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1 Introduction

Bargaining theory is central in economics. It helps understanding, among others, price formation in

decentralized markets (Osborne and Rubinstein, 1990), negotiations between unions and firms (Hart,

1989, and Cramton and Tracy, 1992), cartel stability (Hnyilicza and Pindyck, 1976), or pretrial settlements

(Spier, 1992). In studying bargaining, patience plays a critical role. Intuitively, the more patient an agent

is, the lower is her delay cost, and hence the more credibility she has in sustaining a tough bargaining

position. Rubinstein (1982) showed that, in a bargaining model with alternating offers and without

private information, the payoff an agent obtains is larger when she is more patient, smaller when the

other agent is more patient, and approaches the commitment payoff as she becomes fully patient.

This paper analyzes the role of patience in the other canonical bargaining setting: one-sided offers

with asymmetric information. We study a version of Sobel and Takahashi (1983), Fudenberg and Tirole

(1983), and Cramton (1984). There are a seller of an indivisible good and a buyer. The buyer’s type

is his private valuation for the good, v, which is drawn from an absolutely-continuous distribution on

[0, v0]. The seller makes price offers to the buyer, who either accepts them or rejects them. We allow the

discount (or interest) rates of the seller and the buyer –-denoted rs and rb, respectively-– to be different.

The main departures of our setting with respect to that in Sobel and Takahashi (1983), Fudenberg

and Tirole (1983), and Cramton (1984) are the following. First, we study the case where the horizon T

is arbitrary. This permits studying the commitment problem of the seller independently of her discount

rate and broadens the set of applications where our results apply.1 Second, we allow the seller’s cost

c(v)∈ [0, v] to be independent the buyer’s valuation (private values case, as in Gul, Sonnenschein, and

Wilson, 1986, where c ≡ 0), or to depend on the buyer’s valuation (interdependent values case, as in

Deneckere and Liang, 2006). Finally, we set the game in continuous time. This gives the model enough

tractability to study the effect of discounting in the bargaining outcome.2

This paper’s first contribution is providing a full characterization of the equilibrium dynamics in

a bargaining model with one-sided and asymmetric model. We completely characterize the unique

Markov perfect equilibrium with reservation prices in closed form, with the time t and the highest

remaining valuation of the buyer vt as state variables. We show that prices decrease smoothly over time.

The seller screens the buyer slowly, there are no trade impasses, and the only trade burst occurs at the

deadline.

1Bargaining with a deadline is frequent in practice. Fuchs and Skrzypacz (2013a) provide references to several

empirical studies documenting “deadline effects” (last minute deals) in labor contract negotiations and civil cases.

2Even though there are recent bargaining models in continuous time (see the literature review below), this paper’s

model is, to our knowledge, the first to analyze the standard one-sided offers settings (Gul, Sonnenschein, and

Wilson, 1986; and Deneckere and Liang, 2006) directly in continuous time.
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The second contribution is documenting, making use of the tractability of our approach, how pa-

tience shapes the bargaining outcome. We obtain that the commitment problem of the seller is severe:

independently of her and the buyer’s impatience levels, the seller’s payoff is equal to the one she obtains

by just waiting until the deadline to sell at the monopolistic price. The seller’s commitment problem

does not vanish in the limit where rs approaches 0 while keeping rb fixed as her equilibrium payoff

converges to the static monopolist payoff; while a seller with commitment obtains a higher payoff by

slowly lowering the price over time (see Fudenberg and Tirole, 1983).

We derive the following simple and easily-interpretable expression for the equilibrium price offered

in each state (t, vt):

p(t, vt)− c(vt) = e−rs (T−t) (p∗(vt)− c(vt)) , (1)

where p∗(vt) is the static monopolistic price when the buyer’s valuation is known to be lower than

vt. The seller’s payoff from trading with the buyer with valuation vt at time t is equal to the payoff

she obtains from this buyer if she waits until time T and trades at the corresponding monopolistic

price. In particular, the price at each state is independent of the buyer’s discount rate. Also, as long

as p∗(v)≥ c(v) for all v —we say that adverse selection is not strong in this case—, an increase in either

rs or T lowers the price at each state (since the right-hand side of equation (1) is positive), and this is

shown to increase the buyer’s payoff independently of his valuation for the good. Instead, if for example

p∗(v0)< c(v0), the seller makes initial losses by setting prices below the cost, which are compensated

by later sales to lower-cost buyer types. An increase in the seller’s interest rate makes her less willing

to do so, so she slows down initial sales by charging higher a price early in the game. This makes the

seller and some types of the buyer worse off. Similarly, enlarging the time horizon worsens the seller’s

commitment problem, hence harming the profitability of later sales and, under strong adverse selection,

increasing initial prices and making the seller and some buyer types worse off.

We characterize the equilibrium price dynamics, which are driven by the buyer’s incentive compat-

ibility condition ṗt = −rb (vt−pt). The equilibrium price rapidly decreases over time when rb is large,

while it is approximately constant when rb is small. Intuitively, the refusal of accepting a given price

offer is a stronger signal of lower valuation when the buyer is more impatient, and this induces the

seller to decrease the price faster. When adverse selection is not strong, there is an additional effect:

since each threshold valuation v is reached sooner, the price each buyer accepts in equilibrium is lower,

hence increasing the difference between vt and pt at the acceptance time. The additional increase in the

speed of price decline implies that the buyer is better off when he is more impatient independently of his

valuation: the reduction in the delay and price more than compensates for the higher cost of waiting.

This result shows that an agent may benefit from having a more pressing need for an early agreement

(e.g., facing a higher interest rate). In other words, using impatience as a measure of bargaining power

may not be appropriate in bargaining settings with asymmetric information.
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We shed some light on our results by comparing them with the case where the seller has full com-

mitment power. We do so in an example that can be solved in close form. We observe that when the

seller is more patient than the buyer, giving the seller’s commitment power reduces the probability of

trade but, unlike the case where the seller and the buyer are equally patient, it increases delay.

Finally, motivated by the analysis in Hart (1989), we extend the model to the case where discount

rates are time-dependent. We obtain that, in the private-values case, episodes of either large seller

discounting or large buyer discounting feature faster screening, but only episodes of large buyer dis-

counting imply faster price decrease. If, for example, both discount rates increase over time, trade

speeds up and price decline is faster towards the deadline, indicating that periods with a large delay

cost feature a large probability of agreement.

Literature review: Our paper contributes to the literature on bargaining with asymmetric informa-

tion, reviewed in Ausubel, Cramton, and Deneckere (2002) and Fuchs and Skrzypacz (2020). To our

knowledge, the analysis of the role of discounting in bargaining has only been addressed by Sobel and

Takahashi (1983) and Evans (1989). Sobel and Takahashi study two-period and infinite-horizon versions

of a bargaining model with private values. Consistently with our findings, they obtain that the buyer

(seller) benefits from an increase in the seller’s (buyer’s) impatience in both versions. Evans studies a

two-type model with independent values. He shows that, if the buyer is more patient than the seller,

there is a trade impasse. Our model does not feature such impasse because we study the so-called

no-gap case and the horizon is finite.

Other papers have studied bargaining with a deadline. Most saliently, Fuchs and Skrzypacz (2013a)

study how the bargaining outcome’s efficiency depends on the deadline and the disagreement payoff

when agents are equally patient. They obtain that a smaller disagreement payoff induces more trade

before the deadline, while the length of the deadline may affect efficiency non-monotonically.3

We also contribute to the recent literature modeling bargaining directly continuous time. Examples

include Ortner (2017) (time-varying seller’s private costs), Daley and Green (2020) and Lomys (2020)

(bargaining with learning), and Chaves (2020) (bargaining with arrival of new traders). We provide a

new approach to defining strategies and the corresponding outcome. In particular, our strategies do

not restrict the set of possible outcomes (do not require right-continuity or monotonicity of prices, for

example). Furthermore, our Markov strategies depend on time, given that our horizon is finite.

The rest of the paper is organized as follows: Section 2 presents our continuous-time model, Section

3 contains the equilibrium analysis, Section 4 provides the comparative-statics results regarding the role

of discounting in bargaining, and Section 5 concludes. The Appendix contains the proofs of the results.

3Some other bargaining models with finite horizon are Ma and Manove (1993), Fershtman and Seidmann (1993),

Thépot (1998), and Fanning (2016). Also, see Ausubel and Deneckere (1989) and Fuchs and Skrzypacz (2013b) for

papers analyzing the so-called “no-gap” case in the private and interdependent values cases, respectively.
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2 Model

We study a continuous-time bargaining model with finite horizon, where time belongs to [0, T]. There

is a seller of a durable good and a buyer. The buyer’s private valuation for the good, v, is distributed

according to some distribution F with a continuous and positive probability density function f and

with support equal to [0, v0]⊂R+, for some v0 > 0. The seller’s valuation for the good is c(v) where

c : [0, v0]→R is a continuously differentiable and non-decreasing function satisfying that c(v)∈ [0, v) for

all v ∈ (0, v0].4 Hence, there is common knowledge of gains from trade, and there is no gap for lower

buyer valuations. At each instant t∈ [0, T], the seller makes an offer, and the buyer decides to accept it

or not. The game ends when the buyer accepts an offer or when the deadline is reached. Both the seller

and the buyer are risk neutral, and their discount (or interest) rates are rs>0 and rb>0, respectively.

We make two assumptions throughout the paper:

Assumption 1. For any v∈ (0, v0], the function p 7→
∫ v

p (p−c(v)) F(dv) has a unique maximizer, which

will henceforth be denoted by p∗(v).

Assumption 2. For any v∈ [0, v0], c(v)≤ rb
rs

v.

The first assumption is standard. The second assumption is discussed and relaxed in Section 3.3.

Note that Assumption 2 is always satisfied in the private values case (i.e., when c(v)=0 for all v∈ (0, v0]),

and also when the seller is more patient than the buyer (i.e., when rs≤ rb).

