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The ex-ante evaluation of policies using structural econometric models is based on esti-

mated parameters as a stand-in for the truth. This practice ignores uncertainty in the

counterfactual policy predictions of the model. We develop a generic approach that deals

with parametric uncertainty using uncertainty sets and frames model-informed policy-

making as a decision problem under uncertainty. The seminal human capital invest-

ment model by Keane and Wolpin (1997) provides us with a well-known, influential,

and empirically-grounded test case. We document considerable uncertainty in their pol-

icy predictions and highlight the resulting policy recommendations from using different

formal rules on decision-making under uncertainty.

∗Corresponding author: Philipp Eisenhauer, peisenha@uni-bonn.de. Philipp Eisenhauer and Lena Janys are both
funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy - EXC 2126/1- 390838866 and the TRA Modelling (University of Bonn) as part of the Excellence Strategy
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1. Introduction

Economists use highly parameterized structural models to investigate economic mechanisms, predict

the impact of proposed policies, and inform optimal policy-making (Wolpin, 2013). These models

represent deep structural relationships of theoretical economic models invariant to policy changes

(Hood and Koopmans, 1953). The sources of uncertainty in such an analysis are ubiquitous (Saltelli

et al., 2020). For example, all models are misspecified, there are numerical approximation errors

in their implementation, and model parameters are uncertain. Therefore, a proper accounting of

uncertainty is a prerequisite for using computational models for decision-making in most disciplines

(National Research Council, 2012; SAPEA, 2019).

Our focus is on parametric uncertainty in structural econometric models that are estimated on ob-

served data. Economists often ignore parametric uncertainty and conduct an as-if analysis where the

point estimates serve as a stand-in for the true model parameters. We then continue to study the

implications of our models at the point estimates (Adda et al., 2017; Blundell et al., 2016; Eckstein

et al., 2019; Eisenhauer et al., 2015) and rank competing policy proposals based on the point predic-

tions only (Blundell and Shephard, 2012; Cunha et al., 2010; Gayle and Shephard, 2019; Todd and

Wolpin, 2006). In fact, in their handbook article, Keane et al. (2011) state that they are unaware of

any applied work that reported the distribution of policy predictions due to parametric uncertainty.

To the best of our knowledge, this statement remains true more than a decade later. Consequently,

economists run the risk of accepting fragile findings as facts, ignoring the trade-off between model

complexity and prediction uncertainty, and not framing policy advice as a decision problem under

uncertainty.

In this paper, we develop an approach that copes with parametric uncertainty and embeds model-

informed policy-making in a decision-theoretic framework. We follow Manski (2021)’s suggestion

and, instead of using the parameter estimates as-if they were true, incorporate uncertainty in the

analysis by treating the estimated confidence set as-if it is correct. We use the confidence set to

construct an uncertainty set that is anchored in empirical estimates, statistically meaningful, and

computationally tractable (Ben-Tal et al., 2013). Instead of just focusing on the point estimates, we

evaluate counterfactual policies based on all parametrizations within the uncertainty set.

We rely on statistical decision theory (Manski, 2013) to deal with the uncertainty in counterfac-

tual predictions. This approach promotes a well-reasoned and transparent policy process. Before a

decision, it clarifies trade-offs between choices (Gilboa et al., 2018). Afterward, decision-theoretic
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principles allow constituents to scrutinize the coherence of choices (Gilboa, 2020), ease the ex-post

justification (Berger et al., 2020), and facilitate the communication of uncertainty (Manski, 2019).

As an example of our generic approach, we analyze the seminal human capital investment model by

Keane and Wolpin (1997) as a well-known, empirically grounded, and computationally demanding

test case. We follow the authors and estimate the model on the National Longitudinal Survey of

Youth 1979 (NLSY79) (Bureau of Labor Statistics, 2019) using the original dataset and reproduce

all core results. We revisit their predictions for the impact of a tuition subsidy on completed years

of schooling. The economics of the model imply that the nonlinear mapping between the model

parameters and predictions is truncated at zero. We thus use the Confidence Set (CS) bootstrap

(Woutersen and Ham, 2019) to estimate the confidence set for the counterfactuals. We document

considerable uncertainty in the policy predictions and highlight the resulting policy recommendations

from different formal rules on decision-making under uncertainty.

Our work extends existing research exploring the sensitivity of implications and predictions to para-

metric uncertainty in macroeconomics and climate economics. For example, Harenberg et al. (2019)

study uncertainty propagation and sensitivity analysis for a standard real business cycle model. Cai

and Lontzek (2019) examine how uncertainties and risks in economic and climate systems affect the

social cost of carbon. However, neither of them estimates their model on data. Instead they rely

on expert judgments to inform the degree of parametric uncertainty. They do not investigate the

consequences of uncertainty for policy decisions in a decision-theoretic framework.

Our work complements a burgeoning literature on the sensitivity analysis of policy predictions in light

of model or moment misspecification. For example, Andrews et al. (2017) and Andrews et al. (2020)

treat the model specification as given and then analyze the sensitivity of the parameter estimates

to misspecification of the moments used for estimation. Christensen and Connault (2019) study

global sensitivity of the model predictions to misspecification of the distribution of unobservables.

Jørgensen (2021) provides a local measure for the sensitivity of counterfactuals to model parameters

that are fixed before the estimation of the model.1 This literature does not embed the counterfactual

predictions in a decision-thoretic setting.

We structure the remainder of this paper as follows. We first describe the decision-theoretic frame-

1See for other examples Armstrong and Kolesár (2021), Bonhomme and Weidner (2020), Bugni and Ura (2019), and
Mukhin (2018).
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work for making model-informed decisions under parametric uncertainty in Section 2 using an illus-

trative example. We then summarize the empirical setting of Keane and Wolpin (1997) in Section

3, before Section 4 presents our results before. We finish in Section 5 with a brief conclusion and

outlook.

2. Structural models for policy-making

We now outline the basic idea behind uncertainty propagation, provide more details on the current

practice to use the estimated parameters as a plug-in replacement for the truth, and explore its

limitations. We then discuss how to use the estimated confidence sets to construct uncertainty sets.

The use of uncertainty sets allows us to cope with uncertain policy predictions in a proper decision-

theoretic framework.

At a high level, a structural econometric model provides a mapping M(θ) between the l model

parameters θ ∈ Θ and a quantity y that is of interest to policy-makers.

Rl ⊃ Θ 3 θ 7→ M(θ) = y

A policy g ∈ G changes the mapping to Mg(θ) and produces a counterfactual yg.

Estimation of a baseline model – describing the status-quo – on observed data allows researchers

to learn about the true parameters. Frequentist estimation procedures such as maximum likelihood

estimation or the method of simulated moments produce a point estimate θ̂. However, uncertainty

about the true parameters remains.

Previewing our empirical analysis of Keane and Wolpin (1997), our M is provided by a dynamic

model of human capital accumulation, which we estimate on observed schooling and labor market

decisions using simulated maximum likelihood estimation. The policy g is the implementation of a

college tuition subsidy, and the counterfactual is the level of completed schooling in the population.

