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Abstract
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ingness to impose losses on (or “bail in”) their investors. The government has limited
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equilibrium, bail-ins are too small and bailouts are too large. Some banks may also face
a run by informed investors, creating further distortions and leading to larger bailouts.
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1 Introduction

In periods of crisis, banks and other financial institutions su↵er losses that are eventually

borne in some combination by their own investors and creditors and, possibly, by the public

sector in the form of a bailout. How these losses are allocated between private agents and the

public sector has important implications for incentives and behavior in normal times as well

as for the allocation of resources in society. Following the global financial crisis of 2008 and

the subsequent European debt crisis, a broad consensus emerged that too many of the losses

associated with these events fell on the public sector, that is, bailouts were too frequent and

too large. This perception led policy makers to draft rules requiring financial institutions

to impose more losses on (that is, to “bail in”) their investors/creditors in future crises. It

remains to be seen how e↵ective these mechanisms will be in practice. Even at a conceptual

level, however, it is not well understood how losses should be allocated in a crisis, nor what

types of bail-in policies are likely to be most e↵ective.

We study the interaction between bail-ins and bailouts with a particular focus on what

happens during the early stages of a crisis. Our model builds on the classic framework

of Diamond and Dybvig (1983), in which investors facing idiosyncratic liquidity risk pool

their resources in banks.1 Bank assets are risky in our model and, in the event of a crisis,

losses are heterogeneous across banks. At the onset of a crisis, some investors have private

information about the size of their bank’s loss and can withdraw funds before this information

becomes public. Banks have the ability to bail in these investors by paying them less than

in normal times. In practice, this bail-in could represent a range of actions that preserve

resources within the bank, including lowering dividend payments, restricting withdrawals

and/or imposing withdrawal fees. We study banks’ incentives in making these decisions and

ask when regulating these actions can improve welfare.

Our model provides a framework for evaluating policies like the reforms to money market

mutual funds that were adopted in the U.S. in 2014.2 Under the new rules, some funds are

permitted to temporarily limit redemptions and impose withdrawal fees – a type of bail-in

– during periods of financial stress. A fund is directed to take these actions if doing so

is in the best interests of its investors. This policy raises interesting questions: What are

the best interests of an institution’s investors in such a situation? Are these rules likely to

achieve desirable outcomes? Another example is the debate over whether regulators should

1While we use the word bank throughout the paper, our analysis also applies to intermediation arrangements
outside of commercial banks that perform maturity or liquidity transformation. Yorulmazer (2014) discusses
several such arrangements that encountered problems during the financial crisis of 2008. See also Chen et al.
(2010) for an analysis of open-end mutual funds, Schmidt et al. (2016) on money market mutual funds, and
Goldstein et al. (2017) on corporate bond funds.
2See Ennis (2012) for a discussion of the issues involved in reforming money market mutual funds.
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restrict dividend payments by banks during the economic crisis caused by the Covid-19

pandemic. The European Central Bank recommended on March 27, 2020, that banks “refrain

from making dividend distributions and performing share buy-backs aimed at remunerating

shareholders” during this period.3 In the U.S., the Federal Reserve moved on June 25 to

prohibit share repurchases and to cap dividend payments by large banks in the U.S. When

is it desirable to impose restrictions on the payments banks make to their investors? What

types of restrictions are most e↵ective? We develop a model to address these questions.

The e�cient allocation of a bank’s losses in our model depends critically on the fiscal

capacity of the public sector. If this fiscal capacity is small, a benevolent planner will

provide no bailouts and will impose all of a bank’s losses on its investors by bailing them in.

When this fiscal capacity is larger, however, the planner will provide bailouts to banks with

su�ciently large losses. In other words, the planner will want the public sector to absorb

some of the “tail risk” in the economy, which implies that a combination of bail-ins and

bailouts is e�cient.

In a decentralized equilibrium, banks’ incentive to bail-in their investors depends on what

bailout policy they expect. The government chooses whether and how to make bailout pay-

ments after banks’ financial conditions become public and some withdrawals have occurred.

It cannot commit to a bailout policy in advance; it will choose the bailout payments, if any,

as a best response to the situation at hand. We show that the anticipation of being bailed out

undermines a bank’s incentive to bail in its investors. Specifically, those banks that receive

bailouts in equilibrium choose bail-ins that are smaller than in the planner’s allocation. In

addition, total bailout payments are larger in equilibrium than in the planner’s allocation.

The distortion in banks’ incentive to bail in their investors can also lead to runs on some

banks. When a bank chooses not to impose a bail-in, it creates a stronger incentive for

investors to withdraw early, before the information about the bank’s losses becomes public.

We show that, in some cases, withdrawing early becomes a dominant strategy and thus

leads to a fundamentals-based run on the bank. Banks recognize this fact in choosing their

bail-in policy and can always prevent a run by imposing a su�ciently large bail-in. In some

cases, however, investors prefer that their bank not impose any bail-in, even though doing

so precipitates a run. In this way, our model identifies a new channel through which bailouts

can increase financial fragility: by giving banks and their investors an incentive to delay the

recognition of losses, which ends up encouraging early withdrawals.

3See “Recommendation of the European Central Bank of 27 March 2020 on dividend distributions during the
COVID-19 pandemic,” O�cial Journal of the European Union, 2020/C 102 I/01. The European Systemic
Risk Board made a similar recommendation on May 27. See Acharya et al. (2016) for a discussion of bank
dividend payments in the 2007-9 financial crisis and a model in which dividend payments create externalities
across banks.
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Given these problems, we ask whether a regulator that only has access to public informa-

tion can improve equilibrium outcomes. The regulator in our model has the ability to restrict

the payments banks make to their investors, which can be interpreted as limiting dividend

payments, imposing withdrawal fees, or writing down the face value of liabilities. Mandating

that all banks bail in their investors by a fixed amount can raise welfare in some situations,

but not in others. The e↵ectiveness of this policy depends critically on the distribution of

losses across banks; when there is more heterogeneity across banks, imposing a common

bail-in is less attractive. We then show how a mandatory minimum bail-in policy can often

do better. Under this policy, banks must bail in their investors by at least the specified

amount, but are allowed to voluntarily impose a larger bail-in. This policy takes advantage

of the fact that mandatory bail-ins improve the incentives of banks facing large losses by

limiting their ability to shift these losses to the public sector. In particular, it leads banks

to internalize more of the costs associated with a run by their investors, which leads some

banks to impose a larger bail-in than the mandated minimum as a way of preventing a run.

In other words, the threat of a run can provide additional discipline on bank behavior when

the bail-in policy is chosen appropriately. We derive the optimal level for the mandatory

minimum and provide conditions under which this policy improves welfare.

The regulator can further leverage the disciplining e↵ect of runs by making the minimum

bail-in optional in the sense that a bank’s bail-in must either be zero or at least the minimum

level. This policy aims to further separate banks by type, allowing those with no losses to

choose zero bail-in while encouraging those with large losses to choose a positive bail-in to

prevent a run. We show that, in some cases, the regulator can choose the minimum amount

so that this policy yields higher welfare than the optimal mandatory bail-in policy. The

optional bail-in policy tends to be more attractive, for example, when there are many banks

with no losses and the fiscal capacity of the public sector is moderate.

Overall, our results demonstrate the value of policies that trigger a system-wide bail-in

based on aggregate financial or economic conditions. Much of the existing policy discussion

has focused on tying bank-specific bail-ins to an idiosyncratic trigger that is observed either

publicly or privately by regulators. For example, contingent-convertible bonds (CoCos) can

be structured to convert from debt to equity when the book value of a bank’s equity falls

below some pre-specified level.4 In our model, the regulator can directly impose the e�cient

bail-ins once it observes the status of each bank. There is, however, a period during which

the regulator knows a problem exists, but does not yet know how badly each bank is a↵ected.

Our results show that a broadly-targeted bail-in mandate during this period can be e↵ective

in reducing future bailouts, maintaining financial stability, and raising welfare.

4See Flannery (2014) for a detailed discussion of CoCos and a review of the relevant literature.
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Related literature. Early discussions of bail-in policy focused on identifying potential

advantages and disadvantages compared to other types of resolution for distressed banks and

on the practical aspects of implementing a bail-in regime. (See, for example, Dewatripont

(2014), Sommer (2014), and Goodhart and Avgouleas (2015).) More recently, a literature

has emerged that studies the incentive e↵ects of bail-ins and the resulting policy tradeo↵s in

formal economic models. Bernard et al. (2017) study a game in which a regulator and banks

negotiate over the allocation of losses. They show banks will accept a bail-in in equilibrium

if, and only if, the regulator’s cost of funds is large enough that they anticipate no bailout.

A similar result appears in our setting: when the fiscal capacity of the government is small

enough, no bailouts occur and all banks choose the e�cient bail-in. When bailouts distort

bail-in incentives, Bernard et al. (2017) focus on how the network structure of interbank

linkages a↵ects the credibility of a no-bailout plan, while we focus on how mandatory bail-in

policies can improve banks’ incentives and choices.

Walther and White (2019) focuses on how bail-ins a↵ect a bank manager’s incentive to

exert an appropriate level of e↵ort. In their setting, the regulator has more information than

a bank’s creditors about the value of its assets. Bailing in creditors improves the manager’s

incentives by increasing her stake, but risks provoking a run if it leads creditors to infer

the bank is in bad shape. Our approach is complementary to theirs in that we focus on

the distortion in investors’ incentives rather than on an agency problem within the bank. In

addition, our assumption that investors have private information captures the fact that some

investors and creditors are typically insiders to the bank. Bank runs also play a di↵erent

role in our analysis. In Walther and White (2019), the threat of a run limits the regulator’s

ability to bail in creditors. In our setting, the threat of a run disciplines bank behavior and

can help the regulator implement better allocations. This insight allows the regulator to

design policies that leverage the disciplining e↵ect of runs to give banks facing large losses

an incentive to bail in their investors.

Colliard and Gromb (2018) study the negotiation between a bank’s shareholders and

its creditors over how the losses will be distributed. The investors in our model represent

both shareholders and creditors; they hold a claim that is a hybrid of debt and equity, as is

common in the models based on Diamond and Dybvig (1983). Our focus is on the division of

losses between the public sector and these investors as a group, rather than between di↵erent

categories of investors. Bolton and Oehmke (2019) study the problem of coordinating bail-

ins in multinational banking corporations and characterize the incentive problems that arise

between national regulators. The public sector in our model is divided between a regulator

and a fiscal authority, but both entities have the same objective of maximizing total welfare.

Our paper also contributes to the literature that aims to evaluate financial stability
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reforms that have been adopted in recent years. For example, Cipriani et al. (2014) study

how the possibility that investors will face future withdrawal restrictions or fees can create

a preemptive run on a money market mutual fund.5 In their setting, informed investors

learn about a bank’s potential losses before the bank itself, which allows a run to occur

before the bank can restrict withdrawals. Our results complement theirs by showing that,

even if the bank could impose a bail-in quickly enough to prevent a run, doing so would

often not be in its investors’ best interests. In this way, both papers cast doubt on the

e↵ectiveness of reforms that aim to promote financial stability by allowing intermediaries to

restrict withdrawals.

Outline. In the next section, we describe the economic environment and define the concepts

of bail-ins and bailouts in this environment. In Section 3, we derive the combination of bail-

ins and bailouts that would be chosen by a benevolent planner, which serves as a useful

benchmark for what follows. In Section 4, we analyze the decision problems faced by banks,

investors and the government and we derive the payo↵s of the bail-in game. In Section 5, we

document the properties of equilibrium in this game, showing that bail-ins are too small and

bailouts are too large, and we derive conditions under which bank runs occur. We introduce

regulation in Section 6 and show how system-wide bail-in policies can raise welfare. We o↵er

some concluding remarks in Section 7.

2 The model

We base our analysis on a version of the Diamond and Dybvig (1983) model expanded to

include fiscal policy conducted by a government with limited commitment, as in Keister

(2016). We introduce private information about the value of banks’ assets into this frame-

work. In this section, we describe the agents, preferences, and technologies that characterize

the environment, and we define bail-ins and bailouts within this environment.

2.1 The environment

There are three time periods, labeled t = 0, 1, 2. There is a single private consumption good

in every period and a public good that can be produced at t = 1.

5Engineer (1989) was the first to show how threat of a future deposit freeze could create a run in an
extended Diamond-Dybvig model. See also Voellmy (2019), which uses a version of Engineer’s model to
derive conditions under which withdrawal restrictions and fees can be e↵ective.

5



Investors. There is a continuum of investors, indexed by i 2 [0, 1] , in each of a measure

one of locations. Investor i in a given location has preferences characterized by

u(ci1 + !ici2) + v(g),

where cit denotes her consumption in period t 2 {1, 2} and g denotes the level of the public

good, which is common to all locations. The random variable !i 2 ⌦ ⌘ {0, 1} is realized

at t = 1 and is privately observed by the investor. If !i = 0, she is impatient and values

consumption only in period 1, whereas if !i = 1, she is patient and values consumption

equally in both periods. Each investor will be impatient with a known probability ⇡ > 0,

and the fraction of impatient investors in each location will also equal ⇡. The functions u

and v are assumed to be smooth, strictly increasing, strictly concave and to satisfy the usual

Inada conditions. We assume the coe�cient of relative risk aversion for u is constant and

strictly greater than unity. Investors are each endowed with one unit of the consumption

good at t = 0.

Banks. Goods can be stored at a gross return of 1 between t = 0 and t = 1 and a gross return

of R > 1 between t = 1 and t = 2. As in Diamond and Dybvig (1983), the idiosyncratic

uncertainty about preference types !i creates an incentive for investors to pool resources to

insure against liquidity risk, that is, against the possibility of being impatient and needing

to consume before the return R is available. There is a banking technology in each location

that holds goods and allows investors to withdraw funds at either t = 1 or t = 2. To simplify

the analysis, we begin with the endowment of investors in each location already deposited

in their location’s banking technology.6

Crises. At t = 0, before any decisions are made, one of two aggregate states is realized. In

one state, which we call normal times, the value of all banks’ assets remains unchanged. In

the other state, which we call a financial crisis, banks experience a loss whose size varies

across locations. Specifically, a fraction (1 � �) of the goods held by a bank in a given

location become worthless, leaving the bank with � units of the good per investor. The

value of � is an idiosyncratic draw from a distribution F on the interval � ⌘ [�, 1], where

� � 0. We assume F is continuous, strictly increasing and di↵erentiable on [�, 1), but may

place positive probability on � = 1. The realized distribution of asset values across locations

6That is, we do not study what Peck and Shell (2003) call the pre-deposit game, in which investors decide
whether or not to pool their resources. Because there is no asymmetry of information between a bank and
its investors in our model, this assumption is without loss of generality.
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is also given by F , which implies that total losses in the economy can be expressed as

Z 1

�

(1� �) dF (�) .

All agents observe the aggregate state and know the distribution F , but the realized value

of � in a given location is initially observed only by the investors in that location.

Bank operations. After � has been realized in each location, investors collectively decide

how much consumption their bank will give to investors who withdraw at t = 1. Each investor

then observes her own preference type and decides in which period she will withdraw. Those

investors who chose to withdraw in period 1 arrive at their bank one at a time, in a randomly-

determined order, and receive the specified payment. Investors who choose to withdraw at

t = 2 receive an even share of the matured value of their bank’s assets. Investors are isolated

from each other during the withdrawal process and no trade can occur among them. As in

Wallace (1988), this assumption prevents re-trading opportunities from undermining banks’

ability to provide liquidity insurance.7

Public goods. There is also a technology for converting units of the private good one-for-

one into units of the public good in period 1. While any agent can operate this technology,

the fact that the set of agents in each location is a negligible fraction of the overall economy

implies that there is no private incentive to provide the public good.

Government. There is a benevolent government that acts in two capacities: as a fiscal

authority and as a regulator. In both capacities, the government’s aim is to maximize the

sum of all investors’ utilities at all times.

The fiscal authority is endowed with ⌧ � 0 units of the good in period 1, where the

parameter ⌧ represents the government’s fiscal capacity. These resources can be used to

provide the public good and potentially to make transfers to banks. We call any such

transfer a bailout. In a financial crisis, after a fraction ⇡ of investors have withdrawn in

each location, the fiscal authority observes both the realized value of � and the remaining

resources in each location and chooses bailout payments.8 The fiscal authority is unable to

commit to a bailout plan in advance; the bailout payments will be chosen as a best response

7See Jacklin (1987), Allen and Gale (2004) and Farhi et al. (2009), among others, for studies of how the
presence of markets at t = 1 limits the amount of risk-sharing that banks provide to depositors.
8The assumption that the fiscal authority observes this information after precisely a fraction ⇡ of investors
have withdrawn is made for simplicity. It is straightforward to introduce an additional parameter to measure
when this information becomes available, as in Keister (2016).
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to the situation at hand. All remaining funds are then used to provide the public good.

