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Abstract

We analyze efficient risk-sharing arrangements when coalitions may deviate. Coali-
tions form to insure against idiosyncratic income risk. Self-enforcing contracts for both
the original coalition and any deviating coalition rely on a belief in future cooperation
which we term “social capital”. We treat the contracting conditions of original and de-
viating coalitions symmetrically and show that higher social capital tightens incentive
constraints since it facilitates both the formation of the original as well as a deviating
coalition. As a consequence, although social capital facilitates the initial formation of
coalitions, the extent of risk sharing in successfully formed coalitions is declining in the
extent of social capital and equilibrium allocations might feature resource burning or

utility burning: social capital is indeed a double-edged sword.
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1 Introduction

A large literature in economics and political science argues that social capital is a critical
determinant of the ability of communities to cooperate and that social capital differs sys-
tematically across cultures, countries, and time. In his influential book, Putnam describes
social capital as the “social networks and the norms of reciprocity and trustworthiness that
arise from them” (Putnam, 2000, p. 19). This description is consistent with a common view
that agents behave cooperatively because they expect their cooperation to be reciprocated
in the future. In other words, cooperation requires a shared belief in future cooperation.
We interpret social capital as the ability to generate this shared belief and select efficient
arrangements, and analyze its impact on the efficiency of social arrangements.

A critical feature of our modeling of social capital is that the notion of efficiency is second
best, reflecting endogenously determined incentive constraints. Consequently, higher social
capital need not imply greater social welfare. Social capital is a double-edged sword: agents
in societies with more social capital are both more likely to enter into beneficial arrange-
ments but also more likely to find ways to circumvent such arrangements when profitable
opportunities arise to do so, by forming cooperative deviating coalitions with other members
of the society at large, thus undermining the original arrangement.

To make this idea concrete, we study risk sharing in an infinite-horizon continuum econ-
omy with idiosyncratic income risk. By pooling income in each period, a coalition of agents
can achieve higher ex ante utility for each agent. Such a cooperative agreement, however,
requires currently rich agents to sacrifice current consumption. In the absence of commit-
ment, the standard incentive device to induce cooperation by the rich agents is to exclude
deviators from future insurance. But if agents were able to reach the original cooperative
agreement, then there is also the possibility that rich agents deviate by leaving their current
arrangement in the hope of, for example, replicating the current arrangement with other
deviating rich agents.! Since we are interested in comparative statics with respect to social
capital, we need a measure of the ability of a group of agents to reach cooperative agree-
ments (based on a shared belief in future cooperation). We parameterize this measure in a
stark fashion as the probability 7 € [0, 1] that a coalition can coordinate beliefs on the most
efficient equilibrium. With complementary probability, the absence of belief coordination is
permanent and there is no risk sharing; our results are robust to alternative assumptions
(Section 9.1).

IThis is the central difference between our work and that of Genicot and Ray (2003), who also study
the formation and stability to joint deviations of risk-sharing coalitions. They study a finite population
world, and restrict coalitional deviations to subcoalitions of the original group. Since smaller groups have
less capacity to share risk, deviating subcoalitions cannot replicate the current arrangement.



Our parameterization of social capital accords well with the approach in the political
science and sociology literature that defines social capital by its sources rather than its
consequences, see e.g., Putnam (1993), Putnam (2001), Portes (1998), and Woolcock (1998).2
In that literature, two approaches have been taken to measure social capital empirically,
either by membership rates of organizations or by measured levels of trust.* Fukuyama
(1995) argues that “trust” is fundamental to the formation of large corporations and hence
a key component in explaining economic differences both across time and across countries.
This argument is empirically tested by Knack and Keefer (1997) who find that while trust
and cooperation are associated with stronger growth and investment, associational activity—
measured by membership in groups—has no significant effect on economic performance. The
premise of this paper that social capital is a double-edged sword and should accommodate
its negative consequences has also been recently stressed in political science and sociology
(see, for example, Portes and Landolt (1996), Putnam (2000), Woolcock (1998), Woolcock
and Narayan (2000), Woolcock (2001)).

It is natural to require an equilibrium allocation to be robust to the possibility that any
subset of agents could defect, not contribute in the current period and, with probability m,
coordinate on an efficient equilibrium (which is similarly robust). But, as we will see, for high
7, the robustness requirement can become too demanding, in the sense that no equilibrium
allocation is robust in the sense just described. We therefore weaken the robustness require-
ment as follows: an allocation is internally-incentive feasible if it is robust to the possibility
that a set of homogeneous agents (typically, but not always, the wealthy agents) could de-
fect, not contribute in the current period and (with probability 7) “reinitialize” risk-sharing
using the same allocation.? An internally-incentive feasible allocation is a credible social
norm or arrangement: A necessary condition for an allocation to be credible is that if all the
agents do believe in it today, that it should not be the case that after some history, some

large coalition finds it optimal to deviate, and after the deviating period follow the original

2Fukuyama (2001, p. 7) makes precise his definition of social capital when he writes “While social capital
has been given a number of different definitions, many of them refer to manifestations of social capital rather
than to social capital itself. The definition I will use in this paper is: social capital is an instantiated informal
norm that promotes co-operation between two or more individuals. ... By this definition, trust, networks,
civil society, and the like, which have been associated with social capital, are all epiphenomenal, arising as
a result of social capital but not constituting social capital itself.”

3Membership rates in organizations (e.g. Putnam (1993)) is an input indicator since social capital can
be accumulated through the associations and networks. Membership is a proxy for social capital in the
same way that years of schooling are a proxy for human capital. Trust can be seen both as a component
or consequence of social capital and the most commonly used trust indicator from the World Values Survey
which measures trust to overall people in the society is likely to be an outcome of social capital. This trust
indicator therefore likely reflects the mixed consequences of the double-edged effects of higher social capital.

4We argue below the we can restrict attention to deviations by homogeneous coalitions.



consumption plan (which is feasible for large coalitions). An allocation is an equilibrium if
it is the ex ante utility maximizing internally-incentive feasible allocation.

A critical feature of the equilibrium notion is that the value of the outside option is
endogenous, depending upon the allocation. As a consequence, the constraint set for the
program determining the equilibrium allocation is not convex, necessitating an indirect ap-
proach to characterizing equilibrium allocations.® Sections 5 and 6 describe this general
indirect approach, which focuses on maximizing ex ante utility subject to exogenous outside
options. For some parameters, there is a fixed point characterization of equilibrium relating
the value of the outside options and the maximized value of ex ante utility. In that case,
equilibrium allocations satisfy the stronger notion of robustness we described above: they are
robust to the possibility that a subset of agents could defect, not contribute in the current
period and “reinitialize” risk-sharing using any allocation (Proposition 2).

Proposition 3 is our central equilibrium characterization result. There is a threshold
discount factor 8 < 1, such that if the discount factor satisfies 5 < 3, the only equilibrium
allocation is autarky, irrespective of the level of social capital. For 8 > 3, there is a critical
value of social capital, 7(/3) € (0, 1], such that for values of social capital below this threshold
(m < 7@(B)), the fixed point characterization applies, and the second-best allocation can be
determined using standard techniques (this is done in Section 7.1). A larger value of 7 reduces
the extent of risk-sharing and lowers expected utility from a successfully formed coalition,
strictly so if the first-best, full insurance allocation cannot be sustained. Nonetheless, ex ante
utility, the weighted sum of a successfully formed coalition (weight 7) and an unsuccessful
attempt at coordinating beliefs (weight 1 — 7), is strictly increasing in 7.

As long as agents are not too patient, the critical value of social capital 7(f3) is strictly less
than 1; indeed, as 3 approaches 3 from above, (/) converges to 0. For high values of social
capital (m > 7(/3)), the value of the outside option is so attractive that equilibrium cannot
satisfy the stronger notion of robustness discussed above. To prevent deviating coalitions
forming, within original coalitions utility must be “burnt” (Section 7.3), either through
introducing further inefficiencies in risk sharing or by burning resources. The need for utility
burning is strictly increasing in 7, and ex ante utility remains at its maximal sustainable
level as 7 rises from 7(3) to 1.

We proceed by placing our contribution in the literature in the next section. Following the
theoretical analysis described above in Sections 3-7, Section 8 presents results for a computed

example to convey the qualitative properties of the equilibrium and Section 9 discusses two

SSince ex ante utility is continuous, and the set of internally-incentive feasible allocations is compact (in
the product topology), existence of equilibrium is immediate.



extensions, one to temporary delay of risk sharing after a failure to form a coalition, and the

other to a production economy. Section 10 concludes.

2 Literature Review

The nonexistence of equilibrium under the stronger robustness notion and the associated
need for utility burning is a general phenomenon. The use of utility and money burning at
the beginning of the allocation is reminiscent of some efficiency wage (Shapiro and Stiglitz,
1984, MacLeod and Malcomson, 1989) and gift-exchange and related models (Carmichael
and MacLeod, 1997, Kranton, 1996a,b, Ghosh and Ray, 1996). In particular, the idea that if
it is too easy to start a new relationship (worker-firm, principal-agency, partnership, etc) af-
ter opportunistic behavior (shirking for example), then it is impossible to deter opportunistic
behavior. In order to deter deviations, it is therefore necessary to impose some form friction
(such as delays in joining a new firm, involuntary unemployment, or engaging in inefficient
actions in the beginning of the new relationship, exchange of inefficient gifts). That previous
literature emphasized the difficulty of deterring opportunistic behavior in the setting of uni-
lateral deviations. We extend this insight to the setting of coalitional deviations, suggesting
that the difficulty is intrinsic to the incentive compatibility of many institutions.

Our symmetric treatment of the original and deviating coalitions in terms of available
coalition members and feasible allocations underlies the stark difference between our re-
sults and the limited commitment literature in (macro-)economic theory, which assumes,
explicitly or implicitly, that deviators have less opportunities than the originally formed
coalition. Within this literature, in macroeconomics, Kehoe and Levine (1993) and Alvarez
and Jermann (2000) characterize consumption allocations in a general equilibrium limited
commitment framework. In labor economics, Harris and Holmstrém (1982) and Thomas and
Worrall (1988) study efficient long term-contracts between employers and employees under
limited commitment. Kocherlakota (1996) models two-party risk-sharing arrangements as a
repeated game and Krueger and Perri (2006) extend this literature to a risk sharing econ-
omy with as a continuum of households exactly of the form studied in this paper.® These
papers share our focus on self-enforcing arrangements, but take the outside option as ex-
ogenously given, and equal to the autarkic allocation, which is essentially assuming 7 = 1
in the original coalition while 7 = 0 in the deviating coalition. Given this outside option,

the qualitative properties of the equilibrium allocation in this work and our paper (when

6A strand of the sovereign debt literature also considers self-enforcing simple debt contracts because
sovereigns cannot commit to repay, see e.g. Eaton and Gersovitz (1981) and Bulow and Rogoff (1989).
Abrahdm and Laczé (2017) also analyze a limited commitment model with a private storage technology.



7 < 7(f)) are similar: high-income individuals receive high consumption to avoid defection,
and consumption drifts down with low-income realizations until it hits a lower bound.

Building on these classic papers, a literature emerged that endogenizes the outside option.
Krueger and Uhlig (2006) assume that outside option is determined by the best insurance
contract offered by a competing financial intermediary, who has long term commitment.”
Hellwig and Lorenzoni (2009) endogenize the outside option by assuming that the only
punishment for deviators is the denial of future credit (but they are allowed to save). These
papers also define equilibrium as a fixed point, but unlike our paper, the nonexistence issue
does not arise.® The central difference between that work and our paper is that they assume
asymmetric contracting conditions between the original and deviating coalition while we
assume exactly symmetric one. With an asymmetric treatment, there is more room for
relaxing incentive constraints through adjustments of endogenous variables or exogenous
parameters, which has asymmetric effects on the payoff within and outside the coalition.
In Krueger and Uhlig (2006), higher return of storage makes the deviation more costly by
losing the storage upon deviation, and in Hellwig and Lorenzoni (2009), endogenous lower
interest rates make default less attractive by lowering the return of saving after default. With
the symmetric treatment in our paper, however, the ex ante value and the deviation payoff
are themselves related by a fixed point, which generates a strong feedback on risk sharing
opportunities.

Also related are a set of papers analyzes how government social insurance policies (un-
employment insurance, progressive taxation, disability insurance) impact the outside option
and thus equilibrium private insurance, see e.g. Krueger and Perri (2011) and Park (2014).
In this literature the outside option is endogenous from the perspective of the policy maker.
There is also a related literature which endogenizes the outside option by assuming that
private noncontingent intertemporal trades can be enforced and examines how this impacts
on insurance (see, for example, Allen, 1985) and government taxation (see Farhi, Golosov,
and Tsyvinski (2009)).°

Most papers on risk-sharing consider only unilateral deviations of individuals from the
risk sharing arrangement, thereby limiting the extent of insurance that can be obtained after

deviating. An exception to this is Genicot and Ray (2003), who study the formation and

"Phelan (1995) also endogenizes the outside option, and makes assumptions on the timing of the model
that implies full commitment for one period. In his paper private information about income limits consump-
tion insurance in his model.

8More precisely, in Hellwig and Lorenzoni (2009), the fixed-point equilibrium is a fixed point in borrowing
limits.

9In the context of private information, Cole and Kocherlakota (2001) endogenize the outside option,
assuming hidden storage, and Golosov and Tsyvinski (2006) analyze optimal disability insurance.



stability to joint deviations of risk sharing coalitions in economies with finite populations.'®

In the finite population world of Genicot and Ray (2003), coalitions must be stable against
deviations of smaller sub-coalitions of the original group, and the main purpose of the paper
is to determine endogenously the size of stable coalitions.!! Since larger coalitions are more
prone to successful deviation, an optimal size of the original coalition emerges. This result
stems from their assumption that the deviating coalition can only make an arrangement with
the original coalition members, while in the formation of the original coalition, all members
of the population could be considered as potential members. We share with this paper and
with Bold and Broer (2018) the basic notion that risk-sharing coalitions must be immune to
not only unilateral deviations by an individual, but to coalitional deviations. In contrast to
Genicot and Ray (2003), however, we allow deviating coalition to have the same insurance
capabilities as the original coalition.

