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1. Introduction

Decision-makers often confront uncertainties when determining their course of action. For

example, individuals save to cover uncertain medical expenses in old age (French and Song,

2014). Firms set prices facing uncertainty about their competitive environment (Ilut, 2020),

and policy-makers vote for climate change mitigation efforts facing uncertainty about future

costs and benefits (Barnett et al., 2020). We consider the situation where a decision-maker

posits a collection of economic models to inform his decision-making process. Each model for-

malizes the objectives and trade-offs involved. Within a given model, uncertainty is limited to

risk as a model induces a unique probability distribution over possible futures. In addition,

however, there is also ambiguity about the true model (Arrow, 1951; Knight, 1921).

In this context, we focus on the common practice in economics to estimate a subset of the

model parameters outside the model and let the decision-makers inside the model treat these

point estimates as-if they correspond to the true parameters.1 This approach ignores ambiguity

about the true model, resulting from the parametric uncertainty of the first-step estimation,

and opens the door for the misspecification of the decision problem. As-if decision-makers,

decision-makers who use the point estimates to inform decisions that would be optimal if the

estimates were correct (Manski, 2021), face the risk of serious disappointment about their deci-

sions. The performance of as-if decisions often turns out to be very sensitive to misspecification

(Smith and Winkler, 2006), which is particularly consequential in dynamic models where the

impact of erroneous decisions accumulates over time (Mannor et al., 2007). This danger creates

the need for robust decision rules that perform well over a whole range of different models in-

stead of an as-if decision rule that performs best for one particular model. However, increasing

robustness, often measured by a performance guarantee under a worst-case scenario, decreases

performance in all other scenarios. Striking a balance between the two objectives is challenging.

We develop a framework to evaluate as-if and robust decision rules in a decision-theoretic setting

by merging insights from the literature on data-driven robust optimization (Bertsimas et al.,

2018) and robust Markov decision processes (Ben-Tal et al., 2009) with statistical decision the-

ory (Berger, 2010). We set up a stochastic dynamic investment model where the decision-maker

takes ambiguity about the model’s transition dynamics directly into account. We construct am-

biguity sets for the transitions that are anchored in empirical estimates, statistically meaning-

ful, and computationally tractable (Ben-Tal et al., 2013) using the Kullback-Leibler divergence

1See for example Berger and Vavra (2015), Blundell et al. (2016), Cagetti and De Nardi (2006), Chiappori
et al. (2018), De Nardi et al. (2010), Ejrnæs and Jørgensen (2020), Fernández and Wong (2014), French and
Jones (2011), Gourinchas and Parker (2002), Huo and Ŕıos-Rull (2020), Scholz et al. (2006), Sommer (2016),
and Voena (2015).
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(Kullback and Leibler, 1951). Our work brings together and extends research in economics

and operations research to make econometrics useful for decision-making with models (Manski,

2021; Bertsimas and Thiele, 2006).

As an application, we revisit Rust (1987)’s seminal bus replacement problem which serves as a

computational illustration in a variety of settings.2 In the model, the manager Harold Zurcher

implements a maintenance plan for a fleet of buses. He faces uncertainty about the future

mileage utilization of the buses. To make his plan, he assumes that the mileage utilization

follows an exogenous distribution and uses data on past utilization for its estimation. In the

standard as-if analysis, the distribution is estimated in a first step and serves as a plug-in for

the true unknown distribution. Harold Zurcher makes decisions as-if the estimate is correct and

ignores any remaining ambiguity about future mileage utilization. We set up a robust version

of the bus replacement problem to directly account for the estimation uncertainty and explore

alternative decision rules’ properties and relative performance.

In econometrics, there is burgeoning interest in assessing the sensitivity of findings to model or

moment misspecification.3 Our work is most closely related to Jørgensen (2021), who develops

a measure to assess the sensitivity of results to fixing a subset of parameters of a model prior

to the estimation of the remaining parameters. Our approach differs as we directly incorporate

model ambiguity in the design of the decision-making process inside the model and assess the

performance of a decision rule under misspecification of the decision environment. As such, our

focus on ambiguity faced by decision-makers inside economic models draws inspiration from the

research program summarized in Hansen and Sargent (2016) that tackles similar concerns with

a theoretical focus. We complement recent work by Saghafian (2018), who works in a setting

very similar to ours but does not use statistical decision theory to determine the optimal robust

decision rule. In operations research, there exists a small number of applications of data-driven

robust decision-making in a dynamic setting, which include portfolio allocation (Zymler et al.,

2013), elective admission to hospitals (Meng et al., 2015), scheduling of liver transplantation

(Kaufman et al., 2017), and the cost-effectiveness of colorectal cancer screening policies (Goh

et al., 2018). To the best of our knowledge, none evaluates the performance of robust decisions

against the as-if alternative in a decision-theoretic framework.

The structure of the remaining analysis is as follows. First, in Section 2, we present statistical

decision theory as our framework to compare decision rules. We then set up a canonical model

2See for example Christensen and Connault (2019), Iskhakov et al. (2016), Reich (2018), and Su and Judd
(2012).

3See for example Andrews et al. (2020), Andrews et al. (2017), Armstrong and Kolesár (2021), Bonhomme
and Weidner (2020), Chernozhukov et al. (2020), Christensen and Connault (2019), and Honoré et al. (2020).
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of a data-driven robust Markov decision process in Section 3 and outline the decision-theoretic

evaluation of as-if and robust decision rules. Next, Section 4 presents our analysis of the robust

bus replacement problem. The final section concludes.

2. Statistical decision theory

We now show how to compare as-if decision-making to its robust alternatives using statistical

decision theory. We first review the basic setting and then turn to a classic urn example to

illustrate some key points.

