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Abstract

Within this thesis, both position-dependent charge transport measurements with a multi-tip

scanning tunneling microscope (STM) are performed, and theoretical models for describ-

ing these measured data are developed. Only a combination of both allows for actually

disentangling multiple current transport channels present in parallel, in order to reveal the

physical properties of the investigated systems, i.e. the conductivity of the individual chan-

nels. In chapter 2, the instrumental setup for the multi-tip STM is shown in general and

the specific methods used for tip positioning are discussed. An introduction into the theory

of distance-dependent four-point resistance measurements is given in chapter 3. Here, the

relations between four-point resistance and conductivity influenced by the chosen probe

geometry are discussed for both a pure two-dimensional and a pure three-dimensional sys-

tem. Furthermore, also anisotropic conductance in two dimensions is considered. Chap-

ters 4 – 7 depict actual measurements with the multi-tip STM on different sample systems,

as semiconductors and topological insulators. First, in chapter 4 the conductivity of the

Si(111)-(7×7) surface and the influence of atomic steps of the underlying substrate are

investigated. In order to interpret the measured resistances, a 3-layer model is introduced

which allows for a description by three parallel conductance channels, i.e. the surface, the

space charge region and the bulk. Such a model enables to extract a value for the surface

conductivity from the measurements. Moreover, by a measurement of the conductance

anisotropy on the surface, the conductivity of a single atomic step can be disentangled

from the conductivity of the step-free terraces. In chapter 5, the 3-layer model is extended

to an N -layer model in order to model the strongly depth-dependent conductivity of the

near-surface space charge region in semiconductors in a more precise way. In order to

demonstrate the universal applicability of the N -layer model, it is used to extract values

for the surface conductivity of Ge(100)-(2×1) and Si(100)-(2×1) reconstructions from data

already published in the literature, but not evaluated in terms of the surface conductivity.

Chapter 6 depicts a further combined experimental and theoretical approach in order to

reveal parallel conductance channels in topological insulators thin films, i.e. the interface

channel at the boundary to the substrate and the interior of the film itself, which are both

in parallel to the transport channel through the topological surface states at top and bottom

surface of the film. From measurements on specific surface reconstructions, the conductiv-

ity of the interface channel can be revealed, while the interior of the thin film is approached

by band bending calculations in combination with results from angle-resolved photoemis-

sion spectroscopy measurements (ARPES). Here, it turns out that in the thin-film limit the

charge carrier concentration inside the film is only governed by the position of the Fermi

level at the surface, as it is revealed by ARPES, but not influenced by the actual dopant

concentration inside the film material which is usually unknown, thus allowing for a reli-
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able estimate of the film conductivity. Finally, in chapter 7, the weak topological insulator

Bi14Rh3I9 is investigated by means of scanning tunneling spectroscopy and scanning tun-

neling potentiometry, in order to reveal the presence and the transport properties of the

one-dimensional edge state at step edges on the dark surface. From the spectroscopy and

thermovoltage measurements, it turns out that the topological channel can indeed be found

at step edges of the 2D TI-layer, as it has been already reported in literature, and addition-

ally at artificially created scratches into the surface. However, it is not located directly at

the Fermi energy, and thus cannot substantially contribute to current transport. Addition-

ally, it turns out that the surrounding so-called dark surface is very conductive itself due to

unintentional surface doping, as deduced from potentiometry with applied transport field

and distance-dependent four-point measurements. Both facts prevent to directly reveal the

transport properties of the edge channels for the studied Bi14Rh3I9 crystals, but neverthe-

less in principle the depicted measurement method should be capable of revealing direct

transport through an edge channel on more sophisticated samples.



Kurzfassung

Im Rahmen dieser Arbeit werden sowohl positionsabhängige Ladungstransportmessungen

mit einem Multispitzen-Rastertunnelmikroskop durchgeführt, als auch theoretische Model-

le für die Beschreibung der gemessenen Daten entwickelt. Nur eine Kombination aus bei-

dem ermöglicht es, parallele Leitfähigkeitskanäle für Stromtransport voneinander zu tren-

nen, um die grundlegenden physikalischen Eigenschaften in den untersuchten System auf-

zudecken, d.h. die spezifische Leitfähigkeit der einzelnen Kanäle zu bestimmen. In Kapi-

tel 2 wird der allgemeine instrumentelle Aufbau des Multispitzen-Rastertunnelmikroskops

gezeigt und Methoden für die Spitzenpositionierung werden besprochen. Eine Einführung

in die Theorie zu abstandsabhängigen Vierpunktmessungen wird in Kapitel 3 gegeben.

Hier werden die Beziehungen zwischen Vierpunktwiderstand und spezifischer Leitfähig-

keit, welche durch die gewählte Spitzenanordnung beeinflusst werden, sowohl für zweidi-

mensionale als auch für dreidimensionale Systeme hergeleitet. Zusätzlich wird auch ani-

sotrope Leitfähigkeit in zwei Dimensionen betrachtet. Die Kapitel 4 – 7 zeigen Messun-

gen mit dem Multispitzen-Rastertunnelmikroskop auf verschiedenen Probensystemen, wie

Halbleitern und topologischen Isolatoren. Zunächst wird in Kapitel 4 die spezifische Leit-

fähigkeit der Oberfläche von Si(111)-(7×7) und der Einfluss von atomaren Stufenkanten

des darunterliegenden Substrats untersucht. Um die gemessenen Vierpunktwiderstände in-

terpretieren zu können, wird ein 3-Lagen-Modell eingeführt, welches eine Modellierung

durch drei parallele Leitfähigkeitskanäle erlaubt, d.h. einen Oberflächenkanal, einen Kanal

durch die Raumladungszone und einen Volumenkanal durch den Siliziumkristall. Solch ein

Modell ermöglicht es, einen Wert für die spezifische Leitfähigkeit der Oberfläche aus den

Messdaten zu extrahieren. Außerdem erlaubt eine Messung der Leitfähigkeitsanisotropie

auf der Oberfläche, die Beiträge, welche durch die spezifische Leitfähigkeit einer einzel-

nen atomaren Stufe und der spezifischen Leitfähigkeit der stufenlosen Terrassen entstehen,

voneinander zu trennen. In Kapitel 5 wird das 3-Lagen-Modell erweitert zu einem N -

Lagen-Modell, um die in hohem Maße tiefenabhängige (bzgl. der Oberfläche) spezifische

Leitfähigkeit der oberflächennahen Raumladungszone in Halbleitern präziser beschreiben

zu können. Um die allgemeine Anwendbarkeit des N -Lagen-Modells zu demonstrieren,

wird es zur Bestimmung der spezifischen Oberflächenleitfähigkeit der beiden Oberflä-

chenrekonstruktionen Ge(100)-(2×1) und Si(100)-(2×1) verwendet, basierend auf bereits

veröffentlichten Messdaten aus der Literatur, welche aber nicht unter Einbeziehung eines

Oberflächenkanals für Stromtransport ausgewertet wurden. In Kapitel 6 wird ein weiterer

kombinierter Ansatz aus Experiment und Theorie gezeigt, um parallele Leitfähigkeitskanä-

le in dünnen Filmen topologischer Isolatoren (TI) zu trennen, d.h. den Grenzflächenkanal

an der Übergangsfläche zum Substrat und den Kanal durch das Innere des Films, wel-

che beide parallel zu den Transportkanälen durch die topologischen Oberflächenzustän-
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de auf der Ober- und Unterseite des Films verlaufen. Basierend auf Vierpunktmessungen

von bestimmten Oberflächenrekonstruktionen lässt sich die spezifische Leitfähigkeit des

Grenzflächenkanals ermitteln, wohingegen die Eigenschaften des Filminneren mit Hilfe

von Berechnungen der Bandverbiegung in Verbindung mit Messdaten aus winkelaufge-

löster Photoemissionsspektroskopie bestimmbar sind. Hierbei stellt sich heraus, dass im

Grenzfall von dünnen Filmen die Ladungsträgerdichte im Inneren des Films nahezu nur

von der Position der Fermienergie an der Oberfläche abhängt, wie sie aus winkelaufgelös-

ter Photoemissionsspektroskopie ermittelt werden kann, aber nicht durch die tatsächliche

Dotierkonzentration im Inneren des Filmmaterials beeinflusst wird, welche oftmals unbe-

kannt ist, so dass letztendlich eine verlässliche Abschätzung der spezifischen Leitfähigkeit

des Filminneren möglich ist. Schließlich wird in Kapitel 7 der schwache topologische Iso-

lator Bi14Rh3I9 mit Hilfe von Rastertunnelspektroskopie und Rastertunnelpotentiometrie

untersucht, um die Existenz und die Transporteigenschaften von eindimensionalen Rand-

zuständen an Stufenkanten auf der dunklen Oberfläche aufzudecken. Aus Spektroskopie

und Messungen der Thermospannung ergibt sich, dass sich die topologischen Randkanäle

tatsächlich an Stufenkanten auf der zweidimensionalen TI-Lage finden lassen, wie es auch

in Übereinstimmung mit der Literatur ist, und zusätzlich auch an künstlich erzeugten Krat-

zern und Gräben in der Oberfläche auftreten. Allerdings stellt sich heraus, dass sich die

Randzustände nicht unmittelbar an der Fermienergie befinden und daher nicht wesentlich

zum Stromtransport beitragen können. Zusätzlich wird deutlich, dass auf Grund von un-

beabsichtigter Oberflächendotierung die umgebende sogenannte dunkle Oberfläche selbst

eine sehr hohe spezifische Leitfähigkeit aufweist, wie es sich aus Potentiometriemessungen

mit angelegtem Transportfeld und abstandsabhängigen Vierpunktmessungen ableiten lässt.

Diese beiden Tatsachen verhindern letztendlich, dass sich an den untersuchten Bi14Rh3I9
Kristallen die Transporteigenschaften der Randkanäle unmittelbar aufdecken lassen, aber

nichtsdestotrotz wäre es prinzipiell mit der verwendeten Messmethode möglich, direkten

Transport durch die Randkanäle nachzuweisen, wenn ausgereiftere Proben zur Verfügung

stünden.
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1. Introduction

Due to the pronounced downscaling occurring in modern electronics and the progressing

transition from microelectronics into nanoelectronics, the role of parasitic conductance

channels in electronic devices becomes more and more important. Such parasitic chan-

nels which are present in parallel to the intended current paths, can have several undesired

impacts, e.g. as an increased consumption of power or a pronounced heating of the de-

vices, and therefore lead to a much less effective functionality. A simple example of such

a parallel parasitic channel is a conductive surface present on a volume-based electronic

component. In addition to the intended bulk channel whose properties are selected accord-

ing to the desired specifications for current transport, e.g. for obtaining a diode or an ohmic

resistor, such a surface conduction is always present in parallel, and therefore can lead to

a substantial leakage current in the component. This is additionally emphasized, as the

surface to volume ratio increases substantially with reducing the size of the element. So, it

is an important task to reduce such undesired influences. However, in order to be able to

design electronic devices in a way that such parallel parasitic channels are reduced as far

as possible, one first has simply to know that such channels are present and, second, one

needs to get some deeper insight into their specific properties. This means that is has to be

possible to reveal the parallel channels from electrical measurements. In order to be able

to judge their corresponding influence on current transport, also the conductivities of the

individual channels need to be determined.

However, this task sounds more simple than it actually is. In principle, one may think that

only a standard resistance measurement is required which can be performed easily, e.g.

similar to a measurement with a multimeter. Nevertheless, if one stays in this picture and

assumes that the device is accessible by a multimeter, even a standard resistance measure-

ment would not lead to success, as only the total resistance can be measured including the

contribution of all conduction channels in parallel, similar as it is the case for multiple re-

sistors in a parallel circuit. So, a different method has to be found in order to measure each

channel separately. One helpful fact is that the parasitic channels often have a different

dimensionality than the main conductance channel. For example, in the common case of

volume-based semiconductor components, as mentioned before, the surface conductance

is obviously two-dimensional (2D), while the transport through the bulk semiconductor

itself occurs along a three-dimensional (3D) channel. This also holds for other cases, e.g.

a 2D conductive interface in between two 3D materials, or a (quasi 2D) thin film on top of

a 3D bulk substrate. However, with the progressing development during the last decades,

increasingly also exactly the opposite case applies, i.e. the intended current path of an elec-

tronic component is formed solely by a (quasi) 2D channel, e.g. along an interface or on a

surface, which basically has been summarized by the Nobel laureate Herbert Kroemer with

1
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the famous statement that "the interface is the device" [1, 2]. A prominent example is the

widely used silicon-based metal-oxide-semiconductor field-effect transistor (MOSFET),

whose gate-controlled current channel has a vertical extension of only ∼10 nm beneath the

gate oxide [3]. Nevertheless, also in such systems parasitic channels can exist, but beside

the less common case of a parallel bulk channel, they are often of the same dimensionality

as the intended current path, and thus more difficult to handle. An example from recent

research is the GaN high-electron-mobility transistor (HEMT) intended for high frequency

and power devices, where the presence of surface states in parallel to the 2D channel at

the AlGaN/GaN boundary can lead to a substantial surface leakage current [4–7]. Another

interesting material system, specifically for future electronic devices or various applica-

tions, e.g. as spintronics or quantum computing, are topological insulators. Here, due to

their special topological properties [8, 9], a conductive surface with substantially reduced

backscattering appears, while the bulk material still exhibits diffusive transport. Thus, it is

the opposite now: One could benefit mostly from the topological properties, if the current

transport occurs exclusively through the surface. Therefore, as now the surface is the de-

sired conductance channel, one has to ensure that the current flows predominantly along the

topological surface and not through the bulk itself. Nevertheless, from the measurement’s

point of view, as again different dimensionalities are involved, one still basically has to

distinguish between 2D and 3D in order to separate both channels, at least for the case of a

bulk topological insulator. The presence of thin films can complicate the proceeding much

more, as it will be discussed later on in chapter 6.

So, if it turns out to be possible to distinguish the dimensionality of current transport, then

one also could disentangle a considerable number of the different parallel conductance

channels. The solution on this are position-dependent resistance measurements. Here, in

contrast to one measurement with fixed contacts, multiple resistance measurements are

performed subsequently, each of them with differently positioned contacts. So, in the

end, from such measurements the specific distance-dependency of the resistance can be re-

vealed. From theory it can be derived that the dimensionality of a charge transport channel

directly affects the dependency of the resistance on the contact positions. Therefore, in

principle it is possible to separate 2D and 3D channels from such position-dependent resis-

tance measurements. While this can be done very easily for either pure 2D or 3D channels,

it is more complex for mixed channels, i.e. a 2D channel and a 3D channel in parallel, as

discussed before. Nevertheless, in combination with suitable theoretical models for the in-

volved channels, i.e. which relate the measured resistance to the individual conductivities,

it is possible to disentangle such composed systems and to determine separate conductiv-

ity values for each transport channel inside the system under study. In practice, usually

four-point measurements are performed, i.e. four contacts are used in order to eliminate

the influence of contact resistances. These four contacts are then subsequently placed at

different positions and the corresponding four-point resistance is measured.

However, one fact still complicates the implementation of such position-dependent mea-

surements, namely that everything is settled on the microscale or even nanoscale. Usually,

for performing electrical measurement on these scales, metallic contacts are fabricated

by lithography. Obviously, this does not work in the present case, as then no position-
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dependent measurements would be possible (or only very few for a very large amount of

contacts). Another drawback of lithography is that no in situ measurements are possible,

as the material always has to be exposed to ambient conditions in order to fabricate the

contacts. However, this can substantially change the properties, e.g. of the surface, and

therefore falsify the subsequently performed measurements. So, a better method is nec-

essary. Nevertheless, a suitable tool for electrical measurements on the nanoscale with

variable contact position on top of a surface already exists — the scanning tunneling mi-

croscope (STM). When the first STM has been developed in 1981 [10–12], it was used

preferentially for imaging surfaces, but during the years the field of application shifted

more and more to spectroscopic and electrical measurements on the nanoscale. However,

it only exhibits one tip and for four-point measurements obviously four contacts are re-

quired. So, multi-tip scanning tunneling microscopy is the method of choice. A multi-tip

STM is a very versatile tool, as it combines the full functionality of a single-tip STM with

the possibility of performing multi-contact electrical measurements on surfaces. For exam-

ple, a four-tip STM, i.e. in principle four single STMs in one setup, contains four separate

tips which can be placed individually on a surface in order to establish electrical contacts

to the sample. So, position-dependent resistance measurements are easily possible. Com-

pared to lithography, no contacts have to be fabricated and all measurements are possible in

situ. The first four-tip STM was introduced in 2001 [13] and since then several home-built

designs have been developed [14–16]. Also an extension for including atomic force mi-

croscopy is possible [17–19] which can be used in order to access conductive structures on

the nanoscale on top of non-conducting substrates. Up to now, it has been already applied

for years in order to successfully reveal transport phenomena on the nanoscale. For exam-

ple, studies dealt with conductance anisotropy on surfaces [20,21], step resistances [22,23],

resistivities of nanowires [24–26], doping layers in semiconductors [27,28], topological in-

sulators [29–31], resistances across grain boundaries [32,33], surface defects [34], ballistic

transport channels [35,36] and spin-polarized transport [37,38]. This list is only an excerpt

of the performed studies and does not claim for any completeness. However, it can be seen

that the applicability of a four-tip STM is extended over a very broad range in the field of

nanoscopic electrical conductance measurements.

So, it can be concluded here that with a multi-tip STM it is possible to perform position-

dependent resistance measurements down to the nanoscale, as it is necessary in order to

disentangle multiple parallel conduction channels. Such a multi-tip STM has been used

for all four-point measurements presented within this thesis. In the next chapter 2, the

instrumental setup of the four-tip STM is depicted which has been applied for obtaining the

measurements on semiconductors and topological insulators presented in the chapters 4 –

7. An introduction into the theory of position-dependent four-point measurements will be

given in chapter 3, while more sophisticated transport models considering multiple 2D and

3D channels in parallel are shown in chapters 4 and 5.





2. Experimental Setup

Within this chapter, the instrumental setup is presented which is used for all of the measure-

ments throughout this thesis. Primarily, it is focussed on the multi-tip scanning tunneling

microscope by showing an overview about its individual components and its functionality

in order to perform position-dependent electrical conductance measurements. Specifically,

this includes a discussion of the electronics, the method of controlling the tip positions by

using an optical microscope, and the procedure for establishing a hard contact between the

four tips and the sample in order to allow for four-point resistance measurements.

2.1. Multi-tip scanning tunneling microscope

The multi-tip scanning tunneling microscope (STM) exhibits four tips and operates under

ultra-high vacuum (UHV) conditions, i.e. it is located inside a UHV chamber with a base

pressure of 1× 10−10 mbar, as depicted in Fig. 2.1. Fig. 2.1(a) shows an overview of

the complete chamber exhibiting several tools for in situ sample preparations, e.g. a high-

current annealing stage, an optical and infrared pyrometer and multiple evaporators (Bi,

Te, Si, Ge) with a quartz balance for controlling the flux. The part with the multi-tip STM

inside is depicted in Fig. 2.1(b). A more detailed overview can be found in Fig. 2.2, where a

top-view of the STM located on a CF160 flange with multiple cable feedthroughs is visible

in Fig. 2.2(a) and a close-up of the four tips in the center is depicted in Fig. 2.2(b).

