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Abstract

The modern Condorcet jury theorem states that under weak conditions,

when voters have common interests, elections will aggregate information when

the population is large, in any equilibrium. Here, we study the performance of

large elections with population uncertainty. We find that the modern Condorcet

jury theorem holds if and only if the expected number of voters is independent

of the state. If the expected number of voters depends on the state, then

additional equilibria exist in which information is not aggregated. The main

driving force is that, everything else equal, voters are more likely to be pivotal

if the population is small.

Elections are said to be effective in aggregating information that is dispersed

among citizens, for example, about uncertainty regarding future economic prospects,

costs and benefits of a public good, or the political ramifications of a trade deal. This

belief has been justified by the so-called Condorcet Jury theorem (see Ladha (1992)),

which asserts that large electorates choose correct outcomes, and in its modern form

by Austen-Smith and Banks (1996), Feddersen and Pesendorfer (1997, 1998), Wit

(1998), Duggan and Martinelli (2001), and others. Precisely, the modern Condorcet

jury theorem states that under weak conditions, in a large voting game with common
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values, all responsive and symmetric Nash equilibria aggregate information. The

Condorcet jury theorem is one motivation for using elections for making collective

choices. In its modern form, it provides “a rational choice foundation for the claim

that majorities invariably ‘do better’than individuals”(at least, for large electorates);

see Austen-Smith and Banks (1996).

Most of these earlier contributions assume that the number of voters is determin-

istic and known. Myerson (1998a) observed that the size of the electorate is often un-

certain. Importantly, this uncertainty may not be independent of the underlying state

of the world. Turnout is affected by many factors: For example, the (opportunity)

cost of participation may depend on the perceived economic prospects, something we

formalize in an extension in this paper. Similarly, the awareness of elections may de-

pend on the competency or the motivation of the current offi ce holders because of its

effect on news coverage and general political engagement. Finally, election turnouts

are often subject to manipulation by interested parties who may choose to influence

turnout strategically and differently across states by facilitating or obstructing voter

participation; see Ekmekci and Lauermann (2020). Many of these factors naturally

correlate with the relevant state, and it would be an extraordinary conincidence for

all the many factors determining turnout to exactly equalize across states.

Here, we abstract from these particular sources of state-dependent participation

and study whether the modern Condorcet Jury Theorem is robust to such population

uncertainty. To do so, we use the model by Myerson (1998a): Voters have to choose

among two alternatives (two policies). They share common values that depend on an

unknown, binary state of nature. The number of voters is Poisson distributed and

the mean of the distribution may depend on the state. Each voter observes a private,

conditionally independent signal.

To start, note that any asymmetry in the expected number of voters itself contains

additional information about the state of the world, hence, there is one more source

of information– in addition to the private signals of the voters– that the electorate

could use to aggregate information. However, as we argue below, even though there

is more information that could be used, large electorates may fail to aggregate any

information, that is, the modern Condorcet Jury Theorem is not robust to population

uncertainty.

Our first theorem restates the result from Myerson (1998a): If voters have noisy

but informative signals about the state of the world, then large electorates in which the

2



population size is state dependent admit at least one Nash equilibrium that aggregates

information, i.e., that chooses the correct outcome with a probability close to one.

So, one part of the Condorcet Jury theorem survives: Large electorates are able to

aggregate information.

Our main theorem shows, however, that the second part of the Condorcet Jury

theorem fails: there are plausible equilibria that fail to aggregate information when

the population is state dependent. In such equilibria, the majority of voters vote as if

the state is the one in which there are fewer voters. Therefore, the policy wins that is

preferred in the state in which there are fewer voters. Such equilibria are responsive,

and when suffi ciently informative signals are possible, these equilibria are stable.

Thus, our main finding is that the modern Condorcet Jury theorem holds with

population uncertainty if and only if this uncertainty is independent from the state.

Otherwise, if the population is statistically state dependent, additional responsive

equilibria exist that fail to aggregate information.

The key force that helps sustain such equilibria is a “participation curse”. A
vote is more likely to change the outcome of the election, i.e., to be pivotal, when

there are fewer voters, all else being equal. Therefore, a majority of voters– but not

all voters– vote as if the state is the one with fewer voters.

We then explore whether strategic abstention can help eliminate such “bad”equi-

libria. Krishna and Morgan (2012) showed that voluntary voting improves on com-

pulsory voting and induces sincere voting outcomes when there are binary signals. In

Feddersen and Pesendorfer (1997), abstention allows the uninformed players to par-

ticipate in a rate that cancels out the effect of partisans who cast their votes in one

way independently of their signals. Hence, one may hope strategic abstention to help

the electorate “undo” the asymmetry in the population size induced by exogenous

factors. However, we show that allowing abstention does not eliminate responsive

equilibria that fail to aggregate information.

We also show that the additional equilibria that fail to aggregate information can

be stable. Finally, we provide an example where state-dependent turnout endoge-

nously arises by the participation decisions of the voters due to cost distributions

that depend on the state.

Related Literature: Our results relate to three contributions. Ekmekci and Lauer-

mann (2020) also consider a setting in which the number of voters is state-dependent

(but the number of voters is deterministic conditional on the state) and show that
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information aggregation may fail. That paper focuses on the actions of an organizer

who determines the turnout. Myerson (1998a) introduces a model of Poisson elec-

tions in which the expected number of voters may be state-dependent and voting is

compulsory. He shows that there exist equilibria that aggregate information. Krishna

and Morgan (2012) study a model of Poisson elections in which the expected number

of voters is independent of the state and abstention is allowed, showing that for the

case with binary signals, voting is sincere in all equilibria and information can be ag-

gregated.1 Relative to Ekmekci and Lauermann (2020), we consider Poisson elections

and allow abstention; relative to Myerson (1998a), we show the existence of additional

equilibria and allow abstention; and relative to Krishna and Morgan (2012), we allow

continuous signals and show that there are additional equilibria when the expected

number of voters depends on the state.

