.3 Implementation through Asset-specific Taxes

Finally, we consider asset-specific taxes as a means of implementing the constrained-
efficient volume of complex banks (similar to Dávila and Korinek, 2018). For this
purpose, recall that the equilibrium is generically inefficient and that the degree
of investment in complex assets can be greater or less than in the planner solution
depending on whether liquidity requirements are tighter or looser than a threshold
level L̂, respectively (Proposition 4). This subsection first shows that QE and ex-ante
insurance cannot always be used to implement the constrained-efficient volume of
complex banks. It then provides conditions under which the constrained-efficient
volume of complex banks can be implemented with a tax on either complex or sim-
ple assets.

Proposition 10. If L < L̂ and ν is sufficiently large, then the constrained-efficient vol-
ume of complex banks can be implemented via QE with commitment. However, the tax
that implements the constrained-efficient volume of complex banks may not be welfare-
optimizing. If L > L̂, then neither QE nor the ex-ante insurance policy can implement the
constrained-efficient volume of complex banks.

The intuition is as follows. If L < L̂, then the constrained-efficient volume of com-
plex banks is greater than under the equilibrium solution (Proposition 4). Recall
that QE with commitment increases the incentive to invest in complex assets since
it supports the complex-asset price in bad times (Proposition 7). In particular, there
is a tax that implements the constrained-efficient volume of complex banks. How-
ever, this tax level does not necessarily maximize welfare because QE also affects
welfare through channels other than the volume of complex banks. To illustrate

creases, which decreases the expected utility of simple banks relative to the case where there is no
adjustment of bank portfolios. However, the net effect of the adjustment on the expected utility
across all banks is clearly positive because banks only switch to simple assets when the expected
utility is greater compared to sticking with complex assets.
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Figure 6: Variation in L under ex-ante insurance policy. This figure shows how the
complex-asset price in bad times, the gross rate of return on complex-asset pur-
chases, the haircut, the volume of complex banks, and welfare vary with L in equi-
librium, under the ex-ante insurance policy, and the difference between them.
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this, Figure 7 shows how the volume of complex banks and total welfare vary with
the tax τ used to implement QE with commitment at the calibrated liquidity level
L.

If L > L̂, then the constrained-efficient volume of complex banks is less than
that in the equilibrium solution (Proposition 4). The constrained-efficient volume
of complex banks cannot be implemented with QE, since QE without commitment
has no effect on the volume of complex banks and QE with commitment can only
increase the volume of complex banks. The ex-ante insurance policy decreases
the volume of complex banks (Proposition 9), but not enough to implement the
constrained-efficient level.

The constrained-efficient volume of complex banks for any level of L can be
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Figure 7: Variation in τ under QE with commitment. This figure shows how the
volume of complex banks and welfare vary with τ under QE with commitment.
The vertical dashed line corresponds to the welfare-optimizing tax. The horizontal
dashed line corresponds to the constrained-efficient volume of complex banks.
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implemented with a tax on either complex or simple assets. The tax can be described
as follows: if in period 1 the state is good, then in period 2 the government taxes
high-return complex (or simple) banks at a rate of τ , and distributes the proceeds
equally to the high-return simple (or complex) banks.

Proposition 11. Denote by ∆(PC(b)) = E[UC |PC(b)] − E[US |PC(b)] the relative benefit
of investing in complex assets without the tax as expressed in equation (9), by VW the
constrained-efficient volume of complex banks, and by PWC (b) the complex-asset price in
bad times for the constrained-efficient allocation. Then the following hold:

• If L < L̂ and −∆(PWC (b))VW

ηµgR(1−L) < R(1−L)−(κ−L)
R(1−L) , then the constrained-efficient volume of
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complex banks can be implemented by transferring from simple to complex banks

via a tax at the rate τ∗ =
−∆(PWC (b))VW

ηµgR(1−L) .

• If L > L̂ and ∆(PWC (b))(1−VW )
ηµgR(1−L) <

µgR(1−L)−(L−κ)
µgR(1−L) , then the constrained-efficient volume

of complex banks can be implemented by transferring from complex to simple banks

via a tax at the rate τ∗ =
∆(PWC (b))(1−VW )

ηµgR(1−L) .

Additionally, the tax level that implements the constrained-efficient volume of complex
banks also maximizes welfare.

Note that the parametric assumptions in this proposition ensure that the tax is con-
sistent with the incentive-compatibility conditions supporting an equilibrium of the
form as described in Proposition 1.

4.4 Comparison of Policies

Figure 8 compares welfare as a function of the liquidity level L for the various policy
scenarios. The first row shows welfare in the baseline equilibrium in the version of
the model with income shocks, as introduced at the beginning of Section 4.1. Note
that ν = 1, δ = 0.01, and the remaining parameters are the same as in the baseline
calibration (see Table 3). It also shows the improvement in utility associated with
the constrained-efficient volume of complex banks, which can be implemented us-
ing asset-specific taxes (see Proposition 11).

The second row shows the welfare gains associated with QE without commit-
ment, QE with commitment, and ex-ante insurance. At the calibrated liquidity level
L = 0.176, the ex-ante insurance policy achieves the greatest welfare gain, followed
by the planner solution, QE with commitment, and QE without commitment. For
tighter liquidity requirements, the ex-ante insurance policy continues to achieve the
greatest welfare gain, but QE without commitment may become more effective than
the planner solution and QE with commitment.

5 Conclusion

The Liquidity Coverage Ratio, alongside the Net Stable Funding Ratio, has been put
in place to foster financial stability by forcing large banks to maintain sufficient
liquidity on their balance sheets. This paper shows under what conditions tighter
liquidity requirements substitute for or complement banks’ investment in complex
assets, such as structured securities, that may contribute to destabilizing trends in
the economy.
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Figure 8: Comparison of welfare gains under different policies. This figure shows
welfare as a function of the liquidity level L in the baseline equilibrium with income
shocks as well as the improvement in utility associated with QE without commit-
ment (“Surp. QE”), QE with commitment (“Pred. QE”), and the ex-ante insurance
policy.
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In our model, the symmetric opacity associated with complex assets supports
bank liquidity in good times, but it has a mixed effect on liquidity during crises. On
the one hand, it causes panic-stricken depositors to run on banks that may turn out
to be solvent. On the other hand, it also allows banks to draw liquidity from in-
terbank lending markets. The model shows that tighter liquidity requirements can
support asset prices during crises by increasing the supply of liquidity on interbank
markets, but by doing so, it can also encourage greater investment in complex assets
beforehand.

We provide a rich assessment of the welfare properties of the interaction of
liquidity regulation and other policies aimed at fostering financial stability. First,
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the degree of investment in complex assets can be inefficiently high or low depend-
ing on liquidity requirements. Therefore, the tightness of liquidity requirements
determines the asset-specific taxes that can be used to implement the constrained-
efficient investment in complex assets. Second, liquidity regulation can undermine
the benefit of ex-post interventions such as unconventional monetary policy, in par-
ticular quantitative easing (QE). This is more likely to be true if QE is implemented
in a predictable manner, in which case the benefit of QE in supporting asset prices
is offset by higher ex-ante investment in complex assets.

We rely on parameters calibrated to the Great Financial Crisis. Doing so, we
find that there was potentially underinvestment in complex assets, which suggests
that the dry-up of the market for mortgage-backed securities following the crisis
may have been excessive, or that information frictions outside of our model are at
play (Daley and Green, 2016). Furthermore, at the calibrated liquidity level, the
constrained-efficient level of total investment in complex assets under an ex-ante
insurance policy achieves the greatest welfare gain compared to quantitative easing.
These considerations may give rise to a more general model of how the regulation of
different portions of banks’ balance sheets affects the extent of pecuniary externali-
ties that, in turn, determine the efficacy of different financial-market interventions,
which we leave for future research.
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Proofs

Proof of Proposition 1

Proposition 1 (Equilibrium). Assume the following parametric restrictions:

η(αφ+ 1−φ) + (1− η)α
ηµg + (1− η)µb

< R (1)

η(1−µg)φ(κ −L)(α − 1) + (1− η)µb(1−φ−αφ(κ − 1))

(1− η)µb(1−φκ)
< R (2)

R <
L(1−φ)

1−L
(α − 1) (3)

R <
L(1−φ)
1−Lφ

α < α (4)

(L+µbR(1−L))
(
1 +

(1− η)(1−φ)
ηφ

)
< κ (5)

κ < L+µgR(1−L). (6)

Then there exists an equilibrium in which the following hold:

1. All banks invest in long-term assets and do not hold excess liquidity.

2. Banks pay depositors that withdraw early a return of Rd = κ.

3. Liquidity-shocked depositors always withdraw early, and normal depositors with-
draw early if and only if

• the bank is complex and the economic state is bad.

• the bank is simple and its individual return is low.

4. The price for simple assets is P ∗S(ω) = 1, and the price for complex assets satisfies
1
α <

1
R < P

∗
C(b) < P ∗C(g) = 1.

We prove this via a lemma for each part taking the other parts as given.

Lemma 1 (Preference for risky assets). All banks invest in long-term assets and do not
hold excess liquidity.

Proof. We will show that holding only liquid assets is a dominated portfolio. To
determine the optimal early repayment for a bank fully invested in liquid assets, we
consider three cases depending on the magnitude of the early repayment Rd .

