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1 Introduction

In a contest, two or more players invest effort or other costly resources to win
a prize. Many economic interactions can be modeled as a contest. Promotions,
for example, represent an important incentive in many firms and organizations.
Employees exert effort to perform better than their colleagues and, thus, to be
considered for promotion to a more highly paid position within the firm. Litigation
can also be understood as a contest, in which the different parties spend time and
resources to prevail in court. Procurement is a third example, where different
firms invest resources into developing a proposal or lobbying politicians, thereby
increasing the odds of being selected, receiving some rent in return.

Players participating in contests are typically heterogeneous in some respect.
For instance, employees differ with respect to their skills, the litigant parties dif-
fer with respect to the quality of the available evidence, and firms differ with
respect to their capabilities of designing a proposal. When accounting for such
heterogeneity in contest models, equilibria are often asymmetric, meaning that
players choose different levels of effort. Due to this asymmetry, contests between
heterogeneous players are typically difficult to analyze, and researchers have of-
ten imposed rather strict assumptions to keep the analyses tractable.

In this paper, we provide a novel framework to study contests between (pos-
sibly) heterogeneous players. Under general assumptions about the production
technology and skill distributions, the class of contests we study has a symmetric
equilibrium in which all players exert the same effort. This makes the contest
much easier to investigate and allows us to study behavior in situations that
proved to be intractable to study in other contest models.

In the class of contests that we focus on, the outcome of the contest depends
on players’ skills and their efforts. The skill distributions of the competing play-
ers (including the expected values) are common knowledge, whereas the exact
skill realizations are generally (symmetrically) unknown (as, e.g., in Holmström
1982). In the example of the promotion contest, a player’s expected ability may
be commonly known (e.g., the education, prior work experience, or CV of a player
is known and serves as a signal of ability), whereas the exact ability level for the
particular job is unknown (e.g., there might be uncertainty regarding how educa-
tion translates into workplace performance and job match). Similar arguments
apply to the other examples presented earlier. We assume that a player’s skill
and effort jointly determine the player’s “contribution” to the contest and that
the player with the highest contribution wins the contest. Heterogeneity among
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players is accounted for by allowing the statistical distributions of possible skill
realizations to be different for the competing players. Our model is general and
contains the well-known models by Tullock (1980) and Lazear & Rosen (1981) as
special cases. We make three primary contributions.

First, we show that in a two-player contest, a symmetric (pure-strategy equal-
effort) equilibrium exists under general assumptions about the production tech-
nology (i.e., the function mapping skill and effort into a player’s contribution to
the contest) and individual skill distributions. The main requirement is that the
production function is such that for any given positive effort level, a player’s con-
tribution to the contest is increasing in his or her skill. This is a weak require-
ment from the perspective of the most commonly used neoclassical production
technologies, and also appears to be quite realistic.

Second, we construct a link between our contest model and standard mod-
els of decision-making under risk (expected utility theory). Exploiting this link,
we revisit important comparative statics results of contest theory and show how
these can be overturned. In particular, we analyze how equilibrium effort is af-
fected by making the skill distributions of the competing players more heteroge-
neous, investigating both the role of differences in expected skill (conceptualized
by first-order stochastic dominance) and the role of differences in the uncertainty
of the skill distributions of the competing players (conceptualized by second-order
stochastic dominance). The general message is that making contest participants
more heterogeneous can increase equilibrium effort. To the best of our knowl-
edge, these results have not been found in the contest literature before, and in-
deed contradict “standard” results (e.g., those from the Tullock contest and the
Lazear-Rosen tournament). Thus, the comparative statics results derived from
those standard models are not representative of the conclusions derived in the
more general model.

Third, in two important special cases, we provide new results on the exis-
tence and interpretation of symmetric equilibria in our general setting when the
number of players n is greater than two. We show that our solution method and
interpretation for the two-player case extends to the n player case when players
have identical skill distributions. We also show that, for a specific class of skill
distributions, a symmetric equilibrium exists when n°1 identical players com-
pete against a player who has a higher expected ability. We investigate the effect
of increasing the number of players on equilibrium effort. Exploiting the fact that
a contest with n > 2 players can be interpreted as a two-player contest in which
every player competes against the strongest (i.e., the largest order statistic) of his
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or her opponents, we find that increasing the number of contestants can increase
equilibrium effort. This result, which contrasts standard results in the litera-
ture, can be understood by the fact that as the number of contestants increases,
the strongest opponents grow stronger in the sense of first-order stochastic domi-
nance, allowing us to apply our results from the two-player case.

An important aspect of our contribution is that we provide intuition for how
the incentive to exert effort depends on the interaction between three factors. The
first factor relates to the production technology and is the ratio of the marginal
product of effort and the marginal product of skill. The intuition behind this factor
is that the purpose of a marginal effort increase for an individual player is to beat
marginally more able rivals. The ratio describes how effective a marginal effort
increase is to overcome the output advantage of marginally more skilled players.
The second and third factors are represented by the product of the densities of
the skill distributions of the two competing players, evaluated at the same point.
The reason for the presence of this product is that a player only has a marginal
incentive to exert effort in cases where the skill realizations of the two players
are exactly the same, and the product describes the “likelihood” of this event to
happen.

We also investigate the robustness of our results with respect to the assump-
tion of symmetric uncertainty by analyzing the consequences of letting players be
privately informed about their skills. In this case, equilibria are in general not
symmetric, but focusing on symmetric players, we are able to draw interesting
parallels with respect to our baseline case, highlighting the role of our general
production technology in influencing the marginal incentive to exert effort.

Throughout the paper we discuss the implications for optimal team composi-
tion and certain real-world applications in the context of labor and personnel eco-
nomics. For instance, our finding that efforts can increase if the skill distribution
of one of the competing players becomes more uncertain (in the sense of second-
order stochastic dominance) has several interesting managerial implications. It
indicates that contest organizers might wish to increase the uncertainty regard-
ing the skills of certain players in order to induce higher effort. In a worker-firm
context, employers could achieve this by, for instance, hiring an inexperienced
worker for whom little prior information is available, or a minority worker with
a skill level drawn from a distribution that generally tends to be more uncertain
(as argued, e.g., by Bjerk 2008). This means that having diverse teams might be
desirable from the employer’s point of view.

The paper is organized as follows. In Section 2 below, we discuss related lit-
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erature. Section 3 introduces the contest model and discusses how our model
nests the Tullock contest and the Lazear-Rosen tournament as special cases. Sec-
tion 4 solves the two-player model. In Section 5, we analyze the two-player case
in greater detail and provide a set of important comparative statics results. We
also discuss implications for organizational design and optimal team composition.
Section 6 studies the n-player case and presents novel comparative statics results
for this case. Section 7 takes a look at the case of privately known skills. Finally,
Section 8 concludes.

2 Related Literature

There are three main approaches to the study of contests, the Tullock or ratio-
form contest, the Lazear-Rosen tournament, and the complete-information all-
pay auction.1 In the Tullock contest, a player’s winning probability is given by
the player’s contribution to the contest (which is a function of the player’s effort
and sometimes also of ability) divided by the total contribution to the contest of
all players. The Tullock contest has been introduced to the literature by Tullock
(1980).2 It has been axiomatized in various settings by Skaperdas (1996), Clark
& Riis (1998b), and Münster (2009). The Lazear-Rosen tournament assumes that
the player with the highest contribution to the contest wins with certainty, and
contributions depend on effort, some random factors (e.g., luck), and possibly on
abilities. The seminal paper is by Lazear & Rosen (1981) who apply the model
in a labor-market context.3 The all-pay auction, finally, makes the same assump-
tion as the Lazear-Rosen tournament except that contributions to the contest are
deterministic and do not depend on random factors; a detailed equilibrium char-
acterization was developed by Baye et al. (1996).4

1The theoretical contest literature has been surveyed in a number of books and papers. See,
e.g., Konrad (2009) and Vojnović (2015) for recent textbooks and Chowdhury & Gürtler (2015),
Chowdhury et al. (2019), and Fu & Wu (2019) for recent surveys.

2It has been further investigated by, e.g., Hillman & Riley (1989), Cornes & Hartley (2005),
Fu & Lu (2009a,b), Corchón & Dahm (2010), Schweinzer & Segev (2012), and Chowdhury & Kim
(2017).

3Further contributions include Green & Stokey (1983), Malcomson (1984, 1986), O’Keeffe et al.
(1984), Lazear (1989), Schotter & Weigelt (1992), Zábojník & Bernhardt (2001), Hvide (2002),
Grund & Sliwka (2005), Schöttner & Thiele (2010), Gürtler & Gürtler (2015), and Imhof & Kräkel
(2016).

4The complete-information all-pay auction (with mixed-strategy equilibria) is the most com-
monly used in contest theory, but a private-values version can be found as well. The all-pay auc-
tion has been further studied by, e.g., Clark & Riis (1998a), Barut & Kovenock (1998), Moldovanu
& Sela (2001, 2006), Moldovanu et al. (2007), Cohen et al. (2008), Siegel (2009, 2010), Sela (2012),
Morath & Münster (2013), Barbieri et al. (2014), Olszewski & Siegel (2016), and Fang et al. (2019).
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Most studies analyzing the Tullock contest and the Lazear-Rosen tournament
impose assumptions that ensure that equilibria in pure strategies exist. In con-
trast, only mixed-strategy equilibria exist in the all-pay auction (when players are
symmetrically informed about the decision situation). As we indicated in the in-
troduction, and as we explain in more detail in Section 3, the Tullock contest and
the Lazear-Rosen tournament are special cases of our model, while the all-pay
auction is not.

One important contribution of our paper is to generalize the Tullock contest
and the Lazear-Rosen tournament and to show that canonical results arising from
these models do not always extend to more general production functions and abil-
ity distributions. These important results refer to how player heterogeneity, the
extent of risk or uncertainty, and the number of players affect the effort exerted
by the competing players. For example, Schotter & Weigelt (1992) have shown
that efforts are higher when players have homogeneous skills relative to when
they are heterogeneous. The reason in their setting is that disadvantaged players
tend to give up and reduce their effort, whereas advantaged players can afford
to reduce their effort. Moreover, several studies have shown that greater uncer-
tainty regarding the contest outcome tends to reduce effort (see, e.g., Hvide 2002).
Intuitively, if the contest outcome depends to a greater extent on random factors,
effort has a lower impact on who becomes the winner and players reduce effort
accordingly. Finally, in the seminal work of Tullock (1980), effort decreases in the
number of players who participate in the contest, which has been attributed to a
discouragement effect. If a player competes against many rivals, his or her chance
of winning is relatively low and the player reduces effort in turn. Although all of
these results seem highly intuitive, we find that they are sensitive to the choice
of production technologies and ability distributions. In our general framework,
different comparative statics results may emerge.