The multi-tip STM is rather small with a total outer diameter of only 50mm [16]. It

contains four separate STM tips arranged symmetrically, and each of them has the full

functionality of a single-tip STM, i.e. an acquisition of STM images is possible with all

(a) (b)

Figure 2.1.: (a) Overview of the ultra-high vacuum chamber, (b) Side-view of the multi-tip scan-

ning tunneling microscope inside the UHV-chamber

5
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(a) (b)

(c) (d)

Figure 2.2.: (a) Top-view of the multi-tip STM in the UHV-chamber. It is positioned on a CF160

flange providing all cable feedthroughs for the wiring. (b) Enlarged image of the multi-tip STM

showing the four tips inside the tip holders each positioned in the edge of a square. (c) Cross-section

of the multi-tip STM. In the drawing, the three tube piezos (magenta) for the scanning movement

below each of the four sliders, and the Koala Drive (yellow) for the z-approach below the tips are

visible. (d) Drawing of the STM with inserted sample holder. The sample surface faces downwards

towards the four tips. The drawings in (c) and (d) were produced by Dr. Vasily Cherepanov.

four tips. As visible in Fig. 2.2(b), the (tungsten) tips are mounted in tip holders with

an elevation angle of 45° with respect to the surface plane, and are pointing towards the

center of the STM. Each tip holder is fixed by a small magnet on top of a tip recipient, as

visible in the cross-sectional view in Fig. 2.2(c). In turn, this tip recipient is attached to the

end of a small nanopositioner along the z-direction (depicted as yellow), i.e. the so-called

KoalaDrive [39]. Due to its special working principle, this positioner allows a very smooth

and precise movement along its axis, so that it is used in the setup for the coarse approach of

the tips towards the sample surface (z-direction). Each of the four positioners is fixed at the

side of a plate [black triangles below the tips in Fig. 2.2(b)] which in turn is positioned on

top of three tube-piezos arranged vertically and in parallel to each other (shown in magenta

color). So, each set of such three piezos which are electrically connected in parallel, allows

the scanning movement in x-, y- and z-direction of the corresponding STM tip. By driving

the piezos with a saw-tooth signal, so that the plates on top act as inertial sliders, the in-

plane coarse positioning is achieved.

A sample which is mounted inside a standard (Omicron) sample holder, can be inserted into

the STM by using a wobble stick. The orientation of the sample itself is upside down, so

that the surface points towards the tips below, as it is depicted in the drawing in Fig. 2.2(d)
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(a) (b)

Figure 2.3.: (a) Wobble stick with a kinked pincer at the end. With this special pincer a transfer of

samples between the STM and the transfer rod, which are both located in different parallel planes,

is possible by only rotating the stick. (b) Top-view of the high-current annealing stage with a Si

sample mounted inside a standard Omicron sample holder. The thick cables and the large size of

the current contacts (springs) allow a reduced contact resistance in order to achieve high currents

up to 10A.

which shows the STM with a mounted sample holder on top. The sample recipient of the

STM is not fixed, but rotatable, as it is positioned on top of three (shear) piezo elements.

So, the sample orientation can be changed in between measurements, without the need of

directly touching the sample. In dependence of the type of the used sample holder, there

are in total three possibilities for establishing electrical contacts to the sample, i.e. by the

sample recipient itself or by two springs on top [indicated next to the two red blocks in

Fig. 2.2(d)]. However, for indeed achieving three separated contacts, all of them have to

be electrically insulated on the sample side.

As inside the UHV chamber the STM sample plane and the planes of the recipients at the

transfer rods are not on the same height, it is necessary, in order to allow for a sample

transfer in between, to use a wobble stick with a special pincer at the end, as depicted in

Fig. 2.3(a). Such a pincer has a kinked shape, so that the height difference can be bridged

by simply rotating the stick, i.e. the sample is first picked up, then rotated, and finally

inserted upside-down in the STM. Prior to the measurements of this thesis the sample

system of the multi-tip STM was not yet compatible to the Omicron standard, and thus

it has been modified first. For this purpose, besides further parts for the UHV system,

such a pincer was assembled. Additionally, also a new high-current annealing stage was

designed for the Omicron sample holders, as depicted in Fig. 2.3(b). Such an annealing

stage is used for flashing semiconductor materials, e.g. Si substrates, at high temperatures

up to 1200 ◦C by direct current heating, in order to achieve a clean surface without any

oxide on top, enabling to prepare a specific surface reconstruction afterwards. The sample

recipient of the stage exhibits two massive springs in order to allow for a stable electrical

contact with the sample holder for injecting high currents up to 10A through the sample.

For this reason, also a large diameter of the cables is chosen. Both springs are electrically

insulated from the body in between by using ceramic (Macor) washers. Furthermore,

molybdenum is chosen as material of the very massive metallic body, in the same way as

it applies for all other metal parts, so that degassing due to undesired excessive heating by

thermal coupling during operation is mostly reduced, since such a heating would lead to an

increased pressure inside the UHV chamber, which in turn is unfavourable for achieving
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a clean sample surface. A dimensioned drawing of the annealing stage can be found in

Fig. C.1 in the appendix C. Obviously, in order to obtain a current flowing only through

the sample substrate itself, and not through the holder surrounding it, also the contacts on

the sample holder itself have to electrically insulated from the frame. This is similarly

achieved by several ceramic plates positioned both below the two contact blocks and in

between the screwed connections, as it is partly visible in Fig. 2.3(b). Since a high current

results in a brightly glowing substrate, it is easily possible to monitor its temperature with

an optical pyrometer.

The STM itself is directly mounted on the metal flange and does not have a mechanism

for reducing vibrations, e.g. as a damping achieved by a spring suspension. However, the

complete UHV chamber is mounted onto a passive air damping system which turned out

to be sufficient for vibration isolation during STM measurement. An exchange of the tips

in the STM is possible while maintaining UHV conditions. For this purpose, a special tip

shuttle is used, consisting of a standard Omicron plate with a squared hole inside, so that

four tip holders can be mounted at the same time, each positioned in one corner of the

square. This tip shuttle can then be loaded similar to a standard sample. Within the STM

the coarse positioning of the tips is used in order to deposit first the mounted tips in an

empty shuttle and then pick up new tips from a second shuttle.

2.2. Electronics

The electronics used for the multi-tip STM is very similar to the one of a single-tip STM,

but every component is required four times, e.g, as four high-voltage (HV) amplifiers for

the tips. However, there are a few specific electrical components only used in the multi-tip

setup which are discussed in the following. Basically, the cabling between the STM and

the electronics is depicted in Fig. 2.4. The control unit (20 bit DSP-unit from Createc) ex-

hibits four channels, each for controlling a single tip. The outputs from each channel, i.e.

the digital-analogue converters (DACs), are used for the piezo signals (with a high-voltage

amplifier in between) and the bias voltage of the controlled tip. The corresponding inputs,

i.e. the analogue-digital converters (ADCs), measure the tip signals which are either the

current or the voltage. So far, this setup is very similar to a single-tip STM. However,

for the four-tip STM not only a bias voltage is applied at one tip, but at four tips at the

same time. This implies that in order to reveal the current through each tip individually,

the current cannot be acquired on the sample side, but has to be measured on the tip side

separately for each tip. In general, for determining the current at the tunneling junction a

transimpedance amplifier (Femto DLPCA-200), i.e. an amplifying current-to-voltage con-

verter, is mostly used which allows a resolution down to the picoampere scale. However,

a drawback is that it only can measure current with respect to ground (GND). But if the

current has to be measured on the tip side, i.e. the side on which the bias voltage is applied,

such a direct measurement with respect to GND is not possible. So, in order to further

use the DLPCA-200, each of the four devices has to be set on a floating potential corre-

sponding to the specific bias voltage applied to the attached tip. In order to achieve this, an
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Figure 2.4.: Overview of the cabling between the electronics and the multi-tip STM. The control

unit (lower part) has four channels for controlling the tips. The corresponding outputs (Z,Y ,X ,Bias)

are each connected with a single tip with a high-voltage amplifier (and a switch box) in between.

The inputs (I ,U ) of the channels measure the current or voltage from the tips which are both pre-

processed by either a current preamplifier or a voltage follower in between (Femto box). The tips

are connected to the Femto boxes by a triaxial cable.

additional electronic circuit is needed implemented together with the DLPCA-200 inside

a box (shown in the center part of Fig. 2.4) which is in the following referred to as Femto

box. Basically, the working principle of such a box is the following: The bias signal is used

as reference for the DLPCA-200. The current signal from the tip is applied to the DLPCA-

200 which measures the current with respect to the bias voltage. The converted output

signal (voltage) is still shifted by the bias voltage, so that it first has to be subtracted by

means of an operational amplifier (subtractor). Finally, the output signal can be forwarded

to the STM control unit (I input). So, by using in total four Femto boxes, the current of

each tip can be obtained separately.

Besides the current path, there exists another separated path inside the Femto boxes in order

to measure a voltage at the tip. A switching between current and voltage mode is realized

by a relay which can be controlled by the STM control unit. Within the voltage mode,

the tip signal bypasses the DLPCA-200, and instead is forwarded directly to an operational

amplifier (OP), i.e. a voltage follower, which basically only measures the applied voltage at

the tip without any current flow due to the very high input impedance of the OP. Afterwards,

the voltage signal is similarly forwarded to the STM control unit (U input) as before.

For the connection between the tips and the input of the Femto boxes, a triaxial cable is

used. This has the advantage that especially for fast bias voltage ramps, e.g. as it is common
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for four-point transport measurements, no capacitive currents occur. If a standard coaxial

cable with a grounded shield is used, the capacitance between core and shield would induce

a substantial capacitive current due to the changing electric field during a voltage ramp. In

turn, this leads to a falsification of the measurement of the actual (ohmic) current through

the tips and sample, so that the capacitance effect should be avoided. In the case of the

triaxial cable the outer shield is still on GND. However, the inner shield is set to the same

potential as the signal at the core by using the voltage follower of the Femto boxes. Thus,

no electric field is present between core and inner shield, so that also no capacitive current

appears during fast voltage ramps. Within the UHV chamber, the type of cabling reduces

to coaxial, as the chamber itself serves as surrounding GND. The inner shield is continued

as far as possible towards the tip and only ends immediately before the contact to the tip

recipient.

Another speciality of the setup is the usage of a switch box in between the HV amplifier and

the piezo elements. Such a box just changes the assignment of the piezo electrodes to the

HV amplifier signals, which can be controlled by the STM software. This is necessary for

the present setup, as specifically the KoalaDrives need two separate channels for operation.

So, in order to perform a coarse movement in z-direction, the switch box connects the

KoalaDrive with the x- and y-signals used before for the tube piezos. After operation

the channels are switched back. A drawback of this procedure is that the piezo offsets

cannot be maintained during the operation of the KoalaDrive. However, this can be fixed

by implementing additional HV amplifiers.

The operation of the STM is controlled by a software from Createc. This software is

based on a version for a single-tip STM and contains several modifications specifically for

the multi-tip setup. A screenshot of the STM software can be found in Fig. C.2 in the

appendix C.

2.3. Control of the four tips

An exact control of the tip positions is crucial in order to perform any position-dependent

electrical measurements with the four tips at the same time. In the following, it is discussed,

how such a controlled positioning can be achieved, both in lateral and in vertical direction.

2.3.1. Lateral tip positioning

For a single-tip STM, the positioning of the tip is not a very difficult task, as only one tip is

present. If a STM image has to be recorded, the tip can be initially placed everywhere on

the sample without any restrictions. A specific structure on the sample can then be found

by using the information from the recorded image. However, this is different for the multi-

tip STM, as here all four tips are present at the same time on the sample surface. So, if

the tips are moved laterally without knowing their relative positions, the risk of collisions

arises, and obviously from a STM image recorded with one tip no direct information about
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(a) (b)

Figure 2.5.: (a) Optical microscope image of the four tips on the sample surface. As the light of

the microscope is reflected by the sample surface, but not by the tips, the dark contrast allows to

identify and control the tip position easily. In the shown image the tips are arranged in a equidistant

linear configuration with equal spacing s = 50μm, whereby the outer tips are used as for current

injection and the inner tips as voltage probes. (b) Optical image with larger magnification. The tips

are now positioned in a non-equidistant linear configuration, where only three of the tips are spaced

equally by s = 50μm, while the outer tip 3 used as current sink has a different distance of x.

the positions of the other tips can be gained. So, a further method has to be used to reveal

the exact tip positions on the surface.

The method applied for the present setup is to use an optical microscope in order to view

directly onto the sample surface. In the obtained optical image, the tips are directly visible

by a dark contrast, as it is depicted in Fig. 2.5. The light inciding through the optics of

the microscope gets reflected on the sample surface due to its planar shape, but not at

the tips, resulting in a sharp contrast which identifies the actual tip positions. Different

magnifications are possible, e.g. which allows to image linear tip arrangements with larger

spacings, as shown in Fig. 2.5(a), as well as to obtain higher resolution images for smaller

distances, as depicted in Fig. 2.5(b). The highest possible resolution is approximately

1.5μm, i.e. two tips spaced by 1.5μm can still be distinguished, but for even smaller

distances that is not possible anymore. However, the position of contact between two

adjacent tips can still be obtained by monitoring the current. If a contact occurs, the current

through both tips will be exactly equal with opposite sign, assuming that no further current

paths exist, i.e. due to further tips or a grounding of the sample.

The tips are mounted with an elevation angle of 45° inside the tip holders, as already men-

tioned before. This is indeed necessary not only for enabling to approach their apices down

to very small distances, but also in order to allow for an imaging of the tips by the opti-

cal microscope. If the tips were arranged perpendicular to the sample surface, the optical

method would not work. However, this implies that in the optical images not directly the

tip shape is visible, but only a projection of it into the sample plane. In general, this appears

to be not a problem, as in most cases only the lateral positions are of interest. The vertical

positions, i.e. the approach, can be controlled by the electronics using the tunneling current

signal as feedback. One drawback of the tip geometry is that any deformation of the tips,

e.g. caused by previous contacts, occurring particularly in the plane which is composed of

the tip axis and the (sample) surface normal, might not be easily visible in the optical im-

ages. Thus, in this case there can be a small error in determining the tip position, as there
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is a deviation between the apparent point of contact, deduced from the projection in the op-

tical image, and the actual position of contact. Nevertheless, some additional information

about the z-direction can still be gained from the optical images. The actual position of the

focal plane, in which the apices of the tips are sharply visible, indicates their distance with

respect to the sample, if prior the focal plane of the sample itself has been determined. As

with increasing magnification also the depth of focus reduces substantially, this method is

quite precise.

A further method is to image the tip positions with an electron microscope. Such a mi-

croscope has a much better resolution so that even tip distances down to < 100 nm can be

resolved, but the setup in total is also much more complex. So, if for the measurements

not specifically such a high resolution is necessary, the method with an optical microscope

is also sufficient. Another substantial advantage of the optical microscope compared to an

electron microscope is that the frequently observed influences of the electron beam on the

surface properties of the sample can be completely avoided [40–42].

The tip positioning itself is performed with the lateral coarse positioning system. Each tip

has its own coordinate system which is used for positioning, whereby the y-axis always

points along the tip axis. However, for scanning all four tips use a collective coordinate

system. Particularly, this is necessary in order to avoid any tip collisions, when two or more

tips scan at the same time. Further more detailed information about the different coordinate

systems of the tips can be found in the appendix C.2.

2.3.2. Approaching into hard contact

For actual transport measurements with the multi-tip STM, a tunneling contact between the

tips and the surface is not sufficient, but a direct contact between both has to be established

which is referred to as hard contact in the following. Indeed, for the two tips used for

measuring the voltage on the sample surface, also a tunneling contact would be principally

sufficient, if a setup similar to scanning tunneling potentiometry is chosen [43], as it will

be discussed later on in section 7.5.1, but for the current injecting tips still a hard contact

is required. However, for the four-point measurements presented in this thesis, such a

potentiometry setup has not been used.

The procedure for establishing a hard contact with the sample surface for all tips is as fol-

lows: In a first step, the four tips are approached until a tunneling contact with a current

in the low nA range is established. Then, after retracting the tips by several nm, the feed-

back of the STM is switched off, and the tips are manually approached further separately

until an increase in the current up to 1μA is observed. At this point, the tips are in hard

contact with the sample, but they only touch the surface and have a penetration depth of

only a few Å which is confirmed by separate experiments. One of such experiments is

depicted in Fig. 2.6(a). Here, multiple hard contacts have been established subsequently

along a straight line on a Si(111) surface. In the STM image, the distinct contact positions

of the tip with the sample can be clearly identified by the appearance of small holes in

the surface. In the corresponding height profile in Fig. 2.6(b), all tip indentations exhibit
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(a) (b)

Figure 2.6.: (a) STM image of the tip contact positions on a Si(111) surface (U = −1.3V, I =
610 pA). Multiple hard contacts with the surface were established and in between the tip was

moved laterally along a straight line. At each contact position the tip indentation into the surface

is clearly visible. (b) Profile line across the contact positions of the tip with the surface. All tip

indentations (marked by the vertical red bars) are approximately equal in size exhibiting a depth of

zindent ≈ 0.4 nm and a width of xindent ≈ 25 nm.

nearly an identical shape with a width of 25 nm and a penetration depth of approximately

4Å. The width coincides very well with the expected tip diameter [44]. The large adsor-

bate visible on the left most probably originates from residues at the tip deposited at the

initial contact position. So, this measurement proves that the method presented before is

suitable for establishing a very smooth contact to the sample surface with a penetration

depth similar to the thickness of only one atomic layer. It should be noted additionally that

the tips can act as a spring due to the mounting position with an angle of 45° with respect

to the sample [44]. So, when pressed onto the sample surface, the tips can simply bend

away. This implies that the vertical movement of the piezo is not equivalent to the actual

penetration depth of the tips into the surface.

In principle, also a hard-contact established by using an enabled feedback with a very high

current setpoint is possible, but indeed not favourable. It has turned out that in this case

enhanced oscillations in the current appear due to an escalating feedback. So, without the

feedback there are no oscillations, but instead the current can drift away from its initial

value, as the tip might drift away with time. However, if the drifting is not too large, this

does not have an effect on the four-point measurements, as shown briefly in the following

section.

2.3.3. Electrical measurements

Each of the four tips in the multi-tip STM can be used as current or voltage probe, as in-

dicated schematically in Fig. 2.7(a). In a four-point measurement setup, two tips inject

a current into the sample, and the other two are used for measuring the resulting voltage

drop. The basic procedure for performing such an electrical four-point measurement is as

follows: For transport measurements, the sample is first set to floating potential, i.e. the
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(a)

Ω

(b)

Figure 2.7.: (a) Schematic of the possible spectroscopic operations of the multi-tip STM. Each of

the four tips can be approached individually towards the sample surface and used as a current or

as a voltage probe. (b) Example of a measured voltage difference between two tips as function of

the injected current by the other two tips. From such an I-V curve the four-point resistance can be

extracted by a linear fit (red line). Due to non-linearity effects appearing at higher current values

the linear fit is applied in the vicinity of the zero-crossing (inset).

connection to ground of the sample holder recipient in the STM is removed. By applying a

symmetrical voltage ramp between two (current) tips, a corresponding ramped current (in

the μA range) is injected into the sample. The voltage drop is measured in between the

other two (voltage) tips. Since the voltage is measured as a function of the actual current,

there is no influence of a potentially fluctuating contact resistance at the tip contacts, e.g.

due to slight drift of the piezos towards or away from the surface with time. So, any vari-

ation in the sample current caused by the switched-off feedback does not have an effect

on the measurement results. The four-point resistance R4p =
Iinjected
Umeasured

is finally obtained

from the slope of the measured I/V curves in the vicinity of the origin, i.e. from a fit to the

region close to zero, as it is depicted in Fig. 2.7(b) by the red line. The inset shows explic-

itly the linear region. Each obtained resistance value is averaged over three subsequently

measured I/V curves.