Case 1: If Rd > 1, we consider an equilibrium in which all depositors withdraw
early. If all depositors withdraw from the bank in period 1, then the bank defaults
since the maximum liquidity it can supply, 1, is less than the demand Rd . Therefore
the best response for an individual depositor of either type is to withdraw early since
the payment from withdrawing early, which is the total liquidation value of 1 since
the bank experiences a run, is greater than the payment from withdrawing late,
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which is zero. Therefore, there is an equilibrium as described. In this equilibrium,
the utility of the bank is

E[Ul] = αφ+ 1−φ. (20)

Case 2: If 1
αP ∗C(b)(1−φ)+φ ≤ Rd ≤ 1, we consider an equilibrium in which liquidity-

shocked depositors always withdraw early and normal depositors always withdraw
late.25 Note that this case is well-defined since αP ∗C(b) > 1 implies 1

αP ∗C(b)(1−φ)+φ < 1.
If the economic state in period 1 is ω, a mass φ of liquidity-shocked depos-

itors withdraws in period 1 and a mass 1 − φ of normal depositors withdraws in

period 2, then the expected payment from withdrawing late is
(1−Rdφ)/P ∗C(ω)

1−φ > 1 ≥ Rd ,
which implies that the best response for an individual normal depositor is to with-

draw late. Moreover,
(1−Rdφ)/P ∗C(ω)

1−φ ≤ αRd , which implies that the best response for a
liquidity-shocked depositor is to withdraw early. Therefore, there is an equilibrium
as described. In this equilibrium, the utility of the bank is

E[Ul] = η
(
αRdφ+ 1−Rdφ

)
+ (1− η)

(
αRdφ+

1−Rdφ
P ∗C(b)

)
.

The locally optimal Rd is the upper bound of 1 since α > 1 and αP ∗C(b) > 1. The
maximum expected utility is then

E[Ul |Rd = 1] = η
(
αφ+ 1−φ

)
+ (1− η)

(
αφ+

1−φ
P ∗C(b)

)
. (21)

Since P ∗C(b) < 1, it is clear to see that the expected utility from Case 2 (equation (21))
is greater than the expected utility from Case 1 (equation (20)).

Case 3: If Rd ≤ 1
αP ∗C(b)(1−φ)+φ , then there is no equilibrium in which liquidity-

shocked depositors withdraw early in the bad state.26 If liquidity-shocked depos-
itors withdraw late in the bad state, then the utility of the bank in the bad state,

1
P ∗C(b) , is less than the utility in the bad state from Case 2 from equation (21) since

αP ∗C(b) > 1. Similarly, if liquidity-shocked depositors withdraw late in the good state
then the utility of the bank in the good state, 1, is less than the utility in the good

25Note that under this condition there is no equilibrium in which normal depositors withdraw
early. In particular, the bank cannot default in period 1 even if all depositors withdraw early. As a
result, if all other depositors withdraw early, then the best response for an individual depositor is to
withdraw late because the individual payoff is infinite.

26There is no equilibrium in which liquidity-shocked depositors withdraw early in the bad state
since the utility from withdrawing early αRd is less than the payment from withdrawing late (con-

ditional on the other liquidity-shocked depositors withdrawing early),
(1−Rdφ)/P ∗C (b)

1−φ . Moreover, to
have an equilibrium in which liquidity-shocked depositors withdraw late, the payment from with-
drawing late (conditional on the other liquidity-shocked depositors withdrawing late), 1/P ∗C(b), must
be larger than the payment from withdrawing early, αRd , which requires Rd ≤ 1

αP ∗C (b) . Note that
1

αP ∗C (b) is less than the bound 1
α(1−φ)P ∗C (b)+φ since αP ∗C(b) > 1. Hence, there is no equilibrium for

Rd ∈
[

1
αP ∗C (b) ,

1
α(1−φ)P ∗C (b)+φ

]
.
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state from Case 2 from equation (21) since α > 1. Therefore Case 3 is dominated by
Case 2.

Since Case 2 dominates Case 1 and Case 3, the globally optimal early repay-
ment Rd is the local optimum from Case 2, Rd = 1, and the maximum utility is given
by equation (21).

Now, the portfolio from Case 2 is dominated by investing a fraction 1 − L of
the bank’s assets in complex assets and setting Rd = L. To see this, consider an
equilibrium in which liquidity-shocked depositors always withdraw early and nor-
mal depositors always withdraw late.27 If the economic state in period 1 is ω, a
mass φ of liquidity-shocked depositors withdraws in period 1, and a mass 1 − φ
of normal depositors withdraws in period 2, then the expected payment in period

2 for an individual normal depositor is
(L−φL)/P ∗C(ω)+µωR(1−L)

1−φ > L = Rd . Moreover,
(L−φL)/P ∗C(ω)+µωR(1−L)

1−φ < αL = αRd by 1
P ∗C(b) < R and the assumption in (4), which im-

plies that the best response for a liquidity-shocked depositor is to withdraw early.
Therefore, there is an equilibrium as described. In this equilibrium the utility of the
bank is

E[UC |Rd = L] = η
(
αLφ+L−φL+µgR(1−L)

)
+ (1− η)

(
αLφ+

L−φL
P ∗C(b)

+µbR(1−L)
)
. (22)

Then, subtracting (21) from (22) obtains

(1−L)η(µgR− {αφ+ 1−φ}) + (1−L)(1− η)
(
µbR−

{
αφ+

1−φ
P ∗C(b)

})
> (1−L)η(µgR− {αφ+ 1−φ}) + (1−L)(1− η)

(
µbR−α

)
> 0.

The penultimate line follows from αP ∗C(b) > 1 and the last line follows from the
assumption in (1). This shows that holding only liquid assets is a dominated port-
folio.

Lemma 2 (Debt contract). Banks pay depositors that withdraw early a return of Rd = κ.

Proof. Since liquidity-shocked depositors only have elevated marginal utility for the
first κ of payments, it is clear that a bank has no incentive to pay more than κ.28

Next, we show that it is also not optimal for banks to offer a rate lower than κ. For
the rest of the proof, assume Rd ≤ κ. Note that the assumption L > κφ implies that, if
Rd ≤ κ and only the mass φ of liquidity-shocked depositors withdraws early, then a

27Note that there does not exist an equilibrium in which normal depositors withdraw early by
similar reasoning as in Case 2 above.

28Note that an individual bank is indifferent to paying slightly higher amounts than κ as long as
normal depositors do not have an incentive to withdraw early. However, we rule out these equilibria
because they are socially less efficient due to their effects on the equilibrium bond price.
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bank has excess liquidity L−Rdφ > 0, which can be used to buy up to (L−Rdφ)/P ∗C(ω)
bonds.

Complex banks. Consider a complex bank. We consider three cases depending on
the magnitude of the early repayment Rd .

Case 1: If L + P ∗C(b)µbR(1 − L) < Rd ≤ κ, we consider an equilibrium in which
liquidity-shocked depositors always withdraw early and normal depositors with-
draw early only in the bad state. Note that this case is well-defined since L +
P ∗C(b)µbR(1−L) < κ follows from the assumption in (5).

If the economic state in period 1 is good, a mass φ of liquidity-shocked depos-
itors withdraws in period 1, and a mass 1 − φ of normal depositors withdraws in
period 2, then the expected payment in period 2 for an individual normal depositor

is
L−Rdφ+µgR(1−L)

1−φ . Therefore the best response for an individual normal depositor is
to withdraw late if and only if

L−Rdφ+µgR(1−L)

1−φ
> Rd

⇐⇒ L+µgR(1−L) > Rd . (23)

This is satisfied since Rd ≤ κ < L + µgR(1 − L) by the assumption in (6). The best
response for an individual liquidity-shocked depositor is to withdraw early if and
only if

L−Rdφ+µgR(1−L)

1−φ
< αRd

⇐⇒
L+µgR(1−L)

α(1−φ) +φ
< Rd . (24)

This is satisfied since Rd > L+ P ∗C(b)µbR(1−L) >
L+µgR(1−L)
α(1−φ)+φ by the assumption in (3).

If the economic state in period 1 is bad and all depositors withdraw early, then
the bank defaults since the maximum liquidity it can supply by paying out of its
liquid assets, L, and by selling bonds, µbP ∗C(b)R(1 − L), is less than the demand, Rd .
Therefore the best response for an individual normal depositor is to withdraw early
since the payment from withdrawing early, which is the total liquidation value of
the bank L + P ∗C(b)µbR(1 − L) since the bank experiences a run, is greater than the
payment from withdrawing late, which is zero.

Therefore, there is an equilibrium as described. In this equilibrium, the utility
of the bank is

E[UC] = η
(
αRdφ+L−Rdφ+µgR(1−L)

)
+ (1− η)

(
αφ+ 1−φ

)(
L+ P ∗C(b)µbR(1−L)

)
.