2.1. Decision problem

We study a decision problem in which the consequence c ∈ C of various alternative actions

a ∈ A depend on the parameterization θ ∈ Θ of an economic model. A consequence function

ρ : A×Θ 7→ C details the consequence of action a under parameters θ:

c = ρ(a, θ).

A decision-maker ranks consequences according to a utility function u : C 7→ R where higher

values are more desirable. The structure of the decision problem (A, θ, C, ρ, u) is known, but

there is uncertainty about the true parameterization θ0, i.e., the consequences of a particular

action remain ambiguous. However, an observed sample of data ψ ∈ Ψ provides a signal about

the true parameters as Pθ, the sampling distribution of ψ, differs by θ.

A statistical decision function δ : Ψ 7→ A is a procedure for determining an action for each

possible realization of the sample. With as-if decision-making, the point estimates of the pa-

rameters θ̂ serve as a plug-in for the truth, ignoring their inherent uncertainty. This approach

is just one particular example of a statistical decision function. We compare it against robust

alternatives that explicitly account for the estimation uncertainty.

Statistical decision theory provides the framework to compare the performance of alternative

decision rules δ ∈ Γ. The utility achieved by δ is a random variable before the realization of ψ,

and Wald (1950) suggests measuring performance for a given θ by its expected utility.

Eθ [u (ρ(δ(ψ), θ))] =

∫
Ψ

u (ρ(δ(ψ), θ)) dPθ(ψ)

As the true parameterization is unknown, we need to aggregate the vector of expected utilities

at each element in the parameter space.
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In general, there is no single decision rule that yields the highest expected utility for all possible

parameterizations and so determining the best decision rule δ∗ is not straightforward. How-

ever, decision theory proposes various criteria (Gilboa, 2009; Marinacci, 2015). At the most

fundamental level, any decision rule is admissible if another rule does not exist whose expected

utility is always at least as high. In most cases, several decision functions are admissible, and

additional optimality criteria are needed. We explore the common three: (1) maximin, (2)

minimax regret, and (3) subjective Bayes.

The maximin decision (Gilboa and Schmeidler, 1989; Wald, 1950) is determined by computing

the minimum performance for each decision rule at all points in the parameter space and

choosing the one with the highest worst-case performance. Stated concisely,

δ∗ = arg max
δ∈Γ

min
θ∈Θ

Eθ [u(ρ (δ(ψ), θ))] .

For the minimax regret criterion (Manski, 2004; Niehans, 1948), we compute the maximum

regret for each decision rule at all points in the parameter space and chooses the decision rule

that minimizes the maximum regret. The regret of choosing a decision rule for any realization of

θ is the difference between the maximum possible performance where the true parameterization

informs the decision and its actual performance. Thus, the minimax regret criterion solves:

δ∗ = arg min
δ∈Γ

max
θ∈Θ

[
max
a∈A

u(ρ (a, θ))− Eθ [u(ρ (δ(ψ), θ))]

]
︸ ︷︷ ︸

regret

.

Maximization of the performance under subjective Bayes (Savage, 1954) requires a subjective

probability distribution fθ over the parameter space. Then the alternative with the highest

expected subjective utility is selected:

δ∗ = arg max
δ∈Γ

∫
θ

Eθ [u(ρ (δ(ψ), θ))] dfθ.

2.2. Urn example

We now illustrate the key ideas allowing us to compare as-if and robust decision-making using

statistical decision theory with an urn example. As in our empirical application, we study a set

of decision rules. We first compare the performance of two distinct rules and then determine

the optimal rule within the set.

We consider an urn with black b and white w balls where the true proportion of black balls

θ0 is unknown. In this example, the action constitutes a guess θ̃ about θ0 after drawing a

fixed number of n balls at random with replacement. The parameter and action space both
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correspond to the unit interval Θ = A = [0, 1].

If the guess matches the true proportion, we receive a payment of one. On the other hand,

in case of a discrepancy, the payment is reduced by the squared error. Thus, the consequence

function takes the following form:

ρ(θ̃, θ0) = 1− (θ̃ − θ0)2.

The sample space is Ψ = {b, w}n where a sequence (b, w, b, . . . , b) of length n is a typical

realization of ψ. The observed number of black balls r among the n draws in a given sample ψ

provides a signal about θ0. The sampling distribution for the possible number of black balls R

takes the form of a probability mass function (PMF):

Pr(R = r) =

(
n

r

)
(θ0)r (1− θ0)n−r.

Any function δ : {b, w}n 7→ [0, 1] that maps the number of black draws to the unit interval is a

possible statistical decision function.

We focus on the following class of decision rules δ ∈ Γ:

δ(r, λ) = λ
( r
n

)
+ (1− λ)

(
1

2

)
, for some 0 ≤ λ ≤ 1.

The empirical proportion of black balls in the sample r/n provides the point estimate θ̂. The

decision rule specifies the guess as a weighted average between the point estimate itself and the

midpoint of the parameter space. The larger λ, the more weight is put on the point estimate. At

the extremes, at λ = 1, the guess is the point estimate, while for λ = 0, the guess is fixed at 0.5.

We later determine the best decision rule within this class, but we start by comparing the

performance of the two decision functions with λ = 1 and λ = 0.9. We refer to the former as

the as-if decision rule as it announces the point estimate as-if it is the true one and λ = 0.9 as

the robust decision rule for reasons that will become clear later. We evaluate their relative per-

formance by aggregating the vector of expected payoffs over the unit interval using the different

decision-theoretic criteria. We assume a linear utility function and thus directly refer to the

monetary consequences of a guess as its payoff. Throughout, we set the number of draws n to 50.

Figure 1 shows the sampling distribution of R and the associated payoff for the two decision

rules at θ = 0.4. The robust decision rule outperforms the as-if rule for realizations of the point

estimate smaller than its true value due to the shift towards 0.5. At the same time, the as-if
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rule leads to a higher payoff at the center of the distribution.

