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Abstract

Central clearing counterparties (CCPs) were created to reduce default losses for market
participants in derivatives markets. We show that not all market participants benefit,
and some are worse off. Loss sharing rules and their interaction with market network
structure affect who are winners and losers. The loss sharing rule most widely used
by CCPs is based on net risk. We develop a simple model which shows that this
rule largely benefits market participants with flat portfolios but not participants with
directional portfolios or those located in the periphery of the network. This result is
consistent with the reluctance of (peripheral) end-users to voluntarily clear in practice.
We investigate how to offset cross-sectional differences in loss sharing benefits, and
highlight alternative loss sharing rules and centralized trading as potential remedies.
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1. Introduction

Default losses arise when counterparties do not fulfill their obligations (e.g., when they

default). The risk of default losses (i.e., counterparty risk) is one of the most important risks

in over-the-counter (OTC) derivatives markets and has been identified as a major contrib-

utor to the amplification of the 2007-08 financial crisis. To mitigate this risk in derivatives

markets, regulators worldwide have been pushing for the central clearing of OTC derivative

transactions through central clearing counterparties, so-called CCPs (G20 (2009)).1 There-

fore, it is important to understand which market participants benefit from central clearing

and which do not.

There are two main functions of central clearing: multilateral netting, which offsets gains

and losses across clearing members, and loss sharing, which is the allocation of default losses

to surviving clearing members.2 In this paper, we investigate the distributional aspects of

loss sharing. Our main analysis explores the differences in the effect of central clearing on

default losses across market participants (i.e., winners vs. losers). Compared to an uncleared

market, we show that central clearing often reduces expected default losses only for a subset

of entities (the “winners”), but not for all market participants. We then explore how the

distribution of winners and losers changes with the CCP loss sharing rules, market’s network

structure, and correlation of derivative prices.

A key result of our analysis is that market participants in the periphery of the market

and with directional portfolios face larger expected default losses when they centrally clear

their transactions compared to an uncleared market (i.e., they lose from central clearing).

This result provides a possible explanation for the reluctance of market participants, and

particularly end-users, to use central clearing in practice (Wooldridge (2017), Bank for Inter-

national Settlements (BIS) (2018)).3 Anecdotal evidence suggests that current CCPs’ loss

1OTC derivatives markets are very large, with a worldwide outstanding notional amount of $542 trillion
in 2017 (Bank for International Settlements (BIS)). Before the 2007-08 financial crisis, the derivatives market
architecture was dominated by bilateral trades (Financial Stability Board (FSB) (2017)). The G20 initiative
in 2009 was followed by the Dodd-Frank Wall Street Reform and Consumer Protection Act (DFA) in 2010
and the European Market Infrastructure Regulation (EMIR) in 2012, with the mandatory central clearing
of standardized OTC derivatives through CCPs as a key element.

2Loss sharing is required by post-crisis regulation, e.g., the European Market Infrastructure Regulation
(EMIR).

3Central clearing is optional for single-name CDS, foreign exchange forwards, and commodity and equity
derivatives, which largely remain uncleared (Abad et al. (2016), Office of the Comptroller of the Currency
(2016), Financial Stability Board (FSB) (2017)). The Financial Stability Board (FSB) (2017) reports that
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allocation rules disincentivize a large set of market participants from central clearing (Novick

et al. (2018)), which motivates our analysis of loss sharing.4

Despite the increasing importance of central clearing in derivatives markets, research

on loss sharing in clearinghouses is still scarce. We extend the literature by building a

tractable model, that clearly shows which market participants benefit or lose from using

central clearing. Who wins or loses is a function of the market’s network structure, loss

sharing rules, and systematic risk. We derive comparative statics that provide guidance on

how these characteristics interact with the distributional effects of loss sharing across different

types of market participants. The analysis provides important insights for policymakers and

facilitates future research by highlighting the relevant economic trade-offs that arise with

loss sharing.

Our main contribution is to investigate the effect of the interaction between (1) market

network structure and (2) loss sharing rules on market participants’ default losses. We

consider three different network structures, namely a flat-complete, heterogeneous-complete,

and a core-periphery structure. The latter is a dominant structure we observe in the OTC

market in practice. This set of networks allows us to examine heterogeneity in the effect of

clearing across different levels of market completeness and across market participants that

differ in portfolio directionality and number of counterparties.

Loss sharing rules might be proportional to net portfolio risk, to gross portfolio risk, or

a combination of the two. We start by considering loss sharing proportional to net portfolio

risk, which closely resembles current market practice. The analysis highlights that market

participants face different levels of expected default losses depending on the market network

structure and their position within the network. We then examine an alternative loss sharing

rule, namely loss sharing proportional to gross risk.5 A main take-away from our analysis is

that loss sharing proportional to gross risk can make central clearing incentive compatible

for all market participants, in the core and periphery of the market, while this is not the

case when loss sharing is proportional to net risk.

only 28% of outstanding CDS notionals were cleared in December 2016 (compared to 5% in June 2009).
The fraction of notionals cleared is substantially below 20% for foreign exchange, commodity, and equity
derivatives in 2016 (Financial Stability Board (FSB) (2017), Wooldridge (2017)). In contrast, 61% of all IRS
notionals outstanding were cleared in December 2016 (compared to 24% in December 2008), and 80% of new
index CDS transactions in the US are cleared as of April 2017 (which are both largely mandatory to clear).
Bank for International Settlements (BIS) (2018) reports that only very few fund managers or non-financial
companies are clearing members.

4It is desirable to maximize clearing participation, e.g., to enhance transparency and netting benefits
(e.g., see Duffie and Zhu (2011)).

5Rules based on gross risk are not uncommon. For example, the Basel III leverage ratio is based on
derivatives’ gross notional amount (see https://www.bis.org/publ/bcbs270.htm). Cont (2015) stresses
that portfolios with a small ratio of net-to-gross notional value can result in substantial liquidity risk for
CCPs, providing an additional rationale for using (partially) gross-based rules in central clearing.
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The case that CCPs face losses that they need to allocate to clearing members is not

a purely theoretical consideration but does occur in practice. For example, the default of

a single trader at the Swedish clearinghouse Nasdaq Clearing AB caused EUR 107 million

to be shared among surviving clearing members in September 2018 (Faruqui et al. (2018)).

More generally, derivatives markets price in significant risk of CCP failure (Boissel et al.

(2017)).

Understanding the interaction between loss sharing and market network structure is

imperative for several reasons. First, it matters from a financial stability point of view since

large default losses allocated to systemically important entities can lead to severe systemic

consequences. Second, loss allocation affects market participants’ incentives to use central

clearing. Large participation in central clearing is relevant to achieve more diversification

at CCPs as well as increased transparency (e.g., Acharya and Bisin (2014)), mitigation

of adverse selection (e.g., Vuillemey (2019)) and counterparty risk (e.g., Bernstein et al.

(2019)). Third, due to their effect on expected default losses, loss sharing rules might affect

derivative prices, with a potential feedback on hedging costs for the real economy. Finally,

as clearing regulation is still being refined, market participants try to exert influence on loss

sharing rules (e.g., ABN AMRO Clearing Bank N.V. et al. (2020)). Therefore, assessing the

financial implications of loss sharing rules is important to understand market participants’

incentives.

Our results are as follows. First, at the aggregate level we show that the total amount of

default losses largely depends on the structure of the network. In case of a complete network,

i.e., when everybody trades with everybody, netting benefits are very large, which results

in lower expected total default losses that need to be allocated by the CCP compared to a

core-periphery network, which is incomplete by definition.

Second, we zoom in on the distribution of losses across market participants. If loss

sharing is proportional to net portfolio risk, central clearing induces a wedge between market

participants in an incomplete market network, i.e., with a core-periphery network structure.

Specifically, participants in the core with a flat portfolio benefit substantially more from

central clearing, relative to not clearing, than those in the periphery or with a directional

portfolio. In fact, in calibrated simulations of our model central clearing increases default

losses borne by peripheral entities, such that they do not benefit at all. The intuition is that

due to off-setting positions across counterparties, central clearing substantially reduces net

portfolio risk for entities with a flat portfolio. This leads to a small loss sharing contribution.

In contrast, peripheral entities have limited netting opportunities. Thus, peripheral entities

contribute far more to loss sharing than market participants with flat portfolios, compared

to the expected default loss without central clearing. This leads to an uneven distribution
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of relative clearing benefits across entities. The result is consistent with the reluctance of

end-users (which are typically in the periphery with directional portfolios) relative to dealers

(which are typically in the core with flat portfolios) to centrally clear their trades in practice

(Bank for International Settlements (BIS) (2018)), and with the claim of end-users that they

are “penalized” by loss sharing rules (Novick et al. (2018)).

Third, we investigate an alternative loss sharing rule. While losses in our baseline results

are shared proportionally to net portfolio risk among clearing members, we now examine the

effect of sharing losses proportionally to gross risk, i.e., gross notional. We show that this loss

sharing rule completely removes heterogeneity across market participants. Specifically, every

market participant benefits from loss sharing to the same extent, relative to an uncleared

market. The intuition is that, compared to an allocation proportional to net risk, allocating

losses proportionally to gross risk forces entities in the core to bear losses that otherwise

would be allocated to peripheral entities. Thereby, peripheral entities’ total contribution is

reduced, which makes central clearing more attractive for them. As a result, all entities have

the same benefit of central clearing compared to an uncleared market, both in the core and

in the periphery. While entities with a flat portfolio are worse off with the gross-based rule

compared to the net-based rule, central clearing with the gross-based rule is still beneficial for

them in calibrated examples. Importantly, changes in loss allocation rules do not affect the

total benefit achieved by the CCP netting across defaulting and surviving clearing members.

Instead, it affects the distribution of remaining losses (i.e., after netting) among surviving

clearing members.

We also investigate the effects of systematic risk, i.e., correlation among the prices of dif-

ferent derivatives contracts. Correlation impairs netting benefits. As a result, we show that

central clearing becomes less favorable for market participants in the core with directional

portfolios, relative to not clearing. The extreme case is still the one for peripheral traders,

for which expected default losses are smaller without central clearing. Nonetheless, also in

the case with systematic risk, a loss sharing rule based on gross notional reduces the wedge

between core and peripheral entities, as well as between entities with flat and directional

portfolios. Finally, we show that our baseline results also apply to tail risks, i.e., default

losses in times of market turmoil, and when entities default in clusters.

Since our analysis concentrates on the risk of default losses, our model does not incor-

porate other advantages and disadvantages of central clearing, such as the effects on capital

requirements, margin costs, transparency, and market liquidity. Nonetheless, we discuss im-

plications from our model about such related equilibrium trade-offs. For example, we argue

based on our results that a structural change of the OTC market from a core-periphery

structure to a more complete network (e.g., all-to-all trades via centralized trading) would
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reduce the wedge in the effect of clearing across all entities. Hence, centralized trading could

incentivize more entities to use central clearing, even with loss sharing rules based on net

risk.

The remainder of this paper is structured as follows. Section 2 describes the related

literature and our contribution. Section 3 presents the model. In Section 4 and 5, we study

the impact of loss sharing on expected default losses at the CCP and individual entity levels,

respectively. We zoom in on tail risks and assess the sensitivity of our results in Section 6.

Section 7 derives empirical predictions, equilibrium trade-offs, and policy implications from

our analysis, and Section 8 concludes. Propositions and proofs are provided in the Appendix.

2. Literature Review

We contribute to a growing literature on central clearing and its role in derivatives mar-

kets. We are complementary to previous studies and, from a market participant’s perspective,

provide theoretical evidence for the reluctance of peripheral traders to centrally clear.

Previous studies have examined loss sharing and its interaction with CCP collateral and

fee policies (Capponi et al. (2017), Capponi and Cheng (2018), Huang (2018)) as well as

its impact on clearing members’ propensity to engage in risk-shifting (Biais et al. (2016),

Capponi et al. (2019)). These studies typically assume homogeneous market participants.

Instead, we focus on heterogeneity across market participants. We are, to the best of our

knowledge, the first to investigate distributional effects of loss sharing on default losses across

market participants. Thereby, we focus on the role of loss sharing rules, network structure,

systematic risk, and tail risk. We show that the loss sharing rule prevailing in practice,

based on net portfolio risk, has a highly skewed impact on clearing members and benefits

mostly those with flat portfolios. We show that the benefits are homogeneous when a loss

sharing rule proportional to gross notional is implemented. Furthermore, we shed light on

how market network structure, systematic risk in derivatives prices, and tail risk affects the

impact of central clearing.

Duffie and Zhu (2011) and Lewandowska (2015) study the impact of multilateral versus

bilateral netting on counterparty risk exposure. Their main result is that a sufficiently large

number of clearing members guarantees that central clearing reduces counterparty risk. Cont

and Kokholm (2014) follow this rationale and study the effect of correlation of derivative

prices across derivative classes on the benefit of multilateral netting. They conclude that

multilateral netting is likely to reduce counterparty risk exposure compared to bilateral

netting in practice. Ghamami and Glasserman (2017) study the capital and collateral costs

of central clearing and find that there is no cost incentive for single market participants to
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centrally clear derivatives, which is driven primarily by margin costs in their model. Their

result is contrasted by the Financial Stability Board (FSB) (2018)’s assessment that central

clearing reforms create an overall incentive to clear.

Our framework extends the model of Duffie and Zhu (2011). While Duffie and Zhu (2011)

focus on the case that all counterparties - and thus the CCP - default, we examine a more

general case that the CCP suffers losses due the default of any number of clearing members

and then allocates these losses to surviving clearing members. Thereby, we expand the

understanding of central clearing in several dimensions, such as its relation to loss sharing

rules, heterogeneity of clearing members, and extreme events, and provide new insights for

financial regulation. Duffie and Zhu (2011) suggest that netting opportunities are the main

driver for benefits of central clearing. Complementing their approach, we bring two other

important dimensions into the picture: loss sharing and market network structure. We show

that a loss sharing rule based on net exposure is not beneficial for directional/peripheral

traders. For this reason, we propose a simple new loss sharing rule based on gross exposure.

