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ABSTRACT

IZA DP No. 15015 JANUARY 2022

Automation and Related Technologies: 
A Mapping of the New Knowledge Base

Using the entire population of USPTO patent applications published between 2002 and 

2019, and leveraging on both patent classification and semantic analysis, this paper 

aims to map the current knowledge base centred on robotics and AI technologies. 

These technologies are investigated both as a whole and distinguishing core and related 

innovations, along a 4-level core-periphery architecture. Merging patent applications 

with the Orbis IP firm-level database allows us to put forward a twofold analysis based 

on industry of activity and geographic location. In a nutshell, results show that: (i) rather 

than representing a technological revolution, the new knowledge base is strictly linked to 

the previous technological paradigm; (ii) the new knowledge base is characterised by a 

considerable – but not impressively widespread – degree of pervasiveness; (iii) robotics and 

AI are strictly related, converging (particularly among the related technologies and in more 

recent times) and jointly shaping a new knowledge base that should be considered as a 

whole, rather than consisting of two separate GPTs; (iv) the US technological leadership 

turns out to be confirmed (although declining in relative terms in favour of Asian countries 

such as South Korea, China and, more recently, India).
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1.  Introduction 

Are robotics and Artificial Intelligence (AI) fostering a technological revolution, popularly known as fourth 

industrial revolution, that is Industry 4.0? With the purpose of addressing such a challenging question, the 

present paper investigates US patent data to determine, first, how and to what extent the current automation 

process driven by the co-occurrence of robotics and AI technologies is really fostering a new technological 

revolution and – partially in contrast – how it is just a further development of the Information and 

Communication Technologies (ICT) paradigm. 

Our second aim is to assess the nature and pervasiveness of the allegedly new knowledge base using novel 

measures able to capture both core technologies (basically those clearly identified by proper patent codes) and 

related technologies (out of the inner core, but strictly linked to the new knowledge base). 

A third purpose of this work is to investigate whether robotics and AI can be considered as parts of the 

same technological paradigm or instead as separated – albeit related – general purpose technologies (see the 

theoretical discussion in Section 2). 

To accomplish our threefold task, we single out robotics and AI technologies, distinguishing core patents 

and related patents, along a 4-level core-periphery architecture. This mapping exercise is based on the 

investigation of the entire population – covering both manufacturing and services – of USPTO (United States 

Patent and Trademark Office) patent applications published between 2002 and 2019. The strategy, aimed at 

identifying technological proximity, leverages on both patent classification schemes and on the semantic 

analysis of patents full texts (see Montobbio et al., 2022; for alternative methodologies, see Kogler et al., 2013; 

Angue et al., 2014). 

Then, we map core and related patents into patenting firms. To this purpose, we match USPTO applications 

with the Orbis IP firm-level database to single out the industry and geographical (by country) distribution of 

those firms leading the automation wave, both in general and distinguishing between core and related 

technologies. This allows us to identify leading industries and countries behind the establishment of the new 

knowledge base. Moreover, digging into the sectoral belonging and geographical position of the respective 

patenting firms, we are able to assess whether (and how much) the current knowledge base differs from the 

previous ICT paradigm, its degree of sectoral pervasiveness, and the extent to which robotics and AI are related 

to one another and converging. Finally, the investigated time span is divided into three sub-periods, to detect 

possible trends over time. 

The paper is organised as follows. Section 2 summarises the extant literature, emphasising similarities and 

divergences between the general-purpose technology approach and the techno-economic paradigm approach. 

Section 3 describes the data and methodology used in our analysis. Section 4 11presents and discusses the 
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main results. Finally, Section 5 wraps up and puts forward some conclusions related to the three research 

questions posed in this introduction. 

2.  General-Purpose Technologies and Techno-Economic Paradigms 

To single out more detailed research hypotheses able to disentangle the basic question posed in this paper 

(are robotics and AI jointly fostering a fourth industrial revolution, the so-called Industry 4.0?), one should 

critically recall two strands of literature. The first one is rooted in mainstream economics and deals with the 

key concept of general-purpose technology (GPT); the second one comes from the Neo-

Schumpeterian/evolutionary approach and focusses on the change in the techno-economic paradigm (TEP). 

According to Bresnahan and Trajtenberg (1995), Lipsey et al. (2005), and Jovanovic and Rousseau (2005), 

a GPT is a single technology – such as steam, electricity, internal combustion, and ICT – that underpins other 

technologies and multiply their value. Since it is “characteri[s]ed by the potential for pervasive use in a wide 

range of sectors” (Bresnahan and Trajtenberg, 1995, p. 84), technological and economic “pervasiveness” is 

therefore the first, distinctive property of any GPT. 

The same authors argue that a second property of a GPT is its ability to bring about and foster “generalised 

productivity gains”. However, whereas the first property is uncontroversial, the second one is not equally 

obvious. For example, analysing the “Electrification era” from 1894 until 1930, and the IT era from 1971 

onwards, Jovanovic and Rousseau (2005) observe that, in spite of exerting a protracted aggregate impact over 

a long period, both of these GPTs were associated to productivity slowdowns taking place at the start of their 

initial diffusion. In fact, in the case of electrification, David and Wright (1999) show that a marked acceleration 

of productivity growth in US manufacturing occurred only after World War I and was made possible by the 

adoption of the electric dynamo. By the same token, the very first effect of ICT implementation was a 

generalised decrease in productivity in the US economy – the so-called Solow's paradox (Solow, 1987), i.e. a 

widespread difficulty to translate ICT investments into increases in productivity (see Ortega-Argilés, et al., 

2014). The strong positive impact of GPTs on productivity is therefore not straightforward and may also vary 

not only over time, but also across economies and industries (Ristuccia and Solomou, 2014). 

Turning our attention to the Neo-Schumpeterian/evolutionary tradition, according to Freeman (1990) and 

Dosi (1982) (see also Freeman, 2019; Dosi, 1988), interdependencies between different organisational and 

institutional elements characterise the emergence of a bundle of technologies, which all together may signal 

that a technological breakthrough has occurred and a new TEP (according to Freeman) or a new technological 

paradigm (according to Dosi) is in the making. The empirical implication of these assumptions is that, when 

two or more new major technologies come along at the same time, they initially bring about a “constellation” 

of changes, “the productivity effects of which have yet to be fully realised” (Freeman, 1990, p. 4). 
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 Whereas “pervasiveness” is a distinctive feature of the bundle of technologies that characterise any TEP, 

their introduction does not necessarily lead to productivity gains. Indeed, according to Freeman and co-authors, 

a new TEP is tested during the declining phase of the previous paradigm with no (or even negative) impact on 

productivity, while only the subsequent widespread diffusion of the established new TEP is fostering 

productivity gains and economic booming (see Freeman et al., 1982; Freeman and Soete, 1987). Moreover, 

for productivity gains to occur, closer interactions between and within firms, and various institutional, cultural, 

and territorial factors are necessary pre-conditions which may take time to be established (Perez, 1983, 1994; 

Dosi et al., 2020). In this framework, a “good match” between the new TEP and the institutional context – 

both at the micro and macro level – is a pre-condition for the complete development of the technological 

revolution and for the diffusion of its widespread impacts on productivity and economic growth (Carbonara et 

al., 2021). Operationalising this intuition, one might therefore argue that the empirical identification of a 

positive and statistically significant association between a measure of the emergence of a new TEP and a 

measure of productivity dynamics is a clue that the former is already established and will soon exert its impact 

on economic growth. 

The main difference, if any, between the GPT and the TEP approach lies in the fact that the former 

emphasises the importance of a single general-purpose technology, the latter of a bundle of equally important  

technologies. Nevertheless, the underlying view of the relationship between new technologies and long-run 

economic growth is substantially the same. Just to emphasise four more common aspects besides 

pervasiveness and the association with marked discontinuity in the dynamics of productivity, both approaches: 

(i) focus on technological breakthroughs which have the potential to affect the entire economy; (ii) agree upon 

the idea that the emergence of new technologies creates long waves of economic growth (Rosenberg and 

Frischtak, 1984; Freeman and Louçã, 2001; Aghion and Howitt, 1998)1; (iii) assess the importance of 

institutional changes occurring vis-à-vis the emergence of drastic/radical technological innovations; iv) 

identify complementarity of a new technology with existing and new technologies (Bresnahan and Trajtenberg, 

1995). With regard to the third point, most of the papers collected in Helpman (1998) highlight the importance 

for the GPT approach of qualitative changes associated to the emergence of a new technology, while Gomulka 

(1990) states that the TEP approach identifies the trigger factor in a bundle of new technologies which 

endogenously gives rise to several qualitative changes at the economic, institutional, and social level. As far 

as the fourth point is concerned, looking at the articulation of the technological classes within patent documents 

Petralia (2020a) measures a GPT’s capacity to act as an “enabling technology” in terms of its co-occurrence 

with a variety of different technologies (technological classes). In a subsequent paper, the same author 

(Petralia, 2020b) shows that the adoption of electrical and electronic technologies in the 1920s in the US 

 
1 See also Staccioli and Virgillito (2021) for a recent analysis of long waves in labour-saving automation technologies. 
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exerted a strong county-level impact on economic growth thanks to those adopters who proved able to develop, 

transform, and complement this GPT. 

The empirical literature on GPTs and TEPs as frameworks to investigate the emergence of robotics and 

AI is rapidly growing. Use of text-mining techniques to retrieve keywords in the title or the abstract of AI 

patents led, among others, WIPO (2019) and Damioli et al. (2021) to acknowledge the role of AI as a GPT, 

not different from electricity, the Internet, and other major breakthroughs emerged during earlier technological 

phases. Applying network analysis to identify the co-occurrence of two robot technologies in patents registered 

with the USPTO and the Korean Intellectual Property Office (KIPO), Lee et al. (2016) find evidence of 

technological convergence in robotics, therefore corroborating the hypothesis of robotics itself as a GPT. From 

a strictly technological perspective, Alsamhi et al. (2020) observe that recent advancements in intelligent 

techniques made possible by the advent of Machine Learning have brought about improvements in robots’ 

ability to take informed and coordinated decisions. According to the authors, such advancements result from 

collaborative assemblies of robots “ensuring that safe and reliable robots work collectively toward a common 

goal”. By the same token, Serrano et al. (2018) describe the interconnectedness of AI and Internet of Things 

in the development of multi-domain applications such as Intelligent Assistant Robots. Their focus is on the 

role played by AI in making possible the development of robots offering care and companionship to elderly 

people. 

The above examples are consistent with the definition of Curran et al. (2010), who suggest that 

identification of convergence in industrial technologies entails that these display the features of a GPT. 

Defining industry convergence as the blurring of boundaries between industries, these authors analyse nearly 

7,500 scientific and patent references relating to phytosterol with the aim of identifying signs of convergence 

between two highly innovative chemical industries: Cosmoceuticals and Neutraceuticals & Functional Foods. 