Some exceptions to these standard results have already been documented in
the literature. Drugov & Ryvkin (2017) study biases in contests between sym-
metric players. A bias affects the selection of the winner and, in some instances,
can be interpreted in the same way as skill heterogeneity. They show that bias-
ing a contest between symmetric players can trigger higher effort under certain
conditions. Our paper differs from theirs in several ways. Most importantly, bias-
ing a contest is not always the same as making players heterogeneous by chang-
ing their skill distributions. Furthermore, Drugov & Ryvkin (2017) focus on the
contest-success function (i.e., the function mapping efforts into winning probabil-
ities) and they provide conditions that the function must fulfil to make it optimal
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to bias the contest. In contrast, we determine the contest-success function en-
dogenously, taking the players’ production technology and skill distributions into
account. We then show under which types of production technologies and skill
distribution efforts get higher as the contestants become more heterogeneous.

Our particular set of results regarding the effects of the number of competing
players on equilibrium effort are related to Ryvkin & Drugov (2020) who show
that effort can be an increasing, a decreasing or a unimodal function of the num-
ber of players depending on the distribution of noise (which corresponds to the
skill distribution in our model). However, they restrict attention to additive pro-
duction technologies, whereas our study allows for more general types of produc-
tion technologies. As we show in the paper, the relation between equilibrium
effort and the number of competing players crucially depends on the interaction
between the production technology and the skill distributions of the competing
players.

Finally, Kirkegaard (2020) is another related paper, which can be seen as com-
plementary to ours. Kirkegaard proposes a general contest model that is similar
to our model. His focus, however, is on optimal contest design and on possible
microfoundations of biased ratio-form contests. In contrast, our focus is on the
effects of (different types of) player heterogeneity on equilibrium effort. Our main
contribution is to show that a symmetric equilibrium generally exists in two-
player contests and that making players more heterogeneous or adding players
to the contest may increase the incentive to exert effort.

3 Model Description

Consider a contest between two risk-neutral players i 2 {1,2} who compete for
a single prize of value V > 0. Both players simultaneously choose effort ei ∏ 0,
and the cost of effort c(ei) is described by a continuously differentiable, strictly
increasing and strictly convex function satisfying c(0) = 0. The ability or skill
(type) of player i is denoted by £i. There is uncertainty about skills, which means
that £i is a random variable. The realization of £i is denoted by µi and it is
not known to any of the players (not even player i). It is commonly known, how-
ever, that £i is independently and absolutely continuously distributed according
to the pdf f i (with cdf Fi) with finite mean µi. For a given density f , we will use
supp( f ) = {x 2 R : f (x) > 0} to denote its support. We assume that the supports of
f1 and f2 overlap on a subset of R with positive measure.

Symmetric uncertainty regarding skills is typically imposed in the career-
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concerns literature (e.g., Holmström 1982, Holmström & Ricard I Costa 1986,
Dewatripont et al. 1999, and Auriol et al. 2002) and also in the literature on
promotion signaling (e.g., Waldman 1984, Bernhardt 1995, Owan 2004, Ghosh &
Waldman 2010, DeVaro & Waldman 2012, and Gürtler & Gürtler 2019). This lit-
erature refers to firm-worker relationships, and the idea is that both firms and
workers are uncertain about how well workers perform when they begin their
working careers and that this uncertainty is reduced over time once performance
information becomes available. We adopt this idea, referring to £i as a player’s
skill, but one could also interpret it more broadly as incorporating other factors
such as luck, noise, or measurement error.

The production of player i, and hence his or her contribution to the contest,
is given by the continuously differentiable production function g(µi, ei). Impor-
tantly, we assume that @g

@µi
> 0 for all ei > 0 which means (realistically) that each

player’s contribution to the contest is increasing with respect to his or her skill,
for a given level of effort. Player i wins the contest against the opponent player
k 2 {1,2}, k 6= i, if and only if the contribution of player i is strictly higher than
the contribution of player k, namely, g(µi, ei) > g(µk, ek).5 We denote by Pi(ei, ek)
player i’s probability of winning the contest (as a function of the efforts of both
players) and we define the expected payoff as ºi(ei, ek) := Pi(ei, ek)V ° c(ei). We
also define ê := c°1(V ) and E := [0, ê]. A player’s equilibrium effort will always
belong to the set E as the probability of winning is bounded above by unity.

We impose the following assumption:

Assumption 1. The primitives of the model are such that: (i) ºi(ei, ek) is con-
tinuously differentiable, and, (ii) any interior solution of the system of first-order
conditions for the players’ problems of maximizing ºi(ei, ek) characterizes a pure-
strategy Nash equilibrium.

The validity of the first-order approach is typically ensured by imposing as-
sumptions on the primitives of the model that guarantee that the objective func-
tions ºi are quasi-concave and increasing at ei = 0. Previous papers in the contest-
theory literature, however, have shown that the first-order approach may be valid
even when the objective functions are neither quasi-concave nor increasing at
ei = 0 (see, e.g., Figure 1 in Schweinzer & Segev 2012). As we do not want to rule
out such cases, we simply assume that the Nash-equilibrium efforts are char-
acterized by the players’ first-order conditions to their maximization problems

5Notice that g(µi, ei) = g(µk, ek) happens with probability zero. In the following, whenever we
refer to two players i and k, we (implicitly) assume that i,k 2 {1,2}, i 6= k.
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without restricting the shape of ºi too much. Each of the theoretical results we
present will be accompanied by at least one example for which we verify that the
first-order conditions indeed characterize an equilibrium, by verifying the appro-
priate second-order conditions. Finally, we assume that there exist ē i, ĕ i 2 int E
such that @ºi(ei ,ek)

@ei
|ei=ek=ē i < 0 and @ºi(ei ,ek)

@ei
|ei=ek=ĕ i > 0. This ensures that the first-

order condition to player i’s maximization problem can be fulfilled in a symmetric
equilibrium.

Below we provide some examples of different contest models, skill distribu-
tions and production technologies that can be captured in our framework.

Tullock contest The well-studied rent-seeking contest of Tullock (1980) repre-
sents a special case of our model. This is easily illustrated using the results in
Jia (2008), who considers a contest with a multiplicative production technology,
in which player i wins if and only if µi e i is highest among all players.6 It is shown
that if £i is distributed according to the pdf

f i (x)= ∞imx°(m+1) exp
°
°∞ix°m¢

I(x>0),

then player i wins the contest with probability

Pi (ei, ek)=
∞i em

iP2
j=1∞ j em

j
,

where ∞i ∏ 0 for both players i and m > 0.7 Hence, in our model, if g (µi, ei)= µi e i,
and £i is distributed according to the above pdf, then we obtain the above Tullock
contest-success function. The literature contains a range of modifications and
generalizations of this form of contest-success function, some of which cannot be
micro-founded in a similar way. See the recent discussion in Kirkegaard (2020).8

Lazear-Rosen tournament Assuming the production technology g(µi, ei)= µi+
ei, our model includes the standard Lazear-Rosen tournament model (in the orig-
inal Lazear & Rosen 1981, it is assumed that µi = 0). We provide several new
results for this well-known setting.

6See also Clark & Riis (1996) and Fu & Lu (2012).
7This contest-success function is slightly more general than the one presented in Tullock

(1980). From the contest-theory literature, it is known that m must be sufficiently small for a
pure-strategy equilibrium to exist. This is covered by our Assumption 1.

8See Fullerton & McAfee (1999) for another example of a micro-foundation for the Tullock
contest.
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General production technologies Our framework is general with respect to
the set of admissible production technologies g(µi, ei). For example, feasible tech-
nologies include the CES production function g(µi, ei)=

°
Æµ

Ω
i +ØeΩi

¢ 1
Ω , with Æ,Ø> 0

(except for the limiting case of perfect complements). Thus, the case of perfect
substitutes, Ω = 1, is included as well as technologies where effort and ability are
complements to different degrees, such as the standard Cobb-Douglas technology
g (µi, ei)= µÆi eØi , with Æ,Ø> 0 (obtained when Ω approaches zero).

Skill distributions In our framework, standard continuous skill distributions
can be employed with both bounded and unbounded supports. Moreover, the dis-
tributions can be different for the two players. Examples are the (truncated)
Normal distribution, the Exponential distribution, Student’s t-distribution, the
Gamma distribution, and the Uniform distribution.

4 Model Solution

We focus on pure-strategy Nash equilibria in which both players choose the same
level of effort. The following lemma provides a sufficient condition for such a
symmetric equilibrium to exist.

Lemma 1. A sufficient condition for a symmetric equilibrium to exist is that
@Pi(ei ,ek)

@ei
|ei=ek=e is the same for i,k 2 {1,2}, i 6= k, and all e 2 int E.

Proof. See Appendix A.1.

We will make use of Lemma 1 to prove the existence of a symmetric equilib-
rium by checking the sufficient condition. Since this condition depends on the
winning probability, we need to specify this probability first. For each e > 0, we
define the function ge : R! R by ge (x) = g (x, e). The function ge(x) is strictly in-
creasing in x and thus invertible, and we denote the (strictly increasing) inverse
by g°1

e . This notation can be motivated by the fact that the event of player i
winning over player k can be written as

g (µk, ek)< g (µi, ei)

, gek (µk)< gei (µi)

, µk < g°1
ek

°
gei (µi)

¢
.

Considering all potential realizations of £i and £k, the winning probability of
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player i is
Pi(ei, ek)=

Z

R
Fk

°
g°1

ek

°
gei (x)

¢¢
f i (x)dx.

By symmetry, the winning probability of player k is:

Pk(ei, ek)=
Z

R
Fi

°
g°1

ei

°
gek (x)

¢¢
fk (x)dx.

The derivative of player i’s winning probability with respect to ei is given by:9

@Pi(ei, ek)
@ei

=
Z

R
fk

°
g°1

ek

°
gei (x)

¢¢ d
dei

°
g°1

ek

°
gei (x)

¢¢
f i (x)dx. (1)

The derivative of player k’s winning probability with respect to ek is given by:

@Pk(ei, ek)
@ek

=
Z

R
f i

°
g°1

ei

°
gek (x)

¢¢ d
dek

°
g°1

ei

°
gek (x)

¢¢
fk (x)dx. (2)

It can immediately be seen that expressions (1) and (2) are equal when ei = ek =
e 2 int E since, in this case, g°1

ek
(gei (x)) = g°1

ei
(gek (x)) = x and d

dek
g°1

ei

°
gek (x)

¢
=

d
dei

g°1
ek

°
gei (x)

¢
. Thus, the sufficient condition for the existence of a symmetric

equilibrium in Lemma 1 is satisfied. Hence, we have the following theorem.

Theorem 1. There exists a symmetric equilibrium in which both players choose
the same level of effort.

Proof. See Appendix A.2.