Figure 1.: Calculating the expected payoff

Figure 2 shows the expected payoff at different points in the parameter space. On the left, we

show the expected payoff at two selected points. While the as-if decision rule performs better

than the robust rule at θ = 0.1, the opposite is true at θ = 0.4. Thus, both decision rules are

admissible as neither of the two outperforms the other for all possible true proportions. On

the right, we trace out the expected payoff of both rules over the whole parameter space. The

robust rule outperforms the as-if rule in the center of the parameter space but performs worse

at the boundary. Overall, the performance of the robust rule is more balanced across the whole

parameter space, which motivates its name.

(a) Expected payoff (b) Performance

Figure 2.: Evaluating decision functions

Figure 3 ranks the two rules according to different decision-theoretic criteria. Both decision

rules have their lowest expected payoff at θ = 0.5. As the robust rule outperforms the as-if
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alternative at that point, the robust rule is preferred based on the maximin and minimax regret

criteria. The maximin and minimax regret criteria are identical in this setting, as the payoff at

the true proportion is constant across the parameter space. Using the subjective Bayes criterion

with a uniform prior, however, we select the as-if decision rule as its better performance at the

boundary of the parameter space is enough to offset its poor performance in the center.

Figure 3.: Ranking of decision functions

Returning to the whole set of decision rules, we can construct the optimal rule for the alternative

criteria by varying λ to maximize the relevant performance measure. For example, Figure 15

shows the optimal level of λ for the maximin and subjective Bayes criterion.

Notes: We omit the performance measure for the minimax regret
criterion as λ∗Maximin = λ∗Regret in this setting as noted earlier.

Figure 4.: Optimality of decision functions

The as-if decision rule (λ = 1.0) is not optimal under both criteria as at the optimum 0.8 <
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λ∗Maximin < λ∗Bayes < 1. The performance measure is more sensitive to the choice of λ under the

maximin criterion than subjective Bayes.

In summary, the urn example illustrates the performance comparison of alternative decision

rules over the whole parameter space of a model, and it shows how to construct optimal decision

rules within a set of rules for alternative decision-theoretic criteria. Next, we move to the

more involved setting of a sequential dynamic decision problem with ambiguous transitions

and explore a class of statistical decision functions frequently used in the operations research

literature.

3. Data-driven robust Markov decision process

We now outline our framework for the analysis of sequential decision-making in light of model

ambiguity. We first present the general setup of a data-driven robust Markov decision pro-

cess. We then turn to its solution approach, where we highlight the challenges introduced into

the analysis when studying decision-making in this setting.4 Finally, we outline the decision-

theoretic evaluation of as-if decision-making and its robust alternatives.

Throughout, our exposition focuses on uncertainty in the transition dynamics of the Markov

decision process. We do not address uncertainty about the parameters of the reward functions.

In either case, our central insight to use statistical decision theory to explore, evaluate, and op-

timize robust decision rules applies. However, each setting introduces its unique computational

challenges (Mannor and Xu, 2019). In line with our application, we discuss an infinite horizon

model in discrete time, stationary utility and transition probabilities, and discrete states and

actions.

3.1. Setting

At time t = 0, 1, 2, . . . a decision-maker observes the state of their environment st ∈ S and

chooses an action at from the set of admissible actions A. The decision has two consequences.

It creates an immediate utility u(st, at) and the environment evolves to a new state st+1. The

transition from st to st+1 is affected by the action, at least partly unknown, and governed by a

transition probability distribution p(st, at).

Decision-makers take the future consequences of the current action into account. A decision rule

dt specifies the planned action for all possible states within period t. A policy π = {d0, d1, d2, . . .}

4See Puterman (1994) for a textbook introduction to the standard MDP and Rust (1994) for a review of MDPs
in economics and structural estimation.
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st st+1 st+2

at ut at+1 ut+1

decide

dt

decide

dt+1

transition

p(st, at)

transition

p(st+1, at+1)

receive

u(st, at)

receive

u(st+1, at+1)

Figure 5.: Timing of events

is a collection of decision rules and specifies all actions for all time periods.

Figure 5 depicts the timing of events in the model. At the beginning of period t, a decision-

maker learns about the utility of each alternative, chooses one of them according to the decision

rule dt, and receives its immediate utility. Then the state evolves from st to st+1 and the process

is repeated in t+ 1.

In a standard Markov decision process (MDP), a single transition probability distribution

p(st, at) is associated with each state-action pair. The decision-maker knows the distribu-

tion, and thus faces a decision problem under risk only. In a robust Markov decision process

(RMDP) there is a whole set of distributions associated with each state-action pair collected

in an ambiguity set p(st, at) ∈ P(st, at). The decision-maker only knows the ambiguity set and

thus faces a risk for a given distribution and ambiguity about the true distribution. The MDP

remains a special case of a RMDP when the ambiguity set is a singleton.

In a standard MDP, the objective of a decision-maker in state st at time t is to choose the

optimal policy π∗ from the set of all possible policies Π that maximizes their expected total

discounted utility ṽt
π∗(st) as formalized in Equation (3.1):

ṽt
π∗(st) ≡ max

π∈Π
Eπ

[
∞∑
r=0

δt+ru(st+r, dt+r(st+r))

]
. (3.1)

The exponential discount factor δ parameterizes a taste for immediate over future utilities.

The superscript of the expectation emphasizes that each policy induces a different probability

distribution over sequences of possible futures. The standard value function ṽt
π∗(st) measures

the performance of the optimal policy. This is true as long as transition probabilities used to

construct the policy are in fact correct.