We now proceed to formally define the continuous-time game:

Histories: A history is a measurable function from [0, t] to R, for some t ∈ {0−}∪ [0, T], generically

denoted pt∈R[0,t], where p0− is the empty history and [0, 0−]≡∅.

Seller’s strategies: A (pure) strategy for the seller consists is a function P assigning, to each history pt, a

continuation price path P(pt)∈R(t,T] (where (0−, T]≡ [0, T]) such that

Pt′′(pt) = Pt′′(pt, P(t,t′ ](pt)) for all t′> t and t′′> t′ , (2)

where Pt′′(pt) is the value P(pt) assigns to t′′. Intuitively, the consistency condition (2) requires that the

seller does not deviate from her continuation strategy. More formally, note that when the seller follows

4The assumption that the informed agent has superior knowledge about the uninformed agent’s valuation is plaus-

ible in a number of applications of the model. For example, the durable good may be the procurement of a

(legal/repairing/medical) service, so the buyer knows more about his idiosyncratic problem. Also, our setting

is equivalent to one where the seller sells to a unit mass of buyers, and the cost of producing 1−F(v) units is∫ v0
v c(v) F(dv). In this case, the declining marginal cost can be associated to learning-by-doing, for example. Fi-

nally, analogous results can be obtained if the roles of the seller and the buyer are reversed; then, the positively

correlated valuation may come from the underlying quality of the good known by the seller.
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Figure 1: Both (a) and (b) provide examples of two price histories, pt′ and p̂t′′ , and their corresponding
continuation price paths, P(pt′) and P( p̂t′′). Note that, in (b), p̂t′′ coincides with Pt′′(pt′), and hence the
consistency condition (2) imposes that PT(pt′)=PT( p̂t′′).

the strategy on (t, t′] after history pt, the history at time t′ is (pt, Pt′(pt)). Then, the condition requires

that the planned price at time t′′> t′ is the same under the continuation strategies at pt and (pt, Pt′(pt))

(see Figure 1 for an illustration). Abusing notation, for each t′≤ t, Pt′(pt) is the price specified by pt at

time t′. Similarly, Pt′(pt) denotes P[0,t′ ](pt)∈R[0,t′ ] for any t′ ∈ {0−}∪[0, T]. Condition (2) can then be

written as “PT(pt) = PT(Pt′(pt)) for all t′> t.”

Our definition of the seller’s strategy is a modeling innovation of this paper and it is convenient for

the following reasons. First, it does not impose any monotonicity or regularity condition on the choice

of the price path. The price outcome from strategy P (until the buyer accepts) is P(∅), which can be

any measurable function from [0, T] to R. The same applies for the continuation play after any history.

Second, it is suitable writing strategies recursively, as it specifies a unique continuation strategy after

each on- or off-path history pt, which is fully described by P(pt).5

Buyer’s strategies: A (pure) strategy for the buyer specifies, for each history pt and valuation v, an accept-

ance decision av(pt)∈{0, 1}, where av(pt)=1 means “accept” and av(pt)=0 means “reject”. We assume

that {v|av(pt) = 1} is a measurable set for all pt.

Outcome: Fix some strategy profile (P, a), a history pt and a buyer’s valuation v. Let

Av(pt; P, a) ≡ { t′> t
∣∣ av(Pt′(pt))=1

}
be the set of acceptance times after time t by the v-buyer. The transaction time that (P, a) generates after

5It is known that, when strategies are defined as a map from the previous history to the current action, they may

generate non-unique outcomes even when there is only one player taking actions. For example, if one specifies

strategies as a map from previous prices to the current price, there are multiple outcomes consistent with the

specification “Pt = 0 if the price is 0 at all times in [0, t) and Pt =1 otherwise”.
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pt for the buyer with valuation v is equal to

tv(pt; P, a) ≡ inf(Av(pt; P, a)) ∈ [t, T]∪{+∞} ,

where tv(pt; P, a)=+∞ means that the buyer with valuation v rejects all offers after time t. If tv(pt; P, a)<

+∞, the transaction price for the v-buyer that (P, a) generates after pt is equal to

pv(pt; P, a) ≡

Ptv(pt ;P,a)(pt) if tv(pt; P, a)∈Av(pt; P, a),

limt′↘tv(pt ;P,a) inf
(

P(tv(pt ;P,a),t′ ]∩Av(pt ;P,a)
)

otherwise.

The inferior limit guarantees that the transaction price is uniquely defined. The choice of the inferior

limit (instead of the superior limit, or a combination of them) is innocuous for the equilibrium analysis.

Whenever the strategy profile and history are clear, we will not explicitly write the dependence of tv

and pv on it.

Payoffs: Fix a strategy profile (P, a), a history pt, and a buyer’s valuation v. The realized continuation

payoff of the seller is e−rs (tv−t) (pv−c(v)) and the continuation payoff of the buyer is e−rb (tv−t) (v− pv).

2.1 Equilibrium concept

Perfect Bayesian equilibrium

We now define perfect Bayesian equilibria in the usual way. A belief process is a function F(·|·) assigning,

to each history pt a posterior belief F(·|pt) ∈ ∆([0, v0]).

Definition 2.1. A (pure-strategy) perfect Bayesian equilibrium (PBE) is a strategy profile (P, a) and a belief

process F(·|·) such that:

1. The seller’s strategy P maximizes the seller’s expected continuation payoff after each history pt,

given the buyer’s strategy and the belief F(·|pt); that is, maximizes

∫ v0

0
e−rs (tv(pt ;P† ,a)−t) (pv(pt; P†, a)− c(v)

)
F(dv|pt)

with respect to any seller’s strategy P†.

2. For any v, the buyer maximizes his payoff after each history pt; that is; maximizes

e−rb (tv(pt ;P,a†)−t) (v− pv(pt; P, a†))

with respect to any buyer’s strategy a†.
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3. Bayes’ rule: F(·|∅) = F(·) and, for all histories pt and t′ < t, we have

F(v|pt) =

∫ v
0 I{v′′ |av′′ (Pt′′ (pt))=0 ∀t′′∈(t′ ,t]}(v

′) F(dv′|Pt′(pt))∫ v0
0 I{v′′ |av′′ (Pt′′ (pt))=0 ∀t′′∈(t′ ,t]}(v

′) F(dv′|Pt′(pt))

whenever the denominator is not 0.6

It is convenient to state now a standard property of the buyer’s equilibrium behavior in bargaining

models, which will ease the definition of Markov perfect equilibria:

Lemma 2.1 (skimming property). In any PBE, the higher is the buyer’s valuations, the earlier he earlier and

the higher price is the price he pays; that is, tv is decreasing in v and pv is increasing in v for all pt.

As usual, the skimming property permits focussing on a simple class of belief processes. Namely,

from now on, we focus on belief processes where (on- or off- the path) which are upper truncations of

F. Also, without loss of generality, we focus on equilibria where, if trade is supposed to occur with

probability one at some history and yet the buyer rejects, the seller believes that the buyer’s valuation is

0.

We now define the upper bound on the support of the belief distribution after some history. Fixing

a PBE and a history pt, the upper bound on the distribution is obtained as follows:

v(pt) ≡ sup(supp(F(·|pt))) .

When the history pt is clear, we will use vt′ to denote v(Pt′(pt)); that is, vt′ is the supremum of the

support of the seller’s belief at time t′. Note that, by the skimming property, vt′ is decreasing in t′.

Finally note that optimality requires that vT = p∗(vT−).

Markov perfect equilibrium

Definition 2.2. A reservation-price Markov perfect equilibrium is a PBE (P, a, F(·|·)) satisfying that

1. for all pt and p̂t such that v(pt)=v( p̂t), we have that Pt′(pt)=Pt′( p̂t) for all t′> t, and

2. for all pt and p̂t, we have tv(pt; P̂, a)= tv( p̂t; P̂, a) for all P̂ and v≤min{v(pt), v( p̂t)}.

The first property is standard: the price (and seller’s continuation strategy) at time t depends on the

time and the highest remaining valuation. The second requirement is analogous to the usual require-

ment that the buyer uses a reservation price strategy. Indeed, buyer’s decision on whether to trade or not

6As usual, for a set A ⊂ R, IA(·) is the indicator function, where IA(x) = 1 if x ∈ A and IA(x) = 0 otherwise.

Hence, I{v′′ |av′′ (Pt′′ (pt))=0 ∀t′′∈(t′ ,t]}(v
′) = 1 if and only if the v′-buyer does not trade in [t′, t].
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depends only on the time and the price offered at that time. From now on, we refer to reservation-price

Markov perfect equilibria as just equilibria.

Our definition of equilibrium has a caveat: in principle, for a fixed equilibrium, there may be states

(t, v) which are never reached (not even after a seller’s deviation). In such states, there is no optimality

requirement in the continuation play. As a result, formal arguments need to be tailored only for states

which are reachable (given the equilibrium), and this unnecessarily clutters the exposition. To keep the

argumentation simple, we make the following change to our setting. From now on, we assume that

there is some large M > 0 such that, if at time t = 0 (and only at this time) the seller sets a price that can

be written as −M + v for some v∈ [0, v0], then the buyer is “forced” to accept such price if his valuation

is higher than v, while otherwise he is forced to reject this price. By offering such price, the seller

receives an additional lump-sum payoff of −M. Of course, this is irrelevant for equilibrium behavior:

setting a negative price at time 0 is strictly dominated. Introducing this assumption, nevertheless, has

the following effect: now, for any equilibrium, t ∈ (0, T], and v ∈ [0, v0], there is a history pt such that

v(pt) = v, and the strategy is sequential optimality afterwards.7

3 Analysis

3.1 Basic properties

We now state some important properties of equilibria. All statements apply to any equilibrium of the

game (we omit writing “In any equilibrium,”).

No silent period

We begin with an important property, sometimes called “no silent period” (especially in discrete-time

models) or “no trade gaps”.8 It establishes that there are no intervals of time where the probability of

trade is 0.