The theorem states that, even if the players are asymmetric (i.e., f1 6= f2),
there always exists a symmetric equilibrium of the contest game. This result
is of great importance since it allows a tractable analysis of contests between
asymmetric players in a variety of different settings. We define ae :R!R by

ae(x)= d
dei

g°1
ek

°
gei (x)

¢ØØØØ
ei=ek=e

= @g(x, e)
@e

¡
@g(x, e)
@x

= MRTS(x, e), (3)

where the equality follows from an application of the inverse function theorem
and MRTS(x, e) denotes the marginal rate of technical substitution between skill
and effort in a symmetric equilibrium.10 Recognizing that the two players have
the same cost function c(e), we can write the (identical) first-order condition for

9Notice that Fk is differentiable almost everywhere, since it is the cdf of the absolutely contin-
uous random variable £k with fk as the corresponding pdf.

10To see this, notice that d
dei

g°1
ek

°
gei (x)

¢ØØØ
ei=ek=e

= 1
g0

ek (g°1
ek (gei (x)))

d
dei

gei (x)
ØØØØ
ei=ek=e

=
d
de ge(x)
g0

e(x) .
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effort for the two players in a symmetric equilibrium as

V
Z

R
ae§(x) fk (x) f i (x)dx = c0(e§). (4)

The key observation necessary to understand the intuition behind (4) is that a
player has a positive marginal incentive to supply effort if and only if g (µk, ek) =
g (µi, ei). In a symmetric equilibrium where ek = ei this implies that µk = µi.11

Accordingly, equation (4) contains the “collision density" fk(x) f i(x) that describes
how likely it is that the skill realizations of the two competing players are the
same. The fact that this term is the same for both players is due to our assumption
of symmetric uncertainty. Furthermore, the fact that ae(x) is the same for both
players follows directly from the assumption that the production function g(µ, e)
is the same for both players, and depends only on the level of effort e and the
ability µ, both of which are the same for both players in situations where players
have a marginal incentive to supply effort in symmetric equilibrium.

The function ae(x) describes how a marginal increase in effort by a player in-
creases output relative to his or her rivals and is equal to the marginal rate of
technical substitution between skill and effort. The purpose of raising effort is to
beat players with higher ability. The MRTS determines the range of additional
types that the player can win against through a small effort increase. The lower
is the sensitivity of output to skill in the production function, the smaller is the
advantage of marginally more skilled rivals, and the higher is the marginal in-
centive to exert effort.

Additional intuition can be provided by considering specific functional forms.
For example, if g(µ, e) = e+µ we have that ae(x) = 1 since in this case both the
numerator and denominator are equal to unity. If instead, g(µ, e) = µe, we have
that ae(x) = x/e because of the complementarity between skill and own effort in
the production function. The fact that ae(x) is an increasing function of x reflects
that it is in this case more valuable to increase effort the higher is the skill of the
player. The fact that ae(x) is decreasing in e reflects that the marginally more
able individual is harder to beat the higher is the baseline (symmetric) level of
effort because of the complementarity between skill and effort.

We end this section with an illustrative example. Consider the multiplicative
production technology g(µi, ei) = µi e i and the cost function c(ei) = e2

i /2. Assume
further that the skill distribution of player 1 follows a Uniform distribution on

11The reason a player only has a marginal incentive to exert effort when µk = µi is that this is
the only situation in which a marginal increase in output would be pivotal to winning the contest.
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[1,2], and the skill distribution of player 2 is given by the Student’s t-distribution
on support (°1,1), with one degree of freedom, such that:

f1(s)=

8
<
:

1 1∑ s ∑ 2

0 otherwise
, f2(x)= 1

º(1+ x2)
, x 2R.

The event of player 1 winning is described by g(µ1, e1)> g(µ2, e2) () µ2 < g°1
e2 (ge1(µ1))=

µ1e1/e2. The probability of that event, and its first derivative with respect to e1,
are

P1(e1, e2)=
Z1

°1
F2

µ
x

e1

e2

∂
f1(x)dx,

@P1(e1, e2)
@e1

=
Z1

°1
f2

µ
x

e1

e2

∂µ
x
e2

∂
f1(x)dx.

The first-order condition of player 1’s maximization problem is

@P1(e1, e2)
@e1

V = e1.

In a symmetric equilibrium with e1 = e2 = e, this can now be written as

V
Z1

°1
f2 (x) xf1(x)dx = e2.

For player 2 we obtain the same expression. Using our distributional assump-
tions, the left-hand side becomes

V
Z1

°1
f2 (x) xf1(x)dx =V

Z2

1

x
º(1+ x2)

dx =V
1

2º
log

µ
5
2

∂
.

We thus have a symmetric equilibrium, and the corresponding effort is e§ =r
V log

° 5
2
¢

2º º 0.38
p

V .

5 Comparative Statics Results

In this section, we investigate the consequences of player heterogeneity, in terms
of the statistical properties of their skill distributions, on the incentive to exert
effort. To facilitate the derivation of these results, we define re,i : R! R given by
re,i(x)= ae(x) f i (x). Equation (4) can thus be written as:

V
Z

R
re§,i(x) fk (x)dx = c0(e§). (5)
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The integral now has the same structure as a decision maker’s expected utility
in decision theory (e.g., Levy 1992), where the function re,i corresponds to the
decision maker’s utility function. As we will see, this link proves useful in deriving
several key results. We also need one additional assumption:

Assumption 2. The primitives of the model are such that q : E !R, defined by

q(e)=V
Z

R
re,i(x) fk (x)dx° c0(e),

is strictly decreasing.

As c is strictly convex, Assumption 2 is not very strong and is always satisfied
if

R
R re,i(x) fk (x)dx is non-increasing in e. To give a specific example, consider the

CES production function g(µi, ei) =
°
Æµ

Ω
i +ØeΩi

¢ 1
Ω , with Æ,Ø > 0 and Ω ∑ 1. Here

ae (x) = Ø
Æ

° x
e
¢1°Ω, implying that

R
Rae(x) f1 (x) f2 (x)dx = eΩ°1 R

R
Ø
Æ x1°Ω f1 (x) f2 (x)dx.

For this specification, Assumption 2 is satisfied in all cases where the worker has
an incentive to exert positive effort (i.e.,

R
R
Ø
Æ x1°Ω f1 (x) f2 (x)dx > 0). Furthermore,

the assumption ensures that effort is always increasing in the prize and that
the considered equilibrium is unique in the class of symmetric equilibria (the
latter result follows from the assumption ensuring that there is a unique e solving
equation (5)).

5.1 First-Order Stochastic Dominance

A standard result in contest theory is that heterogeneity among players with re-
spect to their skills reduces the incentive to exert effort (see, e.g., Schotter &
Weigelt 1992, or Observation 1 in the survey by Chowdhury et al. 2019). In our
framework, this standard result is potentially reversed, as we will now show.

Consider a contest with two players with skills drawn from two distributions
with expected values µk and µi, respectively. If, from the outset, µk ∏ µi and the
difference µk °µi is increased, then the two players become more heterogeneous
in terms of their expected skill. Based on this idea, we proceed by investigating
the consequences of making players more heterogeneous in the sense of first-order
stochastic dominance, as captured by the following definition.

Definition 1. Let µk and µi refer to the expected values of the skill distributions
(Fk,Fi) in an initial contest. Players in a contest with skill distributions (F̃k,Fi)
are said to be more heterogeneous (with respect to their skills) relative to players in
the initial contest with skill distributions (Fk,Fi), in a first-order sense, if either of
the following conditions hold:

14



(i) µk ∏µi and F̃k dominates Fk in the sense of first-order stochastic dominance.

(ii) µk ∑µi and F̃k is dominated by Fk in the sense of first-order stochastic dom-
inance.

We are now in a position to derive our second main result. Due to Assumption
2, equilibrium effort increases if a change in the primitives of the model leads
to an increase in

R
R re,i(x) fk (x)dx. As indicated before, this expression has the

same structure as a decision maker’s expected utility in decision theory, where
the function re,i is replaced by the decision maker’s utility function. Since the
structure of the problems is the same, we can make extensive use of results from
decision theory in our analysis. We obtain the following theorem.

Theorem 2. Consider two contests with skill distributions (F̃k,Fi) and (Fk,Fi)
where supp( f̃k) and supp( fk) both are subsets of supp( f i). Let ẽ§ and e§ denote, re-
spectively, the (symmetric) equilibrium efforts associated with these contests. Then,
ẽ§ > e§ if either one of the following statements hold:

(i) re,i(x) is strictly increasing for all x 2 supp( f i) and all e ∏ 0, and F̃k domi-
nates Fk in the sense of first-order stochastic dominance.

(ii) re,i(x) is strictly decreasing for all x 2 supp( f i) and all e ∏ 0, and F̃k is domi-
nated by Fk in the sense of first-order stochastic dominance.

Proof. See Appendix A.3.

Note that Theorem 2 holds independently of whether µk ∑µi or µk ∏µi. Com-
bining Definition 1 with Theorem 2, we have the following corollary.12

Corollary 1. Effort can be higher when contestants are more heterogeneous in a
first-order sense.

We illustrate the intuition behind Theorem 2 and Corollary 1 through two
examples. In each example, we start from a situation of equal expected skills,
and then introduce a first-order stochastic dominance shift. In the first example,
which has a somewhat simpler intuition than the second, re,i(x) is strictly de-
creasing and effort gets higher as player k becomes weaker, illustrating part (ii)
of Theorem 2. In the second example, re,i(x) is strictly increasing and effort gets
higher as player k becomes stronger, illustrating part (i) of Theorem 2.

12There is one small caveat to Corollary 1 that we should mention. If equilibrium effort in-
creases as contestants become more heterogeneous, then a symmetric equilibrium in which both
players exert positive effort will fail to exist if the heterogeneity between players becomes too
large. The reason is that the weaker player would eventually receive a negative payoff, meaning
that this player would prefer to choose zero effort.
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Example 1. Suppose that g(µ, e)= µ+e,£i ª Exp
°4

3
¢
,£k ªU

£1
2 ,1

§
, £̃k ªU

£ 7
16 , 15

16
§
,

c(e)= e2

2 , V = 1. Then e§ = 2
°
exp

° 2
3
¢
°1

¢

exp
° 4

3
¢ º 0.499 and ẽ§ = 2

°
exp

° 2
3
¢
°1

¢

exp
° 5

4
¢ º 0.543.

In Example 1, the first thing to notice is that the additive production technol-
ogy implies that ae(x) = 1. This further implies that re,i(x) is strictly decreasing
for all relevant x, since f i(x) is the decreasing pdf of the exponential skill distri-
bution. The fact that ae(x) = 1 also implies that the incentive to supply effort,
as given by (4), only depends on the collision density fk(x) f i(x). Since f i(x) is de-
creasing, and fk(x) is uniform and shifted to the left, the collision density between
f̃k and f i is everywhere larger than the collision density between fk and f i, see
Figure 1 for an illustration. Thus, both players have a higher incentive to exert ef-
fort. The simple intuition for the example is that the marginal incentive to supply
effort for both players is positive only in situations where they have equal ability,
and the considered shift in distributions makes such situations unambiguously
“more likely” to happen.

fk

f
˜
k

fi

0 7
16

1
2

15
16

1
x

1

2

Figure 1: Illustration of Example 1

Example 2. Suppose that g(µ, e)= µ · e, £i ªU[0,1], £k ªU
£1

4 , 3
4
§
, £̃k ªU

£ 5
16 , 13

16
§
,

c(e)= e2

2 , V = 1. Then e§ = 1p
2
º 0.707 and ẽ§ = 3

4 = 0.75.