In fact, in a subsequent paper Curran and Lecker (2011) find evidence of “convergence” in ICT and consumer 

electronics, where “formerly distinct sector boundaries have largely faded”. Providing as an example that of 

the early development of smartphones, the authors conclude suggesting that “convergence” is a distinctive 

feature of major technological revolutions.2 

The available theories and empirical results about the emergence of GPTs and the formation of TEPs 

provide useful insights for answering the main questions posed in Section 1: are robotics and AI really sparking 

a fourth industrial revolution? Is this new knowledge base pervasive, both from a technological and an 

 
2The reader may also think of the convergence of microelectronics, TLC, and software, as a specific feature of the ICT 

revolution (see Mowery and Rosenberg, 1998). 
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economic point of view? Are robotics and AI GPTs independent of each other, or do they jointly represent the 

pillars of a new TEP?3 

To answer the questions posed above, we will hereinafter map automation technologies, distinguishing core 

patents in robotics and AI and related patents, with differing degrees of closeness to the core. In particular, we 

devise a 4-level core-periphery architecture leveraging on a mix of characteristics of the underlying patent 

documents, which include CPC (Cooperative Patent Classification) technological classification codes, 

proposed by the inventor(s) and reviewed by patent examiners, and the prevalence of certain informative 

keywords within patents' full-text. As will be later detailed in Section 3, we argue that the more relevant CPC 

codes in our target list a patent is assigned, or the more often a patent mentions our target keyword(s), the more 

likely the patent constitutes a core technological advancement in either the field of robotics or AI. Conversely, 

the weaker the matching in our search criteria, the more likely the patent is less intimately related to the said 

technological fields. This mapping exercise will provide some clues to assess whether robotics and AI are 

revolutionary, whether they are pervasive, and how much they are related to one another (converging into the 

same TEP). 

 

3.  Data and methodology 

Our analysis begins with the universe of patent applications (hereafter, simply ‘patents’) published by the 

USPTO between 1st January 2002 and 31st December 2019. This is the widest time horizon we can accomplish 

with full year data, given that applications before 15th March 2001 are not publicly available. The USPTO 

Bulk Data Storage System4 releases patents full-text data on a weekly basis as concatenated XML files, which 

for our target period amount to 6,018,243 distinct documents. Since the very same patent may be published 

multiple times at various stages of its lifespan under different kind codes, we remove all duplicates and only 

retain newest versions. 

Given our initial dataset, which comprises 5,918,127 unique patents, we single out (Section 3.1) two subsets 

therein, one related to robotics technology, the other to artificial intelligence (AI). In identifying applicable 

patents, we adopt a mix of two criteria, in a fashion similar to Montobbio et al. (2022): the first criterion targets 

CPC codes, assigned by patent examiners before publication, which are known to be relevant to the objective 

 
3Paraphrasing David and Wright (1999), the question can be also asked as follows: does robotics stand to AI as the 

electric dynamo stands to electrification? In fact, as already mentioned in Section 2 above, for David and Wright 
(1999) the dynamo represented an “enabling technology” in the sense of Bresnahan and Trajtenberg (1995, p. 84), 
namely a new device “opening up new opportunities rather than offering complete, final solutions.” 

4Available at https://bulkdata.uspto.gov/. 
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technological fields; the second criterion, instead, looks for the presence of certain keywords within patents 

full texts. 

Rather than treating the membership of a patent to either subset (robotics or AI) as binary (i.e. either a 

patent belongs to a subset, or it does not), we leverage on the two aforementioned search criteria to devise a 

multi-level core-periphery architecture (Section 3.2) in which a patent is positioned depending on its fitness. 

The selected patents are matched with the Orbis IP (BvD) database, from which detailed information about 

their corporate assignees can be extracted, when applicable (Section 3.3). In particular, we focus on their 

geographic location and sector of activity. 

Following the outlined methodological steps, Section 4 shall present, for each core-periphery level, the 

countries and industries which have contributed the most in terms of innovative effort. 

3.1.  Robotics and AI patents 

The first step of our methodological roadmap deals with the identification of robotics and AI patents. In 

doing so, we adopt a twofold approach, scouring patent full-texts for specific keywords and classification 

codes. 

Patent classification codes, assigned by patent examiners before publication, provide an in-depth mapping 

scheme based on the technical features of patents’ content. The Cooperative Patent Classification (CPC) 

system, adopted by the USPTO since 1st January 2013, has a deeply nested hierarchical structure and accounts 

for more than 260,000 categories. Official concordance tables5 mapping former USPC (United States Patent 

Classification) classes 901 (“Robots”) and 706 (“Data processing: artificial intelligence”), widely used in 

similar studies covering older patents, to newer CPC codes, provide the targets of our first search criterion. In 

particular, USPC classes 901 and 706 can be traced to, respectively, 124 and 244 unique full-digit CPC codes. 

In addition to these latter, junction groups Y10S901 (for robotics) and Y10S706 (for AI) and their subgroups, 

which target “Technical subjects covered by former USPC” (cf. class Y10), are also included in the search 

step.6 A patent is deemed associated to robotics or to AI technology if it has been assigned at least one of the 

codes in either the underlying concordance table or in the mentioned junction group7. Among our initial 

 
5Available at https://www.uspto.gov/web/patents/classification/cpc/html/us901tocpc.html and 

https://www.uspto.gov/web/patents/classification/cpc/html/us706tocpc.html. 

6It is worth noting that CPC codes within the Y10S class are of a special kind compared to other CPC codes, as they do 
not define additional technological categories. Instead, they are occasionally used, besides normal CPC classification 
codes, to collect patent documents that cut across class or subclass lines. We include codes Y10S901 and Y10S706 in 
the search as a refinement to the mentioned concordance tables, since they directly target our USPC classes of interest. 

7Since applications published before the introduction of the CPC scheme (1st January 2013) can not display the assigned 
CPC codes, we use the CPC Master Classification File (MCF) for US Patent Applications, also retrievable from the 
USPTO Bulk Data Storage System, which attributes relevant CPC codes to older applications. 
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universe of 5,918,127 patents, there exist 22,931 robotics and 295,688 AI patents, selected according to their 

displayed CPC codes, of which 2,179 overlap as both robotics and AI. In the remainder of this paper, we shall 

refer to robotics and AI patents selected according to this criterion as “CPC robotics” and “CPC AI” patents, 

respectively. 

While classification codes are useful for singling out inventions according to the technical content of 

underlying patents, they prove quite limited in scope since they are unable to encompass complementary 

artefacts and technologies which are tightly related, yet do not belong, to the target search field. If a patent is 

not classified as, say, AI, but mentions, possibly repeatedly, some keywords which are intimately and 

unambiguously relevant to AI, it is plausible that the patent is somehow related to the latter field. 

Our second criterion relies on keyword search to capture additional patents which are related to the ones 

found in the previous step. Following Montobbio et al. (2022), robotics patents are required to mention the 

word “robot” (or any of its derivatives, such as “robots”, “robotic”, “robotics” etc.), possibly multiple times, 

somewhere across their title, abstract, description, or claims sections. Even though this criterion may sound 

overly simplistic, the word “robot” is remarkably specific and unambiguous: broadly speaking, it is very hard 

to conceive a sentence embedding that word which at the same time is entirely unrelated to the field of robotics, 

especially within the context of a patent office. In a similar fashion, to locate AI patents we look for any of the 

keywords listed in Van Roy et al. (2020, Table 2) excluding “robotics” and “humanoid robot”, which we report 

in Table 1 for convenience. 

 

Keywords 
Artificial intelligence Evolutionary computation Probabilistic modeling   
Artificial intelligent Face recognition Random forest   
Artificial reality Facial recognition Reinforcement learning   
Augmented realities Gesture recognition Self-drive   
Augmented reality Holographic display Sentiment analysis   
Automatic classification Internet of things Smart glasses   
Autonomous car Knowledge representation Speech recognition   
Autonomous vehicle Machine intelligence Statistical learning   
Bayesian modeling Machine learn Supervised learning   
Big data Machine to machine Transfer learning   
Computational neuroscience Mixed reality Unmanned aerial vehicle   
Computer vision Natural language processing Unmanned aircraft system  
Data mining Neural network Unsupervised learning   
Data science Neuro-linguistic programming Virtual reality   
Decision tree Object detection Voice recognition  
Deep learn Predictive modeling  

Table 1: AI keywords. Source: Van Roy et al. (2020). 
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Among our initial universe of 5,918,127 patents, there exist 201,278 robotics and 369,648 AI patents, 

selected according to relevant keyword search, of which 42,850 overlap as both robotics and AI. In the 

remainder of this paper, we shall refer to robotics and AI patents selected according to this criterion as “KW 

robotics” and “KW AI” patents, respectively. It holds that 15,858 CPC robotics patents are also KW robotics 

patents, and 79,960 CPC AI patents are also KW AI patents. We assume that a matched CPC code is stronger, 

or more reliable, on average, than a matched keyword, in associating a patent to a certain technological field. 

Following this assumption, we remove patents from the KW robotics and KW AI subsets which have been 

already selected as CPC robotics or CPC AI, respectively. Before moving forward, it is useful to recap the 

various magnitudes involved, reported in Table 2. 

 

 Robotics AI Overlap Unique 
CPC 22,931 295,688 2,179 316,440  
KW 185,420 289,688 31,215 443,893  
Total 208,351 585,376 51,691 742,036 

Table 2: Relevant magnitudes of the robotics and AI subsets, and their overlap. 

 

Contrary to Montobbio et al. (2022), we do not impose ex-ante a minimum number (greater than one) of 

occurrences of keywords or CPC codes for a patent to be deemed robotics- or AI-related. These numbers 

however will play a crucial role in forming the basis of the core-periphery architecture outlined in the next 

section. 

3.2.  Core-periphery architecture 

The given definition of a robotics or AI patent in the previous section is intentionally broad and 

comprehensive. At this stage, we leverage on the matching score therein to construct a 4-level core-periphery 

architecture aimed at capturing the degree of technological relatedness to the objective fields. We argue that 

the more CPC codes in our target list a patent is assigned, or the more often a patent mentions our target 

keyword(s), the more likely the patent constitutes a core technological advancement in either the field of 

robotics or AI. Conversely, the weaker the matching in our search criteria, the more likely the patent is less 

intimately related to the said technological fields. 

Given the four subsets of patents selected in the previous section, CPC robotics, CPC AI, KW robotics, and 

KW AI, we consider their distributions according to the following measures: for each CPC patent, we compute 

the ratio between the number of matched CPC codes (from the concordance tables mentioned in the previous 

section) and the overall number of CPC codes assigned by patent examiners; regarding KW patents, we count 
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the number of times any target keyword is mentioned in each patent.8 We then construct the 4 core-periphery 

(CP) levels, in increasing order of distance from the core, by splitting the various distributions in quartiles and 

making the following attributions, for either robotics and AI patents: 

CP1. 3rd and 4th quartiles of CPC patents; 

CP2. 2nd quartile of CPC patents and 4th quartile of KW patents; 

CP3. 1st quartile of CPC patents and 3rd quartile of KW patents; 

CP4. 1st and 2nd quartiles of KW patents. 

In this way, we allow for an overlap of CPC and KW patents in the middle CP levels, while we maintain 

the idea that CPC patents are on average closer to the core than KW patents. Table 3 summarises the number 

of patents in each CP level for both robotics and AI patents. 

 

 Robotics AI 
CP1 11,409 138,626  
CP2 47,628 145,555  
CP3 35,488 134,403  
CP4 113,826 166,792  
Total 208,351 585,376 

Table 3: Relevant magnitudes of the robotics and AI core-periphery levels. 

 

While the aforementioned choice of attribution may seem arbitrary, it is possible to show, once firm level 

data is extracted in the next section, that the obtained CP levels exhibit a satisfactory degree of mutual 

consistency (see Appendix A and Table 9 therein). 