The literature has identified other circumstances in which information may fail

to aggregate. Feddersen and Pesendorfer (1997) show such a failure in an extension

(Section 6 of their paper) when the aggregate distribution of preferences remains

uncertain conditional on the realized state. Mandler (2012) demonstrates a similar

failure if the aggregate distribution of signals remains uncertain. In these settings, the

effective state is multi-dimensional. Intuitively, this implies an invertibility problem

from the relevant order statistic of the vote shares to payoff-relevant states. A similar

problem is identified by Bhattacharya (2013), who observes the necessity of prefer-

ence monotonicity for information aggregation; see also Bhattacharya (2018) and Ali,

Mihm, and Siga (2017). Barelli, Bhattacharya, and Siga (2018) study what conditions

on the joint distributions of states and voters’signals make information aggregation

feasible with two or more alternatives. Bouton and Castanheira (2012) show that, in

a Poisson election with more than two alternatives, information aggregation fails with

most voting rules except for approval voting. Gul and Pesendorfer (2009) show that

information aggregation fails when some voters do not observe a candidate’s policy

choice. In our setting, conditional on the state, there is no aggregate uncertainty

(in the sense that the mean of the Poisson distribution is known), preferences over

policies are monotone in the state, and there is no policy uncertainty.

1Their paper considers costly voting, which is the main focus of their analysis.

4



1 Model

The model setup follows Myerson (1998a). Voters have to decide between two policies,

A and B. There are two states, α and β, with prior probability

π = Pr {α} ,

with 0 < π < 1 and Pr {β} = 1 − π. The voters have common values: Each voter
receives a payoff of 1 if the policy matches the state, and payoff of 0 otherwise.

However, voters do not know the realized state. Instead, voters observe noisy

signals x ∈ [x, x̄]. Conditional on the state, the signals are independent and identically

distributed. The c.d.f. of the signal distribution is G (·|ω). The distribution is

atomless and admits a continuous density. Without loss of generality, signals are

ordered so the weak MLRP holds,

g (x|α)

g (x|β)
is weakly decreasing in x.

In addition, g (x|ω) > 0 for all x ∈ (x, x̄). This, together with G being atomless,

rules out that voters receive perfectly revealing signals with positive probability. We

define limx→x
g(x|α)
g(x|β)

=: g(x|α)
g(x|β)

∈ R+ ∪ {∞} and limx→x̄
g(x|α)
g(x|β)

=: g(x̄|α)
g(x̄|β)

∈ R+. Signals

contain some information, meaning, g(x|α)
g(x|β)

> 1 > g(x̄|α)
g(x̄|β)

. As in Duggan and Martinelli

(2001) and Krishna and Morgan (2012), we assume that

π

1− π
g (x|α)

g (x|β)
> 1 >

π

1− π
g (x̄|α)

g (x̄|β)
. (1)

With this assumption, based on their own signal alone, a voter with the strongest

signal for α would prefer policy A and a voter with the strongest signal for β would

prefer policy B. The assumption holds if the prior is uniform. The assumption also

holds if signals are suffi ciently informative.

The number of voters is Poisson distributed in each state, with an expected number

of nα = n and nβ = θn; so, the probability that there are t voters in state ω is

Pr {t|ω} =
(nω)t e−nω

t!
.

The policy is decided by simple majority rule among submitted votes. If there is
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a tie, then a fair coin flip decides. Abstention is not possible for now.

We consider pure and type-symmetric voting strategies.2 A voting strategy is a

function a : [x, x̄]→ [0, 1], with a (x) the probability to vote for A.

Let U (x,W ; a, n) be the expected utility for a voter having signal x who votes for

W ∈ {A,B}, given that all other voters use strategy a and the expected number of
voters is (n, θn) in states α and β, respectively. We often drop a and n.

We study voting strategies that form a (Bayesian) Nash equilibrium. A voting

strategy a is a Nash equilibrium if and only if U (x,A; a, n) > U (x,B; a, n) implies

a (x) = 1 and U (x,A; a, n) < U (x,B; a, n) implies a (x) = 0.

2 Preliminary Characterization

In addition to learning from their own signal, voters obtain information about the

total number of participants (and, hence, the state) via their own participation. In

particular, the likelihood ratio of the two states conditional on having signal x and

participating is3

Pr (α|x)

Pr (β|x)
=

π

1− π
n

θn

g (x|α)

g (x|β)
. (2)

Let T denote the event that the number of A and B votes is the same, T − 1 the

event that there is one less A vote than B votes, and T + 1 the event that there is

one more A vote. Then, the difference U (x,A; a, n)− U (x,B; a, n) is equal to

Pr (α|x)

(
Pr [T − 1|α]

1

2
+ Pr [T |α] + Pr [T + 1|α]

1

2

)
−Pr (β|x)

(
Pr [T − 1|β]

1

2
+ Pr [T |β] + Pr [T + 1|β]

1

2

)
. (3)

Voting A versus voting B changes the payoffs only in the events T − 1, T , and

T+1. In the first event, voting A rather than B increases the probability of A winning

from 0 to 1/2, in the second event it increases the probability from 0 to 1, and in the

third event it increases the probability from 1/2 to 1.

2Myerson (1998a, p. 377) argues that in a Poisson election, all equilibria should be type-
symmetric.

3See Milchtaich (2004) for a discussion of updating in Poisson games with state-dependent par-
ticipation; see also our example in Section 6.
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The probability that the decision to vote A versus B turns out to be pivotal is

Pr (Piv|ω) =
1

2
Pr [T − 1|ω] + Pr [T |ω] +

1

2
Pr [T + 1|ω] .

It is then easy to see from (2) and (3) that voting for A is a best response for a voter

having signal x if

γ (x; a, n) :=
π

1− π
1

θ

g (x|α)

g (x|β)

Pr (Piv|α)

Pr (Piv|β)
≥ 1,

where γ denotes the critical likelihood ratio.

A strategy a is a cutoff strategy if for some x̂, we have a (x) = 1 if x > x̂ and

a (x) = 0 if x < x̂. We state without proof that cutoff strategies are without loss of

generality. This is immediate from γ being nonincreasing in x.

Lemma 1. If a strategy forms a Nash equilibrium, it is equivalent to a cutoff strategy.4

Our generic notation is x̂ for the strategy: “Vote for A if x ∈ (x, x̂), Vote for

B if x ∈ (x̂, x̄).”A cutoff strategy is said to be responsive if the cutoff is interior,

x̂ ∈ (x, x̄); it is non-responsive if either x̂ =x or x̂ = x̄, that is, if all voters are

supporting the same alternative.

Abusing notation, let γ (x; x̂, n) be the critical likelihood ratio given cutoff x̂.

Note that the map x → γ (x;x, n) is continuous; thus, x̂ ∈ (x, x̄) is an interior Nash

equilibrium if and only if

γ (x̂; x̂, n) = 1.

Moreover, γ being continuous immediately implies that an equilibrium always

exists.

Lemma 2. There exists a Nash equilibrium.