Example parameters that drive the economics of the model are time preferences of individuals, the

return to schooling, and the transferability of work experience across occupations.

We use an illustrative example throughout this section to highlight our key points. We consider

two policies g ∈ {1, 2} that result in two different mappings (M1,M2) of the same scalar θ to a

counterfactual yg. The point estimate θ̂ is determined by estimating a baseline model on an observed
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dataset. We denote the probability density function of its sampling distribution by fθ̂.

Under the first policy, the counterfactual is an increasing nonlinear function of θ. In the case of the

second policy, the relationship is decreasing and linear.

1 2 θ̂ 4 5

θ

10

20

30

40

50

60
M1(θ)

M2(θ)

Point estimate

Figure 1.: Model comparison

Notes: We parameterize the two models as y1 = exp θ and y2 = 29.08− 3 θ.

Figure 1 traces the counterfactual from both models over a range of the parameter. At the point

estimate, both models yield the same value for the counterfactual. For higher values, the first policy

is preferred, while the opposite is true for lower values. So, once we take uncertainty about the true

parameter into account, deciding which policy to adopt is not straightforward.

2.1. Uncertainty sets

Manski (2021) suggests acknowledging parametric uncertainty by working with estimated confidence

sets instead of point estimates. A confidence set Θ(α) ⊂ Θ covers the true parameters, from an

ex-ante point of view, with a predetermined coverage probability of (1 − α). Going forward, in-

stead of using the estimated parameter values as-if they were true, we analyze policy decisions using

the estimated confidence set for the parameters Θ̂(α) and the counterfactual Θ̂yg(α) as-if it is correct.

Based on the estimated confidence sets, we construct so called uncertainty sets for the parameters

U(α) and the prediction Uyg(α) by only considering parameterizations that we cannot reject based on

a hypothesis test with confidence level 1−α. This approach ensures the tractability of our decision-

theoretic analysis as the uncertainty set of the parameters is much smaller than the whole parameter

space of the model. We adopt this procedure from the literature on data-driven robust optimization
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in operations research (Ben-Tal et al., 2013; Bertsimas et al., 2018).

2.2. Statistical decision theory

In our setting, a policy-maker relies on a structural model with an uncertain parametrization to map

alternative policies to counterfactual predictions. In most cases, the preferred policy depends on the

model’s uncertain parameters, and we draw on statistical decision theory to organize the decision-

making process (Gilboa, 2009; Marinacci, 2015).

Returning to our example, we rank the two policies according to alternative statistical decision rules

using an uncertainty set derived from a confidence set with a 90% coverage probability. In what

follows, we postulate a linear utility function U(yg) describing the policy maker’s preferences for

simplicity.2

Figure 2 shows the implied sampling distribution of the predictions for the two alternative policies

and the corresponding uncertainty sets Uyg(0.1). The mapping M1 is highly nonlinear, while the

mapping M2 is linear. When evaluated at the point estimate, the counterfactual is the same under

both policies, so a policy-maker is indifferent. However, the spread of the uncertainty set differs

considerably.

y
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Uy1
(0.1)

0 y
2 ŷ1, ŷ2 30 40 50 60 70 80

yg

D
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ty
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Figure 2.: Comparing policy predictions

Decision theory proposes a variety of different rules for reasonable decisions in this setting. We ex-

2We assume that the sampling distribution of the point estimate is normal with a mean of three and a standard
deviation of three-fourth. We can derive the uncertainty sets directly and simply consider realizations of θ ∈
[1.76, 4.23].
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plore the following four: (1) as-if optimization, (2) maximin criterion, (3) minimax regret rule, and

(4) subjective Bayes.

As-if optimization describes the predominant practice. The estimation of the model produces point

estimates that serve as a plug-in for the true parameters. The decision maximizes the utility at the

point estimate. More formally,

g∗ = arg max
g∈G

U(Mg(θ̂)).

Given our example, an as-if policy-maker is indifferent between the two policies. Both result in the

same counterfactual at the point estimates as indicated by the dashed line in Figure 2.

The maximin criterion and minimax regret rule are two common alternatives favoring actions that

work uniformly well over all possible parameters in the uncertainty set. This approach departs from

as-if optimization, which only considers a policy’s performance at a single point in the uncertainty

set. The maximin decision (Wald, 1950; Gilboa and Schmeidler, 1989) is determined by computing

the minimum utility for each policy within the uncertainty set and choosing the one with the highest

worst-case outcome. Stated concisely,

g∗ = arg max
g∈G

min
θ∈U(α)

U(Mg(θ)).

In our example, and again returning to Figure 2, a maximin policy-maker prefers g2 as its worst-case

outcome within the uncertainty set y
2

is better than under the alternative policy g1.

The minimax regret rule (Niehans, 1948; Manski, 2004) computes the maximum regret for each

policy over the whole uncertainty set and chooses the policy that minimizes the maximum regret.

The regret of choosing a policy g for a given parameterization of the model is the difference in utility

between the maximum possible utility from adopting g̃ ∈ G and the actual utility received. The

decision maximizes:

g∗ = arg min
g∈G

max
θ∈U(α)

[
max
g̃∈G

U(Mg̃(θ))− U(Mg(θ))

]
︸ ︷︷ ︸

regret

.

Figure 3 compares our two policy examples over the uncertainty sets. A policy-maker adopting

policy g1 regrets his choice for small values of the model parameter, while the opposite is true for

larger values. The regret of each policy is maximized at the boundaries of the uncertainty set.
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Maximum regret is minimized when a policy-maker chooses g1. It corresponds to the difference in

the counterfactual at the lower boundary of the uncertainty set instead of the larger difference at its

upper bound. This outcome contradicts the maximin decision where policy g2 is preferred.

1 2 θ̂ 4 5

θ

M1(θ)

M2(θ)

U(0.1)

regret choosing g1

regret choosing g2

Figure 3.: Comparing policy regret

All decision rules presented so far focus on a single point in the uncertainty set as the policy’s rele-

vant performance measure. Bayesian approaches aggregate a policy’s performance over the complete

uncertainty set.

Maximization of the subjective expected utility (Savage, 1954) requires the policy-maker to place a

subjective probability distribution fθ over the parameters in the uncertainty set. Then a policy-maker

selects the alternative with the highest expected subjective utility. More formally,

g∗ = arg max
g∈G

∫
U(α)

U(Mg(θ)) dfθ.

Applying a uniform distribution to our example, a policy-maker chooses g1 as it performs well for

high values of θ and still reasonably well for low values.

3. Eckstein-Keane-Wolpin models

We now apply our framework to an Eckstein-Keane-Wolpin (EKW) model (Aguirregabiria and Mira,

2010) to investigate the prevalence and consequences of parametric uncertainty in an empirically

grounded and computationally demanding setting. EKW models are often used by labor economists

to learn about human capital investment and consumption-saving decisions and predict the impact

of proposed reforms to education policy and welfare programs (Keane et al., 2011; Low and Meghir,
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Decision rule
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Transition probability
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pt+1(st+1, at+1)

Receive

ut(st, at)

Receive

ut+1(st+1, at+1)

Figure 4.: Timing of events

2017; Blundell, 2017). We start by presenting the general structure of this class of models and

their solution approach. We then turn to the customized version used by Keane and Wolpin (1997)

to study the career decisions of young men. We outline their model’s basic setup, provide some

descriptive statistics of the empirical data used in our estimation, and then discuss the core findings.