3.3.  Firm-level data 

With the aim of extracting firm-level data about last known corporate assignees, we match patents in our 

selected subsets with the Orbis IP (BvD) database through the relevant publication numbers. Out of 742,036 

unique patents, 615,182 (approximately 83%) are matched to at least one firm, of which 175,949 are robotics 

patents, 482,540 are AI patents, and 43,307 are both robotics and AI patents. In total, 62,972 firms hold at 

least one of our selected patents, of which 23,772 hold at least one robotics patent, 50,198 at least one AI 

patent, and 10,998 both robotics and AI patents. 

 
8Since the selection of KW AI patents depends on a multiplicity of keywords, we are implicitly assuming a constant and 

unitary rate of substitution between an additional occurrence of a keyword already mentioned, and the occurrence of 
a previously unmentioned keyword. 
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Our variables of interest include the country where each firm is incorporated and its sector of activity, 

denoted by a 3-digit NAICS 20179 (North American Industry Classification System) code. 

Given the core-periphery architecture outlined in the previous section, we shall evaluate, for robotics and 

AI patents at each CP level, the overall contribution of each country and each industry to the innovative effort 

behind patented technologies therein. All these measures are weighted proportionally to the number of patents 

held by each corporate assignee at the various CP levels. These findings are presented and discussed in the 

next section. 

 

4.  Results 

While in the previous section we have proposed and discussed our core-periphery taxonomy and the way 

in which we have associated patents with their holding firms, the aim of this section is threefold. First, we will 

map the patents taking into account their sectoral belonging on the one hand, and their nationality on the other 

hand (Sections 4.1 and 4.2). Second, we will investigate the degree of similarity between robotics and AI 

technologies, to assess whether they can be considered as components of the same Technological/Techno-

Economic Paradigm or rather as separate General Purpose Technologies (Section 4.3). Third, we will detect 

and discuss possible time trends (Section 4.4). 

4.1.  Industries 

Table 4 assigns all our robotics patents to the industries which the holder company belongs to. The 

industries are identified by their NAICS 3-digit codes and are ranked according to the first column, reporting 

their overall prevalence. The following columns report the sectoral incidence within the four core-periphery 

categories. 

  

 
9See the specification at https://www.census.gov/eos/www/naics/. 
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NAICS Title Overall CP1 CP2 CP3 CP4 

334 Computer and Electronic Product 
Manufacturing 21.64% 23.82% 20.53% 17.92% 22.99% 

333 Machinery Manufacturing 14.28% 30.18% 18.92% 15.51% 10.38% 

541 Professional, Scientific, and 
Technical Services 13.64% 9.09% 12.45% 13.74% 14.57% 

325 Chemical Manufacturing 7.78% 0.78% 6.28% 9.18% 8.68% 

336 Transportation Equipment 
Manufacturing 6.14% 8.83% 7.25% 6.51% 5.30% 

522 Credit Intermediation and Related 
Activities 4.04% 1.40% 3.58% 3.85% 4.56% 

339 Miscellaneous Manufacturing 3.81% 1.11% 4.43% 4.57% 3.62% 
611 Educational Services 3.61% 2.03% 3.40% 3.62% 3.85% 

335 Electrical Equipment, Appliance, and 
Component Manufacturing 3.12% 8.26% 3.98% 2.79% 2.33% 

551 Management of Companies and 
Enterprises 2.31% 1.62% 2.14% 2.44% 2.42% 

561 Administrative and Support Services 2.09% 1.43% 2.19% 1.88% 2.18% 

423 Merchant Wholesalers, Durable 
Goods  2.05% 1.96% 2.08% 2.32% 1.97% 

511 Publishing Industries (except 
Internet) 1.75% 0.88% 1.18% 1.30% 2.20% 

332 Fabricated Metal Product 
Manufacturing 1.07% 1.35% 0.99% 1.16% 1.05% 

921 Executive, Legislative, and Other 
General Government Support  1.07% 0.55% 0.83% 1.06% 1.22% 

523 
Securities, Commodity Contracts, 
and Other Financial Investments and 
Related Activities 

1.00% 0.30% 0.53% 1.74% 1.04% 

326 Plastics and Rubber Products 
Manufacturing 0.89% 0.32% 0.63% 0.79% 1.08% 

621 Ambulatory Health Care Services 0.75% 0.14% 0.50% 0.70% 0.93% 

424 Merchant Wholesalers, Nondurable 
Goods  0.73% 0.19% 0.60% 0.82% 0.81% 

517 Telecommunications 0.56% 0.22% 0.49% 0.44% 0.66% 
Table 4: Sectoral relevance to robotics patents for each core-periphery level. 

 

Not surprisingly, “machinery manufacturing” (corresponding to NAICS code 333, which comprises 

“establishments primarily engaged in manufacturing industrial and commercial machinery”) is playing a 

leading role in robotics patenting, with more than 30% of the patents in the core category belonging to this 

industry. Interestingly enough, its role is declining when we move to the periphery, dropping to about 19% in 

CP2, about 15.5% in CP3, and about 10.4% in CP4. As a result, on the whole ranking – including both core 

and related technologies – “machinery manufacturing” (333) is ranked second, with an overall weight equal to 

14.28%. 
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Indeed, in the overall ranking, “computer and electronic product manufacturing” (corresponding to NAICS 

code 334, which comprises “establishments primarily engaged in manufacturing computers, computer 

peripheral equipment, communications equipment, and similar electronic products, as well as components for 

such products”) is leading, with a percentage equal to 21,64%; however, this industry turns out to be less 

important than “machinery manufacturing” in the very core (about 24% of CP1 patents), while its weight 

maintains relevance in the remaining three categories (ranging from 18% to 23%). 

Putting together these first results, it is obvious that machinery manufacturing and computer and electronic 

product manufacturing account for more than 50% of core robotics patenting, with machinery manufacturing 

appearing central in the very core, and computer and electronic product manufacturing more or less equally 

distributed from the technological core to the related but more peripheral technologies. While not surprising, 

this outcome highlights, on the one hand, the key role of manufacturing in robotics patenting and, on the other 

hand, the crucial link between robotics and computer and electronic manufacturing (that is an intrinsic strong 

relationship between the previous technological paradigm and the new knowledge base – see Section 2). 

The third industry accounting for a relevant portion of robotics patenting is “professional, scientific and 

technical services” (corresponding to NAICS code 541, which comprises “establishments primarily engaged 

in activities in which human capital is the major input”). This industry accounts for 13.64% of the entire patent 

population and ranges from about 9% in CP1 to about 14.5% in CP4. High-tech services are therefore rather 

active in robotic patenting, and their role monotonically increases when we move to the technological 

periphery. 

A smaller – albeit still relevant – role in the core technologies (CP1) is played by “transportation equipment 

manufacturing” (336, starting from about 9% in the very core and monotonically declining to about 5% in 

CP4) and by electrical devices (335), also decreasing from the core (about 8%) to the periphery (about 2%). 

In contrast, some industries are definitely under-represented in the core, but are quite important in the related 

technologies; this is the case of “chemical manufacturing” (325) which holds less than 1% of patents in the 

core category and increases up to about 9% in CP3 and CP4, and of both “miscellaneous manufacturing” (339) 

and “credit intermediation” (522) which hold about 1% of patents in the core category and increases up to 

about 4% in the more peripheral categories. 

Other industries, which deserve to be mentioned for their (relatively minor) role in the core, are “educational 

services” (611, about 2% in CP1), with a more relevant role in the related technologies; “merchant wholesalers, 

durable goods” (423, about 2% in CP1, with a similar role in the periphery); “management of companies and 

enterprises” (551, about 1.5% in CP1, with an increasing role in the related technologies) and “administrative 

and support services” (561, about 1.5% in CP1, with a slightly increasing role in the periphery). 

On the whole, robotics patenting appears to be characterised by a clear leadership of machinery, electrical 

and computer manufacturing (and to a lesser extent high-tech services and transportation), particularly within 

core technologies. 
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However, robotics also shows an appreciable degree of pervasiveness: particularly when we move to related 

technologies, other additional industries are rather active both within manufacturing (chemicals, 

miscellaneous) and services (professional, scientific, technical, credit and educational services). 

Turning our attention to AI technologies, Table 5 reports the sectoral ranking in a similar fashion to the 

previous Table 4. 

. 

NAICS Title Overall CP1 CP2 CP3 CP4 

334 Computer and Electronic Product 
Manufacturing 25.66% 21.9% 24.55% 25.75% 29.29%  

541 Professional, Scientific, and Technical 
Services 19.02% 23.18% 19.06% 17.94% 16.76%  

511 Publishing Industries (except Internet) 7.34% 7.61% 8.41% 6.61% 6.81%  
522 Credit Intermediation and Related Activities 5.99% 5.99% 5.67% 5.81% 6.43%  
336 Transportation Equipment Manufacturing 5.52% 3.77% 6.05% 7.03% 5.16%  
333 Machinery Manufacturing 4.27% 4.10% 4.73% 4.15% 4.09%  
561 Administrative and Support Services 2.99% 3.23% 2.96% 2.99% 2.84%  
517 Telecommunications 2.74% 2.27% 2.53% 2.59% 3.39%  

335 Electrical Equipment, Appliance, and 
Component Manufacturing 2.36% 2.25% 2.79% 2.42% 2.02%  

423 Merchant Wholesalers, Durable Goods  2.30% 2.13% 2.26% 2.27% 2.46%  
551 Management of Companies and Enterprises 2.21% 2.94% 2.09% 2.13% 1.84%  
611 Educational Services 2.02% 1.81% 1.82% 2.15% 2.24%  
339 Miscellaneous Manufacturing 1.75% 0.93% 1.56% 2.50% 1.92%  
325 Chemical Manufacturing 1.36% 0.89% 1.09% 1.58% 1.76%  

523 Securities, Commodity Contracts, and Other 
Financial Investments and Related Activities 1.36% 2.06% 1.27% 1.13% 1.09%  

533 Lessors of Nonfinancial Intangible Assets 
(except Copyrighted Works) 1.30% 1.14% 1.06% 1.20% 1.69%  

519 Other Information Services 1.28% 1.49% 1.57% 1.25% 0.89%  

518 Data Processing, Hosting, and Related 
Services 0.92% 1.42% 1.05% 0.75% 0.56%  

921 Executive, Legislative, and Other General 
Government Support  0.87% 1.10% 0.86% 0.83% 0.75%  

424 Merchant Wholesalers, Nondurable Goods  0.49% 0.69% 0.40% 0.43% 0.45%  

Table 5: Sectoral relevance to AI patents for each core-periphery level. 

 

In AI technologies the leadership is shared between “professional, scientific and technical services”10 (541) 

and “computer and electronic product manufacturing” (334), with the former leading in the core (about 23% 

in CP1) and declining when we move to the related technologies, and the latter slightly behind in the core 

 
10 This result matches our expectations since code 541 includes software. 
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(about 22%) but monotonically increasing moving to the periphery up to about 29%. As a result, the overall 

ranking is led by computer and electronic manufacturing with an incidence of about 25.7%. 

Therefore, the leadership in AI technologies (where the design and production of algorithms require a joint 

contribution of hardware and software components) appears equally spread between manufacturing and 

services, and this marks a relevant difference in comparison with robotics, more centred on manufacturing. On 

the other hand, computer and electronic manufacturing turns out to be a key sector in both technological maps; 

this outcome is important since it highlights both a high degree of connectivity between robotics and AI 

technologies and a strong relationship between the new knowledge base and the former technological paradigm 

(see the research questions posed in Section 1). 