If γ (t; t, n) > 1 for all t, then x̂ = x is an equilibrium and if γ (t; t, n) < 1 for all t,

then x̂ = x̄ is an equilibrium. Finally, if γ (t′; t′, n) ≥ 1 ≥ γ (t′′; t′′, n) for some t′ and

t′′, then there is some x̂ between t′ and t′′ such that γ (x̂; x̂, n) = 1.

Note that in a Poisson election, the probability of being pivotal is strictly positive,

whatever strategy the other voters use. In particular, in Poisson elections there are

4If the likelihood ratio is constant on some interval, every voting strategy is equivalent to a voting
strategy in cutoffs (because we can reorder votes on that interval). If the likelihood ratio is strictly
increasing, every voting strategy is in cutoffs.
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no “trivial”equilibria, in contrast to elections with a deterministic number of voters.

Thus, the Poisson distribution acts as a tremble that refines away certain equilibria;

see Bouton and Castanheira (2012, p. 61).

We also use the following approximation of the critical likelihood ratio.

Lemma 3. Consider a sequence of voting games in which the expected number of
participants is (n, θn) in states α and β, respectively, and n→∞. Given a sequence
of cutoffs (x̂n)n∈N, let

M (ω) := 1− lim
n→∞

2
√
G (x̂n|ω) (1−G (x̂n|ω)),

whenever the limit exists. If limn→∞ x̂
n ∈ (x, x̄), then

lim
n→∞

Pr [Piv|α; x̂n, n]

Pr [Piv|β; x̂n, n]
=

{
∞ if M (α) < θM (β) ,

0 if M (α) > θM (β) .

For θ = 1, this simplifies to

lim
n→∞

Pr [Piv|α; x̂n, n]

Pr [Piv|β; x̂n, n]
=

 ∞ if lim
n→∞

∣∣G (x̂n|α)− 1
2

∣∣ < ∣∣G (x̂n|β)− 1
2

∣∣ ,
0 if lim

n→∞

∣∣G (x̂n|α)− 1
2

∣∣ > ∣∣G (x̂n|β)− 1
2

∣∣ .
This lemma follows from standard approximations to pivot probabilities; see Kr-

ishna and Morgan (2012). The proof of the lemma is in Section A.1 in the appendix,

where we re-state these general approximations and this and other lemmas for our

purposes.

To interpret the result, note that G (x̂n|ω) is the expected vote share of A in

state ω. Thus, in the case θ = 1, the result says that the state in which the election

is closer to being tied in expectation becomes arbitrarily more likely conditional on

the election being actually tied. For general θ, note that M (ω) = 0 if and only if

limG (x̂n|ω) = 1
2
, and otherwise 0 < M (ω) ≤ 1. Thus, if the election is expected to

be tied in one state, this state becomes arbitrarily more likely conditional on being

pivotal.
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3 Information Aggregation and the Modern Con-

dorcet Jury Theorem

The modern Condorcet theorem states that in large elections, all equilibria aggregate

information. More formally, we say a sequence of equilibria {x̂n}∞n=1 aggregates in-

formation if A wins with probability converging to 1 in state α and B wins in state

β. For a deterministic number of voters with common values, the modern Condorcet

Jury theorem is shown by Feddersen and Pesendorfer (1998).5 For an uncertain num-

ber of voters, it is shown by Krishna and Morgan (2012) for Poisson elections in

which the expected number of voters is independent of the state, θ = 1, and signals

are binary. For Poisson elections with a state-dependent number of voters, Myerson

(1998a) shows that, for all θ > 0, there exists at least some sequence of equilibria

that aggregates information.

Theorem 1. Consider a sequence of voting games in which the expected number of
participants is (n, θn) in states α and β, respectively, and n→∞.

1. Myerson (1998a). For all θ ∈ (0,∞), there exists a sequence of equilibria that

aggregates information.

2. Krishna and Morgan (2012). All sequences of equilibria aggregate information if

θ = 1 (there is no imbalance) and (1) holds (signals are suffi ciently informative).

Myerson (1998a) provides a direct proof of Item 1, as we do here. An alternative

method of proof utilizes the common interest structure, following McLennan (1998);

see the working paper version Ekmekci and Lauermann (2018).

For deterministic elections, a result that is analogous to Item 2 holds only for

symmetric and responsive equilibria. For Poisson elections, symmetry holds by con-

struction (Myerson, 1998a, p. 377) and there are no non-responsive equilibria if (1)

holds; hence, the result is stronger: If θ = 1, all Nash equilibria aggregate informa-

tion.6

5They show this for symmetric and responsive equilibria with binary signals; see also Wit (1998).
Duggan and Martinelli (2001) show the result for a continuum of signals.

6We emphasize the importance of (1) for these stronger conclusions. If the condition fails, then
it can be easily seen that nonresponsive equilibria exist. These equilibria are not “trivial” (the
pivotal probability is not 0), which contrasts with the existence of trivial equilibria in elections with
a deterministic number of voters. Moreover, one can also show that if the condition fails, then there
are responsive equilibrium sequences that do not aggregate information.
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4 Failure of Condorcet Jury Theorem

We now show that the modern Condorcet theorem fails if θ 6= 1.

Theorem 2. Consider a sequence of voting games in which the expected number of
participants is (n, θn) in states α and β, respectively, and n→∞.

• If θ < 1, then there exists a sequence of responsive Nash equilibria in which B

wins in both states with a probability converging to 1.

• If θ > 1, then there exists a sequence of responsive Nash equilibria in which A

wins in both states with a probability converging to 1.

The proof is in the appendix in Section A.3. Define the median signals as

xα : G (xα|α) = 1/2 and xβ : G (xβ|β) = 1/2.

Because of the MLRP, the signal distribution in state β first-order stochastically

dominates the distribution in state α; thus, xα < xβ. Note that, when x̂ = xω, then

the election is expected to be tied in state ω.

Consider the case with θ < 1. The main observations used in the proof are that

lim
n→∞

γ (xα;xα, n) =∞, (4)

and that, given θ < 1, for any xR small enough, with x < xR < xα,

lim
n→∞

γ (xR;xR, n) = 0. (5)

Since the map x → γ (x, x;n) is continuous, the intermediate value theorem

implies that, for all n large enough, there exists some x̂n ∈ (xR, xα) such that

γ (x̂n; x̂n, n) = 1. We verify that limn→∞ x̂
n < xα, and, hence, B wins with prob-

ability converging to 1 in both states by the law of large numbers.