The regulator is able to restrict the payments that banks make to withdrawing investors

in period 1. The anticipation of being bailed out may distort investors’ incentives in choosing

these payments, which creates the possibility that this type of regulation may raise welfare.

However, like the fiscal authority, the regulator has limited information; it observes the

realization of � in each location only after a fraction ⇡ of investors have withdrawn. This

lag implies that regulatory policy cannot be fully state-contingent.

2.2 Allocating losses: Bail-ins and bailouts

Our interest is in studying how the losses that occur during a financial crisis are allocated

between bank creditors and the public sector. As a first step, we derive the allocation of

private consumption in normal times, which provides the benchmark from which losses will

be measured.

A reference allocation. In normal times, the per-capita value of the bank’s assets is 1 in

all locations. Suppose all patient investors wait until t = 2 to withdraw from the bank and

there are no bailout payments. Then the e�cient allocation of resources in each location

gives a common amount c1 to each investor who withdraws at t = 1 and a common amount

c2 to each investor who withdraws at t = 2, where these values are chosen to maximize

investors’ expected utility

⇡u (c1) + (1� ⇡) u (c2)

subject to the feasibility constraint

⇡c1 + (1� ⇡)
c2
R

 1. (1)

Let (c⇤1, c
⇤
2) denote the solution to this standard Diamond-Dybvig allocation problem, which

satisfies

1 < c⇤1 < c⇤2 < R.

We consider c⇤1 and c⇤2 to represent the face value of a bank’s liabilities to investors who

choose to withdraw in periods 1 and 2, respectively. To be clear: Banks in our model can

pay withdrawing investors less than these values in the event of a crisis, and they will do so

whenever it is in their investors’ best interests. In this sense, the liabilities defined above are

not contractually binding, and deviating from these payments does not involve any cost or

ine�ciency. The role of the reference amounts (c⇤1, c
⇤
2) is simply to provide a benchmark for

measuring what portion of a bank’s losses are borne by its own investors.
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Bail-ins. In a location where � < 1 in the crisis state, it will not be feasible for a bank

to pay the amounts (c⇤1, c
⇤
2) to its withdrawing investors. In this case, investors will choose

the best feasible allocation of their bank’s resources. This allocation will give a common

amount of consumption c1 (�) to each of the first ⇡ investors who withdraw in period 1. If

these investors receive less than the reference amount c⇤1, we say they have been bailed-in.9

It will be convenient to measure the size of the bail-in as the percentage “haircut” from the

reference allocation, that is, as the solution h (�) to

c1 (�) = (1� h (�)) c⇤1.

In period 2, the bank will divide its matured assets evenly among the remaining investors.

Let ĥ (�) denote the bail-in applied to these investors,10 which satisfies

c2 (�) =
⇣
1� ĥ (�)

⌘
c⇤2.

If a bank has experienced no loss (� = 1), it will not bail in its investors; that is, it will

set h (1) = ĥ (1) = 0. If it does have a loss (� < 1), investors will collectively choose the

bail-ins
⇣
h (�) , ĥ (�)

⌘
to maximize their expected utility, subject to feasibility constraints

and anticipating the actions of the government. We use h and ĥ to denote the profile of

bail-in decisions across all banks.

Bailouts. After a fraction ⇡ of investors have withdrawn from each bank, the fiscal authority

observes the value of � of each bank as well as how many resources the bank has left after

serving these ⇡ withdrawals. It then chooses a bailout payment b (�) � 0 for each bank,

with the remaining funds being used to produce the public good. These choices are made

with the objective of maximizing the sum of all investors’ utilities. Note that the bailout

decisions are made after each bank’s bail-in has already been chosen (and implemented) for

a fraction ⇡ of its investors. The fact that the fiscal authority cannot commit to the bailout

policy before these withdrawals occur plays a critical role in our analysis.

9While some authors apply the term bail-in only to losses imposed on certain types of investors (such as
long-term debt holders) or in certain situations (such as in resolution), we use the term more broadly to
include all losses imposed on a bank’s creditors and investors. Our approach aims to capture, in a unified
way, a variety of policies and actions observed in reality during financial crises, including restrictions on
dividend payments as well as haircuts imposed on depositors, various debt holders, and other creditors.

10Throughout the analysis, we use h to note the bail-in applied to the first ⇡ investors to withdraw and ĥ to
denote the bail-in applied to all remaining investors, regardless of the period in which these later withdrawals
take place.
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Feasibility. The bank in a location with realized asset value � (hereafter, “bank �”) will

have a total of �+ b (�) units of the good in period 1. Suppose for the moment that patient

investors wait until period 2 to withdraw, so that only a fraction ⇡ of investors withdraw at

t = 1. Then bank � must choose its bail-ins
⇣
h (�) , ĥ (�)

⌘
to satisfy the feasibility constraint

⇡ (1� h (�)) c⇤1 + (1� ⇡)
⇣
1� ĥ (�)

⌘ c⇤2
R

 �+ b (�) . (2)

Using equation (1), we can rewrite this constraint as

h (�) ⇡c⇤1 + ĥ (�) (1� ⇡)
c⇤2
R

+ b (�) � 1� �. (3)

This expression shows that the losses in bank � are divided between bail-ins and bailouts.

The first two terms of the left-hand side measure the period-1 value of the bank’s bail-ins:

an amount ⇡c⇤1 of the bank’s liabilities is bailed in at rate h (�) at t = 1, while the amount

(1� ⇡) c⇤2 of liabilities that will be bailed in at rate ĥ (�) at t = 2 is discounted by the

return R. Feasibility requires that the sum of these bail-ins plus the bailout payment b(�)

be enough to cover the bank’s loss, 1� �.

Bank runs and resolution. Throughout our analysis, we assume that patient investors

choose to wait until t = 2 unless withdrawing early is a strictly dominant strategy in the

withdrawal game for their bank. In other words, we do not focus on the type of self-fulfilling

bank runs studied by Diamond and Dybvig (1983) and many others. There may, however,

be situations in which patient investors receive strictly more from their bank by withdrawing

early regardless of the actions of others. In such cases, a bank run is inevitable.11

If investors continue to arrive at a bank in period 1 after ⇡ withdrawals have been made,

the bank is placed into a resolution process. We assume that, as part of this process,

the run on the bank stops, meaning that only the remaining impatient investors withdraw

in period 1 and all remaining patient investors withdraw in period 2. In addition, the

fiscal authority observes the fraction of the remaining investors who are impatient and can

condition the bailout payment (if any) on this information. When a bank is in resolution,

the regulator dictates the bail-ins applied to all remaining investors, which implies that the

bank’s remaining resources will be allocated e�ciently among its remaining investors.

11In focusing on bank runs that are driven by the “fundamentals” of the withdrawal game, we follow Chari
and Jagannathan (1988) and Allen and Gale (1998), among others. As we show below, however, multiple
equilibria may still arise in our model, driven by the bail-in decisions of banks, which shape the fundamentals
of the withdrawal game.

10



Figure 1: Timeline

2.3 Timeline

The sequence of events in the crisis state is depicted in Figure 1, where items in black

represent moves by nature and individual investors, items in blue represent the actions

of banks, and items in red correspond to the actions of the public sector. In period 0,

investors observe the realized loss in their location and collectively choose the initial bail-in

h (�). Moving to period 1, these choices determine the payo↵s of a Diamond-Dybvig-style

withdrawal game in which each investor observes her own preference type !i and decides

whether to withdraw in period 1 or in period 2. Banks pay an amount (1� h (�)) c⇤1 to

withdrawing investors as they arrive. After a measure ⇡ of investors have withdrawn, the

fiscal authority observes the type and remaining resources of each bank and chooses bailout

payments b (�). After bailout payments have been made, all remaining government funds

are used to provide the public good. If withdrawals at a bank continue past ⇡, the bank

is placed into resolution and the regulator chooses the allocation of the bank’s resources

between the remaining investors. Otherwise, all remaining investors are given an even share

of the banks’ assets in period 2.

2.4 Discussion

Aggregate uncertainty. While our model has two aggregate states, our analysis focuses

on decisions made and actions taken in the crisis state. The only role of the good aggregate

state in our model is to establish what investors would receive from their bank in normal

times. Because banks are free to adjust payments to investors based on the realization of

�, the ex ante probabilities of the two aggregate states have no e↵ect on the analysis. For

interpretation purposes, we think of the probability of the crisis state as being small, but the

precise value is irrelevant. What matters for our analysis is the distribution of losses across
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banks conditional on the crisis state, which is given by the function F .

We do assume that the probabilities of the two aggregate states are exogenous in our

model, as is the distribution F. In this sense, our focus is on how the losses in a crisis are

allocated and not on the determinants of a crisis or ex ante moral hazard issues.12 Our

approach seems particularly relevant for studying the e↵ects of unexpected economic shocks

originating outside of the financial sector, such as a pandemic. However, the e↵ects we

highlight in our analysis will be present any time there are significant losses in the banking

system, regardless of the underlying cause.

Limited risk sharing. In the crisis state, banks face idiosyncratic risk about the value of

their assets. In practice, interbank insurance arrangements can be used to share this type

of risk across institutions. Our approach implicitly assumes that these arrangements are

imperfect. A sizeable literature has studied how information and incentive problems can

limit the e↵ectiveness of interbank markets and other types of insurance arrangements.13

We think of whatever arrangements exist as being embedded in the function F , so that

this probability distribution of � in the crisis state represents the uninsured component of

bank-specific risk.

The restriction that bailout payments be non-negative prevents the government from

using fiscal policy to replace these missing insurance markets. If the government were allowed

to tax banks with small losses and transfer the proceeds to banks with larger losses, it could

e↵ectively insure banks against all idiosyncratic risk. In practice, one would expect this type

of arrangement to face incentive problems at least as severe as those in private insurance

markets. Our assumptions ensure the role of bailouts in the model is to transfer risk between

the private and public sectors, rather than to replace missing private insurance markets.

Fiscal capacity. The parameter ⌧ measures the government’s access to resources in the

event of a crisis. In our model, the government is simply endowed with these resources

at t = 1. One can interpret these goods as coming from tax revenue raised before our

model begins (and stored until t = 1) or from taxing activities outside of the scope of the

model. More generally, one can think of the government’s fiscal capacity as including funds

that could be raised by issuing new debt or by selling public assets. The key point for our

analysis is that, whatever the source of these funds, using them to bail out banks is costly.

12A large literature has studied how government guarantees, both explicit and implicit, a↵ect the riskiness
of banks’ assets and, therefore, the probability of a crisis state. Kareken and Wallace (1978) is one classic
reference. More recently, Acharya and Yorulmazer (2007) study how the anticipation of intervention a↵ects
the correlation of banks’ asset choices and, therefore, the distribution F of losses across banks in a crisis.

13See, for example, Bhattacharya and Gale (1987), Flannery (1996), Freixas and Jorge (2008), Heider et al.
(2015) and Castiglionesi and Navarro (2020), among many others.
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This cost is captured in our model by a decrease in the level of the public good g.14 We

assume the government’s fiscal capacity is small enough that

v0
 
⌧ �

Z 1

�

(1� �) dF (�)

!
> u0 (c⇤1) (4)

holds. This condition guarantees that it is not e�cient for the public sector to absorb all of

banks’ losses; at least some losses will be imposed on investors in the form of a bail-in.

Informed investors. We assume that a bank’s investors are informed about the value of

the bank’s assets at the beginning of period 1. Because of the sequential service constraint,

however, only a fraction ⇡ of these investors can act on this information before the fiscal

authority and regulator intervene. In e↵ect, the private information is only relevant for this

group of investors, which we interpret as at least partly representing insiders to the bank.

Several recent studies have highlighted the importance of withdrawals by bank insiders in

the period before regulatory actions and/or bank failure occur. Acharya et al. (2011), for

example, discuss how dividend payments in 2007-9 e↵ectively transferred banks’ losses onto

the public sector. Henderson et al. (2015) study smaller community banks in the U.S. during

the same period and document a “run on capital by insiders” in the form of higher dividend

payouts by troubled banks. Iyer et al. (2016) study depositor-level data from a bank in India

that su↵ered a run and document withdrawals by bank sta↵ in the period before losses on the

banks’ loan portfolio became public information. Assuming that all investors are informed

and, hence, face the same decision problem helps simplify the presentation of our model.

The important point, however, is that at least some investors have private information and

are able to act on this information before any intervention by the public sector.

Delayed intervention. We assume the government observes bank-specific information with

a delay, reflecting the fact that, at least in the early stages of a crisis, banks are likely to have

more information about their own situation than is available to regulators. In direct terms,

this assumption aims to capture the time required to carry out detailed examinations and to

verify the information that forms the basis for supervisory action. More broadly, the delay

in the model can also represent a variety of practical and political concerns that make policy

makers slow to react to an incipient crisis. For example, Kroszner and Strahan (1996) argue

that the Federal Savings and Loan Insurance Corporation (FSLIC) faced a severe shortage of

funds for resolving insolvent thrift institutions in the 1980s. This lack of funds led FSLIC to

practice regulatory forbearance and to delay its intervention in insolvent thrifts, anticipating

14Other papers using this approach include Keister (2016), Allen et al. (2018), Mitkov (2019), and Li (2020).
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that the federal government would eventually supply additional resources. During this delay,

insolvent thrift institutions could continue paying high dividends to their investors as a

way of maximizing the private value of the government guarantee of their liabilities, at the

taxpayers’ eventual expense. In a similar spirit, Brown and Dinc (2005) provide evidence that

the timing of a government’s intervention to resolve a failing financial institution depends

on the electoral cycle. By examining episodes from 21 major emerging market economies in

the 1990s, they find that interventions that would impose large costs on taxpayers and/or

would more fully reveal the extent of the crisis were significantly less likely to occur before

elections. (See also Rogo↵ and Sibert, 1988.) Whatever the underlying cause of the delayed

policy response, the key point for our analysis is that some investors are able to withdraw

from a bank facing losses before decisions about bailouts and bank resolution are made.

Resolution. We assume a bank is placed in resolution as soon as it becomes apparent to

regulators that a run on the bank is underway. Once in resolution, the bank’s available

resources – including any bailout it receives – are allocated e�ciently among its remaining

investors. There are a variety of ways to implement this type of resolution process, all

of which would lead to the same outcome in our model. One could, for example, think

of a court system intervening to verify investors’ preference types, as discussed in Ennis

and Keister (2009a). Alternatively, one could allow investors to write a “living will” that

specifies how their bank will be operated following a run and intervention. Regardless of

the specific mechanism, the run on the bank will necessarily end once it is in resolution

because there is no further uncertainty and the payments o↵ered to investors are adjusted

accordingly.15 Moreover, because there are no further bailouts, investors’ incentives will

no longer be distorted from the regulator’s point of view and the allocation of the bank’s

resources will be the same regardless of who chooses the payments. Our approach here of

having the regulator dictate all remaining payments serves only to simplify the notation.

3 A planner’s problem

In this section, we derive the combination of bail-ins and bailouts that would be chosen by

a benevolent planner in the crisis state. This planner controls the operations of all banks,

the actions of the fiscal authority, and investors’ withdrawal decisions. It observes all of the

information available to banks and investors, including each investor’s preference type. The

15Ennis and Keister (2010) show how a bank run may continue after the initial policy reaction if there is still
some uncertainty about the state of nature. In their setting, a run may occur in waves as the policy maker
gradually learns the state.
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planner faces the same restrictions as agents in the environment, including the inability to

directly redistribute resources across locations. How would this planner allocate resources if

its objective is to maximize the sum of all investors’ expected utilities?

The planner will clearly direct all impatient investors to withdraw at t = 1 since they

only value consumption in that period, and will direct all patient investors to withdraw at

t = 2, after the bank’s assets have earned the return R > 1. It will treat banks with the

same value of � symmetrically in choosing the bail-ins and bailouts; we denote these choices

by
n
h (�) , ĥ (�) , b (�)

o
for � 2 �. The planner will choose these functions to maximize the

sum of expected utilities across all investors

Z 1

�

⇣
⇡u ((1� h (�)) c⇤1) + (1� ⇡)u

⇣
(1� ĥ (�))c⇤2

⌘⌘
dF (�)

+v

 
⌧ �

Z 1

�

b (�) dF (�)

!

subject to the feasibility constraint (3) and the non-negativity restrictions

h (�) 2 [0, 1], ĥ(�) 2 [0, 1], and b(�) � 0

for all �. Our first result shows that the planner will choose to impose the same level of

bail-in on all investors within a bank.

Proposition 1. The e�cient plan satisfies h⇤ (�) = ĥ⇤ (�) for each � 2 �. That is, all

investors within a bank face the same bail-in.

Proofs of all propositions are provided in the appendix. The result in Proposition 1 relies

on the assumption that the coe�cient of relative risk aversion for the utility function u is

constant, which implies that investors’ expected-utility preferences over private consumption

are homothetic. As a result, the e�cient levels of consumption for impatient and patient

investors scale down in proportion when a bank experiences losses. In the remainder of this

section, we use h (�) to denote the bail-in applied by the planner to all investors in bank �.