Our comparative statics results with respect to social capital 7 imply that in societies with
larger social capital risk sharing arrangements are more likely to form and ex-ante welfare
is (weakly) higher, however ex post utility (conditional successfully forming a coalition) and
risk-sharing within the formed organizations is lower.'? This accords well with the differential
evidence on the high degree of risk sharing in poor, rural village economies in developing
countries (see e.g. Townsend (1994) or Ligon, Thomas, and Worrall (2002)) versus the
relatively lower degree of risk-sharing in (see e.g. Attanasio and Davis (1996) or Altonji,
Hayashi, and Kotlikoff (1997)).13

3 Model

3.1 The Environment: Income, Preferences and Technology

Time ¢ is discrete and extends from period ¢t = 0 to infinity. A unit measure of infinitely-lived
agents face idiosyncratic income risk in each period. An agent in each period has low income

y = ¢ > 0 and high income y = h > ¢ with equal probability; we write Y := {¢, h}. Income

10Bold and Broer (2018) estimate their model on Indian village data and find that stable risk sharing
coalitions are typically small, and that the resulting consumption allocations accord better with the data
than those generated by the standard limited commitment model with an autarkic outside option.

" Genicot and Ray (2003) builds on the more abstract game theoretic literature on coalition deviations
pioneered by Bernheim, Peleg, and Whinston (1987) and Greenberg (1990) (and extended/unified by Kahn
and Mookherjee (1992, 1995) to infinite games and to adverse selection insurance economies in which agents
have private information). This abstract literature shares with Genicot and Ray (2003) the assumption that
coalition formation is “easy,” that is, mw = 1.

120nce the outside option is binding and full risk-sharing is no longer possible.

13We do not contend that our mechanism limiting risk sharing is the only one consistent with this obser-
vation. The differential importance of private information about income could also explain these facts.



realizations are independent across both agents and time. As usual, we assume that in any
positive measure (i.e., large) collection of agents, and thus the economy as a whole, there is
no aggregate income risk. We denote by 3y = %(f + h) aggregate income per capita, and an
individual’s income history by 3*. The probability of income history 3" is denoted by Pr(y').

All individuals have identical preferences over consumption in periods ¢ > 1 given by

o)
o osfS )
t=1
where the utility function is strictly increasing, strictly concave and satisfies the Inada con-
ditions, and where we multiply period utility by (1 — () to express period utility and lifetime

utility in the same units. The autarky payoff, the payoff from consuming one’s income, is

VAy) :== (1= Buly) + BEu(y) = (1 — Buly) + BV,

where ex ante autarky utility is V4 := Eu(y). The first-best payoff obtained from consuming
average income with certainty is
VI = (),

3.2 Coalition Formation and Deviation

In the initial period ¢ = 0, agents attempt to form risk-sharing arrangements. Any ar-
rangement needs to be robust to the possibility of deviations, either by single agents or by
coalitions of agents. Agents decide on deviations after learning their current income. The
continual threat of deviations implies that any coalitional arrangement must itself be self-
enforcing against the possibility that some members may deviate after that coalition has
been formed. We assume that the size of the coalition does not restrict the size of deviating
coalitions, since these can implicitly include members from outside the original coalition.
Because future income risk is more effectively shared in large coalitions, all coalitions will be
large (i.e composed of a continuum of individuals), both the initial and potential deviating
coalitions. Note that the possibility of forming a new large coalition is most threatening
to the original coalition.'* A continuum population within a coalition simplifies our life in

two ways. First, there is no aggregate income risk in any large coalition. Second, deviating

14Tn contrast, Genicot and Ray (2003) assume that deviations have to come from sub-coalitions and hence
restricting the original size, while sacrificing some risk-share benefits, is optimal since it restricts the outside
option for these sub-coalitions. Our symmetric treatment of initial and deviating coalitions with respect to
the choice of size is a key factor in generating our results, as this binds the ex ante payoff to the original
coalition and the outside option tightly together.



coalitions do not benefit from adding additional agents who were not part of the original
agreement.

We do not model coalition formation and the associated decision to deviate as a noncoop-
erative game. Rather, we take a cooperative game-theoretic approach and impose incentive
constraints that ensure that such deviations are not profitable. This also means that we do
not need to specify the outcome for the remaining agents after a successful deviation.

A risk-sharing agreement within a coalition is only reached if its members are confident
that future cooperation is sustainable. This confidence requires significant social capital
since the incentive compatibility of future cooperation depends on intertemporal incentives
that themselves need to be incentive compatible. We model social capital in an admittedly
crude fashion by assuming that any attempt to form a coalition succeeds with an exogenous
probability 7 € [0, 1]. If the attempt succeeds, then the coalition immediately implements
a new risk-sharing agreement.’> When a new (or deviating) coalitions fails to form (which
happens with probability 1 — 7), agents receive their autarky payoff V4.1 We also assume
that once the option to attempt secession has been exercised, it cannot be undone. Finally,
we assume that the allocation within any newly formed coalition is determined by a social
planning problem in which all members initially have equal weights and therefore are treated

ex ante symmetrically.

3.3 Preliminary Analysis: The Coalitions

We now argue that without loss of generality, we can restrict attention to large homogeneous
coalitions. The sufficiency of large coalitions follows from two observations. First, any finite
coalition’s per capita outcome can be replicated by a large coalition with the same initial
output composition. Second, the large coalition improves on the original outcome since it
has no aggregate randomness.

We can restrict attention to homogeneous (by income histories y*) deviating coalitions
because we assume the initial bargaining weight of each agent in a newly formed coalition
is fixed and equal, and each agent’s decision to join a newly formed coalition is irrevocable:
If a coalition successfully forms, then consumptions will be equalized for all agents in the
deviating coalition in the first period, and consumptions thereafter will depend upon the
agent’s realized history. This implies that an agent will prefer a coalition with high, rather

than low, first period per capita income. Agents with the high income realization will

151f the deviation coalition is homogeneous, there is no risk sharing in the first period.

16The precise specification after a deviating coalition fails to form is not important (though it does have
implications for our quantitative analysis); it is important that the failure of an attempt to deviate is costly.
The case of a temporary delay in insurance (rather than permanent absence) is discussed in Section 9.1.



therefore prefer to join a coalition composed only of other individuals with the high income

realization (and so leaving low income agents to form a coalition without them).

4 Equilibrium

An allocation for a coalition is a consumption plan ¢ specifying, for all periods ¢, an agent’s
consumption ¢(y") in period ¢ for every possible sequence y* € Y of individual income shocks.
We assume, again without loss of generality, that individual consumption depends only on
that agent’s income history, independent of identity.

A coalition formed in period 0 faces an ex ante notion of feasibility since the member

income levels are not known at the time of coalition formation.

Definition 1 An allocation for a coalition c is resource feasible if

o cHPr(y) <y, V=1, (1)

)

The lifetime utility from an arbitrary consumption allocation c is given by

Woe) = (1=B) > > B Pr(y )ule(y)).

=1 y7

In period 0, all agents are identical, and they will agree to follow any resource-feasible
consumption plan ¢ that maximizes W9(c), as long as they can be confident that the con-
sumption plan will be followed in the future. The danger is that some coalition may find it
optimal to leave the original arrangement and internally insure. A necessary condition for a
consumption plan to be a credible social norm is that if all the agents do believe in it today,
that it should not be the case that after some history, some large coalition finds it optimal
to deviate, and after the deviating period follow the same consumption plan.!” Phrased
differently, suppose the grand coalition believes that the allocation ¢ is credible, but that
a coalition after some history ' with current income y; receives strictly higher payoff from
seceding, and if successful forming the new coalition, implementing ¢ from the next period.
Such a history means that the grand coalition should not have believed in the credibility of
the original allocation ¢, since it will not be implemented in its entirety. Accordingly, we are

interested in allocations that are not subject to such a criticism.

17Since the coalition is large, the (per capita) resource-feasibility constraint faced by the coalition is
identical to the (per capita) resource-feasibility constraint.



For an arbitrary income history y* € Y, the continuation lifetime utility under the

allocation is

W(y' e) = (1= Bluley)) + (1= 5) Y Y BT Pr(y")ule(y'y")),

T=1 y7

where y'y” denotes the t + 7-history that is the concatenation of ¢-period history 3 and the
T-period history y7.

Definition 2 An allocation c is internally-incentive feasible if for all t > 1 and for all
yt ey,
W(y' ) > (1= B)u(ys) + BlrW°(c) + (1 — 1)V, (2)

Let C denote the set of resource feasible and internally-incentive feasible allocations.

This is a weak notion of credibility when coalitional deviations are possible. For ex-
ample, while the autarky allocation is trivially internally-incentive feasible, that allocation
has lower utility than allocations with some insurance. The stability notion is “internal”
in the sense that when evaluating the credibility of an allocation, agents only consider the
possibility that if accepted, that allocation will also determine the outside for any devi-
ating coalition.’® Agents do not consider the possibility that the payoffs for a deviating
coalition may determined by a different (possibly more attractive) allocation. As in the
cooperative-game-theory and renegotiation-proof repeated-games literatures,' the stronger
requirement (which we discuss just after Proposition 2 in Section 5) can lead to nonexistence
of equilibrium.

The internal-incentive constraint (2) is the key friction that prevents full consumption

insurance within a coalition.

Definition 3 For given social capital w, an allocation ¢ is an equilibrium allocation if it
solves the program
max W(c).

ceC

Denote by W = max.cc W°(c) the resulting optimal lifetime utility and by F = 7W +

(1 — 7)VA the associated ex ante (and so deviation continuation) utility.

18Tn this sense, the notion is similar to von Neumann and Morgenstern’s (1944) internal stability notion;
see the discussion in Greenberg (1990, Section 2.3). It is also similar, in the thoery of repeated games, to
Farrell and Maskin’s (1989) notion of weakly renegotiation proof and Bernheim and Ray’s (1989) notion of
internal consistency. Note that these authors effectively assume 7 = 1.

9For the former, the stronger analogous notion is von Neumann and Morgenstern’s (1944) external stabil-
ity; again see the discussion in Greenberg (1990, Section 2.3). For the latter, the analogous stronger notion
is called strongly renegotiation proof by Farrell and Maskin (1989) or strong consistency by Bernheim and
Ray (1989).

10



An equilibrium allocation ¢ is the best ex ante resource-feasible and internally-incentive-
feasible allocation. Note that an equilibrium allocation maximizes ex ante utility given 7, as
well as the utility conditional on the agreement being reached. The value W is the maximum
per capita value the grand coalition can achieve, given the credible threat that any group
of agents will deviate (and implement the same agreement) if the initial arrangement is not
sufficiently generous to that group. Recall that if any group has an incentive to deviate,
then a homogeneous large group does. If a homogeneous large group with current income y
does deviate, with probability 7, the group is able to coordinate on future risk sharing (in
the current period, agents consume y since all agents have identical current income), with
payoff (1 — B)u(y) + SW. With probability 1 — 7, there is no future risk sharing, and so
(1 — B)u(y) + SF is the expected payoff from deviating.

Since the autarkic allocation is trivially resource and internally-incentive feasible, the set
of resource and internally-incentive-feasible allocations is nonempty, and so the supremum
of W9 (¢) exists and is bounded above by (), the utility of first-best insurance. Moreover,
as C is closed (in the product topology), the supremum is always attained and so equilibrium
exists. The bulk of our analysis is concerned with the characterization of equilibrium.

Our first result (the proof is a straightforward calculation) is that first-best insurance
is consistent with equilibrium only when social capital is not too large (and agents are

sufficiently patient).

Proposition 1 The first-best allocation is an equilibrium allocation if and only if

<t g (L= Auh) — V7]

< : GV FE — VAl < 1. (3)
Moreover, if s
e ulh) =V
Pelm= Sy —va

then 7P < 0 and full insurance is not an equilibrium for any level of social capital .

The requirement that social capital not be too large for full insurance should not be
surprising. Under the first-best allocation, the currently h-income agents sacrifice current
consumption to insure the currently /-income agents. If 7 is close to one, seceding and then
immediately insuring within the deviating coalition incurs almost no loss in insurance and
so secession is attractive.

Of more interest is the possibility of partial insurance in equilibrium, as illustrated by the

next example. As in Krueger and Perri (2011), where the outside option is fixed, the lower

11



bound on S in Example 1 turns out to be necessary for insurance as well (see Proposition

3.1 in the next section).

Example 1 Suppose pu'(¢) > u'(h), and consider the allocation

h — g, Yt = h7
C€<yt) = E + 257 Yt—1 = h7 Yy = ga

l, otherwise.

This allocation satisfies resource feasibility with equality in every period ezcept the initial
period, when ¢ resources are destroyed. We claim that for € > 0 small, ¢. € C. Observe first
that W%(c.) > V4 for e small, and so this allocation does provide partial insurance.

A sufficient condition for ¢. € C is
Wi(h,c.) > (1 — B)u(h) + BW(c.). (4)

This is the condition for internal-incentive feasibility when 7= = 1, which is stricter than
internal-incentive feasibility for any 7 < 1 when W0(c.) > VA4,

By deviating, an agent in the h-coalition gives up one period of 2¢ insurance in the event
that she has ¢ income in the next period (which occurs with probability 1/2). So a sufficient
condition for (4) to hold for € small is that the marginal benefit of deviating be smaller than

the marginal expected delayed cost,

(1— B (h)e < (1 — 5)§u'(e)2a,

which reduces to the assumed bound on /.

*

Two features of Example 1 deserve mention. The first is that the initial period resource
destruction plays a critical role in the internal-incentive feasibility of Example 1’s allocation.
In particular, if the ¢ resources sacrificed by the initial h-income agents is given to the
initial /-income agents (providing additional ex ante insurance), the resulting allocation is
not internally-incentive feasible for high 7 (it is internally-incentive feasible for 7 close to
0); the proof of Lemma A.3 uses this property of the modified allocation.