Proposition 3.1 (No silent period). There is no time interval with no trade; that is, there is no history pt1 and

t2> t1 such that vt1(pt1) = vt2(pt1)>0.

Differently from some stationary settings, Proposition 3.1 is not immediate in our setting for two

reasons. The first reason is that the horizon is finite: even though not trading for a time interval delays

7An example of a history pt such that v(pt) = v is the following: at time 0, the price is −M + v, while at any other

time t′ ∈ (0, t), the price offer is unacceptable (above v0).

8Similar properties are found in models with arrival of buyers (Fuchs and Skrzypacz, 2010) and news arrival (Daley

and Green, 2020).
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vt

t2t2−∆

p̂t2−∆
pt2

Figure 2: Illustration of the argument ruling out time intervals without trade. The dashed curve indicates
the indifference curve for the vt2 -buyer. Hence, the seller can sell to the vt2 -buyer earlier (at time t2−∆
instead of t2) na at a higher price (p̂t2−∆ instead of pt2 ), but also has to pay the cost c(vt2) earlier.

revenue, it also shortens the time left until the deadline, and so it reduces the commitment problem of

the seller. We show that the fact that the price declines on the path of play is enough to guarantee that

the seller expected revenue increases if she sells earlier.

The second reason is that, in the interdependent-values case, trading earlier increases the present

value of the revenue, but also the present value of the cost of selling. If the seller sells earlier to the

buyer with valuation v at a price which is lower than the cost c(v), selling earlier may be detrimental.

This may occur, for example, when the buyer is patient, since then the price the seller can set to induce

the buyer to buy earlier cannot be much higher than the equilibrium purchasing time.

We now provide an intuition for Proposition 3.1, depicted in Figure 2. To do so, fix an equilibrium.

We argue using contradiction: we assume that the is an interval of time without trade (t1, t2), and then

show that the seller has the incentive to speed trade in this interval. Let pt2 be the equilibrium price at

time t2. Fix some small ∆ > 0, and let p̂t2−∆ be the price that makes the vt2 -buyer indifferent between

buying at time t2−∆ and buying at time t2. We compare the seller’s discounted payoffs from selling to

the vt2 -buyer at t2 at price pt2 and from selling to the vt2 -buyer at t2−∆ at price p̂t2−∆; that is,

e−rs ∆ (pt2 − c(vt2)) vs (1−e−rb ∆) vt2 + e−rb ∆ pt2︸ ︷︷ ︸
= p̂t2−∆

− c(vt2) . (3)

The gain from early sale is lowest when pt2 is equal to 0. In this case, the benefit from selling earlier

is (1−e−rb ∆) vt2 while the additional cost is (1−e−rs ∆) c(vt2). Taking the limit ∆ → 0, earlier purchase

is beneficial if c(vt2) ≤
rb
rs

vt2 ; that is, if Assumption 2 is satisfied. This is shown to imply that, if

Assumption 2 holds, Proposition 3.1 holds as well. See Section 3.3 for a further discussion.

Proposition 3.1 can be used to determine a transaction price for each state (t, v). Indeed, fix a

history pt such that vt(pt) = v. Since there is no trade gap, the buyer with the highest valuation trades
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immediately; that is, tv = t. We can then define, for each pair (t, v) and t′> t,

p(t, v) ≡ pv(pt) and pt′(t, v) ≡ pv(Pt′(pt)) .

As usual, when (t, v) is clear, we will use pt′ = pt′(t, v) = p(t′, vt′) to denote the price at time t′ > t

under the assumption that the seller did not deviate after time t. Note that if follows immediately from

Proposition 3.1 and the optimality of the buyers’ strategy that pt′ is continuous and decreasing in t′ on

[t, T]. We use Π(t, v) to denote the continuation payoff of the seller in state (t, v), and

π(t, v) ≡ p(t, v)− c(v)

to denote the surplus the seller obtains from the buyer with valuation v in state (t, v).

Seller’s equilibrium payoff

We proceed by presenting two results characterizing the equilibrium payoff of the seller. They can both

be interpreted in light of the seller’s willingness to speed or slow screening.

Proposition 3.2. For any (t, v) with t < T, the seller’s payoff satisfies

Π(t, v) =
1

F(v)

∫ v

0
(p(t, v)−c(v)) F(dv) . (4)

An interpretation Proposition 3.2 is the following. Assume the seller deviates and decreases the

price very fast (but continuously) after time t. For example, as illustrated in Figure 3, she could set a

price p̂t′ =
t+ε−t′

ε p(t, v) for all t′∈ (t, t+ε] for some small ε>0, so trade would occur for sure before time

t+ε. Then, under this deviation, each buyer type v ∈ [0, v] would buy at a price approximately equal

to p(t, v) (the continuity of p(·, v) is shown in the proof of Proposition 3.2). The seller’s payoff from

such a deviation would then be approximately equal to the right-hand side of expression (4). Hence,

Proposition 3.2 can be interpreted as establishing that, in equilibrium, the seller is willing to screen the

buyer “infinitely fast.”

While the previous result establishes that seller is willing to screen the buyer fast, the following result

states that the seller is also willing to not screen the buyer at all. More formally, the seller’s equilibrium

payoff in state (t, v) coincides with the payoff she would obtain if she would make unacceptable offers

(above v, for example) until the deadline and then, at the deadline, she would charge the monopolistic

price p∗(v).9

9Fuchs and Skrzypacz (2013a) obtain an analogous result in a model with private values, where the buyer’s distri-

bution follows a power distribution (F(v)=va for v∈ [0, 1]), and where equal impatience levels (rs = rb).
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Figure 3: (a) depicts an example of an equilibrium path for p and v. In (b), the seller deviates at time
t′ by lowering the price very fast after ward, and hence the buyer is screened very fast. In (c), the seller
charges unacceptable prices in (t′, T) and charges p∗(vT) at time T. Propositions 3.2 and 3.3 establish
that all three strategies give the same payoff to the seller.

Proposition 3.3. For any (t, v) with t < T, the seller’s payoff equals the payoff she obtains from charging an

unacceptable price until time T and then charging p∗(v), i.e.,

Π(t, v) = e−(T−t) rs Π∗(v) , (5)

where Π∗(v) ≡
∫ v

p∗(v)(p∗(v)−c(v)) F(dv) equals the “static” monopolistic payoff.

We now provide a heuristic intuition for Propositions 3.2 and 3.3 (see Figure 3). We do so by using

the standard Bellman equation, without proving that it holds:10

rs Π(t, v) = ∂
∂t Π(t, v) +

(
f (v)π(t, v) + ∂

∂v Π(t, v)
)

v̇(t, v) (6)

where, abusing notation, v̇(t, v) denotes the speed at which the marginal valuation changes at state

(t, v). We can heuristically think of the seller’s problem as one where she chooses, at each instant, the

value of v̇(t, v) (by deciding how fast the price falls). Using Proposition 3.1, we obtain that choosing

v̇(t, v) = 0 (i.e., not screening at all) cannot be strictly optimal. Similarly, if setting v̇(t, v) =+∞ would

be strictly optimal for all v, then the price would have to be equal to 0 (since screening would be very

fast, and the buyer with valuation v never buys at a price above v). As a result, and given the linearity

of the right-hand side of equation (6) in v̇(t, v), it must be that f (v)π(t, v) + ∂
∂v Π(t, v) = 0; which

implies equation (4). Hence, the seller is indifferent between screening very fast or very slow (or at any

intermediate rate).

10Unlike most of the literature modeling bargaining directly in continuous time, we do not make any regular-

ity/continuity/smoothness assumption on strategies to guarantee that standard recursive analysis can be used.

Nevertheless, as we will see, equilibrium objects will be smooth enough that equation (6) will hold.
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3.2 Equilibrium characterization

Equilibrium price

Fix an equilibrium for the rest of the section. From equations (4) and (5), and from the fact that the price

at time T equals p∗(vT) (i.e., the static monopolistic price when the valuation distribution is truncated

above at vT), we obtain that

p(t, v) = (1− e−rs (T−t)) c(v) + e−rs (T−t) p∗(v) (7)

for any state (t, v) ∈ [0, T]×(0, v0] (note that this expression is equivalent to expression (1)). The price at

state (t, v) is then a convex combination between the monopolistic price when the valuation is known to

be below v, p∗(v), and the seller’s valuation of the good if the buyer’s valuation is v, c(v). As time comes

close to the deadline, the seller commitment problem is reduced, and so the weight on the monopolistic

price increases, and p(T, v)= p∗(v).

Equation (7) provides a remarkably simple recipe to compute price in a given state (t, v). First,

compute the surplus the seller obtains from the buyer with valuation v in the static monopolist problem

with valuations in [0, v] (which is equal to p∗(v)−c(v)). Second, “discount” the surplus using the

remaining time until the deadline (at the seller’s discount rate). This is equal to the surplus the seller

obtains from the buyer with valuation v at state (t, v); that is, p(t, v)−c(v).

Note that Assumption 1 and the fact that F is differentiable imply that p∗ is continuous and strictly

increasing. Note also that p(·, v) is increasing if p∗(v)> c(v): intuitively, the commitment problem of the

seller becomes less severe as the deadline approaches, and she has more credibility on charging higher

prices. Still, if p∗(v)< c(v) we have that p(·, v) is a decreasing function: as t approaches T, the seller is

more willing to make a loss when selling to the v-buyer at time t to then obtain the monopolist payoff at

the deadline. In both cases, the equilibrium price path pt = p(t, vt) decreases over time, as the decrease

of vt more than compensates the increase in t.