A further corroboration of the key role of services in AI technologies comes from the important roles played 

by “publishing industries” (corresponding to NAICS code 511, which comprises “establishments primarily 

engaged in publishing newspapers, periodicals, books, databases, software and other works”) and “credit 

intermediation” (corresponding to NAICS code 522, which comprises “establishments that (1) lend funds 

raised from depositors; (2) lend funds raised from credit market borrowing; or (3) facilitate the lending of 

funds or issuance of credit”), which both score between 6% and 7% in the overall ranking and in the four core-

periphery categories. 

Other industries worth to be mentioned are “transportation equipment manufacturing” (336), “machinery 

manufacturing” (333, relatively marginal with regard to AI technologies, while being a clear leader in robotics, 

see above), “administrative and support services” (561), “telecommunications” (517, a new entry in our 

sectoral mapping), electrical devices (335), “merchant wholesalers, durable goods” (423), “management of 

companies and enterprises” (551), and “educational services” (611). All these industries show an incidence 

ranging from 2% to 6% with no strikingly significant change moving from the core to the periphery. 

Indeed, with the notable exception of the two leading industries (with high-tech services more important 

within the core, and computer and electronic manufacturing playing a larger role in the related technologies) 

the AI mapping appears more balanced than robotics, with a similar incidence of the different industries across 

the four core-periphery categories. 

Out of the first 12 industries ranked in the robotics and AI charts, 10 are found to overlap, while two 

manufacturing industries (chemical and miscellaneous) only appear in robotics, and two service industries 

(publishing industries and telecommunications) only appear in the AI top 12. 

On the whole, AI technologies seem to be characterised by the following tendencies: a joint (and probably 

complementary) leadership of high-tech services (including software) and computer and electronic 

manufacturing; relatively minor sectoral discontinuities between core and related technologies (in contrast 

with robotics); and a considerable degree of pervasiveness with many manufacturing and service industries 
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actively involved. In the majority of industries, this pervasive impact overlaps with the one triggered by 

robotics technologies (see above). 

4.2.  Countries 

In this section we investigate which countries are emerging as leaders in the robotics and AI technologies 

and so which are the nations at the forefront of the new knowledge base. Table 6 reports the country ranking 

in relation to robotics technologies; notice that European Union countries are included both as an aggregate 

and as single nations. 

 
Country Overall CP1 CP2 CP3 CP4 
United States 54.94% 30.88% 52.65% 57.55% 57.47% 
Japan 16.22% 36.04% 19.38% 15.66% 13.13% 
European Union* 14.22% 14.42% 13.22% 14.08% 14.64% 
South Korea 5.61% 6.60% 5.09% 3.27% 6.44% 
Germany 5.14% 7.18% 5.29% 5.2% 4.86% 
Netherlands 1.86% 1.06% 1.48% 1.46% 2.21% 
United Kingdom 1.86% 1.52% 1.55% 2.01% 1.97% 
Switzerland 1.73% 2.17% 1.85% 1.70% 1.65% 
China 1.50% 3.27% 1.76% 1.79% 1.12% 
Taiwan 1.30% 3.33% 1.64% 1.20% 1.00% 
Canada 1.26% 1.04% 1.25% 1.46% 1.23% 
France 1.10% 1.13% 1.02% 1.00% 1.16% 
Israel 0.89% 0.44% 0.83% 0.90% 0.95% 
Sweden 0.77% 1.11% 0.79% 0.80% 0.71% 
Finland 0.65% 0.26% 0.21% 0.33% 0.96% 
Italy 0.59% 0.88% 0.78% 0.63% 0.48% 
Australia 0.59% 0.22% 0.66% 0.61% 0.60% 
Ireland 0.59% 0.08% 0.60% 1.05% 0.50% 
Denmark 0.45% 0.19% 0.46% 0.52% 0.45% 
Singapore 0.43% 0.40% 0.40% 0.34% 0.48% 
Belgium 0.41% 0.04% 0.21% 0.30% 0.55% 
*sum of EU member states as of 31st December 2019 

Table 6: Country relevance to robotics patents for each core-periphery level. 

 

The US definitely lead the ranking, accounting for almost 55% of total robotics patenting; with the notable 

exception of the core technologies (where Japan ranks first), the US advantage is remarkably confirmed in 

CP2, CP3, and CP4. As was the case in the “ICT era”, the US appear strongly dominant both in the core and 

related robotics technologies, while Japan seems to share a leading position only in the core technologies where 

computer and machinery manufacturing play a key role (see Table 4). The European Union as a whole jointly 

accounts for about 14% of robotics patenting, with no significant differences moving from core to related 

technologies. 
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South Korea and Germany are both playing a certain role in the core (CP1) as well as in the related 

technologies, with incidences which range around 5-6%. Another bunch of countries are represented with an 

overall weight larger than 1%, namely The Netherlands, U.K., Switzerland, China, Taiwan, Canada and 

France. On the whole, robotics patenting appears geographically very concentrated. 

 
Country Overall CP1 CP2 CP3 CP4 
United States 66.44% 68.75% 63.94% 66.23% 67.01% 
Japan 10.01% 9.47% 12.25% 10.68% 8.01% 
European Union* 9.52% 10.04% 9.13% 9.18% 9.75% 
South Korea 4.91% 2.82% 4.89% 4.97% 6.43% 
Germany 2.84% 3.93% 2.69% 2.52% 2.41% 
China 2.12% 1.53% 2.85% 1.87% 2.15% 
United Kingdom 1.46% 1.43% 1.35% 1.52% 1.53% 
Canada 1.40% 1.56% 1.36% 1.35% 1.35% 
Netherlands 1.32% 1.24% 1.35% 1.29% 1.37% 
Taiwan 1.24% 1.40% 1.32% 1.26% 1.02% 
Israel 0.89% 0.61% 0.96% 1.07% 0.88% 
France 0.87% 0.90% 0.80% 0.81% 0.96% 
Switzerland 0.81% 0.79% 0.69% 0.83% 0.90% 
Finland 0.70% 0.53% 0.66% 0.56% 0.96% 
Ireland 0.66% 0.84% 0.66% 0.60% 0.58% 
Sweden 0.62% 0.40% 0.57% 0.76% 0.73% 
Singapore 0.61% 0.47% 0.60% 0.66% 0.69% 
Australia 0.49% 0.69% 0.48% 0.39% 0.45% 
India 0.35% 0.63% 0.37% 0.26% 0.20% 
Cayman Islands 0.31% 0.32% 0.28% 0.42% 0.25% 
Hong Kong 0.24% 0.21% 0.27% 0.21% 0.28% 
*sum of EU member states as of 31st December 2019 

Table 7: Country relevance to AI patents for each core-periphery level. 

 

Turning our attention to the AI technologies, consider Table 7. As far as AI technologies are concerned, 

the US dominant position is even more striking: 2/3 of AI patents are held by US companies, and this is true 

on the whole, for the core, and for the peripheral categories. Japan again ranks second, with an incidence 

around 10% across the different categories. The EU ranks third, accounting for about 9.5% of AI patenting, 

with no significant differences across the core-periphery categories. 

As was the case with robotics (see Table 6), South Korea and Germany rank third and fourth, respectively, 

with a stronger presence of Germany in the core and of South Korea in CP2, CP3, and particularly in CP4. 

China, U.K., Canada, The Netherlands and Taiwan follow with percentages ranging from 1% to 2%. 
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In a nutshell, AI patenting appears even more geographically concentrated than robotics patenting, with the 

US dominating the scene, a collateral – but still important – role of Japan and South Korea, while Germany 

and China follow behind. 

Putting together the evidence from Table 6 and Table 7, we can conclude that the US have a clear advantage 

in both robotics and AI technologies, accounting for 55%–66% of patenting activity in the new knowledge 

base; moreover, while this leadership is shared with Japan in the robotics core technologies, it is absolutely 

dominant in all the other examined categories. Although this outcome may be partially biased by the dataset 

used in this study (USPTO), it is worth noticing that patenting in the US appears a “must” for new 

technologies, being the American market the most prominent both in economic and technological terms and 

being the USPTO the preferred repository for international patenting through the PCT (Patent Cooperation 

Treaty) procedure (around 17.3% of the patents considered in this study). 

4.3.  Similarities and differences between robotics and AI technologies 

The degree of similarity between robotics and AI technologies in the patterns discussed in Sections 4.1 and 

4.2 should be investigated in greater detail. This will help to answer the research questions put forward in 

Sections 1 and 2 concerning the possible revolutionary nature of these technologies, and whether they can be 

considered separate GPTs or as components of the same technological constellation, which in turn can be seen 

as the trigger factor of a new Technological/Techno-Economic paradigm. 

As far as sectoral belonging is concerned, we already noticed that robotics patenting is more centred on 

manufacturing (particularly machineries and computers), while AI technologies are more focussed on services 

(particularly professional, scientific and technical services). Moreover, both robotics and AI share a key role 

played by computer and electronic product manufacturing. 

Putting together these various pieces of evidence, we may assess that both the investigated key technologies 

are strongly linked with the former technological paradigm, triggered and shaped by the computer revolution. 

In this respect, the question whether robotics and AI technologies are really fostering a technological revolution 

or just a radical revival of the extant paradigm remains open. Moreover, robotics appears characterised by a 

manufacturing core, while AI technologies seem much more balanced between manufacturing and services. 

From this point of view, AI can be considered more widespread and pervasive than robotics. On the other 

hand, if we move from the core technologies to the periphery, robotics shows a better capacity to engage non-

core industries, while AI rankings are very similar11. 

However, both technologies display a considerable overall level of pervasiveness with a dozen of 3-digit 

sectors each showing to hold more than 2% of total patenting. Once again – within the first twelve sectors 

 
11As can be seen in Table 9 reported in Appendix A, all the obtained cross-level similarity coefficients are systematically 

lower for robotics technologies, corroborating their more pervasive nature. 
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(accounting for more than 80% of the entire patenting activity in both technological fields) – in robotics, 

manufacturing industries are more represented than services (56.8% vs. 27.7% of all patents), while the 

opposite is true for AI technologies (37.8% vs. 44.6% of all patents). 

 
 Cosine similarity Spearman correlation 

Overall 89.60% 88.59% 
CP1 65.80% 63.25% 
CP2 83.90% 82.32% 
CP3 85.75% 84.26% 
CP4 93.24% 92.67% 

Table 8: Cosine similarity and Spearman rank correlations between robotics and AI core-periphery levels. 

 

As already noticed, out of the first 12 industries ranked in the robotics and AI rankings, 10 are in common 

(and the remaining 4 are however within the top 20 sectors in both the rankings; see Table 4 and Table 5). In 

more detail, Table 8 reports two distinct proximity measures, namely cosine similarity and Spearman rank 

correlation, between the sectoral distributions of the different core-periphery categories for robotics and AI 

(see Appendix A for a formal definition). 

Indeed, the correlation coefficients between robotics and AI sectoral rankings are close to 90% for all 

patents, and monotonically increase from around 65% to about 93% if we move from the core (CP1) to the 

periphery (CP4). 