The critical observations (4) and (5) follow from Lemma 3. For (4), note that

for a cutoff x̂ = xα, the election is tied in expectations in state α while B wins with

certainty in state β. So, 0 = M (α) < M (β), and, by Lemma 3, conditional on being

pivotal, a voter becomes certain that the state is α; thus, (4) holds.
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Now, consider some xR close to x. Then, M (α) and M (β) are both close to 1.

Therefore, θ < 1 implies M (α) > θM (β), and, hence, by Lemma 3, conditional on

being pivotal, a voter becomes certain that the state is β; thus, (5) holds.

For further insights, note that when xR is close to x, then B will win in both

states. Moreover, the margin of victory as a proportion of votes is larger in state β

than in α, that is, 1
2
−G (xR|β) > 1

2
−G (xR|α). However, when θ < 1 and xR is close

to x, then the margin of victory in the absolute number of voters is smaller in state

β than in α, that is, nθ
(

1
2
−G (xR|β)

)
< n

(
1
2
−G (xR|α)

)
. Hence, it turns out that

a voter is more likely to be pivotal in state β.

At the heart of the aggregation failure is the fact that there are fewer voters in

state β when θ < 1. Because the number is smaller, a voter is more likely to be

pivotal in that state, and, given that sophisticated voters condition on being pivotal,

they tend to support B, even if their signals are strongly in favor of A.

5 Robustness

We now investigate the robustness of the main finding of this paper, that is, un-

balanced state-dependent participation gives rise to equilibria that fail to aggregate

information. First, we investigate whether such equilibria survive a further stability

refinement. Second, we investigate whether voluntary voting eliminates such equilib-

ria.

Most of our analysis in this section will be for the case when the signals are

unboundedly informative, that is,

g (x|α)

g (x|β)
=∞ and

g (x|α)

g (x|β)
= 0.

This is needed for some of the arguments, and it simplifies the analysis of voluntary

voting. Also, the failure of information aggregation is maybe more stark when there

are arbitrarily informative signals.

5.1 Stability

For this discussion, consider θ < 1. Recall that, in this case, equation (5) holds for

some xR and all n large enough. Further, if signals are unboundedly informative, it
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is immediate that for any fixed n, there exists some xnL with x < xnL < xR such that7

γ (xnL;xnL, n) > 1. (6)

Together with (5), inequality (6) implies that there exists some equilibrium with

x̂ns ∈ (xnL, xR) for all n large enough by the intermediate value theorem. Thus, when

signals are unboundedly informative, there are at least two interior equilibria in which

information aggregation fails, this one and the previous one with x̂n ∈ (xR, xα).

This argument implies also that, when signals are unboundedly informative and

θ < 1, there is one “stable” equilibrium that fails to aggregate information by the

following argument: From (5) and (6), for all n large enough, γ̃ (x) = γ (x;x, n) cuts

1 from above, at least once at some point x̂s < xR. If x̂s is the only equilibrium

cutoff in some neighborhood, then x̂s is an equilibrium cutoff that is expectationally

stable in the sense of Fey (1997). In particular, this cutoff has the property that

it is the outcome of a dynamic best-response iteration: If such a process starts in

a neighborhood of the equilibrium cutoff, then the process will eventually converge

back to it.8

Unstable Equilibria. Applying the same argument to the case with boundedly

informative signals, it follows from (4) and (5) that there exists at least one point

x̂r ∈ (xL, xα) at which γ̃ crosses 1 from below. Thus, when signals are boundedly

informative, there exists at least one equilibrium cutoff x̂r that is unstable.9

Non-Responsive Equilibria. As observed by Myerson (1998a), for all θ 6= 1, if

signals are boundedly informative, then there are also non-responsive equilibria when

n is large enough. Consider θ < 1 and suppose x̂ = x, so that all voters support B.

In this case, a voter is pivotal whenever there is either no other voter or just one.

The likelihood ratio of being pivotal is therefore

Pr [Piv|α;x, n]

Pr [Piv|β;x, n]
=

e−n (1 + n)

e−θn (1 + θn)
≈ e−n(1−θ) 1

θ
→n→∞ 0.

7This holds because, for any fixed n, the ratio Pr[Piv|α;x,n]
Pr[Piv|β;x,n] is bounded.

8It may be that for some ε > 0, and x̃0 < x̃1, we have γ̃(x) > 1 for x ∈ (x̃0 − ε, x̃0), γ̃(x) = 1 for
x ∈ [x̃0, x̃1] and γ̃(x) < 1 for x ∈ (x̃1, x̃1 + ε). We may call such a set of equilibria “pseudo-stable,”
with singletons being a special case.

9On the other hand, even though there must be some equilibrium that is not stable, we cannot
rule out that there are stable equilibria. In fact, our previous discussion implies that it is easily
possible to construct stable equilibria for some boundedly informative signals.
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Thus, given that signals are boundedly informative, it is a best response for a voter to

vote for B independently of her signal, for n large enough. Non-responsive equilibria

are stable. In particular, these equilibria are not “trivial”because each voter is still

pivotal with a strictly positive probability– in contrast to analogous non-responsive

equilibria with a deterministic number of voters.

5.2 Voluntary Voting (Abstention)

We now consider the possibility of abstention or “voluntary voting.”Feddersen and

Pesendorfer (1996) noted that voters may have a strict incentive to abstain because

of the “swing voter’s curse.”Moreover, the possibility of abstention necessarily in-

creases the expected payoff of a representative agent in the best equilibrium relative

to compulsory voting.

In addition, Krishna and Morgan (2012) observe that with abstention and a binary

signal, there is no longer a conflict between voting strategically and voting sincerely

that is often present with compulsory voting even when θ = 1.10 Thus, abstention

may help eliminate the equilibria that we identified before since these equilibria relied

on voters with a strong signal towards state α to nevertheless vote B. Thus, we now

ask whether abstention may help eliminate the bad equilibria.

With abstention, our generic notation is (y, z) for the strategy: “Vote for A if

x ∈ (x, y), Abstain if x ∈ (y, z), Vote for B if x ∈ (z, x̄).”Analogously, we call a voting

strategy (y, z) non-responsive if either z = x or y = x̄, so, either all participants vote

B or all vote A. Otherwise, an equilibrium is responsive.

Theorem 3. Suppose voting is voluntary and signals are unboundedly informative.
Consider a sequence of voting games in which the expected number of participants is

(n, θn) in states α and β, respectively, and n→∞.

1. If θ < 1, then there is a sequence of responsive Nash equilibria in which B wins

in both states with probability converging to 1.