An important implication of equation (7) is that, for a given history pt, there are no “trade bursts”

on [t, T). That is, there is no t′ ∈ [t, T) where vt′(pt)> vt′+(pt). To see this note that, by the optimality

of the buyer’s strategy and Proposition 3.1, the price pt′(t, v) is continuous in t′ on [t, T]. Furthermore,

the right-hand side of equation (7) is continuous and strictly increasing in v. Then, the continuity of the

on-path price pt = p(t, vt) implies that vt is continuous too. The result is consistent with the finding in

Fuchs and Skrzypacz (2013b) that the trade bursts obtained in the study of interdependent-value case

(Deneckere and Liang, 2006) disappear in the limit where the gap between the lowest seller and buyer’s

valuations vanishes.
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Equilibrium dynamics

We now use the optimality of the buyer’s strategy to obtain the equilibrium price dynamics. For simpli-

city, we let pt denote Pt(∅); that is, pt is the price set by the seller at time t on the equilibrium path (the

analysis of price dynamics after deviations is analogous). The “marginal buyer” at time t∈ (0, T) (i.e.;

the buyer with valuation vt) is willing to purchase at time t, not before or after. Since vt is continuous

in time by the absence of trade bursts, the following equation holds:

ṗt = −rb (vt − pt) . (8)

The left-hand side of the previous expression is the instantaneous gain the vt-buyer obtains from delay-

ing the purchase by an instant. The right-hand side is the cost owed to the delay of surplus he enjoys.

Equations (7) and (8) fully determine the equilibrium price dynamics. Indeed, we can use them to

obtain

= ṗt︷ ︸︸ ︷
d
dt
(
c(vt)+e−rs (T−t) (p∗(vt)−c(vt))

)
= −rb

(
vt−

( =pt︷ ︸︸ ︷
c(vt) + e−rs (T−t) (p∗(vt)−c(vt))

))
. (9)

Equation (9) gives an ordinary differential equation (ODE) for the evolution of the upper threshold vt,

and hence fully characterizes the equilibrium dynamics (note that the initial condition is that vt at time

0 is equal to the parameter v0). The proof of Theorem 3.1 proves that the solution to equation (9) for vt

is, indeed, decreasing.

Main result

We gather the previous findings in the following result, characterizing the essentially unique equilibrium

(i.e., generating a unique outcome after any state except for a zero-measure set of dates).

Theorem 3.1. There is an essentially unique equilibrium. In such an equilibrium, after each state (t, v),

1. the on-path threshold type vt′ solves equation (9) for all t′ ∈ (t′, T), and is equal to v at time t;

2. the price is equal to p(t′, vt′) given in equation (7) for almost all t′∈ (t′, T), and

3. the buyer with valuation v ∈ [0, v] buys at the time tv given by (recall that +∞ means “never buys”):

tv =


t solving vt = v if v∈ (vT , v],

T if v∈ [p∗(vT), vT ],

+∞ otherwise.

Consider now the limit T → 0. Theorem 3.1 establishes that, as T gets small, (i) the seller’s payoff

converges to the static monopolistic profits Π∗(v0), (ii) the initial price converges to p∗(v0), and (iii),
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in equilibrium, the seller remains willing to screen infinitely fast. Hence, an almost direct implication

of the theorem is that the static monopolistic profits are equal to the payoff that the seller would get

in a market if she was able to perfectly price-discriminate by charging, to each type of the buyer v, the

monopolistic price she would charge if it was known that the buyer’s valuation was lower than v (i.e.,

p∗(v)). We prove this implication independently, using the envelope theorem:

Corollary 3.1. We have Π∗(v0) =
∫ v0

0 (p∗(v)− c(v)) F(dv).

3.3 Discussion of Assumption 2

Assumption 2 plays a critical role in the proof of Proposition 3.1. The intuitive argument outlined in

Section 3.1 proceeds by contradiction by assuming there is no trade in some interval (t1, t2). It is shown

that Assumption 2 guarantees that, even if the price at t2 is 0, the seller gains from deviating and selling

earlier to the buyer with a high valuation.

Proposition 3.1 is then used to prove Propositions 3.2 and 3.3. As a result, the equilibrium price

satisfies equation (7) when Assumption 2 holds. Hence, the cost-benefit argument used to show Pro-

position 3.1 can be replicated using the equilibrium price instead of 0. Doing so permits obtaining a

condition which is less restrictive than Assumption 2 and which is sufficient for the “no silent period”

condition to hold.

Assumption 3. For any v ∈ (0, v0], we have rb (v−p∗(v)) ≥ rs (c(v)−p∗(v)).

It is easy to see that Assumption 3 is less restrictive than Assumption 2 (see the proof of Theorem

3.1). In fact, Assumption 2 is the least restrictive condition that guarantees that Assumption 3 holds

independently of the distribution of buyer’s valuations. That is, if Assumption 2 holds then Assumption

3 holds as well (independently of F), and for any (c, rs, rb) not satisfying Assumption 2 there is some

distribution F (and corresponding p∗) for which Assumption 3 does not hold. Additionally, the proof of

Theorem 3.1 shows that Assumption 3 is necessary and sufficient for the solution of equation (9) for vt

to be decreasing. Hence, we have:

Corollary 3.2. The strategy profile described in Theorem 3.1 is an equilibrium if and only if Assumption 3 holds.

Scope

We say that adverse selection is not strong if p∗(v)≥ c(v) for all v ∈ (0, v0]; that is, if for any v the static

monopolist payoff is non-negative valuation-by-valuation. Requiring adverse selection not to be strong

is a sufficient condition for Assumption 3 to hold and, in fact, it is the broadest condition that guarantees

that the strategy profile described in Theorem 3.1 is an equilibrium independently of the values of rs and

rb.
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When does then Assumption 3 not hold? That is, when is the strategy profile described in Theorem

3.1 not an equilibrium? For this to occur, it is necessary that (i) Assumption 2 does not hold,11 and (ii)

the seller’s valuation is above the monopolistic price for some of the buyer’s valuations. This is the

case if, for example, the seller is more impatient and she has a high valuation for the good with a small

probability. If this occurs, the static monopolist price p∗(v) is low even for large values of v, and so

c(v0)> p∗(v0). Then, if the seller is impatient enough, she will not be willing to sell at time 0 at a price

which, by equation (7), is lower than c(v0) (see Figure 4 below).

4 Comparative statics and other results

4.1 Buyer’s patience

We first investigate how changes in the buyer’s patience affect the outcome of the game.

From Proposition 3.2 it is clear that the payoff of the seller is not affected by the value of rb, and

neither is the price at time 0 by equation (7). The price path and the timing of purchases, however, do

depend on the buyer’s patience level. The following result establishes that, if adverse selection is not

strong, the buyer benefits from facing a higher interest rate. In other words, he is more willing to pay to

enter the market when his bargaining cost is higher.

Proposition 4.1. The seller’s payoff is independent of rb. If adverse selection is not strong then, for any v ∈ [0, v0],

the v-buyer’s payoff is increasing in rb.

An intuition for Proposition 4.1 is the following. An increase in the buyer’s discount factor does

not affect the commitment problem of the seller, and hence it does not change the equilibrium price in

each state (t, v) (see equation (7)) or her payoff (see equation (5)). The speed at which the price declines,

nevertheless, increases: since the buyer becomes more impatient, he remains indifferent from buying

now or an instant after only if the price declines faster (see equation (8)). In other words, rejecting a given

price offer becomes a stronger signal of a low valuation when the buyer is more impatient, which forces

the seller to lower the price faster. Therefore, the buyer is screened more rapidly. Importantly, the faster

price decline is reinforced, in equilibrium, by the fact that each given v is reached at an earlier time, and

hence this type of the buyer pays a lower price. Hence, again by equation (8), the speed at which price

declines at the instant where each type of the buyer v buys increases more than proportionally than the

increase in rb. Such reinforcement gives the result: the additional impatience is more than compensated,

in equilibrium, by the more-than-proportional of the speed at which the price declines.

11Recall that, as we explain above, Assumption 2 holds in two canonical cases: the private values case, and the case

where the seller is (weakly) more patient than the buyer.
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When adverse selection is strong, the effect of an increase in the buyer’s impatience is ambiguous.

From the proof of Proposition 4.1 it is easily seen that, if for example p∗(v0) < c(v0), a buyer with a

high valuation gets worse off when the interest rate he faces increases. Still, similarly to the example

presented in the next section, a buyer with a lower valuation may become better off because of the fast

screening of low valuations.

4.2 Seller’s patience

We now present the comparative statics analysis with respect to the seller’s discount rate rs. From

Proposition 3.3 we have that the seller’s payoff is decreasing in the interest rate he faces, rs. The change

in the payoff of the buyer depends on whether adverse selection is strong or not.

When adverse selection is not strong, the payoff of the buyer is increasing in rs independently of

his valuation. This follows from the observation that the price in each given state (t, v) (see equation

(7)) is decreasing in rs, and hence —using an argument similar to that in the proof of Proposition 4.1—

the price decreases faster when rs is larger. Both results are easily anticipated: a higher discount rate

exacerbates the seller’s commitment problem. We formalize these claims in a proposition:

Proposition 4.2. The seller’s payoff is decreasing in rs. If adverse selection is not strong then, for any v ∈ [0, v0],

the v-buyer’s payoff is increasing in rs.

Assume alternatively that adverse selection is strong and, in particular, that p∗(v0)< c(v0). In this

case, a more impatient seller charges higher initial prices. The reason is that a seller who faces a higher

interest rate is less willing to make losses at earlier dates to get a larger payoff at later times. For lower

buyer valuations, instead, an increase in the seller’s interest rate decreases the price at each state, and

accelerates the price decline. Hence, while buyers with a high valuation prefer a more patient seller,

buyers with a low valuation may prefer a less patient seller.