The locally optimal Rd is the upper bound κ since α > 1. The maximum expected
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utility is then

E[UC |Rd = κ] = η
(
ακφ+L−κφ+µgR(1−L)

)
+ (1− η)

(
αφ+ 1−φ

)(
L+ P ∗C(b)µbR(1−L)

)
. (25)

Case 2: If max
{L/P ∗C(ω)+µωR(1−L)
α(1−φ)+φ/P ∗C(ω)

}
ω=b,g

≤ Rd ≤ L + P ∗C(b)µb(1 − L)R, we consider

an equilibrium in which liquidity-shocked depositors always withdraw early and
normal depositors always withdraw late.29 Note that this case is well-defined since
L+µgR(1−L)
α(1−φ)+φ ≤ L+P ∗C(b)µb(1−L)R follows from the assumption in (3), and

L/P ∗C(b)+µbR(1−L)
α(1−φ)+φ/P ∗C(b) <

L+ P ∗C(b)µb(1−L)R follows from αP ∗C(b) > 1.
If the economic state in period 1 is good and the equilibrium is as described,

then the best response for an individual normal depositor is to withdraw late since
Rd ≤ κ implies that the condition in equation (23) is satisfied. The best response for

an individual liquidity-shocked depositor is to withdraw early since Rd >
L+µgR(1−L)
α(1−φ)+φ

implies that the condition in equation (27) is satisfied.
If the economic state in period 1 is bad, a mass φ of liquidity-shocked depos-

itors withdraws in period 1, and a mass 1 − φ of normal depositors withdraws in
period 2, then the expected payment in period 2 for an individual normal depositor

is
(L−Rdφ)/P ∗C(b)+µbR(1−L)

1−φ . The best response for an individual normal depositor is to
withdraw late if and only if

(L−Rdφ)/P ∗C(b) +µbR(1−L)
1−φ

> Rd

⇐⇒
L/P ∗C(b) +µbR(1−L)

1−φ+φ/P ∗C(b)
> Rd . (26)

This is satisfied since Rd ≤ L+ µbP ∗C(b)(1− L)R <
L/P ∗C(b)+µbR(1−L)

1−φ+φ/P ∗C(b) , which follows from

P ∗C(b) < 1. The best response for an individual liquidity-shocked depositor is to
withdraw early if and only if

(L−Rdφ)/P ∗C(b) +µbR(1−L)
1−φ

≤ αRd

⇐⇒
L/P ∗C(b) +µbR(1−L)
α(1−φ) +φ/P ∗C(b)

≤ Rd . (27)

This is satisfied since Rd ≥
L/P ∗C(b)+µbR(1−L)
α(1−φ)+φ/P ∗C(b) .

Therefore, there is an equilibrium as described. In this equilibrium, the utility

29Note that there is no equilibrium in which normal depositors withdraw early. To see this, note
that the bank cannot default in period 1 even if all depositors withdraw early. If all other depositors
withdraw early, then the best response for an individual normal depositor is to withdraw late because
the individual payoff is infinite.
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of the bank is

E[UC] = η
(
αRdφ+L−Rdφ+µgR(1−L)

)
+ (1− η)

(
αRdφ+

L−Rdφ
P ∗C(b)

+µbR(1−L)
)
. (28)

The locally optimalRd is the upper bound L+µbP ∗C(b)(1−L)R since α > 1 and αP ∗C(b) >
1. The maximum expected utility can then be written as

E
[
UC |Rd = L+µbP

∗
C(b)(1−L)R

]
= η

(
φ(α − 1)

[
L+ P ∗C(b)µb(1−L)R

]
+L+µgR(1−L)

)
+ (1− η)

[
L+ P ∗C(b)µb(1−L)R

](
αφ+

1−φ
P ∗C(b)

)
. (29)

Case 3: If Rd < max
{L/P ∗C(ω)+µωR(1−L)
α(1−φ)+φ/P ∗C(ω)

}
ω=b,g

, then there is no equilibrium in

which liquidity-shocked depositors withdraw early in both states since at least one
of (24) or (27) is violated. If liquidity-shocked depositors withdraw early in the bad
state, then the utility of the bank in the bad state, L

P ∗C(b) + µbR(1− L), is less than the

utility in the bad state from Case 2 in equation (28) since αP ∗C(b) > 1. Similarly, if
liquidity-shocked depositors withdraw early in the good state then the utility of the
bank in the good state, L+ µgR(1− L), is less than the utility in the good state from
Case 2 in equation (28) since α > 1. Therefore Case 3 is dominated by Case 2.

To determine the globally optimal payment Rd , we compare the maximum
utility between Case 1 and Case 2. The expected utility from Case 1 (equation (25))
minus the expected utility from Case 2 (equation (29)) is

ηφ(α − 1)
(
κ −

[
L+ P ∗C(b)µbR(1−L)

])
− (1− η)(1−φ)

[
L+ P ∗C(b)µbR(1−L)

]( 1
P ∗C(b)

− 1
)
> 0,

(30)

where the inequality follows by 1 > P ∗C(b) > 1
α and the assumption in (5).30 This

implies the globally optimal payment is Rd = κ.

Simple banks. Consider a simple bank. We consider three cases depending on the
magnitude of the early repayment Rd .

Case 1: If L < Rd ≤ κ, we consider an equilibrium in which liquidity-shocked
depositors always withdraw early and normal depositors withdraw early only when
the bank’s return is low. Note that this case is well-defined since L < κ.

If return is high, the economic state is ω, a mass φ of liquidity-shocked de-
positors withdraws in period 1, and a mass 1 −φ of normal depositors withdraws
in period 2, then the payment in period 2 for an individual normal depositor is

30To see this, denote the left hand side of (5) by F. Note that L + P ∗C(b)µbR(1 − L) < L + µbR(1 − L)

since P ∗C(b) < 1. Let x ≡ L+µbR(1−L). Therefore F ≥ ηφ(α −1)(κ−x)− (1−η)(1−φ)x
(

1
P ∗C (b) − 1

)
. Then

note that 1
P ∗C (b) < α, which implies F ≥ ηφ(α −1)(κ− x)− (1−η)(1−φ)x(α −1). Then the result follows

from rearranging and applying (5).
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(L−Rdφ)/P ∗B(ω)+R(1−L)
1−φ . Therefore the best response for an individual normal depositor

is to withdraw late if and only if

(L−Rdφ)/P ∗C(ω) +R(1−L)
1−φ

> Rd

⇐⇒
L/P ∗C(ω) +R(1−L)

1−φ+φ/P ∗C(ω)
> Rd . (31)

This is satisfied since Rd ≤ κ <
L/P ∗C(ω)+R(1−L)

1−φ+φ/P ∗C(ω) .31 The best response for an individual
liquidity-shocked depositor is to withdraw early if and only if

(L−Rdφ)/P ∗C(ω) +R(1−L)
1−φ

< αRd

⇐⇒
L/P ∗C(ω) +R(1−L)
α(1−φ) +φ/P ∗C(ω)

< Rd . (32)

This is satisfied since
L/P ∗C(ω)+R(1−L)
α(1−φ)+φ/P ∗C(ω) < L < Rd , which follows from P ∗C(R) > 1

R and the

assumption in (4).
If the return revealed in period 1 is low and all depositors withdraw early,

then the bank defaults since the maximum liquidity it can supply by paying out
of its liquid assets L is less than the demand Rd .32 Therefore the best response
for an individual normal depositor is to withdraw early since the payment from
withdrawing early, which is the total liquidation value of the bank L since the bank
experiences a run, is greater than the payment from withdrawing late, which is zero.

Therefore, there is an equilibrium as described. In this equilibrium, the utility
of the bank is

E[US] = η
(
µg (αRdφ+L−Rdφ+R(1−L)) + (1−µg)(αφ+ 1−φ)L

)
+ (1− η)

(
µb

(
αRdφ+

L−Rdφ
P ∗C(b)

+R(1−L)
)

+ (1−µb)(αφ+ 1−φ)L
)
.

The locally optimal Rd is the upper bound κ since α > 1 and αP ∗B(b) > 1.

Case 2: If
{ L/P ∗C(ω)+R(1−L)
α(1−φ)+φ/P ∗C(ω)

}
ω=b,g

≤ Rd ≤ L, we consider an equilibrium in which

liquidity-shocked depositors always withdraw early and normal depositors always

withdraw late.33 Note that this case is well-defined since
L/P ∗C(b)+R(1−L)
α(1−φ)+φ/P ∗C(b) < L follows

from P ∗C(R) > 1
R and the assumption in (4).

If the individual return in period 1 is high and the equilibrium is as described,

31To see this, note that
L/P ∗C (ω)+R(1−L)

1−φ+φ/P ∗C (ω) is between L +R(1 − L) (when evaluated at P ∗C(ω) = 1) and L
φ

(when evaluated at the limit as P ∗C(ω)→ 0). Then note that κ < L+R(1− L) by the assumption in (6)
and κ < L

φ by the assumption L > κφ.
32Recall that the bank cannot sell bonds against its observably worthless assets.
33Note that there is no equilibrium in which normal depositors withdraw late when the return is

low by a similar argument as in Case 2 for complex bank.
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then the best response for an individual normal depositor is to withdraw late since
Rd ≤ κ implies that the condition in (31) is satisfied. The best response for an in-

dividual liquidity-shocked depositor is to withdraw early since Rd ≥
L/P ∗C(b)+R(1−L)
α(1−φ)+φ/P ∗C(b)

implies that the condition in (33) is satisfied.
If the return in period 1 is low, the economic state is ω, a mass φ of liquidity-

shocked depositors withdraws in period 1, and a mass 1 −φ of normal depositors
withdraws in period 2, then the expected payment in period 2 for an individual nor-

mal depositor is
(L−κφ)/P ∗C(ω)

1−φ . The best response for an individual normal depositor
is to withdraw late if and only if

(L−Rdφ)/P ∗C(ω)
1−φ

> Rd

⇐⇒
L/P ∗C(b)

1−φ+φ/P ∗C(ω)
≥ Rd . (33)

This is satisfied since PC(ω) ≤ 1. The best response for an individual liquidity-
shocked depositor is to withdraw early if and only if

(L−Rdφ)/P ∗C(ω)
1−φ

≤ αRd

⇐⇒
L/P ∗C(ω)

α(1−φ) +φ/P ∗C(b)
≤ Rd . (34)

This is satisfied since Rd ≥
L/P ∗C(ω)+R(1−L)
α(1−φ)+φ/P ∗C(ω) .