3.1. Model structure

EKW models describe sequential decision-making under uncertainty (Gilboa, 2009; Machina and

Viscusi, 2014). At time t = 1, . . . , T each individual observes the state of their choice environment

st ∈ S and chooses an action at from the set of admissible actions A. The decision has two conse-

quences: an individual receives an immediate utility ut(st, at) and their environment evolves to a new

state st+1. The transition from st to st+1 is affected by the action but remains uncertain. Individuals

are forward-looking. Thus they do not simply choose the alternative with the highest immediate

utility. Instead, they take the future consequences of their current action into account.

A policy π = (dπ1 , . . . , d
π
T ) provides the individual with instructions for choosing an action in any

possible future state. It is a sequence of decision rules dπt that specify the action dπt (st) ∈ A at

a particular time t for any possible state st under π. The implementation of a policy generates a

sequence of utilities that depends on the objective transition probability distribution pt(st, at) for the

evolution of state st to st+1 induced by the model.

Figure 4 depicts the timing of events for two generic time periods. At the beginning of period t, an

individual fully learns about each alternative’s immediate utility, chooses one of them, and receives

its immediate utility. Then the state evolves from st to st+1 and the process is repeated in t+ 1.

Individuals make their decisions facing uncertainty about the future and seek to maximize their
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expected total discounted utilities over all decision periods given all available information. They

have rational expectations (Muth, 1961), so their subjective beliefs about the future agree with the

objective probabilities for all possible future events provided by the model. Immediate utilities are

separable between periods (Kahneman et al., 1997), and a discount factor δ parameterizes a taste

for immediate over future utilities (Samuelson, 1937).

Equation (1) provides the formal representation of the individual’s objective. Given an initial state

s1, they implement a policy π that maximizes the expected total discounted utilities over all decision

periods given the information available at the time.

max
π∈Π

Eπ
s1

[
T∑
t=1

δt−1ut(st, d
π
t (st))

]
(1)

EKW models are set up as a standard Markov decision process (MDP) (Puterman, 1994; White,

1993; Rust, 1994) that can be solved by a simple backward induction procedure. In the final period

T , there is no future to consider, and the optimal action is choosing the alternative with the highest

immediate utility in each state. With the decision rule for the final period, we can determine all

other optimal decisions recursively. We use our group’s open-source research code respy (Gabler

and Raabe, 2020) that allows for the flexible specification, simulation, and estimation of EKW

models. Detailed documentation of the software and its numerical components is available at http://

respy.readthedocs.io.

3.2. The career decisions of young men

Keane and Wolpin (1997) specialize the model above to explore the career decisions of young men

regarding their schooling, work, and occupational choices using the National Longitudinal Survey of

Youth 1979 (NLSY79) (Bureau of Labor Statistics, 2019) for the estimation of the model. We restrict

ourselves to a basic summary of their setup. More detailed documentation of the model specification

and the observed dataset is available in our Appendix.

Keane and Wolpin (1997) follow individuals over their working life from young adulthood at age 16

to retirement at age 65. The decision period t = 16, . . . , 65 is a school year. Figure 5 illustrates the

initial decision problem as individuals decide a ∈ A whether to work in a blue-collar or white-collar

occupation (a = 1, 2), to serve in the military (a = 3), to attend school (a = 4), or to stay at home

(a = 5).
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Figure 5.: Decision tree

Individuals are already heterogeneous when entering the model. They differ with respect to their

level of initial schooling h16 and have one of four different J = {1, . . . , 4} alternative-specific skill

endowment types e = (ej,a)J×A.

The immediate utility ua(·) of each alternative consists of a non-pecuniary utility ζa(·) and, at least

for the working alternatives, an additional wage component wa(·). Both depend on the level of human

capital as measured by their alternative-specific skill endowment e, years of completed schooling ht,

and occupation-specific work experience kt = (ka,t)a∈{1,2,3}. The immediate utilities are influenced

by last-period choices at−1 and alternative-specific productivity shocks εt = (εa,t)a∈A as well. Their

general form is given by:

ua(·) =

ζa(kt, ht, t, at−1) + wa(kt, ht, t, at−1, ej,a, εa,t) if a ∈ {1, 2, 3}

ζa(kt, ht, t, at−1, ej,a, εa,t) if a ∈ {4, 5}.

Work experience kt and years of completed schooling ht evolve deterministically. There is no un-

certainty about grade completion (Altonji, 1993) and no part-time enrollment. Schooling is defined

as time spent in school and not by formal credentials acquired. Once individuals reach a certain

amount of schooling, they acquire a degree.

ka,t+1 = ka,t + I[at = a] if a ∈ {1, 2, 3}

ht+1 = ht + I[at = 4]

The productivity shocks εt are uncorrelated across time and follow a multivariate normal distribu-

tion with mean 0 and covariance matrix Σ. Given the structure of the utility functions and the
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distribution of the shocks, the state at time t is st = {kt, ht, t, at−1, e, εt}.

Skill endowments e and initial schooling h16 are the only sources of persistent heterogeneity in the

model. All remaining differences in life-cycle decisions result from different transitory shocks εt over

time.

Theoretical and empirical research from specialized disciplines within economics informs the spec-

ification of each ua(·), and we discuss the exact functional form of the non-pecuniary utility from

schooling as an example in Equation (6). Further details on the specification of the utility functions

is available in our Appendix.

ζ4(st) = ej,4︸︷︷︸
type

+ βtc1 · I[ht ≥ 12] + βtc2 · I[ht ≥ 16]︸ ︷︷ ︸
tuition costs

+ γ4,4 · t+ γ4,5 · I[t < 18]︸ ︷︷ ︸
time trend

(2)

+ βrc1 · I[at−1 6= 4, ht < 12] + βrc2 · I[at−1 6= 4, ht ≥ 12]︸ ︷︷ ︸
re-enrollment cost

+ . . .+ ε4,t

There is a direct cost of attending school such as tuition for continuing education after high school

βtc1 and college βtc2 . The decision to leave school is reversible, but entails re-enrollment costs that

differ by schooling category (βrc1 , βrc2).

We analyze the original dataset used by Keane and Wolpin (1997). We only provide a brief de-

scription and relegate further details to our Appendix. The authors construct their sample based

on the NLSY79, a nationally representative sample of young men and women living in the United

States in 1979 and born between 1957 and 1964. Individuals were followed from 1979 onwards and

repeatedly interviewed about their schooling decisions and labor market experiences. Based on this

information, individuals are assigned to either working in one of the three occupations, attending

school, or simply staying at home.

Keane and Wolpin (1997) restrict attention to white males that turn 16 between 1977 and 1981 and

exploit the information collected between 1979 and 1987. Thus, individuals in the sample are all

between 16 and 26 years old. While the sample initially consists of 1,373 individuals at age 16, this

number drops to 256 at the age of 26 due to sample attrition and missing data. Overall, the final

sample consists of 12,359 person-period observations.