So far, the fundamentals of the multi-tip STM and its general capability for performing

in situ position-dependent four-point resistance measurements has been discussed. In the

next chapter, an more mathematical overview is given about the relation between measured

resistance and the conductivity of the material, and several specific tip configurations which

are necessary for actual four-point measurements are presented.



3. Position-dependent transport

measurements

With the multi-tip STM presented in the previous chapter, it is possible to perform position-

dependent transport measurements down to the nanoscale. Thus, from an experiment a

value for the four-point resistance can be obtained, in the same way as it is also applies

for measurements on the macroscale, e.g. with a (four-terminal) multimeter. However, the

measured value of resistance R only holds for the specific measurement situation and does

not describe the intrinsic sample properties directly. For this purpose, a different quantity

has to be determined, i.e. the resistivity ρ, which is an intrinsic material property. The same

relation applies for the quantities conductance G and conductivity σ. So, it is not sufficient

to perform only a conductance measurement, but in order to gain some deeper insight into

the transport properties of the material under study, the intrinsic material parameters have

to be determined from the measurement data.

In fact, it can be quite a challenging task to determine the conductivity (or resistivity),

sometimes even more than the actual transport measurement itself. The problem is that a

specific relation has to be found between the measured resistance R and the conductivity

σ of the material. However, such a relation can depend on many factors, e.g. the dimen-

sionality and size of the material, the arrangement and size of the measuring probes, the

number of current paths, etc. While it is quite easy to derive analytical relations R(σ)
for homogeneous materials which are either one-dimensional, i.e. a conducting line, two-

dimensional, i.e. a conducting sheet, or three-dimensional, i.e. a conducting bulk, it can

be much more complicated for composed materials exhibiting multiple current paths. Par-

ticularly, for systems containing conductance channels of different dimensionality, i.e. a

conducting surface on top of a conductive bulk, there indeed exist analytic expressions but

due to their complexity numerical solution methods are necessary. The derivation and ap-

plicability of such models is a main topic of this thesis and will be discussed later on in the

chapters 4 and 5.

Within this chapter, the derivations of the analytical solutions for the two simplest cases,

i.e. the two-dimensional sheet and the three-dimensional bulk, are presented for isotropic

samples. Furthermore, the two-dimensional case is also discussed for anisotropic materi-

als, i.e. the conductivity is not a scalar value but a tensor. For all three cases, the influence

of the specific measurement geometry, i.e. the tip arrangement, is considered and the cor-

responding analytical equations are presented.1

1These equations are all well-known in literature, but often shown without any derivation; thus, it is included

here for the sake of completeness and as basis for the subsequently discussed multi-layer models.

15
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3.1. Principle of four-point measurements

The most common method for measuring electrical transport is by using four-point mea-

surements. Here, a current I is injected into the sample by applying a bias voltage Ubias

with two probes, while the voltage drop ΔU is measured by two different probes, as it is

depicted schematically in Fig. 3.1(a). One may ask, why it is necessary to actually measure

the voltage drop with two more probes, as it seems to be equal to the applied bias voltage

between both injecting tips. So, a two-point measurement would be sufficient, as shown

by the setup in Fig. 3.1(c). However, this is not true, if the contact resistance is considered.

For a two-point setup, the measured resistance R2p is a composition of the actual sample

resistance Rsample with the contact resistances Rcontact present at the contacts of the two

probes in series and it reads

R2p =
Ubias

I
= Rcontact,1 +Rsample +Rcontact,2 (3.1)

which is shown by the circuit diagram in Fig. 3.1(d). So, Rsample cannot be separated as it

is intended by the measurement. A solution is to perform a four-point measurement. Here,

due to the separation of current injecting and voltage measuring probes, no current flows

actually through the inner two probes because of the high input resistance of the voltmeter.

This implies that also no voltage drop appears due to the contact resistances which are

equally present as before. So, the measured voltage drop ΔU is exactly equivalent to the

(a) (b)

(c) (d)

Figure 3.1.: Basic principle of four-point measurements [(a),(b)], compared to the setup with only

two probes [(c),(d)]. In (a) and (c) the probe arrangements for four-point and two-point measure-

ments are depicted, respectively. In (b) and (d) the circuit diagrams corresponding to four-point (b)

and two-point (d) setup are depicted.
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one on the sample surface and the obtained resistance R4p reads

R4p =
ΔU

I
= Rsample (3.2)

which is visualized in the circuit diagram in Fig. 3.1(b). Thus, by using four probes it is

possible to reveal the sample resistance from the measurement.

First, four-point measurements were applied in 1915 by Frank Wenner in the field of

geophysics in order to measure the conductivity of earth by equidistantly spaced four

probes [45], and today this method is referred to as the Wenner method [46, 47]. Also

a non-equidistant method had been established and used for geophysics [48]. However,

only in 1954, the four-point method was first used in order to reveal the conductivity of

semiconductor wafers [49]. Since 1975, it has been finally established as a standard mea-

surement method in the field of microelectronics [50, 51].

3.2. Isotropic conductivity

In this section, the relations R(σ) for both two-dimensional and three-dimensional materi-

als are derived for the isotropic case, i.e. the conductivity σ is a scalar quantity, and linear

tip configurations are discussed.

3.2.1. Two-dimensional surface conductivity

In two dimensions (2D), a current can flow within a plane, e.g. as it occurs for a thin

conducting sheet. The conductivity describing such a 2D system is termed as σ2D with the

unit Siemens, i.e. [σ2D] = S. For a rectangular sheet of length L with electrodes along its

width W , it is defined as [52]

Rext
2D =

1

σ2D

L

W
. (3.3)

which gives a relation between the measured quantity (Rext
2D ) and the intrinsic quantity

(σ2D), however only for the case of extended contacts. It should be noted that, as also

the measured quantity conductance G has the same unit Siemens, a given value can be

ambiguous. For this reason, it is common to add the suffix /�, meaning per square, to

the unit of the 2D conductivity, resulting in [σ2D] = S/�. However, there is no additional

physical meaning in the added symbol and, technically, it is not included in the regulations

for the international system of units (SI) [53, 54]. Nevertheless, it leads to a much easier

identification of a 2D conductivity value, and therefore it is used throughout this thesis.

The relation given above in Eq. (3.3) does not hold for point contacts on top of a surface, as

it applies for measurements with a multi-tip STM. So, the corresponding relation for such

a geometry has to be derived, which will be shown in the following. It should be noted that

in this chapter only point contacts with no lateral extension are considered, as it turned out
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Figure 3.2.: Geometry for a point injection of current I by a tip positioned at z = 0 into an infinite

2D sheet. According to the symmetry, polar coordinates x(ρ, ϕ) can be chosen with the coordinate

system as indicated.

that for STM tips with typical diameters of ∼ 25 nm the influence of the contact size is

negligible small (cf. section 4.2), so that it is reasonable to simplify the equations by using

the approximation of point contacts.

The geometry for such a point injection of current I on top of an infinitely extended sheet,

i.e. a 2D system, is depicted in Fig. 3.2. Here, initially only one tip is considered, which is

positioned at the origin of the coordinate system and acts as current source2, while any cur-

rent sinks are assumed to be located at infinity. First, for such a single-tip arrangement the

corresponding potential distribution Φ(x, y) in the 2D sheet is calculated. Then, in a sec-

ond step, the potential arising from a current I between two adjacent tips, i.e. a source and

a sink, can be obtained by a superposition of the solutions for two correspondingly located

single tips. Finally, in order to take into account a four-point probe setup, the potential

difference between two voltage probing tips is evaluated, based on the prior solutions, so

that in combination with the known current a relation for R4p
2D(σ2D) results. Such a basic

approach applies to all derivations of R(σ) presented in the following, but obviously, the

obtained solutions for each case depend strongly on the dimensionality (and number) of

the conducting channels and the specific tip arrangement.

In order to obtain the potential distribution for the single-tip setup depicted in Fig. 3.2, one

starts with the relation ∇ · j = 0, i.e. the vanishing divergence of current density j due to

missing additional sources (sinks) apart from the one at the position of the single tip. This

relation immediately follows from Maxwell’s equations and holds for the current density

j(x, y) in the 2D plane excluding the injection point at the origin. The current density j
can be expressed by

j(x, y) = σ2DE(x, y) = −σ2D∇Φ(x, y) (3.4)

with the electric field E(x, y) and the potential Φ(x, y), respectively. It follows that

∇ · j(x, y) = ∇ · [−σ2D∇Φ(x, y)] = −σ2D ∇ · ∇
�

=Δ

Φ(x, y) = 0 (3.5)

2The same holds for a current sink with sources at infinity, except that the direction of current is reversed,

i.e. the sign of the current density is changed.
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⇔ ΔΦ(x, y) = 0 (σ2D �= 0) (3.6)

with the Laplace operator Δ = ∂2

∂x2 + ∂2

∂y2
. Eq. (3.6) represents a homogeneous Laplace

equation in two dimensions and has to be solved in order to determine the potential Φ(x, y).
Due to the symmetry of the problem which is visible in Fig. 3.2, the current density has

to be angle-independent, i.e. it depends only on the radial distance from the origin while

pointing in radial direction (j = jρ(ρ)êρ)3. As a result, also the potential distribution has

to be radially symmetric (Φ = Φ(ρ)). Therefore, it is useful to introduce polar coordinates

x(ρ, ϕ) with

x(ρ, ϕ) =

(
x
y

)
=

(
ρ cos(ϕ)
ρ sin(ϕ)

)
and ρ =

√
x2 + y2. (3.7)

The Laplace operator expressed in polar coordinates reads Δ = 1
ρ

∂
∂ρ
ρ ∂
∂ρ
+ 1

ρ2
∂2

∂ϕ2 . However,

as Φ = Φ(ρ) due to symmetry, the second term immediately vanishes (∂Φ
∂ϕ

= 0). So, by

using the abbreviation ∂ρ :=
∂
∂ρ

, it follows that

ΔΦ(ρ) = 0 (3.8)

⇔ 1

ρ
∂ρ ρ ∂ρΦ(ρ) = 0 ρ > 0 (3.9)

⇔ ρ ∂ρΦ(ρ) = c1 (3.10)

⇔ ∂ρΦ(ρ) =
c1
ρ

(3.11)

⇔ Φ(ρ) = c1 ln(ρ) + c2 (3.12)

with the two integration constants c1 and c2 which have to be determined from boundary

conditions. The constant c2 in Eq. (3.12) forms only an additive term, so that it can be set

to zero, i.e. c2 = 0, as the electrostatic potential Φ is physically only defined except for an

additive constant. The second condition arises from the basic definition of current density,

i.e. I =
∫
F
j · dF , relating the total current I to the integral over the current densities

along all surface elements dF of the surface F 4. In the case of the 2D system with a point

injection of current I at the origin, this ’surface’ is one-dimensional and corresponds to the

path of a closed circle around the origin. So, the current density can be written as

I =

∮
F

j · dF j=jρ(ρ)êρ
=

∮
F

jρ(ρ)dF
ρ dF ρ=ρdϕ

=

∫ 2π

0

ρ jρ(ρ)dϕ. (3.13)

By using jρ(ρ) = −σ2D ∂ρΦ(ρ) and inserting Eq. (3.12), it follows for the constant c1 that

I = −
∫ 2π

0

dϕ ρ σ2D ∂ρ
(
c1 ln(ρ)

)
�����������������������������������������������������

=
c1
ρ

= −σ2D ρ
c1
ρ

∫ 2π

0

dϕ

���������������������

=2π

= −2πσ2D c1 (3.14)

3The normalized unity vectors êi form a basis of the coordinate system, e.g. with i ∈ {1, 2, 3} for 3D.
4The surface element dF is normal to the surface F and in 3D in general given for orthogonal coordinates

ξi by dF = dF iêi with dF i = hjhkdξjdξk, (i, j, k) ∈ {1, 2, 3} and the metric coefficients h1, h2, h3.
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⇔ c1 = − I

2πσ2D

. (3.15)

So, after back transformation into Cartesian coordinates by using Eq. (3.7), the potential

distribution in the 2D sheet can finally be expressed by

Φ(x, y) = − I

2πσ2D

ln
(√

x2 + y2
)
= − I

4πσ2D

ln
(
x2 + y2

)
(x, y) �= (0, 0).

(3.16)

If the current injection is shifted from the origin to the position xA = ( xA
yA ), Eq. (3.16)

changes into

ΦA(x, y) = − I

4πσ2D

ln
[
(x− xA)

2 + (y − yA)
2
]

(x, y) �= (xA, yA). (3.17)

The potential arising from a current source (+I) at xA and an additional current sink (−I)

at position xB = ( xB
yB ) can be expressed by a superposition as

ΦAB(x, y) = ΦA(x, y) + ΦB(x, y) (3.18)

⇔ ΦAB(x, y) =
I

4πσ2D

[
−ln

[
(x− xA)

2 + (y − yA)
2
]
+ln

[
(x− xB)

2 + (y − yB)
2
]]

(3.19)

⇔ ΦAB(x, y) =
I

4πσ2D

ln

[
(x− xB)

2 + (y − yB)
2

(x− xA)2 + (y − yA)2

]
. (3.20)

In order to obtain the potential difference between two probes at xC = ( xC
yC ) and xD =

( xD
yD ), Eq. (3.20) has to be evaluated at these positions, resulting in

ΦAB
CD = ΦAB(xD, yD)− ΦAB(xC , yC) (3.21)

⇔ ΦAB
CD =

I

4πσ2D

[
ln

[
(xD − xB)

2 + (yD − yB)
2

(xD − xA)2 + (yD − yA)2

]
−ln

[
(xC − xB)

2 + (yC − yB)
2

(xC − xA)2 + (yC − yA)2

]]

(3.22)

⇔ ΦAB
CD =

I

4πσ2D

ln

[
[(xD − xB)

2 + (yD − yB)
2] [(xC − xA)

2 + (yC − yA)
2]

[(xD − xA)2 + (yD − yA)2] [(xC − xB)2 + (yC − yB)2]

]
.

(3.23)

Eq. (3.23) gives a general expression for the potential drop in a 2D sheet, arising from

a four-point setup with tips at xA, xB (current injection) and xC , xD (voltage probes).

With R4pp
AB,CD =

ΦAB
CD

I
the corresponding four-point resistance is obtained5. However, for

specific tip arrangements Eq. (3.23) simplifies significantly, which will be discussed in

section 3.2.3.

5This index notation ij, kl with (i, j, k, l) being a permutation of (A,B,C,D) is always used in the follow-

ing in order to label four-point resistances with a non-specific geometrical tip arrangement. The first pair

ij denotes the two current injecting tips, while the second pair kl describes the voltage probing tips.
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3.2.2. Three-dimensional bulk conductivity

In three dimensions (3D), a current can flow in the entire space, e.g. through an (infinitely

extended) bulk crystal. The conductivity describing such a 3D system is termed as σ3D

with the unit [σ3D] = S/m. For a cuboidal bulk of length L with electrodes on its opposite

surfaces with area A, it is defined as [52]

Rext
3D =

1

σ3D

L

A
(3.24)

which gives a relation between the measured quantity (Rext
3D ) and the intrinsic quantity

(σ3D). However, Eq. (3.24) only holds for the case of extended contacts, so that for point

contacts on top of a bulk crystal, e.g. as present in a multi-tip STM setup, again a modified

expression has to be derived which is shown in the following.

In Fig. 3.3, the geometry of the 3D case with a point injection of current I on top of a semi-

infinite bulk is depicted. The coordinate system is chosen in such a way that the surface is

located at z = 0 with the injection point at the origin, while the z-axis points downwards

into the half-space with the bulk material (z ≥ 0). With similar considerations as shown

before for the 2D case in Eqs. (3.4) – (3.6), except for using 3D coordinates and σ3D now,

one obtains the homogeneous Laplace equation in three dimensions, i.e.

ΔΦ(x, y, z) = 0 (σ3D �= 0) (3.25)

with the Laplace operator Δ = ∂2

∂x2 +
∂2

∂y2
+ ∂2

∂z2
. In order to solve this equation, it is again

useful to take advantage of the symmetry of the problem. From Fig. 3.3 it is visible that for

the half-space of the bulk (z ≥ 0) the current density has to point in radial direction and

does not have any angular dependence, i.e. j = jr(r)êr, which implies that this also holds

for the potential Φ = Φ(r). Therefore, spherical coordinates x(r, θ, ϕ) are introduced with

x(r, θ, ϕ) =

⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝r sin(θ) cos(ϕ)
r sin(θ) sin(ϕ)

r cos(θ)

⎞
⎠ and r =

√
x2 + y2 + z2. (3.26)

Figure 3.3.: Geometry for a point injection of current I by a tip positioned at z = 0 into a semi-

infinite 3D bulk material. According to the symmetry, spherical coordinates x(r, θ, ϕ) can be cho-

sen with the coordinate system as indicated.
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The Laplace operator for spherical coordinates reads Δ = 1
r2

∂
∂r
r2 ∂

∂r
+ 1

r2 sin(θ)
∂
∂θ

sin(θ) ∂
∂θ
+

1
r2 sin2(θ)

∂2

∂ϕ2 , but when applied only the first term survives, as due to symmetry ∂
∂θ
Φ(r) = 0

and ∂
∂ϕ
Φ(r) = 0. So, it follows with ∂r :=

∂
∂r

that

ΔΦ(r) = 0 (3.27)

⇔ 1

r2
∂r r

2∂rΦ(r) = 0 r > 0 (3.28)

⇔ r2∂rΦ(r) = c1 (3.29)

⇔ ∂rΦ(r) =
c1
r2

(3.30)

⇔ Φ(r) = −c1
r
+ c2 (3.31)

with the two integration constants c1 and c2. With the same argument as presented in

section 3.2.1, it is reasonable to set c2 = 0, thus the potential vanishes at infinity, i.e.

Φ(r → ∞) = 0. The constant c1 is again determined from the boundary condition at the

injection point, i.e. the injected current I , as

I =

∫
F

j · dF j=jr(r)êr
=

∫
F

jr(r)dF
r dF r=r2 sin(θ)dθdϕ

=

∫∫
F

r2 sin(θ)jr(r)dθdϕ. (3.32)

The area F is given by the surface of the hemisphere inside the bulk material with its centre

at the injection point. Thus, this implies that the following solution for Φ(r) will be only

valid for a half-space with the injection at the boundary. By using jr(r) = −σ3D ∂rΦ(r)
and inserting Eq. (3.31), it follows that

I = −
∫ π

0

dθ

∫ π

0

dϕ r2 sin(θ)σ3D ∂r

(−c1
r

)
�������������������������������������������

=
c1
r2

(3.33)

⇔ I = −σ3D r2
c1
r2

∫ π

0

dθ sin(θ)

∫ π

0

dϕ

����������������

=π

(3.34)

⇔ I = −πσ3D c1

[
− cos(θ)

]π
0

�������������������������������������������������������

=− cos(π)+cos(0)=2

(3.35)

⇔ c1 = − I

2πσ3D

. (3.36)

With a back transformation into Cartesian coordinates according to Eq. (3.26), the potential

Φ(x, y, z) for a current injection at the origin is given by

Φ(x, y, z) =
I

2πσ3D

√
x2 + y2 + z2

z ≥ 0, (x, y, z) �= (0, 0, 0) (3.37)
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In general, for an injection at position xA =
(

xA
yA
0

)
on top of the surface, it follows corre-

spondingly

ΦA(x, y, z) =
I

2πσ3D

√
(x− xA)2 + (y − yA)2 + z2

, z ≥ 0, (x, y, z) �= (xA, yA, 0).