Using the result in Proposition 1 together with the resource constraint for the reference

allocation in equation (1), we can rewrite the feasibility constraint (3) for allocating the

losses in each bank in a particularly simple form:

h (�) + b (�) � 1� � for all � 2 �. (5)

This constraint highlights how the loss (1� �) must be covered by a combination of bail-ins

h (�) of the bank’s investors and bailouts b (�) by the public sector. We can also simplify
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the objective function in the planner’s problem by defining

U (1� h(�)) ⌘ ⇡u ((1� h(�)) c⇤1) + (1� ⇡)u ((1� h(�)) c⇤2) (6)

and using equation (5), which will hold with equality at an optimum, to replace b (�). Then

the planner will choose a bail-in function h to solve

max
{h}

(Z 1

�

U (1� h (�)) dF (�) + v

 
⌧ �

Z 1

�

(1� �� h (�)) dF (�)

!)
(7)

subject to

0  h (�)  1� � for all � 2 �.

We call the solution to this problem the e�cient plan and denote it (h⇤, b⇤). Our main result

in this section characterizes this plan.

Proposition 2. There exists �⇤ 2 � such that the e�cient plan (h⇤, b⇤) has the form:

h⇤ (�) =

(
1� �

1� �⇤

)
and b⇤ (�) =

(
0

�⇤ � �

)
as �

(
�
<

)
�⇤.

The e�cient plan is characterized by a maximum bail-in 1 � �⇤. For banks with a loss

smaller than the maximum bail-in, the e�cient bail-in h⇤ (�) equals the total loss 1� � and

no bailout is received. For banks with a loss greater than 1 � �⇤, the maximum bail-in is

applied and the remaining loss, �⇤��, is covered by a bailout. In this way, the planner uses

public resources to provide insurance against large losses, but not against smaller losses.

Panel (a) of Figure 2 illustrates this result.16 The graph shows, for each value of �, how

the loss 1�� is divided between a bail-in of the first ⇡ investors to withdraw (bottom region,

light-blue), a bail-in of the remaining (1� ⇡) investors (middle region, darker blue), and a

bailout (top region, red). Note that the relative sizes of the first two regions are the same

for all �, in line with Proposition 1. For banks with a loss smaller than 1��⇤, these bail-ins

cover the entire loss and there is no bailout. For banks with a loss larger than 1 � �⇤, the

bail-ins take their maximum value and the bailout covers the remaining loss.

The cuto↵ value �⇤ depends critically on the amount of resources ⌧ available to the

government, as illustrated in panel (b) of the figure. If ⌧ is su�ciently small, the cuto↵

equals the lower bound �, meaning there are no bailouts and the bail-in applied at each

16All of the numerical examples in the paper use the functional forms u (x) = v (x) = x1��/ (1� �) with
� = 2 and parameter values ⇡ = 1/2 and R = 3. The distribution F places measure 1/2 on � = 1 and the
other half of banks are uniformly distributed on � = [1/4, 1]. Panel (a) of Figure 2 uses ⌧ = 0.9.
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(a) Allocation of losses (b) Bailout cuto↵ �⇤ as ⌧ varies

Figure 2: The planner’s allocation

bank covers the total loss. For larger values of ⌧ , the planner uses a combination of bail-ins

for all banks and bailouts for some banks, which corresponds to the case depicted in panel

(a). The cuto↵ �⇤ is increasing in ⌧ in this region, meaning that when the fiscal capacity

of the government is larger, the planner shifts more of the losses to the public sector and

provides bailouts to a larger number of banks. As ⌧ approaches the upper bound in equation

(4), �⇤ approaches 1 and all banks with losses are bailed out. Our final result of this section

shows that the increasing relationship depicted in the figure holds in general.

Proposition 3. The e�cient bailout cuto↵ �⇤ is strictly increasing in ⌧ whenever �⇤ 2
�
�, 1
�
.

4 The bail-in game

We now return to the decentralized economy, where investors’ preference types !i are private

information and the bail-in decisions are made separately by investors in each location. In

this section, we formulate the game played at t = 0 when the initial bail-ins are chosen.

We derive the payo↵s in this game by working backward through the timeline in Figure 1,

focusing on the decision points labeled (a) – (d).

4.1 Remaining withdrawals

At point (d) in the timeline, a fraction ⇡ of the investors in each bank have already with-

drawn and consumed. Let h (�) denote the bail-in that has been imposed on these initial

withdrawals from bank �, and let h : � ! [0, 1] denote the profile of initial bail-ins across

all banks. Let b : � ! R+ denote the bailout payment that has been made to each bank by

the fiscal authority at point (c) in the timeline. Then the amount of resources bank � has
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available for each of its (1� ⇡) remaining investors at point (d) is given by

 (�) ⌘ �� ⇡ (1� h(�)) c⇤1 + b(�)

1� ⇡
. (8)

The composition of these remaining investors between patient and impatient types depends

on whether or not the bank experienced a run at point (b). Let y : � ! {1, 2} denote the

withdrawal behavior of patient investors in each bank.17 Specifically, y (�) = 2 represents a

situation where all patient investors in bank � chose to withdraw in period 2. In this case,

the first ⇡ withdrawals were made by impatient investors and, therefore, all of the bank’s

remaining investors at point (d) are patient. Each of these investors will receive R (�) at

t = 2. If y (�) = 1, the bank experienced a run at point (c) and its remaining investors are a

mixture of patient and impatient types. In this case, the bank is placed into resolution and

the regulator will choose all remaining payments to maximize the sum of these remaining

investors’ utilities. It is straightforward to show that the solution to this allocation problem

gives  (�) c⇤1 to each remaining impatient investor at t = 1 and  (�) c⇤2 to each remaining

patient investor at t = 2.18 Letting V ( , y) denote the average utility of a bank’s remaining

investors when its resources are allocated in this way, we then have

V ( (�) ; y (�)) ⌘
(

u (R (�))

⇡u ( (�) c⇤1) + (1� ⇡)u( (�) c⇤2)

)
as

(
y (�) = 2

y (�) = 1

)
. (9)

Given any profiles of initial bail-ins h, withdrawal behavior y, and bailouts b, equations (8)

and (9) show how the resources remaining in each bank at point (d) in the timeline will be

allocated among that bank’s remaining investors.

4.2 Bailouts

Next, we consider point (c) in the timeline, where the fiscal authority makes bailout decisions

and provides the public good. The fiscal authority knows that the remaining resources in

each bank will be utilized as derived above. For a given pair (h, y), the fiscal authority will

choose the bailout policy b to maximize

17Note that we restrict attention to symmetric outcomes of the withdrawal game, in which all patient investors
in a given bank take the same action. Given our focus on fundamentals-based bank runs, this approach is
without loss of generality.

18This result can be viewed as an application of Proposition 1 to the regulator’s allocation problem for a bank
that has experienced a run. Recall that the proposition shows how the e�cient allocation of resources within
a bank scales the consumption of impatient and patient investors in proportion to the reference allocation
(c⇤1, c

⇤
2).
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W (h, y, b) ⌘
Z 1

�

(1� ⇡)V ( (�); y(�)) dF (�) + v (g) (10)

subject to

0  b (�)  b̄ (�, h(�), y (�)) for all �,

where the remaining resources  (�) of each bank depend on the bailout policy b (�) as shown

in equation (8) and the level of public good is given by

g = ⌧ �
Z 1

�

b(�)dF (�) . (11)

The objective function in equation (10) illustrates the trade-o↵ faced by the fiscal authority:

bailouts raise the private consumption of investors through  (�), but decrease the provision

of the public good g for all agents.19 The upper bound b̄ on the bailout for bank � ensures

that no investors receive more consumption than in the reference allocation (c⇤1, c
⇤
2). This

bound can be shown to equal

b̄ (�, h(�), y(�)) ⌘ 1� �� h (�) ⇡c⇤1 + I(y(�)=1)⇡ (c
⇤
1 � 1) .

Intuitively, the bailout payment cannot be larger than the bank’s loss 1��, minus the bail-in

already imposed on the ⇡ investors who have withdrawn, plus an adjustment to reflect the

misallocation of resources that occurs if the bank has experienced a run.20

The first-order conditions for this problem require that, for all �, we have either

V1 ( (�) , y (�))  v0 (g) and b (�) [v0 (g)� V1 ( (�) , y (�))] = 0 (12)

or

V1 ( (�) , y (�)) > v0 (g) and b (�) = b̄ (�, h(�), y(�)) , (13)

where the derivative V1 represents the marginal value of resources in bank �. If the choice

of b (�) is interior, it must be the case that V1 is equal to the marginal value of the public

good. If the marginal utility of a bank’s investors is lower than the marginal value of public

consumption, that bank receives no bailout. In the opposite case, the bank receives the

maximum bailout and its remaining investors are not bailed-in. Note that the marginal

value of public consumption depends on the bailout payments made to all banks, which

19See Mitkov (2019) for a model with ex ante heterogeneity across investors where bailout policy is shaped
by distributional considerations in addition to these concerns.

20We show below that equation (4) guarantees this upper bound is never binding in equilibrium. It may,
however, bind when solving the fiscal authority’s choice problem for an arbitrary profile h, as we do here.
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implies that these first-order conditions must be solved jointly for all �.

One way to understand the implications of these first-order conditions is to look at the

level of bail-ins faced by each bank’s remaining investors. Define the remaining bail-in

function ĥ : � ! [0, 1] by

ĥ (�) =

(
1� R

c⇤2
 (�)

1�  (�)

)
as y(�) =

(
2

1

)
, (14)

where  (�) depends on the bailout policy as shown in equation (8). We then have the

following result.

Proposition 4. For any (h, y), there exists a unique ĥmax 2 [0, 1] such that the fiscal

authority’s bailout policy b will imply

ĥ(�)  ĥmax for all �, with equality if b(�) > 0.

This result shows that, after the first ⇡ withdrawals have occurred, the allocation of the

remaining losses in the banking system takes the same general form as the solution to the

planner’s problem characterized in Proposition 2. In particular, the investors in any bank

that receives a bailout will experience the same bail-in. Investors in a bank that is not bailed

out experience a smaller bail-in that fully covers the bank’s remaining losses.

Looking ahead, Proposition 4 also illustrates how the equilibrium bailout policy will tend

to distort banks’ choice of initial bail-in h (�). Among all banks receiving a bailout, this

result implies that the fiscal authority will give a larger payment to those banks that have

fewer remaining resources. In other words, a bank can increase the bailout it receives by

imposing a smaller bail-in on its first ⇡ investors to withdraw. This incentive distortion

creates a wedge between the equilibrium outcome in our model and the solution to the

planner’s problem in Section 3. Before discussing this wedge in detail, however, we need to

analyze investors’ withdrawal choices.

4.3 Withdrawal choices

At point (b) in the timeline, investors choose when to withdraw from their bank. Impatient

investors only value consumption in period 1 and, therefore, will always choose to withdraw

early. A patient investor will choose to withdraw in whichever period she would receive a

higher payment from her bank. She anticipates that the bailout payments at point (c) and the

subsequent bail-in of remaining investors at point (d) will be as described above. Moreover,

if her bank experiences a run and she is not among the first ⇡ investors to withdraw, she

20



knows the bank will be placed into resolution and she will receive the payment chosen by

the regulator in period 2. Using the function ĥ defined in equation (14), we can say that

waiting to withdraw is a best response for a patient investor in bank � if and only if

(1� h (�)) c⇤1  (1� ĥ (�))c⇤2. (15)

Recall that the bail-in of remaining investors ĥ(�) depends on the profile of withdrawal

behavior y both directly, as shown in equation (14), and indirectly through its e↵ect on the

bailout policy and thus on the bank’s remaining resources in equation (8). For this reason,

the optimal choice for an individual patient investor may depend on the choices of all other

patient investors in the economy. We derive the optimal decision rule for a patient investor in

two steps, first looking at a single bank in isolation and then considering all banks together.

The withdrawal game within a bank. To begin, we focus on the withdrawal game played

by the patient investors within a single bank, holding the actions of investors in all other

banks fixed. Suppose the bank is receiving a bailout, that is, b (�) > 0. Since the size of the

bailout payment to a single bank has a negligible e↵ect on the government’s finances, the

level of the public good g in the first-order conditions (12) – (13) is independent of the initial

bail-in and withdrawal behavior in bank �. This fact, together with equations (9) and (14),

implies that the bail-in ĥ (�) of the bank’s remaining investors will be the same regardless

of how many investors attempt to withdraw early. Intuitively, if the bank experiences a

run, the fiscal authority will choose to increase the bailout payment precisely so that the

consumption level of the bank’s remaining patient investors remains unchanged. When an

individual patient investor is evaluating whether condition (15) holds, therefore, none of the

terms in the expression depend on the withdrawal behavior of the other investors in her bank.

It follows that, apart from the knife-edge case in which she is indi↵erent between withdrawing

early and waiting, the withdrawal game within any individual bank with b (�) > 0 has a

unique equilibrium. The strategic complementarity that usually generates multiple equilibria

in the Diamond-Dybvig framework is eliminated here by the fiscal authority’s choice of

bailout policy.

For a bank that is not receiving a bailout, in contrast, the standard strategic complemen-

tarity is present and the withdrawal game within the bank may have multiple equilibria. In

particular, early withdrawals by other patient investors in the bank increase the bail-in ĥ (�)

of the remaining investors and thus increase the incentive to withdraw early. Given that

this type of bank run has been extensively studied, we do not focus on it here. Instead, we

assume that patient investors withdraw early only if doing so is a strictly dominant strategy
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of the withdrawal game within their bank.

To operationalize this assumption, we define ĥNB (�) to be the bail-in that would be

imposed on bank �’s remaining investors if (i) all of its patient investors withdraw at t = 2

and (ii) it receives no bailout. Using equations (8) and (14) with b (�) = 0, we have

ĥNB (�) = 1�
✓
R

c⇤2

◆
�� ⇡ (1� h (�)) c⇤1

1� ⇡
. (16)

Using Proposition 4, we can determine whether or not bank � will receive a bailout when it

does not experience a run by comparing ĥNB (�) with ĥmax, which depends on the average

choices of all banks but not on the individual choice of bank �. If ĥNB (�) > ĥmax holds,

bank � will be bailed out and equilibrium play in the withdrawal game within the bank will

depend on the choice of initial bail-in h(�) according to

y(�) =

(
2

1

)
as

⇣
1� ĥmax

⌘
c⇤2

(
�
<

)
(1� h (�)) c⇤1. (17)

If ĥNB (�)  ĥmax holds, bank � will not receive a bailout and our assumption that patient

investors only run if doing so is a strictly dominant strategy can be written as

y(�) =

(
2

1

)
as

⇣
1� ĥNB (�)

⌘
c⇤2

(
�
<

)
(1� h (�)) c⇤1. (18)

We refer to (17) and (18) together as the equilibrium withdrawal behavior of investors within

bank �. When a bank is choosing its initial bail-in h (�), it recognizes that these conditions

determine whether or not it will experience a run.

The overall withdrawal game. We now turn to the overall withdrawal game, in which

all investors in all banks simultaneously make their withdrawal decisions. We define an

equilibrium of this game as follows.

Definition 1. Given a profile of initial bail-ins h, an equilibrium of the overall withdrawal

game is a profile ye : � ! {1, 2} such that:

(i) given ĥmax, ye (�) satisfies (17) or (18), as appropriate, for each �, and

(ii) given ye, ĥmax is determined by the bailout policy characterized in (12) and (13).

While our assumptions above assign a unique equilibrium to the withdrawal game within

each bank, there still may be multiple equilibria of the overall withdrawal game. This

multiplicity arises because the outcomes of the withdrawal games within other banks a↵ect
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the government’s fiscal position and, through the bailout policy, a↵ect the value of the

maximum bail-in ĥmax. A change in ĥmax, in turn, may a↵ect the equilibrium withdrawal

behavior of investors in bank �.21 Given our focus on fundamentals-based runs, we select

the equilibrium that has a run occurring at the smallest measure of banks when multiple

equilibria exist, which we call the minimal-run equilibrium associated with a given profile

of initial bail-ins h. Our next result shows that there is a unique minimal-run equilibrium

associated with each h. An algorithm for computing the minimal-run equilibrium is provided

as part of the proof of this result in the appendix.

Proposition 5. For each profile of initial bail-ins h, there is unique minimal-run equilibrium

of the overall withdrawal game.

To summarize the analysis so far in this section, it is helpful to look back at the timeline

in Figure 1. Given any profile of initial bail-ins h chosen by banks at point (a) of the timeline,

the results above uniquely determine investors’ withdrawal behavior at point (b), the bailout

payments made by the government at point (c), and the allocation of the remaining resources

in each bank at point (d). In other words, we now have a mapping from banks’ choice of initial

bail-ins h to the entire allocation of resources in the economy. This mapping determines the

payo↵s of the bail-in game.