Figure 4 depicts an example where adverse selection is strong. Subfigure (a) shows that, for high

valuations, the static monopolist price is lower than the cost. Intuitively, the seller is willing to make a

loss from selling to buyers with a high valuation in order to obtain a large payoff from selling to buyers

with an intermediate valuation. Subfigure (b) depicts the price and threshold types trajectories for small

rs (gray lines) and large rs (black lines). When the seller is more impatient, initial prices are higher, while

later prices are lower. Intuitively, a more impatient seller is less willing to make losses at the beginning

(by selling to high-valuation buyers), as the larger discounting makes it more difficult to compensate

them with the posterior sales to buyers with a middle valuation. Later, when the cost is below the static

monopolist price, the large impatience implies faster screening. This intuition is confirmed in subfigure

(c): when the seller is more impatient, the initial flow payoff is less negative, but the later flow payoff is

smaller. Overall, we see that a more impatient seller initially screens high-cost buyers slower by charging
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Figure 4: For T = 3, rb = 1, F uniform in [0, 1], c(v)= 3
4 v2, and for rs = 0.1 (gray lines) and rs = 1 (black

lines), (a) depicts p∗(v) and c(v), (b) depicts threshold types vt (upper lines) and prices pt (lower lines),
and (c) depicts the flow payoff of the seller, πt v̇t≡ (pt−c(vt)) v̇t.

a higher price and, later, buyers with a medium or a low valuation are screened faster.

4.3 Time horizon

The effect of increasing the deadline T is similar to that of increasing the seller’s interest rate rs.

Proposition 4.3. The seller’s payoff is decreasing in T. If adverse selection is not strong then, for any v ∈ [0, v0],

the v-buyer’s payoff is increasing in T.

The seller’s payoff is decreasing in T, as the commitment problem of the seller worsens when she

has more time to screen the buyer. If adverse selection is not strong, raising the deadline from T to

T′ > T implies that the equilibrium price at state (T, v) becomes lower. This translates, in equilibrium,

into lower initial prices, and so the buyer is better off. If adverse selection is strong, instead, extending

the deadline translates into higher initial prices. The intuition is similar to the effect of increasing the

seller’s interest rate: the increased commitment problem of the seller makes sales in later dates less

profitable, inducing the seller to charge higher initial prices.

An interesting exercise consists in considering simultaneous changes of rs and T that keep rs T

constant. These changes do not affect the equilibrium commitment problem of the seller: her payoff

depends on rs and T only through rs T. The payoff of the buyer is, nevertheless, affected by such

changes. An argument similar to that in the proof of Proposition 4.1 illustrates that such changes are

beneficial for the buyer when the seller becomes more patient (i.e., when T increases and rs decreases

while keeping rs T the same) when adverse selection is not strong.

Infinite horizon limit

We now analyze the limit where the time horizon becomes large. As T increases, our model approx-

imates continuous-time versions of Gul, Sonnenschein, and Wilson (1986) and Deneckere and Liang
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(2006).

If c ≡ 0 (private values case) then, by equation (7), p(t, v) → 0 as T → ∞ for all (t, v). In other

words, we recover the Coase conjecture. Even if the seller is more patient than the buyer, the inability to

commit not to lower future prices dissipates all her rents from trade.

When c(·) is strictly increasing, we can combine of equations (7) and (8) gives

d
dt c(vt) = −rb (vt − c(vt)) . (10)

This is the same equation obtained in Fuchs and Skrzypacz (2013b) for the case rs = rb in the double-

limit where the gap between the lowest seller’s and buyer’s valuations and the length of the period

vanish. We obtain that not only price dynamics are independent of the distribution of buyer’s valuations

in the infinite-horizon model (as observed by Fuchs and Skrzypacz), but they are also independent of the

seller’s patience level. Furthermore, for each value v, payoff of the buyer with valuation v is independent

of rs, rb, or F.12

Note that the dynamics described in Theorem 3.1 in the limit where T → ∞ coincide with the

equilibrium dynamics in the limit rs→∞ when adverse selection is not strong (and hence Assumption

3 holds for all rs): in both cases p(t, v) = c(v) for all (t, v) and the seller’s payoff is zero. The limit

outcome in the double limit rs, T→∞ can be re-interpreted as the outcome of a model with an infinite

sequence of short-lived sellers, studied in Hörner and Vieille (2009) (public offers case). Our results have

the implication that the “trade impasse” disappears (and trade is smooth) when there is no gap between

the lowest valuations of the seller and buyer and adverse selection is not strong. In fact, differently from

them, we find that there is no trade burst at time 0, and trade occurs smoothly and evenutally with

probability one. This result can be seen as analogous to that in Fuchs and Skrzypacz (2013b): they show

that the trade bursts predicted by Deneckere and Liang (2006) (for the long-lived seller with the same

discount as the buyer) do not occur in the no-gap case.

4.4 Commitment case for the uniform distribution and linear costs

The seller’s inability to commit not to lower the price implies that her payoff is strictly lower than the

one she would obtain if she could commit. This is clear when rs ≥ rb: Stokey (1979) showed that, in this

case, trade occurs only at time 0 and at the monopolistic price p∗(v0) when the seller can commit (the

result can be extended to the interdependent values case).

When rs < rb, a seller with commitment price-discriminates, taking advantage of the larger delay

cost of the buyer (see Fudenberg and Tirole, 1983, and Landsberger and Meilijson, 1985).13 The com-

12Solving equation (10) we have that the payoff of the v-buyer is exp
(
−
∫ v0

v
c′(v′)

v′−c(v′) dv′
)
(v−c(v)).

13Beccuti and Möller (2018) analyze a two-type, discrete-time, private-values model where the seller can offer a
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mitment solution is, in general, difficult to obtain. To gather some intuition, we heuristically derive

the optimal (non-stochastic) pricing strategy of a seller with commitment when the buyer’s valuation is

distributed uniformly on [0, 1] and the seller’s cost is linear, c(v) = k v for some k ∈ [0, 1). In this case

p∗(v) = 1
2−k v. We also focus, for simplicity, in the case where the seller is fully patient; i.e., rs = 0.

In order to apply calculus of variations, we assume equation (8) holds in any interior time interval

(t1, t2). Hence, the objective function of the seller in this interval is

∫ t2

t1

(pt − c(vt)) v̇t dt =
∫ t2

t1

(
pt − k (pt − r−1

b ṗt)
)
( ṗt − r−1

b p̈t)︸ ︷︷ ︸
≡L(pt ,ṗt ,p̈t)

dt .

Standard calculus of variations requires that the Euler–Lagrange equation holds:

0 =
∂L
∂pt
− d

dt
∂L
∂ ṗt

+
d2

dt2
∂L
∂ p̈t

= −2 p̈t

rb
.

That is, the price is a linear function time. The seller’s problem is then bound to find the optimal

values for the prices at dates 0 and T, denoted p0 and pT , respectively. Equation (8) dictates that

v(p) ≡ p− pT−p0
rb T , and hence the seller chooses p0 and pT to maximize

(1− v(p0)) p0 + (v(p0)− v(pT))
pT+p0

2 + (v(pT)− pT) pT − k
2 (1− p2

T) .

There is a unique pair {pc
0, pc

T} maximizing the previous expression. We can use these values to obtain

the price the committed seller charges:

pc
t ≡

2− k + (1− k) rb (T − t)
2− k + (1− k) rb T

.

From equations (7) and (8) we have that, in the absence of seller’s commitment, the equilibrium price

is pnc
t = 1

2−k e−rb (1−k) t. Figure 5 depicts the price and upper valuation paths for the commitment and

no-commitment cases for k = 0 (private values case) and k = 1
2 (interdependent values case).

There are three observations worth mentioning. First, since the seller is fully patient, her equilibrium

payoff is equal to the static monopolistic payoff Π∗(v0). The equilibrium price, nevertheless, decreases

over time. Hence, even though the seller price-discriminates both when she can and when she can not

commit, she fails to benefit from such price discrimination when she does not have commitment power.

Second, in line with what occurs in the non-commitment case, the price at the deadline coincides with

the static monopolistic price for the remaining buyer types. Hence, the seller’s commitment problem

does not arise from the inability to commit not to lower the price at the very end (and using then a

mechanism in each period and is more patient than the buyer. They obtain significant differences between selling

and renting mechanisms.
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Figure 5: Price and upper valuation in the commitment (gray lines) and non-commitment (black lines)
solutions, for F uniform on [0, 1], rs = 0, rb = 1, T = 3, and c(v)= k v. For all cases, the only trade burst
occurs at the deadline. As expected, in the non-commitment case, there is a higher trade probability and
a lower trade delay in comparison to the commitment case (i.e., vnc

t < vc
t for all t > 0). Also, there is a

higher probability of trade and less trade delay in the private values case.

backward induction argument), but from the inability not to lower the price before. Finally, in the

commitment solution, every valuation of the buyer trades at a later date (or not at all) compared with

the non-commitment solution. Hence, opposite to the case where the seller is more impatient than the

buyer (where trade occurs immediately when the seller has commitment power), giving commitment

power to a patient seller not only decreases the probability of trade, but also increases the trade delay.

4.5 Time-dependent discount rates

In this section we study the case where the cost of bargaining is time-dependent. In practice, increasing

discount rates may correspond to an increasing probability of exogenous breakdown, a stochastic value

decline (see Hart, 1989), or changes in the idyosincratic interest rate.

We now consider the case where the discount rates of the seller and the receiver are respectively

given by two bounded functions rs, rb : [0, T] → R++. Then, we now analyze the same model as in

Section 2, the only difference being that if transaction occurs at time t at price pt, the payoffs or the

seller and the buyer are, respectively,

e−
∫ t

0 rs(t)dt (pt − c(v)) and e−
∫ t

0 rb(t)dt (v− pt) .

Now, Assumption 2 is replaced by requiring that, for any v∈ (0, v0] and t, c(v)≤ rb(t)
rs(t)

v.