(3.38)

The potential from a current source at xA and a current sink at xB =
(

xB
yB
0

)
results in

ΦAB(x, y, z) = ΦA(x, y, z) + ΦB(x, y, z) (3.39)

⇔ ΦAB(x, y, z) =
I

2πσ3D

[
1√

(x−xA)2+(y−yA)2+z2
− 1√

(x−xB)2+(y−yB)2+z2

]
.

(3.40)

The potential difference between two probes at xC =
(

xC
yC
0

)
and xD =

(
xD
yD
0

)
on top of

the 3D bulk material can then be expressed by

ΦAB
CD = ΦAB(xD, yD, 0)− ΦAB(xC , yC , 0) (3.41)

⇔ ΦAB
CD =

I

2πσ3D

[
1√

(xD − xA)2+(yD − yA)2
− 1√

(xD − xB)2+(yD − yB)2

− 1√
(xC − xA)2+(yC − yA)2

+
1√

(xC − xB)2+(yC − yB)2

]
.

(3.42)

In the next section, specific tip arrangements commonly used for four-tip measurements

are discussed in more detail.

3.2.3. Linear tip configurations

From Eqs. (3.23) and (3.42), general expressions for the 2D and 3D cases are obtained,

respectively, which describe the potential drop on the surface as function of the (arbitrary)

position xi = ( xi
yi ) with i ∈ {A,B,C,D} of both current injecting probes (A, B) and volt-

age measuring probes (C, D). However, in an actual four-point measurement setup, usually

a specific probe arrangement is used which substantially simplifies the equations. A com-

mon setup is a linear equidistant tip configuration, i.e. all probes are arranged in a straight

line and equally spaced by a distance x, as depicted schematically in Fig. 3.4(a). Here,

the tips are arranged symmetrically with respect to the origin resulting in the respective

positions (without loss of generality is yi = 0) xA = −3
2
s êx, xB = 3

2
s êx, xC = −1

2
s êx

and xD = 1
2
s êx with the unity vector êx = ( 1

0 ) along the x-axis. Inserting these positions
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(a) (b)

Figure 3.4.: Four-point measurements with a linear probe configuration, in which the current is

injected by the outer tips and the voltage is measured by the inner tips. (a) Equidistantly arranged

probes with a spacing s in between and the electrical configuration (AB,DC). (b) Non-equidistant

setup, in which 3 tips have a spacing s, while the distance between one current injecting tip and the

adjacent voltage measuring tip is changed to x.

into Eq. (3.23) and calculating the four-point resistance by RAB,DC =
−ΦAB

CD

I
leads to6

R2D
lin (σ2D) = − 1

4πσ2D

ln

[(
1
2
s− 3

2
s
)2 (−1

2
s+ 3

2
s
)2(

1
2
s− 3

2
s
)2 (−1

2
s− 3

2
s
)2
]

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

=ln
[

s4

(2s)4

]
=ln(2−4)=−4 ln(2)

(3.43)

⇔ R2D
lin (σ2D) =

1

πσ2D

ln(2). (3.44)

Similarly, by inserting the probe positions into Eq. (3.42), for the 3D case follows

R3D
lin (σ3D, s) = − 1

2πσ3D

[
1∣∣1

2
s+ 3

2
s
∣∣− 1∣∣1

2
s− 3

2
s
∣∣− 1∣∣−1

2
s+ 3

2
s
∣∣+ 1∣∣−1

2
s− 3

2
s
∣∣
]
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= 1
2s

− 1
s
− 1

s
+ 1

2s
=− 1

s

(3.45)

⇔ R3D
lin (σ3D, s) =

1

2πσ3Ds
. (3.46)

By comparing the results in Eqs. (3.44) and (3.46), it is apparent that the four-point resis-

tance in the 2D case does not at all depend on the spacing of the probes, while the resistance

in the 3D case is proportional to the inverse of the spacing s. A plot of both functions, as

shown by the blue lines in Fig. 3.5(a) and 3.5(b), makes the hallmark of the 2D case even

more obvious, namely that the four-point resistance is constant, while the 3D resistance

exhibits a strong distance dependency. So by measuring this distance-dependence, a ma-

terial with a 2D conductance channel can be unambiguously distinguished from a material

exhibiting a 3D conductance channel.

So far, only infinitely extended materials have been considered, but obviously in a mea-

surement situation all samples have a finite size. However, if the four-point measurement

6The negative sign is added, as ΦAB
CD = ΦAB

D − ΦAB
C < 0 for a current I flowing from A to B with

a tip labelling according to Fig. 3.4(a). Thus, e.g. by reversing the voltage measurement, one obtains

−ΦAB
CD = ΦAB

DC = ΦAB
C − ΦAB

D > 0, so that finally RAB,DC ≥ 0.
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π

σ

π

(a)

σ

π

(b)

Figure 3.5.: Comparison of the distance dependency of the four-point resistance between the

equidistant (blue line) and the non-equidistant (red line) configuration, both for the 2D case (a)

and 3D case (b) (s = 50μm for the non-equidistant setup). The normalized products σ2DR
4pp
2D (a)

and σ3DR
4pp
3D (b) are plotted as function of distance s (equidistant) and x (non-equidistant). (a) For

2D, in the equidistant setup, there is constant value at
ln(2)
π , while in the non-equidistant setup the

resistance approaches
ln(2)
2π for x → ∞. (b) For 3D, in the equidistant setup, the resistance is

proportional to s−1, while in the non-equidistant case it approaches 1
4πs for x → ∞.

is not performed in the direct vicinity of the sample boundaries or if the spacing of the

probes itself is not on the order of the sample size, the approximation by an infinite ge-

ometry is applicable in the most cases. Nevertheless, if necessary, there can be several

correction factors applied for the relations R(σ) in order to take into account such geomet-

ric effects. Most commonly, three factors are used, i.e. F1 for the sample thickness, F2

for influence of sample boundaries and F3 for a sample size comparable to the tip spac-

ings. Such factors can be determined by several mathematical approaches or numerical

calculations, for all of which the actual sample and measurement geometry has to be con-

sidered [49, 55–60]. Particularly, the thickness of a sample is an important parameter, as

it can induce a transition between 2D and 3D conductance behavior. For example, if a

thin film is considered with a thickness t, then the measured four-point resistance appears

to be two-dimensional if for the ratio between film thickness t and probe spacing s holds
t
s
≤ 0.2, but three-dimensional, if t

s
≥ 4, while in between a transition exists. This shows

that an appropriately chosen probe spacing is very important for revealing the nature of

conductance channels, as, e.g. for a too large probe spacing also a substantially thick film

can appear as two-dimensional.

Another common linear tip configuration results directly from the equidistant setup by a

simple modification, i.e. by varying the distance x between the two outer adjacent probes,

while maintaining all the other spacings s. Such a setup is depicted in Fig. 3.4(b), and

referred to as non-equidistant probe configuration in the following. The big advantage of

such a measurement geometry is that, in order to perform a distance-dependent measure-

ment, only the spacing x has to be varied, implying that only one tip has to be moved,

while all others remain fixed. So, one can benefit twice, as both a faster measurement is

possible and the influence of tip positioning errors on the results is much less. For this



26 3. Position-dependent transport measurements

reasons, such a probe setup is used preferentially for nearly all four-point resistance mea-

surements presented in the following chapters. In order to get a relation R(σ), first the

modified tip positions are expressed as xA = −3
2
s êx, xB = (1

2
s + x) êx, xC = −1

2
s êx

and xD = 1
2
s êx, which are then inserted into Eqs. (3.23) and (3.42). For the 2D case

follows that

R2D
lin,ne(σ2D, s, x) = − 1

4πσ2D

ln

[(
1
2
s− 1

2
s− x

)2 (−1
2
s+ 3

2
s
)2(

1
2
s− 3

2
s
)2 (−1

2
s− 1

2
s− x

)2
]

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

=ln
[

x2s2

(2s)2(s+x)2

]
=2 ln[ x

2(s+x) ]=−2 ln[ 2(s+x)
x ]

(3.47)

⇔ R2D
lin,ne(σ2D, s, x) =

1

2πσ2D

ln

[
2(s+ x)

x

]
. (3.48)

and correspondingly for the 3D case results

R3D
lin,ne(σ3D, s, x) = − 1

2πσ3D
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= 1
2s

− 1
x
− 1

s
+ 1

s+x
=−[ 1

2s
+ 1

x
− 1

s+x ]

(3.49)

⇔ R3D
lin,ne(σ3D, s, x) =

1

2πσ3D

[
1

2s
+

1

x
− 1

s+ x

]
. (3.50)

It is obvious that now both relations depend on the tip distances s and x, so that the constant

behavior for 2D systems has been lost. But, as visible from a comparison of the red-

coloured plots in Fig. 3.5(a) and 3.5(b), the resistances for the 2D and the 3D case are still

distinguishable by their specific distance dependency, which is especially pronounced for

small probe spacings x ≤ s. Moreover, this difference can be additionally emphasized by

a scaling due to very different values for the 2D and 3D conductivity.

In the literature, an expression can be found in order to relate the results from the non-

equidistant setup directly to the equidistant setup [61,62]. Here, two factors are introduced,

i.e. the 2D sensitivity and the effective spacing, which allow to express Eqs. (3.48) and

(3.50) by a modified version of Eqs. (3.44) and (3.46) for the equidistant arrangement.

These modified equations are for the 2D case and 3D case

R2D
lin (σ2D, s, x) =

1

χ2D

(s, x)
ln(2)

πσ2D

and R3D
lin (σ3D, s, x) =

1

2πσ3D

seff3D
−1
(s, x), (3.51)

respectively, with the 2D sensitivity χ2D

1

χ2D

(s, x) =
1

2 ln(2)

[
ln

(
2s

x

)
+ ln

(
s+ x

s

)]
(3.52)

and the effective spacing seff3D

1

seff3D
(s, x) =

1

x
+

1

2s
− 1

s+ x
. (3.53)
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3.3. Anisotropic conductivity

In this section, the case of anisotropic conductivity is considered for two-dimensional ma-

terials, i.e. the conductivity σ is a tensor. The relation R(σ) will be derived and the square

tip configurations is discussed.

3.3.1. Two-dimensional anisotropy

If the conductivity is not completely homogeneous inside a material, but different for dif-

ferent directions of current transport, it can be termed as anisotropic. Such an anisotropy is

a fundamental property of a specific system, e.g. caused by crystal symmetry, and in gen-

eral can occur in multiple directions. However, in the following only a two-fold anisotropy

is considered, i.e. it appears in terms of two separate conductivity values along two distinct

directions. For two-dimension, such a type of anisotropy leads to different conductivities

along a basis , i.e. two perpendicular axes, of a 2D sheet. This means mathematically that

the conductivity σ is no longer a scalar quantity, but now a two-dimensional tensor σ. If

the basis of this tensor is chosen equally to the principal axes of the 2D system, i.e. the axes

along which the different conductivities occur7, the tensor exhibits a diagonalized form and

reads

σ =

(
σx 0
0 σy

)
(3.54)

with the two conductivity components σx and σy along the x- and y-direction, respectively.

In order to derive an expression for R(σ) for such an anisotropic 2D system, one starts

again with the relation ∇ · j = 0 for the current density j(x, y) in the 2D plane (excluding

the injection point at the origin), in the same way as it has been shown before in section 3.2

for isotropic systems. However, in the anisotropic case the current density has to be ex-

pressed by the conductivity tensor σ, so that it now reads j = σ ·E(x, y) = −σ ·∇Φ(x, y)
with the electric field E(x, y) and the potential Φ(x, y), respectively. Explicitly, for two

dimensions it follows that

j =

(
jx
jy

)
=

(
σx 0
0 σy

)
·
(
Ex

Ey

)
=

(
σxEx

σyEy

)
=

(−σx∂xΦ(x, y)
−σy∂yΦ(x, y)

)
(3.55)

with the short form of the partial derivations defined as ∂x := ∂
∂x

and ∂y :=
∂
∂y

, respectively.

So, from the condition of a vanishing divergence of the current density, one obtains

∇ · j =

(
∂x
∂y

)
·
(−σx∂xΦ(x, y)
−σy∂yΦ(x, y)

)
= 0 (3.56)

⇔ σx∂
2
xxΦ(x, y) + σy∂

2
yyΦ(x, y) = 0 (3.57)

with the second partial derivations abbreviated by ∂2
xx := ∂2

∂x2 and ∂2
yy :=

∂2

∂y2
, respectively.

Eq. (3.57) corresponds to an anisotropic homogeneous Laplace equation and has to be

solved in order to obtain the potential distribution Φ(x, y) in the anisotropic 2D system.

7This basis is also considered as the basis of the Cartesian coordinate system for the 2D sheet in the follow-

ing.
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xi

√
σ

σi
= ξi

Figure 3.6.: Visualization of the linear coordinate transformation used in Eqs. (3.58) and (3.59) for

the general case of three dimensions. It transforms between an anisotropic cuboid with different σi
along each axis xi (left part) and an isotropic cube with σ = 3

√
σxσyσz along all three axes ξi (right

part).

First, a coordinate transformation (x, y) → (ξ, η) is performed as [63–65]

x = ξ

(
σx√
σxσy

) 1
2

⇔ ξ = x

(√
σxσy

σx

) 1
2

⇔ ∂ξ

∂x
=

(√
σxσy

σx

) 1
2

(3.58)

y = η

(
σy√
σxσy

) 1
2

⇔ η = y

(√
σxσy

σy

) 1
2

⇔ ∂η

∂y
=

(√
σxσy

σy

) 1
2

(3.59)

which is visualized in Fig. 3.6 for the general case of three dimensions. The linear transfor-

mation simply scales the axes of the system, so that an (anisotropic) cuboid with σi along

its individual axes xi is transformed into an (isotropic) cube with σ = i
√∏

i σi along all

axes ξi. If this transformation is applied to Eq. (3.57), i.e. Φ(x, y) is substituted by Φ(ξ, η),
it follows that

σx∂
2
xxΦ

(
ξ(x), η(y)

)
+ σy∂

2
yyΦ

(
ξ(x), η(y)

)
= 0 (3.60)

⇔ σx∂x

[
∂ξ(x)

∂x
∂ξΦ

(
ξ(x), η(y)

)]
+ σy∂y

[
∂η(y)

∂y
∂ηΦ

(
ξ(x), η(y)

)]
= 0 (3.61)

∂2
xxξ=0

∂2
yyη=0

⇔ σx
∂ξ(x)

∂x
∂x

[
∂ξΦ

(
ξ(x), η(y)
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������������������������������������������������������������������������������������������������������������������������

=
∂ξ(x)
∂x

∂2
ξξΦ
(
ξ(x),η(y)

)
+σy

∂η(y)

∂y
∂y

[
∂ηΦ
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=
∂η(y)
∂y

∂2
ηηΦ
(
ξ(x),η(y)

)
= 0 (3.62)

⇔ σx

[
∂ξ(x)

∂x

]2
�������������������������������������

(3.58)
=

√
σxσy
σx

∂2
ξξΦ

(
ξ(x), η(y)

)
+ σy

[
∂η(y)

∂y

]2
�������������������������������������

(3.59)
=

√
σxσy
σy

∂2
ηηΦ

(
ξ(x), η(y)

)
= 0 (3.63)

⇔ √
σxσy

����������������

=σ

∂2
ξξΦ(ξ, η) +

√
σxσy

����������������

=σ

∂2
ηηΦ(ξ, η) = 0 (3.64)

σ �=0

⇔ ∂2
ξξΦ(ξ, η) + ∂2

ηηΦ(ξ, η) = 0 (3.65)

⇔ ΔΦ(ξ, η) = 0 (3.66)
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with the partial derivations ∂ξ :=
∂
∂ξ

, ∂η :=
∂
∂η

, ∂2
ξξ :=

∂2

∂ξ2
, ∂2

ηη :=
∂2

∂η2
, respectively, and the

Laplace operator Δ = ∂2
ξξ + ∂2

ηη. From Eq. (3.66) it is obvious that the mapping procedure

has resulted in an isotropic Laplace equation for the potential Φ(ξ, η). Such an equation

has already been found before for the isotropic case [Eq. (3.6)] with the corresponding

solution derived in Eq. (3.16). Based on this result, and by using σ =
√
σxσy the solution

for Eq. (3.66) case can be expressed by

Φ(ξ, η) = − I

4π
√
σxσy

ln
(
ξ2 + η2

)
(ξ, η) �= (0, 0). (3.67)

In order to return to the anisotropic coordinate system, the Eqs. (3.58) and (3.59) have to

be inserted into Eq. (3.67), resulting in

Φ̃(x, y) = − I

4π
√
σxσy

ln

[
x2

√
σxσy

σx

+ y2
√
σxσy

σy

]
������������������������������������������������������������������������������������������������������������������������������������������������������

=
x2σy
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σxσy

σxσy

(3.68)

⇔ Φ̃(x, y) = − I

4π
√
σxσy

ln

[
σyx

2 + σxy
2

√
σxσy

]
(3.69)

⇔ Φ̃(x, y) = − I

4π
√
σxσy

ln
[
σyx

2 + σxy
2
]
+

I ln
[√

σxσy

]
4π

√
σxσy
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=:c̃2=const

(3.70)

The constant additive term c̃2 in Eq. (3.70) can be removed by choosing a different gauging8

as Φ̃ → Φ = Φ̃− c̃2. So, more generally it follows for the potential ΦA(x, y) for a current

source at position xA = ( xA
yA ) that

ΦA(x, y) = − I

4π
√
σxσy

ln
[
σy(x− xA)

2 + σx(y − yA)
2
]
. (3.71)

With the same considerations as in section 3.2.1, i.e. by adding a current sink at xB = ( xB
yB )

and evaluating the potential drop between xC = ( xC
yC ) and xD = ( xD

yD ), the potential

measured on a 2D anisotropic sheet by a four point-probe setup can finally be expressed

by

ΦAB
CD = [ΦA(xD, yD) + ΦB(xD, yD)]
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=ΦAB(xD,yD)

− [ΦA(xC , yC) + ΦB(xC , yC)]
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=ΦAB(xC ,yC)

(3.72)

⇔ ΦAB
CD =

I

4π
√
σxσy

ln

[
[σy(xD−xB)

2+σx(yD−yB)
2][σy(xC−xA)

2+σx(yC−yA)
2]

[σy(xD−xA)2+σx(yD−yA)2][σy(xC−xB)2+σx(yC−yB)2]

]
.