The second is the time-varying nature of the insurance provided. When first-best insur-
ance is not internally-incentive feasible, h-income agents optimally secede under the first-best

allocation. To reduce this secession incentive, a natural modification is to consider simple

12



allocations of the form
h — C) Yt = h7
ce(y') = (5)
14 + C, Y = /.
For ¢ = 0, ¢, is the autarkic allocation, while for ( = h — 7, ¢, is the first-best allocation.
While such an allocation can be internally-incentive feasible, it is less efficient in its provision
of incentives. For example, for m = 0, ¢ is only internally-incentive feasible if
s

— (1= () + S (1) — ()] 20 = 5>

2u/(h) u'(h) (6)

WO +uwh) W)

The allocation in Example 1 achieves partial insurance without violating incentive feasi-
bility for lower 8 by rewarding h-income agents through insurance: in exchange for giving
up ¢ today, the allocation promises 2¢ in insurance to any agent realizing ¢ tomorrow (while
providing no insurance to agents who had realized ¢ previously and continue to realize ¢). Fi-
nally, it is worth noting that (4) was derived assuming 7 = 1 while (6) was derived assuming

T =0.

5 Equilibrium as a Fixed Point

Characterizing equilibrium allocations is complicated by the nature of the internal-incentive-
feasibility constraint. In particular, the set of internally-incentive-feasible allocations is not
convex. This lack of convexity arises from the endogeneity of the outside option, i.e., the
deviating coalition’s payoff. Accordingly, we follow an indirect path that first solves for
equilibrium via a fixed point argument for a subset of values of 7, and then solves for
equilibrium for the remaining values of 7.

Recall that internal-incentive feasibility requires
Wy c) > (1 - B)uly) + BlaWo(c) + (1 — m)VA Yyt e U Y.

We begin by considering resource-feasible allocations that satisfy an exogenous version of

this constraint, which we call the incentive-feasibility constraint,
W(y',c) = (1= Buly) + BF Yy € U Y. (7)

For exogenous I € Ry, denote by C(F) the set of resource-feasible allocations satisfying

(7). If F is too large, then C(F') will be empty. But if ¢ is internally-incentive feasible, then

13



c € C(nW°e) + (1 — 7)V4), and so the constraint set C(F) # @ is non-empty for outside
options F' < 7W°c) + (1 — m)VA.
When C(F) # @, define

V(F) = Creréz(a% W (e). (8)

Social capital m does not appear in the maximization in (8). Instead, the exogenous value of
the outside option F' determines the optimal allocation and value. But there is a connection.
Since a deviating coalition only successfully coordinates after deviation with probability m,
if F'is the implied continuation value of the outside option for a deviating coalition, then,

for all y € Y, the value of the outside option is determined by the mapping
T(F;7) = aV(F)+ (1 —7m)V4

Proposition 2 Suppose F = aW°(cl) + (1 — 7)VA is a fived point of T(-;7) for some
allocation ¢t € C(F). Then WO(c") = V(F), ¢ is an equilibrium allocation, and F is the ex

ante value of the equilibrium.

Proof. Tt is immediate that W°(c") = V(F) and that F is the ex ante value of the
equilibrium if ¢ is an equilibrium allocation. It remains to argue that ¢ is an equilibrium
allocation.

Since ¢l € C(F), c' is internally-incentive compatible. If ¢ is not an equilibrium, there

exists another resource and internally-incentive-compatible allocation ¢’ with
WOo(c) > wo(ch.
Then, for all ¢ > 1 and y* € Y7,

W(y',d) = (1= B)uly) + BlaW(c) + (1 - m)V]
> (1= B)ulye) + BrWO(c") + (1 — m)V]
(1= B)uly) + BF,

and so ¢ € C(F), implying W0(cf) could not be a fixed point of 7 (;). O

Proposition 2 indicates that equilibria exist for those 7 consistent with outside options
that are fixed points of 7( - ;7). But this is uninformative without a better understanding
of the fixed points of 7( -;m) (which we provide in the next section).

The equilibrium nature of the fixed points of 7(-;7) deserves comment. The fixed points

(when they exist) satisfy a stronger notion of credibility than that captured by internal-
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incentive feasibility. In particular, if ' = 7W°(cl) + (1 — 7)V4 is a fixed point of T( - ;7)
for some allocation ¢! € C(F), then it is robust to the threat of secession from any coalition
when any seceding coalition is free to reoptimize subject only to the constraint that there may
be further deviations by subcoalitions. As mentioned earlier, this is analogous to stronger
notions of stability and renegotiation-proofness in game theory that are known to have
nonexistence problems. Similarly, in our setting, there is no guarantee that 7 (-;7) will have
a fixed point.

If a fixed point does exist, it is unique because V(F'), and thus T (F;~), is weakly de-
creasing in F. The fixed point may fail to exist because the constraint set is not a “nice”
function of the parameter F', or the constraint set is empty for F' in a relevant region. While
Proposition 4 below assures us that the former is not an issue (the constraint set is a “nice”
function of F), the constraint set is empty for large F' (which will correspond to large )

and so a fixed point does not exist in that case. Define

F :=sup{F |C(F) # @}.

We can now state the main result of the paper (which summarizes the analysis to follow):2

Proposition 3 Equilibrium exists for all = € [0, 1].

1. Suppose 3 < B :=u'(h)/u'(£). There is no risk sharing in equilibrium (i.e., autarky is

the unique equilibrium,).

2. Suppose 8 > [. Risk sharing does occur in equilibrium (and so autarky is not an

equilibrium). There exists a value of 7, ™(B) € (0,1], such that

(a) for m € [0,7(5)], equilibrium is unique and its ex ante value is strictly increasing

in 7, equaling F > V4 at 7, and

(b) for e (w(B),1], equilibrium allocations are not unique, but all have the same ex

ante value of F.

We conjecture that T < 1 for all 3 € (0,1) (and not just for 8 near 3, as guaranteed by
Proposition 3.3). While we have not been able to prove this, all of our numerical examples
have this property (we discuss this in more detail in Section 8).

Proof. Existence of equilibrium is immediate, as we discussed after Definition 3.

20To simplify notation, we occasionally leave the dependence on 3 of 7, F, and similar functions implicit.
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1. This is an implication of the machinery we develop to characterize F', and is Corollary

1 in Section 7.2.

2. (a) This is an immediate implication of Propositions 2 and 4 (which is in the next

section), and the strict concavity of the problem (8).

(b) This is Lemmas 1 and 2 in Section 7.3.

3. This is also an implication of the machinery we develop to characterize F, and is

Corollary 2 in Section 7.2.

6 Understanding Equilibrium Values

We begin by studying the program (8) and the fixed points of 7( - ;7). The proof of the
following result is in Appendix A.

Proposition 4 Suppose > u'(h)/u/'(£).
1. VA<F.
2. C(F)# 9.
3. For F < F, the value of the problem (8), V(F), is continuous in F.
4. Defining o
_ . { F—vA }
T:=mind —————-,1;,
V(F) — vA
for allw € (0,7], T(-,7) has a unique fized point F(n). The function F(-) is increasing
int. Iff<1, F=F(@) and if F(7) < F, 7= 1.

5. IfT <1, form>7, T(-,m) does not have a fixed point.

Note that autarky is not a fixed point equilibrium when 7 > 7 (Proposition 4.5). Al-
though autarky is internally-incentive feasible, it is dominated by a better allocation which
is not internally-incentive feasible when a seceding coalition is free to reoptimize.

Figure 1 presents the previous proposition graphically by plotting V(F') and 7 (F;7)
against the value of the outside option F' for various degrees of social capital m. At one
extreme, 7 = 0 and we have T (F;0) = V4 and thus trivially F = V4 is the unique fixed
point for the outside option. In this case, for 8 > 3B, Proposition 1 implies V(V4) = VB
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Figure 1: Determination of the fixed point of T (F;7) = aV(F) + (1 — 7)V4 for different
values of . Drawn for 8 > B¥E, where p7P is defined in Proposition 1 and assuming
V(F) > F (Lemma A.2 verifies that F' > FFB if '8 < B3); if 8 < BF'E, then FI'P < V4,

and the allocation for the initial coalition would feature full insurance (but since 7 = 0, it
never successfully forms). From Proposition 1, full insurance remains the outcome for the
successful coalition as long 7 < 7P < 1. The associated largest deviation lifetime utility
FTB for which the full-insurance allocation can be sustained inside the initial coalition is
given by

FFB — 7_‘_FB‘/'FB + (1 o 7_{_FB)‘/'A‘

For m € (7f"B 7], the value of the outside option F is determined as the fixed point of
T(-;m). The fixed point is larger than F¥Z and so the constraint (7) strictly binds at least
for households with currently high income, implying the initial coalition cannot sustain first-
best insurance (i.e., V(F) < VIP) and that the utility V(F) it delivers is strictly decreasing
in F.

Defining F := (1— 8)V4+ SF, it is immediate that F' < V(F) from the observation that
if (8) is solved by ¢ € C(F), then the allocation

Y1, lft: 17

G(y27"'ayt)7 lftZQa

c'(y) =

is an element of C(ﬁ) This in turn implies that for all F' € [V4, ﬁ], F <V(F).
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Suppose T < 1. For m > T,

V(F)+ (1 —-m)VA>F.

Since C(F') is empty for F' > F, this implies that 7 (-; 7) does not have a fixed point. However,
this does not imply that there is no equilibrium (recall that the fixed point characterizes a
stronger notion of incentive feasibility, and is only a sufficient condition for equilibrium in
our setting).

Suppose ¢ is an equilibrium allocation with value W%(c). Then it must satisfy
c € C(aWo(c) + (1 — m)VA),

and so
WWO(C) + (1 - 7T)VA <F. (9)

Since m > 7, we have W°(c¢) < V(F), leading us to define:

Definition 4 An equilibrium allocation ¢ burns utility if
Wo(e) < V(F).

An equilibrium allocation maximizes ex ante utility (the left side of (9)). We show in
Section 7.3 that equilibrium allocations in fact satisfy (9) with equality.

Our notation suppresses the dependence of 7@ and 7?2 on £, but it is worthwhile to
clarify the relationship between 3 and 7, which is illustrated in Figure 2. For m < 7f'3(3), a
successfully formed coalition provides its members with full insurance and ex-ante utility is
strictly increasing in social capital. For all 7 € (7B (3),7(8)], T(-, ) has a fixed point and
its value (the value of ex ante utility) is strictly increasing in 7. The associated allocation
features partial insurance that gets worse with m, as does lifetime utility conditional on
successfully forming the coalition. Finally, for 7 > 7(3), 7 (-;7) does not have a fixed point,
the internal-feasibility constraint is binding in equilibrium, expected lifetime utility is fixed
at F independent of 7 (since (9) holds with equality) and attained with an allocation that

features utility burning and partial risk sharing.?!

2'When 7 = 1, our model is directly comparable to the no-storage case of Krueger and Uhlig (2006)—
where the return of the storage R is so low that the storage is not used. If 8 < u/(h)/u/(¢), our result is
consistent with the autarkic fixed point equilibrium (with no storage usage) in Krueger and Uhlig (2006).
However, they only considered R > 1 under which the storage is always used if 8 > v/(h)/u/(£). That is,
nonexistence issue does not arise in Krueger and Uhlig (2006) because of the restriction on the parameters

(8, R).
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Figure 2: The insurance possibilities as a function of the discount factor and social capital.
Equation (3) shows that 7f'2(38) = 0. By Corollary 2, 7(3) converges to 0 as 3 tends to

B = u'(h)/u'(£).

7 Characterizing Equilibrium Allocations

From Proposition 1, if 7 < 7%, the first-best allocation is consistent with equilibrium.

7.1 The case of no utility burning, = € (773, 7]

We now characterize the equilibrium allocations for intermediate values of 7, that is, values
of 7 that are consistent with a fixed point of T( -;m) exceeding FP. We have already
seen that this is equivalent to characterizing the allocations that maximize W9(c) subject
to c € C(F) for F' € (FFB F(7)], where F(7) is the fixed point associated with 7 (recall
Proposition 4.4). This is a strictly concave problem, and so has a unique solution, that we
denote by c.

We first state some standard properties of the optimal allocation. The proofs (most of

which are standard, though tedious, variational arguments) are in Appendix B.

Proposition 5 Suppose fu/ () > u/(h) and F € (F*8, F(7)]. The optimal allocation ¢ has
the following properties:
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. There exists §;41 < 1 such that if incentive feasibility does not bind at y'™, then

u'(e(y"))

Wle(yh) (10)

and so
c(y’) > e(y™).

. Incentive feasibility binds at all '~ h, and so for all y't,
W(y'~"'h,c) = (1 = Bu(h) + BF = W' (), (11)
and for all y*=* and 31,
c(y'"'h) = c(§"'h) = ci(h).
. If incentive feasibility binds at some y'='¢, then it binds at y'~104.
. If incentive feasibility binds at y'¢, then c(y'l) = c,(F), where co(F) > { solves
u(c(F)) = u(l) + B(F —VA) > u(l),

and for all v,
c(y'l) = c(F). (12)

. Incentive feasibility does not bind in the initial period at ¢ nor after any history of the
form ytht.

. There is an L such that for 0 < k < L and all histories y'~17%, gt=1=F
e(y' T TFREY) = e (9T REY) = ay(ReY),

and for k > L, c(y"™1"Fhek) = ¢ (F).

Proposition 5 implies that the optimal allocation is a sequence of consumption ladders:

the optimal consumption in any period is determined by the number of ¢ realizations after

the last h realization with consumption falling after each additional ¢ realization until the

consumption floor ¢,(F') is reached. Accordingly, with a slight abuse of notation, we write

ci 1 (he¥) for the consumption in period ¢ + k after any history y'~1=*he*.
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Definition 5 A period-t consumption ladder is a finite sequence of consumptions, denoted
<(®t+k(h€k))£;; ,Cf(F)), specifying for each k = 0,..., L, the consumption in period t + k
of an agent who had the income history y*~'h{*. A stationary consumption ladder is a finite
sequence of consumptions, denoted (c*(hﬁk))k o Specifying the consumption in any period t

of an agent who had the income history y'=*~he*.

We extend any finite consumption ladder to an infinite ladder (sequence) by setting
cern(hl®) := ¢y(F) for k > L.

A period-t consumption ladder specifies the current and future consumption of an agent
with current h-income and future /-income realizations. If that agent again receives h in the
subsequent period t + k, her consumption from period ¢ + k on is determined by a period
t + k consumption ladder. Consequently, the continuation lifetime utility of any agent with
current h-income is determined by the details of the current and future consumption ladders.