It is not difficult to see that all results in Sections 2.1 and 3.1 still hold (changing equation (5)

accordingly). This can be best seen by normalizing the time unit so that the seller has a constant discount

factor, for example equal to 1. Then, most arguments in the proofs of the results follow immediately. In

this normalized model, equation (7) holds with rs = 1. The normalized, time-dependent discount rate

for the buyer, r̃b(t), modulates the speed at which the price changes through equation (8).
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Consider first the case where rs(t) and rb(t) increase over time, but rb(t)/rs(t) is constant and equal

to κ, as in Hart (1989).14 The equilibrium can be found by first defining r̂s ≡
∫ T

0 rs(t)dt/T. Let p̂t be

on-path equilibrium price for the model with seller’s discount rate r̂s, buyer’s discount rate κ r̂s, and

time horizon T. The price in the model with time-dependent discount rates is then given by:

pt = p̂t̂(t) , where t̂(t) ≡ r̂−1
s

∫ t

0
rs(t)dt .

Since rs(·) is increasing, t̂(·) is convex. Hence, pt is an “accelerated” version of the price in an ana-

logous model with constant discount rates: as delay becomes more costly, the probability of agreement

increases. The payoffs of the seller and the buyer coincide with their payoffs in the normalized model.

To gain further intuition, consider the private-values case and general rs(·) and rb(·). We can then

differentiate pt = p(t, vt) using equation (7), and we obtain

ṗt = e−
∫ T

t rs(t′)dt′ (rs(t) p∗(vt)︸ ︷︷ ︸
(∗)

+ p∗′(vt) v̇t︸ ︷︷ ︸
(∗∗)

) (11)

If the value of rs(·) becomes larger for a given interval of time while rb(·) remains roughly the same,

the price p(t, vt) cannot decrease much faster in this interval (by equation (8)). Given that the term (∗)

in equation (11) is larger, the term (∗∗) has to be more negative, and the seller screens the buyer faster.

Conversely, if the value of rb(·) increases for a given interval of time while rs(·) remains roughly the

same, the price decreases fast in this interval (by equation (8)). Hence, the term (∗) in equation (11) does

not change much, and so the term (∗∗) becomes more negative; as a result, the buyer is screened faster.

Summarizing, while both periods of large seller discounting and periods of large buyer discounting

translate into faster buyer screening, only periods of large buyer discounting translate into faster price

decline.

5 Conclusions

Delay and failure in reaching an agreement are commonly observed in real-life bargaining. Gaining

understanding of the outcome of negotiations requires determining the role of different factors, such as

the cost of bargaining, the gains from trade, or the deadlines that govern the bargaining process.

The tractability of our model permits characterizing how different factors affect the outcome of

negotiations with private information. While some of our results validate standard intuitions, some

others turn out to be less straightforward. Our analysis identifies the conditions on the gains from trade

14Hart (1989) studies a two-type model in discrete time where, in the period before a deadline, the probability of

decline of the value significantly increases. He finds that most trade occurs in the first and the last periods.
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that determine the qualitative effects that changes in delay costs have on the trade outcome. These

effects depend on whether adverse selection is strong or not; that is, on whether the cost of supplying

high-cost buyers is above the static monopolistic price or not.

When adverse selection is not strong, the buyer is better off when his delay cost is higher. Intuitively,

a higher buyer interest rate implies that the buyer is less willing to reject each given price offer, lowering

the endogenous valuation conditional on having rejected the previous offers. This induces the seller to

decrease prices faster. When the horizon is finite, there is an additional effect: the seller’s commitment

problem is more severe at earlier dates. The additional effect accelerates the price decline further,

implying that the buyer is better off even though his delay cost is higher.

When adverse selection is strong, the seller’s payoff from initial sales is negative. In equilibrium,

initial losses are compensated by more profitable sales in later dates. When the seller faces a higher

interest rate, she is less willing to intertemporally trade-off losses and gains; hence, a more impatient

seller charges higher initial prices and delays trade. A buyer with a high valuation is then worse off

when the seller is more impatient, while a buyer with a low valuation benefits from the fast price decline

in later dates. A similar intuition applies when the deadline becomes longer: the seller’s increased

commitment problem makes sales in later dates less profitable, inducing her to charge higher initial

prices to avoid losses.

Future research can be devoted to extend our results beyond some of our assumptions. For example,

as we argue in Section 3.3, our constructed equilibrium fails to be an equilibrium when the seller is very

impatient and adverse selection is strong. In this case, there may be trade impasses; that is, intervals

of time without trade. Similarly, the analysis could be extended to the gap case, where the buyer

valuation is bounded away from 0.15 This could result in equilibria where agreement is reached before

the deadline for sure. Nevertheless, note that our assumptions on the distribution permit approximating

the gap case through distributions with assigning increasingly lower probability to lower valuations.

15In discrete time, the finite horizon plays a similar role as the gap. In particular, the folk theorem in Ausubel and

Deneckere (1989) for the no-gap case fails when the horizon is finite, as one can use backward induction from the

last period with trade.
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A Proofs of the results

A.1 Proofs of results in Section 2

Proof of Lemma 2.1

Proof. The proof follows the standard argument. Fix some PBE (P, a, F) and history pt. Take two valu-

ations v > v′ and assume, for the sake of contradiction, that tv > tv′ (we omit ther explicit dependence

on the strategy profile and the history). Note that the optimality of the buyer’s strategy requires that

pv < pv′<v′. Then, we have

exp
(
−rb tv) (v−v′) = exp

(
−rb tv) (v−pv)− exp

(
−rb tv) (v′−pv)

≥ exp
(
−rb tv′) (v−pv′)− exp

(
−rb tv′) (v′−pv′)

= exp
(
−rb tv′) (v−v′) ,

which contradicts that tv > tv′ . The inequality holds because the v-buyer is (weakly) worse off following

the v′-buyer’s equilibrium strategy and the v′-buyer is (weakly) better off following his equilibrium

strategy.

A.2 Proofs of results in Section 3

Proof of Proposition 3.1

Proof. We begin the proof with an auxiliary result:

Lemma A.1. Let pt and p̂t be such that v(pt) < v( p̂t). Then

Π(t, v(pt)) ≥ 1
F(v(pt))

∫ v

0
e−rs (tv( p̂t ;P,a)−t) (pv( p̂t; P, a)− c(v)

)
F(dv) . (12)

Proof. Let P̂ be a seller’s strategy defined by P̂(pt′) ≡ P(Pt′( p̂t)) for all pt′ . Intuitively, for each t′,

strategy P̂ requires the seller to do what strategy P specifies after history Pt′( p̂t). Then, from the second

condition in Definition 2.2, we have the seller’s payoff from using strategy P̂ after history pt coincides

with the right-hand side of equation (12). Hence, the seller’s payoff at state (t, v(pt)) can not be lower

than the right-hand side of equation (12)

(Proof of Proposition 3.1 continues.)

The proof of Lemma A.1 uses a mimicking argument. The seller at state (t, v) can imitate the

continuation strategy after state (t, v′) with v′ > v. By doing this, the seller’s payoff from buyer types

below v coincides with the one she obtains from these types after state (t, v′).
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Fix an equilibrium and history pt1 , for some t1 ∈ [0, T). Assume, for the sake of contradiction, that

there is t2 > t1 satisfying that vt1 = vt−2
> 0 (as noted before, the explicit dependence on the history pt1

is omitted).16 We first observe that it must be that vT < vt1 , since vT− ≤ vt−2
(by the skimming property)

and vT = p∗(vT−). It is convenient to pick t2 to be the supremum among the times in (t1, T] satisfying

that vt−2
= vt1 . We consider two separate cases:

Case 1: There is a “burst” of trade at time t2. Assume first vt2 < vt−2
; that is, there is a positive

probability of trade at time t2 (at price Pt2 ≡ Pt2(pt1)). Fix some t∈ (t1, t2) and some ε>0, and consider

the following deviation by the seller at time t: offer price

p̂t ≡ (1− e−rb (t2−t)) (vt1−ε) + e−rb (t2−t) Pt2 (13)

at date t, unacceptable prices in (t, t2), and continue with the equilibrium strategy P(pt1) from date t2

on (that is, “as if” she did not deviate at time t). Note that the (vt1−ε)-buyer is indifferent between

accepting p̂t at time t and accepting Pt2 at time t2. Hence, for all v ∈ (vt1−ε, vt1) the v-buyer obtains

a strictly bigger payoff from accepting p̂t at time t than from accepting Pt2 at time t2. Let v̂t denote

v(Pt−(pt1), p̂t).

There are two possibilities. The first is that there is no trade at time t when p̂t is offered; that is,

v̂t =vt1 . Then, by the Markov property, the buyer believes that the seller’s continuation strategy is such

that there is no trade until t2, where the price is Pt2 . This, nevertheless, leads to a contradiction, since

as we observed before, there is a positive mass of buyer’s valuations such that the buyer strictly prefers

accepting p̂t at t to accepting Pt2 at t2. The second possibility is that there is a positive probability of

trade at date t when p̂t is offered; that is, v̂t < vt1 . By the argument in the proof of Lemma A.1, the seller

obtains the same payoff from all types v < v̂t under the deviation than under the equilibrium strategy

(given that, under our deviation, her continuation strategy coincides with the continuation strategy if

she did not deviate). The increase in the seller’s payoff from the buyer when his valuation is in [v̂t, vt1 ]

is given by

payoff when p̂t is offered︷ ︸︸ ︷
p̂t −E[c(ṽ)|ṽ∈ [v̂t, vt1 ]]−

equilibrium payoff︷ ︸︸ ︷
e−rs (t2−t) (Pt2 −E[c(ṽ)|ṽ∈ [v̂t, vt1 ]]) .

Using equation (13) we have that, as t2 − t→ 0, the previous expression can be written as:

(
(vt1−ε−Pt2)− rs (E[c(ṽ)|ṽ∈ [v̂t, vt1 ]]− Pt2)︸ ︷︷ ︸

(∗)

)
(t2−t) + O((t2−t)2) .

Note that, since c(·) is increasing, E[c(ṽ)|ṽ ∈ [v̂t, vt1 ]] ≤ c(vt1). Note also that the term (∗) is linear in

16Note that, for each t1, there exists t2 > t1 such that vt1 = vt−2
if and only if there exists t′2 > t2 such that vt1 = vt′2 .
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Pt2 , larger than rs (vt1−c(vt1))− rb ε when Pt2 = vt1 , and larger than rb
(
vt1−

rs
rb

c(vt1)−ε
)

when Pt2 = 0.