(3.73)

8Such a gauging process is equal to the selection of a specific value for the integration constants c2, as

performed before for Eqs. (3.12) and (3.31).
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3.3.2. Square tip configuration

From the potential distribution in Eq. (3.73) for anisotropic systems, an expression for

a specific probe arrangement can be obtained, similar as it has been shown before. For

example, a very simple measurement setup would be to use again a non-equidistant linear

tip configuration. If the corresponding tip positions for such a setup assumed to be aligned

along the x-axis, as expressed before in section 3.2.3, are inserted into Eq. (3.73), one

obtains for the four-point resistance

R2D,anisotropic
lin,ne = − 1

4π
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σxσy

ln
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s− 1

2
s− x
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2
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2
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2
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2
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(−1
2
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2
s− x
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]
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=ln
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x2s2

(2s)2(s+x)2

]
=2 ln[ x

2(s+x) ]=−2 ln[ 2(s+x)
x ]

(3.74)

⇔ R2D,anisotropic
lin,ne =

1

2π
√
σxσy

ln

[
2(s+ x)

x

]
. (3.75)

If compared to Eq. (3.48) for an isotropic systems, it is obvious that only a difference occurs

for the prefactor, namely that the expression
√
σxσy replaces the σ2D present before. So, in

the actual distance-dependency the anisotropy components are not included which directly

implies that they cannot be extracted from a corresponding measurement. For this reason,

it turns out that a linear tip arrangement is insensitive for anisotropic conductance, as only

the geometric mean
√
σyσy = σ2D of both conductivity components can be measured. This

also applies, if the in-line tip arrangement is not aligned along one of the principal axes of

the system, as assumed before by selecting the x-axis, but rotated arbitrarily by an angle θ
on the surface, as it is more generally derived in the appendix A.1.1.

In order to indeed reveal the two conductivity components σx and σy, a different tip con-

figuration has to be chosen. A suitable arrangement is a square configuration, in which

both the current injecting probes and voltage measuring probes are located next to each

other at the corners of a square with side length s, as it is visualized in Fig. 3.7. In this

(a) (b)

Figure 3.7.: Square tip configuration with the probes positioned at the corners of a square with

side length s. (a) Layout of a (AB,DC) tip configuration. The current injecting tip are at positions

A and B, while the voltage measuring tips are located at C and D, with the position vectors as indi-

cated. The square can be rotated by the angle θ with respect to the principal axes of the anisotropic

system. (b) Visualization of the tip setup for the rotational square method.
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case, no longer a distance-dependent measurement is performed, but an angle-dependent,

as the square is rotated successively by the angle θ with respect to the principal axes of the

system. So, the angle dependence of the four-point resistance is recorded. According to

the drawing in Fig. 3.7(a), the positions of the four tips can be expressed as

xA =

(
0
0

)
, xB = s

(
cos(θ)
sin(θ)

)
, xC = s

(
sin(θ)

− cos(θ)

)
, xD = s

(
sin(θ)+cos(θ)
sin(θ)−cos(θ)

)
�����������������������������������������������������������������������������������������������������������

=xB+xC

. (3.76)

After inserting these position vectors into Eq. (3.73) and calculating the four-point resis-

tance according to RAB,DC =
−ΦAB

CD

I
, it follows with the prefactor A := 1

4π
√
σxσy

that

R2D
sq = −A ln

[
σy (s[sin(θ)+cos(θ)]−s cos(θ))2+σx (s[sin(θ)−cos(θ)]−s sin(θ))2

σy (s[sin(θ)+cos(θ)])2+σx (s[sin(θ)−cos(θ)])2

× σy (s sin(θ))
2+σx (−s cos(θ))2

σy (s sin(θ)−s cos(θ))2+σx (−s cos(θ)−s sin(θ))2

]
(3.77)

= −A ln

[
σy sin

2(θ)+σx cos
2(θ)

σy (sin(θ) + cos(θ))2+σx (sin(θ)− cos(θ))2

× σy sin
2(θ)+σx cos

2(θ)

σy (sin(θ)−cos(θ))2+σx (cos(θ)+sin(θ))2

]
(3.78)

sin2(θ)+cos2(θ)=1

= −A ln

⎡
⎢⎢⎢⎢⎣

(
σy sin

2(θ) + σx cos
2(θ)

)2[
σy (1 + 2 sin(θ) cos(θ)) + σx (1− 2 sin(θ) cos(θ))

]
× [

σy (1− 2 sin(θ) cos(θ)) + σx (1 + 2 sin(θ) cos(θ))
]

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

=
(σy sin2(θ)+σx cos2(θ))

2

σ2
y(1−4 sin2(θ) cos2(θ))+2σxσy(1+4 sin2(θ) cos2(θ))+σ2

x(1−4 sin2(θ) cos2(θ))

⎤
⎥⎥⎥⎥⎦ (3.79)

= −A ln

[ (
σy sin

2(θ) + σx cos
2(θ)

)2(
σ2
x + σ2

y

)(
1−4 cos2(θ) sin2(θ)

)
+2σxσy

(
1+4 cos2(θ) sin2(θ)

)
]

(3.80)

= −A ln

[ (
σy sin

2(θ) + σx cos
2(θ)

)2
σ2
x + σ2

y + 2σxσy

�����������������������������������������������������������������������������������������

=(σx+σy)2

−4 cos2(θ) sin2(θ)
(
σ2
x + σ2

y − 2σxσy

)
������������������������������������������������������������������������������������������������������������

=(σx−σy)2

]
(3.81)

= −A ln

⎡
⎢⎣ σ2

y

(
sin2(θ) + σx

σy
cos2(θ)

)2

σ2
y

(
σx

σy
+ 1

)2

− 4 cos2(θ) sin2(θ)σ2
y

(
σx

σy
− 1

)2

⎤
⎥⎦ . (3.82)

Thus, after further rearrangement by using the relation ln(a−1) = − ln(a), the four-point
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Figure 3.8.: Normalized plots of the relations R(θ)
√
σxσy for a square tip configuration as func-

tion of the rotation angle θ with the anisotropy ratio σx/σy as additional parameter. (a) Overview

of the π-periodic function for a large range of anisotropy ratios σx/σy. Also negative values can

appear which means physically that the voltage drops in the reverse direction. (b) For smaller

anisotropy ratios σx/σy ≤ 10, the curve is positive. For σx/σy ≥ 5 it exhibits two local maxima

directly indicating the two principal axes of the system, i.e. the directions of high (σx) and low (σy)

conductivity.

resistance can finally be written as [20]

R2D
square(σx, σy, θ) =

1

4π
√
σxσy

ln

⎡
⎢⎣
(
σx

σy
+ 1
)2

− 4 cos2(θ) sin2(θ)
(
σx

σy
− 1
)2

(
sin2(θ) + σx

σy
cos2(θ)

)2
⎤
⎥⎦ . (3.83)

From Eq. (3.83), it can be seen that for the square configuration, the four-point resistance is

strongly dependent on the rotation angle θ, while indeed no distance-dependency appears,

i.e. the resistance is independent of the actual size s of the square. Now, the anisotropy is

included both in the prefactor as well as in the angle-dependent part, so that a determination

of both components σx and σy is possible, as the specific shape of the angle-dependent

function reveals the anisotropy ratio σx/σy and from the absolute resistance values the

geometric mean
√
σxσy is obtained. In Fig. 3.8, the angle dependence of Eq. (3.83) is

plotted for different anisotropy ratios. In order to remove the additional scaling resulting

from the prefactor, the normalized expression R(θ)
√
σxσy is chosen. In Fig. 3.8(a), the

function is depicted for anisotropy ratios in the range 1 ≤ σx

σy
≤ 1000. It is visible that the

shape of the π-periodic resistance function is strongly dependent on the anisotropy ratio

and that for several values even a negative resistance can be obtained, which physically only

means that the voltage drop occurs in the reverse direction. Fig. 3.8(b) depicts the behavior

in a smaller range of 1 ≤ σx

σy
≤ 10 which is more relevant for measurements on actual

sample systems. Here, for very small anisotropies (< 5) the shape of the function appears

similar to sine, but with half periodicity, while for larger ratios (≥ 5) two local maxima

occur which directly indicate the two principal axes of the systems, i.e. the direction of

high (σx) and low (σy) conductivity. For a vanishing anisotropy, i.e. σx

σy
= 1, the function

approaches
ln(2)
2πσ

, as visible from Eq. (3.83), and correspondingly also the angle dependence

vanishes.
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In practice, for performing a four-point measurement using such a rotational square setup,

it is sufficient to rotate the square with the tips only by in total 90°. For each angular

position, the assignment of the probes, i.e. current or voltage mode, can then be rotated

further by 90°. So, the tips remain at a fixed position, and only the cabling has to be

interchanged, which allows to simultaneously record two separate resistance values, i.e.

R(θ) and R(θ + π/2), for a fixed rotation angle θ of the setup. So, in total the complete

range of the π-periodic resistance function is measured. This procedure reduces the sources

of errors due to a misalignment of the tips and allows a faster measurement. In principle,

even a further rotation in multiples of 90° is possible for recording the complete angular

space of 2π, but for θ > 180°, basically only the current and voltage tips are interchanged.

For such an exchange, the measured four-point resistance stays the same, which is at the

same time also the reason for only the π-periodicity of Eq. (3.83). The explanation for this

rather fundamental behavior will be discussed briefly in the next section.

3.4. Permutability of tip positions

For a four-tip measurement setup with four probes fixed at the positions (xA,xB,xC ,xD)

it results that in total 4! = 24 different tip permutations (ij, kl) with (i, j, k, l) being a

permutation of (A,B,C,D) are possible, either realized by tip interchangement or by dif-

ferent electrical assignment of the tips. Thus, at first glance one might think that there exist

a large number of different values for the four-point resistance measured by these individ-

ual tip arrangements. However, if first either both current injecting tips or both voltage

measuring tips are interchanged with each other, this only leads to a reversed current di-

rection or a voltage drop occurring in the reverse direction, respectively, so that only the

sign of the measured four-point resistance changes as Rij,kl = −Rji,kl = −Rij,lk = Rji,lk.

Thus, the absolute value of the resistance remains unchanged. As a result, there are only
24
4

= 6 remaining combinations which still can be different for the obtained resistance.

Secondly, if now the pairs of current tips and voltage tips are exchanged with each other,

the measured four-point resistance stays again the same, as this is a fundamental property

predicted by the reciprocity theorem for electrical networks. This theorem states that for

a linear time-invariant resistive network with no independent sources inside, the ratio be-

tween the voltage measured at one pair of terminals and the excitation current applied to

another pair of terminals is invariant to an interchange of both pairs of terminals [66–68].9

Specifically for a four-point setup this implies that the actual tip arrangement does not play

a role, as the theorem is independent of the geometry. So, as Rij,kl = Rkl,ij , the number

of possibly different tip configuration has reduced to 6
2
= 3 [69]. Indeed, these three re-

maining combinations result in different four-point resistances, as they are based on locally

distinct current paths due to different tips used for the injection, e.g. the tip pairs (A,B),
(A,C) and (A,D) [70, 71]. Further on, it turns out that only two linear independent tip

arrangements exist, i.e. the four-point resistance of the third one can be expressed by a

9It should be noted that for systems with a broken time-invariance, e.g. due to a magnetic field, this might

not apply.
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Figure 3.9.: The three different arrangements of the current (indicated by arrows) and voltage tips

for a linear equidistant tip setup with the correspondingly labelled four-point resistance as indicated.

(a) In the exterior configuration, the two injecting tips are located both on one side (A,C) next to

the voltage measuring tips (D,B). (b) In the conventional setup, the current tips (A,B) surround the

voltage tips located in the center position (C,D). (c) In the bridging configuration, the current tips

(A,D) and voltage tips (C,B) are alternatingly arranged.

combination of the resistances from the other two configurations [71]. A specific relation

depends on the actual tip positions and cannot be expressed in general. However, if as an

example a linear tip configuration is considered, the three different tip arrangements are

referred to as exterior (RAC,DB), conventional (RAB,CD) and bridging (RAD,CB) configu-

ration, as depicted in Fig. 3.9.10 In this case, it can be written that [72–74]

|RAC,DB|
���������������������������������

exterior

= |RAB,CD|
���������������������������������

conventional

− |RAD,CB|
���������������������������������

bridging

. (3.84)

As a quantitative example, the four-point resistance for a 3D geometry obtained by an

equidistant linear tip setup is calculated for these three different tip arrangements. By

exchanging the tip coordinates in Eq. (3.42) correspondingly, it immediately follows that

∣∣R3D
AC,DB

∣∣ = 1

2πσ3D

∣∣∣∣ 13s − 1

2s
− 1

2s
+

1

s

∣∣∣∣ = 1

6πσ3Ds
, (3.85)

∣∣R3D
AB,CD

∣∣ = 1

2πσ3D

∣∣∣∣ 12s − 1

s
− 1

s
+

1

2s

∣∣∣∣ = 1

2πσ3Ds
, (3.86)

∣∣R3D
AD,CB

∣∣ = 1

2πσ3D

∣∣∣∣ 13s − 1

s
− 1

s
+

1

s

∣∣∣∣ = 1

3πσ3Ds
. (3.87)

It is obvious that the relation from Eq. (3.84) is fulfilled and that |RAC,DB|  |RAB,CD| ∼
|RAD,CB| which also holds in general. For this reason, in four-point measurements more

often the conventional and bridging configurations are used, as the absolute value of the

measured resistance is simply larger implying that a better resolution can be obtained.

If a square tip arrangement is considered, the configurations conventional and exterior

are not well defined. Nevertheless, in principle the relation from Eq. (3.84) is still valid,

but without taking the absolute values, as due to the periodicity the sign of the four-point

resistances depend on the rotation angle. The configurations RAB,CD and RAC,DB (with

10The same tip labelling is used as before in Fig. 3.4, i.e. the tips C and D are physically located in between

the tips A and B.
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the tips marked according to Fig. 3.7) directly follow from Eq. (3.83) for θ and θ + π
2

as

argument, respectively. The bridging setup RAD,CB is referred to as rhombic configuration

[63], as the current and voltage tips are positioned along the diagonal at the opposite corners

of the square. A derivation is given in the appendix A.1.2. Due to the rotated current

direction compared to the square tip arrangement, a different rotation angle α is introduced

with θ = α + π
4
. From Eq. (3.84) in combination with Eq. (3.83), it follows that

RAD,CB = RAB,CD −RAC,DB = R2D
square (θ)−R2D

square

(
θ +

π

2

)
(3.88)

=
1

4π
√
σxσy

ln

⎡
⎢⎢⎣
(

σx

σy
+ 1

)2

− 4 cos2(θ) sin2(θ)
(

σx

σy
− 1

)2

[
sin2(θ) + σx

σy
cos2(θ)

]2

×

[
sin2

(
θ + π

2

)
+ σx

σy
cos2

(
θ + π

2

)]2
(

σx

σy
+ 1

)2

− 4 cos2
(
θ + π

2

)
���������������������������������������������������������

=sin2(θ)

sin2
(
θ + π

2

)
�������������������������������������������������������

=cos2(θ)

(
σx

σy
− 1

)2

⎤
⎥⎥⎦

(3.89)

ln[a2]=2 ln[a]

=
1

2π
√
σxσy

ln

[
cos2(θ) + σx

σy
sin2(θ)

sin2(θ) + σx

σy
cos2(θ)

]
(3.90)

θ=α+π
4

=
1

2π
√
σxσy

ln

[
cos2

(
α + π

4

)
+ σx

σy
sin2

(
α + π

4

)
sin2

(
α + π

4

)
�����������������������������������������������������������

(A.10)
=

[
1√
2
[sin(α)+cos(α)]

]2
= 1

2
[1+2 sin(α) cos(α)]

+σx

σy
cos2

(
α + π

4

)
�������������������������������������������������������������

(A.11)
=

[
1√
2
[cos(α)−sin(α)]

]2
= 1

2
[1−2 sin(α) cos(α)]

]
(3.91)

=
1

2π
√
σxσy

[
1− 2 sin(α) cos(α) + σx

σy
[1 + 2 sin(α) cos(α)]

1 + 2 sin(α) cos(α) + σx

σy
[1− 2 sin(α) cos(α)]

]
(3.92)

=
1

2π
√
σxσy

⎡
⎣1 + σx

σy
+ 2 sin(α) cos(α)

(
σx

σy
− 1

)
1 + σx

σy
− 2 sin(α) cos(α)

(
σx

σy
− 1

)
⎤
⎦ = R2D

rhombic(α). (3.93)

Obviously, the result corresponds to Eq. (A.20). Thus, the angle-dependent four-point

resistance of the rhombic configuration can be calculated from a rotational square mea-

surement, if it has not been measured directly. An advantage of the rhombic arrangement

is that the four-point resistance vanishes completely along the two principal axes of the

system. So, from the zero-crossings it is quite easy to determine the orientations for the

conductivity components σx and σy inside the sample. More details can be found in the

appendix A.1.2.

It is also possible to take explicitly advantage of the fact that two linear independent tip

configurations exist, since measuring the four-point resistance separately with both ar-

rangements provides more information about the sample than only using one setup. For
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example, this can be utilized in 2D systems by the van der Pauw geometry, which is fre-

quently used in literature for lithographically-based four-point measurements. Here, the

four tips have to be placed at the boundary of a singly-connected domain, e.g. at the edges

of a limited 2D sheet with isotropic conductivity. Subsequently, the four-point resistances

arising from current paths through neighbouring tips have to be measured,11 e.g. as it is

realized by the tip configurations (AB,CD) and (AC,DB) with a labelling of the tips ac-

cording to Fig. 3.9. It has been shown for 2D systems that both resistance values RAB,CD

and RAC,DB fulfill the relation [75, 76]

e−πσ2D|RAB,CD| + e−πσ2D|RAC,DB| = 1, (3.94)

so that the sheet conductivity σ2D can be calculated from such a measurement. Hereby,

the individual positions of the tips are not of importance, as long as they are all positioned

on the boundary. So, in contrast to a measurement of both the resistance and the tip po-

sitions, as it is essential while using only one specific tip configuration, now two separate

resistances are measured, so that further knowledge about the tip positions is not necessary

which reduces positioning errors. However, for multi-tip STM such a measurement geom-

etry with contacts at the boundary of the sample is not really useful, as it is particularly the

purpose of the STM to bring the tips together at small distances, and not to position them

widely spaced at the edges of a sample. Thus, the original van der Pauw geometry is ba-

sically not used for multi-tip STM. Nevertheless, there exists an extension of the theorem

which allows also measurements in the interior of a 2D sheet [77]. If a sample exhibits a

mirror plane, then it is sufficient to place all four tips in a linear setup along the intersecting

line with this mirror plane, in order to satisfy the modified relation

e−2πσ2D|RAB,CD| + e−2πσ2D|RAC,DB| = 1 (3.95)

in which an additional factor 2 has been introduced. The reason is that, if the tips are

placed at the mirror plane, the current density perpendicular to the mirror plane vanishes

completely due to symmetry. Thus, the mirror plane can be theoretically replaced by an

insulating boundary implying that only half of the sample is considered, so that the van der

Pauw condition with contacts at the boundary is again fulfilled. As a result of the reduced

current paths the resistance increases correspondingly by a factor of 2. The individual

spacing of the tips is again irrelevant, as long as they are located at the mirror plane. If very

large samples are considered which can be approximated inside to be infinitely extended,

then basically every plane is a mirror plane. Thus, the linear tip arrangement can be placed

arbitrarily, as long as the in-line geometry is maintained. It can be easily shown that in this

case Eq. (3.95) is still fulfilled, as it is done in the appendix A.1.3. Nevertheless, major

drawbacks are that this method is only applicable to pure 2D systems, and that due to the

missing position-dependency it is not even possible to conclude, if the sample under study

is 2D or not. Thus, this method can be useful for determining the conductivity of obviously

2D materials, but not to investigate unknown sample systems. Here, the acquisition of the

distance-dependency, described by the formulas presented before in this chapter, is more

useful.