Therefore, there is an equilibrium as described. In this equilibrium, the utility
of the bank is

E[US] = η
(
αRdφ+L−Rdφ+µgR(1−L)

)
+ (1− η)

(
αRdφ+

L−Rdφ
P ∗C(b)

+µbR(1−L)
)
. (35)

The locally optimal Rd is the upper bound Rd = L since α > 1 and α > 1
P ∗C(b) . This

portfolio is dominated by investing in complex investments and setting Rd = L +
P ∗C(b)µgR(1 − L). This can be seen by observing that the expected utility is the
same function of Rd as Case 2 for a complex bank (equation (28)), this function
is increasing in Rd , and the local optimum from Case 2 for a complex bank Rd =
L+ P ∗C(b)µbR(1−L) is larger than the local optimum for Case 2 of a simple bank L.

Case 3: If Rd <
{ L/P ∗C(ω)+R(1−L)
α(1−φ)+φ/P ∗C(ω)

}
ω=b,g

, then there is no equilibrium in which

liquidity-shocked depositors withdraw early in both states since at least one of (32)
or (34) is violated. If liquidity-shocked depositors withdraw early when the return is
low, then the utility of the bank in the low return state, L

P ∗C(b) , is less than the utility

in the low return state from Case 2 in equation (35) since α > 1
P ∗C(b) . Similarly, if

liquidity-shocked depositors withdraw early in the high return state then the utility
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of the bank in the high return state, L+R(1− L), is less than the utility in the good
state from Case 2 in equation (35) since α > 1. Therefore Case 3 is dominated by
Case 2.

Therefore, if a bank invests in simple assets, then the optimal repayment Rd
must correspond to the local maximum from Case 1, which is Rd = κ.

Corollary 1 (Bank-run conditions). Liquidity-shocked depositors always withdraw early
and normal depositors withdraw early if and only if

• the bank is complex and the economic state is bad

• the bank is simple and the observable return is low

Proof. This follows from the proof of Lemma 2 for the special case where Rd = κ.

Lemma 3 (Bond price). The bond price satisfies 1
α <

1
R < P

∗
C(b) < P ∗C(g) = 1.

Proof. We first show that P ∗C(g) = 1. This follows from the fact that, in good times,
the only banks that experience a run are simple banks with a low return. However,
these banks cannot sell bonds against their long-term assets since the low return is
publicly observable. As a result, in good times the supply of bond is zero, which
implies that the bond price must be at the maximum possible level, P ∗C(g) = 1.

Consider the bond price when the economic state is bad PC(b). Recall the rela-
tive advantage of investing in complex assets compared to simple assets ∆ as defined
in equation (9). Since banks are ex-ante identical, the price must be such that banks
are indifferent between complex and simple assets in an equilibrium. Note that
there is no equilibrium in which banks invest in only complex or simple assets. If
all banks invested in simple assets, then the bond price PC(b) would be equal to 1,
but in that case banks would prefer to invest in complex assets. If all banks invested
in complex assets, then the bond price would be equal to zero, but in that case banks
would prefer to invest in simple assets.

At the maximum possible price PC(b) = 1, the second term of equation (9)
is equal to (1 − η)µbφ(α − 1)[L + R(1 − L) − κ], which is positive by the assumption
κ < L+µgR(1−L). Therefore, complex banks have a higher expected utility.

If the price is very low, then it is easy to see that simple banks have a higher
expected utility. Specifically, if the price is as low as PC(b) = 1

R then the difference in
utility ∆ expressed in equation (9) at PC(b) = 1

R is equal to

∆

(1
R

)
= η(1−µg)φ(κ −L)(α − 1) + (1− η)µb[1−φ+αφ−R(1−φκ)−αφκ]

, which is negative by the assumption in (2).
Since the relative benefit of complex assets ∆(PC(b)) is increasing and contin-

uous with ∆
(

1
R

)
< 0 < ∆(1), there is a unique equilibrium bond price that satisfies

1
R < P

∗
C(b) < 1.
Finally, note that α > R from the assumption in (4), which implies that 1

α <
1
R <

P ∗C(b).
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Proof of Proposition 2

Proposition 2 (Volume of complex banks). The volume of complex banks is related to
the complex-asset price in bad times as follows:

V ∗R
(
1−L

)
µb︸          ︷︷          ︸

complex-asset supply

=
(
1−V ∗

)
µb
L−κφ
P ∗C(b)︸                  ︷︷                  ︸

complex-asset demand

. (10)

Proof. Consider the equilibrium described Proposition 1. As shown in the proof of
Lemma 3, no bonds are issued in the good state. In the bad state, however, all com-
plex banks issue bonds. In particular, each complex bank issues µb(1 − L)R bonds.
Therefore, the overall supply of bonds is∫

i:ξi=C
SB,i(P

∗
C(b))di =

∫
i:ξi=C

µb(1−L)Rdi = µb(1−L)R V ∗. (36)

At the same time, simple banks with a positive return have excess liquidity, which
they fully invest in bonds since P ∗C(b) < 1. In particular, each simple bank with a

positive return demands L−κφ
P ∗C(b) bonds. Therefore, the overall demand for bonds is∫

i:ξi=S

L−κφ
P ∗C(b)

1{RSi (b)=R} di =
L−κφ
P ∗C(b)

µb

(
1−V ∗

)
︸      ︷︷      ︸

mass of simple banks
with postive return

. (37)

Equating market supply and market demand for bonds (i.e., Eqs. (36) and (37)),
implies the result.

Proof of Proposition 3

Proposition 3. If
η(1−µg )
(1−η)µb

∈
[
1, 1−1/κ

1−φ

]
, the equilibrium complex-asset price in bad times

P ∗C(b) is increasing in the liquidity level L.

Proof. Note that P ∗C(b) is well-defined and differentiable for L ∈ [κφ,1] since P ∗C(b) is
the positive solution to the equation ∆(PC(b)) = 0, where ∆ is the relative advantage
of complex assets as defined in equation (9). As shown in the proof of Lemma 3,
this has a unique positive solution.

It’s straightforward to see that ∂∆
∂PC(b) > 0. Therefore, by the implicit function

theorem, we have that
∂P ∗C(b)
∂L has the opposite sign as ∂∆

∂L , which is described in equa-

tion (11). Let L̂ = κ
(
1− (1−φ)(1−η)µb

η(1−µg )

)
. Note that the assumption

η(1−µg )
(1−η)µb

∈
[
1, 1−1/κ

1−φ

]
implies that L̂ ∈ [κφ,1], which is the applicable range for L. Note that when L = L̂

we have P ∗C(b) = 1
αφ+1−φ and hence ∂∆

∂L < 0, which implies
∂P ∗C(b)
∂L > 0.34

34Note that the strictness of the inequality follows from η(1−µg )φ(α − 1) > 0.
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Now suppose for a contradiction that P ∗C(b) is non-monotonic in L. Since P ∗C(b)
is a continuously differentiable function of L, there must exist two distinct points

L̄ and L̄′ that implement the same equilibrium price but for which
∂P ∗C(b)
∂L |L=L̄ ,

∂P ∗C(b)
∂L |L=L̄′ . But this contradicts the fact that ∂∆

∂L only depends on L though its ef-
fect on P ∗C(b) (see equation (11)).

Since
∂P ∗C(b)
∂L > 0 at L = L̂ and P ∗C(b) must be globally monotonic in L, then P ∗C(b)

must be everywhere increasing in L.

Proof of Proposition 4

Proposition 4 (Welfare-maximizing volume of complex banks). Let L̂ = κ
(
1− (1−φ)(1−η)µb

(1−µg )η

)
.

When liquidity requirements are tight, L > L̂, then there is excess investment in com-
plex assets, i.e., VW < V ∗. Moreover, the welfare-maximizing complex-asset price in
bad times is equal to the maximum level of 1, i.e., PWC (b) = 1 > P ∗C(b). When liquid-
ity requirements are loose, L < L̂, then there is underinvestment in complex assets, i.e.,
VW > V ∗. Moreover, the welfare-maximizing complex-asset price in bad times PWC (b)
satisfies 0 < PWC (b) < P ∗C(b).

Proof. Consider the total effect of varying the volume of complex banks on welfare

dW
dVW

=
∂W
∂VW

+
∂W

∂PWC (b)

∂PWC (b)

∂VW
.

The first term corresponds to the direct effect and is equal to the relative advan-
tage of investing in complex assets ∆ as defined in equation (9). The second term
corresponds to the indirect effect through the adjustment of price, which is not in-
ternalized by the banks in the equilibrium. Since PWC (b) is related to VW by the
market-clearing condition in equation (10), we have that the volume of complex
banks is inversely related to the price:

∂PWC (b)

∂VW
= −

L−κφ
(1−L)R(VW )2 = −

PWC (b)

VW (1−VW )
< 0. (38)

The price, in turn, affects welfare as follows:

∂W
∂PWC (b)

= (1− η)µb

VW (αφ+ 1−φ)R(1−L)− (1−VW )
L−κφ
PWC (b)2


The first term represents the marginal benefit of increasing the price in terms of
supporting complex banks, which sell bonds, while the second term represents the
marginal cost in terms of decreasing the return for simple banks that draw a high
return, which buy bonds.
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Then, we can write:

∂W
∂PWC (b)

∂PWC (b)

∂VW
= (1− η)µb

 1
1−VW

(αφ+ 1−φ)PWC (b)R(1−L)− 1
VW

L−κφ
PWC (b)

 .
Therefore, the total effect on welfare can be written as

dW
dVW

= η(1−µg)φ(κ −L)(α − 1)

+ (1− η)µb
[
(αφ+ 1−φ)

(
L+ PWC (b)R(1−L)

(
1− 1

1−VW

))]
− (1− η)µb

ακφ+
L−κφ
PWC (b)

(
1− 1

VW

)
+R(1−L)

 .
This first term shows that the planner’s incentive to invest in complex assets is in-
creasing in the liquidity services advantage of complex assets in good times. The
second term corresponds to the advantage of complex banks in bad times compared
to simple banks that default, which is their ability to issue bonds in the interbank
market. This advantage directly increases the planner’s incentive to invest in com-
plex assets, but the planner also internalizes the fact that increasing the volume of
complex banks leads to a price reduction that offsets this advantage. The third term
corresponds to the disadvantage of complex banks in bad times compared to simple
banks with a high return, which is the fact that they always experience a run. This
disadvantage directly decreases the planner’s incentive to invest in complex assets,
but the planner also internalizes the fact that increasing the volume of complex
banks leads to a price reduction that has the benefit of increasing the return of the
simple banks.