4.4 Equilibrium of the bail-in game

At point (a) in the timeline, each bank chooses its initial bail-in h (�), taking the choices

of all other banks as given. Let W denote the expected utility of investors in an individual

bank as a function of the full profile of initial bail-ins and the bank’s resources, that is,

W (h (�) , h-�;�) ⌘ ⇡u ((1� h (�))c⇤1) + (1� ⇡)V ( (�) ; ye (�)) , (19)

where h-� represents the initial bail-ins at all banks except bank �. Recall that  (�) depends

on the bailout b (�), which in turn depends on both h (�) and h-� as determined by equations

(12) – (13). The withdrawal behavior ye (�) also depends on both h (�) and h-� as determined

by equations (17) – (18) together with the selection of the minimum-run equilibrium of the

overall withdrawal game.

21In other words, there is a complementarity in the withdrawal decisions of investors across banks that
operates through the public sector’s budget constraint. This complementarity is also present in Mitkov
(2019), where early withdrawals at other banks can undermine the government’s ex post willingness to fully
insure deposits at an individual bank, giving its investors a stronger incentive to withdraw early. A similar
cross-bank complementarity arises in Goldstein et al. (2020), where early withdrawals at other banks can
drive down asset prices, which strengthens the strategic complementarity in the withdrawal decisions of
investors within a given bank.

23



The first term on the right-hand side of equation (19) is decreasing in h (�), while the

second term is increasing in h (�) if we hold b (�) and ye (�) fixed. These direct e↵ects of

the initial bail-in are straightforward: imposing losses on the first ⇡ investors to withdraw

makes these investors worse o↵, but leaves more resources for the bank’s remaining investors.

However, the bank’s choice of h (�) may also a↵ect both the bailout it receives b (�) and the

withdrawal behavior of its investors ye (�). Moreover, these relationships depend on the

government’s fiscal position, which in turn depends on the initial bail-ins chosen by other

banks. These payo↵ spillovers imply that each bank’s desired initial bail-in will, in general,

depend on the initial bail-ins chosen by other banks.

Given these payo↵s, the definition of equilibrium for the bail-in game is straightforward.

Definition 2. An equilibrium of the bail-in game is a profile of strategies he : � ! [0, 1]

such that, for all � 2 �, we have

W
�
he(�), he

-�;�
�
� W

�
h, he

-�;�
�

for all h 2 [0, 1] .

Our next result shows that an equilibrium of the bail-in game always exists in pure strategies.

Proposition 6. There exists a pure strategy equilibrium of the bail-in game.

The remainder of the paper studies the properties and policy implications of equilibrium

in the bail-in game. In the next section, we derive conditions under which the equilibrium

allocation is ine�cient and under which bank runs occur in equilibrium. In Section 6, we

study how regulation can improve equilibrium outcomes.

5 Properties of equilibrium

We begin the analysis of equilibrium play in the bail-in game by discussing the incentives

each bank faces when choosing its initial bail-in.

5.1 Incentives to bail in

Consider first the decision problem facing a bank that anticipates receiving no bailout, re-

gardless of its choice of initial bail-in h(�). In this case, the bail-ins chosen by other banks,

h-�, have no e↵ect on the bank’s payo↵s. It is straightforward to show that this bank’s

optimal choice is h(�) = 1 � �. Substituting this choice into equations (8) and (14) when

b(�) = 0 yields ĥ (�) = 1 � � as well, meaning that the bank’s losses are shared evenly by

all of its investors. Notice that a bank in this situation will choose bail-ins that match those
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chosen by the planner for a bank that receives no bailout (see Propositions 1 and 2). Given

this choice, patient investors in this bank will have no incentive to withdraw early and the

withdrawal behavior assigned by equation (18) is ye(�) = 2.

For a bank that does anticipate receiving a bailout, Proposition 4 shows that the bail-in

experienced by the bank’s remaining investors will equal ĥmax, which depends on aggregate

conditions but not on the bank’s own choice of initial bail-in h (�). If we hold the withdrawal

decisions of the bank’s investors fixed, therefore, it will want to set the lowest bail-in possible,

h (�) = 0. In this way, bailouts distort the incentives of banks in the bail-in game. Why

impose any loss on the bank’s first ⇡ investors if doing so reduces the bailout the bank will

receive dollar-for-dollar?

There is one caveat to this logic: in some situations, setting h (�) = 0 will lead to a

run on the bank. In these cases, the bank can prevent the run by setting its initial bail-in

appropriately. For a given value of ĥmax, the withdrawal behavior specified in equation (17)

shows that investors will not run on a bank that is being bailed out as long as

(1� ĥmax)c
⇤
2 � (1� h (�)) c⇤1.

Let h denote the smallest initial bail-in h (�) that will prevent a run, that is,

h ⌘ max

⇢
1�

⇣
1� ĥmax

⌘ c⇤2
c⇤1
, 0

�
. (20)

Note that c⇤2 > c⇤1 implies h  ĥmax, with strict inequality whenever ĥmax > 0. In other

words, the initial bail-in required to prevent a run is always smaller than the bail-in that

will apply to the bank’s remaining investors.

If h = 0, meaning the bank will not experience a run even if the initial bail-in is zero,

setting h (�) = 0 is clearly its best response. If h is positive, the bank must choose between

(i) imposing no initial bail-in but su↵ering a run and (ii) imposing the bail-in h on its first ⇡

investors to withdraw. Which of these two choices is optimal depends on the value of ĥmax,

which is determined in equilibrium. Specifically, preventing a run will be optimal for bank

� if the expected utility of its investors when the initial bail-in is zero and a run occurs is

smaller than the expected utility associated with an initial bail-in of h and no run, that is,

⇡u (c⇤1) + (1� ⇡)
h
⇡u
⇣⇣

1� ĥmax

⌘
c⇤1

⌘
+ (1� ⇡) u

⇣⇣
1� ĥmax

⌘
c⇤2

⌘i

 ⇡u ((1� h) c⇤1) + (1� ⇡)u
⇣⇣

1� ĥmax

⌘
c⇤2

⌘
.
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Rearranging terms, we can write this condition as

⇡ [u (c⇤1)� u ((1� h) c⇤1)]  ⇡ (1� ⇡)
h
u
⇣⇣

1� ĥmax

⌘
c⇤2

⌘
� u

⇣⇣
1� ĥmax

⌘
c⇤1

⌘i
. (21)

The left-hand side of equation (21) measures the gain from setting the initial haircut to zero:

the first ⇡ investors to withdraw from the bank receive c⇤1 rather than only a fraction of

this amount. The right-hand side of the equation measures the cost of a run: because some

of the first ⇡ withdrawals will be made by patient investors, a fraction ⇡ of the remaining

(1� ⇡) investors will be impatient and need to consume in period 1. Because c⇤2 > c⇤1, the

total consumption of the bank’s investors will then be lower than if there had been no run

and all of the remaining investors were patient.

Notice that none of the terms in equation (21) depend on �, which implies that all banks

receiving a bailout will choose the same initial bail-in. We use h̃ 2 {0, h} to denote this

common choice. For a given value of ĥmax, equation (21) indicates that these banks will

choose to prevent a run whenever the necessary bail-in h is su�ciently small.

5.2 Ine�ciency of equilibrium

Our next result builds on the discussion above to derive the equilibrium allocation of losses

between bail-ins and bailouts. It shows that any equilibrium is characterized by a cuto↵ �e

such that only those banks whose realized � falls below the cuto↵ are bailed out.

Proposition 7. In any equilibrium of the bail-in game, there exists �e 2 � such that

he (�) =

(
1� �

h̃ 2 {0, h}

)
and

(
be (�) = 0

be (�) > 0

)
as �

(
>

<

)
�e.

The value of �e satisfies the following condition

W
⇣
h̃, he

-�;�
⌘
8
><

>:

>

=

<

9
>=

>;
U (1� �) as �

8
><

>:

<

=

>

9
>=

>;
�e.

To understand how the equilibrium bailout cuto↵ �e is determined, consider first a bank

whose realized � is so small that it would receive a bailout even if it set the “full” initial

bail-in h (�) = 1� �. Such a bank clearly faces the incentive distortion described above and

will choose an initial bail-in of h̃ 2 {0, h} according to equation (21). At the other extreme,

a bank with � su�ciently close to 1 may not receive a bailout even if it set the smallest
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possible bail-in, h (�) = 0. In this situation, the bank’s best response is to spread the loss

evenly among its investors by setting h (�) = 1� �.

In between these two extremes, there is a range of values of � for which the bank would

be bailed out if it set h (�) = h̃, but not it if chose the initial bail-in h (�) = 1� �. A bank

in this range recognizes that if it takes the best action conditional on not being bailed out –

allocating its loss evenly across its investors – it will not receive a bailout. If it instead chooses

the smaller initial bail-in h̃, it will be bailed out. In choosing its initial bail-in, therefore, this

bank is e↵ectively choosing whether or not it will receive a bailout. The benefit of receiving

a bailout is obvious: it raises the total consumption of the bank’s investors. The cost is

that, in order to qualify for the bailout, the bank must set its initial bail-in in a way that

ine�ciently allocates this consumption across its investors. The bank with � = �e is exactly

indi↵erent between these two options in equilibrium.

This indi↵erence implies that the following ordering must hold in equilibrium:

h < 1� �e < ĥmax. (22)

If bank �e chooses to set h (�) = h instead of h(�) = 1��e, its first ⇡ investors will experience

a smaller bail-in, but its remaining 1�⇡ investors will experience the larger bail-in ĥmax. In

other words, qualifying for a bailout requires the bank to shift the burden of the losses away

from its first ⇡ investors and onto the remaining fraction 1� ⇡.

Figure 3 illustrates the equilibrium allocation of losses for two di↵erent values of the

government’s fiscal capacity ⌧ . In panel (a), which is based on ⌧ = 0.9, all banks receiving a

bailout set their initial bail-ins to zero. As a result, there is no light-blue region in the figure

for banks with � < �e; all of their losses fall on the remaining 1� ⇡ investors and the public

sector. Panel (b) of the figure is based on a smaller fiscal capacity, ⌧ = 0.6, which generates

a lower bailout cuto↵ �e and a larger maximum bail-in ĥmax. Banks that receive a bailout

in this example would experience a run if they set their initial bail-in to zero. Instead, they

choose to set their initial bail-in to h > 0, as indicated by the presence of the light-blue

region in the figure for � < �e. Notice that both panels in the figure illustrate the ordering

in equation (22): the initial bail-in for all banks below the cuto↵ �e is smaller than for those

banks just above the cuto↵, while the bail-in for their remaining investors is larger.

Comparing panel (a) in Figures 2 and 3, which are based on the same parameter values,

it is apparent for this example that bail-ins cover smaller portion of the losses in equilibrium

than in the planner’s allocation and that bailouts cover a larger portion. Our next result

shows that these properties are general.
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(a) When h = 0. (b) When h > 0.

Figure 3: Equilibrium allocation of losses

Proposition 8. In any equilibrium of the bail-in game, he (�) < h⇤ (�) holds for all � with

be (�) > 0. In addition, if be (�) > 0 holds for some �, we have

Z 1

�

be (�) dF (�) >

Z 1

�

b⇤ (�) dF (�) .

Whenever bailouts occur in equilibrium, the initial bail-ins chosen by those banks being

bailed out are smaller than in the planner’s allocation. In this sense, bailouts undermine

banks’ incentive to choose the socially-e�cient bail-in. In addition, the fact that the initial

bail-ins are too small at some banks implies that the total bailout expenditure is larger in

equilibrium than in the planner’s solution. The equilibrium allocation is e�cient only if the

fiscal capacity of the government is small enough that no bailouts occur in equilibrium.

5.3 Bank runs and multiplicity

In the planner’s allocation, investors withdrawing at t = 2 always receive more than investors

withdrawing from the same bank at t = 1. In equilibrium, however, this relationship may

not always hold. Proposition 8 shows that, for banks that are bailed out in equilibrium, the

initial bail-in is smaller than in the planner’s allocation. In addition, the ordering in equation

(22) implies that the equilibrium bail-ins applied at t = 2 in banks receiving bailouts are

larger than in the planner’s allocation. In some economies, these distortions are large enough

that investors who withdraw early receive more from their bank than investors who wait until

t = 2. These banks experience a run in which all investors attempt to withdraw at t = 1.
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Additional losses. A bank run creates a misallocation of resources because some patient

investors are served in period 1, before the bank’s investment has matured. As a result, the

total loss that must be allocated between bail-ins and bailouts in such a bank is larger than

1� �. For a bank experiencing a run, the feasibility constraint (2) becomes

⇡ (1� h (�)) c⇤1 + (1� ⇡)
⇣
1� ĥ (�)

⌘✓
⇡c⇤1 + (1� ⇡)

c⇤2
R

◆
 �+ b (�) .

As the second term on the left-hand side of this constraint indicates, a fraction ⇡ of the

1 � ⇡ investors who remain in the bank when it is placed in resolution are impatient and

will withdraw at t = 1. The other fraction (1� ⇡) are patient and will withdraw at t = 2.

The resolution process will bail in all of these investors at a common rate ĥ (�). Using the

resource constraint in equation (1) with equality, we can rewrite this feasibility constraint as

h (�) ⇡c⇤1 + ĥ (�) (1� ⇡) + b (�) � 1� �+ ⇡ (1� ⇡)

✓
c⇤1 �

c⇤2
R

◆
. (23)

The left-hand size of this expression is the sum of bail-ins and bailouts, as in equation (2).

The right-hand side is the loss on the bank’s assets plus the cost of the misallocation created

by the run, in which an additional measure ⇡ (1� ⇡) of investors are served at t = 1 rather

than at t = 2. That fact that the reference allocation satisfies c⇤1 > 1 and c⇤2 < R implies

that this misallocation cost is always strictly positive.

Figure 4 depicts the allocation of losses for an economy in which a bank run occurs in

equilibrium. For banks that are not bailed out (� > �e), the bail-ins cover the loss on the

bank’s assets, as before. For banks that are bailed out, however, the sum of bail-ins and

bailouts exceeds the loss on the bank’s assets, 1 � �, because of the misallocation. The

additional area at the top of the red region corresponds to the final term in equation (23)

for these banks.

Multiple equilibria. For some parameter values, the bail-in game will have multiple equi-

libria: one in which a run occurs on those banks being bailed out and another in which no

run occurs. This multiplicity arises because of a strategic complementarity in the bail-in

choices of banks receiving a bailout. Consider the decision problem of a bank that antici-

pates being bailed out, and suppose the bank’s investors will run if it sets its initial bail-in

to zero. Then the bank will set h(�) = h and avoid the run if condition (21) holds and will

set h(�) = 0 if the inequality is reversed. Note that the right hand side of condition (21)

depends on ĥmax, the bail-in of the bank’s remaining investors, which in turn depends on

the size of the bailout it receives.
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Figure 4: Allocation of losses with a run on some banks

When other banks choose an initial bail in of zero, they will be in worse condition after

the first ⇡ withdrawals for two reasons: no loss was imposed on their first ⇡ investors to

withdraw and the run has increased their total losses as shown in equation (23). This fact

will lead the fiscal authority to provide larger bailouts to these banks. These larger bailouts,

in turn, worsen the fiscal position for the government and lead to larger bail-ins ĥmax for

the remaining investors in all banks receiving bailouts. When ĥmax is larger, the right hand

side of equation (21) is smaller, making it more likely that the condition is violated and

an individual bank will find it optimal to set h(�) = 0. In other words, when other banks

choose not to bail in their first ⇡ investors, it becomes more attractive for an individual

bank to take the same action, even though doing so causes a run on the bank. Conversely,

when other banks choose an initial bail-in to prevent a run, preventing a run becomes more

attractive to an individual bank.

Our next result shows that this strategic complementarity is the only source of multiplic-

ity of equilibrium in the bail-in game.

Proposition 9. Either equilibrium in the bail-in game is unique or there are exactly two

pure-strategy equilibria, one in which no bank runs occur and one in which a run occurs on

all banks that are bailed out.

It bears emphasizing that this source of strategic complementarity is fundamentally di↵er-

ent from the usual complementarity in withdrawal decisions that arises in models in the

Diamond-Dybvig tradition. As described above, we remove that source of multiplicity by

assuming that investors withdraw early only if doing so is a strictly dominant strategy of the

withdrawal game within their bank. We also select the (unique) minimal-run equilibrium in

the overall withdrawal game across banks. The multiplicity that arises in our model comes

from a strategic complementarity in how banks allocate their resources, recognizing that

the allocation in one bank a↵ects others through the government’s bailout policy. For the
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(a) One example (b) Another example

Figure 5: The bailout cuto↵

remainder of the analysis, when multiple equilibria exist in the withdrawal game, we select

the equilibrium in which no runs occur on any banks.