2. If θ > 1, then there is a sequence of responsive Nash equilibria in which A wins

in both states with probability converging to 1.

The proof is in the appendix. The basic idea is this. Consider an auxiliary game

Γ (xR, n) with a parameter xR > x in which voters with signals x ≥ xR must vote

10Also, if voting is costly, abstention allows to reduce overall voting costs.
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for B but which otherwise remains unchanged. By a standard argument, this game

has an equilibrium. Then, for n large enough, this equilibrium is shown to be also

an equilibrium of the original game if xR is small enough, in particular, if xR < xα.

The critical argument for this proof is that for xR small enough, given any strategy

profile with y ≤ z ≤ xR, the probability of state β conditional on being pivotal

(for either candidate) converges to 1.11 Thus, voters with signals around xR > x

will optimally vote for B– and hence this restriction does not bind. Thus, this is

an equilibrium of the original game. Moreover, the equilibrium is responsive: Since

signals are unboundedly informative, for every given n, voters will optimally vote A

for some signal suffi ciently close to x.

With boundedly informative signals there are additional technical issues that re-

quire the development of new tools. In the working paper version Ekmekci and Lauer-

mann (2018), we considered the case of a binary signal as in Krishna and Morgan

(2012) and showed the existence of analogous equilibria.

6 Example: State-Dependent Participation Costs

We now present a scenario where state-dependent participation arises endogeneously

in an equilibrium of a costly voting model with a state-dependent cost distribution.

As an example, suppose some citizens vote on an economic reform. Then, it is natural

to assume that the opportunity costs of participation depend on the citizens’personal

economic situations, which may be correlated with the reform’s desirability.12

Specifically, suppose the number of citizens is Poisson-distributed with mean

m. Further suppose that each citizen draws a voting cost according to the state-

dependent, discrete probability distribution Pr (c|ω), whose support is {0, c̄}, with
c̄ > 0. We assume that costs and the state are correlated, i.e., Pr (c|α) 6= Pr (c|β)

for c ∈ {0, c̄}. Otherwise, the model remains as before. In particular, each citizen
also observes a signal x ∈ [x, x̄]. Conditional on the state, the cost and the signal are

independent for a given citizen as well as across the citizens. After observing her own

cost c and signal x, each citizen decides whether to vote at costs c or abstain. The

voting rule is simple majority rule, with ties broken by a fair coin flip.13

11Note that this argument is very similar to the one used in (5) for compulsory voting.
12In Ekmekci and Lauermann (2020) we consider another scenario with endogeneous state-

dependent turnout. There, an informed election organizer recruits voters.
13One may view this example as a stylized version of Krishna and Morgan (2012) with a state-
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Now consider the costless voting model from Section 5.2 where the signal is

unboundedly informative. Suppose that the expected number of participants is

mPr (0|α) and mPr (0|β) in states α and β, respectively. Let (y, z) be the equi-

librium identified in Theorem 3. We now argue that, when m is large, there is an

equilibrium of our costly voting model where citizens with high costs c̄ abstain and

citizens with low costs behave according to (y, z), voting for A if x < y and B if x > z,

and abstaining if x ∈ (y, z). To understand why, note that the expected number of

votes cast in the equilibria identified in Theorem 3 grows without bound as m grows.

This implies that the probabilities of being pivotal vanish, and hence, it is optimal

for citizens with high-cost citizens to abstain. Given this behavior, it is optimal for

low-cost citizens to behave according to (y, z) because, given the high-cost voters’

abstention, they face the same problem as in the costless voting model.

Thus, whenm is large, there is an equilibrium of a costly voting game with exactly

the same outcome as the equilibrium of the costless voting game with exogenously

state-dependent number of participants.14 Note also that voters learn from their own

participation cost, implying that participants’beliefs are different from the prior.

7 Conclusion

We study the set of equilibria of Poisson elections when the expected number of

voters is state-dependent. We show that large Poisson elections robustly aggregate

information– in the sense that all equilibria imply the correct choice with probability

converging to one– if and only if the expected number of voters is constant across

states. If the expected number of voters is different, then there are additional re-

sponsive equilibria that fail to aggregate information. The basic reason for this is

that voters are more likely to be pivotal when the electorate is smaller. This pivotal

inference leads to equilibria in which voters systematically vote for the policy that is

optimal in the state with fewer expected voters. When signals are suffi ciently infor-

mative, these equilibria can be chosen to be stable. Abstention does not eliminate

the additional equilibria.

There are many reasons for participation to be state-dependent: In Ekmekci and

dependent cost distribution.
14However, there may also be equilibria in which only voters with c = c̄ participate, and they do

so with a small probability. These equilibria also fail to aggregate information, in this case because
of the low turnout.
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Lauermann (2020), an election organizer has private information about the state and

recruits voters with a different intensity across states. In the example in Section 6,

state-dependent participation results from the correlation between participation costs

and the state. In general, such correlation may also reflect a varying awareness across

the population about an election or referendum and its specifics. A comprehensive

analysis of costly voting with state-dependent cost distributions is a promising avenue

for future research.

A stark feature of our model is that the outcome is deterministic when the num-

ber of voters is large. The reason is that in our model, there is only idiosyncratic

uncertainty. However, in reality, election outcomes often seem to be fundamentally

diffi cult to predict even for professional election forecasters, with "surprises" happen-

ing frequently. One simple way to introduce aggregate uncertainty is via an exogenous

random share of partisans who vote for a certain candidate independently of their sig-

nals. In the working paper version, Ekmekci and Lauermann (2018), we show that

our results continue to hold qualitatively when this aggregate uncertainty is small.

Again, a comprehensive analysis is left for future research.

A Appendix

Sequences and Limits. When taking limits, we mean with respect to subsequences
for which a limit exists (in the extended reals). In the context of our proofs, such

subsequences can always be found and proving statements for all converging subse-

quences will be suffi cient for the desired claims. We also drop the delimiter from lim

when the limit is taken with respect to n→∞.

A.1 Toward a Proof of Lemma 3 (Auxiliary Results)

In the appendix, we denote the expected number of A and B votes in state α as

σA (x̂) = nG (x̂|α) and σB (x̂) = n (1−G (x̂|α)) .

Similarly, for state β,

τA (x̂) = θnG (x̂|β) and τB (x̂) = θn (1−G (x̂|β)) .
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We often drop the arguments from σW and τW .