We briefly summarize the evolution of choices and wages over the sample period. Initially, roughly

13
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Figure 6.: Data overview

86% of individuals enroll in school, but this share steadily declines with age. Nevertheless, about 39%

obtain more than a high school degree and continue their schooling for more than twelve years. As

individuals leave school, most of them initially pursue a blue-collar occupation. But the relative share

of the white-collar occupation increases as individuals entering the labor market later have higher

levels of schooling. At age 26, about 48% work in a blue-collar occupation and 34% in a white-collar

occupation. The share of individuals in the military peaks around age 20 when it amounts to 8%.

At its maximum around age 18, approximately 20% of individuals stay at home.

Overall, average wages start at about $10,000 at age 16 but increase considerably up to about $25,000

at age 26. While wages in the blue-collar occupation are initially highest with about $10,286, wages

in the white-collar occupation and military start around $9,000. However, wages in the white-collar

occupation increase steeper over time and overtake blue-collar wages around age 21. At the end of

the observation period, wages in the white-collar occupation are about 50% higher than blue-collar

wages with $32,756 as opposed to only $20,739. Military wages remain lowest throughout.

We consider observations for i = 1, . . . , N individuals in each time period t = 1, . . . , Ti. For every

observation (i, t) in the data, we observe the action ait, some components ūit of the utility, and a

subset s̄it of the state sit. Therefore, from an economist’s point of view, we need to distinguish

between two types of state variables sit = {s̄it, e, εt}. At time t, the economist and individual both

observe s̄it while {e, εt} is only observed by the individual.

We use simulated maximum likelihood (Fisher, 1922; Manski and Lerman, 1977) estimation and

determine the 88 model parameters θ̂ that maximize the likelihood function L(θ | D). As we only
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observe a subset s̄t = {kt, ht, t, at−1} of the state, we can determine the probability pit(ait, ūit | s̄it,θ)

of individual i at time t in s̄it choosing ait and receiving ūit given parametric assumptions about the

distribution of εt. The objective function takes the following form:

θ̂ ≡ arg max
θ∈Θ

N∏
i=1

Ti∏
t=1

pit(ait, ūit | s̄it,θ)︸ ︷︷ ︸
L(θ|D)

.

Overall, our parameter estimates are in broad agreement with the results reported in the original

paper and the related literature. For example, individuals discount future utilities by 6% per year.

The returns to schooling differ by occupation. While wages in a white-collar occupation increase by

about 6% with each year of schooling, they only increase by 2% in the blue collar occupation. Skills

are transferable across occupations as both types of work experience increase wages in the blue and

white-collar occupation.

Figure 7 shows the overall agreement between the empirical data and a dataset simulated using

the estimated model parameters. We show average wages and the share of individuals choosing to

work in a blue-collar occupation over time. The results are based on a simulated sample of 10, 000

individuals. Additional model fit statistics are available in our Appendix.
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Figure 7.: Model fit

We follow the original authors and use the estimated model to conduct the ex-ante evaluation of

a $2, 000 tuition subsidy on educational attainment. We simulate a sample of 10, 000 individuals

using the point estimates and compare completed schooling to a sample of the same size but with

a reduction of β̂tc1 by $2, 000. The subsidy increases average final schooling by 0.65 years. Col-

lege graduation increases by 13 percentage points and high school graduation rates improve by 4

percentage points.
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3.3. Confidence set bootstrap

The construction of confidence sets for counterfactuals in many structural models poses two distinct

challenges. First, the computational burden of even a single estimation of the model is considerable.

This makes the application of a standard bootstrap approach (Efron, 1979) infeasible. Second, the

nonlinear mapping from the parameters of the model to the counterfactual predictions often has

kinks or is truncated. For example, in our case the predicted impact of a tuition subsidy is bounded

from below by zero. This violates the smoothness requirements of the delta method.

We use the Confidence Set (CS) bootstrap to construct the confidence set of the counterfactual.

The CS bootstrap was originally proposed in Rao (1973) but only recently formalized by Woutersen

and Ham (2019). Its application does not require repeated estimations of the model as it uses the

asymptotic normal distribution of the estimator for θ̂. Furthermore, its validity does not depend on

the differentiability of the prediction function.3

Algorithm 1 provides a concise description of the steps involved, where χ2
l (1 − α) is the quantile

function for probability 1− α of the chi-square distribution with l degrees of freedom.

Algorithm 1. . Confidence Set bootstrap

for m = 1, . . . ,M do

Draw θ̂m ∼ N (θ̂, Σ̂)

if (θ̂m − θ̂)′Σ̂−1(θ̂m − θ̂) ≤ χ2
l (1− α) then

Compute ŷg,m =Mg(θ̂m)

Add ŷg,m to sample Y = {ŷg,1, . . . , ŷg,m−1}
end if

end for

Set Θyg(α) = [min(Y ),max(Y )]

In a nutshell, we draw a large sample of M parameters from the estimated asymptotic normal dis-

tribution of our estimator with mean θ̂ and covariance matrix Σ̂, accept only those draws that are

elements of the confidence set of the model parameters, compute the counterfactual for all remaining

draws, and then calculate the confidence set for the counterfactual based on its lowest and highest

3See Reich and Judd (2020) for a critical assessment of confidence sets based on asymptotic arguments. They advocate
the use of likelihood-ratio confidence intervals instead and cast their computation as a constraint optimization
problem.

16



value.

The CS bootstrap poses a considerable computational challenge as in many applications, including

ours, a single prediction of a counterfactual takes several minutes. At the same time, the number

of parameter samples needs to be large to ensure that the minimum and maximum values for the

counterfactual prediction are reliable. However, the algorithm is amenable to parallelization using

modern high-performance computational resources as we can process each of the M parameter draws

independently.

Our uncertainty sets then take the following form:

U(α) ≡
{
θ ∈ Θ : (θ − θ̂)′Σ̂−1(θ − θ̂) ≤ χ2

l (1− α)
}

Uyg(α) ≡
{
Mg(θ) : (θ − θ̂)′Σ̂−1(θ − θ̂) ≤ χ2

l (1− α),θ ∈ Θ
}
.

4. Results

We now turn to the presentation of our results. Throughout, we focus on the impact of a $2, 000

tuition subsidy on completed schooling and use the 90% uncertainty set to measure the degree of

uncertainty. All our results potentially depend on the size of the uncertainty set. In practice, policy-

makers choose the uncertainty set’s size in line with their underlying preferences - the more protection

against unfavorable outcomes is desired, the larger the uncertainty set.4

All results are based on 30, 000 draws from the asymptotic normal distribution of our parameter

estimates. We follow Keane and Wolpin (1997) and start by analyzing the prediction for a general

subsidy. Then we turn to the situation where we use endowment types for policy targeting. We

postulate a linear utility function for the policy-maker throughout.

4.1. General subsidy

Figure 8 explores the impact prediction for a general tuition subsidy. We show the point prediction,

its sampling distribution, and the uncertainty set. At the point estimate, average schooling increases

by 0.65 years. However, there is considerable uncertainty about the prediction as the uncertainty set

ranges from 0.15 to 1.10 years.