The calculation of lifetime utility is simpler when the current and future ladders agree,
i.e., for a stationary ladder. The lifetime utility of an agent with currently high income from

a stationary ladder c, is

W(h,c.) = (1= B)u(c.(h))
+24(1 = Byule.(ht)) + W(h,c)}
+ (§)2 {(1 = B)u(c(ht?)) + W(h,c.)}

B) > () Fule.(ht*)) + 25 W (h, c.),

k=0

and so, simplifying, we get

W (h,c,) = D () rule.(he*)). (13)
k=0

The only income histories for which consumption is not specified by any consumption
ladder have the form ¢*, and those consumptions are pinned down by resource feasibility,
since in every period there is only one such history.

For F > F¥B_ the optimal allocation provides maximal risk sharing consistent with
incentive feasibility. Incentive feasibility always binds for h-income agents and sometimes
for /-income agents.

In order to deter an h-income agent from seceding, the optimal allocation does two

things: First, it reduces her transfer to low-income individuals below the first-best level.
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And, second, the risk sharing offered is “front-loaded” so that f-income agents who had
more recently received a h realization receive more insurance than those who last received a
h realization further in the past.

This front-loading (reflected in the declining consumption ladder) implies that eventually
the consumption specified after a sufficiently long string of ¢-realizations is determined by
incentive feasibility for the ¢-realization. The resulting lower bound on consumption, ¢,(F') >
¢ reflects the following trade-off: Seceding from ¢ does mean that the agents give up some
risk-sharing today, but the benefit is that in a new coalition tomorrow, any agent who receives
another ¢ realization receives more generous risk sharing tomorrow (since incentive feasibility
does not bind in the first period after ¢ by Proposition 5.5, ¢,(F) < ¢(¢)).

Remark 1 Our equilibrium definition determines allocations within a successfully formed
coalition as the solution to a social planner problem with equal Pareto weights. When
7 < 7 and the equilibrium allocations are solutions to the fixed point of 7( - ;7), these
consumption allocations within a coalition can be decentralized as in Kehoe and Levine
(1993).22 The individual’s optimization problem in this decentralization is to choose her
consumption allocation so as to maximize her ex ante payoff subject to a single intertemporal
budget constraint and a sequence of incentive constraints for each history state 3. In the
individual’s present value budget constraint the price of a unit of consumption in her history
state y' is given by 7, Pr(y"), where v, is the resource multiplier from the coalition’s social
planning problem given the outside options and hence corresponds to the individual-level
present value constraint. In addition, the incentive compatibility constraints at the individual
level are exactly the incentive feasibility constraints in (7). Thus, the individual’s problem
is isomorphic to the Lagrangian problem for the coalition. Note that this is not the case
when 7 > 7 since in that case the coalition must respect a binding coalition-level constraint

on the overall level of ex ante welfare.

¢

7.2 Characterizing 7

We now characterize 7, or equivalently, . It turns that F has a simple characterization as
the maximum value of the outside option consistent with h-incentive feasibility. In particular,

a specific stationary ladder attains this maximal sustainable deviation payoff F. Using this

22In the literature stimulated by Kehoe and Levine (1993), the outside option is taken to be autarky, but
the key is that the efficient allocation is generated by optimizing against this option (see, for example, Chien
and Lustig, 2009, or Alvarez and Jermann, 2000).
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property, we then argue that the associated equilibrium allocation also converges to this
stationary ladder.

We are interested in the stationary ladder that maximizes ladder lifetime utility W (h, c.),
given in (13), subject to incentive feasibility for ¢ realizations and resource feasibility. Re-
calling (12), this is

V*(h; F) = W(h, c. 14
(hiF) = mas W(h.c.), (1)

where C,(F') is the set of infinite stationary ladders satisfying resource feasibility

k:O
and incentive feasibility
cx(hy®) > ¢o(F) for all k > 1. (16)

In this problem, h-incentive feasibility does not appear as a constraint because we are
maximizing the payoff of the h agents. Note also that resource feasibility is being imposed
on the ladder, and so there is only one constraint. In contrast, resource feasibility was not
imposed on any ladder in C(F), being imposed instead in each period.

The next proposition (proved in Appendix C) makes precise the sense in which F is the

maximum value of the outside option consistent with h-incentive feasibility.

Proposition 6 The set of resource and incentive feasible allocations C(F') is nonempty if
and only if
V*(h: F) = WE(h),

where W (h) is the deviation value of high-income individuals defined in (11). Moreover,
F=F < V*(h;F)=WF¥(h).

Corollary 1 If fu/(¢) < u/(h), then
F=v"

Proof. Suppose F > V4. By Proposition 6, for all F € (V4, F],

V*(h, F) > (1 — B)u(h) + BF. (17)
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But v/ (¢) < u/(h) implies that the autarkic consumption provides an upper bound for
(14) and so (using (13))

V*(h, F)

IN
—
|
[
<
—
=
~—
+
I
<
—
=

contradicting (17). Hence, we must have F' = V4. O

This corollary shows that under the specified condition the highest outside option that
can be attained is autarky, and thus under this condition the only equilibrium is one without
any insurance. The next corollary (proved in Appendix C) confirms that we have continuity

from the right.

Corollary 2

lim T =0.
BN (h) /v (€) (B)

It remains to characterize the allocation that maximizes ex ante utility at F' (the proof

is in Appendix C) ).

Proposition 7 Suppose Bu'(f) > u'(h) and F = F. The equilibrium allocation ¢ converges
to the unique solution to problem (14), ¢., that is (where L is from Proposition 5.6),

lim ¢, (he*) = &, (he*)  for all k < L and

t—o00

ci(ht®) = c¢o(F) for all k> L and t > k.

Suppose u is CRRA, i.e., for some v > 0,

|
=1 17 77 (18)

log(c), y=1

There exists By € (8,1), such that for all B > p., the convergence to the optimal stationary

ladder (which is given by g = 3'/7) does not occur in finite time.

We have not been able to prove an analogous result to Proposition 7 when F < F.
Indeed, in these cases it is not obvious what the appropriate limiting stationary ladder is.
Nonetheless, we can gain some insight by considering the following variant of our model:

Assume (as we do in our computational exercises) that utility is CRRA, and suppose only
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coalitions with high income realizations can leave. In other words, ignore the /-incentive fea-
sibility, but maintain resource and h-incentive feasibility. Agents with a current ¢ realization
never face a binding incentive constraint, and so in the optimal allocation, such individuals
have consumptions that decay at a common rate. There is no floor on the consumption of
such agents (beyond the feasibility floor of 0). This suggests that a stationary ladder of the
form c(he*) = c,g" will be optimal, for some value of g. The stationary resource constraint
is then given by

=9\ 1

Y= ;(2> T2 01—g/2)
and so, ¢, = (2 — 9)7.

Consider the allocation in which the h agents are immediately put on the stationary

ladder (and so after the history y'~*~1hf* have consumption c,g*). In period ¢, agents with
realizations ¢! receive the residual consumption

t—

- gt

0

—_
—_
|
—~
)
\
[\
~—
<+

=y- %%m =4(g/2)",

B
I

and since the mass of such agents is 27¢, their per capita consumption is ¢g*. But this implies
that the per capita consumption of the “residual” agents is declining at the same rate as
agents with histories of the form h¢*, suggesting that the allocation in which the h agents are
immediately put on the stationary ladder is in fact ex ante when the f-incentive constraints
are ignored.

It remains to pin down g, which is determined from the binding h-incentive-feasibility
constraint for given F. The ex ante value of the stationary ladder implied by that ¢ is an
upper bound for W(¢). A natural lower bound is given by the ex ante utility from putting
the high income agents immediately on the stationary ladder with the consumption floor
¢o(F') and a binding h-incentive-feasibility constraint. The calculations in Section 8 suggest

that these two bounds are close.

7.3 The case of utility burning, m > 7

For high values of social capital (7 > 7), equilibrium requires utility burning. While equi-
librium must now impose additional inefficiencies, the precise nature of these inefficiencies
is not determined. Rather, these inefficiencies are chosen to exactly offset the increase in

social capital so that the ex ante value remains at F.
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We present two lemmas, illustrating two possible choices of inefficiencies due to either
postponing risk sharing or burning resources. Denote by € the optimal consumption for

F = F. The first lemma describes an equilibrium that postpones risk sharing.

Lemma 1 Suppose m > 7. Denote the allocation specifying T periods of autarkic con-
sumption followed by © in a history independent manner by ¢V, There exists T(n) and

a(m) € [0,1] for which the conver combination
(O . o ()T 4 (1 — a(m))elTE),

is an equilibrium allocation, and the value of this allocation is F.

The allocation (™) postpones risk sharing for T'(7) — 1 periods and then provides
intermediate risk sharing in future periods.
Proof. We first observe that if ¢~ € C(F) and

F < (1= B )VA 1 T (F)] 4+ (1 — )V,
then c(™) € C(F). This holds because

(1= B)uly) + W) = (1 = Buly) + FF.

Denote by T'(7) the unique value of T satisfying

(1= BTVA+ V() + (1 - mVA < F <

71— T VAL V()] + (1 - m) VA

Since utility is concave, ¢ € C(F) for all a € [0,1]. Moreover, W°(c{®) is continuous

function of «, with
WU+ 1 —m)VA < F <aW° (W) + (1 —n)VA

Thus, there exists a(7) such that

W (™) (1 —n)VA=F

Y

and so ¢®™) is an optimal consumption allocation for 7 > 7.

26



The next lemma describes an equilibrium that burns resources.

Lemma 2 Define the consumption allocation ¢ as follows:

c(y") ifyt # 1,

ly)y=1q o
at(y') + (1 — a)e(F), if yt = ¢t

There exists a(r) for which ™) is an equilibrium allocation whose value is F.

Note that the consumption allocation ¢/ only differs from & at histories ¢/. Moreover,
since ©(£!) = ¢;(F) in finite time (Proposition 5.6), cl*l(y?) = &(y?) for t > L.

Proof. Since ©(¢) > ¢,(F) for all t, ™ € C(F).

Since the payoff to any agent receiving the income h in the initial period is the same as

under ¢ and the h incentive feasibility constraint is always binding, the h payoff is given by

(1= B)u(h) + BF.

The consumption c¢,(F") is determined by the requirement that the ¢ incentive feasibility
constraint is binding, and so the payoff to any agent receiving the income ¢ in the initial
period under ¢ is

(1= B)ul(l) + BF.

This implies

WO < F,

so that
WO + (1 —m)VA < F < aWo(c) + (1 — m)vA

Thus, there exists a(7) such that

aWO (™) 4 (1 - VA =F,

and so ™! is an optimal consumption allocation for = > 7. O

8 Numerical Examples and Comparative Statics

In this section we illustrate the computation of equilibrium allocations, and present results

for an illustrative set of examples to convey the qualitative properties of the equilibrium.

27



Throughout we assume the CRRA period utility function (18). This functional form implies
that equation (10) in Proposition 5 characterizing equilibrium allocations can be written as
c(y’)””

Vyt,@(yté) > Cg(F) - W = 5t+17

for some d,,; < 1. Since 6,1 < 1, and defining g,11 := (6,01)"7 < 1,
Vit c(y'l) > c(F) = c(y'l) = giic(y).

Thus, equilibrium allocations have the form of a sequence of consumption ladders (as in
Definition 5), where the period ¢-ladder is determined by an initial consumption after the
high income y = h realization, ¢;(h), and then a decreasing sequence of lower consumptions
9t41C¢(h), grr19iroci(h), . . ., until the lower bound ¢,(F') is reached (after L — 1 realizations
of £). Note that a stationary ladder has ¢; = g1 = g. When F = F (equivalently, 7 = 7),
the equilibrium allocation converges to the unique stationary ladder satisfying h-incentive
feasibility, so that g, — g := $/7 (Proposition 7).

With these observations from our theoretical results in hand, the computation of an equi-
librium with associated outside option F € (V4 F] (and thus for social capital 7 associated
with that outside option) proceeds as follows. The algorithm first computes a stationary
consumption ladder and associated consumption decay rate g that satisfies the h-incentive-
feasibility constraint associated with F' with equality (as well as the resource constraint
and the f-incentive-feasibility constraint with equality for those at the very bottom of the
ladder).?® The algorithm then determines the dynamic equilibrium consumption allocation
imposing convergence to the stationary ladder in finite (but potentially long) time. The
key distinction between an arbitrary outside option F and F is that at the latter we know
a) the stationary decay rate g, b) that the associated stationary ladder is unique, and c)
that the dynamic equilibrium consumption allocation converges to the stationary ladder
asymptotically. We therefore focus on the F case in what follows.?*

Figure 3 plots the dynamics of the equilibrium consumption allocation with u(c) = log(c),
incomes are (¢, h) = (0.75,1.25), and the discount factor is § = .9. Social capital is 1 =7 =
0.41 so that the value of the outside option is given by F = F. Table 1 provides additional

summary statistics for the allocation in this parameterization, as well as for alternative

23While there may be multiple stationary ladders satisfying the three constraints, each ladder is associated
with a distinct value of g. Moreover, it is inefficient to converge to a stationary ladder with ¢ < gY/7 = g
(Lemma D.1).

24The details of the computational procedure are described in Appendix D
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Consumption Allocation along Transition: T=5
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Figure 3: Consumption allocation along transition, with ¢ = 0.75 (indicated by lower dashed
horizontal line), h = 1.25 (upper dashed horizontal line), 5 = 0.9, 7 = 0.41, and v = 1.

values of (f3,7) to display the comparative statics of the model with respect to its preference
parameters (the values of F' and 7 changes with (3,7)).

From Figure 3 we observe that as the transition unfolds, consumption spreads out over
time, and eventually converges to the stationary ladder, which for this parameterization has
five consumption steps. Consumption insurance worsens over time but remains positive:
for high income individuals the outside option is binding, but they consume substantially
less than their income h (indicated by the upper dashed line) and thus provide insurance
to low-income individuals. Initially low income individuals consume significantly more than
their income (lower dashed line), and also more than implied by a binding outside option,
c¢(F). Over time those with continuously low income see their consumption drift down until
the outside option binds and ¢ = ¢,(F). This occurs in period four of the transition.