We approximate the pivotal probabilities. Given any sequence
{
xk
}∞
k=1

and two

functions f and g, we say

f ≈ g if lim
k→∞

f
(
xk
)

g (xk)
= 1.

To improve readability, we suppress the sequence index k in the following statement.

We first prove an intermediary approximation result.

Lemma 4. If σAσB →∞, then

Pr [T |α] ≈ e−σA−σB
e2
√
σAσB√

2π2
√
σAσB

,

Pr [T ± 1|β] ≈ e−σA−σB
e2
√
σAσB√

2π2
√
σAσB

(
σA
σB

)±1/2

.

If σAσB → k ∈ (0,∞), then

Pr [T − 1|α] ≈ e−σA−σBσB
I1

(
2
√
k
)

√
k

,

Pr [T |α] ≈ e−σA−σBI0

(
2
√
k
)
,

Pr [T + 1|α] ≈ e−σA−σBσA
I1

(
2
√
k
)

√
k

,

with I0 : R+ → R+ a continuous, strictly positive function with limz→∞ I0 (z) =

I1 (z) = ∞, I0 (0) = 1 and I1 : R+ → R+ a continuous function that is strictly

positive on (0,∞) but limz→0
I1(z)
z

= 1/2.

If σAσB → 0, then

Pr [T − 1|α] ≈ e−σA−σBσB,

Pr [T |α] ≈ e−σA−σB ,

Pr [T + 1|α] ≈ e−σA−σBσA.

All analogous approximations hold for state β, after substituting τW for σW .

Proof of Lemma 4. The Lemma follows immediately from observations from Kr-
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ishna and Morgan (2012), equations (4) and (5), namely,

Pr [T |α] = e−σA−σBI0 (2
√
σAσB) , (7)

Pr [T ± 1|α] = e−σA−σB
(
σA
σB

)±1/2

I1 (2
√
σAσB) , (8)

where I0 and I1 are the so-called "modified Bessel functions." The approximations

then use properties of the modified Bessel functions, namely, that

lim
z→∞

ez√
2πz

I0 (z)
= lim

z→∞

ez√
2πz

I1 (z)
= 1,

and that

lim
z→0

I1 (z)

z
=

1

2
⇒

(
σB
σA

)1/2

I1

(
2
√
σAσB

)
σB

=
I1

(
2
√
σAσB

)
√
σAσB

→ 1.

Now, the approximations follow. �

Proof of Lemma 3. Recall that

Pr (Piv|ω) =
1

2
Pr [T − 1|ω] + Pr [T |ω] +

1

2
Pr [T + 1|ω] .

From lim x̂n ∈ (x, x̄), we have σAσB →∞ and τAτB →∞. So, Lemma 4 implies

1

2
Pr [T − 1|α] + Pr [T |α] +

1

2
Pr [T + 1|α]

≈ e−σA−σB
e2
√
σAσB√

2π2
√
σAσB

1

2

(
2 +

(
σA
σB

)+1/2

+

(
σA
σB

)−1/2
)

=
e−n+2

√
σAσB√

2π2
√
σAσB

1

2

(
2 +

(
σA
σB

)+1/2

+

(
σA
σB

)−1/2
)
.

Furthermore, lim x̂n ∈ (x, x̄) implies that

0 < lim
4
√
τAτB

4
√
σAσB

2 +
√

σB
σA

+
√

σA
σB

2 +
√

τB
τA

+
√

τA
τB

=: K <∞.
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This is because with x̂ = lim x̂n,

lim
4
√
τAτB

4
√
σAσB

= lim

4

√
θ2n2G (x̂n|β) (1−G (x̂n|β))

4
√
n2G (x̂n|α) (1−G (x̂n|α))

=

√
θ 4
√
G (x̂|β) (1−G (x̂|β))

4
√
G (x̂|α) (1−G (x̂|α))

,

and

lim
2 +

√
σB
σA

+
√

σA
σB

2 +
√

τB
τA

+
√

τA
τB

=
2 +

√
(1−G(x̂|α))
G(x̂|α)

+
√

G(x̂|α)
(1−G(x̂|α))

2 +
√

(1−G(x̂|β))
G(x̂|β)

+
√

G(x̂|β)
(1−G(x̂|β))

.

So,

lim
Pr [Piv|α]

Pr [Piv|β]
= lim

e−n+2
√
σAσB

e−θn+2
√
τAτB

4
√
τAτB

4
√
σAσB

2 +
√

σB
σA

+
√

σA
σB

2 +
√

τB
τA

+
√

τA
τB

= K lim e
n
(

2
√
G(x̂n|α)(1−G(x̂n|α))−1−θ

(
2
√
G(x̂n|β)(1−G(x̂n|β))−1

))
.

and the lemma now follows. �

A.2 Proof of Theorem 1

Proof of Item 1: Existence. Recall that the median signals solve G (xα|α) = 1/2 and

G (xβ|β) = 1/2. By the MLRP, G (·|β) first-order stochastically dominates G (·|α).

Therefore, xα < xβ, and

G (xα|β) <
1

2
< G (xβ|α) .

We show that

lim γ (xα;xα, n) =∞, (9)

and

lim γ (xβ;xβ, n) = 0. (10)

Note that
∣∣G (xα|α)− 1

2

∣∣ = 0 <
∣∣G (xα|β)− 1

2

∣∣. So, using Lemma 3, M (α) = 0 <

M (β) implies

lim
Pr [Piv|α;xα, n]

Pr [Piv|β;xα, n]
=∞,

proving (9). Equation (10) follows analogously.

Given (9) and (10), the intermediate value theorem implies the existence of some
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x̂n ∈ (xα, xβ) for all n large enough. By the same argument as above, it cannot be

that x̂n → xα or x̂n → xβ, observing that M (α) = 0 < M (β) in the first case and

M (α) > 0 = M (β) in the second case.

Thus, there exists a sequence of equilibria with lim x̂n ∈ (xα, xβ), and the weak

law of large numbers implies that information aggregates.

Proof of Item 2: Information Aggregation in all Sequences if θ = 1.

Given θ = 1, we first show that for any sequence of cutoffs {xn}∞n=1,

lim
Pr [Piv|α;xn, n]

Pr [Piv|β;xn, n]
=

{
∞ if x < limxn ≤ xα,

0 if xβ ≤ limxn < x̄.

This rules out that such sequences are Nash equilibria, of course. Consider xβ ≤
limxn < x̄. From the MLRP, 1/2 ≤ limG (x̂n|β) < limG (x̂n|α) < 1. Now, the claim

follows from Lemma 3.