5.4 The equilibrium bailout cuto↵

As suggested by the two panels of Figure 3, the equilibrium cuto↵ �e is increasing in the

amount of resources ⌧ available to the government. If ⌧ is su�ciently small, �e will equal �

and the bail-in covers the total loss in all banks. When ⌧ is larger, the equilibrium bailout

cuto↵ is interior, which implies that some banks’ losses are divided between the public sector

and the private sector. Our next proposition formalizes these results.

Proposition 10. The equilibrium bailout cuto↵ �e is increasing in ⌧ , and is strictly increas-

ing whenever �e 2
�
�, 1
�
.

This result is illustrated in Figure 5, which plots the equilibrium cuto↵ �e as a function of

⌧ for two di↵erent sets of parameters.22 In both cases, the cuto↵ is strictly increasing in ⌧

whenever it lies above �.

The figure also shows that the equilibrium bailout cuto↵ �e can be either larger or

smaller than the planner’s cuto↵ �⇤. To understand why, consider the bank that lies exactly

at the planner’s bailout cuto↵. In the planner’s allocation, the bail-in applied to this bank’s

investors is the same as that applied in all banks that receive a bailout: 1 � �⇤. (See

Proposition 2.) Suppose first that we hold the bail-in of the bank’s remaining 1�⇡ investors

fixed at 1 � �⇤ and allow the bank to choose its initial bail-in. In this situation, the bank

would clearly choose a smaller bail-in (either zero or h, according to condition (21)) since

22Panel (a) uses the same parameter values as Figure 2, while in panel (b) the coe�cient of relative risk
aversion for the functions u and v is increased from 2 to 10.
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the extra resources paid out to the first ⇡ investors are fully replaced by a bailout. The same

logic applies to banks with realizations slightly above �⇤, which implies that these banks

would also choose smaller initial bail-ins and receive bailouts. In this way, the moral hazard

problem in the marginal bank’s choice of initial bail-in tends to push the equilibrium bailout

cuto↵ �e higher relative to the planner’s cuto↵ �⇤.

When we take into account the change in behavior of other banks, however, a counter-

vailing e↵ect arises. In equilibrium, all banks receiving a bailout set their initial bail-ins

smaller than in the planner’s allocation. These actions will lead the fiscal authority to spend

more resources on bailout payments, which decreases the level of the public good and raises

the marginal value of funds in the public sector. As a result, the bail-in ĥmax applied to

the remaining investors in banks that are bailed out increases. Returning to the decision

problem of bank �⇤, this increase in ĥmax makes it less attractive for the bank to lower its

initial bail-in, since the bailout it receives will be less generous. This same logic applies to

banks with realizations slightly below �⇤: choosing h(�) = 1� � and not receiving a bailout

becomes more attractive. In this way, the moral hazard problem at those banks that have

large losses and are bailed out in equilibrium tends to discourage the marginal bank from

seeking a bailout and thereby push the equilibrium bailout cuto↵ �e
lower relative to the

planner’s cuto↵ �⇤.

In panel (a) of Figure 5, the equilibrium cuto↵ is higher than the planner’s cuto↵ for all

values of ⌧ , meaning that more banks receive bailouts in equilibrium than in the planner’s

allocation. In panel (b), in contrast, the countervailing e↵ect dominates for some values of ⌧

and fewer banks receive bailouts than in the planner’s allocation. Recall that, even in these

cases, total bailout payments are larger in equilibrium than in the planner’s allocation, as

established in Proposition 8.

It is also worth noting that the equilibrium bailout cuto↵ increases discontinuously in

both panels, at about ⌧ = 0.5 in panel (a) and at about ⌧ = 1.2 in panel (b). These jumps

reflect a shift in the initial bail-in chosen by banks being bailed out from zero to h. This

shift improves the fiscal position of the government, which leads to banks with even higher

realizations of � receiving bailouts.

5.5 Discussion

Source of fragility. In choosing their initial bail-in h(�), banks know whether or not each

choice will lead to a run by their investors. A run leads to a misallocation of the bank’s

resources and lowers the welfare of its investors in much the same way as the existing litera-

ture. Moreover, the bank always has the ability to prevent a run by choosing a larger initial
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bail-in. However, by putting the bank in better financial condition, this bail-in may reduce

the bailout payment the bank receives. In some cases, the bank would choose to tolerate a

run as a side e↵ect of the plan that maximizes the total amount of payments it can make to

its investors, including those financed by a bailout. This approach is in sharp contrast to the

existing literature, which assumes that banks are initially unaware that a run is underway

and/or cannot take any action to prevent the run.23 The source of financial fragility in our

model is novel: the anticipation of being bailed out can make bail-ins unattractive, even

when a bail-in could prevent a run.

Disciplining e↵ect of runs. In other cases, such as the one depicted in panel (b) of Figure

3, banks do find it optimal to impose the bail-in h to prevent a run. In these situations,

the threat of a run is disciplining the behavior of banks that will be bailed out in the

sense of moving their choice of initial bail-in closer to what the planner would choose. This

disciplining role of bank runs is similar in spirit to Calomiris and Kahn (1991) and Diamond

and Rajan (2001), where depositors design a fragile banking contract that will lead to a run

if the banker tries to misappropriate funds. In our setting, fragility is not a design choice; it

emerges naturally from the incentives created by the bailout policy chosen by a government

with limited commitment. Inspired by this earlier literature, however, one might ask whether

the regulator can use this disciplining e↵ect of runs to design regulations that improve on

the equilibrium allocation. We address this question in the next section.

6 Regulation

Proposition 8 demonstrates that the allocation of resources resulting from equilibrium play

in the bail-in game is ine�cient: the initial bail-ins are too small in the aggregate and the

bailouts are too large. These distortions can, in addition, lead to runs on those banks that are

bailed out, as illustrated in Figure 4. These results naturally raise the question of whether

regulation can improve equilibrium outcomes. The regulator in our model can restrict the

payments made by banks to the first ⇡ investors who withdraw. If the regulator could observe

the realized � in each bank, it could mandate that each bank set the same initial bail-in as the

planner, h⇤(�). It is straightforward to show that the subsequent actions – the withdrawal

decisions of investors, the bailouts chosen by the fiscal authority, and the remaining bail-ins

23Diamond and Dybvig (1983), Cooper and Ross (1998), Goldstein and Pauzner (2005) and many others
assume the bank must pay the promised amount to depositors at t=1 until it has run out of resources; no
bail-in is allowed. Peck and Shell (2003), Ennis and Keister (2009b), and Sultanum (2014) and others allow
the bank to freely bail-in investors, but assume withdrawal decisions can be conditioned on an extrinsic,
sunspot variable that is not observed by the bank.
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ĥ – would all match the planner’s allocation as well. However, the regulator faces the same

information friction as the rest of the public sector: it observes bank-specific information

with a delay. As the first fraction ⇡ of investors withdraw, the regulator only knows the

aggregate state and the distribution of losses across banks.

What should the regulator do? In this section, we study three di↵erent ways the regulator

might restrict banks’ choice of initial bail-in and discuss the implications of each policy for

equilibrium behavior and welfare.

6.1 System-wide mandatory bail-ins

The simplest option is for the regulator to mandate a system-wide bail-in, that is, a common

initial bail-in to be applied at all banks. We denote the level of this bail-in by hreq. Under

this policy, each bank’s choice set in the bail-in game is a single element, h(�) = hreq, so

equilibrium in the game is trivial. The regulator chooses hreq to maximize the sum of utilities

of all investors in the economy.

Looking back at the two panels in Figure 3, this policy will make the height of the

light blue region, which measures the losses imposed on the first ⇡ investors to withdraw,

uniform across all banks. The primary benefit of this policy is that it can be used to

increase the initial bail-ins at those banks that are bailed out in equilibrium, moving them

closer to the planner’s allocation. One cost of the policy is that it requires an initial bail-in

that is larger than appropriate at banks with small or no losses. These points highlight

the fundamental tradeo↵ facing a regulator with limited information: mandatory bail-ins

improve the allocation of resources in some banks, but are counterproductive for others. The

optimal policy of this type will tend to raise welfare when the distribution F has relatively

few banks with small or no losses and when the fiscal capacity of the government is large,

so that many banks are bailed out in the equilibrium with no regulation. In such cases,

the benefit of increasing the initial bail-in at banks whose incentives are distorted by the

anticipation of being bailed out is large, while the aggregate cost of imposing a bail-in on

banks whose incentives are not distorted will be small because relatively few banks are in

this situation.

There is another, more subtle cost of a system-wide bail in policy: the mandated bail-in

may be smaller than what some banks choose in the absence of regulation. Looking again

at Figure 3, consider a bank that is just above the equilibrium bailout cuto↵ �e when there

is no regulation. Because it is not being bailed out, this bank chooses he(�) = 1 � � to

allocate its loss evenly across its investors. The best mandatory bail-in hreq may require that

this bank decrease its initial bail-in, which implies shifting some of the loss away from the
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first ⇡ investors to withdraw and onto the remaining 1 � ⇡ investors. This shift not only

distorts the allocation of resources in the bank, it can also push the bank into the bailout

region and, in some cases, may even provoke a run on the bank. In such a situation, both the

regulator and the investors in these banks would prefer that the bail-in be set higher than

the mandated value. This logic points to a potentially better policy option: allowing banks,

at their discretion, to set a larger initial bail-in than the one specified by the regulator. We

call this type of policy a mandatory minimum bail-in.

6.2 Mandatory minimum bail-ins

Suppose now that the regulator chooses a minimum bail-in requirement, denoted hmin, but

allows banks to set a larger initial bail-in if doing so raises the expected utility of their

investors. Specifically, banks’ choice of initial bail-in must now satisfy

h(�) � hmin for all � 2 �.

Under this policy, banks once again have a non-trivial choice set in the bail-in game, and we

study equilibrium in this game as specified in Definition 2, but with the choice set for each

bank adjusted to h 2 [hmin, 1].

Improving the allocation of resources. The regulator will choose hmin to maximize the

expected utility of all investors in the economy; let h⇤
min denote the optimal policy of this

type. Note that the economy without regulation studied in Section 5 corresponds to the

special case of this policy where hmin = 0. A mandatory minimum bail-in policy will be

useful, therefore, if and only if the optimal policy satisfies h⇤
min > 0. Our next proposition

provides a su�cient condition for this result to obtain.

Proposition 11. If the equilibrium of the economy without regulation has he(�) = 0 for

those � with be(�) > 0, then h⇤
min > 0.

This result applies when, in the equilibrium with no regulation, banks that are bailed out

choose an initial bail-in of zero, as in panel (a) of Figure 3. In setting hmin > 0, the regulator

faces the tradeo↵ described above. The benefit comes from decreasing the consumption of

the first ⇡ investors in banks that are bailed out and increasing the consumption of both

their remaining 1� ⇡ investors and of the public good. The cost comes from distorting the

allocation of resources in banks with small or no losses, where the e�cient bail-in would be

close or equal to zero. However, since the allocation of resources within the latter banks
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was e�cient without any regulation, increasing hmin above zero initially has only a second-

order e↵ect on the utility from private consumption in these banks. The welfare gain from

imposing a bail-in at those banks that are bailed out, in contrast, is first order. For this

reason, welfare is initially increasing in hmin and the optimal policy will involve a positive

minimum bail-in. Note that allowing banks to choose a bail-in above the specified minimum

is crucial for this result to obtain. If banks with moderate losses were required to decrease

their bail-in to the mandated level, as with the previous policy considered, the welfare cost

of the resulting misallocation would be first order and there would be no guarantee that

setting hmin > 0 would be desirable.

Panel (a) of Figure 6 presents the allocation of losses under the optimal minimum bail-in

policy for the same parameter values as in panel (a) of Figure 3. Comparing the two panels

shows how the policy creates a positive initial bail-in for all banks, including those that are

bailed out. This change makes both the bail-in of the remaining investors and the bailout

at these banks smaller. In addition, the policy shifts the equilibrium bailout cuto↵ �e to

the left, meaning that fewer banks are bailed out. This shift occurs because the minimum

bail-in reduces the incentive for a bank at the margin to distort its bail-in choice in order to

qualify for a bailout. As a result, more banks choose to set h(�) = 1� � and not be bailed

out. Finally, note that the banks just above the bailout cuto↵ �e in panel (a) of Figure 6

are choosing to set their initial bail-in higher than the minimum value, which demonstrates

that providing this option does indeed raise welfare in this example.

(a) Allocation of losses under h⇤
min (b) Preventing a run

Figure 6: Mandatory minimum bail-in policy

Preventing runs. In some cases, a mandatory minimum bail-in can also enhance financial

stability. Consider, for example, the economy depicted in Figure 4 above, where investors run

on all banks below the bailout cuto↵ in the equilibrium with no regulation. Because these
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banks are setting h(�) = 0, Proposition 11 implies that a minimum bail-in policy can raise

welfare. Panel (b) of Figure 6 shows that, in addition, the optimal minimum bail-in policy

eliminates the bank runs in this economy. The intuition for this result is straightforward:

imposing a bail-in on the early withdrawals from these banks makes it less attractive for

a patient investor to withdraw early. In addition, by improving the fiscal position of the

government, the policy decreases the bail-in applied to the bank’s remaining investors and

thereby makes waiting to withdraw more attractive. If the minimum bail-in is set high

enough, no bank runs will occur in the resulting equilibrium.

Panel (b) of Figure 6 also illustrates a more subtle result: banks with the highest values

of � (above about 0.8) are choosing the minimum bail-in, but all other banks are choosing

a larger bail-in, including those banks that are being bailed out. Why would a bank that

anticipates being bailed out set a larger initial bail-in than required? The answer is that

these banks would experience a run if they choose hmin and are instead choosing to set the

smallest bail-in that will prevent a run, h as defined in equation (20). When there was no

regulation, the benefit to these banks of choosing an initial bail-in of zero outweighed the

cost of su↵ering a run. The minimum bail-in policy changes this calculation. When the first

⇡ investors must be bailed in by at least h⇤
min, these banks find it optimal to bail them in

a bit more and avoid the costs associated with a run. In other words, these banks’ choices

are being disciplined partially by the regulation and partially by the threat of a run. The

regulator can use this fact to its advantage when choosing hmin, which helps minimize the

distortion of the allocation in banks with small or no losses.

This example illustrates that care must be taken when assessing the observed e↵ects of a

minimum bail-in policy. Under the optimal policy in panel (b) of Figure 6, the minimum bail-

in is binding only at the banks with the smallest losses. One might be tempted to conclude

that the policy is ine↵ective: it is distorting the allocation of resources in the strongest banks,

but appears not to be a↵ecting the choices of weaker banks. This conclusion is incorrect, of

course; absent the policy, the weakest banks would set their initial bail-ins to zero and bank

runs would occur, as shown in Figure 4.

6.3 Optional minimum bail-ins

One clear cost of the policies discussed so far is that they inevitably distort the allocation

of resources in banks with small or no losses. If there are many such banks, imposing a

mandatory minimum bail-in may be undesirable. However, the discussion above of how

regulation interacts with the disciplining e↵ect of bank runs points to another policy option,
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which we call an optional minimum bail-in. Banks’ choice set under this policy is given by

h(�) � hmin or h(�) = 0 for all � 2 �.

In other words, banks can choose an initial bail-in equal to hmin or larger, or they can

choose zero. The restriction imposed by the regulation is that the initial bail-in cannot lie

in between zero and hmin.

This type of policy may be desirable when, in the equilibrium without regulation, banks

that receive bailouts choose an initial bail-in of h > 0 to avoid a run, as in panel (b) of

Figure 3. The first inequality in equation (20) implies that h is smaller than the bail-in the

planner would set at these banks and, therefore, the regulator would like to require them to

set a larger bail-in. Doing so using either of the policies described above, however, would

create significant distortions at banks with small or no losses.

In this situation, the regulator can leverage the disciplining e↵ect of bank runs using a

policy that leads banks to e↵ectively self-select. If hmin is set slightly above h, banks that

will be bailed out will still prefer hmin to setting their bail-in to zero and su↵ering a run.

This fact allows the regulator to add h(�) = 0 to the choice set without it being used by

banks that anticipate being bailed out. Since banks with small or zero losses will choose

h(�) = 0, the minimum bail-in hmin no longer distorts the allocation of resources at these

banks. This fact, in turn, makes the regulator more willing to set hmin above h to control

the moral hazard problem at banks that will be bailed out.

Panel (a) of Figure 7 depicts the allocation of losses under the optimal optional minimum

bail-in policy for the same parameter values as panel (b) of Figure 3. For banks below the

equilibrium bailout cuto↵ �e, the e↵ect of the policy is as before: it increases the initial

bail-in and decreases both the remaining bail-in and bailout. The novel feature comes for

banks with the highest values of �, who now choose h(�) = 0. Because half of the banks

in our example have no loss, allowing them to set a zero bail-in brings a substantial welfare

gain. It also makes the regulator willing to set hmin higher than h, improving the bail-in

choices of banks that are bailed out.