11On a closed boundary of a 2D domain, every tip has two neighbouring tips. Thus, only a measurement

with a bridging configuration is not allowed to be used.
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3.5. Summary

Within this chapter, the analytical relations between the measured four-point resistance and

the conductivity of the material itself, i.e. R(σ), have been derived, both generally for the

case of pure 2D and pure 3D systems, and for specific tip arrangements used in actual

four-tip measurements, i.e. the linear equidistant and non-equidistant setup. Furthermore,

the anisotropic conductivity has been discussed for 2D materials and the rotational square

method for performing angular-dependent measurements has been presented. Moreover, it

has been shown that for a measurement with four fixed tips only three substantially different

four-point resistances can exist which are accessible by different electrical assignment of

the tips.

So far, different dimensionality has been considered only in separated systems. However,

if the system under study exhibits multiple conductance channels with a mixed geometry,

i.e. a conductive surface on a bulk crystal, the equations presented above do not hold.

For this purpose, different models have to be developed, which will be discussed in the

framework of multi-layer models for charge transport, i.e. a 3-layer and N -layer model, in

the following chapters in combination with measurements on such composed systems.





4. Surface and step conductivities on

Si(111) surfaces

Within this chapter, the appearance of multiple conducting channels in parallel is ad-

dressed, i.e. basically a system with a highly conductive two-dimensional surface chan-

nel on top of a three-dimensional bulk crystal is considered. More specifically, the doped

semiconductor Si(111) is investigated, whose surface states arising from certain surface

terminations, e.g. as the 7×7 reconstruction, can contribute significantly to lateral current

transport. Thus, the crucial task is to find a method for reliably determining this surface

conductivity. For this purpose, a combined approach is presented in the following which is

based both on experimental four-point resistance measurements performed with a multi-tip

STM, as well as on the additional support by a theoretical model taking into account the

specific conductance channels inside the sample. The combination of both allows for a

separation of the surface conductance from the bulk contribution and, for example, enables

the measurement of the Si(111)-(7×7) surface conductivity.

4.1. The Si(111)-(7×7) surface

In modern nanoelectronic devices, the importance of surface conductance compared to

conductance through the bulk increases continuously. This calls for a reliable determina-

tion of the surface conductivity in order to minimize the influence of undesired leakage

currents on the device performance or to use surfaces as functional units. Due to the com-

mon standard in the field of semiconductor devices, a model system for corresponding

investigations is the Si(111)-(7×7) surface. Over the years a wide range of values for the

conductivity of this surface has been reported, spanning several orders of magnitude [78],

and the latest measurements deviate still by a factor of 2 to 3 [23, 79]. From the used

methods, it turned out that the main difficulty in measuring the surface conductivity is to

separate the 2D conductance at the surface from the simultaneously existing conductance

through other channels, as the bulk and the space charge layer.

Here, an alternative approach is used, namely performing linear distance-dependent four-

probe measurements with a multi-tip STM. In order to model the measured four-point

resistance with regard to the presence of multiple conductance channels, an analytical 3-

layer model for charge transport is developed. The formalism for this model is presented in

section 4.2. Such a combined method allows to disentangle the surface conductivity from

other non-surface contributions due to the characteristic probe-spacing dependency of the

involved 2D and 3D conductance channels. In section 4.1.4, this will be shown specifically

39
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for the Si(111)-(7×7) surface. Moreover, it turns out that the conductance channels present

in the Si(111) can be substantially changed by a termination of the surface with either

bismuth or hydrogen. As a result, the two limiting cases of a pure 2D or 3D conductance

are obtained, respectively.

Further on, as depicted in section 4.3, the anisotropy of the surface conductance caused by

the influence of atomic steps is analysed. Here, in order to further disentangle the surface

conductivity of the step-free surface from the contributions due to atomic steps, a square

four-probe configuration is applied as function of the rotation angle. With the support of

the results obtained before from the linear measurements, the conductivity of a single step

on the Si(111)-(7×7) surface is obtained as well as the 2D surface conductivity of the

step-free terraces.

In order to verify the obtained values, further measurements are performed on Si(111)

substrates with different type and concentration of doping, as shown in section 4.4. Also,

the influences of the step density and the quality of the 7×7 reconstruction on the surface

conductivity are investigated.

4.1.1. Measurement details

The distance-dependent measurements of the four-point resistance on Si(111) are per-

formed with the four-tip STM described in section 2.1. A linear arrangement of the four

probes is applied, as it is shown in the inset in Fig. 4.3. In order to obtain the four-point

resistance in this this linear setup, a conventional tip arrangement is used, i.e. the voltage

between the inner two tips is measured as a function of the current injected by the outer

tips. As derived in detail in the previous chapter in section 3.2.3, for equidistant tips the

relations between four-point resistance and conductivity can be expressed analytically for

both a 2D sheet (surface) and a 3D bulk crystal (half space) by Eqs. (3.44) and (3.46), re-

spectively. The hallmark of the 2D channel is that the measured resistance is independent

of the probe spacing, while for the 3D channel it depends on the distance s of the four

probes. In order to minimize the number of tips to be repositioned, the non-equidistant

spacing is preferentially used. Here, three tips remain at a mutual distance of s = 50μm,

while only the distance x between tip 1 and tip 2 is varied, as it is visualized in the inset

of Fig. 4.3. However, in this non-equidistant setup, the Eqs. (3.48) and (3.50) describe the

four-point resistances for the 2D and 3D case, respectively, implying that the hallmark of

the constant 2D behaviour is lost.

4.1.2. The 7×7 surface reconstruction

At the boundary to vacuum the symmetry of a bulk crystal is broken, and due to the missing

subsequent atomic layer at the crystal surface a substantial amount of unsaturated dangling

bonds results in the topmost atomic layer. However, this dangling bonds are energetically

not favoured so that a rearrangement of atoms occurs exactly at the surface in order to

reduce the total number of dangling bonds. The resulting lattice structure at the surface
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(a) (b) (c)

Figure 4.1.: (a) Top-view of the unit cell of the Si(111)-(7×7) surface reconstruction [81, 82].

Adatoms (red points), and the two parts with (F, red area) and without (U, green area) stacking

fault are indicated. Smaller atoms are located in the subsurface layers. Inset: Top-view of the

structure of the underlying bulk (diamond lattice). The drawing is taken from Ref. [81]. (b,c) STM

images of the Si(111)-(7×7) surface reconstruction for (b) positive tip bias voltage (U = 640mV,

I = 100 pA) and (c) negative tip bias voltage (U = −640mV, I = 100 pA).

caused by this local rearrangement is termed as surface reconstruction.

A common surface reconstruction on Si(111) is the (7×7) structure, i.e. Si(111)-(7×7),

which also was the first semiconductor reconstruction imaged by STM [80]. It exhibits

a rather large rhombic unit cell with a width of 26.9Å, and, as already indicated by the

term 7×7, it is by a factor of 49 larger than the unit cell of the (1×1) surface, i.e. the

unreconstructed Si(111) surface [81]. The reconstruction occurs in the topmost bilayer, i.e.

a pair of two planes with sp3-hybridized Si atoms, of the diamond lattice of the Si(111)

bulk crystal. By formation of several dimers, adatoms and a stacking fault, according to

the DAS model [82], the total number of dangling bonds is reduced to 9 per 7×7 unit cell,

while the unreconstructed 1×1 unit cell exhibits 49 dangling bonds. In Fig. 4.1(a), the

lattice structure of the 7×7 surface is visualized. The adatoms (red points), and both the

faulted stacking (F) with respect to the underlying bulk stacking order (shown in the inset)

in one half of the unit cell (red area) as well as the correct stacking (U) in the other half

(green area) are indicated. The depicted size of the atoms inside the structure corresponds

to their vertical position, i.e. the smaller the atom appears the further away is its position

from the surface. A further characteristic structure are the corner holes which appear at the

connection points between multiple neighbouring unit cells.

The 7×7 reconstruction introduces additional electronic states exactly at the crystal sur-

face, which exhibit substantially different electronic properties than the bulk. In contrast

to a semiconductor these states show a metallic behavior, i.e. in the density of states no

gap appears in the region around the Fermi energy EF , as it has been deduced from mea-

surements and DFT calculations [83, 84]. For this reason, the surface states significantly

contribute in current transport and, therefore, a second current path along the surface is

established in parallel to the one through the bulk material.

A 7×7 reconstruction can be achieved by a heat treatment of the Si(111) substrate under

ultra-high vacuum (UHV) conditions with a base pressure of ∼ 1× 10−10 mbar. First,
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(a) (b)

Figure 4.2.: (a) STM image of a single step edge on a Si(111) surface (U = −1.2mV, I =
100 pA). On the flat terraces the (7×7)-reconstruction is slightly visible. (b) Height profile of the

step edge shown in (a), indicating the height of a single atomic step on Si(111) of z
Si(111)
step = 310 pm.

for a cleaning process the Si(111) is annealed by direct current heating to 1230 ◦C. Sub-

sequently, the substrate is cooled down slowly, so that around the transition temperature

of ∼ 800 ◦C the 7×7 surface reconstruction establishes. Afterwards, the 7×7 reconstruc-

tion is imaged in situ by STM, as shown in the Figs. 4.1(b) and 4.1(c). For the image in

Fig. 4.1(b) a positive bias voltage at the tip is chosen, while the bias voltage for Fig. 4.1(c)

is negative, and from comparing both measurements it is visible that the 7×7 structure ap-

pears differently. In both cases, mainly the adatoms of the reconstruction are imaged, and

in both the characteristic corner holes are directly visible. However, in Fig. 4.1(b) there is

a brightness contrast between adatoms positioned on the two halves of the unit cell (either

on the one with or without stacking fault), while in Fig. 4.1(c) all adatoms appear equally

bright. The reason is that the tunneling probability for electrons tunneling from the occu-

pied states [Fig. 4.1(b)] is different for the both halves of the unit cell [85], as due to the

stacking fault the energy levels are shifted with respect to each other, while for the tunnel-

ing process into the unoccupied states no difference appears [Fig. 4.1(c)]. Additionally, it

is visible that some defects (holes) in the 7×7 structure appear, but when compared to the

total area of the reconstructed surface, the fraction of defects is small. However, a large

amount of such defects can significantly alter the properties of the reconstruction, e.g. the

conductivity, as it will be discussed in more detail later in section 4.4.3.

Underneath the 7×7 reconstruction at the surface, the step edges of the Si(111) substrate

are still present. This can be seen in Fig. 4.2(a), where on the terraces the 7×7 structure is

slightly visible. From a profile line [Fig. 4.2(b)] the apparent step height can be identified to

be z
Si(111)
step = 310 pm. This value corresponds to the distance of two neighbouring bilayers

in the bulk crystal, which is the smallest observable step height on Si(111).

4.1.3. Bi passivation — Bi/Si(111)-(
√
3 ×

√
3)

As there are still some remaining dangling bonds on the Si(111)-(7×7) surface, it is chemi-

cal reactive and can easily be passivated by another material. Here, for the first experiment

Bi is chosen in order to obtain a different reconstructed surface, i.e. Bi/Si(111)-(
√
3×√

3).
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Figure 4.3.: Four-point resistance of a Bi-terminated Si(111)-(
√
3×√

3)R30◦ sample as function

of the probe distances s and x for the equidistant (right part) and the non-equidistant configuration

(left part). The red solid line correspond to a fit resulting a pure 2D conductance with σBi =
(1.4± 0.1)× 10−4 S/�. In the inset, the linear measurement configuration is shown. (Sample

preparation and measurement have been performed by Marcus Blab [87]).

First, the 7×7 reconstruction is established, as described in the previous section 4.1.2. Af-

terwards the surface is passivated by 1ML bismuth, as described in Ref. [86], which results

in the (
√
3×√

3)R30◦ surface.

Subsequently, four-point measurements are carried out in situ under ultra-high vacuum

conditions at a base pressure of ∼ 1× 10−10 mbar, which is the case for all measure-

ments presented in this chapter. In Fig. 4.3, the obtained four-point resistance is shown

for the Bi/Si(111)-(
√
3 × √

3) surface of an n-doped Si bulk crystal (2 kΩ cm). Both the

non-equidistant tip configuration with distances x ≤ s = 50μm and the equidistant config-

uration with distances x = s ≥ 50μm have been used for the measurement, as depicted on

the axis (the sample preparation and the measurement itself have been performed by Mar-

cus Blab, as described in [87]). The constant behavior in the equidistant range s ≥ 50μm
indicates a pure 2D character of conductance. Another indicator for 2D surface trans-

port is the fact that the four-point resistance, which is expected considering only the bulk

conductivity, is several orders of magnitude larger than the observed one. Therefore, the

experimental data are compared to a 2D model, and a good correspondence is obtained for

σBi = (1.4± 0.1)× 10−4 S/� (solid red line) confirming that the charge transport in the

Bi-terminated Si(111) sample occurs almost exclusively through the 2D surface channel.

Similar results were found for two differently doped samples.

4.1.4. Multiple conductance channels of Si(111)-(7×7)

Subsequently, the distance dependence of the four-point resistance has been measured on

a clean Si(111)-(7×7) sample. The results for an n-doped sample (700Ω cm) are shown

in Fig. 4.4. (The sample preparation and measurement have been performed together with
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Ω

Figure 4.4.: Four-point resistance of an n-doped Si(111)-(7×7) sample as function of the probe

distances s and x for the equidistant and the non-equidistant configuration. A 3-layer model for

charge transport yields the solid red line with σ2D = (5.1± 0.7)× 10−6 S/� located between the

two limiting contributions to the fit, i.e. a pure surface conductance (dashed blue line, as obtained

from the 3-layer fit) and a pure bulk conductance (dashed green line). If the Si(111) surface is

hydrogen-terminated, the surface contribution vanishes completely and the remaining bulk conduc-

tance can directly be measured (gray data points). (The sample preparation and measurement have

been performed together with Marcus Blab [87]).

Marcus Blab [87]). The observed decreasing four-point resistance for increasing equidis-

tant probe spacing s indicates that a non-surface channel contributes to the charge trans-

port, since a pure 2D conduction exhibits a constant behavior in the equidistant region

(cf. Fig. 4.3). Thus, the measured four-point resistance should be modelled by a conduc-

tance channel through the surface states as well as additional contributions from the bulk

and a near-surface space charge layer. However, this implies that in this case the Eqs. (3.44)

and (3.46) for pure 2D and 3D geometries, respectively, cannot be applied.

Often an approximation of a parallel circuit consisting of the four-point resistance of the

surface and the bulk (plus space charge layer) is used [62], but this approach has several

shortcomings, i.e. a separation between surface and bulk, and equal current injection into

both, as it will be discussed in more detail in the next chapter in section 5.2. If multiple

current paths exist in parallel, the four-point resistance, which is measured on the surface,

can depend on both transitions between the conducting channels for transport, as well as

on the properties of the current injecting contacts. Therefore, in general the well-known

statement that the four-point resistance is independent of the contact resistances is not

completely true in this case.

In order to describe the charge transport through the different channels more accurately, an

analytically derived 3-layer model for conductance is used (cf. section 4.2). In this model,

the bulk enters with its known conductivity, while the surface conductivity is the parameter

to be determined by a fit to the data. The space charge layer is approximated by an inter-

mediate layer with a certain thickness and conductivity. These two values can be obtained
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by the solution of the Poisson equation, which considers the known Fermi level pinning of

the Si(111)-(7×7) surface [88, 89]. Nevertheless, the use of the bulk doping concentration

as parameter in this calculation turns out to be not sufficient in the present case, since with

the resulting width and average conductivity the space charge layer is too highly conduc-

tive in order to be able to describe the data in Fig. 4.4. However, it is known that high-

temperature annealing up to 1200 ◦C performed for cleaning the Si(111) surface causes

a dopant redistribution and an additional p-type doping in the near-surface region due to

boron in-diffusion [90–93] or possible formation of near-surface single vacancies [94].

These effects can lead to a reduced carrier concentration in the space charge layer, similar

as it is observed. Generally, the details of the modification of the near-surface doping de-

pend highly on the specific method and setup used for sample preparation [95]. It turns out

that the experimental data can be described well for a conductivity of 2.5× 10−4 S/m and

a thickness of 3.1μm for the intermediate layer representing the space charge layer. This

quite approximate modelling of the space charge region as only one layer with constant

conductivity seems to be sufficient, as the surface conductivity obtained from the fit to the

measured data turns out to be insensitive to the specific properties of the intermediate layer.

Overall, the 3-layer model results in a much more accurate description of the measured

four-point resistance than the simple parallel-circuit model, since it avoids the artificial

separation between the surface and the non-surface channels and takes into account the

injection geometry giving rise to a charge transport inside and between the layers accord-

ing to their properties. The analytical derivation of the model is described in detail in

section 4.2.

The best fit to the measured four-point resistance using the 3-layer model is shown as a solid

red line in Fig. 4.4 and results in a surface conductivity of σ2D = (5.1± 0.7)× 10−6 S/�.

For comparison the two limiting cases, which contribute to the fit, are marked in Fig. 4.4:

The four-point resistance arising from a pure 2D conductivity σ2D is shown as dashed blue

line, while the four-point resistance induced by a pure 3D conductance, with its 1/s be-

havior in the equidistant configuration, is indicated as dashed green line, which features

the bulk conductivity value of the Si(111). This value for the bulk is confirmed by an

additional experiment which is described below. In the non-equidistant region the mea-

sured four-point resistance is close to the one expected from a pure surface conductance

(less than 6% deviation for x ≤ 50μm), but for larger probe spacing an increasing devia-

tion from the 2D behavior is observed. This reflects the well-known general tendency that

the conductance is more surface-dominated for small probe distances, while a non-surface

contribution develops more significantly for larger distances [78]. However, the observed

four-point resistance does not approach the 1/s bulk behavior for s ≥ 50μm, because the

space charge layer blocks the charge transport into the bulk due to the low conductivity

of the depletion zone. So, the four-point resistance in the equidistant range particularly

reflects the properties of the space charge layer and the bulk, while the non-equidistant re-

gion is more suitable for the determination of the surface conductivity. In total, the 3-layer

model including the intermediate layer describes the experimentally observed behavior

very well. Results obtained for other doping levels are shown in section 4.4.1 and confirm

the results presented above.
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An additional experiment is used to explore, if the bulk conductivity can be measured di-

rectly with the four-probe setup after removing the surface conductance channel. A hydro-

gen termination of the Si(111) surface resulting in the formation of the Si(111)-(1×1)-H,

is known to remove the surface states present on the 7×7 surface [96]. In order to achieve

this H-termination, a treatment of the Si(111) in a 1% solution of HF acid is used, and

after an additional cleaning step in deionized water the sample is transferred to the UHV

within a time of 10min. The gray data points in Fig. 4.4 show the distance dependence

of the four-point resistance in the non-equidistant region measured afterwards on such a

hydrogen-terminated Si(111) sample. The dashed green line corresponds to a fit using

a pure 3D bulk behavior with a resistivity of ρ3D = (580± 70)Ω cm, which is close to

the macroscopically measured nominal bulk resistivity of (700± 50)Ω cm and therefore

confirms that without surface states a pure 3D bulk conductance is obtained.