In Example 2, the multiplicative production technology implies that ae(x)= x/e
which is a strictly increasing function of x. This further implies that re,i(x) is
strictly increasing on [0,1] because f i is uniform. The shift in the skill distribution
of player k from Fk to F̃k implies that the expected skill of player k increases.
However, the height of the density of player k’s skill distribution does not change
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( fk(x) = 2, x 2
£1

4 , 3
4
§

and f̃k(x) = 2, x 2
£ 5

16 , 13
16

§
). Thus, since f i(x) = 1, we have that

fk(x) f i(x) = f̃k(x) f i(x) = 2 at all points where these collision densities are non-
zero. However, due to the distributional shift, the subset of R where the two
uniform distributions overlap shifts to the right. Therefore, the two distributions
collide at larger values of x (see Figure 2 for an illustration). This would have no
effect on the incentive to exert effort if ae(x) would be constant, as in Example
1. However, in the current example, we have that ae(x) = x/e. Thus, taking into
account the three terms in (4), the fact that the two distributions collide at larger
values of x increases the incentive to exert effort for both players. Intuitively,
given that the only relevant situations (where players have a positive marginal
incentive to supply effort) now occur at larger values of skill, the fact that there
is a complementarity between skill and effort in the production function implies
that the incentive to supply effort is higher for both players.

ae(x)

fk

f
˜
k

fi

0 1
4

5
16

3
4

13
16

1
x

1

2

Figure 2: Illustration of Example 2

Concluding this section, we note that the conditions in Theorem 2 are suffi-
cient, but not necessary for the result that effort can be higher when contestants
are more heterogeneous. To illustrate this, we present an additional result based
on normal distributions where we first determine the marginal winning probabil-
ity in a situation with symmetric effort.

Proposition 1. Suppose that £i ª N(µi,æ2
i ), £k ª N(µk,æ2

k), and g(µ, e) = µ · e.
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Then the marginal winning probability when e1 = e2 = e is

@Pi(ei, ek)
@ei

|ei=ek=e =
(µiæ

2
k +µkæ

2
i )exp

µ
° (µi°µk)2

2(æ2
i +æ

2
k)

∂

e(2º)
1
2 (æ2

i +æ
2
k)

3
2

.

Proof. See Appendix B.1.

In the upcoming example, it can be verified that re,i(x) = ae(x) f i (x) is neither
always increasing nor always decreasing, by virtue of the multiplicative produc-
tion technology combined with the bell-shaped normal distribution. Nonetheless,
equilibrium effort increases as players become more heterogeneous in the sense
of increasing the distance |µi °µk|.

Example 3. Consider Proposition 1 and assume that (æi,æk) = (1,1), (µi,µk) =
°1

2 , 1
2
¢
, V = 1, and c(e) = e2

2 . Then equilibrium effort is e§ =
≥
2º

1
4

¥°1
º 0.38. If

we increase µi from 1
2 to 3

2 , keeping µk constant, equilibrium effort increases to

ẽ§ =
≥p

2exp
°1

8
¢
º

1
4

¥°1
º 0.47.

5.2 Second-Order Stochastic Dominance

The studies by Hvide (2002), Kräkel & Sliwka (2004), Kräkel (2008), Gilpatric
(2009), and DeVaro & Kauhanen (2016) investigate how “risk" or “uncertainty"
affects players’ incentive to exert effort in contests. One result that is common to
all of these analyses is that in contests between equally able players, higher risk
(as measured by a higher variance of the random variables capturing the uncer-
tainty of the contest outcome) leads to lower efforts. We revisit this result in the
context of our model and show that effort may increase as the ability distribution
of one of the players becomes more uncertain in the sense of second-order stochas-
tic dominance. In the following definition, we formalize what we mean when we
say that one skill distribution is more uncertain than another one (see Rothschild
& Stiglitz 1970 for details).

Definition 2. The ability distribution F̃i is said to be more uncertain than the
distribution Fi if F̃i is a mean-preserving spread of Fi. This is equivalent to F̃i

being dominated by Fi in the sense of second-order stochastic dominance.

Equipped with this definition, we can use well-known results from decision
theory to obtain our next theorem:
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Theorem 3. Consider two contests with skill distributions (F̃k,Fi) and (Fk,Fi)
where supp( f̃k) and supp( fk) both are subsets of supp( f i). Let ẽ§ and e§ denote, re-
spectively, the (symmetric) equilibrium efforts associated with these contests. Sup-
pose that F̃k is more uncertain than Fk. Then, the following results hold:

(i) If re,i(x) is strictly convex on supp( f i) for all e ∏ 0, then ẽ§ > e§.

(ii) If re,i(x) is linear on supp( f i) for all e ∏ 0, then ẽ§ = e§.

(iii) If re,i(x) is strictly concave on x 2 supp( f i) for all e ∏ 0, then ẽ§ < e§.

Proof. See Appendix A.4.

The key insight needed to understand Theorem 3 is that applying a mean-
preserving spread to the distribution Fk shifts probability mass from the center
to the tails of the distribution, and the impact of this change on the incentive to
exert effort depends on the curvature of re,i(x). Notice that Theorem 3 also holds
if players have the same expected ability, namely µi = µk. This means that, in a
contest with two players who are expected to be equally able, higher uncertainty
regarding players’ abilities may increase the incentive to exert effort, in contrast
to what the studies referred to at the beginning of this subsection have shown.

Next, we illustrate and provide intuition for Theorem 3 by presenting an ex-
ample set in the context of the Lazear-Rosen framework with an additive pro-
duction technology. The example demonstrates that increasing the uncertainty
of the contest while keeping the expected ability of both players unchanged, can
increase equilibrium effort.

Example 4. Consider a contest with the additive production function g(µ, e) =
µ+ e, the parameter V = 1, and the cost function c(e) = e2

2 . Suppose £i ª Exp(1)
and £k ªU

£1
2 , 3

2
§

(implying µi = µk = 1). Equilibrium effort is then e§ = exp(1)°1
exp

° 3
2
¢ º

0.38. Now, consider a mean-preserving spread of the skill distribution of player
k, enlarging the support of the uniform distribution, such that £̃k ªU[0,2]. Then
effort increases to ẽ§ = exp(2)°1

2exp(2) º 0.43.

In Example 4, we have imposed the additive production technology which im-
plies ae(x) = 1. Thus, the convexity of re,i(x) referred to in part (i) of Theorem 3
is determined by the convexity of f i(x). To understand how the shift from fk to
f̃k affects the incentive to exert effort, we need to study how the integral in (4)
is affected. Similar to Example 1, given that ae(x) = 1, it is sufficient to compare
R

f i(x) fk(x)dx with
R

f i(x) f̃k(x)dx. The shift from fk to f̃k entails an enlargement
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of the support of the uniform distribution. This implies that the density decreases
for intermediate values of x, but increases for low and high values of x (see Figure
3 for an illustration). Given that f i(x) is strictly decreasing, the part of the skill
distribution of player k that is stretched out to the left will collide with relatively
large values of f i, whereas the the part of the skill distribution of player k that is
stretched out to the right will collide with relatively small values of f i, creating a
trade-off. The fact that f i is not only strictly decreasing, but also convex, resolves
this trade-off, implying that the overall effect of the shift is to increase the value
of the integral expression. Thus, both players have a higher incentive to exert
effort as a result of the move from fk to f̃k. Intuitively, due to the change in the
distribution of player k, situations where the competing players have the same
ability become “more likely”, implying an increase in equilibrium effort.

fk

f
˜
k

fi

0 1
2

1 3
2

2
x

1
2

1

Figure 3: Illustration of Example 4

We conclude this section by defining contestant heterogeneity in a second-
order sense and we follow the structure of the corresponding definition of hetero-
geneity in a first-order sense (Definition 1). In Definition 1, we used the ranking of
players’ mean abilities to characterize the initial situation. In the new definition,
we do so through the variances of the skill distributions of the competing play-
ers (restricting attention to statistical distributions with finite variance). Notice,
however, that variance is not always a good measure of uncertainty or risk (see,
e.g, Rothschild & Stiglitz 1970). Therefore one should keep in mind, when apply-
ing the definition below, that higher variance entails higher uncertainty only for
certain skill distributions (e.g., the normal distribution).
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Definition 3. Let V ark and V ari refer to the variances of the skill distributions
(Fk,Fi) in an initial contest. Players in a contest with skill distributions (F̃k,Fi),
are said to be more heterogeneous (with respect to their skills) relative to players in
the initial contest with skill distributions (Fk,Fi), in a second-order sense, if either
of the following conditions hold:

(i) V ark ∏ V ari and Fk dominates F̃k in the sense of second-order stochastic
dominance.

(ii) V ark ∑V ari and Fk is dominated by F̃k in the sense of second-order stochas-
tic dominance.

Combining Theorem 3 with Definition 3, we have the following corollary.

Corollary 2. Effort can be higher when contestants are more heterogeneous in a
second-order sense.

5.3 Implications for Optimal Team Composition

The results in the preceding two subsections have implications for optimal team
composition and organizational design.13 In particular, our results suggest that
employers could find it desirable to employ a more heterogeneous workforce as
an instrument to induce higher effort. In Section 5.1, we analyzed the effects
of increasing the heterogeneity in players’ expected skills, and showed how this
can increase equilibrium effort. This means that a firm could benefit (from the
perspective of inducing higher effort) by hiring some workers with a high expected
ability and some with a low expected ability, based on, for example, signals such as
the quality of the institution where a college graduate received his or her degree.
In Section 5.2, we showed how increased uncertainty regarding abilities of some
players can increase equilibrium effort. Thus, a firm could benefit from hiring
a mix of experienced workers (for whom the uncertainty regarding abilities is
relatively small) and inexperienced workers (for whom the uncertainty regarding
abilities is relatively large).

To see this more formally, suppose a firm already employs a worker with abil-
ity distribution F1 and considers to hire another worker with ability distribution
F2. Moreover, assume that re,1(x) is strictly decreasing and strictly convex (for
example, by assuming that the production function is given by g(µ, e) = µ+ e and

13See, e.g., Gershkov et al. (2009, 2016) and Fu et al. (2015).
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skills are Exponentially distributed with parameter ∏).14 Then the firm may gain
from hiring another worker with a lower expected ability (µ2 < µ1), but where
F2 is more uncertain (meaning that worker 2’s skill is drawn from a more uncer-
tain distribution). This finding can be understood from the perspective of Theo-
rem 2, that tells us that effort will be higher due to the lower expected ability of
worker 2, combined with Theorem 3, which tells us that effort will be higher due
to the larger uncertainty regarding the skill of worker 2. In other words, hiring a
worker with a lower expected ability, drawn from a more uncertain distribution,
can induce higher effort. Theorem 2 and Theorem 3 also have other managerial
implications as they indicate that employers may want to hire workers who have
worked on different tasks in the past (or on similar tasks in a different firm or in-
dustry), to create uncertainty about workers’ abilities. In a similar vein, it might
be desirable to implement some kind of job rotation.