We now rule out equilibria in which xn is close to x̄. By assumption (1), there is

some xr > xβ such that for x > xr

1 >
π

1− π
g (x|α)

g (x|β)
.

Now, if x ∈ (xr, x̄), then 1/2 < limG (x̂n|β) < limG (x̂n|α) < 1 implies that the

probability Pr [Piv|β;x, n] > Pr [Piv|α;x, n]. To see this, consider a fixed voter and

suppose the realized number of other voters is m and each of the m other voters

supports A with i.i.d. probability G (x|ω). If m = 0, then the voter is pivotal in both

states with equal likelihood. If m > 0 is even, then the fixed voter affects the election

if and only if exactly m
2
other voters support A and B. The probability that exactly

m
2
voters support each policy is strictly larger in state B since G (x|β) (1−G (x|β)) >

G (x|α) (1−G (x|α)) by 1/2 < limG (x̂n|β) < limG (x̂n|α) < 1. If m is odd, then

the fixed voter affects the election if and only if she votes A and m−1
2
other voters

support A and m+1
2
support B. Similarly, a vote for B changes the outcome if m+1

2

support A and m−1
2
support B. With m−1

2
=: r and qω := G (x|ω), the sum of these
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two probabilities is(
2r + 1

r

)
(qω)r (1− qω)r+1 +

(
2r + 1

r + 1

)
(qω)r+1 (1− qω)r

=

(
2r + 1

r

)
(qω)r (1− qω)r (qω + (1− qω)) =

(
2r + 1

r

)
(qω)r (1− qω)r .

Again, G (x|β) (1−G (x|β)) > G (x|α) (1−G (x|α)) implies that this probability is

higher in state β. Thus, conditional on any realization of the number of other voters

(either even or odd), the probability to affect the election is higher in state β. Hence,

for all x̄ > x > xr,
Pr [Piv|α;x, n]

Pr [Piv|β;x, n]
< 1.

Thus, for all n and x > xr,

π

1− π
g (x|α)

g (x|β)

n

nθ

Pr [Piv|α;x, n]

Pr [Piv|β;x, n]
<

π

1− π
g (x|α)

g (x|β)
< 1.

There can be no equilibrium with a cutoff x ∈ (xr, x̄) for any n. A symmetric

argument rules out equilibria with cutoffs x close to x.

Finally, from θ = 1, we have for a cutoff x̄ that

Pr [Piv|α; x̄, n]

Pr [Piv|β; x̄, n]
=

1
2

Pr [T − 1|α] + Pr [T |α] + 1
2

Pr [T + 1|α]
1
2

Pr [T − 1|β] + Pr [T |β] + 1
2

Pr [T + 1|β]

=
0 + e−n + 1

2
e−nn

0 + e−n + 1
2
e−nn

= 1,

which follows because A cannot be behind if the cutoff is x̄ (all vote A), a tie occurs

only if no voter participates, and A is one ahead if there is exactly one voter. Thus,

γ (x̄; x̄, n) =
π

1− π
g (x̄|α)

g (x̄|β)

n

nθ

Pr [Piv|α; x̄, n]

Pr [Piv|β; x̄, n]

=
π

1− π
g (x̄|α)

g (x̄|β)
< 1,

and so by the continuity of g (·|α) /g (·|β), γ (x; x̄, n) < 1 for all x < x̄. There can be

no equilibrium with cutoff x̄ for any n. Similarly, there can be no equilibrium with

cutoff x for any n. �

21



A.3 Proof of Theorem 2

We prove the theorem for θ < 1. The argument for θ > 1 is analogous and omitted.

The proof uses the intermediate value theorem, utilizing our previous developments.

In particular, we already observed in (9) that

lim γ (xα;xα, n) =∞. (11)

Since θ < 1, there exists some xR ∈ (x, xα) small enough such that

1− 2
√
G (xR|α) (1−G (xR|α)) > θ

[
1− 2

√
G (xR|β) (1−G (xR|β))

]
,

noting that the left side approaches 1 for xR → x and the right side approaches θ.

Using Lemma 3, we can conclude that

lim
Pr [Piv|α;xR, n]

Pr [Piv|β;xR, n]
= 0.

Since g(xR|α)
g(xR|β)

<∞, this implies

lim γ (xR;xR, n) = 0. (12)

Given (11) and (12), the existence of an interior Nash equilibrium x̂n with x̂n ∈
(xR, xα) and γ (x̂n; x̂n, n) = 1 for all n large enough follows from the intermediate

value theorem. By Lemma 3, the conclusion of (11) also holds if x̂n → xα. Thus,

lim x̂n < xα. So, B wins with probability converging to 1 by the weak law of large

numbers, proving the claim for θ < 1. �

A.4 Proofs for Section 5.2 (Abstention)

Notation. The pivotality probabilities with abstention are

Pr [PivA|α] =
1

2
Pr [T |α] +

1

2
Pr [T − 1|α]

and

Pr [PivB|α] =
1

2
Pr [T |α] +

1

2
Pr [T + 1|α] .
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We denote the critical likelihood ratio at the cutoff types as

γA (y, z, n) =
π

1− π
1

θ

g (y|α)

g (y|β)

Pr [PivA|α; y, z, n]

Pr [PivA|β; y, z, n]
,

and

γB (y, z, n) =
π

1− π
1

θ

g (z|α)

g (z|β)

Pr [PivB|α; y, z, n]

Pr [PivB|β; y, z, n]
.

A strategy profile (y, z) is an interior Nash equilibrium if x < y ≤ z < x̄ and

1 = γA (y, z, n) = γB (y, z, n) .

Throughout this section, we consider the case with θ < 1, and signals are un-

boundedly informative, in particular,

g (x|α)

g (x|β)
=∞.

Let Γ (xR, n) be an auxiliary game in which voters with signals x ≥ xR must vote

B, while voters below xR can choose between voting A, B, or abstaining as before.

We will show that Γ (xR, n) has an equilibrium that satisfies the properties of the

theorem and for which the constraint at xR does not bind.

Note that Γ (xR, n) has an equilibrium (y, z) by standard arguments for all xR;

see Myerson (1998b).

We use the following Lemma, proven at the end of this section.

Lemma 5. Suppose θ < 1, abstention is possible, and signals are unboundedly in-

formative. There exists some xR ∈ (x, xα) such that for any sequence (yn, zn) with

yn ≤ zn ≤ xR,

lim
Pr [PivA|α; yn, zn, n]

Pr [PivA|β; yn, zn, n]
= lim

Pr [PivB|α; yn, zn, n]

Pr [PivB|β; yn, zn, n]
= 0.