This rules combines the benefit of netting at the CCP level and loss sharing in a way that

central clearing can be beneficial for everyone.

Extreme events are also studied by Huang et al. (2019) and Menkveld (2017), who take

a CCP’s perspective and identify extreme price movements as well as concentrated portfo-

lios as important risks to CCP stability. Complementing their analysis, we take a market

participant’s perspective and compare central clearing to an uncleared market.

Empirical evidence on the impact of central clearing on derivative markets has been

growing only recently, fueled by the increasing availability of granular data. Recent examples

are Loon and Zhong (2014), Duffie et al. (2015), Du et al. (2016), and Bellia et al. (2019) for

single-name CDS, Menkveld et al. (2015) for equity, Mancini et al. (2016) for interbank repo,

and Cenedese et al. (2020) and Dalla Fontana et al. (2019) for IRS markets. Boissel et al.

(2017) estimate that prices in the European repo market implied a substantial risk of CCP

failure during the 2011 European sovereign debt crisis. Bellia et al. (2019) provide empirical

evidence that dealers typically clear contracts with risky counterparties that result in small

CCP margins being paid, i.e., contracts with large netting benefits. This result suggests

that counterparty risk and netting considerations are indeed highly relevant for decisions

to centrally clear. This result is consistent with the historical evidence documented by

Vuillemey (2019), who shows that a spike in counterparty risk during the global coffee crisis

in 1880-81 motivated a group of well-established coffee traders to create a CCP specifically

to mitigate counterparty risk.
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3. A model for central clearing and loss sharing

This section describes our model. The key ingredients are: a network of market partic-

ipants that are subject to default risk, a model for derivative prices, and the loss sharing

mechanism of the CCP.

Default losses result from replacement costs, which are changes in contract values during

the settlement period, i.e., the time between the most recent exchange of collateral (i.e.,

variation margin) and liquidation (i.e., settlement) after a counterparty’s default.6 Without

loss of generality, we consider a one-period model. At time t = 0, derivative contracts are

written (or, equivalently, all contracts are marked to market by the exchange of variation

margin) and, subsequently, counterparties might default. At time t = 1, contracts are settled.

[Place Figure 1 about here]

To capture the effect of loss sharing on market participants’ net worth, we compare a

central clearing architecture with an uncleared market for a given set of derivative trades.

Derivative trades are sorted into K ∈ N derivative classes. This classification can result for

different reasons, for example from grouping derivatives according to the type of underlying,

such as interest rate, credit, commodities, or equities. One could also distinguish between

derivatives that are sufficiently standardized for central clearing and those that are not. This

interpretation is particularly relevant since we assume that a CCP clears (only) all derivative

trades within one specific derivative class K.

There are γ ∈ N market participants (or, equivalently, entities), indexed j = 1, ..., γ, that

trade in all derivative classes K. Each market participant can default with an exogenous

probability π ∈ (0, 1). A defaulted market participant does not honor any obligations arising

from derivative contracts to other market participants (or the CCP). However, liabilities from

surviving market participants (or the CCP) toward a defaulting market participant are being

paid (with the exact allocation specified below).

We denote by vkij the position of entity i with j in class k. vkij reflects the volume and

direction of trade. By symmetry, vkij = −vkji. The absolute size |vkij| determines the contract

volume and thus reflects the notional. Since we will be mainly interested in heterogeneity

in portfolio directionality but not heterogeneity in size, throughout the paper we assume

vkij ∈ {−1, 0, 1} for all i, j, k.

6The length of the settlement period depends on the liquidity of contracts and typically ranges from 2 to
5 days (Arnsdorf (2012)).
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3.1. Market setting: derivative prices

We assume that, during the settlement period, entity i’s net portfolio profit with j in

derivative class k is given by Xk
ij = vkijr

k
ij (see also Figure 1).

rkij is the return (at market value, scaled by contract size vkij) of the net value of contracts

traded between entities i and j in derivative class k during the settlement period. We

initially assume that all contract returns are normally distributed with zero mean, E[rkij] = 0.7

Symmetry substantially reduces the dimension of our model and improves its tractability.8

We consider a single-factor model for contract returns, such that

rkij = βkijM + σkijε
k
ij, (1)

where εkij ∼ N (0, 1) is idiosyncratic risk. It is εkij = εkji (due to symmetry of trades),

εkij and εmhl are independent for different derivative classes k 6= m and different entity pairs

(h, l) /∈ {(i, j), (j, i)}, and εkij is independent from M for all i, j, k.9 The systematic risk factor

M ∼ N (0, σ2
M) serves as a latent variable that reflects macroeconomic conditions (e.g., the

S&P 500 stock market index), and βkij is the systematic risk exposure of the contract portfolio

traded between i and j in class k.

It will be useful to reparametrize rkij in terms of the total volatility, σkX,ij =
√

var(rkij),

and correlation with M , ρkX,M,ij = cor
(
rkij,M

)
, such that βkij = ρkX,M,ijσ

k
X,ij/σM and

σkij = σkX,ij

√
1− (ρkX,M,ij)

2.

Throughout the paper, we assume a positive correlation between returns rkij and the

systematic risk factor M , βkij > 0. This comes without loss of generality, since the final

profit and loss, Xk
ij, ultimately depends on the long and short position of entities, reflected

by the sign of vkij. For example, if vkij > 0, then entity i is long in the systematic risk factor,

cor(Xk
ij,M) > 0. Since symmetry implies that vkji = −vkij, market participant j is then short

in the systematic risk factor, cor(Xk
ji,M) < 0.

We empirically calibrate contract returns in the model based on 5-day returns of index

CDS between January 2006 and December 2009 to capture the elevated stress during crises.10

7Due to the small time horizon of the settlement period, the risk-free rate and risk premium in derivative
prices are negligible. Thus, we assume that they are equal to zero, i.e., E[rkij ] = 0. Expected returns will,
however, be non-zero when we condition on a specific realization of the systematic risk factor.

8The assumption of normally distributed prices might not be justified for individual contracts, since
these often exhibit heavily skewed and fat-tailed market values. However, due to diversification arising from
aggregating across underlying names as well as long and short positions across derivatives traded in the same
derivative class with the same counterparty, it is reasonable that exposures are substantially less skewed or
fat-tailed, particularly for large dealers. The assumption of normality allows us to work with closed-form
analytical solutions or approximations for the most part of the paper.

9Due to symmetry, the gain of i is the loss of j, such that rkij = rkji, and vkij = −vkji.
10A settlement period of 5 days is a common assumption in practice. For example, initial margins for OTC
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Index CDS are already subject to a clearing obligation in the US and EU. The systematic

risk factor M is proxied by the S&P 500. The detailed calibration procedure is documented

in the Online Appendix.

For simplicity and tractability, we assume that all contracts exhibit the same distribu-

tional properties and skip entity-specific indices where possible: β ≡ βkij and σ ≡ σkij for all

i 6= j and k = 1, ..., K, which implies that ρX,M ≡ ρkX,M,ij = β σM√
β2σ2

M+σ2
. Thus, there is a

monotonic relationship between ρX,M and β.

3.2. Market setting: network of trades

We consider three stylized network structures which are commonly found in practice. For

simplicity, we assume that networks are the same within each asset class k.11

3.2.1. Flat and complete network

In a flat-complete network, each entity trades with each other entity and each entity’s

portfolio within each derivative class is flat across counterparties, that is

vkij 6= 0 ∀i, j ∈ {1, ..., γ}, i 6= j, k = 1, ..., K (2)

and

γ∑
j=1
j 6=i

vkij ≈ 0 ∀i = 1, ..., γ, k = 1, ..., K, (3)

where the last condition holds with equality if γ is uneven. If Equation (3) holds with

equality for all entities i and derivative prices are perfectly correlated (i.e., if there was no

idiosyncratic risk), each entity’s portfolio is risk-less.

3.2.2. Heterogeneous and complete network

In a heterogeneous-complete network, each entity trades with each other entity. However,

contrary to the flat-complete network, not every entity’s portfolio is flat across counterpar-

ties. Instead, this network structure includes entities with different portfolio directionalities.

Equation (4) illustrates differences in portfolio directionality in a network with five entities,

where a cell (i, j) is the derivative position of entity i (in row i) with counterparty j (in

foreign exchange and IRS trades is based on a 5-day settlement period at CME (see their CPMI-IOSCO
Quantitative Disclosure for 2019Q3).

11It is straightforward to modify this assumption, which would not qualitatively change our results but
substantially complicate the analysis and require additional and more detailed assumptions.
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column j):

(vkij)i,j∈{1,...,γ} =


1 1 1 1 (fully directional)

−1 1 1 1

−1 −1 1 1 (flat)

−1 −1 −1 1

−1 −1 −1 −1 (fully directional)

 for all k = 1, .., K. (4)

In this network, portfolios may be flat, partially or fully directional across counterparties.

In particular, each heterogeneous-complete network includes one entity i = γ+1
2

with a flat

portfolio, γ−1
2

entities with directional portfolios across counterparties with a net portfolio

value that is positively correlated with the systematic risk factor,
∑γ

j=1,j 6=i v
k
ij > 0, and γ−1

2

entities with directional portfolios across counterparties with a net portfolio value that is

negatively correlated with the systematic risk factor,
∑γ

j=1,j 6=i v
k
ij < 0. This network exists

only if γ ≥ 3 is uneven:

γ∑
j=1,j 6=i

vkij ∈ (0, γ − 1] ∀i =
γ + 1

2
+ 1, ..., γ, (core, directional) (5)

γ∑
j=1,j 6=i

vkij = 0 if i =
γ + 1

2
, (core, flat) (6)

and

γ∑
j=1,j 6=i

vkij ∈ [−(γ − 1), 0) ∀i = 1, ...,
γ + 1

2
− 1 (core, directional). (7)

While this network is clearly a simplification, it is transparent and allows us to shed light

on the trade-off between directionality in portfolios.12

3.2.3. Core-periphery network

Finally, we consider a core-periphery network, which can be found in many OTC markets

in practice (Getmansky et al. (2016), Di Maggio et al. (2017), Li and Schürhoff (2019)). In

this case, central intermediaries (“dealers”) in the core of the network trade (1) with each

12We specify an exogenous market network of positions in order to focus on the effect of central clearing
and loss sharing on default losses. Our assumptions about the network structure are realistic, e.g., in the
CDS market (Getmansky et al. (2016)). While it may be unknown whether a specific entity will be long
or short in the future, the market structure is likely to be stable over time. Moreover, business models
and strategies of many entities naturally lead to the direction of trade sides. For example, insurers take
pay-float positions to hedge the negative duration mismatch on their balance sheet. Another example are
asset managers (e.g., hedge funds), that have been replacing dealers as largest net sellers of CDS protection
since the 2008 financial crisis (Siriwardane (2019)).
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other and (2) with clients in the periphery. Clients in the periphery only trade with a small

number of dealers. We assume that there are γ−1
2

entities in the core of the network, and γ+1
2

entities in the periphery. The network exists and includes more than one core entity if γ−1
2

is uneven, i.e., γ = 2k+ 1 ≥ 5 with uneven k ∈ N, k ≥ 3. Each peripheral entity trades only

with one core entity, while each core entities trades with two periphery entities and with all

core entities. The following illustrates the network with γ = 11 entities:

(vkij)i,j∈{1,...,γ} =



1

1

1

-1 1 1 1 1

-1 -1 1 1 1

-1 -1 -1 1 1 1

-1 -1 -1 1 1

-1 -1 -1 -1 1

-1

-1

-1



. (8)

The core in Equation (8) is marked in gray: rows (and columns) 4-8 correspond to entities

in the core. On the contrary, rows (columns) 1-3 and 9-11 correspond to entities in the

periphery. Clearly, no two entities in the periphery trade with each other, each entity in

the periphery trades with only one entity in the core, and all entities in the core trade

with each other. Peripheral entities are thus purely directional, while core entities differ in
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directionality,

γ∑
j=1,j 6=i

vkij = 1 ∀i =
3γ − 1

4
+ 1, ..., γ, (periphery) (9)

γ∑
j=1,j 6=i

vkij ∈ (0,
γ

2
) ∀i =

γ + 1

2
+ 1, ...,

3γ − 1

4
, (core, directional) (10)

γ∑
j=1,j 6=i

vkij = 0 if i =
γ + 1

2
, (core, flat) (11)

γ∑
j=1,j 6=i

vkij ∈ [
γ

2
, 0) ∀i =

γ + 1

4
+ 1, ...,

γ + 1

2
− 1, (core, directional) (12)

and

γ∑
j=1,j 6=i

vkij = −1 ∀i = 1, ...,
γ + 1

4
(periphery). (13)

3.3. Default losses and loss sharing

Our model for entity defaults is inspired by Merton (1974)’s credit risk model, but ad-

ditionally allows for the possibility of default clustering. We model each entity j’s value of

assets Aj. If Aj is below an exogenous debt threshold, j defaults. In the default model, the

random value of entity j’s value of assets at the settlement period begin is given by

Aj = exp

(
µAj −

σ2
Aj

2
+ σAjWj

)
, (14)

where (W1, ...,Wγ) are jointly standard normally distributed and correlated according to the

correlation matrix (ρAj ,Ah)j,h∈{1,...,γ}.
13 µAj and σAj are the drift and volatility of the asset

value process, respectively.14

We assume that ρAj ,Ah > 0 for j 6= h, which implies that market participants default

in clusters. Correlation in defaults can result from interconnectedness between (financial)

institutions, e.g., interbanking liabilities, such that the financial distress of one entity spills

over to other entities. A prime example has been Lehman Brothers’ default during the

13In an earlier working paper version, we also allowed for correlation between asset values and systematic
risk factor, which introduces a wedge between entities with a negative vs. positive correlation between their
derivatives portfolio and the systematic risk factor. Here, we focus on correlation across derivatives prices but
assume independence between derivative prices and defaults, which substantially improves the tractability
of our model by allowing for closed-form solutions.