4.2. The 3-layer conductance model

In this section, the analytical derivation of the 3-layer conductance model is presented

and its applicability is discussed. The 3-layer model assumes a layered sample structure

shown in Fig. 4.5 consisting of a thin surface layer, an intermediate layer and a semi-

infinite bulk characterized by their respective conductivities σ1, σ2 and σ3, and positions

of the interfaces z1 and z2. At the surface a current I is injected by a cylindrical tip with

radius rt. Due to calculation requirements, the surface layer cannot be two-dimensional, so

that a finite thickness of one atomic layer (3Å) is assumed. In the same way as shown in

section 3.2, based on ∇·j = 0 for the current density j = σE = −σ∇Φ inside the sample

(excluding the injection point), the electrical potential Φ can be determined by solving the

Laplace equation

ΔΦ = 0 (4.1)

in cylindrical coordinates x(ρ, ϕ, z) with

x(ρ, ϕ, z) =

⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝ρ cos(ϕ)
ρ sin(ϕ)

z

⎞
⎠ and ρ = |x| =

√
x2 + y2. (4.2)

Figure 4.5.: The 3-layer model consists of a thin surface layer, an intermediate layer and the semi-

infinite bulk described by their respective conductivities σ1, σ2 and σ3, and their positions z1 and

z2. The current I is injected by a cylindrical tip of radius rt at the surface layer.
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Taking account of the angle-independent polar symmetry for one current injecting tip, a

solution for the potential in the individual layers can be generally expressed by [97]

Φ1(ρ, z) =

∫ ∞

0

[
a(k) ekz + b(k) e−kz

]
J0(kρ) dk, for 0 ≤ z ≤ z1 (4.3a)

Φ2(ρ, z) =

∫ ∞

0

[
c(k) ekz + d(k) e−kz

]
J0(kρ) dk, for z1 ≤ z ≤ z2 (4.3b)

Φ3(ρ, z) =

∫ ∞

0

f(k) e−kz J0(kρ) dk, for z2 ≤ z (4.3c)

with J0 denoting the Bessel function of the first kind. The corresponding boundary condi-

tions determining the coefficients are

−σ1
∂

∂z
Φ1(ρ, 0) = j1 H(rt − ρ) (4.4a)

σ1
∂

∂z
Φ1(ρ, z1) = σ2

∂

∂z
Φ2(ρ, z1) (4.4b)

Φ1(ρ, z1) = Φ2(ρ, z1) (4.4c)

σ2
∂

∂z
Φ2(ρ, z2) = σ3

∂

∂z
Φ3(ρ, z2) (4.4d)

Φ2(ρ, z2) = Φ3(ρ, z2) (4.4e)

which result from the current injection [Eq. (4.4a)], as well as from the continuous tran-

sitions of the potential [Eq. (4.4c) and Eq. (4.4e)] and the current density [Eq. (4.4b) and

Eq. (4.4d)] between the layers. In Eq. (4.4a), the expression H(rt − ρ) denotes the Heav-

iside step function. With the assumption of a uniform current flux beneath the tip contact

the injected current density can be described by j1 = I
π r2t

assuming a cylindrical tip with

a tip radius of rt ≈ 25 nm, which seems reasonable for an STM tip. Nevertheless, it turns

out that also other values for the tip radius in the range of 5 nm to 100 nm do not influence

the results of the calculations in a considerable manner.

Besides the uniform flux condition [98], several other assumptions for the current density

at the injection point have been presented in the literature, i.e. the variable flux condition

based on the exact solution for a circular contact on an infinitely thick slab [99] and the

Dirac delta current distribution leading to a ring current density [100,101]. All approaches

are used to approximate the exact surface boundary condition of constant potential beneath

the probe, which would lead to a more difficult mixed boundary value problem. However,

the differences between the three conditions are rather small [100–102], and especially for

small layer thicknesses compared to the radius of the probe contacts, as it applies for the

highly conductive surface layer with a thickness of 3Å, the uniform flux condition is the

best approximation [102], so that this condition is used for the calculation.

Based on Eqs. (4.4a) – (4.4e), in combination with the corresponding potentials from

Eqs. (4.3a) – (4.3c), a system of five equations for the coefficients a(k), . . . , f(k) can be

derived as

−σ1

∫ ∞

0

[a(k)−b(k)] kJ0(kρ)dk = j1 H(rt − ρ) (4.5a)
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σ1

∫ ∞

0

[
a(k)ekz1−b(k)e−kz1

]
kJ0(kρ)dk =σ2

∫ ∞

0

[
c(k)ekz1−d(k)e−kz1

]
kJ0(kρ)dk (4.5b)∫ ∞

0

[
a(k)ekz1+b(k)e−kz1

]
J0(kρ)dk =

∫ ∞

0

[
c(k)ekz1+d(k)e−kz1

]
J0(kρ)dk (4.5c)

σ2

∫ ∞

0

[
c(k)ekz2−d(k)e−kz2

]
kJ0(kρ)dk = −σ3

∫ ∞

0

f(k)e−kz2kJ0(kρ)dk (4.5d)∫ ∞

0

[
c(k)ekz2+d(k)e−kz2

]
J0(kρ)dk =

∫ ∞

0

f(k)e−kz2J0(kρ)dk. (4.5e)

After an rearrangement of Eqs. (4.5a) – (4.5e), one obtains∫ ∞

0

σ1 [a(k)−b(k)] kJ0(kρ)dk =−j1 H(rt−ρ) (4.6a)∫ ∞

0

[
(σ1a(k)−σ2c(k)) e

kz1−(σ1b(k)−σ2d(k)) e
−kz1

]
kJ0(kρ)dk = 0 (4.6b)∫ ∞

0

[
(a(k)−c(k)) ekz1+(b(k)−d(k)) e−kz1

]
J0(kρ)dk = 0 (4.6c)∫ ∞

0

[
σ2c(k)e

kz2−(σ2d(k)−σ3f(k)) e
−kz2

]
kJ0(kρ)dk = 0 (4.6d)∫ ∞

0

[
c(k)ekz2+(d(k)−f(k)) e−kz2

]
J0(kρ)dk = 0. (4.6e)

In order to separate the coefficients a(k), . . . , f(k) in Eqs. (4.6a) – (4.6e), the Hankel trans-

form can be calculated and the orthogonality of the Bessel functions
∫∞
0

ρJ0(kρ)J0(k
′ρ)dρ =

1
k
δ(k − k′) can be used [97], whereby δ(k) denotes the Delta distribution. The application

of the Hankel transformation is shown exemplarily for the case of Eq. (4.6a) in the ap-

pendix A.2.1. So, afterwards one obtains for the coefficients

σ1 [a(k)−b(k)] = −j1

∫ rt

0

ρJ0(kρ)dρ (4.7a)

[σ1a(k)−σ2c(k)] e
kz1−[σ1b(k)−σ2d(k)] e

−kz1 = 0 (4.7b)

[a(k)−c(k)] ekz1+[b(k)−d(k)] e−kz1 = 0 (4.7c)

σ2c(k)e
kz2−[σ2d(k)−σ3f(k)] e

−kz2 = 0 (4.7d)

c(k)ekz2+[d(k)−f(k)] e−kz2 = 0. (4.7e)

Eqs. (4.7a) – (4.7e) can be rewritten in matrix notation as⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 0

ekz1 −e−kz1 −σ2

σ1
ekz1 σ2

σ1
e−kz1 0

ekz1 e−kz1 −ekz1 −e−kz1 0

0 0 ekz2 −e−kz2 σ3

σ2
e−kz2

0 0 ekz2 e−kz2 −e−kz2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a(k)

b(k)

c(k)

d(k)

f(k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I(k, σ1)

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.8)
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with

I(k, σ1) := − j1
σ1

∫ rt

0

ρ J0(kρ) dρ (4.9)

The matrix equation (4.8) can be solved by means of matrix inversion in order to obtain the

coefficients a(k), . . . , f(k). As the potential at the surface (z = 0) directly follows from

Eq. (4.3a) as

Φsurf(ρ) = Φ1(ρ, 0) =

∫ ∞

0

[a(k) + b(k)] J0(kρ) dk, (4.10)

only the sum a(k)+ b(k) of the coefficients is relevant for the calculation. As shown in the

appendix A.2.2, from Eq. (4.8) an expression for the sum can be derived as

a(k) + b(k) =
j1
σ1

∫ rt

0

ρJ0(kρ) dρ

σ3

σ2
tanh [k(z2 − z1)] + 1

tanh [k(z2 − z1)] +
σ3

σ2

+ σ2

σ1
tanh [kz1]

σ3

σ2
tanh [k(z2 − z1)] + 1

tanh [k(z2 − z1)] +
σ3

σ2

tanh [kz1] +
σ2

σ1

. (4.11)

Thus, by insertion into Eq. (4.10) and numerical evaluation of the integral, the surface

potential arising from one current injecting tip can be calculated.

In order to take into account more than one tip, it is useful to transform back into Cartesian

coordinates [cf. Eq. (4.2)]. However, as based on Eq. (4.10) only the surface is consid-

ered, two-dimensional coordinates are sufficient, i.e. x = ( x
y ). Thus, for an injecting tip

positioned at xA = ( xA
yA ), Eq. (4.10) changes into

ΦA
surf(x) =

∫ ∞

0

[a(k) + b(k)] J0(k |x− xA|) dk. (4.12)

The combined potential arising from a current source at xA and a current sink at xB is

correspondingly expressed by the superposition

ΦAB
surf(x) = ΦA

surf(x)−ΦB
surf(x) =

∫ ∞

0

[a(k)+b(k)]
[
J0(k |x−xA|)−J0(k |x−xB|)

]
dk.

(4.13)

Evaluating the potential difference between two probes positioned at xC and xD, respec-

tively, finally results in

ΦAB
CD = ΦAB

surf(xD)− ΦAB
surf(xC) (4.14)

⇔ ΦAB
CD =

∫ ∞

0

[
a(k)+b(k)

][
J0
(
k|xD−xA|

)− J0
(
k|xD−xB|

)
− J0

(
k|xC−xA|

)
+ J0

(
k|xC−xB|

)]
dk .

(4.15)



50 4. Surface and step conductivities on Si(111) surfaces

If a linear equidistant probe configuration with a spacing s is considered, as it is depicted

in Fig. 3.4(a), the four-point resistance R =
−ΦAB

CD

I
measured on the surface for an injected

current I can be expressed by

R3−lay
lin (s) =

2

I

∫ ∞

0

[
a(k)+b(k)

][
J0

(
ks
)− J0

(
2ks

)]
dk . (4.16)

For a non-equidistant linear setup [cf. Fig. 3.4(b)] with the spacings x and s, one obtains

with the same considerations as in section 3.2.3 that

R3−lay
lin,ne (s, x) =

1

I

∫ ∞

0

[
a(k)+b(k)

][
J0

(
ks
)− J0

(
k[s+x]

)− J0

(
2ks

)
+ J0

(
kx
)]

dk .

(4.17)

So, the equidistant measurement range in Fig. 4.4, i.e. s = x ≥ 50μm, can be described

by Eq. (4.16), while for the non-equidistant region, i.e. x ≤ s = 50μm, Eq. (4.17) has to

be used. The integral over the Bessel functions can be evaluated numerically and the result

can be fitted to the measurement data with the free parameters σ1, σ2 and z2, which define

the properties of the surface layer and the intermediate layer used as approximation for the

space charge region in the sample. The value for σ3 is known from macroscopic measure-

ments of the bulk resistivity and is in agreement with the nominal doping concentration.

The surface conductance channel has the largest influence on the four-point resistance for

small distances, i.e. x ≤ 50μm (region of non-equidistant probe spacing), while the prop-

erties of the intermediate layer (conductivity and thickness) have the largest influence on

the four-point resistance in the region of larger distances (equidistant spacing region). This

is illustrated in Fig. 4.6, in which the measured four-point resistance from Fig. 4.4 (n-doped

Si(111)-(7×7) sample, bulk resistivity 700Ω cm) is compared to theoretical curves result-

ing from the 3-layer model for different input parameters (colored curves). For the constant

nominal bulk resistivity of the sample and a varying conductivity for the intermediate layer

(space charge layer) over three orders of magnitude from 1× 10−3 S/m (magenta curve) to

1× 10−6 S/m (green curve), the measured data are fitted to determine the surface conduc-

tivity. If the space charge layer conductivity is enhanced above a value of 1× 10−3 S/m,

the measured data cannot be described any more by the model and a fit is not possible. So,

the space charge layer should be described by a conductivity value in the chosen region. Al-

though there is a very large spread in the space charge layer conductivity, the results show

a very minor spread of the surface conductivity with a deviation of less than 10% from

σ2D = 4.8× 10−6 S/� (magenta curve) to σ2D = 5.4× 10−6 S/� (green curve). All fit

curves describe the data very well in the region of small probe spacing (x ≤ 50μm), while

there are considerable deviations from the data points for larger probe spacing (s ≥ 50μm).

This confirms the influence of surface conductivity and space charge layer conductivity in

different regions of the used probe distances. Thus the surface conductivity can be deter-

mined very precisely from the non-equidistant probe spacing region, even if the properties

of the space charge layer are taken into account only very approximately. On the other

hand, the parameters of the space charge layer can be further approximated from the mea-

surement data in the equidistant region. In total, this justifies the crude approximation of
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Figure 4.6.: Description of the measured four-point resistance from Fig. 4.4 (n-doped Si(111)-

(7×7) sample, bulk resistivity 700Ω cm) by the 3-layer model for different input parameters (col-

ored curves). For the nominal bulk conductivity and a space charge layer conductivity varying over

three orders of magnitude from 1× 10−3 S/m (magenta curve) to 1× 10−6 S/m (green curve) the

measured data are fitted with the surface conductivity as free parameter. All curves can describe

the data in the region of small probe spacings (x ≤ 50μm) very well, while there are consider-

able deviations from the data in the region of larger probe distances (s ≥ 50μm). Nevertheless,

the obtained surface conductivity shows only a very minor spread and varies less than 10% from

σ2D = 4.8× 10−6 S/� (magenta curve) to σ2D = 5.4× 10−6 S/� (green curve). This indicates

that the measured four-point resistance in the small probe spacing region does not depend on the

details of the space charge layer, and so the surface conductivity can be determined very precisely,

even if the exact properties of the space charge layer are not known.

the space charge region as only one layer with constant conductivity, as the quantity to be

determined, the surface conductivity σ1, does not depend significantly on the values of the

conductivity σ2 and width z2 used to describe the intermediate layer.

In principle, the 3-layer model described above can be extended to a multi-layer model

consisting of N separate layers, as it will be shown in the next chapter 5. In this case, the

boundary conditions in Eqs. (4.4a) – (4.4e) have to be modified to include the transitions

between layer n − 1 and n [for n = 1, . . . , N − 1] and the size of the matrix in Eq. (4.8)

becomes (2N − 1) × (2N − 1).

In contrast to the analytical model, one other way to simulate the contributions of the differ-

ent charge transport channels to the four-point resistance is to invoke finite element calcu-

lations. This has not been done, since the distances involved range from a few nanometers

(radius of the current injection) to 200μm (maximum probe distance) and such a large

range of length scales is difficult to include in finite element calculations. Nevertheless,

as the exact analytical solution of the potential problem in a layered sample has quite an

elementary form, the 3-layer model is easier to apply and provides a more accurate com-

putation than a finite element simulation.
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4.3. Step conductivity of Si(111)-(7×7)

While the distance-dependent four-point measurements in combination with the 3-layer

model could disentangle the surface conductivity from non-surface contributions to charge

transport, the influence of atomic steps located on the (7×7)-reconstructed Si surface has

not been considered up to now. The conductivity arising from a single step for a current

passing through it can be treated as scalar quantity. However, if a larger surface area is

taken into account, the step array leads on average to an anisotropic conductivity described

by the tensor components σ‖ along the step edges and σ⊥ perpendicular to the step edges

[22]. So, the anisotropic conductance is a macroscopic (mean field) result of the different

number of step edges per unit length along different current paths. As already discussed in

chapter 3, the linear four-point measurement configuration applied before (Fig. 4.4) is not

sensitive to a two-dimensional conductance anisotropy [20]. So, a square arrangement of

the four probes, as shown in Fig. 4.7(c), has to be used instead. For such a setup, an angle-

dependent four-point resistance is expected [20, 63], as it has been derived previously in

section 3.3. In the present case, the components of high and low conductivity are σx = σ‖

and σy = σ⊥, respectively. Thus, Eq. (3.83) reads

R2D
square(θ) =

1

4π
√
σ‖σ⊥

ln

⎡
⎢⎣
(

σ‖
σ⊥ + 1

)2
− 4 cos2(θ) sin2(θ)

(
σ‖
σ⊥ − 1

)2
(
sin2(θ) + σ‖

σ⊥ cos2(θ)
)2

⎤
⎥⎦ . (4.18)

It should be noted that, in contrast to the 3-layer model used before, Eq. (4.18) can only

describe a pure 2D conductance channel. A derivation of an more exact equation which

considers besides the 2D surface also an 3D channel, i.e. an anisotropic 3-layer model, is

quite complicated, if the anisotropy applies only for the surface channel, while the bulk

remains isotropic. However, as an approximation, by comparing with the linear measure-

ments shown before, which are describable by the 3-layer model, a correction factor for

a fixed tip spacing can be obtained between the four-point resistance, which is observable

in the measurement and the one which would appear, if only the 2D conductance channel

is present in the sample. As it turns out that the correction factors are quite small for the

discussed samples, this method is applied in the following in order to increase the precision

of the obtained anisotropic conductivity values.

Results for the measured anisotropic four-point resistance on an n-doped Si(111)-(7×7)

sample (700Ω cm) for a probe spacing of s = 50μm are shown in Fig. 4.7(a) as a function

of the rotation angle θ relative to the step direction. For such a square configuration, the

voltage probes and current probes are located at the corners of opposite sides of the square.

The four sets of differently colored data points in angle increments of 5◦ arise from the fact

that for one fixed orientation of the probes four different rotation angles can be realized by

successively assigning different probes as current and voltage probes.