The equilibrium allocation can generate high initial consumption insurance because the
allocation does not inherit any implicit promises to past high income types. As time evolves,
the consumption level of ¢(¢") declines as the burden of efficient smoothing of consumption to
past high income types makes consumption scarcer. The allocation also becomes statically
inefficient since individuals with the same current income receive different consumption levels.
Finally, the figure shows that although we do not force convergence to the stationary ladder

until period 10 (the last period of the blending phase) in this example, effectively allocations
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Figure 4: Insurance possibilities as a function of (3, 7), for h = 1.25, £ = 0.75, u = log.

have converged to the stationary ladder by period four of the transition. Expanding the
length of the transition yields utility gains that are indistinguishable from zero. Thus,
although theoretically convergence to the stationary ladder is only asymptotic, our examples
suggest that numerically convergence occurs very rapidly.

Figure 4 plots, for the same utility function and possible values of income, the computed
counterpart of Figure 2. It demonstrates that for discount factors 5 > S the equilibrium
changes qualitatively as social capital 7 increases. Take 3 = 0.9; for low values 7 < 72 full
insurance can be sustained, for intermediate values 7w € (7P, 7] there is partial risk sharing
but no utility burning, and for 7 > 7 the equilibrium requires utility burning. Importantly,
the numerical example shows that for all 8 < 1, the threshold 7(3) is always less than one,
a feature that we have robustly found through many parameterizations we have explored.

Table 1 contains summary statistics of equilibrium allocations along the transition for
alternative parameterizations of the model. Focus first on the benchmark case in the first
column: we observe that the consumption allocation a coalition can implement improves
significantly (worth 0.94% of consumption) on the outside option, by providing insurance
to initially poor individuals, but also needs to leave significant insurance opportunities un-

exploited (worth 0.63% of consumption relative to full insurance). Insurance gets worse
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v=1 v=2
Statistic B=09 5=0955=09 5=095
VEB/V(F)in % || 0.63% 0.22% || 0.45% 0.12%
V(F)/F in % 0.94% 0.71% | 1.24% 0.80%
T 0.41 0.66 0.69 0.85
co(F) 0.761  0.767 | 0.776  0.782
ch 1.092  1.049 | 1050  1.025
Steps 5 8 7 12
e in % 028%  011% | 0.25%  0.07%
e in % 0.05%  0.05% || 0.11%  0.03%
Var(ce) 0.0l 0.004 | 0.004  0.001
parial 0.62 0.55 0.55 0.52
i 0.94 0.80 0.81 0.77

Table 1: Summary Statistics of the Transition

Notes: Ratios of (lifetime) utilities are converted into consumption equivalent variation and give the percent-
age increase in consumption (uniform across all states or histories) required to equalize period (or lifetime)
utility across the two alternatives. The first two lines measure the welfare loss from imperfect consumption
insurance relative to full insurance, and the welfare gain of coalition allocations relative to the outside option.
The second panel provides summary statistics of the stationary ladder, and the third and forth panels show
how expected utility and consumption insurance declines over time.

over time as expected period utility falls and consumption dispersion rises over time.2> As
households become more patient (higher #) and more risk-averse (higher «y), the equilibrium
allocations get closer to full insurance, but the gains from coalition risk sharing relative to
the outside option become smaller. The stationary ladder has more steps and the support of
the consumption distribution tightens. We also observe that increased patience (higher 3),
elevates the gains of coalition risk sharing (compared to the outside option) mostly through
an improvement of the stationary ladder. An increase in risk aversion (larger «y), in contrast,
leads to better risk sharing both because of an improved stationary ladder and longer initial

insurance and thus slower convergence to the ladder.

9 Model Extensions

In this section we discuss two extensions to our simple model. In the first we consider a
more general model of temporary delays to agreement after an initial failure to successfully

form a coalition. In the second we extend out model to allow for production.

25We only display the first two periods, relative to the stationary ladder.
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9.1 Temporary Delay

We have assumed that a deviating coalition succeeds with probability 7 and is in permanent
autarky with complementary probability. We now assume that a failure to form a coalition is
followed by T' > 1 periods of autarky before another attempt can be made (so that if 7' =1,
a new attempt can be made in the next period after a failure). Under this assumption,
after a deviation, coalition formation always eventually occurs. For fixed social capital 7 a
reduction of T increases the outside option. We now argue that the extension with a delay
of T is equivalent to our original model with social capital
= T
o 1-(1-mpT
Suppose ¢! is an equilibrium allocation in the model with T-period delay. Then, the value

of the outside option after deviating satisfies
W =aWo(ch) + (1 - m)[(1 - g1)V4 + gTw],

that is,
W =g Woeh) + (1 — zh)VA

It is easy to verify that since cf is an equilibrium allocation in the model with T-period
delay, it must also be an equilibrium allocation in our original model for social capital 7.
With finite exclusion, all agents are eventually in a risk-sharing arrangement, irrespective
of the level of social capital. However, the level of risk-sharing is declining in social capital,
which accords well with the empirical literature that finds differences in consumption risk-
sharing across developing and developed countries (recall our discussion in the Introduction

and Related Literature sections).

9.2 Risk Sharing and Production

We now briefly discuss how to extend our model to a production economy where output
is produced and consumption is allocated within coalitions we will call production clubs,
or firms for short. Output y; produced by individual at time ¢ depends upon idiosyncratic

productivity e; € E = {es, e;} and labor effort ;.

Y = el
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Individual preferences are given by

(1- B)E{ i BtU(Ct, lt)}v

and labor effort is bounded by the unit interval, so I, € [0,1]. All other aspects of the
environment are the same as in the endowment economy studied thus far.

As before, risk-sharing incentives lead to continuum-sized firms being efficient, just as in
our endowment economy. Since this implies that there is no aggregate output risk within a
firm, an allocation within a continuum-sized firm are sequences of consumption and labor
effort, both functions of the individual productivity history, {c;(e'), l;(e")}.

In the special case in which labor is inelastically supplied at 1, and preferences are
separable in consumption and labor, the equilibrium of our model becomes essentially the
same as in the endowment case, with endowment income y € {¢, h} replaced by production

income y € {e;, X 1,e, x 1}. This is the content of the next proposition.

Proposition 8 Suppose flow utility U(cy, 1) = u(c;) —v(ly) is separable between consumption
and labor, (e, en) = (¢, ), and w'(yp)ye > v'(1).

1. There exists an equilibrium with a consumption allocation that is identical to that in

the endowment economy with c(e') = c(y') and labor equal to l;(e') = 1.

2. The equilibrium payoff to forming a firm is the same as in the coalition payoff in the

endowment economy, net of the cost of labor effort:
(1= BIE{ D B'lule(e) = vll(e")) | = W(e) = (1),
t=1

3. The largest probability of successfully forming a firm for which there is a fized point
equilibrium 1s still T from the endowment economy, however the associated highest

feasible outside option is F — v(1).

This proposition follows from the fact that the rankings of consumption sequences is
unaffected by subtracting a constant labor cost in each period. For 7 > 7 utility-burning
needs to occur in equilibrium, and while this can be done just as in the endowment case,
richer possibilities involving the labor allocation emerge in the production economy.

The key to the previous proposition is that the within-firm consumption-labor allocation
can be solved sequentially. In a first step the optimal labor allocation is determined, and in a

second step the consumption risk-sharing allocation is chosen, taking as given the stochastic
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income process from the first stage. For a general utility function where labor is interior
both consumption and labor are determined jointly.
An exception are utility functions without income effects on labor supply. For example,

suppose households have Greenwood, Hercowitz, and Huffman (1988) preferences of the form

1 ll—l—@ 1=
U(C,l) :m C—\Ij1+0

then the optimal labor allocation is determined by ly(e!) = (e,/®)"? if W is sufficiently large
1+1/6
relative to e, so that /;(e’) < 1. Now idiosyncratic income is given as y(e') = “L7 and is

efficiently shared within the firm as before, leading to a consumption allocation similar to

the endowment economy. However, now we need to adjust the payoffs to take account of
the differential labor utility costs. For example, the decay condition (10) in Proposition 5

becomes
.

<C(€t) - (et/\If)(”@)/e)’
(c(et+1) — (et+1/\p)(1+9)/9)>

Finally, it is easy to accommodate the notion that firms can realize increasing returns to

— = Opy1-

scale, up to a point, in the size of its workforce, and that the production coalitions we model
partially form not only for risk sharing purposes, but also for production efficiency purposes.

Suppose that individual output within a firm is now given by

Yp = zegly

where z = z(z) is a positive and weakly increasing function of the size x of the workers
of the firm, with z(x) = 1 for x > X. That is, for firms larger than size X < oo, which
include those with an infinite number or a continuum of members, z(z) = 1. When 2(0) < 1,
then producing in autarky involves not only a loss in consumption smoothing but also a
reduction in productivity. This again leads to a consumption allocation that has the same
characteristics as in the endowment economy, but with a reduction in the value of autarky.
With period utility that is separable and CRRA in consumption the utility from autarky is

F

scaled to u(z(0))V4(y).2¢ Scaling down the utility from autarky raises 772 and 7, the social

261f the disutility of labor such that it is always efficient to supply a unit of labor in autarky for all levels
of idiosyncratic productivity, then this simply shifts down the autarky payoff in the production economy
relative to the endowment economy and is given by

(1= B)[u(2(0)y) — v(1)] + BEy [u(=(0)y") — v(1)] = u(2(0)V*(y) — v(1).
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capital at which first-best insurance can be sustained and the threshold social capital for
which the fixed-point equilibrium exists and utility burning is unnecessary. Thus, while the
qualitative features of the analysis are unaffected by productivity benefits of large coalitions,
quantitatively such production coalitions can provide better insurance when formed.

Our model of production clubs can qualitatively account for a number of well known
features of the data. In the context of the literature on social capital, Fukuyama (1995, p.
309, 312) asserts that while “there continues to be a steady proliferation of interest groups
of all sorts in American life ... communities of shared values whose members are willing to
subordinate their private interests for the sake of larger goals of the community ... have
become rarer.” This is consistent with the prediction of our model that more coalitions
forming goes hand in hand with shallower cooperation within coalitions. On the issue of
risk sharing within a firm, Guiso, Pistaferri, and Schivardi (2005) find that while temporary
shocks are well-insured, permanent ones are not. This is consistent with our model, since a
permanent shock to a worker’s income would rescale their outside option and hence lead to

a permanently different consumption ladder.?”

10 Conclusion

In this paper we have proposed a model in which social capital facilitates the formation
of efficiency-enhancing risk-sharing or production coalitions as well as coalitional deviations
from these original arrangements. The symmetric treatment of initial and deviating coali-
tions, both with respect to the allocation chosen and the composition of the group, ties
together tightly the ex ante payoff and the outside option. This tight link implies that as
our notion of social capital, 7, increases, these two payoffs rise together. The strength of
this effect eventually becomes so large (as 7 rises towards 1) that the standard notion of
equilibrium as a fixed point in the value of forming a coalition familiar from the limited
commitment literature ceases to exist. We propose an expanded notion of equilibrium which
encompasses fixed point equilibria when they exist. The double-edged aspect of 7, making it
easier to form both initial and deviating coalitions, leads to the differential impact of a higher
7 on ex ante utility (which is weakly increasing), and ex post utility conditional on formation
as well as the steady state distribution of continuation payoffs (which are weakly decreasing
in 7). Moreover, at high degrees of social capital, when fixed-point equilibria cease to exist,

our expanded equilibrium concept exhibits utility burning as necessary feature.

2TWith homothetic preferences, a permanent multiplicative shock to productivity for a (positive measure)
subset of agents would simply scale these agents’ consumption allocation by the permanent shock, since these
agents with the positive shock can always secede and guarantee themselves the scaled consumption process.
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The comparative statics with respect to m exhibit three regions. With a low probability
of forming a coalition, ex ante welfare is linearly increasing in 7w and conditional on coalition
formation, members receive complete insurance. At an intermediate range ex ante welfare is
increasing in 7 but at a decreasing rate and conditional on coalition formation, insurance is
incomplete and declining in 7. Allocations feature wasteful inequality but are intertemporally
efficient. With high levels of social capital, ex ante welfare is flat in 7, and allocations feature
significant inefficiencies, manifested in utility or resource burning within a coalition to prevent
defections. In a nutshell, an increase in 7 enables groups to more readily trust each other by

agreeing on Pareto improving exchanges but at the same time making this trust shallower.
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Appendices

A Proofs for Section 6

We begin with a preliminary result.

Lemma A.1
1. C(F") D C(F") for F' < F", and so C(F) # @ for all F < F.
2. C(F) is closed and convex for all F < F.
3. C is a continuous correspondence at all F < F (at F, the continuity is from the left).

Proof.

1. This is immediate.
2. This is also immediate.

3. Since C is a decreasing correspondence in F', we need only show upper hemicontinu-
ity from the left and lower hemicontinuity from the right. Upper hemicontinuity is
immediate, since all the constraints are closed. Turning to lower hemicontinuity, we
need to show that if ¢ € C(F') and (Fj)x is a sequence with Fj N\, F, then there exists
cr € C(Fy) with ¢, — c. Fix ¢f € C(F). We now verify that for all k, there exists
ay € [0,1] such that agc’ + (1 — ag)c € C(Fy) and oy — 0.

Fix k, and let oy, = (F — F)/(F — F;) > 0. Then,

Wy, are’ + (1 — ag)e) > aW(y', ") + (1 — )W (', ¢)
> (1= B)ulye) + arBF + (1 — ay) BF
(1= B)uly:) + BF%,

and so incentive feasibility (7) is satisfied. Since (1) is trivially satisfied, we are done.
0
Proof of Proposition 4.

1. Since, for € small, the allocation in Example 1 is internally-incentive feasible for 7 = 1
and provides partial insurance, C(F) # @ for some F > V4 and so F > V4. This
also shows that V(V4) > V4,
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2. Suppose (Fy) 7 F is a sequence satisfying C(F}) # @. Since the space of consump-
tion allocations is sequentially compact (being the countable product of sequentially-
compact spaces), we can assume there is a convergent sequence (cx)x, with ¢ € C(F})
and limit c.. Since all the constraints defining C are closed (and continuous in F'), the
limit also satisfies these constraints (including (7) at F' = F), and so ¢, € C(F), and
C(F) # 2.