14The model is described in the Online Appendix in detail.
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2007-08 financial crisis, which triggered substantial losses of other financial institutions. We

define by Dj a binary random variable that equals one if market participant j defaults, which

happens when Aj breaches an exogenous debt threshold. We calibrate the debt threshold

and distributional parameters of (Aj)j for a given default probability π ∈ (0, 1), i.e., P(Dj =

1) = π, and asset correlation ρAj ,Ah ≡ ρA,A for all j, h.

Market participants exchange collateral (i.e., initial margin) with each other and with the

CCP.15 First, we consider a non-centrally cleared market. We assume that all entity pairs

have bilateral (close-out) netting agreements with each other. Netting agreements aggregate

outstanding positions into one single claim (Bergman et al. (2004)) and are common market

practice (e.g., Mengle (2010)). Bilateral netting offsets gains and losses of different derivative

trades across different derivative classes (e.g., IRS and CDS) with a single counterparty.

If all derivative classes are bilaterally netted, then the expected loss due to the default

of entity i’s counterparties, i.e. entity i’s expected default loss, is

E
[
DLKi

]
= E

[
γ∑

j=1,j 6=i

Dj max

(
K∑
k=1

Xk
ij − CK

ij , 0

)]
, (15)

where CK
ij is the total collateral provided by j to i. Note that a counterparty j’s default

results in a default loss for i only if it coincides with an adverse price movement in excess of

the collateral CK
ij posted by j to i.

We reparametrize the collateral as a Value-at-Risk of the uncleared portfolio between i

and j, such that CK
ij = V aRαuc

(∑K
k=1X

k
ij

)
with αuc ∈ (0, 1) being the confidence level.16

The larger αuc, the more protected is i against a default of j. It is then straightforward to

show that i’s expected default loss corresponds to (see Proposition A.1 in the Appendix)

E
[
DLKi

]
= πξ(αuc)

γ∑
j=1,j 6=i

1{∑K
k=1 |vkij |>0}

√√√√σ2
Mβ

2

(
K∑
k=1

vkij

)2

+ σ2

K∑
k=1

(
vkij
)2
, (16)

where π ∈ (0, 1) is the probability of each entity’s default and ξ(α) = (1− α)Φ−1(1− α) +

ϕ (Φ−1(α)).

Second, we introduce central clearing and loss sharing. If derivative class K is centrally

cleared by a CCP, all entities i = 1, ..., γ become clearing members at the CCP while the

CCP is the single counterparty to all positions in this derivative class.17 Thus, there is

15Biais et al. (2016) rationalize the exchange of collateral by moral hazard frictions of counterparties.
16Using a Value-at-Risk approach is common industry practice (e.g., ISDA (2013)) and partly mandated

by the regulator (Bank for International Settlements (BIS) (2019)).
17Note that we do not explicitly consider client clearing in our analysis. In some instances, loss sharing

mechanisms apply to clients and dealers in the same manner, in which case the model directly applies. If,
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netting across counterparties, which is called multilateral netting. For example, in Figure 2,

A can reduce its total exposure from $100 to $40 with multilateral netting, as the exposure

of $100 to B is offset with a loss of $60 to C.

[Place Figure 2 about here]

If a clearing member’s default results in a loss for the CCP, this loss is offset by contribu-

tions from the surviving clearing members. The CCP suffers losses only in case at least one

clearing member j defaults and the net liability of j toward the CCP exceeds the collateral

CCCP
j posted by j to the CCP.18 The aggregate default loss at the CCP level is then given

by

DLCCP =

γ∑
j=1

Dj max

 γ∑
g=1,
g 6=j

XK
gj − CCCP

j , 0

 . (17)

The CCP’s task is to allocate DLCCP to surviving (i.e., non-defaulting) clearing members.

We consider two different loss sharing rules, namely allocating losses (1) proportionally to

net risk and (2) proportionally to gross risk. Since a clearing member i’s portfolio net

risk is proportional to the (initial) margin CCCP
i in our model, the first loss sharing rule

is equivalent to allocating losses proportionally to initial margin. The second loss sharing

rule is equivalent to allocating losses proportionally to a clearing member i’s gross notional

cleared, which is
∑γ

j=1,j 6=i |vKij |.
Loss sharing proportional to net risk is very close to current market practice and, e.g.,

suggested by Duffie (2015).19 Under this rule, a clearing member contributes more if the

net risk in the cleared derivatives portfolio is larger. The natural alternative is loss sharing

otherwise, the contractual relationship between a client and dealer shields clients from loss sharing (which
can be the case especially in Europe), it is similar to an uncleared contract in our model.

18In practice, default losses are absorbed not only by the defaulter’s collateral and surviving members but
also by a share of the CCP’s capital, its skin-in-the-game (SITG), and a pre-funded default fund contri-
bution of the defaulting clearing member. SITG is very small in practice, typically less than 5% of initial
margins (Huang (2018)). Pre-funded default fund contributions are even smaller, e.g., less than 1% of initial
margin for cleared OTC IRS at LCH and cleared CDS at ICE Clear Credit in 2019 (Source: CPMI-IOSCO
Quantitative Disclosures 2019 Q3), which are the largest CCPs for USD- and Euro-denominated IRS and
CDS, respectively. Moreover, pre-funded contributions are replenished regularly, which makes them similar
to cash calls. Therefore, we do neither consider SITG nor pre-funded default funds explicitly. We do not
expect that including them would change our results qualitatively, but it would substantially complicate the
analysis. For a detailed discussion of the use of a CCP’s pre-funded resources to cover losses, we refer to
Duffie (2015), Armakolla and Laurent (2017), and Elliott (2013).

19For example, the default rules of LCH, one of the largest CCPs worldwide, specify that contributions to
loss sharing are proportional to pre-funded contributions to the CCP’s default fund, which are proportional to
the CCP’s exposure to each clearing member and replenished regularly (typically each month), e.g., see LCH
Default Rules for Listed Rates available at https://www.lch.com/resources/rules-and-regulations.
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proportional to gross notional. In this case, clearing members do not benefit from netting:

two members with the same gross notional are allocated the same loss even if one member’s

portfolio is directional and the other one’s is perfectly hedged.20

A clearing member i’s expected loss in the centrally cleared derivative class K due to

counterparty defaults is given by its expected loss sharing contribution (LSC), which in the

case of allocating losses proportionally to net risk is21

E[LSCi
∝net] = E

[
(1−Di)C

CCP
i∑γ

g=1(1−Dg)CCCP
g

DLCCP |
γ∑
g=1

(1−Dg) > 0

]
, (18)

and in the case of allocating losses proportionally to gross risk is

E[LSCi
∝gross] = E

[
(1−Di)

∑γ
j=1,j 6=i |vKij |∑γ

g=1(1−Dg)
∑γ

j=1,j 6=g |vKgj|
DLCCP |

γ∑
g=1

(1−Dg) > 0

]
. (19)

The loss sharing contributions can be rewritten as (see Propositions A.2 and A.3 in the

Appendix)

E[LSCi
∝net] = E

[( ∑γ
g=1 σ̄

CCP
g∑γ

g=1(1−Dg)σ̄CCPg

− 1

)
ξ(αCCP )(1−Di)σ̄

CCP
i |

γ∑
g=1

(1−Dg) > 0

]
,

(20)

and

E[LSCi
∝gross] = E

[
(1−Di)v

K
i∗∑γ

g=1(1−Dg)vKg∗
ξ(αCCP )

γ∑
j=1

Djσ̄
CCP
j |

γ∑
g=1

(1−Dg) > 0

]
, (21)

where σ̄CCPg =

√
σ2
Mβ

2
(∑γ

j=1,j 6=g v
K
jg

)2

+ σ2
∑γ

j=1,j 6=g(v
K
jg)

2 is the volatility in entity g’s cen-

trally cleared portfolio and vKi∗ =
∑γ

j=1,j 6=i |vKij | is entity i’s total gross notional cleared. If

one derivative class is centrally cleared and K − 1 remaining classes are uncleared, entity i’s

overall expected default loss is E
[
DLi

K−1 + LSCCCP
i

]
.

Since a CCP’s exposure is based on changes in a clearing member’s net portfolio value, it is proportional to
net portfolio risk and, thus, the initial margin in our model with Normally distributed prices.

20Other loss sharing mechanisms may lie in-between these two extremes. Since gross exposures seize to
exist once they have been novated and netted by a CCP, in practice loss sharing proportionally to gross
notional would need to be computed by aggregating the gross flow of cleared transactions instead of the
existing (net) stock of outstanding exposures.

21We condition on at least one entity surviving since it is extremely unlikely that all entities default at
the same time, and in practice it seems likely that a government would bail out a CCP in the case that all
clearing members default, given the systemic importance of most CCPs.
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Throughout the analysis, we assume that the clearing and uncleared margins are both

based on a 99% confidence level, which is consistent with common market practice.22 We

assume that, if not specified differently, entities default with probability π = 0.05 and assets

in the default model have correlation ρA,A = 0.1.23

We examine the effect of loss sharing on an entity’s expected default loss relative to an

uncleared market, which we define by24

∆Ei =
E[DLi

K−1 + LSCCCP
i ]− E[DLi

K ]

E[DLi
K ]

. (22)

If ∆Ei < 0, loss sharing reduces entity i’s expected default losses compared to an uncleared

market. For notational convenience, we sometimes call loss sharing more favorable if ∆Ei is

smaller, which means that loss sharing results in a larger reduction (or, equivalently, smaller

increase) of expected default losses relative to an uncleared market.

In the following, we investigate the distribution of ∆Ei across market participants i and

its interaction with network structure, loss sharing rules, and systematic risk. To motivate

our focus on ∆Ei, suppose that market participants decide whether to use central clearing

based on its effect on expected default losses, i.e., counterparty risk. Counterparty risk is

highlighted as a key determinant for central clearing participation, e.g., by Bellia et al. (2019),

Financial Stability Board (FSB) (2018), and Vuillemey (2019). Furthermore, suppose that

regulators maximize a policy objective O = O(ω), ω ∈ Ω, where Ω is the space of potential

policies (e.g., regulation of loss sharing rules or trading platforms). Each policy is associated

with a set S(ω) ⊆ N of market participants that are desired but not forced to use central

clearing. Then, the optimal policy solves

max
ω∈Ω

O(ω) (23)

subject to ∆Ei(ω) ≤ 0 for all i ∈ S(ω). (24)

Hence, ∆Ei(ω) ≤ 0 is the incentive compatibility constraint conditional on a policy ω that

aims to incentivize market participant i to use central clearing. Indeed, policymakers have

22For example, CME sets initial margins at the 99% VaR for futures and options, and at the 99.7% VaR
for interest rate swaps (see CME’s CPMI-IOSCO Quantitative Disclosure 2019Q3). The effect of margin
differences in our model is straightforward to assess since ξ(α) is decreasing with α: the larger αCCP relative
to αuc, the smaller is E[LSCi

CCP +DLi
K−1] relative to E[DLKi ].

23The results are robust toward other levels of default clustering. The detailed calibration is reported in
the Online Appendix.

24While we derive closed-form analytic expressions for uncleared default losses, the expected contributions
to loss sharing are not available in closed-form. Therefore, we evaluate Equations (20) and (21) by Monte-
Carlo simulations with 200,000 realizations of default vectors (Dj)j=1,...,γ .
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been undertaking substantial effort to incentivize market participants to use central clearing

(e.g., see Financial Stability Board (FSB) (2018)), which suggests that dO
d|S| > 0. To achieve

policies involving large central clearing participation, it is of paramount importance to un-

derstand the effect of central clearing on default losses, ∆Ei, and its heterogeneity across

market participants. The following analysis serves as a first step by highlighting the key

economic trade-offs.

4. Network structure and total default losses

Before examining market participants’ default losses, we compare the total expected

default loss in the centrally cleared derivative class K, E[DLCCP ], across different network

structures. It is important to note (1) that different network structures imply different levels

of total losses due to differences in (aggregate) netting opportunities and (2) that these

differences depend on the level of systematic risk. Since networks also differ in total trading

volume, we focus on differences in network structure by comparing the total expected default

loss per dollar gross notional cleared.

In the absence of systematic risk (i.e., if ρX,M = 0), each entity’s portfolio risk in the

flat-complete and in the heterogeneous-complete networks is the same: trades have only

idiosyncratic risk and each entity has the same number and volume of trades. As a result,

if ρX,M = 0, the total expected default loss per gross notional cleared is the same in both

networks.

In contrast, peripheral entities only trade with one counterparty by assumption, which

reduces the ability to multilaterally net across gains and losses across counterparties. There-

fore, a peripheral entity’s (cleared) portfolio’s risk per gross notional cleared is larger than

that for a core entity. As a result, the total expected default loss per gross notional cleared

is larger in the core-periphery network than in complete networks. Figure 3 (a) illustrates

this result.

[Place Figure 3 about here]

In the presence of systematic risk, the directionality of entities’ portfolios becomes rele-

vant. From above, the volatility of an entity i’s cleared (class-K) portfolio is

σ̄CCPi =

√√√√√ γ∑
j=1,j 6=i

(vKji )
2

σ2
Mβ

2

( ∑γ
j=1,j 6=i v

K
ji∑γ

j=1,j 6=i |vKji |

)2 γ∑
j=1,j 6=i

|vKji |+ σ2

. (25)
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Therefore, holding the total portfolio size (i.e., gross notional)
∑γ

j=1,j 6=i |vKji | fixed, larger

directionality reflected in a larger net-to-gross ratio
( ∑γ

j=1,j 6=i v
K
ji∑γ

j=1,j 6=i |v
K
ji |

)2

results in larger portfolio

risk σ̄CCPi . In other words, entities with a more directional portfolio have higher portfolio

risk. This implies that the total class-K expected default loss is larger in a heterogeneous-

complete network compared a flat-complete network. Figure 3 (b) illustrates this result.