Further simplifying by substituting the market-clearing condition in equation
(10) obtains the following:

dW
dVW

= η(1−µg)φ(κ −L)(α − 1)− (1− η)µbφκ(1−φ)(α − 1)

= (α − 1)φη(1−µg)


κ

(
1−

(1−φ)(1− η)µb
η(1−µg)

)
︸                        ︷︷                        ︸

=L̂

−L


. (39)

This equation illustrates that the direct and price effects of increasing the volume of
complex banks in bad times offset each other such that the net effect is constant in
the volume of complex banks and the price. This drives the solution to the bound-
aries of the choice space depending on the sign of equation (39), which in turn
depends on the magnitude of the tightness of liquidity requirements L relative to L̂.

Case 1: If L > L̂, the optimal policy is to reduce the volume of complex banks
and therefore increase the bond price PWC (b) until it is equal to its upper bound of
1. Note that reducing the volume of complex banks does not create an incentive
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to deviate from the debt contract Rd = κ and bank-run conditions as described in
Proposition 1. In particular, the proof of Lemma 2 shows that the debt contract and
bank-run conditions hold for any PC(b) satisfying 1

R ≤ PC(b) ≤ 1. Since 1
R < P

∗
C(b) < 1,

they hold for PWC (b) ∈
[
P ∗C(b),1

]
.

Intuitively, increasing the bond price supports complex banks since they ex-
perience a run in the bad state. Once the bond price is equal to 1, which is the
return on liquid assets, there is no incentive to further reduce the volume of com-
plex banks since the bond price cannot be any higher. Additionally, reducing the
volume of complex banks has a cost since complex assets yield a higher expected
utility when PWC (b) = 1.35

Case 2: If L < L̂, the optimal policy is to increase the volume of complex banks
and therefore decrease bond price P ∗C(b) until the debt contract of Rd = κ and bank-
run conditions as described in Proposition 1 can no longer be maintained.

The minimal PWC (b) such that banks still prefer to offer an early repayment
of Rd = κ is strictly greater than 0. To see this, note that Lemma 2 shows that a
necessary condition for banks to set Rd = κ is given by (30). Note that the left hand
side of (30) has the same sign as when it is multiplied by PC(b) > 0, which can be
denoted by

F(PC(b)) ≡ PC(b)ηφ(α − 1)(κ − {L+µbPC(b)R(1−L)})− (1− η)(1−φ)(L+ PC(b)µbR(1−L))(1− PC(b)).

It is then straightforward to see that F(0) < 0, and 0 < F(1) follows from the assump-
tion in (5). Since F is quadratic, this implies there is a unique solution PWC (b) ∈ (0,1)
to the equation F(PWC (b)) = 0.

Alternative intuition. Consider the local incentive for the planner to increase the
volume of complex bansk relative to the equilibrium:

dW
dVW

|VW=V ∗ =
∂W
∂VW

|VW=V ∗ +
∂W

∂PWC (b)
|PWC (b)=P ∗C(b)

∂PWC (b)

∂VW
|VW=V ∗ .

Note that ∂W
∂VW
|VW=V ∗ = 0 since banks are indifferent between the two types of assets

in the equilibrium. Recall that
∂PWC (b)
∂VW

< 0 from equation (38). Therefore, ∂W
dVW
|VW=V ∗

has the opposite sign as ∂W
∂PWC (b)

|PWC (b)=P ∗C(b), which corresponds to the regulator’s in-

centive to adjust the price that is not internalized by the individual banks:

∂W
∂PWC (b)

|PWC (b)=P ∗C(b) = (1− η)µb

[
(αφ+ 1−φ)R(1−L)V ∗ −

(1−V ∗)(L−κφ)
P ∗C(b)2

]
.

35This cost can be seen by differentiating the expected utility for PWC (b) = 1:

sign
(
∂W
∂VW

)
= sign

(1− η)µb(L−κ+R(1−L)) + η(1−µg )(κ −L)

 > 0.

50



As described above, the first term corresponds to the marginal benefit of increasing
the price in terms of increasing the return of complex banks, which sell bonds, while
the second term corresponds to the marginal cost in terms of decreasing the return
for simple banks that draw a high return, which buy bonds.

Using the market-clearing condition in equation (10), we can write:

∂W
∂PWC (b)

|PWC (b)=P ∗C(b) =
(1− η)µb(L−κφ)R(1−L)
L−κφ+ P ∗C(b)(1−L)R

[
(αφ+ 1−φ)− 1

P ∗C(b)

]
.

Therefore, ∂W
∂VW
|VW=V ∗ has the same sign as

(αφ+ 1−φ)− 1
P ∗C(b)

. (40)

Note that the equilibrium price at L̂ is equal to 1
αφ+1−φ . If the equilibrium price

is increasing in L (see Proposition 3 for a sufficient condition), the expression in
(40) is positive (negative) when L is greater (less) than L̂. Intuitively, L determines
whether the equilibrium price is large enough that the benefit of further increasing
the price in terms of insuring complex banks exceeds the cost in terms of decreasing
the returns on asset purchases for simple banks.

Proof of Proposition 5

Rearranging equation (14) and supposing that the volume of complex banks is equal
to the level corresponding to no tax V (0), the price can be expressed as

P τC (b) =
µb(L−κφ)(1−V (0)) + τδ

RV (0)(1−L)µb
,

hence it follows that

∂P τC (b)
∂τ

=
δ

RV (0)(1−L)µb
> 0. (41)

Note also that increasing the tax maintains the debt contract and bank-run condi-
tions as stated in Proposition 1. In particular, the proof of Lemma 2 shows that the
debt contract and bank-run conditions hold for any PC(b) satisfying 1

R ≤ PC(b) ≤ 1.
Since the price that would occur in the absence of a tax P 0

C (b) satisfies 1
R ≤ P

0
C (b) < 1,

this implies that they hold for P τC (b) ∈
[
P 0
C (b),1

]
.36

36Note that we restrict to δ small enough such that a similar proof as in Lemma 3 works to show
that there exists a unique equilibrium price P τC (b) ∈

(
1
R ,1

)
.
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Proof of Proposition 6

Proposition 6 (QE without commitment). If QE is implemented without commitment,
then the optimal tax is positive and equal to the minimum of income ν and the minimum
tax necessary to increase the complex-asset price in bad times P τC (b) to 1.

Proof. Rearranging the market-clearing condition (equation (14)), we substitute

τδ
P τC (B)

= V (0)R
(
1−L

)
µb −

(
1−V (0)

)
µb
L−κφ
P τC (b)

into the expression for welfare (equation (17)). Then, if P τC (b) < 1, taking the deriva-

tive with respect to τ and using the expression for
∂P τC (b)
∂τ from equation (41) in the

proof of Proposition 5 obtains

∂W (τ)
∂τ

= V (0)(1− η)(αφ+ 1−φ)
[ δ
RV (0)(1−L)µb︸             ︷︷             ︸

=
∂P τC (b)
∂τ

µbR(1−L)− δ
]

− (1−V (0))(1− η)[µbδ+ (1−µb)(αφ+ 1−φ)δ]

> (1− η)δ(αφ+ 1−φ)
[
V (0)

(
1

V (0)
− 1

)
− (1−V (0))

]
= 0.

Since welfare is increasing in τ as long as P τC (b) < 1, the government optimally in-
creases taxes until either P τC (b) = 1 or τ = ν.

Proof of Proposition 7

Proposition 7. If QE is undertaken with commitment and P τC (b) < 1, then

(a) the equilibrium complex-asset price is increasing in the tax τ : ∂P
τ
C (b)
∂τ > 0, and

(b) the equilibrium volume of complex banks is increasing in the tax τ : ∂V (τ)
∂τ > 0.

Proof. Part (a). Note that the relative benefit of investing in complex assets is sum-
marized by subtracting equation (16) from equation (15):

Hτ(PC(b)) ≡ E[UC |PC(b)]−E[US |PC(b)]
= η(1−µg)φ(κ −L)(α − 1)

+ (1− η)µb

[
(αφ+ 1−φ)(L+ PC(b)R(1−L))−

(
ακφ+

L−κφ
PC(b)

+R(1−L)
)]

+ δφ(α − 1)[(1− η)(ν − τ)µb − ην(1−µg)]. (42)

Since banks are ex-ante identical and anticipate the tax, the equilibrium price must
be such that banks are indifferent between complex and simple assets. For δ suffi-
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ciently small, there is a unique price P τC (b) ∈
(

1
R ,1

)
satisfying Hτ(PC(b)) = 0.37 Then,

by the implicit function theorem, we have:

∂P τC (b)
∂τ

= − ∂H/∂τ
∂H/∂PC(b)

=
δφ(α − 1)(

αφ+ 1−φ
)
R(1−L) + L−κφ

P τC (b)2

> 0. (43)

Note that increasing the tax maintains the debt contract and bank-run conditions
as stated in Proposition 1. In particular, the proof of Lemma 2 shows that the debt
contract and bank-run conditions hold for any PC(b) satisfying 1

R ≤ PC(b) ≤ 1. Since
the price that would occur in the absence of a tax P 0

C (b) satisfies 1
R ≤ P

0
C (b) < 1, this

implies that they hold for P τC (b) ∈
[
P 0
C (b),1

]
.