Hence, using that vt1 > c(vt1) and Assumption 2, we have that (∗) is postitive if ε is small enough. We

then conclude that there exists a profitable deviation for the seller, a contradiction.

Case 2: There is no “burst” of trade at time t2. Assume now vt−2
=vt2 . The logic for this case is similar

for Case 1, but the argument slightly more involving. First note that, by the observation above, it must

be that t2 < T. Pick again some t ∈ (t1, t2) and now let p̃t be such that the (vt2−ε)-buyer is indifferent

between accepting p̃t at time t or pvt2−ε at time tvt2−ε. Noticing that, if ε is small enough, tvt2−ε is close

to t2 (by the definition of t2), the same argument as in Case 1 goes through.

Proof of Proposition 3.2

Proof. The proof is divided into three lemmas. Lemma A.2 sets an upper bound on the seller’s payoff.

Lemma A.3 establishes a lower and an upper bound on the seller’s payoff in terms of the continuation

payoffs at lower threshold valuations. Lemma A.4 establishes the continuity of p(t, ·) for all t. We finally

argue that these lemmas imply the result stated in Proposition 3.2.

We first present an auxiliary result. The result establishes that, after any t-history, the seller’s payoff

is no higher than tha from selling to higher buyer types at the price at time t, while selling at the same

time and prices to the lower buyer types. The result is intuitive, as the seller sells earlier and at a higher

price to higher types. Nevertheless, the fact that the seller incurs the cost of selling to the higher types

at an earlier time makes the result not trivial.

Lemma A.2. Fix some state (t, v). Then, for all v′≤v, we have

Π(t, v) ≤ F(v)−F(v′)
F(v)

(
p(t, v)−E[c(ṽ)|ṽ∈ [v′, v]]

)
+ F(v′)

F(v)

∫ v′

0
e−rs (tv−t) πtv(t, v) F(dv) . (14)

Proof. To prove the result, we show that selling to each of the types v ∈ (v′, v) at time t at price p(t, v)

gives the seller a payoff which is larger than selling to them at time tv(t, v) at price ptv(t, v). By the

optimality of the buyer’s strategy, it must be that

v− p(t, v) ≤ e−rb (tv(t,v)−t) (v− ptv(t, v)) .

Then, from the previous inequality, we have that the payoff the seller obtains from selling to the buyer

with valuation v at time t at price p(t, v) —which is equal to p(t, v)−c(v)— is no smaller than

e−rs (tv(t,v)−t) (ptv(t, v)− c(v))

+ (e−rb (tv(t,v)−t) − e−rs (tv(t,v)−t)) p(t, v) + (1− e−rb (tv(t,v)−t)) v− (1− e−rs (tv(t,v)−t)) c(v)︸ ︷︷ ︸
(∗)

.
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It is only left to prove that the term (∗) is bigger than 0. Note that (∗) is linear in p(t, v), and it is equal

to (1− e−rs (tv(t,v)−t) (v− c(v))>0 when p(t, v) = 0. When p(t, v) = v, the term (∗) is equal to

g(t̂) ≡ (1− e−rb t̂) v− (1− e−rs t̂) c(v)

for t̂ ≡ tv(t, v)− t. Note that g(0) = 0 and limt̂→∞ g(t̂) = v−c(v) > 0. Simple analysis shows that g′(·)

is single peaked, limt̂→∞ g′(t̂) = 0, and, by Assumption 2, we have g′(0) > 0. Hence, the term (∗) is

also positive when p(t, v) = v. Henceforth, the term (∗) is positive for all p(t, v) ∈ [0, v].

(Proof of Proposition 3.2 continues.)

We now establish bounds on the seller’s payoff, both from below and from above:

Lemma A.3. For any t, v, and v′, with v > v′,

F(v)−F(v′)
F(v)

(
p(t, v′)−E[c(ṽ)|ṽ∈ [v′, v]]

)
+ F(v′)

F(v) Π(t, v′)

≤ Π(t, v) ≤ F(v)−F(v′)
F(v)

(
p(t, v)−E[c(ṽ)|ṽ∈ [v′, v]]

)
+ F(v′)

F(v) Π(t, v′) . (15)

Proof. The first inequality follows from the following observation. The seller has the option to “replicate”

the continuation strategy she uses in state (t, v′) when the state is, instead, (t, v). By the same argument

as in the proof of Lemma A.1, the seller obtains a payoff equal to the expression on left-hand side of the

first inequality in (15) by doing so.

To prove the second inequality, recall Lemma A.2. Using the optimality of the seller’s continuation

strategy at (tv′ , v′), we have that the right-hand side of expression (14) is no larger than

F(v)−F(v′)
F(v)

(
p(t, v)−E[c(ṽ)|ṽ∈ [v′, v]]

)
+ F(v′)

F(v) e−rs (tv′−t) Π(tv′ , v′) , (16)

and hence Π(t, v) is smaller than expression (16). Note finally that, because the seller has the option

of making unacceptable offers on [t, tv′), we have e−rs (tv′−t) Π(tv′ , v′) ≤ Π(t, v′), and hence the second

inequality in expression (15) holds.

(Proof of Proposition 3.2 continues.)

The following result establishes that p(t, ·) is increasing and continuous:

Lemma A.4. For all t, p(t, ·) is increasing and continuous.

Proof. Proof that p(t, ·) is increasing. It follows directly from equation (15).

Proof that p(t, ·) is continuous. The proof is similar to the proof of Proposition 3.1. We prove that p(t, ·)

is left-continuous (right-continuity is proven analogously). We do this by assuming, for the sake of
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contradiction, that p(t, ·) is not left continuous at some v; that is, there is a strictly increasing sequence

(vn)n converging to v such that p(t, vn) → p∞ 6= p(t, v). Since p(t, ·) is increasing, it must be that

p∞ < p(t, v). Let pt be some history with v(pt)=v, and we let vt′ denote vt′(pt). Also, for for each n, let

pt
n be a history with v(pt

n)= vn (note they exist, see Footnote 7). Let finally tn denote tvn(pt), and note

that (tn)n (weakly) decreases toward t by Proposition 3.1.

We first prove that tn > t for all n. To see this, assume by contradiction that tn−1 = t for some n,

indicating that vt+ ≤ vn−1. This implies that vt+ < vn. Consider the following continuation price path

p̂(t,T] defined by

p̂t′ =

Pt′(pt) if t′∈ (t, t+ε],

Pt′(pt
n+1) if t′∈ (t+ε, T],

for some ε>0. As ε shrinks towards 0, the seller’s payoff from the previous continuation play at history

pt
n converges to

F(vn)−F(vt+ (pt))

F(vn)

(
p(t, v)−E[c(ṽ)|ṽ∈ [vt+(pt), vn]]

)
+

F(vt+ (pt))

F(vn)

∫ vt+ (pt)

0
e−rs (tv(pt

n ;P,a)−t) (pv(pt
n; P, a)−c(v)) F(dv) .

Given that p(t, v)> p(t, vn) and F(vn)−F(vt+(pt))>0, Lemma A.2 implies that the previous expression

is strictly larger than Π(t, vn). Since the seller has a profitable deviation, we reach a contradiction, and

hence it must be that tn > t for all n.

Take some price p̂ ∈ (p∞, p(t, v)). For each t′> t, let v̂t′ ≡ v(pt, Pt′−(pt), p̂) be the upper valuation at

time t′ if the seller charges p̂ at time t′. Consider a deviation of the seller after pt, consisting in following

the continuation path P(t,tn)(pt) on (t, tn), then charging p̂ at time tn, and then continuing to follow the

equilibrium strategy after tn. Note that, since p(t′, vt′) is continuous in t′ on (t, tn) (by the optimality of

the buyer’s strategy), we have that p(t′, vt′)> p̂ if n is big enough. There are two cases:

1. In the first case, there is no trade at time tn when the seller offers p̂ at time tn; that is, v̂tn =vtn . In

this case, the continuation play after tn is unchanged. Nevertheless, this implies that an interval

of buyer’s types [v, vtn ], for some v < vtn , are willing to buy at prices larger than p̂ at time tn or

later (recall that p(tn, vtn)> p̂), a contradiction.

2. In the second case, trade occurs with positive probability at time tn when the seller offers p̂; that

is, v̂tn <vtn . Now, there are two possibilities:

(a) The first possibility is that v̂tn ≤ vtn(pt
n), but this implies that

p(tn, v̂tn)= p̂> p∞ > p(t, vn)> ptn(t, vn)= p(tn, vtn(pt
n)) ;
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this contradicts that p(tn, ·) is increasing.

(b) The second possibility is that v̂tn > vtn(pt
n). Now, consider the following deviation of the

seller on the continuation strategy at history pt
n for n is large enough: the seller charges

unacceptable prices in (t, tn), then charges p̂ at time tn, and then offers Pt′′(t, vn) for all

t′′ > tn. By the argument in the proof of Lemma A.1, using this strategy, the seller obtains

the same payoff for all valuations in [0, v̂tn ]. Also, since the seller sells to the buyer when his

valuation [v̂tn , vn] at time tn at price p̂, the deviation is profitable (note that when n is large,

tn is close to t, but pt′(t, vn)< p∞ < p̂ for all t′∈ (t, tn)), which is again a contradiction.

(Proof of Proposition 3.2 continues.)