A core-periphery network additionally includes peripheral entities with a purely direc-

tional portfolio and only one counterparty. Perfectly directional entities in the core and

peripheral entities both have the largest possible net-to-gross ratio of one. Thus, the to-

tal class-K expected default loss in a heterogeneous-complete network is similar to that in

a core-periphery network, with the important difference that the latter includes relatively

more entities with a large net-to-gross-ratio. As a result, the total class-K expected default

loss is larger in a core-periphery network than in a heterogeneous-complete network.

Overall, these results show that total default losses highly depend on network structure.

Proposition 1 provides a formal proof of the results and shows that they hold independently

of the number of market participants γ.

Proposition 1 (Class-k total expected default loss). Fix γ > 2 and denote by GN the total

gross notional centrally cleared,

GN =

γ∑
i=1

γ∑
j=1,j 6=i

|vKji |. (26)

The total expected default loss per dollar gross notional in the centrally cleared derivative

class K is strictly larger in the core-periphery network than in the heterogeneous-complete

network,

E
[
DLCCPcore−periphery

]
GNcore−periphery

>
E
[
DLCCPheterogeneous−complete

]
GNheterogeneous−complete

. (27)

In the absence of systematic risk (i.e., with ρX,M = 0), the class-K total expected default loss

per dollar gross notional coincides in the heterogeneous-complete and flat network,

E
[
DLCCPheterogeneous−complete

]
GNheterogeneous−complete

=
E
[
DLCCPflat

]
GNflat

, (28)

but in the presence of systematic risk it is strictly smaller in the flat network,

E
[
DLCCPheterogeneous−complete

]
GNheterogeneous−complete

>
E
[
DLCCPflat

]
GNflat

. (29)
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Proof. See Appendix.

5. Effect of loss sharing on expected default losses

In this section, we examine the relative effect of loss sharing on expected default losses,

∆E, and how it depends on network structure, market participants’ position in networks,

and the directionality of market participants’ portfolio. First, we consider the case without

systematic risk (i.e., if ρX,M = 0) and, second, we examine the effect of systematic risk.

5.1. The case without systematic risk

We start by considering a loss allocation that is proportional to the net risk of the

cleared portfolio, σ̄CCPi , and, thus, in our model proportional to initial margins. With only

idiosyncratic risk, volatility of the cleared portfolio is independent of portfolio directionality.

However, in the core-periphery network, it differs between core and peripheral entities since

the cleared portfolio’s volatility increases with the number of counterparties (see Equation

(25)). Due to multilateral netting across counterparties, the larger the number of counter-

parties, the smaller is the volatility of the cleared portfolio relative to the expected uncleared

default loss.25 That is particularly relevant for comparing entities in the core to those in

the periphery of the network: there are strong multilateral netting benefits for core entities,

as they trade with many counterparties, and weak benefits for peripheral entities, as they

trade with only one counterparty. As a consequence, when losses are allocated proportionally

to initial margin (thus, portfolio volatility), peripheral entities bear more losses than core

entities, relative to their expected default loss without central clearing. In other words, loss

sharing is less beneficial (or even more harmful) for core than for peripheral entities. Figure

4 (a) illustrates this result.

[Place Figure 4 about here]

In contrast to the core-periphery network, the effect of loss sharing does neither differ

across entities within nor across the heterogeneous-complete and flat-complete networks. The

reason is that - in the absence of systematic risk - differences in directionality do not affect

portfolio risk and thus both the relative loss sharing contribution as well as the class-K total

expected losses coincide. Nonetheless, as we have shown in the previous section, the class-K

total expected loss is larger in the core-periphery network than in complete networks, due to

25This directly follows from the fact that the expected uncleared default losses depends linearly on the
number of counterparties while the volatility of the cleared portfolio is proportional to its square-root (see
Equation (25)).

20



differences in netting opportunities. As a result, loss sharing is generally more beneficial in

complete networks than in the core-periphery network, as Figure 4 (a) shows. The following

proposition summarizes these results.

Proposition 2 (Loss sharing proportional to net risk without systematic risk). Assume that

derivative positions are idiosyncratic and consider a core-periphery network with γ > 3. If

losses are allocated proportionally to net risk, it is

∆E∝net
periphery > ∆E∝net

core (30)

and

d

dγ

(
∆E∝net

periphery −∆E∝net
core

)
> 0. (31)

The increase in expected default losses due to loss sharing is strictly larger in the core-

periphery network than in the heterogeneous-complete and flat-complete networks for any

pair of entities,

min
(
∆E∝net

periphery,∆E
∝net
core

)
> max

(
∆E∝net

flat-complete,∆E
∝net
heterog-complete

)
. (32)

Proof. See Appendix.

Next, we examine the impact of altering the loss sharing mechanism. If losses are allo-

cated proportionally to gross notional, the relative effect of loss sharing is the same across

entities in the core-periphery network, as Figure 4 (b) illustrates. The reason is that gross

notional removes the impact of multilateral netting and is proportional to the expected un-

cleared class-K default loss. Therefore, the loss sharing contribution of core entities with a

large multilateral netting potential (i.e., with many counterparties) is the same as that of

peripheral entities with no multilateral netting potential relative to their uncleared default

loss, respectively. By removing the impact of multilateral netting, core entities’ expected

LSC increases compared to one that is proportional to net risk, while peripheral entities’

expected LSC decreases. As a result, all entities benefit from loss sharing to the same extent

- relative to their uncleared expected default loss.

Although differences within the core-periphery network vanish, differences across net-

works remain. Figure 4 (b) shows that loss sharing is relatively more beneficial in the flat-

complete and heterogeneous-complete networks than in the core-periphery network. The

reason is that, due to overall netting opportunities, the total expected default loss in the

centrally cleared derivative class is smaller in the former than in the core-periphery network
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(see Section 4). Intuitively, loss allocation mechanisms only affect the allocation of losses

within networks, but not the overall expected loss across networks. The following proposition

summarizes these results.

Proposition 3 (Loss sharing proportional to gross notional without systematic risk). As-

sume that derivative positions are idiosyncratic and consider a core-periphery network with

γ > 3. If losses are allocated proportionally to gross notional, it is

∆E∝gross
periphery = ∆E∝gross

core (33)

independent of γ. The increase in expected default losses due to loss sharing is strictly larger

in the core-periphery network than in the heterogeneous-complete and flat-complete networks

for any pair of entities,

min
(
∆E∝gross

periphery,∆E
∝gross
core

)
> max

(
∆E∝gross

flat-complete,∆E
∝gross
heterog-complete

)
. (34)

Proof. See Appendix.

5.2. The case with systematic risk

In this section, we assume that derivative prices are correlated. More specifically, each

derivative’s price is correlated with the systematic risk factor M . Without loss of generality,

we assume a positive correlation ρX,M > 0. The important effect of systematic risk is on

netting opportunities: the more correlated derivative prices are, the smaller are netting

benefits. As a result, portfolio risk differs with portfolio directionality, that is, with the

net-to-gross ratio

v∗i =
|
∑γ

j=1,j 6=i v
K
ji |∑γ

j=1,j 6=i |vKji |
. (35)

The more directional a portfolio, the smaller are netting benefits and the larger is its overall

correlation with the systematic risk factor and, thus, its total volatility.

In Section 4 we have highlighted that this effect leads to a larger total default loss in a

heterogeneous-complete network, where some entities have directional portfolio, compared

to a flat-complete network, where all entities have flat portfolios. In this section, we examine

the implications on the entity-level, i.e., on an entity’s expected loss sharing contribution. On

the entity-level, the presence of systematic risk implies that entities with different portfolio

directionality post different levels of margins, due to differences in portfolio risk. Entities

with a more directional portfolio post more margin.
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As a result, if loss sharing is proportional to net risk, it is relatively less beneficial for

entities with a more directional portfolio. Figure 5 (a) illustrates this effect. It applies

within the heterogeneous-complete and the core-periphery network, where cleared portfolios

of core entities differ in directionality. Peripheral entities are similar to core entities with a

purely directional portfolio, but additionally have lower multilateral netting since they only

trade with one counterparty. Thus, as before, peripheral entities have much lower benefits

from loss sharing than core entities. As a result, in Figure 5 (a) central clearing is incentive

compatible only for entities in the core but not for peripheral entities, from the perspective

of expected default losses (i.e., ∆Ei ≤ 0). Instead, in the flat complete network, all entities

have a flat portfolio and, thus, have the same benefit of loss sharing.

[Place Figure 5 about here]

Due to the presence of systematic risk, loss allocation rules attain a second task, namely

to smooth the effect of loss sharing across core entities with different portfolio directionality.

As Figure 5 (b) illustrates, if losses are allocated proportionally to gross notional, the effect

of loss sharing is the same within networks – independent of portfolio directionality and

of whether entities are in the core or periphery. The intuition is similar to above. The

allocation proportional to gross notional removes the impact of netting opportunities on

the relative loss allocation. Thus, if two surviving entities have the same portfolio size

(such as any two core entities in the core-periphery network), they bear the same amount of

losses. As a result, all entities within a given network benefit from loss sharing to the same

extent - relative to their uncleared expected default loss. In Figure 5 (b) central clearing is

then incentive compatible for all market participants, both in the core and periphery (i.e.,

∆Ei ≤ 0). Importantly, while core entities with a flat portfolio benefit less with a rule that

is proportional to gross risk compared to one proportional to net risk, they still benefit from

central clearing compared to an uncleared market, i.e., it is still incentive compatible for

them. The following proposition summarizes these results.

Proposition 4 (Portfolio directionality and systematic risk). Assume that |ρX,M | > 0 and

γ ≥ 2. Define by v∗i =
|
∑γ
j=1,j 6=i v

K
ji |∑γ

j=1,j 6=i |v
K
ji |

entity i’s net-to-gross ratio.

If centrally cleared losses are allocated proportionally to net risk, the effect of central

clearing on entity i’s expected default loss depends on portfolio directionality and differs

across core and periphery. Specifically, it is

∆E∝net
peripheral ≥ ∆E∝net

core (directional) > ∆E∝net
core (flat), (36)
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where the first inequality binds only if v∗i = 0 and γ = 3, and is strict otherwise. Moreover,

d

dv∗i
∆E∝net

core (directional) > 0. (37)

If centrally cleared losses are allocated proportionally to gross notional, then

∆E∝gross
peripheral = ∆E∝net

core (gross) = ∆E∝net
core (flat), (38)

independent of portfolio directionality.

Proof. See Appendix.

6. Tail risk and robustness

The primary purpose of central clearing is to enhance financial stability during crises times

(see, e.g., G20 (2009), Financial Stability Board (FSB) (2017)). In these times, CCPs should

ideally absorb losses arising from counterparty defaults and thereby decrease the spillover of

risk in the overall financial system. Thus, it is of prevalent importance to contrast the effect

of loss sharing during extreme and moderate times.

We examine loss sharing during different degrees of stress times by conditioning on par-

ticular realizations of the systematic risk factor M .26 One can interpret this approach as

an analysis of loss sharing during days on which the economy (e.g., the S&P 500) performs

particularly poorly (or well). Proposition 5 derives an entity’s expected default loss with and

without loss sharing conditional on the systematic risk factor M . The Proposition shows that

the effect of loss sharing now depends not only on the directionality of portfolios (which we

measure by
(∑K

k=1 v
k
ij

)2

) but also on the direction, namely on
∑K

k=1 v
k
ij. In other words, the

effect of loss sharing is different for an entity with an overall positive correlation of cleared

trades with the systematic risk factor (
∑K

k=1 v
k
ij > 0) compared to an overall negative corre-

lation (
∑K

k=1 v
k
ij < 0) even if the absolute level of correlation is the same.

Proposition 5 (Expected losses conditional on M). Assume that K derivative classes are

uncleared and that vkij ∈ {−1, 0, 1}, and denote by CK
ij = V aRαuc

(∑K
k=1 X

k
ij

)
the uncleared

26This rationale and approach is similar to the (marginal) expected shortfall of Acharya et al. (2017):
while they examine the capital shortfall of financial institutions during crises, we study loss sharing risk
during crises.
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margin. Then, entity i’s expected default loss conditional on M equals

E[DLKi |M ] = π

γ−1∑
j=1,j 6=i

1{∑K
k=1 |vkij |>0} ·

[(
Mβ

K∑
k=1

vkij − CK
ij

)
Φ

(
Mβ

∑K
k=1 v

k
ij − CK

ij

σ
√
K

)

+ σ
√
Kϕ

(
−
Mβ

∑K
k=1 v

k
ij − CK

ij

σ
√
K

)]
. (39)

If class K is centrally cleared and losses are allocated proportionally to net risk, entity i’s

expected loss sharing contribution conditional on M is given by

E[LSCi
∝net |M ] = E

[
(1−Di)σ̄

CCP
i∑γ

g=1(1−Dg)σ̄CCPg

γ∑
j=1

DjE[eCCPj |M ] |
γ∑
g=1

(1−Dg) > 0

]
(40)

and if losses are allocated proportionally to gross notional, entity i’s expected loss sharing

contribution conditional on M is given by

E[LSCi
∝gross |M ] = E

[
(1−Di)

∑γ
j=1,j 6=i |vKij |∑γ

g=1(1−Dg)
∑γ

j=1,j 6=g |vKgj|

γ∑
j=1

DjE[eCCPj |M ] |
γ∑
g=1

(1−Dg) > 0

]
,

(41)

where in both cases

E[eCCPj |M ] =

(
Mβ

γ∑
h=1,h6=j

vKhj − CCCP
j

)
Φ

Mβ
∑γ

h=1,h6=j v
K
hj − CCCP

j

σ
√∑γ

h=1,h 6=j(v
K
hj)

2


+ σ

√√√√ γ∑
h=1,h 6=j

(vKhj)
2ϕ

−Mβ
∑γ

h=1,h6=j v
K
hj − CCCP

j

σ
√∑γ

h=1,h 6=j(v
K
hj)

2

 , (42)

σ̄CCPi =

√
σ2
Mβ

2
(∑γ

j=1,j 6=i v
K
ji

)2

+ σ2
∑γ

j=1,j 6=i(v
K
ji )

2 is net portfolio risk,

and CCCP
j = V aRαCCP

(∑γ
h=1,h6=j X

k
hj

)
is the margin posted to the CCP.