Part (b). Rearranging equation (14) implies that

V (τ) =
µb

(
L−κφ

)
+ δτ

P τC (b)µbR(1−L) +µb(L−κφ)
. (44)

Therefore, using equation (43) we have:

∂V (τ)
∂τ

=
δ(P τC (b)µbR(1−L) +µb(L−κφ))− (µb(L−κφ) + δτ)

∂P τC (b)
∂τ µbR(1−L)(

P τC (b)µbR(1−L) +µb(L−κφ)
)2

=

δ(P τC (b)µbR(1−L) +µb(L−κφ))− (µb(L−κφ) + δτ) δφ(α−1)µbR(1−L)

(αφ+1−φ)R(1−L)+ L−κφ
P τC (b)2(

P τC (b)µbR(1−L) +µb(L−κφ)
)2 > 0,

(45)

where the inequality follows because

φ(α − 1)R(1−L)(
αφ+ 1−φ

)
R(1−L) + L−κφ

P τC (b)2

< 1

since L > κφ, and

P τC (b)R(1−L) +L−κφ = (δτ +µb(L−κφ))
1

V (τ)
≥ δτ +µb(L−κφ)

since V (τ) ≤ 1.
37Note that we restrict to δ small enough such that a similar proof as in Lemma 3 works to show

that there exists a unique equilibrium price P τC (b) ∈
(

1
R ,1

)
.
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Proof of Proposition 8

Proposition 8 (QE with commitment). Under QE with commitment, the optimal tax
can in general be either positive or zero. If the liquidity level L is sufficiently high, then
the optimal tax is zero.

Proof. Proof that the optimal tax is zero when L is large. Since banks are ex-ante
identical and banks anticipate the tax, the equilibrium price must be such that
banks are indifferent between complex and simple assets. Therefore it suffices to
consider how the tax affects the expected utility from investing in complex assets.
Taking the derivative of the expected utility from investing in complex assets (equa-
tion (15)) with respect to τ obtains

∂E[UC |PC(b) = P τC (b)]
∂τ

= (1− η)(αφ+ 1−φ)
[

δφ(α − 1)

(αφ+ 1−φ)R(1−L) + L−κφ
P τC (b)2︸                               ︷︷                               ︸

=
∂P τC (b)
∂τ

µbR(1−L)− δ
]

+ (1− η)
[

δ
P τC (b)

− τδ

P τC (b)2

∂P τC (b)
∂τ

]
. (46)

For L close to 1, this is approximately equal to

∂E[UC |PC(b) = P τC (b)]
∂τ

≈ −(1− η)(αφ+ 1−φ)δ+ (1− η)
[

δ
P τC (b)

− τδ

P τC (b)2

∂P τC (b)
∂τ

]
< (1− η)δ

[
1

P τC (b)
− (αφ+ 1−φ)

]
.

For this to be negative, it suffices to show P τC (b) > 1
αφ+1−φ . Recall that P τC (b) is the

unique positive solution Hτ(P τC (b)) = 0, where Hτ(PC(b)) in equation (42) is the rel-
ative advantage of investing in complex assets for a given price PC(b). Since Hτ is
increasing in PC(b), to show that P τC (b) > 1

αφ+1−φ it suffices to show Hτ
(

1
αφ+1−φ

)
< 0.

For L near 1 and δ negligibly small compared to the other terms in Hτ , we have:

Hτ

(
1

α + 1−φ

)
≈ φ(α − 1)

[
η(1−µg)(κ − 1)− (1− η)µbκ(1−φ)

]
< 0,

where the inequality follows from the fact that if L is near 1, then the parametric
restriction in 6 implies that κ must also be close to 1.38

Proof that the optimal tax can be positive. Evaluating equation (46) at t = 0

38Note that the maximum L that is consistent with the parametric restriction in (6) is generally
less than 1 and not necessarily large enough for this result to hold assuming the other parameters
are held fixed.
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and L close to κφ obtains

∂E[UC |PC(b) = P τC (b)]
∂τ

|τ=0 ≈ (1− η)δ
[

1
P τC (b)

− (1 + (1−µb)φ(α − 1))
]
.

For this to be positive, it suffices to show that P τC (b) < 1
αφ+1−φ . By similar reasoning

as above, it suffices to showHτ
(

1
αφ+1−φ

)
> 0. Note that at L = κφ and for δ negligibly

small compared to the other terms in Hτ we have:

Hτ

(
1

αφ+ 1−φ

)
≈ κφ(1−φ)(α − 1)

[
η(1−µg)− (1− η)µb

]
,

which is positive if η(1−µg) > (1− η)µb.39

Proof of Proposition 9

Proposition 9 (Ex-ante insurance). Implementing the ex-ante insurance policy (i) in-
creases the equilibrium complex-asset price in bad times, (ii) decreases the volume of
complex banks, and (iii) increases overall welfare.

Proof. Denote the volume of complex banks when the redistributive policy is in
place by V τ and the equilibrium price by P τC (b). Note that the optimal debt con-
tract is still given by Rd = κ. In particular, complex banks offer Rd = κ as long as
(30) holds. Since it holds with P ∗C(b) and P τC (b) > P ∗C(b), it also holds with P τC (b).
It is straightforward to see that the incentive for simple banks to offer Rd = κ is
strengthened when they no longer experience a risk of a run.

Bond price in bad times. First, we show that the policy leads to an increase in the
equilibrium price, or P τC (b) > P ∗C(b). To see this, first note that the expected utility of
a complex bank is

E[UC |P τC (b)] = η
(
φακ+L−φκ+µgR(1−L)

)
+ (1− η)

(
φα + 1−φ

)(
L+ P τC (b)µbR(1−L)

)
. (47)

The redistributive tax changes the period-2 income for all simple banks µgR(1− L).
A similar argument as in the proof of Lemma 1 shows that this is high enough for
simple banks to avoid a run. The expected utility for a simple bank is therefore

39Note that the minimum L that is consistent with the parametric restrictions in Proposition 1 is
generally greater than κφ and not necessarily small enough for this result to hold assuming the other
parameters are held fixed.
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given by

E[US |P τC (b)] = η
(
φακ+L−φκ+µgR(1−L)

)
+ (1− η)

µb(φακ+
L−φκ
P τC (b)

+R(1−L)
)

+ (1−µb)(φα + 1−φ)L

. (48)

The bond price is determined by the indifference condition:

0 = E[UC |P τC (b)]−E[US |P τC (b)] (49)

=
(

1
P τC (b)

− (φα + 1−φ)
)(
L−φκ+ P τC (b)R(1−L)

)
+φ

(
α − (φα + 1−φ)

)
. (50)

Rearranging the right hand side of (50) obtains

Υ (P τC (b)) := (φα + 1−φ)R(1−L)︸                   ︷︷                   ︸
:=a2

P τC (b)2

+
(
(φα + 1−φ)L−R(1−L)−φακ

)
︸                                    ︷︷                                    ︸

:=a1

P τC (b)

−(L−φκ)︸     ︷︷     ︸
:=a0

. (51)

Clearly, Υ (0) < 0 < Υ (1), meaning that Υ (·) has a unique root in (0,1).40 So, P τC (b) =
−a1+
√
a2

1−4a0a2
2a2

. Recall that P ∗C(b) = −ã1+
√
ã2

1−4a0a2
2a2

where ã1 > a1 (see Proposition 1).

Since
∂P ∗C(b)
∂ã1

< 0 thus P τC (b) > P ∗C(b), finishing the proof of the lemma.

Volume of complex banks. Since the equilibrium price increases, the market-
clearing condition in equation (10) implies that the volume of complex banks de-
creases, or V τ < V ∗.

40Note that Υ (1) = φ
(
L+R(1−L)−κ

)
(α − 1) > 0 and Υ (0) = −(L−φκ) < 0.
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Welfare. Finally, we show the policy improves welfare. Recall that welfare is de-
fined as the expected utility of representative depositor, which is given by

Wτ = V τE[UC |P τC (b)] + (1−V τ )E[US |P τC (b)]

= (1−V τ )

(1− η)

µb (φακ+
L−φκ
P τC (b)

+R(1−L)
)

+ (1−µb)
(
φα + 1−φ

)
L


+V τ

(1− η)
(
φα + 1−φ

)(
L+ (1−L)P τC (b)µbR

)
+ η

(
φακ+L−φκ+µgR(1−L)

)
. (52)

Substituting the market-clearing condition in (10) into (52) obtains

Wτ = R(1−L)
(
ηµg + (1− η)µb

)
+
(
η + (1− η)

(
φα + 1−φ

))
L+ ηµgφ(α − 1)κ

+φ(α − 1)κ

η(1−µg) + (1−V τ )µb(1− η)(1−φ)

. (53)

Now, recall that welfare in the original equilibrium is

W = R(1−L)
(
ηµg + (1− η)µb

)
+
(
η + (1− η)

(
φα + 1−φ

))
L+ ηµgφ(α − 1)κ

+φ(α − 1)

V ∗ηκ(1−µg) + (1−V ∗)
(
η(1−µg)L+ (1− η)µg(1−φ)κ

). (54)

Then finally, equation (53) minus equation (54) is(1−V ∗)η(κ −L)(1−µg) + (V ∗ −V τ )︸     ︷︷     ︸
>0

(1−φ)µb(1− η)κ

(α − 1)φ > 0.