6 The Case of More Than Two Players (n > 2)

We now turn to the case of n > 2 contestants which allows us to address the in-
teresting question of how effort depends on the number of players competing in a
contest.15 In Section 6.1, we show that our solution method generally cannot be
extended to the case of n > 2 heterogeneous players. In Section 6.2, we consider
the case of n homogeneous players. Section 6.3 examines a special case of our
model where n°1 homogeneous players compete against a player who is more
highly skilled (e.g., as in Brown 2011 and Krumer et al. 2017), which serves to
demonstrate that a symmetric equilibrium can exist when players are heteroge-
neous and the number of players is greater than two. In all these sections, we
maintain the generality of the production technology.

6.1 The n = 2 Result Does Not Extend to n > 2

In the case of n > 2 players with different skill distributions, the equilibrium in
our model is generally no longer symmetric. A player i will only win the contest

14An alternative skill distribution that would also be decreasing and convex would be a normal
distribution that is truncated to the left at a point to the right of the second inflection point. Such
a distribution could be motivated by the observation that abilities are often normally distributed
and that, when employing worker 1, the firm tried to hire the most able applicant, meaning that
abilities in the higher end of the distribution are most relevant (see, e.g., Aguinis & O’Boyle Jr.
2014).

15Contests with more than two players have been studied by, e.g., Tullock (1980), Nalebuff &
Stiglitz (1983), Hillman & Riley (1989), Zábojník & Bernhardt (2001), Chen (2003), and Zábojník
(2012).
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if he or she beats all of his or her opponents. Essentially, each player is thus
competing against the best of the other players, that is, the largest order statistic,
and therefore faces a different “relevant rival” in the contest. This introduces
an asymmetry into the model that was absent in the two-player case, and which
generally leads to an asymmetric equilibrium. To see this formally, suppose, for
simplicity, that g (µi, ei) = µi + ei, implying that ae (x) = 1 (the following intuition
also holds for general production technologies). Then, using a similar reasoning
as in the two-player case (see Section 4), the marginal probability of winning for
player i and player k in a symmetric equilibrium can be written, respectively, as:

@Pi(e1, e2, . . . , en)
@ei

|e1=...=en=e =
Z

R
f i (x)

d
dx

√
Fk (x)

Y

j 6=i,k
Fj (x)

!
dx

and
@Pk(e1, e2, . . . , e2)

@ek
|e1=...=en=e =

Z

R
fk (x)

d
dx

√
Fi (x)

Y

j 6=i,k
Fj (x)

!
dx.

Applying the product differentiation rule on the RHS of the above expressions, we
obtain:

Z

R

√
f i (x) fk (x)

Y

j 6=i,k
Fj (x)+ f i (x)Fk (x)

d
dx

√
Y

j 6=i,k
Fj (x)

!!
dx (6)

and

Z

R

√
fk (x) f i (x)

Y

j 6=i,k
Fj (x)+ fk (x)Fi (x)

d
dx

√
Y

j 6=i,k
Fj (x)

!!
dx. (7)

The first term in (6) and (7) corresponds to the situation in which all players
j 2 {1, . . . ,n}, j 6= i,k perform worse than players i and k so that the n-player
contest collapses to a contest between players i and k. For this subcontest, the
marginal winning probabilities are the same as shown in the analysis of the two-
player contest. The second term in (6) corresponds to the situation in which player
i outperforms his or her rival k, such that the contest boils down to a contest be-
tween player i and the strongest of the players j 2 {1, . . . ,n}, j 6= i,k. The interpre-
tation of the second term in (7) is analogous, with the role of i and k interchanged.

23



Setting expression (6) equal to expression (7), we obtain

Z

R
f i (x)Fk (x)

d
dx

√
Y

j 6=i,k
Fj (x)

!
dx =

Z

R
fk (x)Fi (x)

d
dx

√
Y

j 6=i,k
Fj (x)

!
dx

,
Z

R

µ
f i (x)
Fi (x)

° fk (x)
Fk (x)

∂
Fi (x)Fk (x)

d
dx

√
Y

j 6=i,k
Fj (x)

!
dx = 0.

Notice that i and k were arbitrarily selected. Hence, in order for a symmetric
equilibrium to exist, it must be the case that the above condition holds for all
i,k 2 {1, . . . ,n}, i 6= k. We conclude that the condition above is generally violated
when the skill distributions of the competing players are distinct, which implies
that our solution method cannot be extended to the case of n > 2 players.16

6.2 The Case of Homogeneous Players

Suppose that all players share the same skill distribution, i.e., f1 = f2 = ...= fn =:
f , and define re(x) := ae(x) f (x).

Proposition 2. In an n-player contest with homogeneous skill distributions, a
symmetric Nash equilibrium with e1 = e2 = ·· · = en = e§ exists and is characterized
by

V
Z

R
re§ (x) (n°1)(F (x))n°2 f (x)dx =V

Z

R
re§ (x)

d
dx

°
(F (x))n°1¢dx = c0

°
e§

¢
. (8)

Proof. See Appendix B.2.

Notice that (F (x))n°1 describes the cdf of the largest order statistic out of a
group of n°1 players. The condition from the proposition therefore illustrates
what we claimed before: the n-player contest boils down to a two-player contest,
in which every player competes against the strongest of the other players.

A particular focus in the literature has been on the relation between effort
and the number of competitors. Early studies of the n-player Tullock contest with
∞1 = ... = ∞n, m = 1, and linear effort costs found that equilibrium effort is given
by e§ = n°1

n2 V , so that effort is decreasing in n (e.g., Tullock 1980, Hillman & Riley
1989). With a convex cost function (as in our setting), the condition would change
to e§c0 (e§) = n°1

n2 V , but effort would still be decreasing in n. The result can be

16A sufficient condition for a symmetric equilibrium to exist is that f i(x)
Fi(x) =

fk(x)
Fk(x) for all x 2 R

and all i,k 2 {1, . . . ,n}, i 6= k. However, since f i(x)
Fi(x) =

d logFi(x)
dx is the reversed hazard rate, which

completely characterizes a statistical distribution, this condition would only hold for all x 2R if Fi
and Fk refer to identical distributions.
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explained by a discouragement effect. If a player competes against many rivals,
his or her chance of winning is relatively low and the player reduces effort in turn.

In what follows, we study the relationship between effort and the number of
competitors in our framework. To do so, we need to extend Assumption 2 to the
n-player case.

Assumption 3. The primitives of the model are such that qn : E !R, defined by

qn(e)=V
Z

R
re (x)

d
dx

°
(F (x))n°1¢dx° c0(e),

is strictly decreasing.

We observe that, in addition to the discouragement effect mentioned before,
there is also an encouragement effect, inducing players to increase their effort
as they compete against more players. This is reflected by the factor (n°1) in
R
R re (x) (n°1)(F (x))n°2 f (x)dx in Proposition 2 above. As we will show, the en-

couragement effect might dominate, opening up for the possibility that effort in-
creases in the number of competitors. In our proof, we make use of the fact that
increasing n leads to a distribution of the largest order statistic that first-order
stochastically dominates the original distribution. We can thus invoke Theorem
2 to study the effects of an increase in n on equilibrium effort.17

Theorem 4. Consider the n-player contest with homogeneous skill distributions
and let e§ denote the symmetric Nash equilibrium effort. Then the following state-
ments hold:

i) If re(x) is strictly increasing for all x 2 supp( f ) and all e ∏ 0, then e§ increases
in n.

ii) If re(x) is strictly decreasing for all x 2 supp( f ) and all e ∏ 0, then e§ de-
creases in n.

iii) If re(x) is constant for all x 2 supp( f ) and all e ∏ 0, then e§ does not depend
on n.

Proof. See Appendix A.5.
17Notice that similar to what was mentioned in connection to Corollary 1, there is a small caveat

to part (i) of Theorem 4. If e§ is increasing in n, a symmetric equilibrium in which all players exert
positive effort will fail to exist if n becomes so large that V /n < c(e§), as (some) players would prefer
to choose an effort of zero.
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We conclude this subsection with an example to illustrate the potentially pos-
itive relationship between effort and the number of players in the context of the
well-known Lazear-Rosen model.

Example 5. Consider a contest with an additive production function g(µ, e)= µ+e,
V = 1, and cost function c(e) = e2

2 . Suppose each £i is distributed according to
the modified reflected exponential distribution with mean µ = 1 and pdf f (x) =
1
2 exp

°1
2(x°3)

¢
for x ∑ 3 and zero otherwise (see, e.g., Rinne 2014). With two players,

equilibrium effort is e§ = 1
4 . With three players, equilibrium effort increases to

ẽ§ = 1
3 .

6.3 A Contest With One Player Who Is More Highly Skilled

We now turn to a special case of our contest model with n > 2 players where we
obtain a symmetric equilibrium even when players are asymmetric in the sense
of having different expected skills. For this purpose, suppose that £i = ti +E i for
i = 1, . . . ,n where t1 > t2 = ·· · = tn = t and the E i, i = 1, . . . ,n, are i.i.d. according to
the reflected exponential distribution with cdf H(x) = e∏x defined on (°1,0] with
∏> 0 (Rinne 2014). In this case, we have:

f i (x)=
(
∏exp(∏(x° ti)), for x ∑ ti

0, for x > ti

and

Fi (x)=
(

exp(∏(x° ti)), for x ∑ ti

1, for x > ti,

implying that f i(x)
Fi(x) = ∏ on the support of f i which is (°1, ti]. Consider the condi-

tion Z

R

µ
f i (x)
Fi (x)

° fk (x)
Fk (x)

∂
Fi (x)Fk (x)

d
dx

√
Y

j 6=i,k
Fj (x)

!
dx = 0,

that we derived in Subsection 6.1.18 It is satisfied for all i,k 2 {2, . . . ,n} since in this
case, f i(x)

Fi(x) =
fk(x)
Fk(x) =∏ on the common support (1, t] of f i and fk (since we assumed

from the outset that t2 = t3 = ·· · = tn = t). Consider now the case where i = 1 and
k 2 {2, . . . ,n}. In this case, we have that f1(x)

F1(x) =
fk(x)
Fk(x) = ∏ for x ∑ t. For x > t, we

have
Y

j 6=1,k
Fj (x) = 1 ) d

dx

√
Y

j 6=1,k
Fj (x)

!
= 0. Hence, we conclude that the condition

is satisfied for all i,k 2 {1, . . . ,n}, i 6= k and all x 2R, and that the marginal winning
18This condition was derived under the assumption of an additive production technology. In

Appendix C.1, we provide a proof for the existence of a symmetric equilibrium in the general case.
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probabilities are the same. This implies that a symmetric equilibrium exists in
which all players choose the same equilibrium effort e§.