Proof. See Appendix.

The overall effect of loss sharing depends crucially on the severity of realizations M̄ of

M , which is captured by the cdf q = P(M ≤ M̄). We parameterize these by M̄ = σMΦ−1(q),

where Φ−1(·) is the inverse cdf of the standard normal distribution. The larger |q− 1/2|, the

larger is |M̄ |.
We compute a measure for tail risk that is independent of portfolio direction and only
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depends on entity’s portfolio directionality. The reason is that risk can result from both

the left and right tail of the distribution of M and, thus, entities whose portfolios have the

same level of correlation but different signs of correlation with the systematic risk factor are

exposed to the same level of tail risk. Following this rationale, we define tail risk by the sum

of expected losses for extremely large positive and for extremely large negative realization

of the systematic risk factor, which is

E[EBN,K
i |M = σMΦ−1(q)] + E[EBN,K

i |M = σMΦ−1(1− q)] (43)

in the case that all derivative trades are uncleared, and analogously for the case that they
are cleared. The effect of loss sharing on tail risk is then defined by

∆E∝netq =
E[LSCi

∝gross + EBN,K−1i |M = σMΦ−1(q)] + E[LSCi
∝gross + EBN,K−1i |M = σMΦ−1(1− q)]

E[EBN,Ki |M = σMΦ−1(q)] + E[EBN,Ki |M = σMΦ−1(1− q)]
(44)

if losses are allocated proportionally to net risk, and analogously ∆E∝gross
q if losses are

allocated proportionally to gross notional. Since the expressions in Proposition 5 cannot

be compared analytically, we rely on 200,000 simulated realizations of the default vector to

evaluate them and compare the effect of loss sharing on tail risk across networks and across

entities within networks.

Figure 6 (a) illustrates the effect of loss sharing on tail risk at the q = 10% level when

losses are allocated proportionally to net risk. It is qualitatively very close to the effect on

expected default losses. Loss sharing substantially increases tail risk for peripheral entities

compared to its effect on core entities. The largest benefit of loss sharing is generated in a

complete-flat network, while in other networks its benefit decreases with portfolio direction-

ality.

[Place Figure 6 about here]

In contrast, if losses are allocated proportionally to gross notional, differences in the

effect of loss sharing across entities within the same network vanish. This result for tail risk

is analogous to the results for expected default losses. It highlights that an allocation of

losses proportionally to gross notional does not only balance the effect of loss sharing across

entities at the mean but also in the tail of the loss distribution.

We assess the sensitivity of our numerical results with respect to clustering of entity

defaults. First, default clustering does not affect expected uncleared default losses, as Equa-

tion (16) shows. Second, a larger correlation of entity defaults increases the tails of the total

default loss distribution and each entity’s loss sharing contribution, but also reduces the

likelihood that other entities default conditional on entity i surviving, while entity i does
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not have to contribute to losses when i defaults. Thus, the effect of default clustering is

ambiguous.

We also increase the pairwise correlation of entities’ assets from ρA,A = 0.1 to ρA,A = 0.5,

but find that the effect on both ∆E and ∆Eq is negligible.27 This result suggests that a

higher likelihood of large loss sharing contributions is largely offset by a lower likelihood that

other entities default given that i survives.

7. Empirical predictions, equilibrium trade-offs, and

policy implications

Since expected default losses are an important determinant for market participants’ ex-

pected profits, they affect demand and supply in derivatives markets.28 Therefore, and

especially in light of post-crisis regulation that mandates central clearing for certain deriva-

tives, it is important to understand how and through which channels loss sharing affects the

level and distribution of default losses.

First, we observe that, in practice, market participants are on average reluctant to cen-

trally clear derivatives in the absence of a clearing mandate. E.g., only 28% of CDS trades

and less than 1% of foreign exchange derivatives were voluntarily cleared, as of December

2016 (Wooldridge (2017)). From the perspective of loss sharing and its impact on expected

default losses, we show that central clearing is indeed not necessarily beneficial for all market

participants compared to an uncleared market. In contrast, loss sharing may expose market

participants to additional risk. Therefore, the additional losses faced due to loss sharing can

disincentivize market participants from central clearing.

Second, our results provide an explanation for the observation that clearing members

are predominantly dealers and large banks in practice, while only very small number of

end-users, such as investment funds and non-financial firms, participate in central clearing

(Bank for International Settlements (BIS) (2018)). Indeed, large derivatives end-users such

as Blackrock claim that loss sharing at CCPs “unfairly penalizes end-investors, who in general

hold directional positions, vs. CMs [clearing members] or dealers, who generally manage to a

flat market position” (Novick et al. (2018)). Consistent with this statement, our results show

that, if loss sharing is proportional to net portfolio risk, entities with directional positions

(such as end-users) cannot typically reduce expected default losses with central clearing.

27Results are available on request.
28Indeed, several studies document that the risk of default losses is an important determinant for OTC

market equilibria, such as Bellia et al. (2019), Bernstein et al. (2019), Vuillemey (2019), and Cenedese et al.
(2020).
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This result is amplified when entities with directional positions only trade with a limited

number of counterparties, i.e., are in the “periphery” of the market. Indeed, loss sharing

is largely proportional to net portfolio risk in practice (see Footnote 19). Our results thus

provide a possible explanation for the tendency of end-users not to become clearing members

in practice. Instead, the results suggest that dealers substantially benefit from loss sharing,

which is consistent with the price discount they give for centrally cleared relative to uncleared

transactions (Cenedese et al. (2020)).

Our results highlight that heterogeneity in the effect of central clearing across market

participants can be reduced by (1) moving from a net-based to gross-based loss sharing rule

or (2) moving from a core-periphery to a complete network structure. Loss sharing rules are

currently not mandated by regulation. However, the desire to increase clearing participation

can be a potential reason to mandate CCPs to also consider gross risk in loss sharing rules.

Alternatively, when peripheral entities become more connected (the network becomes more

complete), they have more netting benefits and, thereby, are incentivized to centrally clear

even with a rule based on net risk. For instance, centralized trading platforms, such as a

limited order book, intermediate trade between any pair of market participants and, thus,

break up core-periphery networks. Indeed, centralized trading platforms become increasingly

popular in OTC derivatives markets, partly due to regulation (e.g., mandating that certain

derivatives are traded on swap execution facilities, see Riggs et al. (2020)).

Third, default losses are an important consideration for regulators. Default losses are a

form of financial contagion that, if sufficiently large, may contribute to systemic risk. Our

results indicate that loss sharing based on net risk is beneficial particularly for interconnected

entities with flat portfolios, e.g., dealers. Since dealers are often systematically important

in the financial system (e.g., Billio et al. (2012)), regulators might want to more-than-

proportionally reduce dealers’ exposure to default losses. Loss sharing based on net risk

can be consistent with this objective.29

Fourth, we stress that derivatives positions are endogenous to loss sharing rules in prac-

tice. Given that loss sharing proportional to net risk favors less directional portfolios, a

clearing obligation may incentivize end-users to hold less directional positions. From a wel-

fare perspective, this implies an important trade-off: on the one hand, if portfolios are less

directional, there is less total net risk for the CCP. This effect can mitigate financial con-

29We stress that central clearing may improve overall financial stability also in other dimensions, e.g.,
by increasing transparency (Acharya and Bisin (2014)) and facilitating fast auctioning of defaulting mem-
bers’ portfolios. Indeed, the cleared share of Lehman’s derivative trades was hedged and closed out within
three weeks of Lehman’s failure, suggesting that central clearing may stabilize derivatives markets (see Sir
Jon Cunliffe’s speech from 5 June 2018, Central clearing and resolution - learning some of the lessons of
Lehmans).
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tagion in the derivatives market and, thus, may reduce externalities from a simultaneous

failure of financial institutions. On the other hand, end-users may forego hedging benefits

when they reduce portfolio directionality.30 Therefore, in markets with many end-users that

have a large marginal utility from hedging, a clearing obligation may reduce welfare if the

marginal expected loss sharing contribution for holding a more directional portfolio is too

large. While it is ultimately an empirical question which effect dominates, the impact of loss

sharing rules on hedging benefits can provide a rationale for strengthening the supervision

of CCPs’ loss allocation rules whenever there is a clearing obligation.

Fifth, we stress that market structure is endogenous to loss sharing rules in practice. If

loss sharing is proportional to net portfolio risk, more interconnected entities (in the core of

the market) benefit more from loss sharing than less interconnected ones (in the periphery).

Hence, entities have an incentive to increase their centrality in the market. On the one hand,

increasing network centrality might amplify too-interconnected-to-fail externalities. On the

other hand, when entities move closer to the market core using centralized trading platforms,

inefficiencies from discriminatory pricing might decline (Hau et al. (2020)).

Finally, relative to loss sharing based on net portfolio risk, a rule based on gross notional

would benefit end-users but harm interconnected entities with flat portfolios in the core of the

market. The latter are typically large market dealers, that provide liquidity and intermediate

trade (Getmansky et al. (2016)). Therefore, a rule based on gross notional would likely

penalize liquidity provision by dealers, while at the same increasing loss sharing benefits

for end-users and, thereby, increase CCP participation. On the one hand, impediment of

liquidity provision may reduce trade gains in derivatives markets. On the other hand, central

clearing has been found to facilitate trade, as it tackles counterparty risk and adverse selection

inefficiencies (e.g., Bernstein et al. (2019), Vuillemey (2019)). Central clearing might also

facilitates the adoption of more centralized trading technologies, reducing the importance of

liquidity provision by dealers. Thus, the ultimate effect on market liquidity of loss sharing

based on gross notional depends on the trade-off between a reduction in liquidity provision

by dealers and the impact of a wider adoption of central clearing on overall market liquidity.

8. Conclusion

The recent global financial crisis 2007-08 exposed vulnerabilities in the derivatives market

architecture, which was dominated by uncleared trades. The introduction of mandatory

30In standard models, such as Biais et al. (2012, 2016), end-users buy derivatives to protect themselves
against risks outside of the derivatives market. In this case, they forego hedging benefits when choosing a
portfolio that is less directional than the one that provides full insurance.
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central clearing has clearly increased transparency in derivatives markets; however, was it

successful in reducing counterparty risks in derivative markets as well?

To address this question, we present a theoretical analysis of the impact of central clearing

on default losses in derivatives markets. The focus of the model is on loss sharing in central

clearinghouses, namely the allocation of losses caused by the default of clearing members to

surviving clearing members. We show that the effect of loss sharing on entities’ expected

default losses, relative to an uncleared market, can differ substantially across market partic-

ipants and is highly sensitive toward (1) the derivatives market network structure, (2) loss

sharing rules, (3) directionality in market participants’ derivatives portfolios, and (4) cor-

relation of derivatives prices. In many realistic situations, loss sharing actually increases a

market participant’s expected default losses relative to the absence of central clearing. Such

market participants lose from central clearing.

In particular, our results show that market participants in the core of the market with

flat portfolios, e.g., dealers, substantially benefit from loss sharing compared to an uncleared

market - at the expense of (peripheral) entities with directional portfolios, e.g., end-users.

Under the assumption that the decision to clear is affected by market participants’ objec-

tive to minimize risk, as suggested by Bellia et al. (2019), Financial Stability Board (FSB)

(2018), and Vuillemey (2019), our result is consistent with the reluctance of end-users to

become clearing members in practice. The result emerges due to sharing of default losses

among surviving clearing members proportionally to their net portfolio risk. While this is

a current standard practice, we contrast this rule with an alternative loss sharing rule that

allocates losses proportionally to gross risk. We show that the latter removes heterogene-

ity across market participants in the benefit of central clearing compared to an uncleared

market. Hence, with loss sharing proportional to gross risk, central clearing is beneficial for

all market participants. Furthermore, we show that changes in the market structure from

a core-periphery toward a more complete network also smooth heterogeneity across market

participants. Thus, promoting either loss sharing rules based on gross risk or centralized

trading are potential policy tools to incentivize central clearing. Overall, our analysis shows

that it is feasible that all market participants have the same relative benefit from loss sharing,

i.e., are “winners”, and are thus incentivized to use central clearing.
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Figures

Fig. 1. Timeline of the model.
Losses due to counterparty default occur between time t = 0, the most recent date where contracts have been marked to market
and counterparties might default, and time t = 1, at which time the portfolio is settled.

(a) Bilateral netting. (b) Multilateral netting.

Fig. 2. Illustration of bilateral and multilateral netting.
(a) Bilateral netting and (b) multilateral netting across counterparties. Arrows illustrate the flow of profits and losses (e.g., B
owes $100 to A).
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Fig. 3. Total expected default loss in the centrally cleared derivative class.
The figures depict E[DLCCP ]/GN , the total expected default loss per gross notional cleared for different

networks per dollar of total gross notional notional cleared across networks. The number of market partici-

pants is γ = 51.
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(a) Proportional to initial margin.
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(b) Proportional to gross notional.