Now, suppose that (yn, zn) is an equilibrium sequence of Γ (xR, n), for xR chosen

to satisfy Lemma 5. It cannot be that zn → xR. Suppose otherwise. If zn → xR,
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then

lim γB (yn, zn, n) = lim
π

1− π
g (zn|α)

g (zn|β)

Pr [PivB|α]

Pr [PivB|β]

=
π

1− π
g (xR|α)

g (xR|β)
lim

Pr [PivB|α]

Pr [PivB|β]
= 0.

Thus, for any x′, any voter having a signal in (x′, xR) would have a strict preference

to vote for B. Thus, it must be that lim zn < xR. But this implies that all voters with

signals in (lim zn, xR) prefer voting B to voting A or abstaining. By the MLRP, this

implies that in particular all voters with signals x ≥ xR prefer voting B. Hence, the

initial restriction of Γ (xR, n) relative to the original game does not bind. Therefore,

for large n, (yn, zn) is also an equilibrium of the original game. Clearly, from lim zn <

xR < xα, policy B is chosen with probability converging to one. This proves the claim

of the theorem.

Proof of Lemma 5.
There exists a signal xR ∈ (x, xα) such that for all y ≤ z ≤ xR,

√
1−G (z|α)−

√
G (y|α) >

√
θ
(√

1−G (z|β)−
√
G (y|β)

)
.

Hence, for all yn ≤ zn ≤ xR,

lim
e−(
√
σA−

√
σB)

2

e−(
√
τA−

√
τB)

2 = 0. (13)

Moreover,

lim
e−σA−σB

e−τA−τB
= 0.

This follows from

−σA − σB + τA + τB = τA − σA + τB − σB
= n (θG (y|β)−G (y|α) + θ (1−G (z|β))− (1−G (z|α))) ,

and

(θG (y|β)−G (y|α) + θ (1−G (z|β))− (1−G (z|α))) < 0,
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from θG (y|β) < G (y|α) (by the MLRP) and θ (1−G (z|β)) < (1−G (z|α)) (which

is necessary by z ≤ xR for our choice of xR).

Case 1. Suppose τAτB → ∞. Then, σAσB → ∞, which follows from lim σB
τB

> 0

and σB →∞ (by zn ≤ xR < x̄) and σA > τA (by the MLRP). Then, from Lemma 4,

lim
Pr [PivA|α]

Pr [PivA|β]
= lim

e−(
√
σA−

√
σB)

2

e−(
√
τA−

√
τB)

2

√
2π2
√
τAτB√

2π2
√
σAσB

1 +
√
σB√
σA

1 +
√
τB√
τA

.

If lim yn > x, then we are done because of (13) and the last fractions are bounded.

Suppose lim yn = x. Then,

lim

√
2π2
√
τAτB√

2π2
√
σAσB

1 +
√
σB√
σA

1 +
√
τB√
τA

<∞,

since lim τB
σB
∈ (0,∞) and τA

σA
≤ 1.

Similarly,

lim
Pr [PivB|α]

Pr [PivB|β]
= lim

e−(
√
σA−

√
σB)

2

e−(
√
τA−

√
τB)

2

√
2π2
√
τAτB√

2π2
√
σAσB

1 +
√
σA√
σB

1 +
√
τA√
τB

,

and

lim

√
2π2
√
τAτB√

2π2
√
σAσB

1 +
√
σA√
σB

1 +
√
τA√
τB

<∞,

follows from lim
√
σA√
σB

<∞, lim τB
σB
∈ (0,∞), and τA

σA
≤ 1.

Case 2a. Suppose τAτB → k <∞ and z = limσAσB <∞. This requires yn → x.

Then, from Lemma 4,

Pr [PivA|β] ≈ e−τA−τB

I0

(
2
√
k
)

+ τB
I1

(
2
√
k
)

√
k

 ,
Pr [PivB|β] ≈ e−τA−τB

I0

(
2
√
k
)

+ τA
I1

(
2
√
k
)

√
k

 ,
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with
I1(2
√
k)√

k
= 1 if k = 0. Similarly, from z = limσAσB <∞, we have

Pr [PivA|α] ≈ e−σA−σB
(
I0

(
2
√
z
)

+ σB
I1 (2
√
z)√

z

)
,

Pr [PivB|α] ≈ e−σA−σB
(
I0

(
2
√
z
)

+ σA
I1 (2
√
z)√

z

)
.

So, if limσAσB <∞ then

lim
Pr [PivA|α]

Pr [PivA|β]
= lim

e−σA−σB

e−τA−τB

I0 (2
√
z) + σB

I1(2
√
z)√

z

I0

(
2
√
k
)

+ τB
I1(2
√
k)√

k

→ 0,

since e−σA−σB
e−τA−τB

→ 0 by (13), I0

(
2
√
k
)
> 0,

I1(2
√
k)√

k
> 0 and lim σB

τB
<∞. Analogously,

lim
Pr [PivB|α]

Pr [PivB|β]
= lim

e−σA−σB

e−τA−τB

I0 (2
√
z) + σA

I1(2
√
z)√

z

I0

(
2
√
k
)

+ τA
I1(2
√
k)√

k

→ 0,

since limσA = lim τA = 0.

Case 2b. Suppose τAτB → k <∞ and limσAσB =∞. Then, from Lemma 4,

lim
Pr [PivA|α]

Pr [PivA|β]
= lim

e−σA−σB

e−τA−τB

e2
√
σAσB

( (
1+
√
σB√
σA

)
√

2π2
√
σAσB

)
I0

(
2
√
k
)

+ τB
I1(2
√
k)√

k

.

Now, observe that

lim e2
√
τAτB

e−σA−σB

e−τA−τB
e2
√
σAσB

e2
√
τAτB

= e2
√
k lim

e−(
√
σA−

√
σB)

2

e−(
√
τA−

√
τB)

2 = 0.

Moreover, from I0

(
2
√
k
)
∈ (0,∞),

I1(2
√
k)√

k
∈ (0,∞), τB →∞, and σAσB →∞

lim

( (
1+
√
σB√
σA

)
√

2π2
√
σAσB

)
I0

(
2
√
k
)

+ τB
I1(2
√
k)√

k

≤ lim

√
σB√
σA

τB
≤ lim

√
σB√
σA

σB
=

1
√
σAσB

→ 0.
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This proves the result. �
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