4In a different setting, Blesch and Eisenhauer (2021) conduct an ex-ante performance evaluation of the statistical
decision functions over the whole parameter space (Wald, 1950; Manski, 2021).
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Figure 8.: General subsidy

In Figure 9, we trace out the effect of the discount rate δ on the subsidy’s impact over the uncertainty

set while keeping all other parameters at their point estimate. Initially, as δ increases, so does the

policy’s impact as individuals value the long-term benefits from increasing their level of schooling

more and more. However, for high levels of the discount factor, the policy’s impact starts to decrease

as most individuals already complete a high school or college degree even without the subsidy.
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Figure 9.: Time preference

4.2. Targeted subsidy

So far, we restricted the analysis to a general subsidy available to the whole population and the

average predicted impact. We now move to the setting where a policy-maker can target individuals

by their type of initial endowment. The importance of early endowment heterogeneity in shaping

economic outcomes over the life-cycle is the most important finding from Keane and Wolpin (1997).

It served as motivation for a host of subsequent research on the determinants of skill heterogeneity
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among adolescents (Todd and Wolpin, 2007; Erosa et al., 2010; Caucutt and Lochner, 2020).

To ease the exposition, we initially focus our discussion of results on Type 1 and Type 3 individuals.

We then later rank policies targeting either of the four types based on the different decision-theoretic

criteria. Additional results are available in our Appendix.

Figure 10 confirms that life-cycle choices differ considerably by initial endowment type. On the left,

we show the number of periods the two types spend on average in each of the five alternatives. Type

1 spends more than six years in education even after entering the model. Type 3 only adds another

two years. This difference translates into very different labor market experiences. While Type 1

works for about 35 years in a white-collar occupation, Type 3 switches more frequently and spends

an equal number of 22 years in a white and a blue-collar occupation. Both types only spend a short

time at home.
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Figure 10.: Type heterogeneity

On the right, we show the distribution of final schooling for the two types. Average schooling is

considerably higher for Type 1 with more than 16 years, compared to about 12 years for Type 3.

Nearly all Type 1 individuals enroll in college, and most do end up with a degree.

Figure 11 provides a visualization of our core results for a targeted subsidy. At the point estimates, the

predicted impact is considerably lower for Type 1 than Type 3. However, the prediction uncertainty

is much larger for Type 3 compared to Type 1. The uncertainty set for Type 3 ranges all the way

from 0 to 1.2 years, while the prediction for Type 1 is between 0.18 and 0.75.
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Figure 11.: Targeted subsidy

This heterogeneity in impact and prediction uncertainty follows directly from the underlying eco-

nomics of the model. Type 1 is already much more likely to have a college degree before the subsidy,

and thus, the predicted impact is smaller. At the same time, Type 1 individuals affected by the

subsidy are already pursuing some college and thus directly benefit from the subsidy. Type 3 is at

the lower end of the schooling distribution. A tuition subsidy can considerably increase their level

of schooling, but whether the subsidy succeeds in doing so is uncertain.

We now consider the policy option to target Type 2 and Type 4 as well. Their point predictions

are actually highest with an additional 0.81 years on average for Type 2 and 0.75 years for Type 4.

However, both predictions are fraught with uncertainty. For Type 2 the uncertainty set ranges from

0.17 to 1.3, while for Type 4 it starts at zero and spans all the way to 1.18.

Figure 12 shows the policy alternative’s ranking by the decision-theoretic criteria we discussed in

Section 2.2. Ranking alternatives using as-if optimization is straightforward. A policy targeting

Type 2 is the most preferred alternative, while a focus on Type 1 is the least attractive. However,

once we take the uncertainty in the predictions into account, a more nuanced picture emerges.

Moving from as-if optimization to a subjective Bayes criterion using a uniform distribution over the

uncertainty set does not change the ordering. However, once a decision-maker is concerned with

performance across the whole range of values in the uncertainty set – we move to the minimax regret

or maximin criterion – a policy targeting Type 1 becomes more and more attractive despite its low

point prediction because its worst-case utility is highest.
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In general, framing policy advice as a decision problem under uncertainty shows that there are many

different ways of making reasonable decisions. Different criteria result in different policy rankings.

Not only that, the ranking of policies for a given criteria potentially depends on the choice of α. We

think of α as part of a policy-maker’s decision problem: The more weight the policy-maker places

on worst-case events, the smaller the appropriate value for α. A policy-maker should decide on their

preferred decision rule and perform a sensitivity analysis around the selected α values. This approach

allows learning about yet another layer of uncertainty concerning the preferred policy choice.

5. Conclusion

We develop a generic approach that deals with parametric uncertainty when using models to inform

policy-making. We propose a decision-theoretic analysis of even computationally demanding struc-

tural models based on uncertainty sets. We construct the uncertainty sets from empirical estimates

and ensure their computational tractability using the Confidence Set bootstrap. We revisit the semi-

nal work by Keane and Wolpin (1997) to document the empirical relevance of prediction uncertainty

and showcase our analysis. Focusing on their ex-ante evaluation of a tuition subsidy, we report con-

siderable uncertainty in its impact on completed schooling. We show how a policy-maker’s preferred

policy depends on the choice of alternative formal rules for decision-making under uncertainty.

In ongoing work, we pursue three avenues for further improvements. First, we link our work with

the literature on inference under (local) model misspecification to refine the construction of our

uncertainty sets. For example, Armstrong and Kolesár (2021) and Bonhomme and Weidner (2020)

propose different methods for taking misspecification into account when constructing confidence sets.

Second, we incorporate ideas from the literature on global sensitivity analysis (Razavi et al., 2021)
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to identify the parameters most responsible for the uncertainty in predictions. The attribution of

importance based on Shapely values, familiar to economists from game theory, appears promising

(Shapley, 1953; Owen, 2014). Third, we address our analysis’s computational burden using surrogate

modeling (Forrester et al., 2008). A surrogate model emulates the full model’s behavior at a negligible

cost per run and allows us to determine prediction uncertainty using a nonparametric bootstrap

procedure.

References

Adda, J., Dustmann, C., and Stevens, K. (2017). The career costs of children. Journal of Political

Economy, 125(2):293–337.

Aguirregabiria, V. and Mira, P. (2010). Dynamic discrete choice structural models: A survey. Journal

of Econometrics, 156(1):38–67.

Altonji, J. (1993). The demand for and return to education when education outcomes are uncertain.

Journal of Labor Economics, 11(1):48–83.

Andrews, I., Gentzkow, M., and Shapiro, J. M. (2017). Measuring the sensitivity of parameter

estimates to estimation moments. The Quarterly Journal of Economics, 132(4):1553–1592.

Andrews, I., Gentzkow, M., and Shapiro, J. M. (2020). On the informativeness of descriptive statistics

for structural estimates. Econometrica, 88(6):2231–2258.

Armstrong, T. B. and Kolesár, M. (2021). Sensitivity analysis using approximate moment condition

models. Quantitative Economics, 12(1):77–108.