Fig. 4. Effect of loss sharing on expected default loss without systematic risk.
The figures depict ∆E, the effect of loss sharing on entities’ expected default loss relative to an uncleared

market. Within the heterogeneous-complete and core-periphery networks, entities differ in the net-to-gross

ratio (i.e., portfolio directionality)
|
∑γ
j=1,j 6=i v

K
ji |∑γ

j=1,j 6=i |v
K
ji |

, which we show on the x-axis. The number of market

participants is γ = 51.
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(b) Proportional to gross notional.

Fig. 5. Effect of loss sharing on expected default loss with systematic risk.
The figures depict ∆E, the effect of loss sharing on entities’ expected default loss relative to an uncleared

market when the correlation between derivative prices and the systematic risk factor is ρX,M = 0.43. Within

the heterogeneous-complete and core-periphery networks, entities differ in the net-to-gross ratio (i.e., portfolio

directionality)
|
∑γ
j=1,j 6=i v

K
ji |∑γ

j=1,j 6=i |v
K
ji |

, which we show on the x-axis. The number of market participants is γ = 51.
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Fig. 6. Effect of loss sharing on tail risk.
The figures depict ∆Eq, the effect of loss sharing on entities’ tail risk of facing default losses relative to

an uncleared market. The correlation between derivative prices and the systematic risk factor is assumed

to be ρX,M = 0.43. Within the heterogeneous-complete and core-periphery networks, entities differ in the

net-to-gross ratio (i.e., portfolio directionality)
|
∑γ
j=1,j 6=i v

K
ji |∑γ

j=1,j 6=i |v
K
ji |

, which we show on the x-axis. The number of

market participants is γ = 51.
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Online Appendix

A. Proofs

For the following proofs, we will make extensive use of the following property of the

Normal distribution: for Y ∼ N (µ, σ2) the truncated expectation is given by E[Y | Y >

0] = µ+ σϕ(−µ/σ)
Φ(µ/σ)

, and thus E[max(Y, 0)] = E[Y | Y > 0]Φ(µ/σ) = µΦ(µ/σ) + σϕ(−µ/σ).

Proof of Proposition 1.

Proof. Let γ > 2. The CCP’s expected default loss is given by

E
[
DLCCP

]
= E

 γ∑
j=1

Dj max

 γ∑
g=1,
g 6=j

XK
gj − CCCP

j , 0


 . (A.1)

Define

(σ̄CCPj )2 =var

(
γ∑

g=1,g 6=j

XK
gj

)
= σ2

M

(
γ∑

g=1,g 6=j

vKgjβ
K
gj

)2

+

γ∑
g=1,g 6=j

(vKgjσ
K
gj)

2

=σ2
Mβ

2

(
γ∑

g=1,g 6=j

vKgj

)2

+ σ2

γ∑
g=1,j 6=j

(vKgj)
2,

ξ(α) =(1− α)Φ−1(1− α) + ϕ
(
Φ−1(α)

)
.

Then, it is

E

max

 γ∑
g=1,
g 6=j

XK
gj − CCCP

j , 0


 = ξ(αCCP )σ̄CCPj . (A.2)

In a flat network, all entities trade with all other (γ − 1) entities and cleared portfolios

are not exposed to systematic risk, implying σ̄CCPj =
√
γ − 1σ for all j = 1, ..., γ.

In a heterogeneous-complete network, all entities trade with all other (γ− 1) entities but

differ in net-to-gross ratio v∗j =
(
∑γ
g=1,g 6=j v

K
gj)

2∑γ
g=1,g 6=j(v

K
gj)

2 such that σ̄CCPj =
√
γ − 1

√
σ2
Mβ

2v∗j + σ2 with

v∗j ∈
{

0
γ−1

, 1
γ−1

, ..., 1
}

.
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In a core-periphery network, by definition of core and peripheral entities, it is

σ̄CCPj =
√∑γ

g=1,g 6=j(v
K
gj)

2
√
σ2
Mβ

2v∗j + σ2 with

v∗j =


(
∑γ
g=1,g 6=j v

K
gj)

2

γ−1
2

≤ 1, if j is core (directional),

0, if j is core (flat),

1, if j is periphery

(A.3)

and

γ∑
g=1,g 6=j

(vKgj)
2 =


γ−1

2
, if j is core (directional),

γ+1
2
, if j is core (flat),

1, if j is periphery.

(A.4)

Given the definition of networks and using that there is 1 flat entity, γ−1
2
−1 core directional

and γ+1
2

peripheral entities in a core-periphery network, it is then

E
[
DLCCP

]
= E

[
γ∑
j=1

Djξ(αCCP )σ̄CCPj

]
(A.5)

= ξ(αCCP )

γ∑
j=1

σ̄CCPj E [Dj] (A.6)

= πξ(αCCP )

γ∑
j=1

σ̄CCPj (A.7)

=


πγξ(αCCP )σ

√
γ − 1, flat,

πξ(αCCP )
∑γ
j=1

√
γ − 1

√
σ2
Mβ

2v∗j + σ2, heterog-complete,

πξ(αCCP )

(√
γ+1

2
σ +

∑(γ−1)/2
j=2

√
γ−1

2

√
σ2
Mβ

2v∗i + σ2 + γ+1
2

√
σ2
Mβ

2 + σ2

)
core-periphery.

(A.8)

If there is no systematic risk, i.e., β ≡ 0, then E
[
DLCCPflat

]
= E

[
DLCCPheterog−complete

]
and

E
[
DLCCPcore−periphery

]
= πξ(αCCP )σ

(√
γ + 1

2
+
γ − 3

2

√
γ − 1

2
+
γ + 1

2

)
(A.9)

Total gross notional GN is γ(γ−1) in the flat and heterogeneous-complete networks and
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γ+1
2

+ γ−3
2

γ−1
2

+ γ−1
2

. Thus, the CCP’s expected default loss per 1$ gross notional is

E
[
DLCCP

]
GN

=


πξ(αCCP ) σ√

γ−1
, flat,

πξ(αCCP )

∑γ
j=1

√
σ2
M
β2v∗j+σ2

γ
√
γ−1

, heterog-complete,

πξ(αCCP )

√
γ+1
2
σ+

∑(γ−1)/2
j=2

√
γ−1
2

√
σ2
M
β2v∗i +σ2+ γ+1

2

√
σ2
M
β2+σ2

γ+1
2

+ γ−3
2

γ−1
2

+ γ+1
2

. core-periphery,

Clearly,
E[DLCCPheterog−complete]
GNheterog−complete

≥ E[DLCCPflat ]
GNflat

with equality if, and only if, β = 0, i.e., in the absence

of systematic risk.

The relative expected default loss in case of a core-periphery network can be rewritten

as

πξ(αCCP )

 σ√
γ+1

2

θ1 +

(γ−1)/2∑
j=2

√
σ2
Mβ

2v∗i + σ2√
γ−1

2
γ−3

2

θ2 +
√
σ2
Mβ

2 + σ2(1− θ1 − θ2)

 (A.10)

with θ1 =
γ+1

2
γ+1

2
+ γ−3

2
γ−1

2
+ γ+1

2

and θ2 =
γ−3

2
γ−1

2
γ+1

2
+ γ−3

2
γ−1

2
+ γ+1

2

. It is σ√
γ+1

2

> σ√
γ−1

,
∑(γ−1)/2

j=2
σ√

γ−1
2

γ−3
2

=

σ√
γ−1

2

> σ√
γ−1

, and σ > σ√
γ−1

for γ > 2 (in the case γ = 3, there exist no core directional enti-

ties and the intermediate term drops out while other inequalities remain to hold). Therefore,

in the case without systematic risk (β = 0), it is

E
[
DLCCPcore−periphery

]
GNcore−periphery

>
E
[
DLCCPheterog−complete

]
GNheterog−complete

=
E
[
DLCCPflat

]
GNflat

.

Moreover, in the case with systematic risk, it is

√
σ2
Mβ

2v∗i +σ2

√
γ−1

2

<
√
σ2
Mβ

2 + σ2 for all γ ≥ 2

since v∗i ≤ 1. Then, for all γ > 3 it is

E
[
DLCCPcore−periphery

]
GNcore−periphery

>
E
[
DLCCPheterog−complete

]
GNheterog−complete

>
E
[
DLCCPflat

]
GNflat

.

Proof of Proposition 2.

Proof. Let βkij ≡ 0. Consider the core-periphery network. Then, given that vkij ∈ {−1, 0, 1}
and that a directional entity in the core trades with γ−1

2
− 1 counterparties in the core and

one entity in the periphery, a flat entity in the core trades with γ−1
2
−1 counterparties in the

core and two entities in the periphery, and an entity in the periphery trades with only one
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counterparty (both in all K asset classes),

σ̄CCPg = σ

√√√√ γ∑
j=1,j 6=g

(vKjg)
2 =


σ
√

γ−1
2
, if g is core (directional),

σ
√

γ+1
2
, if g is core (flat),

σ, if g is periphery.

(A.11)

In the case with loss sharing proportional to net risk, using Propositions A.2 it is

E[LSCi
∝net] =


σ
√

γ−1
2
ξ(αCCP )H, if i is core (directional),

σ
√

γ+1
2
ξ(αCCP )H, if i is core (flat),

σξ(αCCP )H, if i is periphery,

(A.12)

with H = E
[( ∑γ

g=1 σ̄
CCP
g∑γ

g=1(1−Dg)σ̄CCPg
− 1
)

(1−Di) |
∑γ

g=1(1−Dg) > 0
]

(which is independent

from i by assumption that Di is identically distributed across i). Moreover, using Proposition

A.1,

E[DLKi ] =


πξ(αuc)

γ−1
2
σ
√
K, if i is core (directional),

πξ(αuc)
γ+1

2
σ
√
K, if i is core (flat),

πξ(αuc)σ
√
K, if i is periphery.

(A.13)

Therefore, the effect of loss sharing proportional to net risk for entity i is

∆E∝net
i =

E[DLi
K−1 + LSC∝net

i ]

E[DLi
K ]

− 1 (A.14)

=


πξ(αuc)

γ−1
2 σ
√
K−1+σ

√
γ−1
2 ξ(αCCP )H

πξ(αuc)
γ−1
2 σ
√
K

− 1 =
√
K−1√
K

+ ξ(αCCP )H

πξ(αuc)
√

γ−1
2

√
K
− 1, if i is core (directional),

πξ(αuc)
γ+1
2 σ
√
K−1+σ

√
γ+1
2 ξ(αCCP )H

πξ(αuc)
γ+1
2 σ
√
K

− 1 =
√
K−1√
K

+ ξ(αCCP )H

πξ(αuc)
√

γ+1
2

√
K
− 1, if i is core (flat),

πξ(αuc)σ
√
K−1+σξ(αCCP )H

πξ(αuc)σ
√
K

− 1 =
√
K−1√
K

+ ξ(αCCP )H

πξ(αuc)
√
K
− 1, if i is periphery,

(A.15)

which implies that ∆E∝net
i = ∆E∝net

periphery if, and only if,
√

γ−1
2

= 1 ⇔ γ = 3 when i is a

directional-core entity, and ∆E∝net
i = ∆E∝net

periphery if, and only if,
√

γ+1
2

= 1 ⇔ γ = 1 when
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i is a flat-core entity; and that

d

dγ

(
∆E∝net

periphery −∆E∝net
i

)
=


d
dγ

(
− ξ(αCCP )H

πξ(αuc)
√

γ−1
2

√
K

)
> 0, if i is core (directional),

d
dγ

(
− ξ(αCCP )H

πξ(αuc)
√

γ+1
2

√
K

)
> 0, if i is core (flat),

and, hence, that ∆E∝net
core < ∆E∝net

periphery for all γ > 3. From above,

min
(
∆E∝net

periphery,∆E
∝net
core (flat),∆E

∝net
core (directional)

)
= ∆E∝net

core (flat) (A.16)

and the effect of loss sharing is the same across entities in the flat-complete and heterogeneous

complete networks,

∆E∝net
flat-complete = ∆E∝net

heterog-complete, (A.17)

where the effect of loss sharing in the flat-complete network is

∆E∝net
flat-complete =

πξ(αuc)(γ − 1)σ
√
K − 1 + E

[
(1−Di)∑γ
g=1(1−Dg)

ξ(αCCP )
∑γ
j=1Djσ

√
γ − 1 |

∑γ
g=1(1−Dg) > 0

]
πξ(αuc)(γ − 1)σ

√
K

− 1

=

√
K − 1
√
K

+

ξ(αCCP )E
[

(1−Di)
∑γ
j=1Dj∑γ

g=1(1−Dg)
|
∑γ
g=1(1−Dg) > 0

]
πξ(αuc)

√
γ − 1

√
K

− 1.