If we jointly consider all these pieces of evidence, the emerging scenario might be summarised as follows: 

▪ Robotics and AI are both strongly related and still dependent on computer technologies; 

▪ Both technologies show a considerable level of pervasiveness; however, only 12 industries account 

for more than 80% of total patents both in robotics and AI; 

▪ Although robotics is more concentrated in manufacturing, the two technologies appear rather similar 

in terms of sectoral penetration, particularly when we move from the core to the more peripheral 

technologies; this can be considered as an evidence supporting the convergence of the two key 

technologies of the current automation wave. 

In summary, whether robotics and AI technologies will prove to be revolutionary or incremental in 

comparison with ICT, in both cases the dominant role of the US is confirmed for the decades ahead. 

4.4.  Relevant trends over time 

The aim of this section is to investigate whether what discussed so far has been affected by time trends over 

the investigated period. With this purpose in mind, we reset our patent dataset looking at the application filing 
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date (which is considered a better measure than the publication date in order to accurately time a particular 

innovation) and splitting our time span into three subperiods, namely 2001-2007, 2008-2013, and 2014-2019.12 

Relevant tables in Appendix B report the results. 

As far as the sectoral belonging of the patenting companies is concerned, we can put forward the following 

considerations. With respect to robotics (see Table 10, Table 11, and Table 12), the leading role of 

manufacturing is confirmed and does not show any declining trend over the reference period; if anything, the 

leading role of “Computer and Electronic Product Manufacturing” increases over time, showing that the new 

knowledge base is deeply rooted in the previous ICT paradigm, as discussed in the previous sections. Other 

industries do not show appreciable trends, with the exceptions of chemical manufacturing, which is loosing 

terrain, and transportation manufacturing showing an increasing trend. 

With regard to AI (see Table 13, Table 14, and Table 15), “Computer and Electronic Product 

Manufacturing” again  slightly increases over time, confirming a view where ICT technologies can be 

considered as the seedbed of the new knowledge base. However, “professional, scientific and technical 

services” do show an increasing importance for AI technologies, particularly within the core (where the high-

tech services have superseded ICT manufacturing since the second sub-period). This is a further confirmation 

of the key role of services in AI technologies (cf. Section 4.1). Other relevant time trends are not detectable, 

apart from a reshuffle within manufacturing sectors in favour of transportation manufacturing which - as in 

robotics - appears to be increasingly involved in providing AI innovations. 

As far as countries of origin are concerned, in robotics (see Table 16, Table 17, and Table 18) we observe 

a relative decline of the US (however, still accounting for more than 50% of patenting in the most recent 

period); a stable share of Japan (with a reinforcement in the core category); a decline in the role played by the 

European Union (also common to single leading countries such as Germany and the UK); a striking 

improvement in South Korea’s ranking (its weight moving from 2.31% in the first subperiod to 8.65% in the 

last one); an appreciable acceleration in the role of China, which was marginal in the first sub-period (0.35%) 

and exhibits a surge in the last one (2.56%). On the whole, the geographical centre of gravity in robotics shows 

a gradual shifting from Western countries (albeit the US is still absolutely dominant) in favour of leading Asian 

countries (accounting for almost 30% of robotics patenting in the last subperiod). 

A similar scenario emerges if we turn our attention to the AI patenting activity (see Table 19, Table 20, and 

Table 21): the US, Europe (both as a Union and as single countries) and also Japan and Australia loose terrain 

in favour of South Korea (increasing from 2.03% in the first subperiod to 7.04% in the last one), China (from 

0.46% to 3.78%), and India (a new entry accounting for 0.49% in the most recent subperiod). However, 

 
12Note that relying on the application date shifts our investigation period backwards by one year.  The first period 

comprises 7 full years, while the subsequent ones only 6; in this way, the global financial crisis only affects the second 
sub-period. 
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notwithstanding the Asian upsurge, the US still plays a substantially dominant role (accounting for 64.51% of 

AI patents in the last subperiod). 

As far as the convergence dynamics is concerned, an interesting picture emerges when we look at Table 

22. As can be seen, the evidence supporting the convergence of the two key technologies of the current 

automation wave (cf. Section 4.3) is fully confirmed. Moreover, the degree of similarity is increasing over 

time (both using cosine similarity and the Spearman index), pointing to an increasing convergence of the two 

technologies. However, while this convergence is obvious in the peripheral categories (CP3 and CP4), the 

opposite trend is detectable in the core categories, and particularly in CP1. Although this result should be 

treated with caution, it seems to reveal a sort of specialised differentiation in the core technological activities, 

albeit comprised in an overall convergent trajectory, particularly obvious when we move to the more peripheral 

technologies. 

 

5.  Conclusions 

The outcomes and the analyses put forward in the previous sections can be summarised in providing some 

answers to the key questions laid down in the introduction (cf. Section 1). 

First of all, can robotics and AI be considered the drivers of a proper technological revolution (what is 

popularly named as Industry 4.0)? The results discussed in Section 4 cast some doubts about the radicalism of 

the new knowledge base. Indeed, both computer manufacturing and software services still play a key role in 

supporting the diffusion of robotics and AI, and this holds true for the core knowledge and the related 

technologies as well (although hardware appears to be more crucial in the core for robotics, while this role is 

played by software in AI) and does not exhibit any weakening over time. If anything, the opposite trend can 

be detected (cf. Section 4.4). This constitutes clear evidence that the new knowledge base is strictly linked to 

(and somehow dependent on) the previous technological paradigm. While the emergence of the “ICT 

paradigm” as a successor of the previous “Fordist/mass-production paradigm” was rightly seen as a revolution, 

nowadays the discontinuity seems to be less pronounced, and the new knowledge base appears to be more as 

a deepening of the current technological trajectory rather than a radical shift in paradigm. 

Consistently with what just discussed, the US leadership (which was obvious in the ICT era) is confirmed 

for the new technological base, with American companies accounting for more than 50% of robotic patenting 

and more than 60% of AI patenting in recent times. However, notwithstanding the incontestable US leadership, 

Western countries are all losing terrain in relative terms in favour of Asian countries (accounting for almost 

30% of robotics patenting and 23% of AI patenting in recent times). Among Asian countries, the outstanding 

performance of South Korea is particularly noticeable. 
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A further purpose of this work was to assess the nature and pervasiveness of the new knowledge base. As 

discussed in Section 4 regarding both robotics and AI, twelve industries account for more than 80% of the 

entire patenting activity (with manufacturing industries playing a leading role in robotics and services 

emerging as more crucial in AI). This means that the new knowledge base is characterised by a considerable 

(but not impressively widespread) degree of pervasiveness, at least for the time being. 

The final aim of this work was to investigate whether robotics and AI can be considered as parts of the 

same “technological paradigm” or instead as separate – albeit related – “general purpose technologies”. As 

discussed in Section 4.3, ten out of the twelve leading sectors in robotics and AI patenting are in common to 

the two technologies. Moreover, the two adopted indexes of similarities show overall coefficients of 

correlations around 0.9 in recent times (and larger than 0.95 in the more peripheral category). These pieces of 

evidence support a view that considers robotics and AI strictly related, converging (particularly among the 

related technologies) and jointly shaping, if not a new paradigm (see above), a new knowledge base, which 

should be considered as a whole and not as consisting of two separate GPTs. Although robotics is more centred 

on manufacturing while AI finds its roots in high-tech services, the two technologies resemble an 

interconnected knowledge constellation, which can be legitimately named “automation”. 

This study is of course affected by the limitation of being based on American patents: while the US market 

is essential for companies aiming to play some role in the robotics and AI technologies, the USPTO database 

may still be biased against European and Asian actors, and therefore underestimate their role in the emergence 

of the new knowledge base. 

Further research should extend the analysis to European and Asian patent offices and investigate in more 

detail the relationship between the new knowledge base, productivity performance, and economic growth. 

 

References 

Aghion, Philippe M. and Peter W. Howitt (1998). “On the Macroeconomic Effects of Major Technological 
Change”. Annals of Economics and Statistics 49/50, pp. 53-75. DOI: 10.2307/20076110 

Alsamhi, S. H., Ou Ma, and Mohd. Samar Ansari (2020). “Convergence of Machine Learning and Robotics 
Communication in Collaborative Assembly: Mobility, Connectivity and Future Perspectives”. Journal of 
Intelligent & Robotic Systems 98(3-4), pp. 541-566. DOI: 10.1007/s10846-019-01079-x 

Angue, Katia, Cécile Ayerbe, and Liliana Mitkova (2014). “A Method Using Two Dimensions of the Patent 
Classification for Measuring the Technological Proximity: An Application in Identifying a Potential R&D 
Partner in Biotechnology”. Journal of Technology Transfer 39, pp. 716-747. DOI: 10.1007/s10961-013-
9325-8 

Bresnahan, Timothy F. and Manuel Trajtenberg (1995). “General Purpose Technologies ‘Engines of 
Growth’?”. Journal of Econometrics 65(1), pp. 83-108. DOI: 10.1016/0304-4076(94)01598-T 



23 

Carbonara, Emanuela, Giuseppina Gianfreda, Enrico Santarelli, and Giovanna Vallanti (2021). “The Impact 
of Intellectual Property Rights on Labor Productivity: Do Constitutions Matter?”. Industrial and Corporate 
Change 30(4), pp. 884-904. DOI: 10.1093/icc/dtab003 

Curran, Clive-Steven, Stefanie Bröring and Jens Leker (2010). “Anticipating Converging Industries Using 
Publicly Available Data”. Technological Forecasting & Social Change 77(3), pp. 385-395. DOI: 
10.1016/j.techfore.2009.10.002 

Curran, Clive-Steven and Jens Leker (2011). “Patent Indicators for Monitoring Convergence – Examples from 
NFF and ICT”. Technological Forecasting & Social Change 78(2), pp. 256-273. DOI: 
10.1016/j.techfore.2010.06.021 

Damioli, Giacomo, Vincent Van Roy, and Daniel Vertesy (2021). “The impact of artificial intelligence on 
labour productivity”. Eurasian Business Review 11(1), pp. 1-25. DOI: 10.1007/s40821-020-00172-8 

David, Paul A. and Gavin Wright (1999). “General Purpose Technologies and Surges in Productivity: 
Historical Reflections on the Future of the ICT Revolution”. In: The Economic Future in Historical 
Perspective, Volume 13. Ed. by Paul A. David and Mark Thomas, Chap. 4. Oxford University Press. DOI: 
10.5871/bacad/9780197263471.003.0005 

Dosi, Giovanni (1982). “Technological Paradigms and Technological Trajectories: A Suggested Interpretation 
of the Determinants and Direction of Technical Change”. Research Policy 11(3), pp. 147-162. DOI: 
10.1016/0048-7333(82)90016-6 

Dosi, Giovanni (1988). “Sources, Procedures, and Microeconomic Effects of Innovation”. Journal of 
Economic Literature 26(3), pp. 1120-1171. 

Dosi, Giovanni, Luigi Marengo, and Alessandro Nuvolari (2020). “Institutions and Economic Change: Some 
Notes on Self-Organization, Power and Learning in Human Organizations”. Eurasian Business Review 
10(1), pp. 1-22. DOI: 10.1007/s40821-019-00132-x 

Freeman, Christopher (1990). “Technological Change and Long-Term Economic Growth”. Siemens Review 
57(3), pp. 4-9. 

Freeman, Christopher (2019). “History, Co-Evolution and Economic Growth”. Industrial and Corporate 
Change 28(1), pp. 1-44. DOI: 10.1093/icc/dty075 

Freeman, Christopher, John Clark and Luc Soete (1982). Unemployment and Technical Innovation: A Study 
of Long Waves and Economic Development. Praeger. 