3. The continuity of V follows from the continuity of C (Lemma A.1) and the maximum

theorem.
4. The function p : [VA, F] — [0, 7] defined by

F-vA

A -

is strictly increasing, continuous, and onto (since V(V4) > V4). Tt is straightforward to
verify that for 7 € (0,7, the fixed point is given by F(r) := #V*(p~ (7)) + (1 —m)VA

The remaining claims are immediate.

5. Finally, for 7 > 7, the required F is strictly greater than F, implying that the con-

straint set is empty, and so there is no fixed point.

OJ
Lemma A.2 If 5 > BB, then F > FFB.
Proof. Recall the allocation ¢, defined in (5):
h — Cv Y = hu
ce(y') =
(+ C, Y = /.
We now argue that there exists ¢ > 0 such that for all ' € (FFB, FF'B 4 ¢], for
¢=¢"=28(F - F'")/[(1 - B)u'(7)], (A1)

where (!B = h — 3, we have ¢, € C(F), and so F > FF'B.
By the definition of F¥5,

W(h,c"") = (1= B)u(h) + BF"P,
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and so
W, CFB) = W(h, cFB) > (1= pu(l) + BFEB, (A.2)

Because marginal changes in ¢ from (2 result in only second losses to ex ante payoffs

(WO(c¢)), we have
OW (h, ct'P)

o = —(1-3) (),

and so

W(h,cc) =W (h, ") — (1 = B)u' () (¢ — ¢"P) + o((¢ — ¢"P)?)
=W (h,c"P) + (¢"P = Ol = B/ (§) + o((C — ¢"P)D) /(¢ = ¢"P)].

For (B — (¢ < ¢, where ¢ > 0 is a sufficiently small constant, the magnitude of the last
term is less than (1 — f)u/(y)/2, and so

W(h,cc) > W(h, ™) + (" = Q) (1 = B)u/(7)/2.

For ' = FFB 4+ (¢FB — ()(1 — B)u/(y)/(2B) (this is just a rewriting of (A.1)), we then
have
W(h,cc) > (1 — B)u(h) + BF.

Moreover, there is &” > 0, such that for ¢(f'% — ¢ < £”, the strict inequality on the

(-incentive constraint (A.2) is preserved:
Wl c)> (1—B)u(l)+ BE.

Setting
¢ = min{¢’, "}/ (7)/(28)

completes the proof. O

In the next lemma, an allocation is m-internally-incentive feasible if it satisfies the internal-

incentive feasibility constraint (2) at the value .
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Lemma A.3 Define the allocation c. o by

;

h—g, Yy = h,
0+ ae, Yg—1 = h7yt = 67
Cea(y') = 4
(+2—-a), ya=y =1
\£+8’ t:17y1:£-

Define B := u'(h)/u'(£). For all m > 0, there exists n > 0, such that for all B € (3,8 + 1],

all e € (0,n), and all o € [1,2], the allocation c. . is not w-internally-incentive feasible.

Proof. We first calculate the values of the allocation c. , after different histories, where

we simplify notation by writing ¢, =h — ¢, ¢, =+ ae, and ¢ =+ (2 — a)e:

W(h,c.n) = (1= Bu(cn) + (W (h,c.0) + W(ht, ce ),
W(ht,ceo) = (1= B)ulc)) + E(W(h, cen) + W (L, ce ),
W () = (1= B)u(c)) + 5(W(h, cca) + W(lL, ),
and  W(l,cen) = (1= B)u(2g — cn) + (W (h, cen) + W (Ll ce ).
Hence, .
Wl c.n) = m{Q(l — Blu(cy) + W (h, c-0)}
and so
= (1 - Bu(c é c L — Ru(c) c
W0, ) = (1= ) + 5 { W (ko) + 0200 = ulel) + W ()
=(1-— u(c, b u(c) —B c
= (-9 {ule) + 52 gule) | + W )
Thus,
Wi(h,c.o) = (1 = B)u(en) + § {W(h, Cer) + (1 —5) {u(c/e) + %u(c’g/)} + ﬁW(h, caa)}
=(1- u(c éu c, ﬁ—2u c L c
= (1= 5 {uten) + Gut) + 5l | + 2 Wb o)
which implies
/8 / /82 //
21 = W (o) = (1= 5)(2 = ) fulen) + Sule) 4 5t },
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that is,

2 — 2 — 2
W(h, ) = & - O ien) + Mu(c}) + %u(cg). (A.3)
A necessary condition for ¢, , to be m-internally-incentive feasible is
f(e; B) :==Wi(h,ccn) — (1 = B)u(h) — ﬁﬁ (W (h,cen) + Wl cen)] — B1—T)VA>0.

2

Note that for all 8, f(0; 8) = 0. We now argue that there exists n > 0, such that for all
pe[B,B+mnland all & € (0,n), df(e'; 3)/0e < 0, implying

fe58) <0 VBe[B, B+l & €(0,n)
Recalling our definition of ¢, , and differentiating (A.3) with respect to ¢,

a ]' / on; 2 1o N
%W(h, Cen) = 2 {=2(2 = B)u/(cn) + B(2 — Ban!(¢)) + B*(2 — a)u/(c]) } -

Evaluating this expression at § = = u'(h)/u/({) and € = 0 yields (for any a € [1,2])
W (O{=22-B)B+ B2 - PBla+ f(2—a)} <0,

and so there exists 7’ such that for all 5 € |3, 8+ 7] and all &’ € (0,7'),

a 7-[-/8 ]' / !/
§W(h, Cen) < ——— 2= )3 [ (0) — u'(h)].
Turning to W (¢, c.,), we have
0 0 0
a—gW(E Cen) = (1 =P (L +¢€) + 6{85 (h, cea)—i-a W (e, cga)}.

Note that (1 — B)u'({+¢) = u'(¢) — u'(h) for 3 = 3 and € = 0. Moreover, the term in {-} is
nonnegative at 8 = 3 and € = 0. Thus, there exists 7" such that for all 8 € [, 8 + n"] and
all ¢’ € (0,n"),

2
%W(f, Cen) > g[u’(f) —u'(h)]. (A.4)

Taking 7" = min{n’, n"}, we thus have for all 5 € [3,3 +n] and all ¢’ € (0,7),

df(e';8)/0e < 0.
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This implies that for the specified bounds on 8 and ¢, the allocation c. , for any value of

a € [1,2] is not m-internally incentive feasible.
0

B Proof of Proposition 5
We assume throughout this section that F' > FFP and gu'(¢) > u/(h).

Lemma B.1 There exists 5,41 < 1 such that if incentive feasibility does not bind at y'*!,

then . .
W)
w(e(yt*h)
and so

c(y') > e(y™).

Proof. We first argue that if incentive feasibility does not bind at §**!, then for all §**!

w(e(@) _ w(e@)) (B.1)

Suppose not, so that (B.1) holds with a strict inequality in the reverse direction.

Define a new allocation ¢! by setting

e(@)+te, Yy =7

c(@)—e Yy =19
My =q @) —n, ¥y =i
e +n, y =gt
\ c(yn), otherwise.

Since Pr(y') = Pr(g') and Pr(g't1) = Pr(g'*1), the allocation ¢! is resource feasible.
Choose n = n(e) so that

u(e(i) +2) + Sule(@) ~ n(e) = u(el@) + Su(e(d )

ensures that incentive feasibility is satisfied along the sequence ‘. For small 7, it is also
satisfied at g'*!.
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Differentiating with respect to ¢ and evaluating at ¢ = 0, we get

2u'(c(7"))

10 = Bty
At € = 0, the derivative of
u(e(i') — <) + Sule(™) +n(e))
/ ~t 6/ ~t+1 / _ 5/ ~t+1 (C(t)

—l(elif)) + Gl ) (0) = —u(e(i) + el ) 5o s
e [ (@) | (@)
= uleld ”{ (e ) T el +1>>}
> 0.

This implies that the values of the agents with histories §* and ¢! have increased, and
so the ex ante value of ¢! must exceed ¢, contradicting the optimality of c.

Hence, (B.1) must hold as written. If incentive feasibility also does not bind at g+, then
the weak inequality holds as an equality.

We now argue that if incentive feasibility does not hold at ¢!, then

If not, then for all histories,

But this implies for all 3!*!
c(y’) < e@y™).

This is only consistent with resource feasibility if ¢(y!) = c(y**!), which implies ¢ is the first

best allocation. But F' > F¥P precludes the first best allocation as an equilibrium.
OJ

Lemma B.2 At the optimal allocation ¢, if the incentive constraint binds at §' and §° with

Uy = Ui, then
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Proof. Suppose not. then the incentive constraint binds at two histories 7' and ' with
Yt = Y, and
c(y') # e(y').
Define a new consumption allocation ¢! as follows:
se@'w) + @), Tty =91,

c'(y") = '
c(y), otherwise,

where ;47 is the last 7 — ¢ periods of the income history ' ( so that y™ = 4" ,y")). Since
Pr(j') = Pr(3'), c' satisfies (1).

Moreover, the incentive constraints are satisfied at all histories:

1. For 7 < t, since the incentive constraints bind at two histories ¢ and ¢' with 7; = 4y,
W (i, c) = W(g,e), and so W(yt, ) > W(y',c) for all ' (with equality holding for
y* {7, 9'}). Hence,

t—7—1

W(y™,cl) = (1 = B)u(c(y")) + (1 - §) Z; B Z Pr(y)u(e(y"y"))
+p Z Pr(y )W (y', c') y
> Wy, ). y
2. For 7 > ¢, the concavity of u implies

W(y', ") > min{W (5", c), W@y )} > W (y,).

Finally, concavity implies W(c") > W°(c), which is impossible, since ¢ is by assumption

optimal. 0

Lemma B.3 In the optimal allocation, incentive feasibility binds at all y* for which y, = h,
and so for all y'~ 1,
W(y'~"'h,e) = W"(h) == (1 - B)u(h) + BF.

Proof. Since F > FFB,

(1= Buly) + VT < WF(h),
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and so

(1= B)u(y) + BV(F) < WF(h),
Thus, incentive feasibility at §'~'h requires ¢(¢*~*h) > 3. Suppose
W (g th,c) > WF(h).

Define
c(gth)—e, Yy =4""'h,

Cs(y7> — C(Qt—l@ +e, yT — ]jt_lﬁ,
c(yh), otherwise.

Since h and ¢ are equally likely, ¢® satisfies resource feasibility. For sufficiently small ¢ > 0,
¢ satisfies internal-incentive feasibility, and so we have a contradiction (since ¢® has higher

ex ante utility than ¢). Thus, the incentive constraint binds at all ¢* for which ¢, =h. O

Lemma B.4 For all §*= 1, 41,

e ) Ze(@™) = c§ly) Z ey y) and W(FTH c) =2 W(§, ©).
Proof. Lemmas B.2 and B.3, imply
ey th)=c(@™'h) vyl
Suppose now, en route to a contradiction that there are two histories ! and §*~! such that
(f 1) = () and (7 0) < of10),

The idea is to construct a dominating consumption allocation by moving consumption from
the relatively high-consumption histories to the low-consumption histories. For any small

e > 0, define 7(e) as the value 7 solving

u(e(@™) =) + Jule(d 1) +e) = u(e(i™)) + Jule(ye),
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and define a new consumption allocation as

o(y”) —ne), ¥y =§",
cy™) +nle), ¥y =91
W) =qc@)te, v =71,
cy)—e, Yy =97,
c(yT), otherwise.

From the concavity of u, v/(c(g"™1)) < «/(c(§"!)) and

¢ =u(e(y'0) —u(e(y''e) > 0.

Moreover, the function 7 is C' with 7/(0) > 0. Then we have (where each function o;, for

j=1,...,4 satisfies 0;(¢)/e — 0 as ¢ — 0),

(i) +o1(e)}

e(yH0)e — &e +ou(e)}

u(e(§' 1) + ) —ule(y' 1) — &} + oa(e)
) —ue(@ ) = n(e)) - 5&e + os(e)

u/

Su(e(@™10) —u(e(@™'0) - )}

—_—~ o~

/
u

N D@ @

g

P N e e
!

—~

<

|
:\
— —
e
— —~
<
T
—
SN—
S~—
3
—~
m
N—
|
[Nl
A
[Q)
+
S
w
—~ —~ P
m
~ — ~— ~—

< /(e ))nle) — Eée + o3(e
= u(e(g ") +n(e)) —ule(g') — € + oule)
Rearranging,
(o) + Sule(r'0) + Se < ule(@ ™) + () + Sule(i ) — <) +ou(c),
and so, if € > 0 is sufficiently small that
loa(e)| < 5€e,
we have 5 5
u(e(@™) + Zule(@ ) <ule@@™) + () + Fule(™'0) — ).

Since ¢(y™) < &(y7) for all y, with a strict inequality on one positive-measure history, ¢

cannot have been optimal.
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The inequality on continuation values then immediately follows from the following cal-
culation: For any y*, denote by y'¢* the history formed by adding k periods of ¢ after v (so
that y"/° = y'). Then,

W(y' o) = (1= Blu(e(y’)) + 5{W" (h) + W(y'l,0)}

B8) Y (D Fuley'eh) + 5255 W (h). (B.2)

k=0

Lemma B.5 If incentive feasibility at y'f is binding, then for all ',
c(y't) < e(y'l).

Proof. Suppose
c(y't) > c(§'0).

Then, from Lemma B.4,

u(e(y'l)) + S{WF(h) + W(y'tt,c)} > c('0) + S{WF (h) + W (j'el, c)}
> W),

which is impossible if incentive feasibility binds at y'/. O

Lemma B.6 Suppose incentive feasibility binds at some y'='f in an optimal allocation.

Then incentive feasibility binds at y*=10¢.

Proof. Suppose incentive feasibility binds at y*~'¢ but not at y*~1¢2. Then

u(ely10) + SV () + Wy 2,e)} = WH(),
W(y' 1) = ule(y' ') + 5T () + W(y' ' )} > W),

and (because the last incentive feasibility constraint is not binding)
c(y=1) > e(y' 1.