Therefore, the effect of loss sharing differs across networks if, and only if,

∆E∝net
flat-complete < ∆E∝net

core (flat)

⇔
√
K − 1√
K

+
ξ(αCCP )E

[
(1−Di)

∑γ
j=1Dj∑γ

g=1(1−Dg)
|
∑γ

g=1(1−Dg) > 0
]

πξ(αuc)
√
γ − 1

√
K

− 1

<

√
K − 1√
K

+
ξ(αCCP )E

[
(1−Di)σ̄CCPi∑γ
g=1(1−Dg)σ̄CCPg

∑γ
j=1Djσ̄

CCP
j |

∑γ
g=1(1−Dg) > 0

]
πξ(αuc)

√
γ+1

2

√
K

− 1

⇔
E
[

(1−Di)
∑γ
j=1 Dj∑γ

g=1(1−Dg)
|
∑γ

g=1(1−Dg) > 0
]

√
γ − 1

<

√
γ+1

2
E
[

(1−Di)
∑γ
j=1Dj σ̄

CCP
j∑γ

g=1(1−Dg)σ̄CCPg
|
∑γ

g=1(1−Dg) > 0
]

√
γ+1

2

⇔
E
[

(1−Di)
∑γ
j=1 Dj∑γ

g=1(1−Dg)
|
∑γ

g=1(1−Dg) > 0
]

√
γ − 1

< E

[
(1−Di)

∑γ
j=1 Djσ̄

CCP
j∑γ

g=1(1−Dg)σ̄CCPg

|
γ∑
g=1

(1−Dg) > 0

]
.
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Using that σ ≤ σ̄CCPg ≤ σ
√

γ+1
2

, the inequality holds if

E
[

(1−Di)
∑γ
j=1 Dj∑γ

g=1(1−Dg)
|
∑γ

g=1(1−Dg) > 0
]

√
γ − 1

< E

 (1−Di)
∑γ

j=1 Djσ∑γ
g=1(1−Dg)σ

√
γ+1

2

|
γ∑
g=1

(1−Dg) > 0


⇔

E
[

(1−Di)
∑γ
j=1 Dj∑γ

g=1(1−Dg)
|
∑γ

g=1(1−Dg) > 0
]

√
γ − 1

<
E
[

(1−Di)
∑γ
j=1Dj∑γ

g=1(1−Dg)
|
∑γ

g=1(1−Dg) > 0
]

√
γ+1

2

⇔
√
γ − 1 >

√
γ + 1

2

⇔ γ − 1 >
γ + 1

2

⇔ γ > 3.

Proof of Proposition 3.

Proof. Let βkij ≡ 0. In the case with loss sharing proportional to gross notional, using

Propositions A.3 it is

E[LSCi
∝gross] =


γ−1

2
H, if i is core (directional),

γ+1
2
H, if i is core (flat),

σH, if i is periphery,

(A.18)

with H = ξ(αCCP )E
[

(1−Di)∑γ
g=1(1−Dg)vKg∗

∑γ
j=1 Djσ̄

CCP
j |

∑γ
g=1(1−Dg) > 0

]
(which is indepen-

dent from i by assumption that Di is identically distributed across i). E[DLKi ] is as above.

Therefore, it is

∆E∝gross
i =

E[DLi
K−1 + LSC∝gross

i ]

E[DLi
K ]

− 1 (A.19)

=


πξ(αuc)

γ−1
2
σ
√
K−1+ γ−1

2
H

πξ(αuc)
γ−1

2
σ
√
K

− 1 =
√
K−1√
K

+ H
πξ(αuc)σ

√
K
− 1, if i is core (directional),

πξ(αuc)
γ+1

2
σ
√
K−1+ γ+1

2
H

πξ(αuc)
γ+1

2
σ
√
K

− 1 =
√
K−1√
K

+ H
πξ(αuc)σ

√
K
− 1, if i is core (flat),

πξ(αuc)σ
√
K−1+H

πξ(αuc)σ
√
K

− 1 =
√
K−1√
K

+ H
πξ(αuc)σ

√
K
− 1, if i is periphery,

(A.20)

which implies that ∆E∝gross
periphery = ∆E∝gross

core independent of portfolio directionality and inde-
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pendent of γ. From above, it is

∆E∝gross
flat-complete =

√
K − 1√
K

+
ξ(αCCP )E

[
(1−Di)(γ−1)∑γ
g=1(1−Dg)(γ−1)

∑γ
j=1Djσ

√
γ − 1 |

∑γ
g=1(1−Dg) > 0

]
πξ(αuc)(γ − 1)σ

√
K

− 1

=

√
K − 1√
K

+

ξ(αCCP )E
[

(1−Di)
∑γ
j=1 Dj∑γ

g=1(1−Dg)
|
∑γ

g=1(1−Dg) > 0

]
πξ(αuc)

√
γ − 1

√
K

− 1

= ∆E∝gross
heterog-complete

and

min
(
∆E∝gross

periphery,∆E
∝gross
core

)
= ∆E∝gross

core (flat)

=

√
K − 1√
K

+
ξ(αCCP )E

[
(1−Di)∑γ

g=1(1−Dg)vKg∗

∑γ
j=1Djσ̄

CCP
j |

∑γ
g=1(1−Dg) > 0

]
πξ(αuc)σ

√
K

− 1

and

∆E∝gross
flat-complete < ∆E∝gross

core (flat)

⇔
E
[

(1−Di)
∑γ
j=1 Dj∑γ

g=1(1−Dg)
|
∑γ

g=1(1−Dg) > 0

]
√
γ − 1

<
E
[

(1−Di)∑γ
g=1(1−Dg)vKg∗

∑γ
j=1Dj σ̄

CCP
j |

∑γ
g=1(1−Dg) > 0

]
σ

and using that σ ≤ σ̄CCPg ≤ σ
√

γ+1
2

, the inequality holds if

1√
γ − 1

E

(1−Di)
∑γ

j=1Dj∑γ
g=1(1−Dg)

|
γ∑
g=1

(1−Dg) > 0

 < E

(1−Di)
∑γ

j=1Dj∑γ
g=1(1−Dg)vKg∗

|
γ∑
g=1

(1−Dg) > 0


⇔ γ > 2.

Proof of Proposition 4.

Proof. Assume that ρ2
X,M > 0. Let v∗i =

|
∑γ
j=1,j 6=i v

K
ji |∑γ

j=1,j 6=i |v
K
ji |

entity i’s relative net class-K position,

and let

H = E

[( ∑γ
g=1 σ̄

CCP
g∑γ

g=1(1−Dg)σ̄CCPg

− 1

)
ξ(αCCP )(1−Di) |

γ∑
g=1

(1−Dg) > 0

]
, (A.21)

where σ̄CCPi =
√∑γ

j=1,j 6=i(v
K
ji )

2
√
σ2
Mβ

2(v∗i )
2
∑γ

j=1,j 6=i(v
K
ji )

2 + σ2. If cleared losses are allo-
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cated proportionally to net risk, E[LSCi
∝net] = σ̄CCPi H. Then,

v∗i =


|
∑γ
j=1,j 6=i v

K
ji |

γ−1
2

≤ 1, if i is core (directional),

0, if i is core (flat),

1, if i is periphery.

(A.22)

and thus

E[LSCi
∝net] =


√

γ−1
2

√
σ2
Mβ

2 (v∗i )
2 γ−1

2
+ σ2H, if i is core (directional),√

γ+1
2
σH, if i is core (flat),√

σ2
Mβ

2 + σ2H, if i is periphery

(A.23)

and

E[∆E∝neti ] =



√
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2

√
σ2
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2 γ−1

2 +σ2H+ γ−1
2 πξ(αuc)

√
σ2
Mβ

2(K−1)2+(K−1)σ2

πξ(αuc)
γ−1
2

√
σ2
Mβ

2K2+Kσ2
, if i is core (directional),

√
γ+1
2 σH+πξ(αuc)

γ+1
2

√
σ2
Mβ

2(K−1)2+(K−1)σ2

πξ(αuc)
γ+1
2

√
σ2
Mβ

2K2+(K)σ2
, if i is core (flat),

√
σ2
Mβ

2+σ2H+πξ(αuc)
√
σ2
Mβ

2(K−1)2+(K−1)σ2

πξ(αuc)
√
σ2
Mβ

2K2+(K)σ2
, if i is periphery

(A.24)

=



√
σ2
Mβ

2(v∗i )
2
+σ2 1√
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2
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√
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σ√
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2
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√
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2(K−1)2+(K−1)σ2
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√
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Mβ
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√
σ2
Mβ

2+σ2H+πξ(αuc)
√
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Mβ

2(K−1)2+(K−1)σ2
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(A.25)

Since v∗i ∈ [0, 1] and γ ≥ 3, it is

√
σ2
Mβ

2 + σ2 ≥
√√√√σ2

Mβ
2 (v∗i )

2 + σ2
1√
γ−1

2

≥ σ√
γ+1

2

implying that

∆E∝net
periphery ≥ ∆E∝net

core (directional) ≥ ∆E∝net
core (flat).

The first inequality binds only if v∗i = 0 and γ = 3, and is strict otherwise. The second

inequality is strict for any v∗i ∈ [0, 1] and γ ≥ 3. Moreover,

d

dv∗i
∆E∝net

core (directional) > 0,
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i.e., core entities with more directional portfolios have a smaller reduction in default losses

(holding portfolios’ gross notional fixed).

Define

H ′ = E

[
(1−Di)∑γ

g=1(1−Dg)vKg∗
ξ(αCCP )

γ∑
j=1

Djσ̄
CCP
j |

γ∑
g=1

(1−Dg) > 0

]
, (A.26)

If cleared losses are allocated proportionally to gross notional, E[LSCi
∝gross] = vKi∗H, where

vKi∗ =
∑γ

j=1,j 6=i |vKij |. Then,

vKi∗ =


γ−1

2
, if i is core (directional),

γ+1
2
, if i is core (flat),

1, if i is periphery.

(A.27)

and thus

E[LSCi
∝gross] =
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γ−1

2
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2
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(A.28)

and
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√
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(A.29)

=
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√
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√
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√
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2K2+(K)σ2
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(A.30)

and thus

∆E∝net
periphery = ∆E∝net

core (directional) = ∆E∝net
core (flat)

independent of portfolio directionality and γ.

Proof of Proposition 5.
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Proof. First, consider the case without central clearing. Let

CK
ij = Φ−1(αuc)

√(∑K
k=1 v

k
ij

)2

β2σ2
M +Kσ2 the bilateral collateral posted by j to i, and

define

µ̄BNij|M = E

[
K∑
k=1

Xk
ij − CK

ij |M

]
= M

K∑
k=1

vkijβ
k
ij − CK

ij (A.31)

(
σ̄BNij|M

)2
= var

(
K∑
k=1

Xk
ij

)
= var

(
K∑
k=1

(vkij)
2((βkij)

2M + (σkij)
2(εkij)

2)

)
(A.32)

= var

(
K∑
k=1

(vkij)
2(σkij)

2(εkij)
2

)
= σ2

K∑
k=1

(
vkij
)2
. (A.33)

Then, the expected default loss of i given default of j and conditional on M is given by

E[eBNij |M ] = µ̄ij|MΦ(µ̄ij|M/σ̄ij|M) + σ̄ij|Mϕ(−µ̄ij|M/σ̄ij|M) (A.34)

=

(
Mβ

K∑
k=1

vkij − CK
ij

)
Φ

(
Mβ

∑K
k=1 v

k
ij − CK

ij

σ
√
K

)
(A.35)

+ σ
√
Kϕ

(
−
Mβ

∑K
k=1 v

k
ij − CK

ij

σ
√
K

)
,

using in the last step that (vkij)
2 ≡ 1, βkij ≡ β and σkij ≡ σ. The overall expected default loss

is then given by the sum of exposures across counterparties

E[DLKi |M ] = π

γ∑
j=1,j 6=i

1{∑K
k=1 |vkij |>0}E[eBNij |M ]. (A.36)

Second, consider the case that class-K is centrally cleared. Define

CCCP
i = V aRαCCP

(∑γ
j=1,j 6=iX

k
ji

)
the collateral posted by i to the CCP and

µ̄CCPj|M = E

[
γ∑

h=1,h6=j

XK
hj − CCCP

j

]
= Mβ

γ∑
h=1,h6=j

vKhj − CCCP
j (A.37)

(σ̄CCPj|M )2 = var

(
γ∑

h=1,h 6=j

XK
hj

)
= var

(
γ∑

h=1,h6=j

vKhjσε
K
hj

)
= σ2

γ∑
h=1,h 6=j

(vKhj)
2. (A.38)

Thus, defining by eCCPj = max

(∑γ
h=1,
h6=j

XK
hj − CCCP

j , 0

)
the CCP’s loss upon j’s default, it
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is

E[eCCPj |M ] = µ̄CCPj|M Φ(µ̄CCPj|M /σ̄CCPj|M ) + σ̄CCPj|M ϕ(−µ̄CCPj|M /σ̄CCPj|M ) (A.39)

=

(
Mβ

γ∑
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 (A.40)

+ σ
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σ
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K
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 . (A.41)

If losses are shared proportionally to initial margin, using the law of iterated expectation

and independence between M and Dj, i’s expected loss sharing contribution conditional on

M is given by

E[LSCi
∝net |M ] = E

[
(1−Di)C

CCP
i∑γ

g=1(1−Dg)CCCP
g

DLCCP |
γ∑
g=1

(1−Dg) > 0,M

]
(A.42)

= E
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where σ̄CCPi =
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K
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+ σ2
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2 as above.

If losses are instead shared proportionally to gross notional, using the law of iterated

expectation and independence between M and Dj, i’s expected loss sharing contribution

conditional on M is given by

E[LSCi
∝gross |M ]
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]
.

Proposition A.1 (Bilateral counterparty risk). Assume that K derivative classes are bilat-

erally netted, |vkij| = 1, π is the probability of a counterparty’s default, and
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k
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where ξ(α) = (1− α)Φ−1(1− α) + ϕ (Φ−1(α)).
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Proposition A.2 (Expected loss sharing contribution ∝ net). Assume that derivative class

K is centrally cleared, CCP default losses are allocated proportionally to net risk, π is the

probability of a counterparty’s default, β ≡ βKij , σ ≡ σKij , and CCCP
i = V aRαCCP

(∑γ
j=1,j 6=iX

k
ji

)
.
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(A.47)

where ξ(α) = (1− α)Φ−1(1− α) + ϕ (Φ−1(α)) and
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Proof. Define
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 ,
where we use the law of iterated expectation.

Proposition A.3 (Expected loss sharing contribution ∝ gross). Assume that derivative

class K is centrally cleared, CCP default losses are allocated proportionally to gross no-

tional, π is the probability of a counterparty’s default, β ≡ βKij , σ ≡ σKij , and CCCP
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)
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where ξ(α) = (1− α)Φ−1(1− α) + ϕ (Φ−1(α)) and vKi∗ =
∑γ

j=1,j 6=i |vKij |.
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Proof. Define
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= E

[
(1−Di)v

K
i∗∑γ

g=1(1−Dg)vKg∗
ξ(αCCP )

γ∑
j=1

Djσ̄
CCP
j |

γ∑
g=1

(1−Dg) > 0

]
,

where we use the law of iterated expectation.