Freeman, Christopher and Luc Soete, (eds.) (1987). Technical Change and Full Employment. B. Blackwell. 

Freeman, Christopher and Francisco Louçã (2001). As Time Goes By. From the Industrial Revolution to the 
Information Revolution. Oxford University Press. 

Gomulka, Stanislaw (1990). The Theory of Technological Change and Economic Growth. Routledge. 

Helpman, Elhanan (ed.) (1998). General Purpose Technologies and Economic Growth. MIT Press. 

Jovanovic, Boyan and Peter L. Rousseau (2005). “General Purpose Technologies”. In: Handbook of Economic 
Growth Volume 1, Part B. Ed. by Philippe Aghion and Steven N. Durlauf. North Holland, pp. 1181-1224. 
DOI: 10.1016/S1574-0684(05)01018-X 

Kogler, Dieter F., David L. Rigby, and Isaac Tucker (2013). “Mapping Knowledge Space and Technological 
Relatedness in US Cities”. European Planning Studies 21(9), pp. 1374-1391. DOI: 
10.1080/09654313.2012.755832 



24 

Lee, Woo Jin, Won Kyung Lee and So Young Sohn (2016). “Patent Network Analysis and Quadratic 
Assignment Procedures to Identify the Convergence of Robot Technologies”. PLoS One 11(10), e0165091. 
DOI: 10.1371/journal.pone.0165091 

Lipsey, Richard G., Kenneth I. Carlaw and Clifford T. Bekhar (2005). Economic Transformations: General 
Purpose Technologies and Long Term Economic Growth. Oxford University Press. 

Montobbio, Fabio, Jacopo Staccioli, Maria Enrica Virgillito and Marco Vivarelli (2022). “Robots and the 
origin of their labour-saving impact”. Technological Forecasting and Social Change 174, 121122. DOI: 
10.1016/j.techfore.2021.121122 

Mowery, David C. and Nathan Rosenberg (1998). Paths of Innovation: Technological Change in 20th-Century 
America, Cambridge University Press. 

Ortega-Argilés, Raquel, Mariacristina Piva and Marco Vivarelli (2014). “The Transatlantic Productivity Gap: 
Is R&D the Main Culprit?”. Canadian Journal of Economics 47(4), pp. 1342-1371. DOI: 
10.1111/caje.12103 

Perez, Carlota (1983). “Structural Change and Assimilation of New Technologies in the Economic and Social 
Systems”. Futures 15(5), pp. 357-75. DOI: 10.1016/0016-3287(83)90050-2 

Perez, Carlota (1994). “Technical Change and the New Context for Development”. In: South-South Co-
operation in a Global Perspective. Ed. by Lynn Krieger Mytelka. OECD, pp. 55-87. 

Petralia, Sergio (2020a). “Mapping General Purpose Technologies with Patent Data”. Research Policy 49(7), 
104916. DOI: 10.1016/j.respol.2020.104013 

Petralia, Sergio (2020b). “GPTs and Growth: Evidence on the Technological Adoption of Electrical and 
Electronic Technologies in the 1920s”. European Review of Economic History 25(3), pp. 571-608. DOI: 
10.1093/erehj/heaa022 

Ristuccia, Cristiano Andrea and Solomos Solomou (2014). “Can General Purpose Technology Theory Explain 
Economic Growth? Electrical Power as a Case Study”. European Review of Economic History 18(3), pp. 
227-247. DOI: 10.1093/ereh/heu008 

Rosenberg, Nathan and Claudio R. Frischtak (1984). “Technological Innovation and Long Waves”. Cambridge 
Journal of Economics 8(1), pp. 7-24. DOI: 10.1093/oxfordjournals.cje.a035536 

Serrano, Martin, Hung Nguyenn Dang, and Hoan Mau Quoc Nguyen (2018). “Recent Advances on Artificial 
Intelligence and Internet of Things Convergence for Human-Centric Applications: Internet of Things 
Science”. Proceedings of the 8th International Conference on the Internet of Things 31, pp. 1-5. DOI: 
10.1145/3277593.3277638 

Solow, Robert M. (1987). “We’d Better Watch Out”. New York Times Book Review, July 1987, p. 36. 

Staccioli, Jacopo and Maria Enrica Virgillito (2021). “Back to the past: the historical roots of labour-saving 
automation”. Eurasian Business Review 11(1), pp. 27-57. DOI: 10.1007/s40821-020-00179-1 

Van Roy, Vincent, Daniel Vertesy, and Giacomo Damioli (2020). “AI and Robotics Innovation”. In: Handbook 
of Labor, Human Resources and Population Economics. Ed. by Klaus F. Zimmermann. Springer. DOI : 
10.1007/978-3-319-57365-6_12-2 

WIPO (2019). WIPO Technology Trends 2019: Artificial Intelligence. World Intellectual Property 
Organization. URL: https://www.wipo.int/edocs/pubdocs/en/wipo_pub_1055.pdf 

 



25 

Appendix A 

In this technical appendix we formally define the two proximity measures, namely cosine similarity and 

Spearman rank correlation, used in the construction of Table 8 and discussed in Section 4.3. As extensions to 

the underlying core-periphery levels are straightforward, we only explain their development in the overall case. 

Once a group of patents are matched to their corporate assignee(s) (cf. Section 3.3), it is possible to build a 

rank of their corresponding sectoral industries, sorted by frequency of occurrence. Provided that there exist 99 

NAICS codes at the 3-digit level, the ranking can be expressed as a vector in the 99-dimensional vector space 

of natural numbers. Given two such vectors X, Y ∈ ℕଽଽ corresponding to, say, the whole sets of robotics and 

AI patents, respectively (or any of their core-periphery subsets), it is possible to define their cosine similarity 

as the cosine of the angle between them, which is also equal to the inner product of the same vectors normalised 

to unit length. Formally, 

cos(𝑋, 𝑌) ≔ 𝑋 ⋅ 𝑌ห|𝑋|ห ห|𝑌|ห = ∑ 𝑥௜𝑦௜௜ට∑ 𝑥௜ଶ௜ ට∑ 𝑦௜ଶ௜  

where 𝑥௜ and 𝑦௜ denote the components of vectors 𝑋 and 𝑌, respectively, and || ⋅ || denotes the Euclidean norm. 

Since rank vectors are non-negative, values of their cosine similarity are bound to the unit interval [0,1]. 
In a similar fashion, it is possible to define the Spearman rank correlation as the usual Pearson correlation 

coefficient between the rank vectors 𝑋 and 𝑌. Formally, 

𝑟௦ ≔ ρ௑௒ = cov(𝑋, 𝑌)σ௑σ௒  

Once these similarity measures are defined, it is possible to check whether the core-periphery architecture 

devised in Section 3.2 displays a satisfactory degree of inner consistency. Ideally, given the defined hierarchy, 

adjacent levels should bear more mutual similarity than non-adjacent ones. Accordingly, level CP1 should be 

closer to level CP2 than to level CP3, and closer to level CP3 than to level CP4, and level CP2 should be closer 

to CP3 than to CP4. Table 9 reports the cross-level proximity measures, both in terms of cosine similarity and 

Spearman correlation, for both robotics and AI patents, corroborating our core-periphery structure by 

validating the aforementioned requirement. 
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Robotics Cosine similarity Spearman correlation 
CP1 CP2 CP3 CP4 CP1 CP2 CP3 CP4 

CP1 • 94.54% 88.67% 82.37% • 94.31% 88.01% 81.11% 
CP2 * • 98.66% 95.38% * • 98.54% 94.90% 
CP3 * * • 97.16% * * • 96.83% 
CP4 * * * • * * * • 

AI Cosine similarity Spearman correlation 
CP1 CP2 CP3 CP4 CP1 CP2 CP3 CP4 

CP1 • 98.60% 97.46% 95.87% • 98.46% 97.21% 95.52% 
CP2 * • 99.61% 98.73% * • 99.57% 98.63% 
CP3 * * • 99.37% * * • 99.32% 
CP4 * * * • * * * • 

Table 9: Cross-level cosine similarity and Spearman rank correlation within the core-periphery architecture 

for both robotics and AI patents. 
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Appendix B 

 

NAICS Title Overall CP1 CP2 CP3 CP4 

334 Computer and Electronic Product 
Manufacturing 19.88% 24.49% 22.74% 16.94% 19.24% 

333 Machinery Manufacturing 14.55% 29.23% 21.70% 14.40% 10.39% 

541 Professional, Scientific, and 
Technical Services 12.70% 8.69% 11.32% 12.39% 13.72% 

325 Chemical Manufacturing 10.78% 0.92% 5.52% 15.87% 12.20% 

336 Transportation Equipment 
Manufacturing 5.42% 9.37% 6.12% 4.08% 5.17% 

522 Credit Intermediation and Related 
Activities 4.63% 2.39% 3.64% 4.56% 5.26% 

339 Miscellaneous Manufacturing 4.54% 1.13% 4.32% 5.17% 4.77% 

335 Electrical Equipment, Appliance, and 
Component Manufacturing 3.04% 7.90% 3.51% 2.60% 2.51% 

611 Educational Services 2.85% 1.26% 2.80% 2.93% 3.01% 

423 Merchant Wholesalers, Durable 
Goods  2.40% 2.48% 2.76% 2.25% 2.30% 

551 Management of Companies and 
Enterprises 2.36% 2.14% 2.05% 2.36% 2.49% 

561 Administrative and Support Services 1.61% 0.63% 1.55% 1.31% 1.83% 

523 
Securities, Commodity Contracts, 
and Other Financial Investments and 
Related Activities 

1.38% 0.17% 0.72% 3.74% 1.03% 

511 Publishing Industries (except 
Internet) 1.32% 0.92% 0.73% 0.98% 1.69% 

332 Fabricated Metal Product 
Manufacturing 1.27% 1.18% 1.08% 1.15% 1.38% 

326 Plastics and Rubber Products 
Manufacturing 1.01% 0.21% 0.88% 0.81% 1.21% 

921 Executive, Legislative, and Other 
General Government Support  1.01% 0.59% 0.76% 0.84% 1.20% 

424 Merchant Wholesalers, Nondurable 
Goods  0.89% 0.46% 0.70% 0.96% 0.99% 

621 Ambulatory Health Care Services 0.76% 0.17% 0.45% 0.99% 0.87% 

327 Nonmetallic Mineral Product 
Manufacturing 0.63% 0.08% 0.47% 0.65% 0.75% 

Table 10: Sectoral relevance to robotics patents for each core-periphery level 

in the first subperiod (2001-2007). 
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NAICS Title Overall CP1 CP2 CP3 CP4 