Define Π̂(t, v) ≡ F(v)Π(t, v). From the first inequality in equation (A.4) and the continuity of π(t, ·)

(which follows from Lemma A.4 and the continuity of c(·)) we have that

lim inf
v′↗v

Π̂(t,v)−Π̂(t,v′)
v−v′ ≥ π(t, v) f (v) and lim inf

v↘v′
Π̂(t,v)−Π̂(t,v′)

v−v′ ≥ π(t, v′) f (v′) . (17)

Using the second inequality in equation (A.4) and, again, the continuity of p(t, ·) we have that

lim sup
v′↗v

Π̂(t,v)−Π̂(t,v′)
v−v′ ≤ π(t, v) f (v) and lim sup

v↘v′

Π̂(v)−Π̂(v′)
v−v′ ≤ π(t, v′) f (v′) . (18)

The four inequalities in expressions (17) and (18), together with the continuity of p(t, ·) established

in Lemma A.4, imply that Π(t, ·) is differentiable, and the derivative is equal to

d
dv Π̂(t, v) = π(t, v) f (v) . (19)

Integrating the previous expression gives equation (4).

Proof of Proposition 3.3

Proof. Fix an equilibrium and history pt. We write

Π(t, vt) =
1

F(vt)

∫
[vt ,vt+ε)

e−rs (tv−t) πtv(t, vt) F(dv) + F(vt+ε)
F(vt)

e−rs ε Π(t+ε, vt+ε) ,

where πtv(t, vt) ≡ ptv(t, vt)− c(v). Using equation (4), we have

0 =
∫
[vt ,vt+ε)

(
π(t, v)− e−rs (tv−t) πtv(t, v)

)
F(dv)︸ ︷︷ ︸

(∗)

+F(vt+ε)
(
e−rs ε Π(t+ε, vt+ε)−Π(t, vt+ε)

)
.
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Assume first vt is right-differentiable at t (note that, given that vt′ is decreasing in time, it is differentiable

for almost all times t′). In this case the term (∗) in the previous expression tends to 0 faster than ε as

ε → 0. Hence, in this case, the function t 7→ e−rs t Π(t, v) (for a fixed v) is continuous and differentiable

almost everywhere, with a derivative equal to 0 whenever it is differentiable. It then follows that it is

derivative is equal to 0. This proves that Π(t, v) = e−(T−t) rs Π∗(v) as desired.

Proof of Theorem 3.1

Proof. We first argue that the strategies of the seller and the buyer are mutual best responses. Indeed,

equation (8) guarantees that the buyer’s strategy is optimal. To see that the seller does not have the

incentive to deviate, fix some state (t, v) with t < T and v > 0 and a history pt such that v(pt) = v.

Assume that the seller deviates at history pt to some strategy P̂. The continuation payoff from the

deviation is

∫ v

0
e−rs (tv(pt ;P̂,a)−t) (pv(pt; P̂, a)− c(v)) F(dv) .

By equation (7), the price paid by the v-buyer is at most

(
1− e−rs (T−tv(pt ;P̂,a))) c(v) + e−rs (T−tv(pt ;P̂,a)) p∗(v) .

Hence, the payoff the seller obtains from the deviation is no larger than

∫ v

0
e−rs (T−t) (p∗(v)−c(v)) F(dv) .

By Corollary 3.1 (which is proven independently of Theorem 3.1), the payoff the seller obtains from the

deviation is no larger than Π(t, v).

We proceed by showing that vt solving the differential equation (9) (with the initial condition that vt

at time 0 is equal to the parameter v0) is decreasing. To verify this, we apply some algebra to equation

(9) and obtain that

v̇t = −
rb (vt − c(vt)) + e−rs (T−t) (rs − rb) (p∗(vt)− c(vt))

(1− e−rs (T−t)) c′(vt) + e−rs (T−t) p∗′(vt)
.

From Assumption 1 we have that p∗(vt) is increasing. Since vt > c(vt) and e−rs (T−t) ∈ (0, 1], the

right-hand side of the previous expression is not negative for all t and vt if and only if

0 < rb (vt − c(vt)) + (rs − rb) (p∗(vt)− c(vt)) . (20)

This is equivalent to Assumption 3.
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The fact that Assumption 2 implies Assumption 3 follows from the fact that p∗(vt) ∈ (0, vt) and

that the right-hand side of the expression (20) is linear in p∗(vt), equal to rs (vt − c(vt)) > 0 when

p∗(vt) = vt, and equal to rb
(
vt − rs

rb
c(vt)

)
(which is positive by Assumption 2) when p∗(vt) = 0.

The uniqueness of the equilibrium follows from the arguments in Section 3.2, that clarify why the

strategy profile described in statement of Theorem 3.1 is the unique candidate to be an equilibrium.

Proof of Corollary 3.1

Proof. Using the envelope theorem, we have

d
dv0

Π∗(v0) =
d

dv0

( ∫ v0

p∗(v0)
(p∗(v0)−c(v)) F(dv)

)
= f (v0) (p∗(v0)−c(v0)) .

It is then clear that the statement of the Corollary holds.

Proof of Corollary 3.2

Proof. It follows from the proof of Theorem 3.1.

A.3 Proofs of results in Section 4

Proof of Proposition 4.1

Proof. We first note that a change in rb can be reformulated as a change in the unit used to measure

time. To see this, fix some λ> 1. The model where the discount rate of the buyer is λ rb > rb, while all

other parameters are the same, is referred to as the λ-model. The model where the discount rate of the

seller is rλ
s ≡ rs/λ< rs and the time horizon is Tλ≡λ T > T, while all other parameters are the same, is

referred to as the normalized λ-model. Using (pλ
t , vλ

t ) to denote the equilibrium outcome of the λ-model,

it is easy to see that the normalized λ-model has a unique equilibrium outcome, denoted (p∗λt , v∗λt ), and

that this equilibrium outcome satisfies (p∗λt , v∗λt ) = (pλ
t/λ, vλ

t/λ). As a result, both the seller and each

valuation of the buyer obtain the same payoff in the λ-model and in the normalized λ-model.

Note that the product rλ
s Tλ is independent of λ. From equations (7) and (8) we see that both p∗λ0

and ṗ∗λ0 are independent of λ as well. Furthermore, using equation (9), we have that

d
dλ p̈∗λ0 = −rb

d
dλ v̇∗λ0 = −rb

rλ
s (p∗(v0)−c(v0))

λ2 ((erλ
s Tλ−1) c′(v0)−p∗′(v0))

< 0 ,

where we used that both c and p∗ are increasing and also the assumption that adverse selection is not

strong. Hence, since λ > 1, the price decreases faster around t = 0 in the normalized λ-model than in

our base model. Finally, note the following. Assume that pt = p∗λt for some time t∈ (0, T). In this case,
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from equation (7), we have that

(
1−e−rs (T−t)) c(vt

)
+ e−rs (T−t) p∗(vt) =

(
1−e−rλ

s (Tλ−t)) c(v∗λt ) + e−rλ
s (Tλ−t) p∗(v∗λt ) . (21)

Since e−rs (T−t) > e−rλ
s (Tλ−t), both c and p∗ are increasing, and since adverse selection is not strong, we

have that vt < v∗λt .17 Hence, from equation (8), it follows that ṗt > ṗ∗λt . Nevertheless, standard ODE

analysis implies that pt and p∗λt can only cross once, and such crossing time is t = 0.18 As a result,

pt > p∗λt for all t ∈ (0, T]. Since the buyer’s discount rate is the same in the normalized λ-model and

in our base model (equal to rb), the buyer is better off in the normalized λ-model independently of his

valuation, and therefore he is also better off in the λ-model than in our base model. In other words, the

buyer is better off when he is more impatient.

Proof of Proposition 4.2

Proof. The proof parallels the arguments in the proof of Proposition 4.1. Fix some λ>1. We now define

the λ-model as the model where the discount factor of the seller is rλ
s ≡ rs/λ < rs, while the rest of the

parameters remain the same. We use (pλ
t , vλ

t ) to denote the equilibrium outcome of the λ-model. Note

that, because adverse selection is not strong, p0 < pλ
0 . Assume, by contradiction, there is some t∈ (0, T)

such that pλ
t = pt. Equation (21) now holds with Tλ = T. Since e−rs (T−t) < e−rλ

s (T−t) (note that this

inequality is reversed in the proof of Proposition 4.1), an argument analogous to the one in the proof

of Proposition 4.1 (see footnote 17) implies that now vt > vλ
t , and hence ṗt < ṗλ

t . As in the proof of

Proposition 4.1, this leads a contradiction, and so it pt < pλ
t for all t ∈ [0, T). Hence, all prices are higher

in the λ-model than in our base model, and therefore the buyer is worse off when the seller is more

patient.

Proof of Proposition 4.3

Proof. The proof parallels the arguments in the proof of Propositions 4.1 and 4.2. Fix some λ > 1. We

now define the λ-model as the model where the discount factor of the seller is Tλ ≡ T λ > T, while

the rest of the parameters remain the same. We use (pλ
t , vλ

t ) to denote the equilibrium outcome of the

λ-model. Note that, because adverse selection is not strong, p0 > pλ
0 . Assume, by contradiction, there

17Note that, since e−rs (T−t) > e−rλ
s (Tλ−t), the weight on the static monopolistic price is larger on the left-hand side

of equation (21). Since the static monopolistic price is larger than the cost (by no-strong adverse selection), and

both are increasing functions, the threshold type of the right-hand side should be larger.

18Intuitively, if pt = p∗λt for some t> 0, we have that p̃∗λt decreases faster, and hence p∗λt crosses pt “from above.”

Nevertheless, we also showed that pλ
t is smaller than p∗λt for low values of t. This implies that pt and pλ

t cross (at

most) once, that is, at t = 0.
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is some t∈ (0, T) such that pλ
t = pt. Equation (21) now holds with rλ

s = rs. Since e−rs (T−t) > e−rs (Tλ−t)

(note that this inequality is now the same as in the proof of Proposition 4.1), an argument analogous to

the one in the proof of Proposition 4.1 (see Footnote 17) implies that vt < vλ
t , and hence ṗt > ṗλ

t . As in

the proof of Proposition 4.1, this leads a contradiction, and hence pt > pλ
t for all t ∈ [0, T). Hence, all

prices are lower in the λ-model than in our base model, and therefore the buyer is better off when the

time horizon is longer.
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