Ben-Tal, A., den Hertog, D., De Waegenaere, A., Melenberg, B., and Rennen, G. (2013). Ro-

bust solutions of optimization problems affected by uncertain probabilities. Management Science,

59(2):341–357.

Berger, L., Berger, N., Bosetti, V., Gilboa, I., Hansen, L. P., Jarvis, C., Marinacci, M., and Smith,

R. D. (2020). Rational policymaking during a pandemic. Proceedings of the National Academy of

Sciences, 118(4).

Bertsimas, D., Gupta, V., and Kallus, N. (2018). Data-driven robust optimization. Mathematical

Programming, 167(2):235–292.

Blesch, M. and Eisenhauer, P. (2021). Robust investments under risk and ambiguity. under revision.

22



Blundell, R. (2017). What have we learned from structural models? American Economic Review,

107(5):287–92.

Blundell, R., Costa Dias, M., Meghir, C., and Shaw, J. (2016). Female labor supply, human capital,

and welfare reform. Econometrica, 84(5):1705–1753.

Blundell, R. and Shephard, A. (2012). Employment, hours of work and the optimal taxation of

low-income families. The Review of Economic Studies, 79(2):481–510.

Bonhomme, S. and Weidner, M. (2020). Minimizing sensitivity to model misspecification. arXiv

Working Paper.

Bugni, F. and Ura, T. (2019). Inference in dynamic discrete choice problems under local misspecifi-

cation. Quantitative Economics, 10(1):67–103.

Bureau of Labor Statistics (2019). National Longitudinal Survey of Youth 1979 cohort, 1979-2016

(rounds 1-27). Center for Human Resource Research, Ohio State University, Columbus, OH.

Cai, Y. and Lontzek, T. S. (2019). The social cost of carbon with economic and climate risks. Journal

of Political Economy, 127(6):2684–2734.

Caucutt, E. M. and Lochner, L. (2020). Early and late human capital investments, borrowing

constraints, and the family. Journal of Political Economy, 128(3):1065–1147.

Christensen, T. and Connault, B. (2019). Counterfactual sensitivity and robustness. arXiv Working

Paper.

Cunha, F., Heckman, J. J., and Schennach, S. (2010). Estimating the technology of cognitive and

noncognitive skill formation. Econometrica, 78(3):883–931.

Eckstein, Z., Keane, M., and Lifshitz, O. (2019). Career and family decisions: Cohorts born 1935-

1975. Econometrica, 87(1):217–253.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics,

7(1):1–26.

Eisenhauer, P., Heckman, J. J., and Mosso, S. (2015). Estimation of dynamic discrete choice models

by maximum likelihood and the simulated method of moments. International Economic Review,

56(2):331–357.

Erosa, A., Koreshkova, T., and Restuccia, D. (2010). How important is human capital? A quantita-

tive theory assessment of world income inequality. The Review of Economic Studies, 77(4):1421–

1449.

23



Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical Trans-

actions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical

Character, 222(594-604):309–368.

Forrester, D. A. I. J., Sobester, D. A., and Keane, P. A. J. (2008). Engineering design via surrogate

modelling: A practical guide. John Wiley & Sons, Chichester, England.

Gabler, J. and Raabe, T. (2020). respy - a framework for the simulation and estimation of Eckstein-

Keane-Wolpin models.

Gayle, G.-L. and Shephard, A. (2019). Optimal taxation, marriage, home production, and family

labor supply. Econometrica, 87(1):291–326.

Gilboa, I. (2009). Theory of decision under uncertainty. Cambridge University Press, New York City,

NY.

Gilboa, I. (2020). What were you thinking? Revealed preference theory as coherence test. Working

Paper.

Gilboa, I., Rouziou, M., and Sibony, O. (2018). Decision theory made relevant: Between the software

and the shrink. Research in Economics, 72(2):240–250.

Gilboa, I. and Schmeidler, D. (1989). Maxmin expected utility with non-unique prior. Journal of

Mathematical Economics, 18(2):141–153.

Harenberg, D., Marelli, S., Sudret, B., and Winschel, V. (2019). Uncertainty quantification and

global sensitivity analysis for economic models. Quantitative Economics, 10(1):1–41.

Hood, W. and Koopmans, T. (1953). Studies in econometric method. John Wiley & Sons, New York

City, NY.

Hungerford, T. and Solon, G. (1987). Sheepskin effects in the returns to education. Review of

Economics and Statistics, 69(1):175–177.

Jaeger, D. A. and Page, M. E. (1996). Degrees matter: New evidence on sheepskin effects in the

returns to education. Review of Economics and Statistics, 78(4):733–740.

Jørgensen, T. H. (2021). Sensitivity to calibrated paramters. Review of Economics and Statistics,

forthcoming.

Kahneman, D., Wakker, P. P., and Sarin, R. (1997). Back to Bentham? Explorations of experienced

utility. The Quarterly Journal of Economics, 112(2):375–406.

24



Keane, M. P., Todd, P. E., and Wolpin, K. I. (2011). The structural estimation of behavioral models:

Discrete choice dynamic programming methods and applications. In Ashenfelter, O. and Card, D.,

editors, Handbook of Labor Economics, pages 331–461. Elsevier Science, Amsterdam, Netherlands.

Keane, M. P. and Wolpin, K. I. (1997). The career decisions of young men. Journal of Political

Economy, 105(3):473–522.

Low, H. and Meghir, C. (2017). The use of structural models in econometrics. Journal of Economic

Perspectives, 31(2):33–58.

Machina, M. J. and Viscusi, K. (2014). Handbook of the economics of risk and uncertainty. North-

Holland Publishing Company, Amsterdam, Netherlands.

Manski, C. F. (2004). Statistical treatment rules for heterogeneous populations. Econometrica,

72(4):1221–1246.

Manski, C. F. (2013). Public policy in an uncertain world: Analysis and decisions. Harvard University

Press, Cambridge, MA.

Manski, C. F. (2019). Communicating uncertainty in policy analysis. Proceedings of the National

Academy of Sciences, 116(16):7634–7641.

Manski, C. F. (2021). Econometrics for decision making: Building foundations sketched by Haavelmo

and Wald. arxiv Working Paper, National Bureau of Economic Research.

Manski, C. F. and Lerman, S. R. (1977). The estimation of choice probabilities from choice based

samples. Econometrica, 45(8):1977–1988.

Marinacci, M. (2015). Model uncertainty. Journal of the European Economic Association, 13(6):1022–

1100.

Mincer, J. (1974). Schooling, experience and earnings. National Bureau of Economic Research, New

York City, NY.

Mukhin, Y. (2018). Sensitivity of regular estimators. arXiv Working Paper.

Muth, J. F. (1961). Rational expectations and the theory of price movements. Econometrica,

29(3):315–335.

National Research Council (2012). Assessing the reliability of complex models: Mathematical and

statistical foundations of verification, validation, and uncertainty quantification. The National

Academies Press, Washington, DC.

25



Niehans (1948). Zur Preisbildung bei ungewissen Erwartungen. Swiss Journal of Economics and

Statistics, 84(5):433–456.

Owen, A. B. (2014). Sobol’ indices and shapley value. Journal on Uncertainty Quantification,

2(1):245–251.

Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic programming. John

Wiley & Sons, New York City, NY.

Rao, C. R. (1973). Linear statistical inference and its applications. John Wiley & Sons, New York

City, NY.

Razavi, S., Jakeman, A., Saltelli, A., Prieur, C., Iooss, B., Borgonovo, E., Plischke, E., Piano, S. L.,

Iwanaga, T., Becker, W., et al. (2021). The future of sensitivity analysis: An essential discipline

for systems modeling and policy support. Environmental Modeling & Software, 137:104954.

Reich, G. and Judd, K. L. (2020). Efficient likelihood ratio confidence intervals using constrained

optimization. SSRN Working Paper.

Rust, J. (1994). Structural estimation of Markov decision processes. In Engle, R. and McFadden,

D., editors, Handbook of Econometrics, pages 3081–3143. North-Holland Publishing Company,

Amsterdam, Netherlands.

Saltelli, A., Bammer, G., Bruno, I., Charters, E., Di Fiore, M., Didier, E., Espeland, W. N., Kay, J.,

Piano, S. L., Mayo, D., et al. (2020). Five ways to ensure that models serve society: A manifesto.

Nature, 582:482–484.

Samuelson, P. A. (1937). A note on measurement of utility. Review of Economic Studies, 4(2):155–

161.

SAPEA (2019). Making sense of science for policy under conditions of complexity and uncertainty.

Savage, L. J. (1954). The foundations of statistics. John Wiley & Sons, New York City, NY.

Shapley, L. S. (1953). A value for n-person games. Princeton University Press, Princeton, NJ.

Todd, P. E. and Wolpin, K. I. (2006). Assessing the impact of a school subsidy program in Mexico:

Using a social experiment to validate a dynamic behavioral model of child schooling and fertility.

American Economic Review, 96(5):1384–1417.

Todd, P. E. and Wolpin, K. I. (2007). The production of cognitive achievement in children: Home,

school and racial test score gaps. Journal of Human Capital, 1(1):91–136.

26



Wald, A. (1950). Statistical decision functions. John Wiley & Sons, New York City, NY.

White, D. J. (1993). Markov decision processes. John Wiley & Sons, New York City, NY.

Wolpin, K. I. (2013). The limits to inference without theory. MIT University Press, Cambridge, MA.

Woutersen, T. and Ham, J. (2019). Confidence sets for continuous and discontinuous functions of

parameters. SSRN Working Paper.

27



A. Appendix

Our Appendix contains details on our computational implementation, information about the estima-

tion dataset, and additional results.

A.1. Computation

We use the same computational implementation as in Keane and Wolpin (1997). We outline the

immediate utility functions for each of the five alternatives. We first focus on their common overall

structure and then present their parameterization. Throughout we provide the economic motivation

for their specification.

We follow individuals over their working life from young adulthood at age 16 to retirement at age 65.

The decision period t = 16, . . . , 65 is a school year, and individuals decide a ∈ A whether to work in

a blue-collar or white-collar occupation (a = 1, 2), to serve in the military (a = 3), to attend school

(a = 4), or to stay at home (a = 5).

Individuals are initially heterogeneous. They differ with respect to their initial level of completed

schooling h16 and have one of four different J = {1, . . . , 4} alternative-specific skill endowments

e = (ej,a)J×A.

The immediate utility ua(·) of each alternative consists of a non-pecuniary utility ζa(·) and, at least

for the working alternatives, an additional wage component wa(·). Both depend on the level of

human capital as measured by their occupation-specific work experience kt = (ka,t)a∈{1,2,3}, years of

completed schooling ht, and alternative-specific skill endowment e. The immediate utility functions

are influenced by last-period choices at−1 and alternative-specific productivity shocks εt = (εa,t)a∈A

as well. Their general form is given by:

ua(·) =

ζa(kt, ht, t, at−1) + wa(kt, ht, t, at−1, ej,a, εa,t) if a ∈ {1, 2, 3}

ζa(kt, ht, t, at−1, ej,a, εa,t) if a ∈ {4, 5}.

Work experience kt and years of completed schooling ht evolve deterministically:

ka,t+1 = ka,t + I[at = a] if a ∈ {1, 2, 3}

ht+1 = ht + I[at = 4].

The productivity shocks are uncorrelated across time and follow a multivariate normal distribution

A-1



with mean 0 and covariance matrix Σ. Given the structure of the utility functions and the distribu-

tion of the shocks, the state at time t is st = {kt, ht, t, at−1, e, εt}.

Empirical and theoretical research from specialized disciplines within economics informs the exact

specification of ua(·). We now discuss each of its components in detail.

Non-pecuniary utility

We present the parameterization of the non-pecuniary utility for all five alternatives.

Blue-collar Equation (3) shows the parameterization of the non-pecuniary utility from working in

a blue-collar occupation:

ζ1(kt, ht, at−1) = α1 + c1,1 · I[at−1 6= 1] + c1,2 · I[k1,t = 0] (3)

+ ϑ1 · I[ht ≥ 12] + ϑ2 · I[ht ≥ 16] + ϑ3 · I[k3,t = 1].

A constant α1 captures the net monetary-equivalent of on the job amenities. The non-pecuniary

utility includes mobility and search costs c1,1, which are higher for individuals who never worked in

a blue-collar occupation before c1,2. The non-pecuniary utilities capture returns from a high school

ϑ1 and a college ϑ2 degree. Additionally, there is a detrimental effect of leaving the military early

after one year ϑ3.

White-collar The non-pecuniary utility from working in a white-collar occupation is specified anal-

ogously. Equation (4) shows its parameterization:

ζ2(kt, ht, at−1) = α2 + c2,1 · I[at−1 6= 2] + c2,2 · I[k2,t = 0] (4)

+ ϑ1 · I[ht ≥ 12] + ϑ2 · I[ht ≥ 16] + ϑ3 · I[k3,t = 1].

Military Equation (5) shows the parameterization of the non-pecuniary utility from working in the

military:

ζ3(k3.t, ht) = c3,2 · I[k3,t = 0] + ϑ1 · I[ht ≥ 12] + ϑ2 · I[ht ≥ 16]. (5)

Search costs c3,1 = 0 are absent but there is a mobility cost if an individual has never served in the

military before c3,2. Individuals still experience a non-pecuniary utility from finishing high-school ϑ1

and college ϑ2.
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School Equation (6) shows the parameterization of the non-pecuniary utility from schooling:

ζ4(k3,t, ht, t, at−1, ej,4, ε4,t) = ej,4 + βtc1 · I[ht ≥ 12] + βtc2 · I[ht ≥ 16] (6)

+ βrc1 · I[at−1 6= 4, ht < 12]

+ βrc2 · I[at−1 6= 4, ht ≥ 12] + γ4,4 · t

+ γ4,5 · I[t < 18] + ϑ1 · I[ht ≥ 12]

+ ϑ2 · I[ht ≥ 16] + ϑ3 · I[k3,t = 1] + ε4,t.