Next, we compute an example with a multiplicative production technology
and show that the marginal winning probability is increasing in the number of
players.

Proposition 3. Consider the contest described above. Suppose the production
technology takes the form g(µ, e)= µe and assume that t is chosen sufficiently large
so that n∏t°1> 0. Then, the marginal winning probability given equal effort e is
equal to:

™(n)= (n°1)
e

exp(°∏(t1 ° t))
(n∏t°1)

n2 , with ™0(n)> 0.

Proof. See Appendix B.3.

7 Privately Known Skills

We now turn to examine how our analysis is affected by assuming that players
have private information regarding their own skill. For this purpose, we assume
that each player i 2 {1, . . . ,n} observes his or her own skill realization µi before
choosing effort ei. This means that each player chooses a strategy consisting of
a function ei(µi) that specifies the effort level for each value of µi. Everything
else in our model remains unchanged. In particular, all the opponents’ skills £k,
k 2 {1, . . . ,n},k 6= i remain uncertain, as in the main model, and their distributions
are common knowledge.

This private-information assumption effectively implies that player i can, in
a deterministic manner, choose output g(µi, ei) by making the appropriate effort
choice ei. The decision problem of player i can therefore, equivalently, be ex-
pressed as the specification of optimal effort ei(µi) or the choice of optimal output
zi(µi) := g(µi, ei(µi)), as a best response to the opponents’ choice of effort or output.
Assuming that optimal output is strictly increasing in skill (this will be confirmed
in our examples), zi is invertible with inverse z°1

i .
In the two-player case, where player i competes against another player k,

player i wins the contest for given realizations of £i and £k if and only if the
following condition holds

g(µk, ek)< g(µi, ei) () zk(µk)< zi(µi) () µk < z°1
k (zi(µi)).
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Taking into account that, from the perspective of player i, the uncertainty of the
contest only concerns the skill realization of player k, we have that equilibrium
efforts ei(µi) and ek(µk) satisfy:

ei(µi) 2 argmax
ei

n
Fk(z°1

k (zi(µi)))V ° c(ei)
o
,

ek(µk) 2 argmax
ek

n
Fi(z°1

i (zk(µk)))V ° c(ek)
o
.

It can thus immediately be seen that the first-order condition for player i only
involves the skill distribution of the opposing player k, whereas the first-order
condition for player k only involves the skill distribution of the opposing player
i. Hence, the symmetry that was present in the main model, where the first-
order condition for each player involved the product of f i and fk (see equation (4)),
vanishes when skills are privately known. We thus conclude that the equilibrium
effort functions ei(µi) and ek(µk) generally are not symmetric.

The n-player case with privately known skills is handled in an almost iden-
tical fashion. Instead of competing against player k, player i can be viewed as
competing against the strongest of the opponents j 2 {1, . . . ,n}, j 6= i, in the sense
of the highest order statistic. We analyze the n-player case with symmetric skill
distributions below.

The case of n homogeneous players. We revisit the setting with n homo-
geneous players considered in Section 6.2 and introduce the private-information
assumption. The exposition also serves to illustrate the two-player case with sym-
metric players and private information.

In a symmetric setting, we naturally expect symmetric equilibria in which
players employ the same effort function, e(µi). Thus, equal types imply equal
effort and output even when individuals are privately informed about their own
type. As we did in Section 6.2, we analyze the n-player case by analyzing how
player i competes against the highest order statistic of his or her opponents.
We denote the distribution function of this order statistic by F (n°1) with the
associated probability density function f (n°1). Given that players are assumed
to have independent skill distributions, F (n°1)(y) = F(y)n°1 and f (n°1)(y) = (n°
1)F(y)n°2 f (y).

To solve for a symmetric equilibrium, we consider the problem of player i
maximizing his or her expected payoff when all his or her rivals adopt the com-
mon effort function e(µk), or equivalently, the common output function z(µk) :=
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g(µk, e(µk)), i 6= k with corresponding inverse z°1. The equilibrium effort of player
i is thus given by:

ei(µi) 2 argmax
ei

n
F (n°1)(z°1(g(µi, ei)))V ° c(ei)

o
.

For each value of µi, there is an associated first-order condition:

f (n°1)(z°1(zi(µi)))
1

z0(z°1(zi(µi)))
@g(µi, ei(µi))

@ei
V = c0(ei(µi)).

where @g(µi ,ei(µi))
@ei

is the partial derivative of g(µi, ei(µi)) with respect to the second
argument. In a symmetric equilibrium, we can drop the subindex i, thus the
first-order condition in equilibrium can be written as

f (n°1)(µ)
@g/@e
z0(µ)

V = c0(e(µ)).

The above condition implicitly defines the symmetric equilibrium effort function
e(µ). Note that since

z0(µ)= dg(µ, e(µ))
dµ

= @g
@µ

+ @g
@e

de(µ)
dµ

,

we have that the first-order condition can be written as:

f (n°1)(µ)
@g/@e

@g
@µ +

@g
@e e0(µ)

V = c0(e(µ)). (9)

Condition (9) has an intuitive interpretation. The LHS is the marginal probabil-
ity of winning times the prize V in a symmetric equilibrium from the perspective
of a player who knows that his or her skill is µ. Given that a player only has a
marginal incentive to exert effort when the strongest opponent (the largest order
statistic) has the same skill, f (n°1)(µ) is the “likelihood” of this situation. There
are two main differences with respect to the corresponding condition for the case
of symmetric uncertainty (equation (4)). First, because players know their own
skill level, there is no need to integrate over all possible realizations of a consid-
ered player’s own skill. Second, instead of ae(x) = @g(x,e)

@e

.
@g(x,e)
@x (which appeared

inside the integral of (4)), we now have the factor @g/@e
@g
@µ+

@g
@e e0(µ)

which includes the

new term @g
@e e0(µ) in the denominator. This new term arises because effort is a

function of skill in the private information case.
Recall that when we discussed the intuition behind ae(x) in equation (4), we
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explained that the purpose of a marginal effort increase is to beat rivals who
have marginally higher ability. In the current setting, the output advantage of
marginally more able rivals is not only determined by @g

@µ (which is positive) but
also by the additional term @g

@e e0(µ) which generally has an ambiguous sign. If
@g
@e and e0(µ) are both strictly positive, more highly skilled rivals are harder to
beat not only because of their skill advantage, but also because they exert higher
effort, reducing the marginal incentive to exert effort by any player.

In the following example, we compute the equilibrium effort for a specific skill
distribution and production function.19

Example 6. Consider a contest with n symmetric players with privately known
skills independently drawn from the uniform distribution on [0,1]. The produc-
tion function is given by g(µ, e) = µe, and the cost function is c(e) = e2

2 . Then, the
symmetric equilibrium effort is:

e(µ)=

s
2(n°1)

n+1
Vµn°1.

Notice that for the contest in the above example, re(x) is strictly increasing on
[0,1] for all e ∏ 0. Hence, equilibrium effort in the symmetric uncertainty case
would be increasing in n according to Theorem 4. To obtain an analogue of this
result in the case of private information, we can compute the expectation of the
equilibrium effort in Example 6 to obtain:

E[e(µ)]=

s

(n°1)
µ

2
n+1

∂3
V . (10)

We immediately see that the expected effort in (10) is decreasing in n. Hence,
Example 6 serves to demonstrate that the comparative statics results from the
baseline case with symmetric uncertainty do not necessarily carry over to the
private information case.

8 Concluding Remarks

We have presented a novel framework to study contests between heterogeneous
players. Under general assumptions about the production technology and the
skill distributions of the competing players, we have shown that the contest has
a symmetric equilibrium in which all players exert the same effort. We have

19The detailed derivations for this example are provided in Appendix C.2.
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constructed a link between our contest model and expected utility theory and ex-
ploited this link to revisit important comparative statics results of contest theory.
We have shown that standard results in the literature are not robust to general-
izations of the production technology or skill distributions. In particular, we have
found that making skill distributions more heterogeneous (in terms of first and
second moments) can increase equilibrium effort. Thus, employers could find it
desirable to increase the heterogeneity of the workforce in terms of the statistical
properties of the skill distributions of the competing players. We also found that
increasing the number of contestants can lead to higher equilibrium effort.

We have also investigated the robustness of our results with respect to the
assumption of symmetric uncertainty by analyzing the consequences of letting
players be privately informed about their skills. In this case, equilibria are in
general not symmetric, but focusing on symmetric players, we are able to draw
interesting parallels with respect to our baseline case, highlighting the role of
our general production technology in influencing the marginal incentive to exert
effort.

A possible next step would be to use our framework to study additional aspects
of tournament design. For instance, prior work has investigated strategic infor-
mation revelation by the tournament designer (e.g., Aoyagi 2010). If the tourna-
ment designer possesses some private information about the players’ abilities, he
or she may decide to reveal some or all of this information to trigger higher effort
by the players. Another example would be to allow for different prize structures
in the n-player case and investigate how effort depends on the prize structure.
For example, one alternative prize structure would be to award the prize V to the
n°1 best-performing players, and a prize of zero to the worst-performing player.
This would change Theorem 4 since every player now would compete against the
lowest order statistic associated with the opponent players. The lowest order
statistic becomes weaker as the number of players increases, implying that the
relationship between effort and the number of players would change. In sum, we
believe that our new contest framework opens up many interesting avenues for
future research.
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Appendix

A Proofs of Lemmas and Theorems

A.1 Proof of Lemma 1

Suppose that @Pi(ei ,ek)
@ei

|ei=ek=e is the same for both i 2 {1,2} and all e 2 int E.
Then we have @P1(e1,e2)

@e1
|e1=e2=eV ° c0(e) = @P2(e2,e1)

@e2
|e1=e2=eV ° c0(e) for all e 2 int

E. Since ºi(ei, ek) is continuously differentiable, @Pi(ei ,ek)
@ei

|ei=ek=eV ° c0(e) is a con-
tinuous function of e. Furthermore, recall that there exist ē i, ĕ i 2 int E such that
@ºi(ei ,ek)

@ei
|ei=ek=ē i < 0 and @ºi(ei ,ek)

@ei
|ei=ek=ĕ i > 0. Hence, by the Intermediate Value

Theorem, there is some e§ 2 int E such that @Pi(ei ,ek)
@ei

|ei=ek=e§V ° c0(e§) = 0. By
Assumption 1, e1 = e2 = e§ is a Nash equilibrium.