334 Computer and Electronic Product 
Manufacturing 18.31% 25.80% 20.41% 15.88% 17.34% 

541 Professional, Scientific, and 
Technical Services 14.52% 9.84% 13.36% 13.84% 15.71% 

333 Machinery Manufacturing 13.39% 27.43% 17.49% 14.73% 9.78% 
325 Chemical Manufacturing 7.70% 0.78% 4.50% 8.38% 9.55% 

336 Transportation Equipment 
Manufacturing 6.10% 9.12% 7.85% 5.80% 5.16% 

522 Credit Intermediation and Related 
Activities 5.25% 1.00% 4.37% 4.67% 6.25% 

611 Educational Services 4.09% 1.72% 4.17% 4.38% 4.24% 
339 Miscellaneous Manufacturing 4.06% 0.97% 3.93% 5.57% 4.03% 

335 Electrical Equipment, Appliance, and 
Component Manufacturing 3.53% 9.00% 4.05% 3.03% 2.83% 

551 Management of Companies and 
Enterprises 2.64% 1.62% 2.19% 2.62% 2.93% 

423 Merchant Wholesalers, Durable 
Goods  2.41% 2.00% 2.11% 2.88% 2.44% 

561 Administrative and Support Services 2.04% 1.62% 2.20% 1.84% 2.09% 

511 Publishing Industries (except 
Internet) 1.48% 0.97% 1.47% 1.39% 1.58% 

921 Executive, Legislative, and Other 
General Government Support  1.23% 0.66% 0.87% 1.39% 1.39% 

523 
Securities, Commodity Contracts, 
and Other Financial Investments and 
Related Activities 

1.17% 0.59% 0.66% 1.68% 1.28% 

332 Fabricated Metal Product 
Manufacturing 1.10% 1.31% 1.01% 1.14% 1.09% 

326 Plastics and Rubber Products 
Manufacturing 1.01% 0.31% 0.73% 1.21% 1.14% 

621 Ambulatory Health Care Services 0.85% 0.16% 0.42% 0.70% 1.13% 

424 Merchant Wholesalers, Nondurable 
Goods  0.79% 0.12% 0.70% 0.84% 0.88% 

533 Lessors of Nonfinancial Intangible 
Assets (except Copyrighted Works) 0.61% 0.16% 0.46% 0.54% 0.73% 

Table 11: Sectoral relevance to robotics patents for each core-periphery level 

in the second subperiod (2008-2013). 
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NAICS Title Overall CP1 CP2 CP3 CP4 

334 Computer and Electronic Product 
Manufacturing 24.61% 21.88% 19.52% 19.63% 28.60% 

333 Machinery Manufacturing 14.69% 32.89% 18.40% 16.57% 10.75% 

541 Professional, Scientific, and 
Technical Services 13.62% 8.75% 12.46% 14.42% 14.33% 

336 Transportation Equipment 
Manufacturing 6.56% 8.32% 7.44% 8.25% 5.49% 

325 Chemical Manufacturing 6.20% 0.70% 7.65% 5.98% 6.18% 
611 Educational Services 3.71% 2.69% 3.25% 3.54% 4.05% 
339 Miscellaneous Manufacturing 3.28% 1.20% 4.78% 3.66% 2.72% 

522 Credit Intermediation and Related 
Activities 2.96% 1.11% 3.09% 2.98% 3.08% 

335 Electrical Equipment, Appliance, and 
Component Manufacturing 2.91% 7.91% 4.18% 2.75% 1.93% 

561 Administrative and Support Services 2.37% 1.76% 2.49% 2.22% 2.42% 

511 Publishing Industries (except 
Internet) 2.14% 0.79% 1.23% 1.44% 2.88% 

551 Management of Companies and 
Enterprises 2.09% 1.32% 2.15% 2.38% 2.05% 

423 Merchant Wholesalers, Durable 
Goods  1.65% 1.59% 1.74% 2.03% 1.50% 

921 Executive, Legislative, and Other 
General Government Support  1.00% 0.46% 0.84% 0.99% 1.12% 

332 Fabricated Metal Product 
Manufacturing 0.96% 1.49% 0.95% 1.19% 0.85% 

326 Plastics and Rubber Products 
Manufacturing 0.75% 0.38% 0.44% 0.54% 0.97% 

523 
Securities, Commodity Contracts, 
and Other Financial Investments and 
Related Activities 

0.70% 0.14% 0.35% 0.70% 0.90% 

621 Ambulatory Health Care Services 0.68% 0.12% 0.57% 0.54% 0.83% 

424 Merchant Wholesalers, Nondurable 
Goods  0.61% 0.10% 0.50% 0.74% 0.66% 

519 Other Information Services 0.60% 0.24% 0.44% 0.49% 0.73% 
Table 12: Sectoral relevance to robotics patents for each core-periphery level 

in the third subperiod (2014-2019). 
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NAICS Title Overall CP1 CP2 CP3 CP4 

334 Computer and Electronic Product 
Manufacturing 25.26% 23.72% 26.25% 26.37% 25.54% 

541 Professional, Scientific, and 
Technical Services 16.94% 19.41% 13.99% 14.47% 18.37% 

511 Publishing Industries (except 
Internet) 7.53% 7.04% 8.52% 6.94% 7.73% 

522 Credit Intermediation and Related 
Activities 5.79% 5.85% 5.93% 5.98% 5.41% 

333 Machinery Manufacturing 4.86% 4.86% 5.35% 4.70% 4.48% 

336 Transportation Equipment 
Manufacturing 4.74% 4.19% 5.38% 5.45% 4.29% 

335 Electrical Equipment, Appliance, and 
Component Manufacturing 3.15% 2.70% 3.81% 3.18% 3.09% 

561 Administrative and Support Services 3.12% 3.41% 3.19% 3.04% 2.70% 

423 Merchant Wholesalers, Durable 
Goods  2.76% 2.41% 2.87% 3.28% 2.74% 

517 Telecommunications 2.61% 2.41% 2.45% 2.72% 2.95% 

551 Management of Companies and 
Enterprises 2.43% 2.84% 2.55% 2.47% 1.72% 

339 Miscellaneous Manufacturing 2.08% 1.14% 1.83% 2.99% 2.89% 
325 Chemical Manufacturing 1.90% 1.21% 1.60% 2.35% 2.78% 
611 Educational Services 1.76% 1.32% 1.57% 2.28% 2.15% 

523 
Securities, Commodity Contracts, 
and Other Financial Investments and 
Related Activities 

1.61% 2.22% 1.52% 1.13% 1.23% 

518 Data Processing, Hosting, and 
Related Services 1.53% 2.04% 2.09% 0.98% 0.72% 

533 Lessors of Nonfinancial Intangible 
Assets (except Copyrighted Works) 1.08% 0.85% 0.78% 1.29% 1.54% 

921 Executive, Legislative, and Other 
General Government Support  0.99% 1.07% 1.07% 0.97% 0.82% 

519 Other Information Services 0.81% 1.15% 0.66% 0.52% 0.71% 

424 Merchant Wholesalers, Nondurable 
Goods  0.70% 0.89% 0.61% 0.57% 0.62% 

Table 13: Sectoral relevance to AI patents for each core-periphery level 

in the first subperiod (2001-2007). 
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NAICS Title Overall CP1 CP2 CP3 CP4 

334 Computer and Electronic Product 
Manufacturing 24.76% 21.58% 24.85% 24.69% 27.69% 

541 Professional, Scientific, and 
Technical Services 19.34% 23.64% 18.66% 17.38% 17.23% 

511 Publishing Industries (except 
Internet) 7.05% 7.29% 8.02% 6.11% 6.73% 

522 Credit Intermediation and Related 
Activities 6.48% 6.50% 6.03% 6.41% 6.85% 

336 Transportation Equipment 
Manufacturing 4.75% 3.45% 5.52% 6.61% 4.08% 

333 Machinery Manufacturing 4.18% 3.51% 4.97% 4.06% 4.26% 
561 Administrative and Support Services 2.92% 2.91% 2.76% 3.15% 2.90% 
517 Telecommunications 2.91% 2.80% 2.51% 2.62% 3.50% 

423 Merchant Wholesalers, Durable 
Goods  2.53% 2.29% 2.49% 2.66% 2.69% 

551 Management of Companies and 
Enterprises 2.49% 3.42% 2.07% 2.44% 1.97% 

335 Electrical Equipment, Appliance, and 
Component Manufacturing 2.28% 1.97% 2.98% 2.34% 1.98% 

611 Educational Services 2.02% 1.59% 1.88% 2.31% 2.32% 
339 Miscellaneous Manufacturing 1.88% 0.99% 1.81% 3.03% 1.96% 

523 
Securities, Commodity Contracts, 
and Other Financial Investments and 
Related Activities 

1.63% 2.32% 1.42% 1.38% 1.34% 

325 Chemical Manufacturing 1.42% 0.86% 1.32% 1.91% 1.68% 

533 Lessors of Nonfinancial Intangible 
Assets (except Copyrighted Works) 1.36% 1.31% 1.08% 1.15% 1.76% 

519 Other Information Services 0.88% 1.06% 0.94% 0.90% 0.64% 

921 Executive, Legislative, and Other 
General Government Support  0.84% 1.01% 0.73% 0.82% 0.78% 

518 Data Processing, Hosting, and 
Related Services 0.78% 1.13% 0.84% 0.61% 0.52% 

424 Merchant Wholesalers, Nondurable 
Goods  0.62% 0.82% 0.50% 0.55% 0.57% 

Table 14: Sectoral relevance to AI patents for each core-periphery level 

in the second subperiod (2008-2013). 
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NAICS Title Overall CP1 CP2 CP3 CP4 

334 Computer and Electronic Product 
Manufacturing 26.43% 20.16% 23.68% 26.03% 31.53% 

541 Professional, Scientific, and 
Technical Services 19.80% 27.21% 21.37% 19.35% 15.94% 

511 Publishing Industries (except 
Internet) 7.43% 8.78% 8.56% 6.76% 6.54% 

336 Transportation Equipment 
Manufacturing 6.38% 3.63% 6.62% 7.77% 6.11% 

522 Credit Intermediation and Related 
Activities 5.78% 5.44% 5.36% 5.47% 6.52% 

333 Machinery Manufacturing 4.05% 4.00% 4.36% 4.01% 3.83% 
561 Administrative and Support Services 2.97% 3.41% 2.97% 2.89% 2.85% 
517 Telecommunications 2.69% 1.33% 2.58% 2.52% 3.46% 
611 Educational Services 2.14% 2.73% 1.89% 2.02% 2.22% 

335 Electrical Equipment, Appliance, and 
Component Manufacturing 2.04% 2.08% 2.27% 2.22% 1.67% 

551 Management of Companies and 
Enterprises 1.92% 2.38% 1.90% 1.88% 1.80% 

423 Merchant Wholesalers, Durable 
Goods  1.92% 1.55% 1.89% 1.75% 2.23% 

519 Other Information Services 1.76% 2.50% 2.29% 1.66% 1.11% 
339 Miscellaneous Manufacturing 1.52% 0.60% 1.32% 2.10% 1.56% 