Thus, the redistributive policy always improves welfare compared to the original
equilibrium.

Proof of Proposition 10

Proposition 10. If L < L̂ and ν is sufficiently large, then the constrained-efficient vol-
ume of complex banks can be implemented via QE with commitment. However, the tax
that implements the constrained-efficient volume of complex banks may not be welfare-
optimizing. If L > L̂, then neither QE nor the ex-ante insurance policy can implement the
constrained-efficient volume of complex banks.

Proof. Case 1: L < L̂. In this case, the constrained-efficient volume of complex banks
is greater than the equilibrium (Proposition 4). Note that the expression for the
volume of complex banks V (τ) in equation (44) is increasing and unbounded in
the tax τ . Therefore, there is a tax level for which V (τ) is equal to the volume of
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complex banks in the planner solution VW , which can be implemented as long as ν
is sufficiently high.

Case 2: L > L̂. In this case, the constrained-efficient volume of complex banks
is less than the equilibrium (Proposition 4). QE without commitment cannot im-
plement the constrained-efficient volume of complex banks because it has no ef-
fect on the volume of complex banks. QE with commitment cannot implement the
constrained-efficient volume of complex banks because the investment in complex
assets is increasing in the tax (Proposition 7). The redistributive transfers policy
described in Section 4.2 also cannot implement the constrained-efficient volume of
complex banks. To see this, note that the redistributive tax only affects the bond
price in bad times through the volume of complex banks. Therefore it suffices to
check whether it can implement the price in the planner solution, which is equal
to PWC (b) = 1 for L > L̂. However, the proof of Proposition 9 shows that the price
determined by the tax is strictly between 0 and 1.

Proof of Proposition 11

Proposition 11. Denote by ∆(PC(b)) = E[UC |PC(b)] − E[US |PC(b)] the relative benefit
of investing in complex assets without the tax as expressed in equation (9), by VW the
constrained-efficient volume of complex banks, and by PWC (b) the complex-asset price in
bad times for the constrained-efficient allocation. Then the following hold:

• If L < L̂ and −∆(PWC (b))VW

ηµgR(1−L) < R(1−L)−(κ−L)
R(1−L) , then the constrained-efficient volume of

complex banks can be implemented by transferring from simple to complex banks

via a tax at the rate τ∗ =
−∆(PWC (b))VW

ηµgR(1−L) .

• If L > L̂ and ∆(PWC (b))(1−VW )
ηµgR(1−L) <

µgR(1−L)−(L−κ)
µgR(1−L) , then the constrained-efficient volume

of complex banks can be implemented by transferring from complex to simple banks

via a tax at the rate τ∗ =
∆(PWC (b))(1−VW )

ηµgR(1−L) .

Additionally, the tax level that implements the constrained-efficient volume of complex
banks also maximizes welfare.

Proof. Note that the tax only affects the bond price in bad times through the volume
of complex banks. Therefore it suffices to check whether it can implement the price
in the planner solution PWC (b).

First consider the case where L < L̂. For a tax level τ , bond price P τC (b), and
volume of complex banks V τ , the expected return for a complex bank is

E[UC |P τC (b),V τ ] = η
(
φακ+L−φκ+µgR(1−L)

(
1 +

1−V τ

V τ τ

))
+ (1− η)

(
φα + 1−φ

)(
L+ P τC (b)µbR(1−L)

)
,
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and the expected return for a simple bank is

E[US |P τC (b),V τ ] = η
(
µg(ακφ+L−κφ+R(1−L)(1− τ)) + (1−µg)(αφ+ 1−φ)L

)
+ (1− η)

µb(φακ+
L−φκ
P τC (b)

+R(1−L)
)

+ (1−µb)(φα + 1−φ)L

.
The bond price is determined by the indifference condition:

0 = E[UC |P τC (b),V τ ]−E[US |P τC (b),V τ ]

+ η
[
(1−µg)φ(κ −L)(α − 1)−

µgR(1−L)

V τ τ

]
+ (1− η)µb

[
(αφ+ 1−φ)(L+ PC(b)µbR(1−L))−

(
ακφ+

L−κφ
PC(b)

+R(1−L)
)]

+ (1− η)(1−µb)(αφ+ 1−φ)PC(b)µbR(1−L)

= ∆(P τC (b)) +
ηµgR(1−L)

V τ τ. (55)

Therefore, the tax level that is consistent with the constrained-efficient price PWC (b)
and volume VW is given by

τ∗ =
−∆(PWC (b))VW

ηµgR(1−L)
.

Note that the parametric assumptions for this proposition ensure that this tax can
be implemented while maintaining an equilibrium of the form described in Propo-
sition 1. To show this, we have to check that the tax does not induce a run for banks
that invest in the taxed asset.

The incentive-compatibility condition for normal depositors of simple banks
to withdraw late requires

L−κφ+R(1−L)(1− τ)
1−φ

> κ

⇐⇒ τ <
R(1−L)− (κ −L)

R(1−L)
.

This is satisfied by τ∗ by assumption in the proposition. It is simple to show that
it is incentive compatible for both simple and complex banks to continue to offer
Rd = κ. Specifically, the local optima for all of the cases in the proof of Lemma 2 are
unaffected by the tax as well as the inequality in (30).

It is straightforward to check that welfare only depends on the tax through its
effect on the volume of complex banks and the bond price in bad times. Therefore,
the welfare-optimizing tax coincides with the tax that implements the constrained-
efficient volume of complex banks.

The case where L > L̂ follows analogously.
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ONLINE APPENDIX—NOT FOR PUBLICATION

A Repo-market Interpretation

The interbank market for direct asset sales can also be interpreted as a repo market.
To see this, suppose that, instead of selling assets, banks can sell bonds. Denote
the state-dependent price for a bond backed by complex assets by PC(ω) and the
price of a bond backed by simple assets with a high return by PS(ω). Note that
simple assets with a low return cannot be used as collateral since they are publicly
observed to be worthless. The repo rate is the rate of return 1

Pθ(ω) . The haircut hθ(ω)
is defined as the percentage difference between the market value of collateral and
the cash that is exchanged at the start of a repo. We assume that the haircut is equal
to hθ(ω) = 1−Pθ(ω), which implies that a lender holds 1 dollar of collateral for each
bond purchased. In that case, the return from investing in either type of repo is
equal to the repo rate, regardless of whether the borrower defaults. The rest of the
model follows as in the original presentation except that the repo interpretation has
the additional feature of a haircut.

B Calibration to the COVID-19 Crisis

This section describes the results when the model is calibrated to the COVID-19
crisis rather than the GFC.

We calibrate the parameters of the model in a manner analogous to the de-
scription in Section 3:

• The long-term return R is calibrated to match 1.039, which is approximately
the mean of the 30-year fixed-rate mortgage rate in March 2020 (1.0327)41 and
Moody’s medium-grade corporate bond yield in March 2020 (1.0429).42

• The short-term interest rate RD = κ is calibrated to match 1.0065, which is the
federal funds rate in March 2020.43

• The liquidity level L is calibrated to match 0.243, which is approximately
the ratio of total liquid assets to total assets based on 2019Q4 FR Y-9C fil-
ings for bank holding companies. Liquid assets include cash and balances
due from depository institutions, federal funds sold, securities purchased un-
der agreement to resell, Treasury securities, and government agency debt and
mortgage-backed securities (not including government-sponsored agency (GSE)
debt and MBS).

• The bond price in bad times P ∗C(b), which is also the ratio of the bond price
in bad times to the bond price in good times, is calibrated to match 0.988,
which corresponds to the ratio of the 3-month U.S. dollar LIBOR-FF spread at

41Data: FRED series MORTGAGE30US
42Data: FRED series BAA.
43Data: FRED series FEDFUNDS.
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its peak in April 1, 2020 (1/1.0138 ≈ 0.986) to its level just before the onset of
the COVID-19 crisis on February 3, 2020 (1/1.0015 ≈ 0.9985).

• The fraction of complex assets V ∗ is calibrated to match 0.149, which is ap-
proximately the ratio of complex assets to total illiquid assets based on 2019Q4
FR Y-9C filings. Illiquid assets are defined as assets minus liquid assets, as
given above. Complex assets include GSE MBS, non-agency MBS, asset-backed
securities, and structured financial products.

Table B.1 presents the calibrated parameters, and Table B.2 compares the em-
pirical and model-generated values for the observables. Unlike the calibration of
the model for the GFC (see Section 3), the threshold level of liquidity L̂ = 0.206 is
less than L = 0.243, which implies that there is overinvestment in complex assets in
equilibrium.

Table B.1: Calibrated parameters.

Parameter Value

High return (R) 1.039
Liquidity ratio (L) 0.243
Short-term return (κ) 1.006
Probability of good state (η) 0.999
Probability of high return in good state (µg) 0.999
Probability of high return in bad state (µb) 0.8
Fraction of liquidity-shocked depositors (φ) 0.007
Marginal utility from liquidity shock (α) 5.7

Table B.2: Comparison of empirical and model-generated variables.