In an RMDP, the goal is to implement an optimal policy that maximizes the expected total
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discounted utility under a worst-case scenario. Given the ambiguity about the transition dy-

namics, a policy induces a whole set of probabilities over sequences of possible futures Fπ, and

the worst-case realization determines its ranking. The formal representation of the decision-

makers objective is Equation (3.2):

vπ
∗

t (st) ≡ max
π∈Π

{
min
P∈Fπ

EP

[
∞∑
r=0

δt+ru(st+r, dt+r(st+r))

]}
. (3.2)

We consider a setting where historical data provides information about the transition dynam-

ics. In the data-driven standard MDP, the empirical probabilities p̂(st, at) serve as a plug-in

for the truth. In a data-driven RMDP, they are used to construct the ambiguity sets for the

transitions. We follow Ben-Tal et al. (2013) and create the ambiguity sets using statistical

hypothesis testing. We restrict attention to distributions we cannot reject with a certain level

of confidence ω ∈ [0, 1] around the empirical probabilities and collect them in an estimated

ambiguity set P̂(st, at;ω).

Different values of ω result in different decision rules. Two special cases stand out. First, if

ω = 0, then a decision-maker treats the empirical probabilities as if they are correct. This

case captures the notion of as-if decision making. Second, for ω = 1, a robust decision-maker

considers the worst-case scenario over the whole probability simplex at each state-action pair

when constructing the optimal policy.

3.2. Solution

In the case of as-if decision-making, the goal is to maximize the expected total discounted utility

as formalized in Equation (3.1). This requires evaluating the performance of all policies based

on all possible sequences of utilities and the probability that each occurs. Fortunately, the

stationary Markovian structure of the problem implies that the future looks the same whether

the decision-maker is in state s at time t or any other point in time. The only variable which

determines the value to the decision-maker is the current state s. Thus the optimal policy is

stationary as well (Blackwell, 1965) and the same decision rule is used in every period. The

value function is independent of time and the solution to the following Bellman equation:

ṽ(s) = max
a∈A

[
u(s, a) + δ

∫
ṽ(s′) p̂(ds′|s, a)

]
.

The as-if decision rule is recovered from ṽ(s) by finding the value a ∈ A that attains a maxi-

mum for each s ∈ S.

Let V denote the set of all bounded real value functions on S. Then the Bellman operator
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Γ̃ : V→ V is defined as follows: For all w ∈ V

Γ̃(w)(s) = max
a∈A

[
u(s, a) + δ

∫
w(s′) p̂(ds′|s, a)

]
, s ∈ S. (3.3)

It allows to compute the value function ṽ(·) as its unique fixed point (Denardo, 1967).

For a RMDP, where transition probabilities are ambiguous, the contraction mapping property

of the Bellman operator and the optimality of a stationary deterministic Markovian decision

rule requires the assumption of rectangularity of Fπ (Iyengar, 2005; Nilim and El Ghaoui, 2005).

Rectangularity is a form of an independence assumption as the realization of any particular

distribution in a state-action pair does not affect future realizations. The uncertainty is un-

coupled across states and actions. This approach rules out any kind of learning about future

ambiguity from past experiences due to, for example, a common source of uncertainty across

states. While restrictive, most applications rely on the rectangularity assumption, as general

notions of coupled uncertainties are intractable (Wiesemann et al., 2013).5

We now develop the formal definition of rectangularity. Let M(S) denote the set of all prob-

ability distributions on S. Then the set of all conditional transition probability distributions

associated with any decision rule d is given by:

Fd = {p : S →M(S) | ∀s ∈ S, p(s) ∈ P̂(s, d(s);ω)}.

For every state s ∈ S, the next state can be determined by any p ∈ P̂(s, d(s);ω).

A policy π now induces a set of probability distributions Fπ on the set of all possible historiesH.

Any particular history h = (s0, a0, s1, a1, . . .) can be the result of many possible combinations

of transition probabilities. Rectangularity imposes a structure on the combination possibilities.

Assumption 1. Rectangularity The set Fπ of probability distributions associated with a

policy π is given by

Fπ =

{
P | ∀h ∈ H : P(h) =

∞∏
t=0

p(st+1|st, at), with p(st, at) ∈ P̂(st, dt(st);ω) for t = 0, 1, . . .

}
= Fd0 ×Fd1 ×Fd2 × . . . =

∞∏
t=0

F dt ,

5See Mannor et al. (2016), and Goyal and Grand-Clement (2020) for recent attempts to introduce milder
rectangularity conditions.
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where the notation simply denotes that each element in Fπ is a product of p ∈ Fdt, and vice

versa (Iyengar, 2005).

Assumption 1 formalizes the idea that ambiguity about the transition probability distribution

is uncoupled across states and time. All elements of the ambiguity sets can be freely combined

to generate a particular history.

The objective when facing ambiguity is to implement a policy π∗ that maximizes the expected

total discounted utility under a worst-case scenario as presented in Equation (3.2). Under the

rectangularity assumption, the decision-maker faces the same uncertainty, whether he is in state

s at time t or any other point in time. Thus the value function is independent of time and

solely depends on the current state s. It is the solution to the robust Bellman equation (3.4),

where the future value is evaluated using the worst-case element in the ambiguity set (Iyengar,

2005).

v(s) = max
a∈A

[
u(s, a) + δ min

p∈P̂(s,a;ω)

∫
v(s′) p(ds′|s, a)

]
. (3.4)

The robust Bellman operator on V follows directly: For all w ∈ V

Γ(w)(s) = max
a∈A

[
u(s, a) + δ min

p∈P̂(s,a;ω)

∫
w(s′) p(ds′|s, a)

]
s ∈ S. (3.5)

Algorithm 1 allows solving the RMDP by a robust version of the value iteration algorithm

where κ denotes a convergence threshold. The calculation of future values under the worst-case

scenario is the key difference to the standard approach.