There is a direct cost of attending school such as tuition for continuing education after high school

βtc1 and college βtc2 . The decision to leave school is reversible, but entails adjustment costs that

differ by schooling category (βrc1 , βrc2). Schooling is defined as time spent in school and not by

formal credentials acquired. Once individuals reach a certain amount of schooling, they acquire a

degree. There is no uncertainty about grade completion (Altonji, 1993) and no part-time enrollment.

Individuals value the completion of high-school and graduate school (ϑ1, ϑ2).

Home Equation (7) shows the parameterization of the non-pecuniary utility from staying at home:

ζ5(k3,t, ht, t, ej,5, ε5,1) = ej,5 + γ5,4 · I[18 ≤ t ≤ 20] + γ5,5 · I[t ≥ 21] (7)

+ ϑ1 · I[ht ≥ 12] + ϑ2 · I[ht ≥ 16]

+ ϑ3 · I[k3,t = 1] + ε5,t.

Staying at home as a young adult γ5,4 is less stigmatic as doing so while already being an adult

γ5,5. Additionally, possessing a degree (ϑ1, ϑ2) or leaving the military prematurely ϑ3 influences the

immediate utility.

Wage component

The wage component wa(·) for the working alternatives is given by the product of the market-

equilibrium rental price ra and an occupation-specific skill level xa(·). The latter is determined by

the overall level of human capital:

wa(·) = ra xa(·).

This specification leads to a standard logarithmic wage equation in which the constant term is the

skill rental price ln(ra) and wages follow a log-normal distribution.
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The occupation-specific skill level xa(·) is determined by a skill production function, which includes

a deterministic component Γa(·) and a multiplicative stochastic productivity shock εa,t:

xa(kt, ht, t, at−1, ej,a, εa,t) = exp
(
Γa(kt, ht, t, at−1, ej,a) · εa,t

)
.

Blue-collar Equation (8) shows the parameterization of the deterministic component of the skill

production function:

Γ1(kt, ht, t, at−1, ej,1) = ej,1 + β1,1 · ht + β1,2 · I[ht ≥ 12] (8)

+ β1,3 · I[ht ≥ 16] + γ1,1 · k1,t + γ1,2 · (k1,t)
2

+ γ1,3 · I[k1,t > 0] + γ1,4 · t+ γ1,5 · I[t < 18]

+ γ1,6 · I[at−1 = 1] + γ1,7 · k2,t + γ1,8 · k3,t.

There are several notable features. The first part of the skill production function is motivated

by Mincer (1974) and hence linear in years of completed schooling β1,1, quadratic in experience

(γ1,1, γ1,2), and separable between the two of them. There are so-called sheep-skin effects (Hungerford

and Solon, 1987; Jaeger and Page, 1996) associated with completing a high school β1,2 and graduate

β1,3 education that capture the impact of completing a degree beyond just the associated years of

schooling. Also, there is a first-year blue-collar experience effect γ1,3 while skills depreciate when not

employed in a blue-collar occupation in the preceding period γ1,6. Other work experience (γ1,7, γ1,8)

is transferable.

White-collar The wage component from working in a white-collar occupation is specified analo-

gously. Equation (9) shows the parameterization of the deterministic component of the skill produc-

tion function:

Γ2(kt, ht, t, at−1, ej,2) = ej,2 + β2,1 · ht + β2,2 · I[ht ≥ 12] (9)

+ β2,3 · I[ht ≥ 16] + γ2,1 · k2,t + γ2,2 · (k2,t)
2

+ γ2,3 · I[k2,t > 0] + γ2,4 · t+ γ2,5 · I[t < 18]

+ γ2,6 · I[at−1 = 2] + γ2,7 · k1,t + γ2,8 · k3,t.
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Military Equation (10) shows the parameterization of the deterministic component of the skill

production function:

Γ3(k3,t, ht, t, ej,3) = ej,3 + β3,1 · ht (10)

+ γ3,1 · k3,t + γ3,2 · (k3,t)
2 + γ3,3 · I[k3,t > 0]

+ γ3,4 · t+ γ3,5 · I[t < 18].

Contrary to the civilian sector there are no sheep-skin effects from graduation (β3,2 = β3,3 = 0). The

previous occupational choice has no influence (γ3,6 = 0) and any experience other than military is

non-transferable (γ3,7 = γ3,8 = 0).

Remark 1 Our parameterization for the immediate utility of serving in the military differs from

Keane and Wolpin (1997) as we remain unsure about their exact specification. The authors state in

Footnote 31 (p. 498) that the constant for the non-pecuniary utility α3,t depends on age. However, we

are unable to determine the precise nature of the relationship. Equation (C3) (p. 521) also indicates

no productivity shock εa,t in the wage component. Table 7 (p. 500) reports such estimates.

A.2. Data

We use the same data as in Keane and Wolpin (1997). They construct their sample based on the

National Longitudinal Survey of Youth 1979 (NLSY79) (Bureau of Labor Statistics, 2019). The

NLSY79 is a nationally representative sample of young men and women living in the United States

in 1979 and born between 1957 and 1964. Individuals were followed from 1979 onwards and re-

peatedly interviewed about their educational decisions and labor market experiences. Based on this

information, individuals are assigned to either working in one of the three occupations, attending

school, or simply staying at home. The decision period is the school year. The sample is restricted

to white males that turn 16 between 1977 and 1981 and uses information collected between 1979 and

1987. Thus individuals in the sample are all between 16 and 26 years old.

Figure 13 shows the sample size by age. While the sample initially consists of 1,373 individuals at

age 16, this number drops to 256 at the age of 26 due to sample attrition, missing data, and the

short observation period. Overall, the final sample consists of 12,359 person-period observations.
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Figure 13.: Sample size

Figure 14 shows the distribution of initial schooling among individuals when entering the model. The

large majority of individuals enter the model with ten years of schooling, while about a quarter of

individuals has less than ten years of schooling. About 7.5% of individuals already attended school

for 11 years.
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Figure 14.: Initial schooling

Figure 15 shows heterogeneity of choices by the level of initial schooling. Individuals who enter the

model with only seven years of schooling spend another 0.65 years in school after age 16. Conse-

quently, they spend around four years at home and, if they are working, then do so in a blue-collar

occupation. When starting with ten years of schooling, then individuals add roughly another three

years while in the model. This increase is about half a year more than individuals that start with

eleven years.
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Figure 15.: Average choices by initial schooling

Figure 16 documents strong persistence in choices over time. For example, among those that work

in a white-collar occupation in t 67% work in the same occupation in t + 1 and 20% switch to a

blue-collar occupation.
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Figure 16.: Transition matrix

A.3. Results

Figure 17 shows further comparisons between the simulated and empirical data. All results are based

on 10, 000 individuals using the estimated model.
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Figure 17.: Model fit

Figure 18 provides the point prediction, its sampling distribution, and the estimated confidence set

for the impact of the tuition subsidy for all types. All results are based on 30, 000 draws from the

asymptotic normal distribution of our parameter estimates.
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Figure 18.: Targeted subsidy for all types

Figure 19 shows the impact of the tuition subsidy at the upper δH and lower δL bound of the

estimated confidence set for δ. The results are based on simulated samples of 10, 000 individuals for

both scenarios.
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Figure 19.: Policy impact and time preference
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