Panel (b) of the figure plots equilibrium welfare as a function of hmin for both the manda-

tory and the optional minimum bail-in policies. In this example, a mandatory minimum bail-

in policy (the solid blue curve) always lowers welfare. As hmin is increased above zero, the

policy is initially binding only for banks with small or no losses, where it introduces a distor-

tion into an allocation that was previously e�cient. This distortion is initially second-order,

but becomes significant as hmin increases. When hmin reaches h, which is approximately

0.25, the policy begins to improve the choices of banks that will be bailed out, which creates
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(a) Optional minimum bail-in (b) Welfare comparison

Figure 7: Optional minimum bail-in

an upward kink in the curve in the figure. However, the cost of the distortion it creates at

banks with small or no losses is large enough at this point that welfare is still lower than

with no policy.

Under the optimal minimum bail-in policy (the dashed red curve), welfare is again initially

decreasing as hmin is increased above zero. However, since banks with no loss can now choose

a bail-in of zero, the welfare loss is much smaller and the curve in the figure appears almost

flat. There is again an upward kink as hmin crosses h and the policy begins to a↵ect the

choices of banks that will be bailed out. Because the distortions created by this policy are

much smaller than with a mandatory minimum, this benefit now outweighs the costs and

adopting the policy raises welfare.

When the optional minimum passes a second threshold, approximately at hmin = 0.32,

banks that will be bailed out would prefer to set h(�) = 0 even though doing so triggers a

run. This shift leads to a sharp decrease in welfare, as bank runs lead to early liquidation of

investment and bailouts increase. The optimal policy in this example is to set hmin to the

highest value for which banks that anticipate a bailout will choose hmin over h(�) = 0.

7 Concluding remarks

Several policy reforms implemented in response to the financial crisis of 2008 aim to give

financial intermediaries the ability to more easily impose losses on their investors and/or

creditors without declaring bankruptcy or being placed in resolution. Examples include

allowing money market mutual funds to restrict withdrawals and impose withdrawal fees,

39



the introduction of swing pricing in the mutual fund industry more generally,24 and the

adoption of rules encouraging the issue of “bail-inable” bank debt. These reforms aim to

allow intermediaries to better handle periods of financial stress without the need for bailouts

or other forms of public support. While it remains to be seen how e↵ective these reforms will

be across a range of situations, the indications to date are not encouraging. At the onset of

the COVID-19 crisis in the U.S. in March 2020, the Federal Reserve and U.S. Treasury moved

quickly to “assist money market funds in meeting demands for redemptions” by creating a

special facility to finance the purchase of assets from these funds.25 The new tools designed

for dealing with high redemption demand– restricting withdrawals or imposing withdrawal

fees – were not used by any fund. This episode serves as a clear warning that financial-

stability policies that rely on intermediaries choosing to quickly bail in their investors in

periods of financial stress may be ine↵ective.

Our model helps illustrate the incentive problems that can undermine the e↵ectiveness of

these types of policies and points to a better approach. Banks and other intermediaries an-

ticipate that, when the situation is bad enough, the public sector will respond with bailouts.

It does not seem feasible for governments to commit to a strict no-bailout policy, and such

a policy may not even be desirable; in our environment, it is optimal for the public sector

to absorb some of the tail risk in economic outcomes. Either way, the anticipation of being

bailed out undermines the incentive for an intermediary to quickly bail in its investors and

creditors, even if it has complete flexibility in choosing the bail in. As a result, equilibrium

bail-ins are ine�ciently small and bailouts are ine�ciently large. Moreover, the unwilling-

ness of intermediaries to bail-in can be a source of fragility: it can lead to runs by investors

that deepen the crisis and lead to even larger bailouts.

A regulator can improve financial stability and welfare in our model by mandating system-

wide bail-ins at the onset of a crisis. While a “one size fits all” bail-in may create substantial

distortions in some intermediaries, the regulator can design the policy to maximize the

benefits while keeping these distortions to a minimum. For example, the policy should

specify a minimum bail-in, but allow intermediaries to choose a larger bail-in if doing so is

in the best interests of their investors. In some cases, the policy may allow intermediaries

to opt out of the bail-in if they can do so without causing their investors to lose confidence

and run.

These recommendations can be implemented across a range of intermediation arrange-

24See Chen et al. (2010) for evidence of strategic complementarities in the withdrawal decisions of investors
in open-end mutual funds where the price is set daily according to the net asset value of the fund. Jin et al.
(2019) study the ability of swing pricing to remove these complementarities and prevent runs.

25Detailed information on the Money Market Mutual Fund Liquidity Facility is available at www.
federalreserve.gov/monetarypolicy/mmlf.htm.
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ments. In general terms, our results provide support for calls to restrict dividend payments

and share repurchases by banks in the early stages of a crisis. Banks could also be required

to issue debt that is either automatically written down or converted to equity based on a

systemic trigger. Similarly, a minimum withdrawal fee could be imposed at all money market

mutual funds based on a systemic rather than a fund-specific trigger. One interesting area

for future research is adapting our model to the specific institutional features of di↵erent

intermediation arrangements and deriving the prescriptions for bail-in policy at a finer level

of detail.
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Appendix: Proofs

Proposition 1. The e�cient plan satisfies h⇤ (�) = ĥ⇤ (�) for each � 2 �. That is, all

investors within a bank face the same bail-in.

Proof. To begin, note that the resource constraint (3) will hold with equality for all � at

the solution to the planner’s problem. The non-negativity restrictions then imply that the

planner will set h (1) = ĥ (1) = b(1) = 0. In other words, investors in banks with zero

loss are neither bailed in nor bailed out. For banks with � < 1, let � (�) f (�) denote the

multiplier on the resource constraint (3), where f is the density function of the distribution

F on [�, 1). We can then write the first-order conditions for the optimal choice of h (�) as26

u0 ((1� h (�)) c⇤1) � � (�) and h (�) [u0 ((1� h (�)) c⇤1)� � (�)] = 0 (24)

and for the optimal choice of ĥ (�) as

u0
⇣⇣

1� ĥ (�)
⌘
c⇤2

⌘
� � (�)

R
and ĥ (�)


u0
⇣⇣

1� ĥ (�)
⌘
c⇤2

⌘
� � (�)

R

�
= 0. (25)

We will show that the solutions to these two sets of equations are necessarily the same,

considering the cases of boundary and interior solutions separately.

First, suppose the solution has h (�) = 0 for any given �. Then equation (24) implies

u0 (c⇤1) � � (�) .

The reference allocation (c⇤1, c
⇤
2) is characterized by the standard optimality condition in the

Diamond-Dybvig framework,

u0 (c⇤1) = Ru0 (c⇤2) .

Combining these two equations yields

u0 (c⇤2) �
� (�)

R

and, therefore, the unique ĥ (�) satisfying the conditions in equation (25) is ĥ (�) = 0.

Next, suppose the solution has h (�) > 0 for any given �. Then equation (24) implies

u0 ((1� h (�)) c⇤1) = � (�) .

26Note that the Inada conditions on the function u imply that the upper bounds on h (�) and ĥ (�) in equation
(3) will never bind at the solution to the problem.
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Given that the utility function u is of the constant-relative-risk-aversion form, the ratio of

marginal utilities depends only on the ratio of consumption levels, that is, we have

u0 (↵c⇤1)

u0 (↵c⇤2)
=

u0 (c⇤1)

u0 (c⇤2)
= R (26)

for any ↵ > 0. These last two equations imply that we have

u0 ((1� h (�)) c⇤2) =
� (�)

R

and, therefore, setting ĥ (�) = h (�) is the unique solution to equation (25). Combining these

two cases, we have shown that ĥ (�) = h (�) holds for all �, which establishes the result.

Proposition 2. There exists �⇤ 2 � such that the e�cient plan (h⇤, b⇤) has the form:

h⇤ (�) =

(
1� �

1� �⇤

)
and b⇤ (�) =

(
0

�⇤ � �

)
as �

(
�
<

)
�⇤.

Proof. Letting z � 0 denote the measure of banks with � = 1, we can rewrite the objective

function in equation (7) as

Z 1

�

U (1� h (�)) f (�) d�+ zU (1) + v

 
⌧ �

Z 1

�

(1� �� h (�)) f (�) d�

!
.

Let µ (�) f (�) denote the multiplier on the non-negativity constraint for h (�) and let

µ̄ (�) f (�) denote the multiplier on upper bound of h (�). Then the first-order conditions

U 0 (1� h (�)) = v0 (g) + µ (�)� µ̄ (�) , (27)

the complementary slackness conditions

µ (�)h (�) = 0 and µ̄ (�) [h (�)� (1� �)] = 0, (28)

and non-negativity of the multipliers

µ (�) � 0 and µ̄ (�) � 0 for all � 2
⇥
�, 1

⇤
(29)

are necessary and jointly su�cient for a solution to the problem. We break the analysis into

two cases.
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Case (i) : Suppose the following inequality holds:

v0 (⌧) � U 0 ��
�
. (30)

Then concavity of U implies that v0 (⌧) � U 0 (�) holds for all �. In this case, is is straight-

forward to check that the following values are the unique solution to equations (27) – (29):

h (�) = 1� �, which implies b (�) = 0, µ (�) = 0 and

µ̄ (�) = v0 (⌧)� U 0 (�) � 0 for all �.

Note that this solution corresponds to the form in the statement of the proposition with

�⇤ = �. Intuitively, this case corresponds to a situation in which the government’s fiscal

capacity ⌧ is small enough that the planner would choose to make no bailout payments to

any bank.

Case (ii) : Next, suppose the inequality in equation (30) is reversed. Define the functions

g1 (�) ⌘ U 0 (�)

and

g2 (�) ⌘ v0
 
⌧ �

Z �

�

(�� x) dF (x)

!
.

It is straightforward to show that g1 is continuous and strictly decreasing on the interval
⇥
�, 1
⇤
, and that g2 is continuous and strictly increasing on the same domain. Moreover, the

fact that the inequality in (30) does not hold implies

g1
�
�
�
> g2

�
�
�
,

while the upper bound on ⌧ in equation (4) implies

g1 (1) < g2 (1) .

It follows that there exists a unique �⇤ 2
�
�, 1
�
satisfying g1 (�⇤) = g2 (�⇤), or

U 0 (�⇤) = v0
 
⌧ �

Z �⇤

�

(�⇤ � �) dF (�)

!
. (31)

In this case, the unique solution to equations (27) – (29) has the following properties. For
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� � �⇤, it sets h (�) = 1� �, which implies b (�) = 0, and sets � (�) = 0 and

�̄ (�) = v0
 
⌧ �

Z �⇤

�

(�⇤ � �) dF (�)

!
� U 0 (�) � 0,

where the non-negativity of this expression follows from the concavity of U . For � < �⇤, it

sets h (�) = 1 � �⇤, which implies b (�) = �⇤ � �, and sets � (�) = �̄ (�) = 0. Intuitively,

equation (31) characterizes the cuto↵ value �⇤ by identifying the bank whose investors’

marginal value of private consumption with no bailout exactly equals the marginal value of

public consumption at the solution. All banks with larger losses than this cuto↵ receive a

bailout that keeps their bail-in equal to the maximum value 1� �⇤. All banks with smaller

losses receive no bailout.

Proposition 3. The e�cient bailout cuto↵ �⇤
is strictly increasing in ⌧ whenever �⇤ 2

�
�, 1
�
.

Proof. If �⇤ 2
�
�, 1
�
, the first-order condition (31) implicitly defines �⇤ as a function of the

parameter ⌧ . Di↵erentiating this equation with respect to ⌧ yields

U 00 (�⇤)
d�⇤(⌧)

d⌧
= v00 (⌧ � B(⌧))

✓
1� dB(⌧)

d⌧

◆
, (32)

where B(⌧) is the aggregate bailout as a function of ⌧ ,

B(⌧) ⌘
Z �⇤(⌧)

�

(�⇤(⌧)� �) dF (�) .

Di↵erentiating this last equation with respect to ⌧ yields

dB(⌧)

d⌧
=

d�⇤(⌧)

d⌧
F (�⇤(⌧)) .

Substituting this expression into equation (32) and solving yields

d�⇤(⌧)

d⌧
=

v00 (⌧ � B(⌧))

U 00 (�⇤) + F (�⇤(⌧)) v00 (⌧ � B(⌧))
> 0,

which is strictly positive because the functions U and v are strictly concave.

Proposition 4. For any (h, y), there exists a unique ĥmax 2 [0, 1] such that the fiscal
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authority’s bailout policy b will imply

ĥ(�)  ĥmax for all �, with equality if b(�) > 0.

Proof. The marginal value of resources in a bank that has  units of the good per remaining

investor after ⇡ withdrawals can be determined by di↵erentiating equation (9) with respect

to  ,

V1 ( , y) =

(
u0 (R )R

⇡u0 ( c⇤1) c
⇤
1 + (1� ⇡)u0( c⇤2)c

⇤
2

)
as

(
y = 2

y = 1

)
.

Using equation (14), we can rewrite these expressions in terms of the bail-in ĥ faced by each

of the bank’s remaining investors,

V1 ( , y) =

8
<

:
u0
⇣
(1� ĥ)c⇤2

⌘
R

⇡u0
⇣
(1� ĥ)c⇤1

⌘
c⇤1 + (1� ⇡)u0((1� ĥ)c⇤2)c

⇤
2

9
=

; as

(
y = 2

y = 1

)
. (33)

Since u is of the constant-relative-risk-aversion form, we can use equations (6) and (26) to

write

u0
⇣
(1� ĥ)c⇤1

⌘
= Ru0

⇣
(1� ĥ)c⇤2

⌘
= U 0

⇣
1� ĥ

⌘
.

Using this result, together with the feasibility constraint in (1), the two expressions for

dV/d in (33) can be shown to be equal, allowing us to write

V1 ( , y) = U 0
⇣
1� ĥ

⌘
for y 2 {1, 2} . (34)

Substituting this expression into equations (12) – (13), we can write the first-order conditions

that characterize the fiscal authority’s choice of bailout policy as saying that, for each bank

�, we have either

U 0
⇣
1� ĥ(�)

⌘
 v0 (g) and b (�)

h
v0 (g)� U 0

⇣
1� ĥ(�)

⌘i
= 0 (35)

or

U 0
⇣
1� ĥ(�)

⌘
> v0 (g) and b (�) = b̄ (�, h(�), y(�)) , (36)

where g is determined by the choice of bailouts b as shown in equation (11). We divide the

analysis into two cases.
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Case (i): First, suppose

U 0 (1) � v0
 
⌧ �

Z 1

�

b̄ (�, h(�), y(�)) dF (�)

!
(37)

holds. Then the conditions in equation (36) will hold at the solution for all �. In other

words, the fiscal authority will set the bailout b(�) to its upper bound, which corresponds

ĥ (�) = 0, for all banks. In this case, the unique value of ĥmax is zero.

Case (ii): If the inequality in equation (37) is reversed, then the upper bound b̄ will not bind

for any � and the bailout b(�) will satisfy the conditions in equation (35) for all banks. It

follows directly from these conditions that all banks with b(�) > 0 will have the same bail-in

h(�). Define ĥmax to be this common value, that is, the bail-in satisfying

U 0
⇣
1� ĥmax

⌘
= v0 (g) . (38)

Equation (35) and the concavity of U then imply ĥ(�)  ĥmax for all � with b(�) = 0. To

show that there is a unique value hmax with this property, we use equations (8) and (14) to

write the bailout b (�) received by each bank in terms of its bail-in for remaining investors

ĥ (�),

b (�) =

(
1� �� h(�)⇡c⇤1 � ĥ(�)(1� ⇡) c

⇤
2
R

1� �+ ⇡ (1� ⇡)
⇣
c⇤1 �

c⇤2
R

⌘
� h(�)⇡c⇤1 � ĥ(�)(1� ⇡)

)
as y (�) =

(
2

1

)
.

The results above then imply that we can write the bailout for each bank in terms of the

maximum bail-in ĥmax as

b
⇣
�; ĥmax

⌘
= max

⇢
1� �� h(�)⇡c⇤1 � ĥmax(1� ⇡)

c⇤2
R
, 0

�

for banks with y(�) = 2 and as

b
⇣
�; ĥmax

⌘
= max

⇢
1� �+ ⇡(1� ⇡)

✓
c⇤1 �

c⇤2
R

◆
� h(�)⇡c⇤1 � ĥmax(1� ⇡), 0

�
(39)

for banks with y(�) = 1. Note that b
⇣
�, ĥmax

⌘
is a continuous, weakly decreasing function

of ĥmax for all �. The level of the public good is then related to ĥmax by

g
⇣
ĥmax

⌘
= ⌧ �

Z 1

�

b
⇣
�, ĥmax

⌘
dF (�).
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The properties of b
⇣
�, ĥmax

⌘
imply that g is a continuous, increasing function of ĥmax.

Substituting this function into equation (38) and solving for ĥmax on the left-hand side, we

can say that any ĥmax associated with the fiscal authority’s choice of bailouts will satisfy

ĥmax = 1� U 0�1
h
v0
⇣
g
⇣
ĥmax

⌘⌘i
⌘ z

⇣
ĥmax

⌘
. (40)

The function z defined in this equation is continuous and decreasing for all ĥmax 2 [0, 1]. It

follows that there exists a unique solution for ĥmax 2 [0, 1].