Algorithm 1. Robust Value Iteration Algorithm

Input: v ∈ V, κ > 0

For each s ∈ S, set v̂(s) = max
a∈A

{
u(s, a) + min

p∈P̂(s,a;ω)

∫
v(s′) p(ds′|s, a)]

}
.

while ‖ v − v̂ ‖∞ > κ do

v = v̂

∀ s ∈ S, set v̂(s) = max
a∈A

{
u(s, a) + min

p∈P̂(s,a;ω)

∫
v(s′) p(ds′|s, a)]

}
end while
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3.3. Evaluation

Robust policies are tailored to the simultaneous worst-case realization of all distributions in all

ambiguity sets. The conservatism ensures a minimum performance over all distributions in the

set. However, the performance of the robust rule in all other cases is disregarded. This indiffer-

ence introduces a tradeoff when determining the size of the ambiguity set (Delage and Mannor,

2010). The larger the set, the more scenarios for which a minimum performance is ensured, but

the decision rule’s general performance suffers. This tradeoff is particularly pronounced when

the actual structure of the decision problem exhibits coupled uncertainties that are ignored in

the construction of the robust rule to ensure its computational tractability.

We use statistical decision theory to navigate the tradeoff. Each robust decision rule is a

different statistical decision function, and we determine the optimal size of the ambiguity set

ω∗ using different decision-theoretic criteria. Adapting our urn example earlier to the setting

of a data-driven robust Markov decision process, the parameter space corresponds to the set of

transition probability distributions L(S,A) = {p : S × A →M(S)}. We observe data on the

transition probabilities and measure the actual performance of a robust decision rule η(p̂; p0, ω)

as the generated total discounted utility, which depends on the estimate of the transition

probabilities p̂, the true underlying probabilities p0, and the confidence level ω. The standard

decision-theoretic criteria translate to this setting as follows:

Maximin ω∗ = arg maxω∈[0,1] minp∈L(S,A) Ep [η(p̂; p, ω)]

Minimax regret ω∗ = arg minω∈[0,1] maxp∈L(S,A)

[
maxω̃∈[0,1] η(p; p, ω̃)− Ep [η(p̂; p, ω)]

]
Subjective Bayes w∗ = arg maxω∈[0,1]

∫
L(S,A)

Ep [η(p̂; p, ω)] dfp

Note that even for genuinely uncoupled uncertainties, the maximin criterion does not auto-

matically select the worst-case rule (ω = 1). This particular rule is based on the worst-case

scenario over the full probability simplex at each state-action pair. In fact, the worst-case rule

might be inadmissible in particular settings as, for example, it is weakly dominated by the as-if

rule. Suppose the true transitions correspond to the worst-case distributions. In that case, the

distribution of sampled transitions is degenerate as the worst-case scenario at each state-action

pair is the certain transition to the state with the lowest future value (Nilim and El Ghaoui,

2005). Thus, the as-if and worst-case rules share the same performance. For all other true

transitions, the as-if rule may very well outperform the worst-case rule if the sampled data is

sufficiently informative.
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4. Robust bus replacement problem

We now set up a robust version of the seminal bus replacement problem and conduct our

decision-theoretic analysis of alternative decision rules. First, we discuss the details of the

computational implementation. Second, we conduct an ex-post analysis of as-if and robust

decision rules based on Rust’s (1987) original point estimates for the transition probabilities.

Third, we implement an ex-ante decision-theoretic analysis. We evaluate the performance of

as-if and robust decision rules over the whole probability simplex and determine the optimal

size of the ambiguity set.

4.1. Setting

The bus replacement model is set up as a regenerative optimal stopping problem (Chow et al.,

1971). We consider the sequential decision problem by a maintenance manager, Harold Zurcher,

for a fleet of buses. He makes repeated decisions about their maintenance to maximize the ex-

pected total discounted utility under a worst-case scenario. Each month t, a bus arrives at the

bus depot in state st = (xt, εt) described by its mileage since the last engine replacement xt and

other signs of wear and tear εt. He is faced with the decision to either conduct a complete engine

replacement (at = 1) or perform basic maintenance work (at = 0). The cost of maintenance

c(xt) increases with the mileage state, while the cost of replacement RC remains constant. In

the case of an engine replacement, the mileage state is reset to zero.

The immediate utility of each action is given by:

u(at, xt) + εt(at) with u(at, xt) =

−RC at = 1

−c(xt) at = 0.

Harold Zurcher makes his decisions in light of uncertainty about next month’s state variables

captured by their conditional distribution p(xt, εt, at).

Although in this framework the utility and consequently the value function is finite in each

state, they are not uniformly bounded. This property, however, is a crucial assumption for

the results of Blackwell (1965) and Denardo (1967) on the contraction property of the Bellman

operator and the stationarity of the optimal policy. For the original as-if-analysis, Rust (1988)

circumvents this problem by imposing conditional independence between the observable and

unobservable state variables, i.e. p(xt+1, εt+1|xt, εt, at) = p(xt+1|xt, at) q(εt+1|xt+1), and assum-

ing that the unobservables εt(at) are independent and identically distributed according to an

extreme value distribution with mean zero and scale parameter one. These two assumptions,

together with the additive separability between the observed and unobserved state variables
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in the immediate utilities, ensure that the expectation of the next period’s value function is

independent of the time. The regenerative structure of the process implies, that the transition

probabilities in case of replacement in any mileage state correspond to the probabilities of main-

tenance in mileage state 0. Therefore, the expected value function is the unique fixed point of

a contraction mapping on the reduced space of mileage states only. In addition, the conditional

choice probabilities P (at|xt) have a closed-form solution (McFadden, 1973). We build on these

results and extend them to our robust setting with ambiguous transition dynamics. The proof

is available in Appendix A.