B. Calibration

We calibrate the volatility of contract values based on index CDS, since these are already

subject to clearing obligations in the US and EU. For this purpose, we retrieve data about

the performance of the North American family of index CDS, the CDX family, from January

2006 to 2010, from Markit. We choose this period because it covers the 2007-08 financial

crisis. Table B.1 reports the names of index CDS included in our sample. Starting with

the assumption of a five-day settlement period, the descriptive statistics in Table B.2 show

that the average standard deviation of index CDS prices’ five-day log returns roughly equals

σX = 0.01, which we use as an estimate for total contract volatility. During the same time

period, the standard deviation of S&P 500 five-day log returns is roughly σM = 0.03, which

we use as an estimate for volatility of the systematic risk factor.31

To calibrate the correlation between contract returns and systematic risk, we employ a

one-factor model, regressing CDS index returns on five-day S&P 500 log returns between

31We approximate the discrete returns rkij in our model by using empirically calibrated log returns r̃kij (i.e.,

log(1 + rkij) ≈ r̃kij). The calibration, in particular the standard deviation and correlation of S&P 500 and
index CDS returns, is robust to using either empirical discrete returns or log returns.
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CDX name Description
CDX NA.HY North American High Yield CDSs
CDX NA.HY.B Rating sub-index of CDX NA.HY
CDX NA.HY.BB Rating sub-index of CDX NA.HY
CDX NA.HY.HB Sub-index of CDX NA.HY (high beta)
CDX NA.IG North American investment-grade CDSs
CDX NA.IG.CONS Sub-index of CDX NA.IG (consumer cyclical)
CDX NA.IG.ENRG Sub-index of CDX NA.IG (energy)
CDX NA.IG.FIN Sub-index of CDX NA.IG (financials)
CDX NA.IG.TMT Sub-index of CDX NA.IG (telecom, media and technology)
CDX NA.IG.INDU Sub-index of CDX NA.IG (industrial)
CDX NA.IG.HVOL Sub-index of CDX NA.IG (high volatility)
CDX NA.XO Sub-index of CDX NA.IG (crossover between grade and junk)
CDX.EM Emerging market CDSs
CDX EM.DIV Emerging market CDSs (diversified)

Table B.1: Names and descriptions of index CDS included in our data sample. Source:
Markit (2015).

Statistic N Min Pctl(25) Median Pctl(75) Max Mean St. Dev.

S&P 500 1,021 −0.203 −0.013 0.002 0.015 0.175 −0.001 0.031
CDX (all) 590,706 −0.288 −0.002 0.0003 0.004 0.291 0.001 0.012
CDX (CDX.NA.HY) 131,945 −0.096 −0.004 0.002 0.010 0.095 0.003 0.015
CDX (CDX.NA.HY.B) 27,921 −0.090 −0.003 0.0005 0.005 0.146 0.002 0.013
CDX (CDX.NA.HY.BB) 19,474 −0.064 −0.003 0.0004 0.003 0.056 0.0005 0.009
CDX (CDX.NA.HY.HB) 38,254 −0.163 −0.005 0.002 0.011 0.215 0.005 0.024
CDX (CDX.NA.IG) 83,264 −0.288 −0.001 0.0001 0.002 0.291 0.0002 0.006
CDX (CDX.NA.IG.CONS) 29,007 −0.046 −0.001 0.000 0.001 0.027 −0.0001 0.005
CDX (CDX.NA.IG.ENRG) 29,007 −0.039 −0.001 −0.00001 0.001 0.032 −0.00003 0.004
CDX (CDX.NA.IG.FIN) 47,653 −0.095 −0.003 0.0003 0.005 0.045 0.0003 0.011
CDX (CDX.NA.IG.TMT) 31,953 −0.056 −0.002 0.00001 0.002 0.078 0.0001 0.006
CDX (CDX.NA.IG.INDU) 35,790 −0.049 −0.002 0.0001 0.002 0.037 0.00002 0.005
CDX (CDX.NA.IG.HVOL) 56,996 −0.073 −0.002 0.0001 0.002 0.048 0.0001 0.008
CDX (CDX.NA.XO) 30,508 −0.081 −0.005 0.001 0.006 0.067 0.001 0.012
CDX (CDX.EM) 14,372 −0.180 −0.003 −0.00001 0.004 0.192 −0.0002 0.018
CDX (CDX.EM.DIV) 14,562 −0.144 −0.002 0.0002 0.003 0.149 0.0002 0.014

Table B.2: Descriptive statistics of five-day log returns of index CDS and the S&P 500.
The statistics are based on date-tenor-series-version observations for different index CDS families (see Table B.1 for descriptions),
all family-date-tenor-series-version observations for CDS (all), and date observations for the S&P 500 from January 2006 to
December 2009. Source: Markit.

2006 to 2010,

CDXname,tenor,series,version,t = α + βSPt + εname,tenor,series,version,t, (B.1)

where CDXname,tenor,series,version,t is the five-day CDS index log returns for different family

names, tenors, series, and versions at day t, and SPt is the five-day S&P 500 log return at day

t. The estimated OLS coefficients are in Table B.3. The implied correlation between CDS

and S&P 500 returns roughly equals ρX,M = 0.43, which we use as a baseline calibration.
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Dependent variable: five-day CDX return

Full On-the-run Off-the-run

(1) (2) (3)

S&P 500 0.148 0.235 0.148
t = 370.284∗∗∗ t = 23.845∗∗∗ t = 369.824∗∗∗

Observations 590,706 856 589,850
R2 0.188 0.400 0.188
Adjusted R2 0.188 0.399 0.188
Residual Std. Error 0.011 (df = 590704) 0.007 (df = 854) 0.011 (df = 589848)

Implied correlation ρX,M 0.43 0.63 0.43

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table B.3: Calibration of the correlation of contract values with systematic risk.
OLS regression of five-day index CDS log returns on S&P 500 five-day returns between January 2006 and December 2009:
CDXname,t,tenor,series,version = α + βSPt + εname,t,tenor,series,version for all index CDS at days t. The methodology is
equivalent to estimating a single-factor model for an equally weighted basket of all index CDS. ρX,M is the implied correlation
coefficient between index CDS and S&P 500 returns. Source: Markit and own calculations.

It is larger for indices that are on-the-run (0.63) and slightly smaller for indices that are

off-the-run (0.4).32 The methodology is equivalent to estimating the correlation between

an equally weighted basket of index CDS and the S&P 500. We do not allow for different

factor loadings β for different indices, since we are interested in only one parameter for the

correlation ρX,M . The level of correlation is similar when estimating the single-factor model

for individual index CDS for the baseline period from 2006 to 2010 as well as for the period

from 2010 to 2018, confirming the robustness of our estimate.33

Based on these empirical results, Table B.4 and B.5 describe the final calibration of our

model.

32index CDS are frequently updated. The most recently updated index is called on-the-run and typically
exhibits the highest liquidity. Older versions of the indices are called off-the-run and are often still traded
but exhibit lower liquidity.

33Correlation estimates are available on request. The correlation can be substantially smaller for single
reference entities, as these do not diversify across entities’ idiosyncratic default risk. For example, the
correlation of the S&P 500 with Wells Fargo’s five-year tenor spreads is -0.06; with Goldman Sachs’s, it is
-0.12; with Deutsche Bank’s, it is -0.1; with General Electric’s, it is -0.18; with AIG’s, it is -0.16, and with
Metlife’s, it is -0.42. The correlation is almost identical when using three-year tenors. Note that the negative
sign of the correlation coefficient reflects the protection buyer’s perspective in spreads, while we account for
the difference between buyer and seller with the sign of the contract size v. Thus, we use the absolute value
of the correlation.
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Variable Value Description
γ 16 Number of counterparties
K 10 Number of derivative classes
σX 0.01 Total contract volatility
ρX,M 0.43 Correlation between contract value and systematic risk M
σM 0.03 volatility of the systematic risk factor
β 0.1433 Implied beta-factor contracts
σ 0.009 Implied idiosyncratic contract volatility
v 1 Initial market value
cor
(
rkij, r

m
hl

)
0.185 Implied pair-wise correlation of contracts

Table B.4: Baseline calibration. We assume the same calibration for each entity and deriva-
tive class.

Variable Value Description
pd 0.1 Individual probability of default
ρA,A 0.25 Correlation of log assets conditional on M
σA 1 Log-asset value volatility
αuc 0.99 Bilateral margin level
αCCP 0.99 Multilateral (clearing) margin level

Table B.5: Baseline calibration of the default model. We assume the same calibration for
each entity and derivative class.
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C. Model for correlated defaults

In order to allow for correlation of entity defaults, in our sensitivity analysis we employ

a credit model based on the Merton model (Merton (1974)). In particular, we assume that

each counterparty i defaults at the start of the settlement period if the random value of its

assets is below a given bankruptcy threshold, Ai < Bi.

The value of assets at the start of the settlement period is given by

Ai = exp

(
µAi −

σ2
Ai

2
+ σAiWi

)
, (C.1)

where (W1, ...,Wγ) are jointly standard normally distributed and correlated with pairwise

correlation ρAi,Aj . The log value of assets is normally distributed with

logAi ∼ N
(
µAi −

σ2
Ai

2
, σ2

Ai

)
. The pairwise correlation of two entities’ log assets is given by

ρ̃Ai,Aj = cor (logAi, logAj) =
σAiσAjρAi,Aj
σAiσAj

. (C.2)

The individual (unconditional) default probability of entity i is given by

πi = P (Ai < Bi) = Φ

 logBi − µAi +
σ2
Ai

2

σAi

 . (C.3)

Without loss of generality, we assume that µAi ≡ 0. Then, the default intensity is given

by d̄i = logBi
σAi

+
σAi

2
. We define by D = (D1, ..., Dγ) a vector of binary random variables

Di = δAi<Bi that signal the default of entity i ∈ {1, ..., γ}. The joint distribution of two

entities’ default state is determined by

P (Di = 1, Dj = 1) = P
(
Z̄i < d̄i, Z̄j < d̄j

)
= Φ2,Σ(d̄i, d̄j), (C.4)

where (Zi, Zj) are multi-normally distributed with zero mean, unit variance, and correlation

matrix Σ, with Σij = ρ, i 6= j, and Σii = 1, and

P (Di = 1, Dj = 0) = P
(
Zi < d̄i, Zj ≥ d̄j

)
= P

(
Zi < d̄i,−Zj < −d̄j

)
(C.5)

= P
(
Zi < d̄i, Z̃j < −d̄j

)
= Φ2,Σ̃(d̄i,−d̄j) (C.6)

where (Zi, Z̃j) is multi-normally distributed, (Zi, Z̃j) ∼ N2(0, Σ̃) with correlation matrix

Σ̃ij = −ρ̃, i 6= j and Σ̃ii = 1, i, j ∈ {1, 2}. Iteration yields the general distribution of default
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states as

P(D = d) = Φγ,Σ̃

(
d̃
)
, (C.7)

where d̃i =

d̄i, di = 1

−d̄i, di = 0
, Σ̃ii = 1, and Σ̃ij =

ρ̃, di = dj

−ρ̃, di 6= dj
, i 6= j. Thus, Σ̃ has a unit

diagonal and 4 blocks of ρ̃ and −ρ̃:

Σ̃ =



1 ρ̃ ... ρ̃ −ρ̃ ... ... −ρ̃
ρ̃ 1 ρ̃ ρ̃ −ρ̃ ... ... −ρ̃

. . . −ρ̃ ... ... −ρ̃
ρ̃ ... ρ̃ 1 −ρ̃ ... ... −ρ̃

−ρ̃ ... ... −ρ̃ 1 ρ̃ ... ρ̃

−ρ̃ ... ... −ρ̃ ρ̃ 1 ... ρ̃

−ρ̃ ... ... −ρ̃ . . .

−ρ̃ ... ... −ρ̃ ρ̃ ... ρ̃ 1



(C.8)

Assuming homogeneous counterparties (i.e., d̄ ≡ d̄i), the number of defaulting counter-

parties, ND =
∑γ

i=1Di, is distributed as

P (ND = k) =

(
γ

k

)
Φγ,Σ̃(d̄, ..., d̄︸ ︷︷ ︸

k

,−d̄, ...,−d̄︸ ︷︷ ︸
γ−k

), (C.9)

where d̄ > 0 is the individual default intensity, and Σ̃ is defined as before.

As a benchmark case, consider independent defaults (i.e., ρ̃ = 0). Then, the distribution

of joint defaults is given by

Φγ,Σ̃(d̄, ..., d̄︸ ︷︷ ︸
k

,−d̄, ...,−d̄︸ ︷︷ ︸
γ−k

) = Φ(d̄)kΦ(−d̄)γ−k = Φ(d̄)k(1− Φ(d̄))γ−k. (C.10)

Thus, if defaults are independent, the number of defaults is binomially distributed,

ND ∼ Binom(γ,Φ(d̄)). As Figure C.1 shows, increasing the correlation ρ̃ yields larger tails

of the distribution of ND. Then, it is more likely that counterparties default together (i.e.,

a large or small number of counterparties defaults).

Figure C.1 depicts the distribution of ND for exemplary parameters. Clearly, increasing

the overall correlation ρ̃ yields larger tails of the distribution. Then it is more likely that
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Fig. C.1. Probability distribution of the number of defaults, ND, for γ = 10 entities and
individual probability of default π = 0.5 if defaults are uncorrelated (triangles) or correlated
with ρ̃ = 0.25 (filled dots).

entities default in clusters (i.e., that either many or few counterparties default together).
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