Since

u(e(y' ™)) > ule(y™ ),
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we therefore have (because incentive feasibility is binding at y*~1¢)

W(yt’lé?’,@) > W(yt’1€2,®) > WF(E), (B.3)

and incentive feasibility is also not binding at y*~1¢3. This implies
e(y ) > e(y ),

and so

Wyt e) > Wy 12 e) > WF(E).

Repeated applications of this argument shows that incentive feasibility is not binding for any
history ¢, r > 2, and so (¢(y"~'")),>; is a monotonically declining sequence. Hence,
from (B.2), so is (W (y"~'¢",¢)),>1. But this contradicts (B.3). O

Lemma B.7 If incentive feasibility binds at y'f, then
c(ytl) = ¢,
where ¢y > { is the unique consumption satisfying
u(ce) = u(l) + B(F — VA > u(l).

Note that ¢, is an increasing function of F', so that for F' > F¥P (i.e., for 7 > 7/'?) but
arbitrarily close, ¢, is bounded away from 7.

Proof. Since incentive binds at y'¢ (and so at y'y?), we have
(1= Byule(y'0) + 5{WF (h) + WE(O)} = W (0).
Rearranging and dividing by (1 — ) yields
u(e(y't) = (1~ $u(0) — Ju(h) + BF.

which is the displayed equation (recall that V4 = Eu(y)). O

Lemma B.8 Incentive feasibility does not bind in the initial period at { nor after any history
of the form ytht.
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Proof. 1f incentive feasibility binds in the initial period, then

V(F) = %( A{u(h) +u()} + BF
1 —B)VA+BF
= V(F) < F,

which is impossible, since F' < F(7) implies V(F') > F.
Suppose incentive feasibility binds after a history of the form y'hf. Since incentive feasi-

bility always binds after any realization of h, we have

(1= B)u(h) + BF = (1 — Bule(y'h)) + B{(1 = H)V* + BF}
= (L= B)u(h) = (1 - Pulc(y'h)) — B(1 = B)(F = V4
= u(e(y'h)) = u(h) + B(F = V4
= c(y'h) > h,

which is ruled out by resource feasibility and «¢(y**!) > ¢, > £. O

FB

Lemma B.9 Suppose 7 > 7 In the optimal allocation, there exists L such that the

incentive constraint binds at any history of the form yt¢~.

Proof. Lemma B.4 implies that optimal consumption in any period is determined by the
number of ¢ realizations after the last h realization. From Lemma B.6, once the ¢ incentive
constraint binds, it continues to bind after each subsequent ¢ realization.

We need to prove that the number of ¢ realizations before the ¢ incentive constrain binds
is bounded as we vary the period in which A is realized.

We prove by contradiction: Suppose there is a subsequence (t,), of periods with the
property that if h is realized in period t,, the number of ¢ realizations before the ¢-incentive
constraint binds goes to oo as n goes to infinity. Without loss of generality, assume there
are at least n realizations of ¢ after A in period t, before the (-incentive constraint binds.

For each t,,, (c(y"™~'he*))1_, is monotonically declining in k, is bounded above by h, and
below by ¢. Hence, for all ¢ > 0, the number of periods in the interval {¢,+1,¢,+2,...,t,+n}
for which 0; < 1 — ¢ is less than (log¢ — logh)/log(1l — €), a bound independent of n,
the number of periods in the interval. That is, asymptotically, the fraction of periods in
which §; € (1 —¢,1) converges to one. This implies that for all T', there exists ¢ such that
bre(l—g ) forallTr=tt+1,...,t+T.
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By choosing ¢ sufficiently small, for such ¢, resource feasibility implies ¢(y'*7h) is arbi-
trarily close to ¥ (since for many k, c(y**T=*he*) will be close to c¢(y**T=*h), which is no
smaller than 7).

Since 7 > 7B and so F' > F¥B| the incentive constraint for y'h is violated. O

C Proofs for Section 7.2

Proof of Proposition 6. The outside option F' only affects V*(h; F') through ¢, (which is
a strictly increasing function of F'; and so makes the constraints strictly more demanding).
Hence, V*(h; F') is strictly decreasing function of F. It remains to prove that V*(h; F) =
WE(h) at F.

If ¢, is the stationary ladder yielding V*(h; F'), define an allocation as follows

(E*(h’)7 lf Yy = ha
') =14 co(hlr), ifyt =y he, (C.1)
é<£t)7 if yt = gt’
where ¢(¢") satisfies
Pr(te(t) =g =Y Priy")c"(y).

By construction, ¢ satisfies resource feasibility, and incentive feasibility for any history

yt£et

ending in a realization of ¢ (since ¢, satisfies (15), ¢(¢') > ¢).

If V*(h; F) > W¥(h), then the incentive constraint on y'h is satisfied under ¢! for all 3.
Hence, ¢" € C(F), and so F < F.

Suppose V*(h; F') > W (h). A marginal increase in F preserves the inequality and so
F <F.

Finally, we prove that if FF < F, then V*(h; F) > W¥(h). We do this by proving
that if C(F) is nonempty, then there is a feasible stationary ladder of the form (C.1). We
construct the stationary ladder by time averaging over histories that have the same number
of y realizations after an h realization.

Suppose ¢ € C(F) is optimal. From Lemma B.9, there exists L > 2 such that for all
7 > L, the £ incentive constraint binds at any history of the form y*/” and so, from Lemma
B.7,

c(y'lm) = V7T > L. (C.2)
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For M > 1, define the ladder (c}?)£_, (recall that Pr(y’) = 27):

! o Zytfkfl(%)t_k_lﬁ(yt_k_lhék)ﬂ O<k<L

624 _ M_+1 t=L
M+1 ZLJrM Z (;)t_L@(yt_LgL)a k=L
) S e () ey ), 0< k<L
Ce, k=1.

We claim that (cM); satisfies (15) (where we set ¢ = ¢, for k > L):

oo L—1 L+M
Z % k—i—l M Z % k+1 %t k=1 t k—lhgk)_i_(%)ch
k=0 k=0 t=L yt—k—1
L+M [ L—1
— 1 Z(l)lﬁrl Z (l)tfkflc( tfkflhgk)_k(l)Lc
T Ml 2 2 Yy 2) Gt
t=L k=0 yt—k—l
1 LM (L1
=TT 1 2 Bl ) + ()
t=L | k=0 yt—k—1
| LM
=TI Z Pr(y")e(y’) + (3) e

But (C.2) implies

yt=yt—L gL
and so
0o 1 L+M

Since ¢(y'"1¢) > ¢, it is immediate that c}! satisfies (16). Thus, for each M, ¢™ € C,(F).

Since (c') € [0, h]*, a closed and bounded set, the sequence ((c}')x),, has a convergent
subsequence with limit (c})z. We now argue that W (h,c*) > W¥(h), completing the proof
of the Proposition.

Since ¢ is incentive feasible, for all 3¢,

WH(h) < W(y'h, c).
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Consequently, taking time averages

WE) < 2 37 S W he)
t=L yt_l
L+M o)
= ST ) G ulely T h) + LW ()
T M1 2 2 Yy 25
t=L yt_l k=0
00 L+M
1 _ _
=(1-p) Z(?)kM 1 D) ule(y T he) + W ()
k=0 t=L yt—1
Since u is strictly concave,
L+M L+M
M+1 Z Z % t lhfk)) ﬁ Z Z(%)t—lc(yt—lhfk) :
t=L yt—1 t=L yt—1
and so
o] L+M
WFn) < (1-8)> (5)fu +Z S () ey nk) | + W (k) (C.3)
- k=0 ’ M+1 t=L £ = ‘ '
— yt—1

If the arguments of the utility function were ¢}’ (which they are not), the proof would
be done without the need to pass to the limit, since then the expression on the right hand
side is simply W (h, ™).

However, we are almost done, since the discrepancy can be made arbitrarily small. For
k < L < M, we have

L+M
% t 1 t 1h€k)
t=L yt—1
1 L+M LM
T M+1 Z Z ()" ey het) - (L) Loy~ hek)
t=L yt—k—l —L yt T
1 A L+M+k
= 1\t—k—1 t—k—171 ok 1 ko 1 t -
SArT L 2 @) L 2B W)
t=L yt—Fk-1 Tk g
| Lk Mk
T M1 Z Z (%)t_k_l‘ﬁ(yt_k_lhfk Z Z %t k=1 (k=1 pgky,
=Lyt t LAMA41 yt—h—1
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The magnitude of this expression is bounded above by kh/(M + 1). An identical argument
shows that we have the bound of Lh/(M + 1) for the divergence of ¢}'.
Using (C.2), we can rewrite (C.3) as

W) < (1-5)> (4 Mi YD) ey e
2(1-8) ()" B pr
+ (2_5) (§> U(Cg) + 2—6 (h) (04)

For all € > 0, there exists M7 such that if M > M;, for all k =0, ..., L the upper bound
of Lh/(M + 1) on consumption divergences is sufficiently small that the right side of (C.4)
is within & of W (h,cM), implying W¥(h) < W(h,c™) + . Moreover, there exists Mj such
that for all M > M5, [W(h,c*) — W (h,cM)| < e. So, for M > max{M;, M5}, we have

WE) < W(h,c¢*) = W(h,c*) +W(h,cM) 4«
< W(h,c") + 2e.

Since this holds for all € > 0, we have
W¥(h) < W(h,c"),
completing the proof. 0

Proof of Corollary 2. We first argue that, for 8 larger than but near 3, the stationary
ladder solving (14) for F' = F has length 2 (which will allow us to use Lemma A.3): If the
ladder is 3 or longer, then the consumption lower bound after realizations ¢ and ¢¢ is not

binding, and so
u'(€x(h)) = Bu'(e.(ht)) = B*u'(c(hee)).
But for 5 close to 3, c.(h{) and c,(hef) are both close to ¢, and so u'(¢.(hl)) ~ u'(¢.(hel)),

implying /3 is close to 1, a contradiction.

Let ¢ denote the allocation defined in (C.1) using the stationary ladder for F. While we
do not explicitly indicate the dependence of F and so ¢ on B, both objects will vary with
B: For 3 close to 3, the allocation ¢F is given by Ce.a, the allocation defined in Lemma A.3,
for an appropriate choice of ¢ and o € [1,2]. Moreover, e converges to 0 as 3 tends to 3.

For each m > 0, denote by n(m) > 0 the n-bound identified in Lemma A.3 (note that

n(1) is a nondecreasing function of 7). There then exists n”(w) > 0 such that for 8 €
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13,8 + n"(m)], the ¢ associated with ¢ is smaller than n(r). This implies that for 8 €
18, B+ min{n(r),n" (7)}], ¢ cannot be m-internally-incentive feasible.
We first prove that 7(3) < 1 for 3 close to 3. For if not, then for 3 close to f3,

V(F)<F.
But this implies ¢f is m-internally incentive feasible for 7 = 1 (and so for any smaller 7):

Wy, ") > (1 - B)u(y) + 6F
(1 - B)u(y) + BY(F)
(1 — B)uly) + BWO(cD),

v

v

which we have just seen is impossible for all 5 € [3, 8 + min{n(1),7"(1)}].
If
V(F) > F,

then 7(3) < 1, and we again have that the allocation ¢! is 7(/3)-internally-incentive efficient:

Wy, ) > (1 - B)u(y) + BT
= (1-B)uly) + B{W@j 1-mv}
(1= B)uly) + LW (") + (1 —7) V).

v

This completes the argument, since for any fixed 7 > 0, for 8 sufficiently close to 3, e

is not m-internally-incentive feasible. 0
The proof of Proposition 7 is broken into several lemmas.

Lemma C.1 Suppose F = F. The equilibrium allocation ¢ converges to the unique solution
to problem (14), €., that is,

lim ¢, (he*) = €. (he*)  for any k < L

t—o0

and

c(0F) = €. (0%) = ¢(F).
Proof. Resource feasibility in period ¢ is

L-1

> 2 ey (heh) + 27 e (F) < 7. (C.5)
k=0
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Figure C.1: Illustrating the re-indexing for the proof (the re-indexing omits k = L, since
ci(0F) = ¢¢(F) is determined by Lemma B.7). The ladder-s resource constraints sum over
the diagonal dashed lines, while the period-t resource constraints sum vertically. Since there
is at most one realization of ¢ in any history in period 1, k£ can only equal 0 or 1; similarly,
in period 2, £ < 2.

We denote the period-t consumption ladder by (since by Proposition 5, we can ignore

the history before the last realization of h)
(eorr(h€*) 20, co)-

Summing inequality (C.5) over periods 1,...,T, and rearranging to sum over ladders

rather than periods (see Figure C.1), for T' > L, gives

T L-1
0> 27" ley(ht*) + T2 ¢)(F) - Ty
t=1 k=0
0 L—-1 T—-L+1 L-1
> 2 e () + > D 2 ey (W)
s=2—L k=1-s s=1 k=0
T T—s
+ > 27 e,k (WF) + T2 Ley(F) — Ty
s=T—-L+2 k=0
T—-L+1 L-1
> 27K e (hOF) + T2 ey(F) — Ty
s=1 k=0
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Since the consumption ladder that yields V*(h, F') is unique, and since the h-incentive

constraint is satisfied in every period, we must have, for all ¢,
L-1
> 2 e (hlh) + 27 e (F) > 7, (C.6)
k=0

with equality holding if and only if the consumption ladder equals &,, the unique solution
to problem (14).

We now argue that

L—1
lim Z 2*k+165+k(h€k) + 27LC€(F) =V
k=0

§—00

The proof is by contradiction. If not, inequality (C.6) implies there exists an € > 0 such that

L—-1
> o e (W) + 27 ey (F) = > ¢ (C.7)

k=0

for infinitely many values of s. Let S denote the infinite set of values of s for which (C.7)
holds, and define the function h(7T) :=|SN{s <T — L + 1}|. Observe that h(7T) — +oc as
T — oo. Then,

T—-L+1 L-1
0> Y > o ke (hh) + T2 ey (F) — Ty
s=1 k=0

> (T — L)y — 2 co(F)) +eh(T) + T2 ey(F) — Ty
= eh(T) + L(27 e F) — 7),

which is impossible for large T'.