In the analysis of the original bus replacement problem, the distribution of the monthly mileage

transitions are estimated in a first step and used as plug-in components for the subsequent anal-

ysis. We extend the original setup and explicitly account for the ambiguity in the estimation.

Following the arguments on the regenerative structure of the process above, we can incorpo-

rate ambiguity in the decision-making process with ambiguity sets conditional on the mileage

states x only. We construct ambiguity sets P̂(x;ω) based on the Kullback-Leibler divergence

DKL (Kullback and Leibler, 1951) that are anchored in empirical estimates p̂(x), statistically

meaningful, and computationally tractable.

Our ambiguity set takes the following form for each mileage state x:

P̂(x;ω) =

{
q ∈ ∆̊|Jx| : DKL(q ‖ p̂(x)) =

|Jx|∑
i=1

qi ln

(
qi

p̂(ji|x)

)
≤ ρx(ω)

}
,

where Jx = {j1, . . . , j|Jx|} denotes the set of all states, which have an estimated non-zero prob-

ability to be reached from x, ∆̊|Jx| = {p ∈ R|Jx| | pi > 0 for all i = 1, . . . , |Jx| and
∑|Jx|

i=1 pi = 1}
is the interior of the (|Jx| − 1) - dimensional probability simplex, and ρx(ω) captures the size

of the set for the state x with a given level of confidence ω.

Iyengar (2002) and Ben-Tal et al. (2013) provide the statistical foundation to calibrate ρx(ω)

such that the true (but unknown) distribution p0 is contained within the ambiguity set for a

given level of confidence ω. Let χ2
df denote a chi-squared random variable with df degrees of

freedom and let Fdf (·) denote its cumulative distribution function with inverse F−1
df (·). Then,

the following approximate relationship holds as the number of observations Nx for state x tends

to infinity (Pardo, 2005):

ω = Pr[ p0 ∈ P̂(x;ω) ]

≈ Pr[χ2
|Jx|−1 ≤ 2Nxρx(ω) ]

= F|Jx|−1(2Nxρx(ω)).
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Therefore we can calibrate the size of the ambiguity set based on the following relationship:

ρx(ω) = 1
2Nx

F−1
|Jx|−1(ω). (4.1)

We use Rust (1987)’s original data to inform our computational experiments. His data consists

of monthly odometer readings xt and engine replacement decisions at for 162 buses. The fleet

consists of eight groups that differ in their manufacturer and model. We focus on the fourth

group of 37 buses with a total of 4,292 monthly observations. We discretize mileage into 78

equally spaced bins of length 5, 000 and set the discount factor to δ = 0.9999.

Figure 6 highlights the limited information about the true distribution of mileage utilization.

It shows the number of observations available to estimate next month’s utilization for different

levels of accumulated mileage. While there are more than 1,150 observations on buses with less

than 50,000 miles, there are only about 220 with more than 300,000.

Figure 6.: Distributions of observations

We analyze a specific example of Rust (1987)’s bus replacement problem. We do not use his

reported estimates of the maintenance and replacement costs. Given these estimates, Harold

Zurcher’s decisions are mainly driven by the unobserved state variable εt, and so ambiguity

about the evolution of the observed state variable xt does not have a substantial effect on de-

cisions. We ensure that a bus’s accumulated mileage has a considerable impact on the timing

of engine replacements by increasing the maintenance and replacement costs compared to their

empirical estimates. Thus, we specify the following cost function c(xt) = 0.4xt and set the

replacement costs RC to 50.

18



We solve the model using a modified version of the original nested fixed point algorithm (NFXP)

(Rust, 1988). We determine the worst-case transition probabilities in each successive approxi-

mation of the fixed point. Given the size of the ambiguity set, we can determine the worst-case

probabilities as the solution to a one-dimensional convex optimization problem (Iyengar, 2005;

Nilim and El Ghaoui, 2005).6

4.2. Ex-post analysis

We now present the estimated transition probabilities and the worst-case distributions. We con-

struct as-if and robust policies with varying confidence levels, outline the resulting differences

in maintenance decisions, and evaluate their relative performance under different scenarios.

Figure 7 shows the point estimates p̂ for the transition probabilities of monthly mileage usage.

We pool all 4,292 observations to estimate this distribution by maximum likelihood, and thus

the probability of next’s period mileage utilization is the same for each state xt. We only ob-

serve increases of at most J = 3 grid points per month. For about 60% of the sample, monthly

bus utilization is between 5,000 to 10,000 miles. Very high usage of more than 10,000 miles

amounts to only 1.2%.

Figure 7.: Estimated transition probabilities

The confidence level ω and the available number of observations Nx determine the size of the

ambiguity set as outlined in Equation (4.1). From now on, we mimic state-specific ambiguity

sets by constructing them based on the average number of 55 observations per state. Note that

6The core routines are implemented in our group’s ruspy (2020) and robupy (2020) software packages and
publicly available.
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while the estimated distribution is the same for all mileage levels, its worst-case realization is

not. However, there are only minor differences across mileage levels, so we focus our following

discussion on a bus with an odometer reading of 75,000.

Figure 8 shows the transition probabilities for different sizes of the ambiguity set. We vary the

confidence level for the whole number of observations (Nx = 55) on the left, while on the right,

the level of confidence remains fixed (ω = 0.95) and we cut the number of observations roughly

in half. The larger the ambiguity set, the more probability is attached to higher mileage utiliza-

tion, resulting in higher costs overall. For example, while the probability of mileage increases

of 10,000 or more is an infrequent occurrence in the data, its probability increases first to 1.7%.

It then doubles to 2.5% as we increase the confidence level. When only about half the data is

available, this probability increases even further to 3.2%.