Proposition 5. For each profile of initial haircuts h, there is unique minimal-run equilibrium

of the overall withdrawal game.

We begin by establishing two lemmas and then use these preliminary results to construct a

sequence of withdrawal profiles y that converges to the unique minimal-run equilibrium. The

profile of initial bail-ins h is held fixed throughout. For any profile y of withdrawal behavior

across banks, define P (y) to be the set of banks that experience a run, that is,

P (y) = {� 2 � : y(�) = 1} .

Proposition 4 establishes that, for any profile y, the fiscal authority’s bailout policy generates

a maximum bail-in for remaining investors ĥmax(y). Our first step is to establish that when

a run occurs at a larger set of banks, this maximum bail-in increases.

Lemma 1. The maximum bail-in ĥmax established in Proposition 4 satisfies

P (y2) ◆ P (y1) ) ĥmax(y2) � ĥmax(y1). (41)

Proof. The resource constraint in equation (3) for a bank whose investors do not run will

hold with equality when the bank distributes its resources optimally. Solving this equality

for the bailout received by the bank yields

b (�) = 1� �� h(�)⇡c⇤1 � ĥ(�)(1� ⇡)
c⇤2
R
.

Using Proposition 4, we can rewrite this expression as a function of ĥmax,

b (�) = max

⇢
1� �� h(�)⇡c⇤1 � ĥmax(1� ⇡)

c⇤2
R
, 0

�
. (42)

Intuitively, the bail-in of remaining investors in all banks that receive a bailout is equal to

ĥmax, while any bank with a smaller bail-in receives zero bailout. Applying the same logic to
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equation (23), which is the resource constraint for a bank whose investors do run, we have

b (�) = max

⇢
1� �+ ⇡(1� ⇡)

✓
c⇤1 �

c⇤2
R

◆
� h(�)⇡c⇤1 � ĥmax(1� ⇡), 0

�
. (43)

Holding the bail-ins h(�) and ĥmax fixed, it is straightforward to show that the expression in

equation (43) is larger than that in equation (42), and strictly larger if it is strictly positive.27

In other words, a bank will receive a larger bailout if it experiences a run, since the extra

withdrawals at t = 1 would otherwise decrease the consumption of its remaining investors.

In addition, it is easy to see that, holding h and the withdrawal behavior y(�) fixed, the

bailout b(�) in both expressions is decreasing in ĥmax, and strictly decreasing if the bailout

is positive.

Let b
⇣
�; ĥmax, y(�)

⌘
denote the bailout amount from equation (42) when y(�) = 2 and

from equation (43) when y(�) = 1. Let g
⇣
ĥmax, y

⌘
denote the level of public good when the

bail-in of all remaining investors is fixed at ĥmax and the withdrawal behavior across banks

is given by y, that is,

g
⇣
ĥmax, y

⌘
= ⌧ �

Z 1

�

b
⇣
�; ĥmax, y(�)

⌘
dF (�) .

This discussion above establishes that (i) g in increasing in ĥmax and (ii) P (y2) ◆ P (y1)

implies g
⇣
ĥmax, y2

⌘
 g

⇣
ĥmax, y1

⌘
. In other words, when runs occur at more banks, holding

ĥmax fixed, more public resources are spent on bailouts and fewer public goods are provided.

To establish the lemma, we combine these results with the characterization ĥmax given

in equation (38) in the proof of Proposition 4,

u0
⇣⇣

1� ĥmax

⌘
c⇤1

⌘
= v0

⇣
g
⇣
ĥmax, y

⌘⌘
.

When P (y2) ◆ P (y1), the level of the public good g would tend to decrease if we hold

ĥmax fixed, raising the marginal utility of public consumption. For this condition to remain

satisfied, the maximum bail-in ĥmax must increase. Therefore, we have ĥmax(y2) � ĥmax(y1),

as desired.

Our second step is to establish that if a bank experiences a run for a given maximum bail-in,

it will also experience a run if the maximum bail-in increases. For any value of ĥmax, define

⇤
⇣
ĥmax

⌘
to be the set of banks that would experience a run if we hold the maximum bail-in

27This result follows from the fact that the e�cient allocation satisfies 1 < c⇤1 < c⇤2 < R and the Inada
condition on the utility function u implies ĥmax < 1.
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fixed at this level, that is

⇤
⇣
ĥmax

⌘
=
n
� 2 � :

⇣
1� ĥ(�)

⌘
c⇤2 < (1� h(�)) c⇤1

o
, (44)

where

ĥ(�) = min
n
ĥNB(�), ĥmax

o

and ĥNB(�) is as defined in equation (16).

Lemma 2. The set ⇤ is expanding in ĥmax, that is,

� 2 ⇤
⇣
ĥmax

⌘
) � 2 ⇤

⇣
ĥ0
max

⌘
for all ĥ0

max � ĥmax. (45)

Proof. This result follows directly from the definitions of the set ⇤ and the bail-in ĥ(�) given

above. When ĥmax increases, the bail-in of bank �’s remaining investors ĥ(�) either increases

or remains unchanged. The left-hand side of the inequality in equation (44) is thus weakly

decreasing in ĥmax, while the right-hand side is unchanged.

Proof of Proposition 5. We now use these two lemmas to construct a sequence of withdrawal

profiles that converges to the unique minimal-run equilibrium. This process begins with the

profile in which there are no runs on any bank. Define y0 as

y0 (�) = 2 for all � 2 �. (46)

Let ĥmax (y0) denote the maximum bail-in of remaining investors associated with this profile.

Lemma 1 implies that ĥmax (y0) is the smallest possible value that the maximum bail-in could

take in any equilibrium.

Next, we identify the set of banks whose patient investors would choose to run when the

maximum bail-in is ĥmax (y0), which is given by ⇤
⇣
ĥmax (y0)

⌘
. If this set is empty, then y0

is an equilibrium of the overall withdrawal game and, since there are no runs on any bank,

it is clearly the minimal-run equilibrium.

If ⇤
⇣
ĥmax (y0)

⌘
is not empty, then y0 is not an equilibrium of the overall withdrawal

game. Moreover, since the value of ĥmax in any equilibrium is at least ĥmax (y0), Lemma

2 implies that all banks in ⇤
⇣
ĥmax (y0)

⌘
will experience a run in any equilibrium of the

overall withdrawal game. Define a new profile of withdrawal behavior in which these (and

only these) banks experience a run,

y1(�) =

(
1

2

)
if

(
� 2 ⇤

⇣
ĥmax (y0)

⌘

otherwise

)
.
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Note that P (y1) � P (y0) = ? and, therefore, by equation (41) we have ĥmax (y1) � ĥmax (y0).

In addition, since banks in the set P (y1) will necessarily experience a run in any equilibrium,

we know that ĥmax (y1) is a lower bound on the maximum bail-in in any equilibrium.

We then repeat the process. For j = 1, 2, ..., define

yj+1 (�) =

(
1

2

)
if

(
� 2 ⇤

⇣
ĥmax (yj)

⌘

otherwise

)
. (47)

Note that a fixed point of this equation is necessarily an equilibrium of the overall withdrawal

game: a profile ye such that when the maximum bail-in is equal to ĥmax (ye), the withdrawal

behavior in each bank determined by equations (14) and (15) is equal to ye.

For each �, the sequence {yj (�)}1j=0 either remains equal to 2 for all j or switches to

1 at some j and remains equal to 1 for all j0 > j. Therefore, the sequence of profiles {yj}
converges pointwise to some profile ye. This profile ye is a fixed point of equation (47)

and, therefore, is an equilibrium of the overall withdrawal game. By construction, the value

ĥmax (yj) at each point in the sequence is a lower bound on the value of the maximum bail-in

in any equilibrium. It follows that, if the overall withdrawal game has multiple equilibria,

the process defined here will converge to the equilibrium with the smallest value of ĥmax.

Lemma 2 above implies that the set of banks experiencing a run in any other equilibrium

will contain the set P (ye), which establishes that ye is the unique minimal-run equilibrium.

Proposition 6. There exists a pure-strategy equilibrium of the bail-in game.

Proof. We divide the proof into three steps.

Step (i) : Suppose banks anticipate an arbitrary value for the maximum bail-in of the re-

maining investors in banks that are bailed out, denoted ĥa
max. Find the initial bail-in h(�)

that each bank will choose and the withdrawal behavior of its investors y(�) that will result.

Recall that a bank receiving a bailout can prevent a run by setting h(�) = h
⇣
ĥa
max

⌘
,

as defined in equation (18), but may choose to set h(�) = 0 and su↵er a run if h is large

enough. Define

UB

⇣
ĥa
max

⌘
=

max

8
<

:
⇡u
⇣⇣

1� h
⇣
ĥa
max

⌘⌘
c⇤1

⌘
+ (1� ⇡)u

⇣⇣
1� ĥa

max

⌘
c⇤2

⌘
,

⇡u (c⇤1) + (1� ⇡)
h
⇡u
⇣⇣

1� ĥa
max

⌘
c⇤1

⌘
+ (1� ⇡)u

⇣⇣
1� ĥa

max

⌘
c⇤2

⌘i

9
=

; , (48)
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which measures the expected utility of investors in a bank that is bailed out when the bank

chooses h(�) optimally. Using equation (18) and the fact that u has constant relative risk

aversion, it is straightforward to show that UB is continuous and strictly decreasing in ĥa
max.

In addition, comparing the two terms on the right-hand side of equation (48) shows that there

exists a scalar ↵ 2 (0, 1) such that the maximum is equal to the first line for all ĥa
max < ↵

and to the second line for all ĥa
max > ↵. If follows that banks anticipating a bailout will set

h(�) in a way that leads to a run if and only if ĥa
max > ↵.

A bank that anticipates not receiving a bailout will set h(�) = 1 � � and its investors

will not run. Let �̂ denote the unique solution to

UB

⇣
ĥa
max

⌘
= U

⇣
�̂
⌘
,

where the function U measures the expected utility of investors in a bank where there is no

bailout and all investors share the loss evenly, as defined in equation (6). We can write this

solution as

�̂
⇣
ĥa
max

⌘
= U�1

⇣
UB

⇣
ĥa
max

⌘⌘
. (49)

Then banks with � < �̂
⇣
ĥa
max

⌘
will choose h (�) to maximize UB and receive a bailout, while

banks with � � �̂
⇣
ĥa
max

⌘
will set h(�) = 1�� and not be bailed out. It follows directly from

the properties of U and UB that �̂ (0) = 1 and the limit of �̂
⇣
ĥa
max

⌘
as ĥa

max approaches 1 is

zero. Moreover, since U is a continuous, strictly increasing function, we have that �̂
⇣
ĥa
max

⌘

is also continuous and strictly decreasing.

Summarizing the results so far, we have that each bank’s optimal choice of initial bail-in

is given by

h
⇣
�; ĥa

max

⌘
=

8
>><

>>:

h
⇣
ĥa
max

⌘

0

1� �

9
>>=

>>;
if

8
>>><

>>>:

� < �̂
⇣
ĥa
max

⌘
and ĥa

max  ↵

� < �̂
⇣
ĥa
max

⌘
and ĥa

max > ↵

� � �̂
⇣
ĥa
max

⌘

9
>>>=

>>>;
. (50)

The resulting withdrawal behavior of each bank’s investors is given by

y
⇣
�; ĥa

max

⌘
=

(
1

2

)
if

(
� < �̂

⇣
ĥa
max

⌘
and ĥa

max > ↵

otherwise

)
. (51)

Step (ii) : Combine Step (i) with Proposition 4 to create a mapping from the anticipated

maximum bail-in ĥa
max to the actual maximum bail-in ĥmax generated by the bailout policy.
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Show that this mapping has a fixed point.

Given any ĥa
max and the resulting profiles h and y derived in step (i), Proposition 4

establishes that there is a unique maximum bail-in ĥmax that will be applied to the remaining

investors in all banks that are bailed out. Using equations (50) – (51), we can write the

bailout received by each bank as

b
⇣
�; ĥa

max, ĥmax

⌘
=

8
>><

>>:

1� �� h
⇣
ĥa
max

⌘
⇡c⇤1 � ĥmax(1� ⇡) c

⇤
2
R )

1� �+ ⇡(1� ⇡)
⇣
c⇤1 �

c⇤2
R

⌘
� ĥmax(1� ⇡)

0

9
>>=

>>;

if

8
>>><

>>>:

� < �̂
⇣
ĥa
max

⌘
and ĥa

max  ↵

� < �̂
⇣
ĥa
max

⌘
and ĥa

max > ↵

� � �̂
⇣
ĥa
max

⌘

9
>>>=

>>>;
. (52)

The level of public good will equal the fiscal capacity of the government ⌧ minus the total

bailout payments to all banks. Using equation (52), together with our assumption that

the distribution F has a density function for � < 1, we can write g as a function of the

anticipated and actual maximum bail-ins,

g
⇣
ĥa
max, ĥmax

⌘
= ⌧ �

Z �̂(ĥa
max)

�

b
⇣
�; ĥa

max, ĥmax

⌘
f (�) d�. (53)

For any given ĥmax, the fact that �̂ and h are continuous functions of ĥa
max shows that g is

continuous at all points except ĥa
max = ↵. In addition, the fact that �̂ is strictly decreasing

and b is weakly decreasing in ĥa
max imply that g is strictly increasing at all points except

ĥa
max = ↵, where it jumps down.

For any given ĥa
max, the corresponding ĥmax from Proposition 4 is given by the solution

to

u0
h⇣

1� ĥmax

⌘
c⇤1

i
 v0

h
g
⇣
ĥa
max, ĥmax

⌘i
, with equality if ĥa

max > 0.

Equivalently, we can write

ĥmax � 1� 1

c⇤1
u0�1

n
v0
h
g
⇣
ĥa
max, ĥmax

⌘io
⌘ z

⇣
�; ĥa

max, ĥmax

⌘
(54)

with equality if ĥa
max > 0. As discussed in the proof of Proposition 4, given any ĥa

max,

the function z is continuous and strictly decreasing in ĥmax. Combined with the boundary
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conditions, these properties imply there is a unique solution for ĥmax, which we denote

ĥmax = ⇣
⇣
ĥa
max

⌘
. (55)

To establish the properties of the function ⇣, recall that equation (53) shows that, for all

values of ĥmax, the function g is continuous and strictly increasing in ĥa
max at all points except

ĥa
max = ↵, where it jumps down. Since u0 and v0 are both continuous, strictly decreasing

functions, equation (54) them implies that the function z is continuous and strictly decreasing

in ĥa
max at all points except ĥa

max = ↵, where it jumps up. This monotonicity of z in ĥa
max

for all ĥmax implies monotonicity of the solution in ĥa
max. Specifically, the function ⇣ is

continuous and strictly decreasing in ĥa
max at all points except ĥa

max = ↵, where it jumps up.

These properties of ⇣ meet the conditions of Corollary 1 in Milgrom and Roberts (1994),

which establishes that there exists a fixed point of the mapping ⇣, that is, a value ĥe
max

satisfying

ĥe
max = ⇣

⇣
ĥe
max

⌘
. (56)

Step (iii) : Show that a fixed point ĥe
max corresponds to an equilibrium of the bail-in game

and establish the properties of equilibrium withdrawal behavior.

Given a value ĥe
max satisfying equation (56), calculate the profile of initial bail-ins banks

would choose if ĥa
max = ĥe

max using equation (50) and the resulting withdrawal behavior

of investors using equation (51). Consider the decision problem of an individual bank �,

which takes the initial bail-ins chosen by other banks he
�� as given. Because each bank with

� < 1 has zero measure, its own choice of h(�) has no e↵ect on the level of public good

g in equation (53) and, therefore, on the maximum bail-in ĥe
max that will be generated by

the bailout policy. Since he(�) is bank �’s best choice when the maximum bail-in is ĥe
max,

by construction, it is a best response to the profile of bail-ins chosen by other banks, he
��.

The profile of initial bail-ins he is, therefore, an equilibrium of the bail-in game as defined in

Definition 1.

Proposition 7. In any equilibrium of the bail-in game, there exists �e 2 � such that

he (�) =

(
1� �

h̃ 2 {0, h}

)
and

(
be (�) = 0

be (�) > 0

)
as �

(
>

<

)
�e.

Proof. This result follows directly from the proof of Proposition 6 above by setting �e =

�̂
⇣
ĥe
max

⌘
, where the function �̂ is defined in equation (49) and ĥe

max is the fixed point of

equation (55) corresponding to the given equilibrium. The equilibrium values of the initial
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bail-ins he(�) then follow from equation (50) and the equilibrium bailouts be(�) follow from

equation (52)

Proposition 8. In any equilibrium of the bail-in game, he (�) < h⇤ (�) holds for all � with

be (�) > 0. In addition, if be (�) > 0 holds for some �, we have

Z 1

�

be (�) dF (�) >

Z 1

�

b⇤ (�) dF (�) .