Variable Empirical Model

High return 1.039 1.039
Liquidity ratio 0.243 0.243
Short-term return 1.006 1.006
Price in bad times 0.988 0.97
Fraction of complex assets 0.149 0.236

The remaining results are qualitatively similar to the version of the model
calibrated to the GFC:

• Figure B.1 shows that the comparative statics with respect to L are similar (as
compared to Figure 2)

• Figure B.2 shows that the variation in the optimal L with respect to the long-
run return R and the probability of normal times η is similar (as compared to
Figure 3)
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• Figure B.3 shows that the effect of QE without commitment is similar (as com-
pared to Figure 4)

• Figure B.4 shows that the effect of QE with commitment is similar (as com-
pared to Figure 5)

• Figure B.5 shows that the effect of a redistributive policy is similar (as com-
pared to Figure 6)

• Figure B.6 shows that the comparison of the welfare effects of the different
policies is similar (as compared to Figure 8).

Figure B.1: Variation in L (COVID-19 crisis calibration). This figure shows how the
bond price in bad times, the gross rate of return on complex-asset purchases, the
haircut, the volume of complex banks, and welfare vary with L in the equilibrium,
the planner solution, and the difference between them.
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Figure B.2: This panel shows the optimal liquidity level that maximizes welfare
in the planner solution L∗ as a function of the long-term return R (left) and the
probability of the good state η (right) (COVID-19 crisis calibration).
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C Additional Empirical Findings

This section presents evidence that the LCR has been associated with higher in-
terbank lending prices during crises by comparing the great financial crisis (GFC),
which occurred before the introduction of the LCR, with the COVID-19 crisis, which
occurred afterwards. Finally, we show that the LCR was associated with an ampli-
fied effect of QE on MBS prices.

C.1 The Effect of Liquidity Regulation on Interbank Lending Prices

Recall that the model shows that higher liquidity requirements are associated with
higher complex-asset prices in bad times (see Proposition 3 and Figure 2). Consis-
tent with this result, it can easily be seen from Figure C.1 that the GFC in 2008, the
last crisis preceding the introduction of the LCR, was associated with a more dra-
matic increase in the LIBOR-FF spread compared to the COVID-19 crisis in 2020,
the first crisis following the introduction of the LCR in the U.S. This is consistent
with the model. However, we acknowledge that it is difficult to disentangle the ef-
fect of the LCR from that of various other differences between the two crises, such as
the origins of the crises arising from either the financial system or the real economy,
their magnitudes, and other policy responses.

The remainder of this section presents suggestive evidence that is consistent
with this result by comparing the 3-month U.S. dollar LIBOR to the effective federal
funds rate (EFFR) spread, which is a measure of interbank loan prices, during stock
market corrections, which is a proxy for turbulent times in financial markets, before
versus after the introduction of the LCR. Stock market corrections are periods over
which the S&P 500 declines by at least 10% from peak to trough. Precise dates are
obtained from Yardeni Research, Inc.

63



Figure B.3: Variation in L in QE without commitment (COVID-19 crisis calibra-
tion). This figure shows how the bond price in bad times, the gross rate of return
on complex-asset purchases, the haircut, the volume of complex banks, and welfare
vary with L in equilibrium, under optimal QE without commitment, and the differ-
ence between them.
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Figure C.1 shows the LIBOR-EFFR spread from January 2005 to April 2020 as
well as periods with stock market corrections. Table C.1 shows the mean LIBOR-
EFFR spread during stock market corrections before versus after the introduction
of the LCR, as well as the t-statistic for a difference-of-means test. The average
LIBOR-EFFR spread during stock market corrections experiences a drop after the
introduction of the LCR that is statistically significant at the 5% level. This finding
is consistent with the calibrated model, although caveats about interpreting this
observation causally still apply because we cannot rule out confounding effects due
to other changes in the financial system that have occurred during this time period.
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Figure B.4: Variation in L in QE with commitment (COVID-19 crisis calibration).
This figure shows how the bond price in bad times, the gross rate of return on
complex-asset purchases, the haircut (or “hair.”), the volume of complex banks, and
welfare vary with L in equilibrium, under optimal QE with commitment (“Policy”
or “Pol.”), and the difference between them.
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C.2 The Effect of Liquidity Regulation on QE

Recall that the model predicts that quantitative easing (QE) increases interbank
lending prices (Proposition 5 and Proposition 7). This is consistent with empiri-
cal evidence showing that QE has been associated with decreased rates of return
on assets used as collateral in interbank loans, such as mortgage-backed securities
(see Krishnamurthy and Vissing-Jørgensen, 2011, and Figure C.2a for the GFC, and
Figure C.2b for the COVID-19 crisis). The calibrated model shows that tightening
liquidity requirements can amplify the effect of QE on interbank lending prices, de-
pending on whether it is implemented without commitment (Figure 4) or with com-
mitment (Figure 5). This subsection presents evidence that MBS yields were more
responsive to QE announcements after the implementation of the LCR compared
to before the implementation of the LCR, consistent with QE with commitment.
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Figure B.5: Variation in L in the redistributive policy (COVID-19 crisis calibration).
This figure shows how the bond price in bad times, the gross rate of return on
complex-asset purchases, the haircut, the volume of complex banks, and welfare
vary with L in equilibrium, under the redistributive policy, and the difference be-
tween them.
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However, we acknowledge that it is difficult to attribute this difference solely to the
LCR since it could also reflect other differences between the two crises, such as the
magnitude of the QE response and the market’s confidence in the efficacy of QE.

Following the methodology in Krishnamurthy and Vissing-Jørgensen (2011),
we measure the effect of QE using the change in MBS yields within a 2-day win-
dow around QE announcement dates.44 We average yields for 15-year and 30-year
current-coupon MBS backed by Ginnie Mae, Fannie Mae, and Freddie Mac.45 To as-

44Specifically, for each announcement date, we consider the difference in the last price on the trad-
ing day after the announcement date minus the last price on the trading day before the announce-
ment date.

45Specifically, the 15-year yield is the average of the following MBS yield indices from Bloomberg:
MTGEGNJO, MTGEFNCI, and MTGEFGCI. The 30-year yield is similarly the average of the follow-
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Figure B.6: Comparison of welfare gains from policy (COVID-19 crisis calibration).
This figure shows welfare as a function of the liquidity level L in the baseline equi-
librium with income shocks as well as the improvement in utility associated with
QE without commitment (“Surp. QE”), QE with commitment (“Pred. QE”), and the
ex-ante insurance policy.
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sess the effect of QE on MBS yields before the implementation of the LCR, we focus
specifically on QE1 since it included purchases of MBS. We consider the same five
dates as in Krishnamurthy and Vissing-Jørgensen (2011). To assess the effect of QE
on MBS yields after the implementation of the LCR, we consider the QE announce-
ments on March 15, 2020 and March 23, 2020 in response to the COVID-19 crisis.
On March 15, the Federal Reserve announced that it would purchase $500 billion in
Treasuries and $200 billion in MBS. On March 23, the Federal Reserve revised this
plan, and announced that it would buy an indefinite volume of Treasuries and MBS
in order to support the smooth functioning of the markets.

ing fields: MTGEGNSF, MTGEFNCL, MTGEFGLM.
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Figure C.1: The LIBOR-EFFR spread. This figure shows the 3-month U.S. dollar
LIBOR to effective federal funds rate (EFFR) spread from January 2000 to April
2020. Periods exhibiting stock market corrections are indicated by grey shading,
and the proposal of the LCR in 2013Q4 is indicated by the dashed line. Stock market
corrections are periods over which the S&P 500 declines by at least 10% from peak
to trough. Precise dates are obtained from Yardeni Research, Inc.
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Table C.1: Average LIBOR-FF spread. This table shows the average 3-month U.S.
dollar LIBOR to effective federal funds rate spread during stock market corrections
since the year 2005 that occurred either before or after the proposal of the LCR
in 2013Q4. It also shows the t-statistic from a difference in means test comparing
observations before vs after the introduction of the LCR. Stock market corrections
are periods over which the S&P 500 declines by at least 10% from peak to trough.
Precise dates are obtained from Yardeni Research, Inc.

Before LCR After LCR t-statistic

0.709 0.270 -8.936
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Figure C.2: The effect of QE announcement dates on MBS yields. Figure (a) shows
15- and 30-year yields, in basis points, of mortgage-backed securities (MBSs) around
announcement dates for QE1 during the great financial crisis, as indicated by the
dashed lines. The 15-year yield is the average of the following MBS yield indices
from Bloomberg: MTGEGNJO, MTGEFNCI, and MTGEFGCI. The 30-year yield
is similarly the average of the following fields: MTGEGNSF, MTGEFNCL, MTGE-
FGLM. Figure (b) similarly shows MBS yields around QE announcement dates dur-
ing the COVID-19 crisis.
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Table C.2 presents the findings. The average effect of QE on MBS yields was
greater during the COVID-19 crisis than during the GFC. This is consistent with our
result that the effect of QE with commitment on the interbank complex-asset price
in bad times is increasing in the tightness of liquidity requirements (Figure 5).
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Table C.2: Effect of QE on MBS yields. This table shows the change in 30-year and
15-year mortgage-backed securities (MBS) yields in basis points for a 2-day window
around each QE announcement date. For each announcement date, we consider the
difference in the last price in the trading day after the announcement date minus
the last price in the trading day before the announcement date. The 15-year yield
is the average of the following MBS yield indices from Bloomberg: MTGEGNJO,
MTGEFNCI, and MTGEFGCI. The 30-year yield is similarly the average of the fol-
lowing fields: MTGEGNSF, MTGEFNCL, MTGEFGLM.

Date 30-Year 15-Year

Before LCR

Nov. 25, 2008 -72 -88
Dec. 1, 2008 -14 12
Dec. 16, 2008 -26 -16
Jan. 28, 2009 31 20
Mar. 18, 2009 -27 -16
Average -21.6 -19.8

After LCR

Mar. 15, 2020 -32 -33
Mar. 23, 2020 -39 -73
Average -35.5 -53
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