(a) Variation in ω, (Nx = 55) (b) Variation in Nx, (ω = 0.95)

Figure 8.: Worst-case transition probabilities

Harold Zurcher chooses whether to perform regular maintenance work on a bus or replace its

complete engine each month. The assumed transition probabilities correspond to their worst-

case transitions within the ambiguity set. So any differences between the as-if and worst-case

distributions translate into different maintenance policies.

Figure 9 shows the maintenance probabilities for different levels of accumulated mileage and

alternative policies. Overall, the maintenance probability decreases with accumulated mileage

as maintenance gets more costly than an engine replacement. Robust policies result in a higher

probability of maintenance compared to the as-if policy. Under the worst-case transitions, a bus

is more likely to experience higher usage during the period. As maintenance cost is determined

by the mileage level at the beginning of the period, maintenance becomes more attractive. For

example, again considering a bus with 75,000 miles, the as-if maintenance probability is 25%

while it is 33% (ω = 0.50) and 43% (ω = 0.95) following the robust policies.
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Figure 9.: Maintenance probabilities

To gain further insights into the differences between the as-if and robust policies, we simulate

a fleet of 1,000 buses for 100,000 months under the alternative policies.

Figure 10 shows the level of accumulated mileage over time for a single bus under different

policies. It clarifies our simulation setup, where we apply other policies to the same bus. The

realizations of observed transitions and unobserved signs of wear and tear remain the same.

The bus accumulates more and more mileage until Harold Zurcher replaces the complete en-

gine, and the odometer resets to zero. The first replacement happens after 20 months at 60,000

miles following the as-if policy, while it is delayed for another four months under the robust

alternative (ω = 0.95). As its timing differs, the odometer readings will start to diverge after

20 months, even though monthly utilization remains the same.
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Figure 10.: Single bus under alternative policies

We now evaluate the as-if and robust policies at the boundary of the ambiguity set. We measure

the performance of the alternative decision rules based on their total discounted utility under

different assumed and actual mileage transitions.

Figure 11 shows the performance of the as-if policy over time when the worst-case distribution

for a confidence level of 0.95 governs the actual transitions. It illustrates the sensitivity of

the as-if policy to perturbations in the transition probabilities. The solid line corresponds to

its expected long-run performance without misspecification of the decision problem, while the

dashed line indicates its observed performance. After about 20,000 months, it accumulates the

expected long-run average cost and performs about 14% worse overall.
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Figure 11.: Performance of as-if policy

Figure 12 shows the average difference in performance between the as-if and two robust policies

with a confidence level of 0.50 and 0.95. The actual transitions follow the worst-case distri-

bution with varying ω. A positive value indicates that the robust policy outperforms the as-if

policy. In the absence of any misspecification, the as-if policy must defeat any other policy.

The same is true for the robust policies when the actual transitions are governed by the same ω

used for their construction. Nevertheless, the as-if policy continues to outperform both robust

policies for moderate levels of ω. For worst-case distributions with ω larger than 0.2, the first

robust policy (ω = 0.5) starts to beat the as-if policy. For the other robust policy (ω = 0.95),

this is true for worst-case transitions of ω equal to 0.5.
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Notes: We apply a Savitzky-Golay filter (Savitzky and Golay, 1964) to smooth the simulation results.

Figure 12.: Performance and misspecification

4.3. Ex-ante analysis

We now turn to a decision-theoretic evaluation of the ex-ante performance of as-if and robust

decision-making over the whole probability simplex.

We operationalize our analysis as follows. In line with Rust’s (1987) assumption on the dis-

tribution of the mileage utilization, we specify a uniform grid with 0.1 increments over the

interior of the two-dimensional probability simplex ∆̊3. At each grid point, we draw 100 sam-

ples of 55 random mileage utilizations. For each sample, we construct decision rules for a grid

ω = {0.0, 0.1, . . . , 1.0} using the estimated transition probabilities. The uncertainties are cou-

pled across states in our setting as the same underlying probability creates the sample of bus

utilizations. The rectangularity assumption does not reflect the economic environment, but

is imposed for the construction of the robust decision rules to ensure tractability. We then

simulate the rules’ actual performance and compute their expected performance by averaging

across the 100 runs for each grid point. Using this information, we measure the different rules’

performance based on the maximin criterion, the minimax regret rule, and the subjective Bayes

approach using a uniform prior.

The computational burden is considerable even for our relatively simple application. At each

grid point in the probability simplex, we solve 100 robust Markov decision processes for each

robust decision rule. However, the analysis is amenable to parallelization using modern high-

performance computational resources (Dongarra and Van der Steen, 2012) as we can process

each estimated transition probability independently. We use standard linear interpolation be-

24



tween the grid points.

In Figure 13 we illustrate the differences in expected performance between a robust decision

rule (ω = 0.1) against the as-if alternative over the probability simplex.

Figure 13.: Relative performance of decision functions

In the gray areas, the as-if decision rule outperforms the robust alternative based on its ex-

pected performance. The opposite is true for the black areas. A robust decision rule performs

very well when the true probability of mileage increases of 5, 000 per month is high and of

10, 000 low. Otherwise, the as-if decision rule outperforms the robust alternative. Thus no rule

dominates the other and it is essential to aggregate the performance over the whole probability

simplex using decision theory before settling on a decision rule.

Figure 14 ranks the as-if decision rule against selected robust alternatives for the different

performance criteria.
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Figure 14.: Ranking of decision functions

Based on a maximin criterion, the decision rules rank the higher, the greater the confidence level

ω. The robust rule with ω = 0.3 comes in first, while as-if decisions rank last. Thus, decision-

makers can improve their worst-case outcomes by adopting a robust decision rule. However,

this comes at a cost, as indicated by the improved rankings for the as-if decision rule as we

move to different criteria. As-if decisions move to second place for minimax regret. When

we aggregate performance across all states using a subjective Bayes approach, the as-if rule

comes first based on a subjective Bayes assessment. Thus, our approach clarifies the trade-offs

involved when choosing a particular decision function.