Proof. From Proposition 2, we have

h⇤ (�) = min {1� �, 1� �⇤} for all � (57)

where �⇤ < 1. From Proposition 7 and equation (22), we have

he (�) 2 {0, he} < 1� � for all � < �e. (58)

The proof of the first part of the proposition is by contradiction. Suppose he(�) � h⇤(�)

held for some � with b(�) > 0, that is, for some � < �e. We will show that this inequality

would imply that the bail-ins of all investors in all banks are larger in equilibrium than in

the planner’s allocation, which contradicts the optimality conditions for the fiscal authority’s

choice of bailout payments.

Since equation (58) shows he(�) < 1 � � for all � < �e, having he(�) � h⇤(�) for some

such � would imply that h⇤(�) < 1�� also holds. Equation (57) would then imply that this

value of � must be strictly less than �⇤, meaning that bank � would also receive a bailout

in the planner’s allocation and that its associated bail-in would be h⇤(�) = 1 � �⇤. Since

�⇤ < 1, this bail-in would be strictly positive and, hence, he(�) must be strictly positive as

well. It then follows from equation (58) that he(�) = he > 0 must hold for all � < �e and,

therefore, we would have

he � 1� �⇤. (59)

Equation (22) shows he < 1��e. Combining these two inequalities yields �e < �⇤, that is, a

strictly larger set of banks would be bailed out in the planner’s allocation than in equilibrium.

It would then follow from equations (57) and (58) that the inequality in equation (59) must

be strict, meaning that the initial bail-in is strictly smaller in equilibrium for all � < �e.

Equation (22) also shows that the equilibrium bail-in of the remaining investors in a bank

with � < �e satisfies 1� ĥe
max < �e. Combining this inequality with the results above would
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yield

1� ĥe
max < �e < �⇤ = 1� h⇤(�) for all � < �⇤,

which would imply ĥe
max > h⇤(�) for all � < �⇤. In other words, for all banks that are bailed

out in both allocations, the bail-in of the remaining investors would be larger in equilibrium

than in the planner’s allocation. For banks that are not bailed out, the bail-in of all investors

is h(�) = 1� � in both allocations. The discussion so far has established, therefore, that if

he(�) � h⇤(�) held for some � < �e, we would have

he(�) � h⇤(�) and ĥe(�) � h⇤(�) for all �, (60)

with strict inequalities for � < �e. Using these inequalities in the feasibility constraint in

equation (3), which holds with equality in both allocations, we would then have

be(�)  b⇤(�) for all �,

with strict inequality for � < �e. In other words, if the bail-ins were larger for all banks in

the equilibrium allocation, the bailouts must be smaller in equilibrium. Equation (11) would

then imply that the level of the public good must be higher in equilibrium, that is, ge > g⇤.

For the final step, we look at the first-order conditions that determine the bailout pay-

ments in each allocation. For the planner’s allocation, equation (31) can be written as

u0 ((1� h⇤ (�)) c⇤1) = v0 (g⇤) for all � < �⇤. (61)

For the equilibrium allocation, equation (38) can be written as

u0
⇣⇣

1� ĥe (�)
⌘
c⇤1

⌘
= v0 (ge) for all � < �e. (62)

Using these two equations, ge > g⇤ would imply ĥe(�) < h⇤(�) for all banks that are bailed

out in both allocations, which contradicts equation (60) above. Intuitively, if the planner’s

allocation had a smaller level of the public good than the equilibrium allocation, the planner

would impose larger bail-ins on the remaining investors, not smaller bail-ins as derived above.

Therefore, the conjecture that he(�) � h⇤(�) holds for some � < �e cannot be true.

For the second part of the proposition, we break the proof into two parts. First, suppose

that �⇤ � �e holds, that is, that the set of banks bailed out in the planner’s allocation is no

smaller than the set bailed out in equilibrium. Using equations (22) and (57), we then have

h⇤(�) = 1� �⇤  1� �e < ĥe(�) for all � < �⇤.
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In other words, the bail-in imposed on the remaining investors in banks that receive a bailout

is larger in equilibrium. Using the first and last terms on this line in equations (61) and

(62), respectively, it follows that the level of the public good is smaller in equilibrium, that

is, g⇤ > ge. Using equation (11) to relate the level of the public good to the total amount of

bailout payments then delivers the desired result.

Now suppose instead that �⇤ < �e. The proof for this case is by contradiction. Suppose

the result were not true, that is, suppose instead that

Z 1

�

be (�) dF (�) 
Z 1

�

b⇤ (�) dF (�) (63)

held. Then by equation (11), the level of public good would be higher in equilibrium than

in the planner’s allocation, ge > g⇤. Using equations (61) – (62) above, we would then have

ĥe(�)  h⇤(�)

for all banks that are bailed out in both allocations, that is, for all � < �⇤. Intuitively, if

more of public good were provided in equilibrium, then the bail-ins of the remaining investors

would be set smaller in equilibrium. Recall that the first part of the proposition established

that the initial bail-in is also smaller in equilibrium, he(�) < h⇤(�), for all � < �e. Using

these two inequalities in the feasibility constraint (3), which holds with equality, we would

then have

be(�) > b⇤(�) for all � < �⇤. (64)

In other words, if the bail-ins for a given bank are smaller in equilibrium, the bailout must

be larger. Integrating this inequality across banks, it would then follow that

Z 1

�

be (�) dF (�) �
Z �⇤

�

be (�) dF (�)

>

Z �⇤

�

b⇤ (�) dF (�) =

Z 1

�

b⇤ (�) dF (�) ,

which contradicts equation (63) above. Therefore, equation (63) cannot hold and the second

part of the proposition has been established.

Proposition 9. Either equilibrium in the bail-in game is unique or there are exactly two

pure-strategy equilibria, one in which no bank runs occur and one in which a run occurs on

all banks that are bailed out.
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Proof. This result follows from the proof of Proposition 6. That proof established that a

pure-strategy equilibrium of the bail-in game corresponds to a fixed point of the mapping ⇣

defined in equation (55). It also established that ⇣ is a decreasing function at all points except

ĥmax = ↵, where it jumps up. These results imply that ⇣ has at most two fixed points and, if

two fixed points exist, one must have ĥe
max  ↵ and the other must have ĥe

max > ↵. Equation

(51) then implies that, if multiple equilibria exist, there is one pure-strategy equilibrium in

which no investors run on their bank and another in which investors run on all banks with

� < �
⇣
ĥe
max

⌘
, that is, on all banks that receive a bailout in equilibrium.

Proposition 10. The equilibrium bailout cuto↵ �e
is strictly increasing in ⌧ whenever

�e 2
�
�, 1

�
.

Proof. We first examine how an increase in ⌧ a↵ects the bail-in applied to the remaining

investors in a bank that is bailed out, ĥmax. Holding ⌧ fixed, ĥmax is defined as the unique

fixed point of equation (40). When �e is interior, this equation can be written as

ĥmax = 1� 1

c⇤1
u0�1

"
v0
 
⌧ �

Z 1

�

b
⇣
�; ĥmax

⌘
dF (�)

!#

⌘ z
⇣
ĥmax; ⌧

⌘
.

The function z is strictly decreasing in ⌧ for all ĥmax. It follows that the unique solution to

the equation, ĥmax is strictly decreasing in ⌧ . Next, a change in ĥmax a↵ects the equilibrium

bailout cuto↵ �e according to equation (49), which we can write as

�e = U�1
⇣
UB

⇣
ĥmax

⌘⌘
. (65)

Since UB is strictly decreasing and U is strictly increasing, we have that �e is strictly de-

creasing in ĥmax. Combining these two results, we have that an increase in ⌧ causes ĥmax to

strictly decrease, which causes the cuto↵ �e to strictly increase, as desired.

Proposition 11. If the equilibrium of the economy without regulation has he(�) = 0 for

those � with be(�) > 0, then h⇤
min > 0.

Proof. The method of proof is to derive an expression for equilibrium welfare as a function

of hmin and show that this function is strictly increasing at hmin = 0. We first need to

characterize equilibrium play in the bail-in game with regulation. The proposition applies if,

in the absence of regulation, the equilibrium bailout cuto↵ �e was strictly larger than � and
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banks with � < �e chose he(�) = 0. A continuity argument can then be used to establish

that, when hmin is su�ciently small, the equilibrium with regulation will be characterized

by a cuto↵ �e(hmin) > � such that all banks with � < �e(hmin) receive bailouts and set their

bail-in at the regulatory minimum, hmin. Banks with � > �e(hmin) will not receive a bailout

and will set their initial bail-in to 1 � � (as in Proposition 7) if allowed by the regulation,

otherwise they will choose the minimum, hmin.

Next, we derive the expected utility from private consumption of investors in a bank in

each of these situations. For any bank with � < �e(hmin), we have

UB ⌘ ⇡u [(1� hmin)c
⇤
1] + (1� ⇡)u

h⇣
1� ĥmax(hmin)

⌘
c⇤2

i
, (66)

where ĥmax(hmin) is determined as in Proposition 4. Banks with �e(hmin) < � < 1 � hmin

will set h(�) = 1 � � and the expected utility from private consumption of their investors

will follow the function U defined in equation (6),

U(�) ⌘ ⇡u (�c⇤1) + (1� ⇡)u (�c⇤2) .

For banks with � > 1 � hmin, the mandatory minimum will bind. Using the resource

constraint in equation (3) with b(�) set to zero, we can write the expected utility from

private consumption of investors in such a bank as

UN(�) ⌘ ⇡u [(1� hmin)c
⇤
1] + (1� ⇡)u


(1� ⇡)c⇤2 �R(1� �� hmin⇡c⇤1)

1� ⇡

�
. (67)

Using these three expressions, we can write equilibrium welfare as a function of the minimum

bail-in when hmin is su�ciently small as

W (hmin) ⌘ F (�e)UB +

Z 1�hmin

�e

U(�)f(�)d�+

Z 1

1�hmin

UN(�)f(�)d�

+ zUN(1) + v (g) ,

(68)

where z is the measure of banks with zero loss. While not explicit in the notation above,

keep in mind that UB, UN(�), �e and g are all functions of hmin.
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Di↵erentiating this function with respect to hmin yields

dW (hmin)

dhmin
=

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

UBf (�e)
d�e

dhmin
+ F (�e)

dUB

dhmin

�U (�e) f (�e)
d�e

dhmin
� U(1� hmin)f(1� hmin)

+UN(1� hmin)f(1� hmin) +

Z 1

1�hmin

dUN(�)

dhmin
f(�)d�

+z
dUN(1)

dhmin
+ v0 (g)

dg

dhmin

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

.

This expression can be simplified using the following observations. First, a bank whose

realization of � falls exactly on the equilibrium bailout cuto↵ �e must be indi↵erent between

(i) setting the minimum bail-in and receiving a bailout and (ii) setting a bail-in of 1�� and

not receiving a bailout. In other words, UB = U(�e) must hold, which implies that the first

terms on each of the first two lines of this expression sum to zero. Second, using equation

(1) in equation (67) above, it is straightforward to show that UN(1 � hmin) = U(1 � hmin),

so that the second term on the second line and first term on the third line also sum to zero.

We then evaluate the remaining terms at hmin = 0. When we do so, the second term in

the third line becomes zero, as the mandatory minimum is no longer binding for any bank

with positive losses. Finally, the first term on the last line becomes zero as well, because the

allocation of resources in banks with no losses is e�cient when hmin = 0 and, therefore, the

utility loss associated with increasing the initial bail-in is second order. We can then write

the derivative of equilibrium welfare evaluated at hmin = 0 as

dW (hmin)

dhmin

����
hmin=0

= F (�e)
dUB

dhmin

����
hmin=0

+ v0 (g)
dg

dhmin

����
hmin=0

. (69)

Intuitively, the impact of increasing hmin on welfare initially depends only on how it a↵ects

the allocation of resources in banks that are bailed out and how it a↵ects the level of the

public good. To establish the result, it su�ces to show that this expression is strictly positive.

The remainder of the proof is divided into two steps. First we show that the second

term on the right-hand side of equation (69) is always strictly positive. If the first terms is

non-negative, the result then follows immediately. In the second step, we show that if the

first terms is negative, the overall expression is still strictly positive.

Step (i): Show
dg

dhmin

����
hmin=0

> 0.

Suppose this were not true, that is, suppose g were initially (weakly) decreasing in hmin.
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The first-order conditions for the fiscal authority’s bailout policy imply

u0
⇣⇣

1� ĥmax

⌘
c⇤1

⌘
= v0 (g) . (70)

Because u and v are both strictly concave, it would then follow that ĥmax must be (weakly)

increasing in hmin. This fact, in turn, would imply that UB as defined in equation (66) would

be strictly decreasing in hmin. Equation (65) would them imply that �e is strictly decreasing

in hmin. Intuitively, if increasing hmin were to cause ĥmax to increase, it would imply that the

consumption of all investors in a bank that is being bailed out would decrease. If UB were

to decrease, some banks that had previously chosen h(�) = 0 and received a bailout would

instead choose h(�) = 1� � and no longer be bailed out, causing the cuto↵ �e to decrease.

Using the feasibility constraint in equation (3), we can write the budget constraint of the

fiscal authority in equation (11) as

g = ⌧ �
Z �e

�

✓
1� �� hmin⇡c

⇤
1 � ĥmax(1� ⇡)

c⇤2
R

◆
dF (�)

where �e and ĥmax both depend on hmin. Di↵erentiating with respect to hmin and evaluating

the result at hmin = 0 yields

dg

dhmin

����
hmin=0

=

8
>>>><

>>>>:

�
⇣
1� �e � ĥmax(1� ⇡) c

⇤
2
R

⌘
f(�e)

d�e

dhmin

����
hmin=0

+F (�e)

 
⇡c⇤1 + (1� ⇡)

c⇤2
R

dĥmax

dhmin

����
hmin=0

!
.

9
>>>>=

>>>>;

(71)

The arguments above established that if g were initially weakly decreasing in hmin, �e would

be strictly decreasing and ĥmax would be (weakly) increasing. Both lines on the right-hand

side of equation (71) would then be strictly positive, implying that g is strictly increasing

in hmin, a contradiction. It follows that dg
dgmin

must be strictly positive when evaluated at

hmin = 0.

Looking back at equation (69), if dUB
dhmin

is non-negative, then the right-hand side is strictly

positive and the proposition has been established. If not, we proceed to the second step.

Step (ii): Show
dUB

dhmin

����
hmin=0

< 0 implies
dW (hmin)

dhmin

����
hmin=0

> 0.

Di↵erentiating equation (66) with respect to hmin and evaluating at hmin = 0 yields

dUB

dhmin

����
hmin=0

= �⇡u0 (c⇤1) c
⇤
1 � (1� ⇡)u0

⇣
(1� ĥmax)c

⇤
2

⌘
c⇤2

dĥmax

dhmin

����
hmin=0

.
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Using equation (26) with ↵ set to (1�ĥmax) and equation (70), we can rewrite this expression

as
dUB

dhmin

����
hmin=0

= �u0 (c⇤1) ⇡c
⇤
1 � v0(g)(1� ⇡)

c⇤2
R

dĥmax

dhmin

����
hmin=0

. (72)

Substituting equations (71) and (72) into equation (69) yields

dW (hmin)

dhmin

����
hmin=0

=

8
>>>>>>>>>><

>>>>>>>>>>:

F (�e)

 
�u0 (c⇤1) ⇡c

⇤
1 � v0(g)(1� ⇡)

c⇤2
R

dĥmax

dhmin

����
hmin=0

!

�v0(g)

✓
1� �e � ĥmax(1� ⇡)

c⇤2
R

◆
f(�e)

d�e

dhmin

����
hmin=0

+v0(g)F (�e)

 
⇡c⇤1 + (1� ⇡)

c⇤2
R

dĥmax

dhmin

����
hmin=0

!

9
>>>>>>>>>>=

>>>>>>>>>>;

.

Note that the two terms involving dĥmax
dhmin

cancel out. We can combine the remaining terms

to write

dW (hmin)

dhmin

����
hmin=0

=

8
>>><

>>>:

F (�e)⇡c⇤1

✓
v0(g)� u0 (c⇤1)

◆

�v0(g)
⇣
1� �e � ĥmax(1� ⇡) c

⇤
2
R

⌘
f(�e)

d�e

dhmin

����
hmin=0

9
>>>=

>>>;
.

The first line on the right-hand side of this equation is strictly positive because the assump-

tion in equation (4) together with the fiscal authority’s choice of bailouts implies that v0(g)

is always lager than u0(c⇤1) in equilibrium. This step assumes UB is strictly increasing in

hmin which, using equation (65), implies that �e is strictly decreasing in hmin. Therefore,

the second line is also strictly positive, which implies that welfare is strictly increasing in

hmin when evaluated at hmin = 0, as desired.
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