A.2 Proof of Theorem 1

Since we wish to apply the sufficient condition Lemma 1, we restrict attention to
ei > 0. Then, the function ge :R!R defined by ge (x)= g (x, e) is strictly increasing
and, thus, invertible. The inverse, g°1

e , is strictly increasing as well. For the two
(different) players i,k 2 {1,2}, we observe

g (µi, ei)< g (µk, ek)

, gei (µi)< gek (µk)

, µi < g°1
ei

°
gek (µk)

¢
.

Player k thus wins with probability
Z

Fi
°
g°1

ei

°
gek (x)

¢¢
fk (x)dx.

Differentiating with respect to ek, we obtain

Z
f i

°
g°1

ei

°
gek (x)

¢¢µ d
dek

g°1
ei

°
gek (x)

¢∂
fk (x)dx.
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According to Lemma 1, and noting that g°1
ek

(gei (x)) = g°1
ei

(gek (x)) = x if ei = ek, a
sufficient condition for a symmetric equilibrium to exist is that

Zµ
d

de1
g°1

e2

°
ge1 (x)

¢ØØØØ
e1=e2=e

∂
f1 (x) f2 (x)dx

=
Zµ

d
de2

g°1
e1

°
ge2 (x)

¢ØØØØ
e1=e2=e

∂
f1 (x) f2 (x)dx,

for all e 2 int E. Since d
de1

g°1
e2

°
ge1 (x)

¢ØØØ
e1=e2=e

= d
de2

g°1
e1

°
ge2 (x)

¢ØØØ
e1=e2=e

, this con-
dition is always fulfilled.

A.3 Proof of Theorem 2

Suppose that Assumption 2 holds, and consider case (i), i.e., re,i (x) is monotoni-
cally increasing in x, and F̃k first-order stochastically dominates Fk. Denote the
equilibrium effort levels for the two contests by ẽ§ and e§, respectively. Our goal
is to show that ẽ§ > e§.

The proof proceeds by contradiction, so suppose ẽ§ ∑ e§. Now observe that

V
Z

r ẽ§,i (x) f̃k (x)dx° c0
°
ẽ§

¢
∏

V
Z

re§,i (x) f̃k (x)dx° c0
°
e§

¢
>

V
Z

re§,i (x) fk (x)dx° c0
°
e§

¢
= 0.

The first inequality follows from ẽ§ ∑ e§ together with Assumption 2. The sec-
ond inequality follows from re,i (x) being monotonically increasing on supp( f i), F̃k

first-order stochastically dominating Fk, and the fact that we have assumed that
both supp( f̃k) and supp( fk) are subsets of supp( f i).20 The equality follows since
e§ is characterized by the first-order condition V

R
re§,i (x) fk (x)dx° c0 (e§)= 0. We

conclude that
V

Z
r ẽ§,i (x) f̃k (x)dx° c0

°
ẽ§

¢
> 0.

This shows that the first-order condition for equilibrium effort cannot be fulfilled
in the case of the distribution F̃k, giving us the desired contradiction.

By an analogous argument, we can show that ẽ§ > e§ also in case (ii) where
re,i is monotonically decreasing in x for all e > 0 and Fk first-order stochastically

20See, e.g., Levy 1992, p.557. Notice that, in expected utility theory, the utility function is
defined for all possible payoffs and therefore no additional constraints regarding the statistical
supports need to be imposed.
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dominates F̃k. In this case,
R

re,i(x) f̃k (x)dx >
R

re,i(x) fk (x)dx for all e > 0 (see,
e.g., Levy 1992, p.557).

A.4 Proof of Theorem 3

Because of Assumption 2, and the condition characterizing equilibrium effort, we
need to show that

R
re,i(x) f̃k (x)dx > (=,<)

R
re,i(x) fk (x)dx if re,i is convex (linear,

concave). The proof is very similar to part a) of the proof of Theorem 2 in Roth-
schild & Stiglitz (1970, p.237). In the case of convex re,i, the inequality in their
proof is reversed, while it is replaced by an equality if re,i is linear.

A.5 Proof of Theorem 4

Part i) As explained in the main body of the paper, the equilibrium first-order
condition for an n-player contest is equivalent to that of a two-player contest in
which the second player’s skill distribution is replaced by the strongest rival’s
skill distribution (the highest order statistic) of the n-player contest. We show
that

R
re (x)

° d
dx (F (x))n°1¢dx is increasing in n. If n1,n2 2 N, with n1 > n2, then

(F (x))n1°1 first-order stochastically dominates (F (x))n2°1, and the result follows
from Theorem 2.

Part ii) Suppose that re(x) is monotonically decreasing in x for all e ∏ 0, and
let n1,n2 2 N, with n1 > n2. It follows that (F (x))n1°1 first-order stochastically
dominates (F (x))n2°1, as just mentioned, implying that

Z
re (x)

µ
d
dx

(F (x))n1°1
∂

dx <
Z

re (x)
µ

d
dx

(F (x))n2°1
∂

dx.

Part iii) If re(x)= re is constant in x for all e ∏ 0, we have

Z
re (x)

µ
d
dx

(F (x))n°1
∂

dx = re

Zµ
d
dx

(F (x))n°1
∂

dx = re,

which is independent of n.
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B Proofs of Propositions

B.1 Proof of Proposition 1

Suppose that g(µ, e)= µe. This means that

ae(x)= d
dei

°
g°1

ek

°
gei (x)

¢¢ØØØØ
ei=ek=e

= d
dei

µ
xei

ek

∂ØØØØ
ei=ek=e

= x
e

.

In the considered situation, the marginal winning probability is

1
2ºæ1æ2

Z x
e

exp

√
°

°
x°µ1

¢2

2æ2
1

°
°
x°µ2

¢2

2æ2
2

!
dx.

To prove the proposition, it is sufficient to show that

1
2ºæ1æ2

Z
xexp

√
°

°
x°µ1

¢2

2æ2
1

°
°
x°µ2

¢2

2æ2
2

!
dx

=

°
µ1æ

2
2 +µ2æ

2
1
¢
exp

µ
° (µ1°µ2)2

2(æ2
1+æ

2
2)

∂

(2º)
1
2
°
æ2

1 +æ2
2
¢ 3

2
.

Define

Z := 1
2ºæ1æ2

Z
xexp

√
°

°
x°µ1

¢2

2æ2
1

°
°
x°µ2

¢2

2æ2
2

!
dx
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and notice that:
°
x°µ1

¢2

2æ2
1

+
°
x°µ2

¢2

2æ2
2

=
æ2

2
°
x°µ1

¢2 °
æ2

1 +æ2
2
¢
+æ2

1
°
x°µ2

¢2 °
æ2

1 +æ2
2
¢

2æ2
1æ

2
2
°
æ2

1 +æ2
2
¢

=
æ2

2
°
x2 °2xµ1 +µ2

1
¢°
æ2

1 +æ2
2
¢
+æ2

1
°
x2 °2xµ2 +µ2

2
¢°
æ2

1 +æ2
2
¢

2æ2
1æ

2
2
°
æ2

1 +æ2
2
¢

=
x2 °

æ2
1 +æ2

2
¢2 °2x

°
µ1æ

2
2 +µ2æ

2
1
¢°
æ2

1 +æ2
2
¢
+

°
µ2

1æ
2
2 +µ2

2æ
2
1
¢°
æ2

1 +æ2
2
¢

2æ2
1æ

2
2
°
æ2

1 +æ2
2
¢

=
x2 °

æ2
1 +æ2

2
¢2 °2x

°
µ1æ

2
2 +µ2æ

2
1
¢°
æ2

1 +æ2
2
¢
+

°
µ1æ

2
2 +µ2æ

2
1
¢2

2æ2
1æ

2
2
°
æ2

1 +æ2
2
¢

°
°
µ2

1æ
4
2 +2µ1æ

2
2µ2æ

2
1 +µ2

2æ
4
1 °µ2

1æ
2
2
°
æ2

1 +æ2
2
¢
°µ2

2æ
2
1
°
æ2

1 +æ2
2
¢¢

2æ2
1æ

2
2
°
æ2

1 +æ2
2
¢

=
°
x
°
æ2

1 +æ2
2
¢
°

°
µ1æ

2
2 +µ2æ

2
1
¢¢2 +

°
µ2

1æ
2
1æ

2
2 °2µ1æ

2
2µ2æ

2
1 +µ2

2æ
2
1æ

2
2
¢

2æ2
1æ

2
2
°
æ2

1 +æ2
2
¢

=
°
x
°
æ2

1 +æ2
2
¢
°

°
µ1æ

2
2 +µ2æ

2
1
¢¢2

2æ2
1æ

2
2
°
æ2

1 +æ2
2
¢ +
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µ1 °µ2

¢2

2
°
æ2

1 +æ2
2
¢ .

Using this, we obtain

Z =
exp

µ
° (µ1°µ2)2

2(æ2
1+æ

2
2)

∂

2ºæ1æ2

Z
xexp

√
°

°
x
°
æ2

1 +æ2
2
¢
°

°
µ1æ

2
2 +µ2æ

2
1
¢¢2

2æ2
1æ

2
2
°
æ2

1 +æ2
2
¢

!
dx

=
exp

µ
° (µ1°µ2)2

2(æ2
1+æ

2
2)

∂

(2º)
1
2
°
æ2

1 +æ2
2
¢ 3

2

°
æ2

1 +æ2
2
¢ 1
p

2º æ1æ2q
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Z
xexp
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2
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1

æ2
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2
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2
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æ1æ2q
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CCCCCA

dx.

Now notice that

1
p

2º æ1æ2q
æ2

1+æ
2
2

Z
xexp

0
BBBBB@
°

µ
x° µ1æ

2
2+µ2æ

2
1

æ2
1+æ

2
2

∂2

2

√
æ1æ2q
æ2

1+æ
2
2

!2

1
CCCCCA
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describes the mean of a normally distributed random variable with variance

√
æ1æ2q
æ2

1+æ
2
2

!2

and mean µ1æ
2
2+µ2æ

2
1

æ2
1+æ

2
2

, hence

1
p

2º æ1æ2q
æ2

1+æ
2
2

Z
xexp

0
BBBBB@
°

µ
x° µ1æ

2
2+µ2æ

2
1

æ2
1+æ

2
2

∂2

2

√
æ1æ2q
æ2

1+æ
2
2

!2

1
CCCCCA

dx =
µ1æ

2
2 +µ2æ

2
1

æ2
1 +æ2

2
.

We obtain

Z =
exp

µ
° (µ1°µ2)2

2(æ2
1+æ

2
2)

∂

(2º)0.5 °
æ2

1 +æ2
2
¢1.5

°
æ2

1 +æ2
2
¢ µ1æ

2
2 +µ2æ

2
1

æ2
1 +æ2

2

=

°
µ1æ

2
2 +µ2æ

2
1
¢
exp

µ
° (µ1°µ2)2

2(æ2
1+æ

2
2)

∂

(2º)
1
2
°
æ2

1 +æ2
2
¢ 3

2
.