533 Lessors of Nonfinancial Intangible 
Assets (except Copyrighted Works) 1.35% 1.25% 1.17% 1.18% 1.70% 

325 Chemical Manufacturing 1.08% 0.57% 0.75% 1.18% 1.47% 

523 
Securities, Commodity Contracts, 
and Other Financial Investments and 
Related Activities 

1.05% 1.52% 1.08% 1.00% 0.89% 

921 Executive, Legislative, and Other 
General Government Support  0.85% 1.29% 0.84% 0.80% 0.72% 

518 Data Processing, Hosting, and 
Related Services 0.72% 1.07% 0.75% 0.74% 0.53% 

811 Repair and Maintenance 0.52% 0.16% 0.37% 0.61% 0.72% 
Table 15: Sectoral relevance to AI patents for each core-periphery level 

in the third subperiod (2014-2019). 
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Country Overall CP1 CP2 CP3 CP4 
United States 59.13% 34.32% 54.84% 61.66% 62.39% 
Japan 16.80% 35.89% 21.27% 15.06% 13.80% 
European Union* 14.21% 15.13% 12.62% 13.99% 14.78% 
Germany 5.71% 7.58% 5.48% 4.25% 6.06% 
South Korea 2.31% 6.78% 3.37% 2.00% 1.56% 
United Kingdom 2.04% 1.38% 1.62% 2.07% 2.25% 
Switzerland 1.65% 2.07% 2.03% 1.77% 1.44% 
Netherlands 1.62% 1.61% 1.63% 1.22% 1.73% 
Canada 1.40% 0.96% 1.55% 1.38% 1.39% 
Taiwan 1.07% 2.22% 1.27% 0.87% 0.94% 
France 0.99% 0.80% 0.81% 0.96% 1.08% 
Sweden 0.82% 1.69% 0.70% 1.05% 0.72% 
Australia 0.81% 0.46% 0.88% 0.97% 0.78% 
Ireland 0.80% 0.08% 0.22% 2.56% 0.55% 
Israel 0.64% 0.42% 0.57% 0.67% 0.69% 
Italy 0.57% 0.80% 0.76% 0.45% 0.51% 
Belgium 0.42% 0.04% 0.28% 0.19% 0.58% 
China 0.35% 0.42% 0.32% 0.37% 0.36% 
Denmark 0.35% 0.11% 0.26% 0.33% 0.42% 
Singapore 0.34% 0.19% 0.21% 0.29% 0.42% 
Finland 0.30% 0.31% 0.23% 0.27% 0.34% 
*sum of EU member states as of 31st December 2019 

Table 16: Country relevance to robotics patents for each core-periphery level 

in the first subperiod (2001-2007). 
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Country Overall CP1 CP2 CP3 CP4 
United States 55.16% 29.15% 52.32% 55.42% 53.62% 
European Union* 16.67% 12.70% 12.50% 13.10% 12.61% 
Japan 15.33% 40.51% 19.26% 16.45% 13.06% 
Germany 5.86% 6.29% 4.65% 5.28% 3.78% 
South Korea 3.76% 4.59% 5.23% 4.25% 11.90% 
Netherlands 2.10% 0.85% 1.12% 1.45% 2.37% 
United Kingdom 2.00% 1.50% 1.57% 1.99% 1.62% 
Switzerland 1.89% 1.99% 1.83% 1.59% 1.61% 
Taiwan 1.55% 2.93% 1.56% 1.25% 1.02% 
France 1.31% 0.99% 1.04% 0.91% 1.07% 
Canada 1.30% 1.30% 1.18% 1.44% 1.05% 
Finland 1.18% 0.20% 0.16% 0.38% 0.72% 
Sweden 0.90% 0.92% 0.73% 0.66% 0.60% 
Israel 0.85% 0.56% 1.00% 0.96% 1.14% 
China 0.82% 4.68% 2.90% 3.22% 2.01% 
Italy 0.74% 0.69% 0.73% 0.53% 0.40% 
Australia 0.72% 0.04% 0.33% 0.39% 0.45% 
Singapore 0.59% 0.40% 0.44% 0.25% 0.40% 
Ireland 0.57% 0.02% 0.99% 0.28% 0.39% 
Denmark 0.53% 0.18% 0.46% 0.58% 0.43% 
Belgium 0.49% 0.00% 0.17% 0.28% 0.47% 
*sum of EU member states as of 31st December 2019 

Table 17: Country relevance to robotics patents for each core-periphery level 

in the second subperiod (2008-2013). 
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Country Overall CP1 CP2 CP3 CP4 
United States 52.36% 29.15% 52.32% 55.42% 53.62% 
Japan 16.51% 40.51% 19.26% 16.45% 13.06% 
European Union* 12.67% 12.70% 12.50% 13.10% 12.61% 
South Korea 8.65% 4.59% 5.23% 4.25% 11.90% 
Germany 4.37% 6.29% 4.65% 5.28% 3.78% 
China 2.56% 4.68% 2.90% 3.22% 2.01% 
Netherlands 1.84% 0.85% 1.12% 1.45% 2.37% 
Switzerland 1.68% 1.99% 1.83% 1.59% 1.61% 
United Kingdom 1.67% 1.50% 1.57% 1.99% 1.62% 
Taiwan 1.28% 2.93% 1.56% 1.25% 1.02% 
Canada 1.16% 1.30% 1.18% 1.44% 1.05% 
Israel 1.05% 0.56% 1.00% 0.96% 1.14% 
France 1.03% 0.99% 1.04% 0.91% 1.07% 
Sweden 0.66% 0.92% 0.73% 0.66% 0.60% 
Italy 0.52% 0.69% 0.73% 0.53% 0.40% 
Finland 0.50% 0.20% 0.16% 0.38% 0.72% 
Ireland 0.49% 0.02% 0.99% 0.28% 0.39% 
Denmark 0.45% 0.18% 0.46% 0.58% 0.43% 
Australia 0.39% 0.04% 0.33% 0.39% 0.45% 
Singapore 0.39% 0.40% 0.44% 0.25% 0.40% 
Belgium 0.34% 0.00% 0.17% 0.28% 0.47% 
*sum of EU member states as of 31st December 2019 

Table 18: Country relevance to robotics patents for each core-periphery level 

in the third subperiod (2014-2019). 
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Country Overall CP1 CP2 CP3 CP4 
United States 68.63% 69.27% 65.56% 68.39% 70.94% 
Japan 11.58% 10.65% 14.45% 12.45% 9.38% 
European Union* 10.82% 11.34% 10.67% 9.81% 11.08% 
Germany 3.80% 5.31% 3.50% 2.71% 2.88% 
South Korea 2.03% 1.68% 2.86% 2.24% 1.56% 
Netherlands 1.75% 1.37% 2.04% 1.85% 1.90% 
United Kingdom 1.65% 1.48% 1.53% 1.62% 2.02% 
Canada 1.34% 1.27% 1.21% 1.54% 1.40% 
Taiwan 1.06% 1.38% 1.08% 0.93% 0.70% 
Australia 0.89% 1.01% 0.78% 0.74% 0.93% 
France 0.83% 0.81% 0.79% 0.78% 0.92% 
Switzerland 0.77% 0.76% 0.63% 0.75% 0.92% 
Finland 0.76% 0.50% 0.77% 0.71% 1.15% 
Ireland 0.69% 0.84% 0.64% 0.57% 0.63% 
Singapore 0.68% 0.55% 0.65% 0.74% 0.85% 
Israel 0.55% 0.37% 0.45% 0.61% 0.86% 
Sweden 0.48% 0.35% 0.45% 0.57% 0.61% 
China 0.46% 0.39% 0.58% 0.63% 0.30% 
Cayman Islands 0.22% 0.22% 0.17% 0.28% 0.21% 
Italy 0.21% 0.18% 0.30% 0.18% 0.20% 
Hong Kong 0.20% 0.22% 0.20% 0.18% 0.18% 
*sum of EU member states as of 31st December 2019 
Table 19: Country relevance to AI patents for each core-periphery level 

in the first subperiod (2001-2007). 
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Country Overall CP1 CP2 CP3 CP4 
United States 67.58% 66.37% 63.31% 65.26% 64.14% 
European Union* 10.21% 8.45% 8.25% 8.55% 8.47% 
Japan 9.98% 9.44% 10.68% 9.81% 7.55% 
South Korea 3.91% 4.04% 5.96% 6.54% 9.54% 
Germany 2.83% 2.57% 2.41% 2.42% 2.26% 
Canada 1.74% 1.60% 1.17% 1.15% 1.10% 
United Kingdom 1.48% 1.42% 1.32% 1.40% 1.34% 
Netherlands 1.31% 1.14% 1.07% 1.09% 1.15% 
Taiwan 1.29% 1.24% 1.26% 1.44% 1.20% 
Finland 0.97% 0.42% 0.52% 0.44% 0.49% 
France 0.92% 0.86% 0.80% 0.83% 0.93% 
China 0.91% 3.73% 4.73% 2.83% 3.82% 
Switzerland 0.80% 0.88% 0.71% 0.89% 0.87% 
Sweden 0.77% 0.29% 0.55% 0.74% 0.62% 
Ireland 0.75% 0.88% 0.60% 0.55% 0.49% 
Israel 0.74% 0.99% 1.27% 1.30% 1.00% 
Singapore 0.71% 0.37% 0.51% 0.49% 0.57% 
Australia 0.45% 0.41% 0.34% 0.27% 0.33% 
Cayman Islands 0.41% 0.37% 0.31% 0.31% 0.25% 
India 0.33% 1.13% 0.53% 0.38% 0.27% 
Hong Kong 0.23% 0.19% 0.31% 0.22% 0.33% 
*sum of EU member states as of 31st December 2019 
Table 20: Country relevance to AI patents for each core-periphery level 

in the second subperiod (2008-2013). 
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Country Overall CP1 CP2 CP3 CP4 
United States 64.51% 66.37% 63.31% 65.26% 64.14% 
Japan 9.27% 9.44% 10.68% 9.81% 7.55% 
European Union* 8.43% 8.45% 8.25% 8.55% 8.47% 
South Korea 7.04% 4.04% 5.96% 6.54% 9.54% 
China 3.78% 3.73% 4.73% 2.83% 3.82% 
Germany 2.38% 2.57% 2.41% 2.42% 2.26% 
United Kingdom 1.36% 1.42% 1.32% 1.40% 1.34% 
Taiwan 1.29% 1.24% 1.26% 1.44% 1.20% 
Canada 1.20% 1.60% 1.17% 1.15% 1.10% 
Israel 1.15% 0.99% 1.27% 1.30% 1.00% 
Netherlands 1.11% 1.14% 1.07% 1.09% 1.15% 
France 0.86% 0.86% 0.80% 0.83% 0.93% 
Switzerland 0.83% 0.88% 0.71% 0.89% 0.87% 
Sweden 0.59% 0.29% 0.55% 0.74% 0.62% 
Ireland 0.59% 0.88% 0.60% 0.55% 0.49% 
Singapore 0.51% 0.37% 0.51% 0.49% 0.57% 
India 0.48% 1.13% 0.53% 0.38% 0.27% 
Finland 0.48% 0.42% 0.52% 0.44% 0.49% 
Australia 0.33% 0.41% 0.34% 0.27% 0.33% 
Cayman Islands 0.29% 0.37% 0.31% 0.31% 0.25% 
Hong Kong 0.27% 0.19% 0.31% 0.22% 0.33% 
*sum of EU member states as of 31st December 2019 
Table 21: Country relevance to AI patents for each core-periphery level 

in the third subperiod (2014-2019). 

 
 

 

 Cosine similarity Spearman correlation 
Period 1 Period 2 Period 3 Period 1 Period 2 Period 3 

Overall 86.96% 88.93% 90.57% 85.56% 87.78% 89.71% 
CP1 71.85% 68.05% 57.84% 69.61% 65.51% 54.81% 
CP2 83.63% 87.34% 81.50% 81.95% 86.02% 79.67% 
CP3 79.58% 85.79% 87.45% 77.20% 84.12% 86.18% 
CP4 89.33% 89.40% 95.56% 88.17% 88.35% 95.21% 

Table 22: Cosine similarity and Spearman rank correlations between robotics and AI core-periphery levels 

in each of the three subperiods. 

 