Since the resource constraint is satisfied by the period-s ladder asymptotically, the se-
quence of ladders must converge to the unique solution to problem (14) (if not, there is a
subsequence converging to a different ladder limit also satisfying the resource and incentive

constraints, which is impossible). O

Lemma C.2 Suppose utility is CRRA. There exists B, € (3, 1), such that for all B > B., the
equilibrium consumption allocation for F = F does not start immediately on the stationary

ladder, that is, it is not given by (C.1) for ¢ = &,.
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Proof. When utility is CRRA with coefficient v, solving (14) for the optimal stationary
ladder gives, for g = /7 < 1,

E. (RO = g (hF) (C.8)
when the incentive constraint is not binding on h**!. To ease notation, define (where ¢ is
defined in (C.1))

e = (h), c=¢(h), and ¢ = c(F).

Let L be the length of the ladder, so that

g¥ e, > ¢ > ghe,.

There exists 3, € (8,1), such that for all 8 > f,, L > 3 (since ¢,(F) is bounded away from

Y)-
The ladder resource constraint is

L1
Z 27(k+1)gk5h + QiLég =1.
k=0
From (C.1),
t—1
27 =9 — 2~ gk,
k=0
and so .
27, =Y 2 lghe, 27 0e,
k=t
Then,
L—1
zftflct+1 _ Z 2f(k‘+l)gk5h + QiLég
k=t+1
L—2
= g Z 2~k ke, 4 27LG,
k=t
L1
_ g {Z 9= (k1) gk, _ o=l gl-1g } 2 lg,
k=t
g -
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Hence,
Cip1 = ger + 2 {—szL@ —27Lgle, + 27L+15@} )

Finally, since

—g2 e, — 27 gle, 427 e = 2706, (1 — g) + 275 (6 — gF@) > 0,

we have

Ci+1 > gCy,

and so

u'(cr) > Bu'(er).

Consider now the following local change (which is feasible, since L > 3):

él(h) =Cp — g, él<€) =c +¢,
&a(he) = gen + (), and &(€%) = ¢, —1(e),
where 7 satisfies
u(en) + Sulgen) = u(en — €) + Sulgen + n(e)).
From the implicit function theorem and (C.8),

2 u'(Cp)

T Bulgan) >

7' (0)
The impact on payoff to the low income agents is
u(er +¢) + gulea —(e)),
which has slope at ¢ = 0 of

/(1) — () (0) = v/ (c1) — B (c2),

(C.9)

which is strictly positive from (C.9). This implies the local change is ex ante welfare im-

proving over the stationary ladder.
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Lemma C.3 [f utility is CRRA, the equilibrium consumption allocation for F = F does not
reach the stationary ladder ¢, in finite time, that is, for all T, there existst > T and k < L,
for which

ci(he®) # &, (he*).

Proof. Suppose not, that is, suppose there exists some T such that for all £ > T and
k<L,
ci (W) = &, (he").

We first claim that

This is true because the h-incentive-feasibility constraint just binds on the agents who re-
ceived an h income realization in period 7', and their consumptions in all future periods are
determined by the stationary ladder ¢,.

Since the /-incentive-feasibility constraint is not binding in period T4 1, the consumption
decay gry1 is given by

CT+1(h£> (I_Z*(hg)

— — — B/ —.

where the first equality is (10), the second is from the claim just proved, and the third comes
from the CRRA assumption.
The same consumption decay applies in period T at all histories at the /¢-incentive-

feasibility constraint is not binding, and so we have
cr(hF) = g ey (ROFTY) forall k < L —1,

and so
cp(h®) = ¢, (h*) forall k < L —1,

The h-incentive-feasibility constraint just binds on the agents who received an h-income
realization in period T — 1, and since their consumptions in all future periods are determined
by the stationary ladder &, current consumption must equal &,(h). But this implies that
the stationary consumption decay also applies in period T'— 1. Proceeding in this way, we
conclude that the consumption for the initial h-realization agents must be ¢,(h). But this

is impossible by Lemma C.2, and so we have a contradiction. O
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D Appendix for Section 8

In this section we provide the details of how we compute equilibria in Section 8 of the main
text. Section D.1 describes how to compute a stationary ladder that delivers an outside
option F € (VA F). Section D.2 describes how to determine the value of F together with
the stationary ladder attaining it. Finally, Section D.3 describes the calculation of an entire

dynamic equilibrium consumption allocation converging to a stationary ladder.

D.1 Stationary Ladder

For a fixed F, a stationary ladder c, = (c.(h), gc.(h), g?c.(h), ..., c;) that satisfies resource
feasibility and h-incentive feasibility with equality (as well as ¢-incentive feasibility) is fully
characterized by the upper and lower bound of consumption (c.(h), ¢,), the decay rate g and
the length of the ladder L. These values, all functions of a given F' € (V4, F), are calculated

as follows:

1. Determine the consumption floor ¢, = ¢,(F') from Proposition 5.4, i.e.,
u(eo(F)) =u(l) + B (F —V*)

and recall (11), which defines the value of the outside option for the high income agents

WE(R) := (1 — B)u(h) + BF.

2. The ladder is then determined by three equations in three unknowns ¢, (h), g, L from

L=max{k: g c.(h) > c(F)}, (D.1)
32 (5) g+ (5) m=v 0.2)
and (using W(h,c,) = W¥(h) in (13))

wron - (1-2) [Z (2) wie.tmst

k=0

-+(§)LU®AFD. (D.3)

This system of equations can be reduced to one non-linear equation in one unknown
g € [¢/h,1]. Use equation (D.1) to solve for L(g,c.(h)) and then equation (D.2) to

solve for ¢,(h) and insert into (D.3) to obtain one equation in the unknown decay rate
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g. The result is a stationary ladder summarized by (c.(h)(F'), g(F'), L(F')) as a function
of the outside option F.

In general the stationary ladder associated with an outside option F' need not be unique,
although it is for F = F, as we have seen in Section 7.2. To better understand the potential
multiplicity of stationary ladders, instead of calculating the consumption decay rate g (and
the associated (c.(h), L)) as a function of F, we can in step 2 above reverse the order and
calculate, for a given stationary consumption decay rate g € (¢/h,1), the outside option
F(g) associated with this g.

Numerically, we find that the mapping F(-) is hump-shaped with a maximum at g =
317 < 1 that delivers the maximum value F. The reason for the hump-shape of F(-) is as
follows. Start at ¢ = 1, and thus a constant consumption allocation with full insurance, and
now lower ¢ infinitesimally. Individuals with current income y = h strictly prefer a more
front loaded consumption allocation even though it entails more consumption risk in the
future. As g initially falls from g = 1, both W (h, c¢,) and c.(h) increase, which in turn leads
the fixed point F'(g) to increase as ¢ falls. At g = 8/ the optimal front loading is attained
from the perspective of the current h types; by reducing g further the associated increased
future consumption risk more than offsets the higher current consumption c,(h) chosen to
satisfy the resource constraint. Thus W (h,c,) and F(g) decline as g falls beyond g = 5'/7.

We cannot prove that F'(g) is hump-shaped in g but always found this to be the case in
our examples. This implies, in particular, that for F' < F there are two associated stationary
ladders that deliver the same outside option F, one with little risk sharing (¢ < g) and one
with more risk sharing (g > g). Since the algorithm for computing a dynamic equilibrium is
based on the convergence of the allocation to a stationary ladder, it is important to know

which ladder to pick, for a given F' < F. The following lemma is informative for this choice.

Lemma D.1 No equilibrium allocation converges to a stationary ladder with decay g < B/7.

Proof. Suppose an equilibrium allocation for some F' converges to a stationary ladder. It
is immediate that the stationary ladder cannot be Pareto dominated by another stationary
ladder. We now argue that any stationary ladder ¢, with g < 3'/7 is Pareto dominated by
another ladder stationary (with the same number of steps), which proves the lemma.

Since ¢, (hl)/c.(h) = g,

c(h0)™7 W (c.(hl))

o) wem) B

(D.4)
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Define a new stationary ladder as

cx(h) — €, k=0,
«(hl) + , k=1,
I EXCORYO
e, (he%), k=2 .. . L—1,
\ c(F) + 2F (%e — ﬁn(e)) , k=1,

where 7(€) satisfies

(e (h) = )+ Sule () + 0(e)) = ules (b)) + Sule.(h0))). (D.5)

The new stationary ladder ¢ satisfies the resource constraint because the change in the
aggregate consumption is —%e + n(e) + 51 - 28 - (3 — n(e)) = 0.

Applying the envelope theorem to (D.5) and using (D.4), we have

< 2.

n/(0> QUI(C**(h))

~ Bul(e.(h0))

Since n(0) = 0, for small € > 0, 1e — Ln(e) > 0, and so ¢S (hl™) > ¢,(F) and so ¢ satisfies
(-incentive feasibility. With (D.5), this also implies ¢ satisfies h-incentive feasibility.

Finally, c{ clearly Pareto dominates c, ([

D.2 Determination of the Outside Option F

To determine F we proceed as follows: At F' = F, Proposition 6 implies that there is a
unique stationary ladder satisfying h-incentive feasibility and this ladder solves (14), so we

know that the consumption decay rate is given by
g(F) = p'".

In effect, F' is the peak of the F(-) map discussed above, and is reached at g = g. Since the

value of F itself is unknown, we have to determine the lower consumption floor ¢, = ¢,(F)
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jointly with F, c,(h), and L. The relevant equations, with g = g(F) = 3'/7 are

u(ee) = u(l) + 8 (F = V7, (D.6)

L8 0 et ()

L = max{k : ¢"*c,(h) > ¢;}, and (D.8)

(1— B)u(h) + BT = <1 - g) [Z_; (g)ku(c*(h)gk) + (g)Lu@;). (D.9)

The algorithm to determine F is then a slightly modified version of the procedure from
the previous subsection, with F replacing g as the unknown to be computed (and identical

to the computations we do when solving for F'(g) for a given g # g.)
1. Guess F € (VA VEB),
2. For a given F:

(a) Solve for ¢, from (D.6).
(b) Jointly solve for (c.(h), L) from (D.7) and (D.8).
(c) Calculate the right side of (D.9).

3. Solve F such that (D.9) holds.

D.3 Computation of the Transition

As discussed in the main text, the computational procedure solves for the equilibrium al-
location, imposing the stationary ladder from an exogenously specified period T. We now
describe the computation of the allocations for fixed T and fixed outside option F < F. We
take as given the stationary ladder associated with F', summarized by (c.(h)(F), g(F), L(F)),
including the lifetime utilities V; o (F), as described in the previous two subsections.?® As
described in the main text, the algorithm calculates consumption in three phases.

In the first t < T periods the algorithm picks time-varying consumption of individuals
with currently high income (and so have binding incentive constraints), (c;(h))Z_; and uses
the resource constraints and the fact that individuals without binding constraints have com-
mon consumption decay rates (or consume the lower bound consume ¢,(F’)) to pin down the

remainder of the consumption allocation. In a second phase, from t =T + 1,....,T + L(F)

?8The only part that distinguishes the calculations for F' < F and F' = F'is the calculation of the stationary
ladder(s), and in case of F' < F, the selection of the right ladder.
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the allocation blends into the stationary ladder: all individuals with high income consume
according to the stationary ladder, and all households with low income drift down from con-
sumption in the previous period at a common (but time-varying) decay rate g;.?* Finally,
for all t > T+ L(F'), the allocation coincides with the stationary ladder. More precisely, the

algorithm works as follows:
1. Guess (¢;(h)), € (y,h)T.

2. Calculate the consumption allocation implied by this guess, imposing the characteriza-
tion of an equilibrium allocation: the h-incentive-feasibility constraint binds in every
period, and all agents with low income either have non-binding constraints and their
consumption decays at a common rate or they consume ¢,. The implied consumption
allocations (¢;4)!_o forall t =1,...., 7, T+ 1,...,T + L(F), are calculated as follows,

where ¢ again indicates the position on the consumption ladder:

(a) Set

cop =ci(h) fort=1,...,T,
and cop =ci(h)(F) fort =T +1,..., T+ L(F).

(b) For t =1, determine ¢;; from

[coq +c11] =7

DO | —

(c) For t = 2,...,T, determine the consumption decay rates (g;)L, recursively (be-
ginning with ¢ = 2) as follows:

The consumption decay g¢; solves

1L 71N 1\ )
540 5 Cit + 5 ) =Y

1=

where for all i =1,...,t,

Cit = maX{gtCi—Lt—h Ce(F)}-

For each t, g, is determined by one equation. The equations are solved forward

in time since the allocations {¢;;} require knowledge of allocations {¢;—14_1}.

29Gimilar arguments to those proving Proposition 5.1 show that this property must also hold for constrained
optimal allocations.
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(d) For t = T + 1,...,T 4+ L(F), part of the consumption allocations are on the
stationary ladder. For each t = T 4+ 1,...,T + L(F), the consumption decay ¢

12D 1N 1\ ! .
540 5 Cit + B Ctt =Y,

1=

solves

where
glen(F), fori=1,...,t—T—1,
ot max{gic;_1¢-1,co(F)}, fori=t—-T, ...t
3. For a given guess (¢;(h)){_;, the previous step delivers the entire allocation (¢;;)f_,
for periods ¢t = 1,..., 7, T+ 1,...,T + L(F). From date t = T + L(F') + 1 on the
consumption allocation coincides, by assumption, with the stationary ladder. Now we
need to determine (cy(h))._,. These values must yield a consumption allocation that
delivers the outside option W¥(h) for all t = 1,...,T. Construct the lifetime utility
in period ¢ after the history y*~'=*h¢  V;,, from the consumption allocation computed
in the previous step. This can be done recursively, going backward in time. Lifetime
utilities are given by, for each t = T+ L,...,1 (working backwards in time) and all

i=0,....t
Vie = (1= Blu(ciy) + g Vo1 + Vigr441.]

Note that these calculations are the same before and in the blended phase, because V; ;
is a function of V;;y; fori=1,..., L, with Vprip = (1 — B)u(¢) + SF and t < T + L.
The only role the consumptions from the stationary ladder play is in step 2 above in
determining c¢;; via resource feasibility.

Finally we need to check whether the entry consumption levels (c;(h))_, are such that

the resulting consumption allocation hits the outside option for each t =1,...,T
Vor = (1 = B)u(h) + BF.

If yes, we are done. If not, go back to step 1 and adjust the guess for (c;(h))L,.
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