B.2 Proof of Proposition 2

Player i wins the contest with probability
Z Y

k 6=i
Fk

°
g°1

ek

°
gei (x)

¢¢
f i (x)dx.

Differentiating with respect to ei, we obtain

Z√
Y

k 6=i
Fk

°
g°1

ek

°
gei (x)

¢¢
!0
@X

k 6=i

fk
°
g°1

ek

°
gei (x)

¢¢≥ d
dei

g°1
ek

°
gei (x)

¢¥

Fk
°
g°1

ek

°
gei (x)

¢¢

1
A f i (x)dx.

In a symmetric equilibrium with e§1 = ... = e§n =: e§, and symmetric skill distribu-
tions, this marginal effect of effort on the probability of winning simplifies to

Z√
Y

k 6=i
F (x)

!√
X

k 6=i

µ
d

dei
g°1

ek

°
gei (x)

¢∂ØØØØ
e§1=...=e§n=e§

f (x)
F (x)

!
f (x)dx,

and must be identical for all i. We can restate the above expression as

Z
re§ (x) (n°1)(F (x))n°2 f (x)dx =

Z
re§ (x)

µ
d
dx

(F (x))n°1
∂

dx,

which is identical for all i.
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B.3 Proof of Proposition 3

As shown before, if g(µi, ei)= µi e i, we have
µ

d
dei

g°1
ek

°
gei (ti + x)

¢∂ØØØØ
e1=...=en=e

= (ti + x)
e

.

Thus, making use of expression (11), derived in Section C.1, and denoting ¢t =
t1 ° t > 0,

∏2
Z°¢t

√
H (x)

Y

k 6=1
H (¢t+ x)

!√
X

k 6=i

µ
d

dei
g°1

ek

°
gei (t1 + x)

¢∂ØØØØ
e1=...=en=e

!
dx

= ∏2
Z°¢t

(exp(∏x) ·exp((n°1)∏ (¢t+ x))) (n°1)
(t1 + x)

e
dx

= ∏2 (n°1)
e

Z°¢t
exp(n∏y+ (n°1)∏¢t) (t1 + y)d y.

The map ¡2 : Rx ! Ry given by x ! y = °¢t+ x is a smooth diffeomorphism
with det |¡0

2(x)| = 1. Applying the associated change of variables to the integral,
we obtain

∏2 (n°1)
e

Z0
exp(n∏ (x°¢t)+ (n°1)∏¢t) (t+ x)dx

= (n°1)
e

exp(°∏¢t)∏2
µZ0

xexp(n∏x)dx+ t
Z0

exp(n∏x)dx
∂
.

Notice that
n∏

Z0
xexp(n∏x)dx

is the mean of a random variable that is distributed according to the reflected
exponential distribution with parameter n∏, hence

n∏
Z0

xexp(n∏x)dx =° 1
n∏

,
Z0

xexp(n∏x)dx =° 1
n2∏2 .

Furthermore,

n∏
Z0

exp(n∏x)dx =1

,
Z0

exp(n∏x)dx = 1
n∏

.
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It follows that

(n°1)
e

exp(°∏¢t)∏2
µZ0

xexp(n∏x)dx+ t
Z0

exp(n∏x)dx
∂

= (n°1)
e

exp(°∏¢t)∏2 (°1+n∏t)
n2∏2

= (n°1)
e

exp(°∏¢t)
(°1+n∏t)

n2 .

Taking the derivative of the above expression w.r.t. n results in an expression
that is positive if n∏t°1> 0.

C Other Computations and Derivations

C.1 Additional Derivations for Section 6.3.

Player i outperforms player k iff

gei (ti +"i)> gek (tk +"k)

, "k < g°1
ek

°
gei (ti +"i)

¢
° tk.

Recall that the E i are i.i.d., following the reflected exponential distribution on
(°1,0]. The cdf is denoted by H and the pdf by h. Hence, player i wins the
contest with probability

Z Y

k 6=i
H

°
g°1

ek

°
gei (ti + x)

¢
° tk

¢
h (x)dx.

In a symmetric equilibrium with e§1 = ...= e§n =: e§, the marginal effect of effort on
the probability of winning,

Z√
Y

k 6=i
H (ti + x° tk)

!√
X

k 6=i

µ
d

dei
g°1

ek

°
gei (ti + x)

¢∂ØØØØ
e§1=...=e§n=e§

h (ti + x° tk)
H (ti + x° tk)

!
h (x)dx,

must be the same for all i. Denote ¢t = t1 ° t > 0. For player 1, we have,

Z√
Y

k 6=1
H (¢t+ x)

!√
X

k 6=1

µ
d

de1
g°1

ek

°
ge1 (t1 + x)

¢∂ØØØØ
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h (¢t+ x)
H (¢t+ x)

!
h (x)dx.
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For any other player i 2 {2, ...,n}, we have

Z√
H (°¢t+ y)

Y

k 6=1,i
H (y)

!√µ
d

dei
g°1

e1

°
gei (t+ y)

¢∂ØØØØ
e§1=...=e§n=e§

h (°¢t+ y)
H (°¢t+ y)

+
X

k 6=1,i

µ
d

dei
g°1

ek

°
gei (t+ y)

¢∂ØØØØ
e§1=...=e§n=e§

h (y)
H (y)

!
h (y)d y.

The map ¡1 : Rx ! Ry given by x ! y = ¢t+ x is a smooth diffeomorphism with
det |¡0

1(x)| = 1. Applying the associated change of variables to the preceding ex-
pression, we obtain

Z√
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Y

k 6=1,i
H (¢t+ x)

!√µ
d

dei
g°1

e1

°
gei (t1 + x)
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+
X
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°
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¢∂ØØØØ
e§1=...=e§n=e§

h (¢t+ x)
H (¢t+ x)

!
h (¢t+ x)dx.

The expressions for the two types of players can be restated as

Z√
H (x)

Y

k 6=1
H (¢t+ x)

!√
X

k 6=1

µ
d

de1
g°1

ek

°
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¢∂ØØØØ
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h (¢t+ x)
H (¢t+ x)

!
h (x)
H (x)

dx,
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d
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e1

°
gei (t1 + x)

¢∂ØØØØ
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+
X
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µ
d

dei
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°
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¢∂ØØØØ
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h (¢t+ x)
H (¢t+ x)

!
h (¢t+ x)
H (¢t+ x)

dx.

Notice that both expressions are equal to zero for x ∏ °¢t. Hence, they can be
restated as

Z°¢t
√
H (x)

Y

k 6=1
H (¢t+ x)

!√
X

k 6=1

µ
d

de1
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ek

°
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¢∂ØØØØ
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!
h (x)
H (x)

dx,
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dx.

47



For x <°¢t, we observe h(x)
H(x) =

h(¢t+x)
H(¢t+x) =∏, and the expressions become

∏2
Z°¢t

√
H (x)

Y

k 6=1
H (¢t+ x)

!√
X

k 6=1

µ
d

de1
g°1

ek

°
ge1 (t1 + x)

¢∂ØØØØ
e§1=...=e§n=e§

!
dx,
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√
H (x)

Y

k 6=1
H (¢t+ x)

!√
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k 6=i

µ
d

dei
g°1

ek

°
gei (t1 + x)

¢∂ØØØØ
e§1=...=e§n=e§

!
dx (11)

which are identical.

C.2 Computations for Example 6

The first-order condition (9) is equivalent to (we ease notation by writing e instead
of e(µ))

c0(e)
@g/@µ
@g/@e

° f (n°1) (µ)V + c0(e)
de
dµ

= 0, (12)

which can be restated as
P (µ, e)+Q (µ, e)

de
dµ

= 0,

with P (µ, e) := c0(e)@g/@µ
@g/@e ° f (n°1) (µ)V and Q (µ, e) := c0 (e).

Is there an integrating factor µ (µ, e) such that @(µP)
@e = @(µQ)

@µ ? In other words,
is there µ (µ, e) such that

@µ

@e
P +µ@P

@e
= @µ

@µ
Q+µ@Q

@µ
?

The latter equation can be stated as

@µ

@e

µ
c0(e)

@g/@µ
@g/@e

° f (n°1) (µ)V
∂

+µ
µ
c00(e)

@g/@µ
@g/@e

+ c0(e)
@2 g/@µ@e ·@g/@e°@g/@µ ·@2 g/@e2

(@g/@e)2

∂
= @µ

@µ
c0 (e) .

Now, for our example, assume g (µ, e) = µe and c(e) = 0.5e2, and ignore the
argument µ in e(µ). Then the equation simplifies to

@µ

@e

µ
e2

µ
° f (n°1) (µ)V

∂
+µ

≥
2

e
µ

¥
= @µ

@µ
e.
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Suppose that @µ
@e = 0. Then µ needs to satisfy

µ
2
µ
= @µ

@µ

and a solution is µ (µ, e)= µ2 (confirming @µ
@e = 0).

Using g (µ, e)= µe and c(e)= 0.5e2, our differential equation (12) can be stated
as

e2

µ
° f (n°1) (µ)V + e

de
dµ

= 0,

and multiplication with µ (µ, e)= µ2 leads to

µe2 °µ2 f (n°1) (µ)V + eµ2 de
dµ

= 0.

An integral is

L (µ, e(µ))=
e(µ)2µ2

2
°V

Zµ

0
x2 f (n°1) (x)dx,

which can easily be verified by computing dL(µ,e(µ))
dµ .

With a general distribution, effort is given by the solution to

e(µ)2µ2

2
°V

Zµ

0
x2 f (n°1) (x)dx = c̃

, e (µ)=

s
2V
µ2

Zµ

0
x2 f (n°1) (x)dx+ 2c̃

µ2 ,

where c̃ is some constant.
Using the assumption that skills are uniformly distributed on [0,1] (implying

f (x) = 1 and F (n°1)(t) = tn°1 ) f (n°1)(t) = (n°1)tn°2), we can compute effort and
expected effort. In particular,

Zµ

0
x2 f (n°1) (x)dx = (n°1)

Zµ

0
xndx = n°1

n+1
µn+1,

meaning that the integral becomes

L (µ, e)=
e2µ2

2
°V

n°1
n+1

µn+1.

Hence, the solution to the differential equation is given by

1
2

e2µ2 °V
n°1
n+1

µn+1 = c̃,
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where c̃ is some constant. Solving for e, we obtain

e (µ)=

s

2V
n°1
n+1

µn°1 + 2c̃
µ2 .

Conjecturing e (0)= 0, we have c̃ = 0 and

e (µ)=

s

2V
n°1
n+1

µn°1.

It follows that expected effort is

E [e (µ)]=

s

2V
n°1
n+1

Z1

0
x

n°1
2 dx =

s
8V

n°1
(n+1)3 ,

which is strictly decreasing in n.
It is straightforward to verify that the equilibrium effort function satisfies

e(0) = 0 and is strictly increasing in the skill µ. This implies that for any given
skill µ, output g(µ, e(µ)) = µe(µ) is increasing in skill as well, and the inverse z°1

exists.
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