We now determine the optimal size of the ambiguity set ω∗ for each decision-theoretic criteria.

Figure 15 shows the minimum performance of the robust decision rules for varying levels of

ω normalized between zero and one. Among all rules, the robust rule with ω = 0.36 has the

highest minimum performance. It thus strikes a balance between the conservatism of the worst-

case approach and the protection against unfavorable transition probabilities. Based on the

maximin criterion, the as-if decision rule performs worst.
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Figure 15.: Optimality of decision functions

The minimax regret criterion leads to a slightly reduced level of ω = 0.1. The as-if decision

rule is optimal based on the subjective Bayes criterion.

5. Conclusion

Economists often estimate a subset of their model parameters outside the model and let the

decision-makers inside the model treat these point estimates as-if they are correct. This ap-

proach ignores model ambiguity. We set up a stochastic dynamic investment model where the

decision-maker faces ambiguity about the model’s transition dynamics. We propose a frame-

work to evaluate decision rules that ignore the ambiguity against alternatives that take it

directly into account. We show how to determine the optimal level.

As our core contribution, we combine ideas from data-driven robust optimization (Bertsimas

et al., 2018), robust Markov decision processes (Ben-Tal et al., 2009) and statistical decision

theory (Berger, 2010) to enable decision-making with models under uncertainty (Manski, 2021).

This insight transfers directly to many other settings. For example, the COVID-19 pandemic

provides a timely example of economists informing policy-making using highly parameterized

models in light of ubiquitous uncertainties (Avery et al., 2020). When analyzing these models,

economists treat numerous of their parameters as-if they are known. However, their actual

values are uncertain as they are often estimated based on external data sources. Our research

illustrates how to conduct robust policy-making and evaluate its relative performance against

policies that ignore uncertainty using statistical decision theory. Such an approach promotes

a sound decision-making process as it provides decision-makers with the tools to navigate and

communicate the uncertainties they face in a systematic fashion (Berger et al., 2021).
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A. The robust contraction mapping

Rust (1987) shows that the expectation of the next period’s value function is a fixed point

on the mileage states x only. He uses the regenerative property of the mileage process and

introduces a separate notion ẼV (x) for the expected value function of maintenance. ẼV (x) is

the fixed point of the contraction mapping defined as follows: For all v ∈ V

Γ̃(v)(x) =
∑
x′∈X

p(x′|x) log
∑

a∈{0,1}

exp
(
u(x′, a) + δ v((1− a)x′)

)
, x ∈ X. (A.1)

We adopt a similar approach, following Iyengar (2005), and show:

Theorem 1. Let the robust Bellman operator Γ : V→ V be defined as follows: For all v ∈ V

Γ(v)(x) =

∫
max
a∈{0,1}

[
u(x, a) + ε(a) + δ min

p∈P((1−a)x, ω)

∑
x′∈X

p(x′)v(x′)

]
q(dε)

= log
∑

a∈{0,1}

exp

[
u(x, a) + δ min

p∈P((1−a)x, ω)

∑
x′∈X

p(x′)v(x′)

]
. (A.2)

Then Γ(·) is a contraction mapping on
(
V, ‖·‖∞

)
with unique fixed point EV .

Proof. Let v, w ∈ V be arbitrary. Fix x ∈ X and assume without loss of generality that

Γ(w)(x) ≥ Γ(v)(x). Let ν > 0 be arbitrary. Then choose pa ∈ P((1− a)x, ω), such that

max
a∈{0,1}

[u(x, a) + ε(a) + δ min
p∈P((1−a)x, ω)

∑
x′∈X

p(x′)v(x′)] ≥

max
a∈{0,1}

[u(x, a) + ε(a) + δ
∑
x′∈X

pa(x′)v(x′)]− ν.

By construction:

max
a∈{0,1}

[u(x, a) + ε(a) + δ min
p∈P((1−a)x, ω)

∑
x′∈X

p(x′)w(x′)] ≤

max
a∈{0,1}

[u(x, a) + ε(a) + δ
∑
x′∈X

pa(x′)w(x′)].

Rust (1988) shows for any conditional distribution measure p and mileage state x ∈ X:

max
a∈{0,1}

[u(x, a) + ε(a) + δ
∑
x′∈X

p(x′)w(x′)]− max
a∈{0,1}

[u(x, a) + ε(a) + δ
∑
x′∈X

p(x′)v(x′)]

≤ δ max
a∈{0,1}

|
∑
x′∈X

p(x′)(w(x′)− v(x′)| ≤ δ ‖w − v‖∞ .
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This holds in particular for pa, which yields:

0 ≤ Γ(w)(x)− Γ(v)(x)

≤
∫ (

max
a∈{0,1}

[u(x, a) + ε(a) + δ
∑
x′∈X

pa(x′)w(x′)]

− max
a∈{0,1}

[u(x, a) + ε(a) + δ
∑
x′∈X

pa(x′)v(x′)] + ν

)
q(dε)

≤
∫

(δ ‖w − v‖∞ + ν) q(ε)

= δ ‖w − v‖∞ + ν.

Arguing vice versa for Γ(w)(x) ≤ Γ(v)(x), this implies that

‖Γ(w)− Γ(v)‖∞ ≤ δ ‖w − v‖∞ + ν.

With ν arbitrary and δ ∈ [0, 1) this shows that Γ is a contraction mapping on V with respect

to ‖·‖∞. As
(
V, ‖·‖∞

)
is a Banach space, the result is established.
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