A fit of Eq. (4.18) to the experimental data is shown as a dotted blue line in Fig. 4.7(a)

describing the angle dependence quite well.1 Nevertheless, the mean field approach ap-

plied so far assumes only straight step edges. However, the typical step structure present

1Since Eq. (4.18) considers exclusively a 2D conductivity, a correction factor for the 6% non-surface con-
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Figure 4.7.: (a) Four-point resistance measured on a Si(111)-(7×7) surface in the square config-

uration [shown in (c)] with s = 50μm as a function of rotation angle θ between the average step

orientation and the line connecting the current injecting tips (colored data points). The fits to the

data using either only one average step direction or a superposition of two step orientations (re-

spective parts are shown as green dotted lines) are indicated as dotted blue line and solid red line,

respectively. (b) STM image of the Si(111)-(7×7) surface showing the representative step arrange-

ment on the sample with a step density of ∼ 14 steps/μm. Two adjacent step edges are highlighted

(solid green and blue line) consisting of two main step directions indicated by the angles α and β
relative to the average step orientation (solid red lines). (d),(e) Optical microscope images of the

four STM tips positioned at the corners of the square. From (d) to (e) the total rotation is 90° with

multiple steps in between (white squares). For each step, by rotating the tip assignment (voltage or

current probe) four data points in multiples of 90° can be recorded, as indicated by the four colored

lines in (d) and (e), and the correspondingly colored data points in (a).

on the 0.25◦ misoriented Si(111)-(7×7) sample surface shown in Fig. 4.7(b) consists of

steps aligned mainly along two directions with average angles of α ≈ 8◦ and β ≈ 21◦

with respect to the average step orientation (indicated as red lines), which now defines σ‖

and σ⊥. This average step orientation (∼ 14 steps/μm) arises from the macroscopic az-

imuthal direction of the sample miscut and is not aligned with the low-index orientations

of the step edges. To model this more complicated non-parallel step pattern, as first-order

tribution (at 50μm) to charge transport determined by the linear probe measurements has been taken into

account.
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Figure 4.8.: Relation between the resistivities of the step-free surface and the single atomic step

on Si(111)-(7×7): The resistance (per unit length) of an atomic step is equal to the resistance (per

unit length) of a segment of the step-free terrace with a width of 300 nm.

approximation a superposition of two step orientations is considered with angles α and

β relative to the average step orientation weighted with their respective portion extracted

from Fig. 4.7(b). This leads to a slightly skewed curve shown as solid red line in Fig. 4.7(a),

which consists of an amount of 70% and 30% of the two single contributions, respectively

(dotted green lines). The model including the two step orientations describes the data as

well as Eq. (4.18), but contains a better approximation of the sample step structure, and

results in σ‖ = (9± 2)× 10−6 S/� and σ⊥ = (1.7± 0.4)× 10−6 S/� with an anisotropy

ratio of σ‖/σ⊥ ≈ 5. The geometric mean
√
σ‖σ⊥ = (3.9± 0.6)× 10−6 S/� has nearly

the same value within the error tolerances as the surface conductivity σ2D obtained in the

linear configuration. Thus, the two independent methods, the distance-dependent linear

configuration and the angle-dependent square configuration, yield the same results for the

surface conductivity.

In a last step, the measured mean field anisotropic conductivity is approximated by the

scalar resistivities of a step-free terrace ρsurf and a single step ρstep. Considering first the

direction parallel to the steps, no step edges have to be crossed by the current, which results

in the relation

1/σ‖ = ρ‖ = ρsurf . (4.19)

Second, the resistivity perpendicular to the step edges is composed of additive contributions

from the steps and the step-free terraces and can be expressed as series resistance, resulting

in [22]

1/σ⊥ = ρ⊥ = ρsurf + ρstep/d
⊥
step (4.20)

with d⊥step denoting the average distance between the steps. From the two relations in

Eq. (4.19) and Eq. (4.20) finally the conductivity of the step-free Si(111)-(7×7) surface can

be disentangled from the influence of the step conductivity as σsurf = (9± 2)× 10−6 S/�,

and σstep = (29± 9) S/m. The value of the surface conductivity σsurf is a factor of 2 to

6 larger than the values obtained in recent experiments [23, 79]. Such smaller values may

be explained, as these experiments are based on a more indirect comparison of the conduc-

tivity before and after quenching the surface states by adsorption of atoms or molecules.

However, since there are several experimental requirements for such a differential mea-

surement, particularly these indirect methods can exhibit a couple of shortcomings, as it

will be discussed in more detail later on in section 5.1.
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From a comparison of the surface resistivity and the step resistivity, the following relation

is obtained, which is visualized in Fig. 4.8: The resistance of one step (per unit length)

corresponds to the resistance of a segment of the step-free Si(111)-(7×7) surface (per unit

length) of a width of 300 nm. For the sample with a step density of 14 steps/μm, the con-

tribution of the step resistance to the total resistance has a substantial amount of 80% for a

current flowing in the perpendicular direction. In general, the presence of steps will reduce

the surface conductivity of the Si(111)-(7×7) considerably, however, in a well predictable

manner.

4.4. Influence of substrate properties

In this section, it is investigated, in which way the the substrate properties can influence

the surface conductivity of the 7×7 reconstruction. For this purpose, both the doping con-

centration and character is varied, as well as the miscut angle which lead to a different

amount of step edges of the substrate. Additional four-point resistance measurements are

performed on these different Si(111) substrates in order to verify the values for the surface

and step conductivities of Si(111)-(7×7) obtained before. Furthermore, the consequences

of an increased density of surface defects in the 7×7 structure on its conductivity are in-

vestigated.

4.4.1. Variation of concentration and type of doping in Si(111)

In a first step, several Si(111) substrates with different type and concentration of doping

are used, as shown in the following sections.

4.4.1.1. n-doped Si(111)

On differently n-doped Si(111)-(7×7) samples with bulk resistivities ranging over two

orders of magnitude, further four-point resistance measurements in the linear probe config-

uration are carried out The results for the non-equidistant probe spacing with x ≤ 50μm
and s = 50μm, as well as the equidistant spacing with distances x = s ≥ 50μm are

shown in Fig. 4.9 for three different Si(111) samples with resistivities of (a) 20Ω cm, (b)

2000Ω cm and (c) 4100Ω cm. (The sample preparation and the measurement itself has

been performed by Marcus Blab, as described in [87]). From the best fits according to the

used 3-layer model (solid red line), the surface conductivities for the three different sam-

ples can be determined to σ(a) = (4.2± 0.6)× 10−6 S/�, σ(b) = (4.7± 0.6)× 10−6 S/�
and σ(c) = (5.3± 0.8)× 10−6 S/�.

As the measured surface conductivity in the linear configuration is a combination of con-

tributions due to step edges and the step-free surface, these values can differ slightly from

each other for the three differently doped Si samples because of slightly different miscut

angles of the substrates and resulting different step densities at the surfaces. Neverthe-
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Figure 4.9.: Measured four-point resistances of n-doped Si(111)-(7×7) samples with bulk resistiv-

ities of (a) 20Ω cm, (b) 2000Ω cm and (c) 4100Ω cm as function of the probe distances s and x for

the equidistant configuration as well as the non-equidistant configuration with s = 50μm. The de-

creasing four-point resistances in the equidistant region indicate a non-surface contribution to con-

ductance due to bulk and space charge layer. Applying a 3-layer model for transport in the samples

yields the solid red lines, which are composed out of the limiting cases [varying contributions from

(a) to (c)] of a pure surface conductance (dashed blue line) and a pure bulk conductance (dashed

green line). (Sample preparation and measurement have been performed by Marcus Blab [87]).
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less, all obtained surface conductivities (including the 700Ω cm sample discussed before

with σ2D = (5.1± 0.7)× 10−6 S/�) are very close to each other and still compatible

within the error tolerances indicating that the step contributions are similar for all samples

(∼ 14 steps/μm).

By comparing the measured data to the two limiting cases of a pure 2D conductivity (with

the above values) and a pure 3D conductivity arising only from the bulk, which are both

shown as dashed blue and green lines in Fig. 4.9, respectively, one can see that the ob-

served resistance behavior for x ≤ 50μm is very close to the 2D case for all of the three

differently doped Si(111) samples, although the bulk resistance varies over several orders

of magnitude. This indicates a separation of the surface layer from the bulk arising from

the space charge region with low conductivity due to a depletion zone preventing an en-

hanced charge transport through the bulk, which especially becomes important for high

bulk doping concentrations. For larger probe distances, the measured four-point resistance

increasingly deviates from the 2D case and shows a pronounced non-surface contribution

resulting from additional charge transport through space charge layer and bulk. This non-

surface contribution decreases for lower bulk doping levels, as it is expected in comparison

with the large increase in bulk resistance in the limiting case of a pure 3D conductivity.

Within the 3-layer model, the space charge region is approximated by one intermediate

layer with thicknesses of (a) 0.9μm, (b) 4.8μm and (c) 5.3μm, and with constant conduc-

tivities of (a) 1.5× 10−4 S/m, (b) 1.8× 10−4 S/m and (c) 3.2× 10−4 S/m, respectively,

for the three differently doped samples in Figs. 4.9(a) – 4.9(c).

4.4.1.2. p-doped Si(111)

A similar four-point measurements has been performed on a p-doped Si(111)-(7×7) sam-

ple with a bulk resistivity of 22.5 kΩ cm, as it is shown in Fig. 4.10(a). The advantage of a

p-doped substrate is that additional p-type doping due to the preparation process [90–93],

as discussed before, has not such a strong effect on the doping profile in the space charge re-

gion than it is the case for an n-type substrate, where an unexpected near-surface inversion

layer may arise. So, the space charge region in the p-type sample can be much better mod-

elled and, as it is depicted in Fig. 4.10(b), a conductivity profile for the near-surface region

(red curve) can be obtained from the calculated band bending [inset of Fig. 4.10(b)], which

uses specific material parameters as input, e.g. bulk resistivity and Fermi level pinning at

the surface. A more detailed overview about the calculation and usage of such conductiv-

ity profiles will be given in the next chapter 5. In order to describe the space charge layer

with a fixed width and conductivity, as it is necessary for the 3-layer model, the strongly

z-dependent profile can be approximated in first order by a single step (1.3× 10−3 S/m,

width 22μm), as indicated by the green line in Fig. 4.10(b).2 These two values can then be

used as input for the 3-layer model in order to obtain only the surface conductivity from a

fit to the data. This is a conceptual difference compared to the case of the n-type samples

2As such a approximation seems quite rough, the same measurement data will be evaluated again with the

N -layer model in section 5.4.3, in order to reveal, if a more accurate description of the space charge

region increases the precision of the obtained surface conductivity.
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Figure 4.10.: (a) Four-point resistance of Si(111)-(7×7) measured on a p-type Si(111) substrate

(22.5 kΩ cm). A fit (red line) according to the 3-layer model results in a surface conductivity of

σ2D = (3.8± 0.3)× 10−6 S/�, with the limiting case of pure 2D conductance as major contri-

bution (dashed blue line), while the contribution of the bulk is only marginal (green arrow). For

the fit, the space charge region enters with fixed values (1.3× 10−3 S/m, layer width 22μm), as

deduced from the calculation in (b). (b) Calculated conductivity profile of the space charge region

(red curve) and approximation by a single layer (green curve). The corresponding near-surface

band bending [valence band EV (blue), conduction band EC (green), Fermi energy EF (red), band

gap 1.12 eV] of the p-doped Si(111)-(7×7) due to the Fermi level pinning of the 7×7 states at the

surface (0.65 eV above EV ) is shown in the inset.

depicted before in the Figs. 4.3 and 4.9, where both the conductivities of the space charge

layer as well as the surface are fit parameters.

From the fit (red line) shown in Fig. 4.10(a) it is visible that with the calculated pa-

rameters of the space charge region the data can be described very well. A value of

σ2D = (3.8± 0.3)× 10−6 S/� is obtained for the Si(111)-(7×7), which is very close to

the values on the n-type samples measured before, but slightly smaller. It is visible that the

major contribution is resulting from the pure 2D surface conductance (dashed blue line),

while the contribution originating from the bulk (green arrow) is only very marginal. A

STM measurement of the surface in Figs. 4.11(a) and 4.11(c) reveals that the substrate
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(a) (b) (c)

Figure 4.11.: STM images of the p-type Si(111)-(7×7) sample measured in Fig. 4.10. (a) Steps

of the Si(111) substrate underneath the 7×7 structure (U = −1.3V, I = 610 pA). (b) Height

profile as indicated in (a), which reveals the average atomic step density as ∼ 15 steps/μm. (c)

7×7 structure present on the terraces (U = 1.4V, I = 770 pA).

below the 7×7 reconstruction exhibits on average a step density of ∼ 15 steps/μm, as

indicated by the profile in Fig. 4.11(b), which is approximately 7% higher than for the

n-type substrates before. So, as the measured surface conductivity is a composition of the

conductivities of the steps and the step-free terraces, as discussed in section 4.3 before,

also a slightly reduced value is expected in the present case. In order to verify this, a

simple calculation can be performed by using the relations given in the Eqs. (4.19) and

(4.20). With the conductivities for a single step and the step-free terrace obtained before

(σsurf = (9± 2)× 10−6 S/�, σstep = (29± 9) S/m), in combination with the step density

of the p-doped substrate (�step = 15μm−1), the expected value for the surface conductivity

can be calculated as

σtheo
2D =

√
σ‖σ⊥

(4.19)
(4.20)
=

√
σsurf

1
σsurf

+ �step
σstep

= 3.78× 10−6 S/�. (4.21)

This value is identical to the conductivity actually measured in Fig. 4.10(a), which proves

that the slightly reduced surface conductivity is indeed originating from an increased num-

ber of substrate steps.

4.4.2. Increased step density of Si(111)

While the effect of the steps observed before in Fig. 4.10 was rather small, a stronger

increase in the step density can lead to a more significant reduction of the surface con-

ductivity, as the atomic steps contribute by 80% to the total resistance. This is observable

in Fig. 4.12(a), which shows a similar measurement of the Si(111)-(7×7) as in Fig. 4.9,

but now for an n-type Si(111) substrate (bulk resistivity 5Ω cm) with a larger miscut angle

of 0.5°. As visible from STM measurements shown in Figs. 4.12(b) and 4.12(c), under-

neath the closed 7×7 reconstruction the substrate exhibits an average atomic step density

of ∼ 29.5 steps/μm.3 Accordingly, the surface conductivity obtained in Fig. 4.12(a) is

3Steps with double (multiple) height of one bilayer are considered as two (or more) atomic steps.



60 4. Surface and step conductivities on Si(111) surfaces

σΩ

Ω

(a)

(b) (c)

Figure 4.12.: (a) Measured four-point resistance of an n-doped Si(111)-(7×7) sample (bulk resis-

tivity 5Ω cm) as function of the probe distances s (equidistant configuration) and x (non-equidistant

configuration) with s = 50μm (similar to Fig. 4.9). A fit by the 3-layer model (red line) re-

sults in σ2D = (1.8± 0.1)× 10−6 S/� (SCL: 5μm, 7× 10−5 S/m) with major contribution

from the 2D surface (blue line) for small distances, while the bulk (arrow to green line) con-

tributes for larger distances. (b),(c) STM images of the Si(111)-(7×7) surface measured in (a)

[(b) U = −1.2V, I = 75pA, (c) U = −1.4V, I = 100 pA]. The substrate step density is in-

creased to 29.5 steps/μm [visible in (b)]. On the terraces a closed 7×7-reconstruction is present

[visible in (c)].

with σ2D = (1.8± 0.1)× 10−6 S/� by a factor of ∼ 3 reduced compared to the values

measured in Fig. 4.9 before. This is very close to the expected value (2.5× 10−6 S/�)

resulting from Eq. (4.21).

A more direct way to reveal the effect of the steps is to use the rotational square method,

i.e. to perform angle-dependent four-point measurements with the square tip configuration,

as it is depicted in Fig. 4.13. The tip setup is shown in the Figs. 4.13(a) – 4.13(c) and the

direction of the substrate step edges with respect to the tip arrangement is visualized by

the STM image in Fig. 4.13(a) [not to scale]. In order to prove that all steps are indeed

uniformly distributed as stated above, i.e. no step bunching occurs, the complete distance

along one side of the square, i.e. 50μm, has been imaged by subsequently recorded STM

scans. The composed large-size image containing all of these scans shows equally sized

terraces confirming the average density of 29.5 steps/μm and can be found in Fig. B.1 in

the appendix B. From a fit according to Eq. (4.18) to the data in Fig. 4.13(d), the two

conductivity components can be obtained as σ‖ = (7.4± 1.2)× 10−6 S/� and σ⊥ =
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Figure 4.13.: Four-point measurement according to the rotational square method on the Si(111)-

(7×7) sample depicted in Fig. 4.12. (a) – (c) Optical microscope images of the four tips positioned

at the corners of a square (side length 50μm). Current and voltage probes are chosen as indi-

cated. A total rotation of 180° is performed with the tips (starting and final points indicated in

(b) and (c), respectively) with multiple steps of 10° inside [rotated squares in (a)]. The direc-

tion of the step edges with respect to the tip arrangement is visualized by the STM scan (yellow

line) in (a) [not to scale]. (d) Measured angle-dependent four point resistance. A fit (red line) ac-

cording to Eq. (4.18) reveals the two conductivity components σ‖ = (7.4± 1.2)× 10−6 S/� and

σ⊥ = (8.9± 0.8)× 10−7 S/�. [Note that the angle scale in (d) is shifted with respect to the values

indicated in (a). The yellow line in (a) corresponds to the maximum position in (d)].

(8.9± 0.8)× 10−7 S/�. It is directly visible that σ‖ is very close to the value for the step-

free terrace obtained before in Fig. 4.7, while σ⊥ which includes the step contributions, is

decreased by a factor of ∼ 2 in the present case, as it is expected from Eq. (4.20) for the

actual σ‖ and an approximate doubling of the step density compared to Fig. 4.7.

4.4.3. Increased defect density of 7×7 reconstruction

Finally, the influence on the surface conductivity caused by defects in the 7×7 reconstruc-

tion should be revealed. As already seen in Figs. 4.1(b) and 4.1(c) in section 4.1.2, there

can appear some spots, where the surface is not ideally reconstructed, i.e. holes in the lat-
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tice of the 7×7 reconstruction are present, although with a small fraction in the depicted

case. For example, such defects can be caused by a too rapid quenching of the Si(111)

sample during the preparation of the 7×7 structure, as in this case the time at the transition

temperature is not sufficient to achieve a fully reconstructed surface. Nevertheless, for a

properly prepared sample, as described in section 4.1.2, in principle the amount of such de-

fects should be negligible small, which can be also proved by STM on the current surface

under study. However, if it happens that the density of such surface defects is increased

significantly, also an effect on the conductivity of the 7×7 surface may be expected. A

simple picture would be that for a very large amount of holes in the reconstruction only

very few closed current paths exist, so that the conductivity is substantially reduced. In

turn, this means that for conductivity measurements in general also the quality of the sur-

face reconstruction has to be revealed. It has always to be taken into account, besides the

step density of the substrate, as discussed before, if it is intended to determine a specific

conductivity value characterizing the reconstruction under study.

For the four-point measurements on a defective Si(111)-(7×7), a similar p-doped Si(111)

substrate as in Fig. 4.10 is used (22.5 kΩ cm) with a fresh prepared 7×7 structure, whereby

the defects have been introduced accidentally during the preparation process. Subse-

quently, STM measurements have been performed, as shown in Fig. 4.14. In Fig. 4.14(a),

the 7×7 reconstruction is resolved exhibiting a quite large amount of holes in the recon-

structed surface and several adsorbates. The fraction of holes compared to the total surface

can be estimated to be 11.5%, while the adsorbates cover 0.8% of the surface, both im-

plying that in total only 87.7% of the reconstruction is intact. The step density of the

substrate, as visible in Fig. 4.14(b), is slightly higher compared to the one in Fig. 4.10 be-

fore, and it can be determined on average to 19 steps/μm, as indicated by the height profile

in Fig. 4.14(c).

In Fig. 4.15, four-point resistance measurements have been performed on the sample de-

picted in Fig. 4.14, both by using the linear method [Fig. 4.15(a)] as well as the rotational

square method [Fig. 4.15(b)]. A fit according to the 3-layer model applied to the data in

Fig. 4.15(a) reveals a surface conductivity of σ2D = (6.1± 0.4)× 10−7 S/�. For the fit,

(a) (b) (c)

Figure 4.14.: STM images of the defective p-type Si(111)-(7×7) sample measured in Fig. 4.15. (a)

Resolved defective 7×7 reconstruction exhibiting 11.5% holes and 0.8% covered by adsorbates.

(U = −1.2V, I = 790 pA). (b) Step edges of the Si(111) substrate (U = −1.9V, I = 120 pA)

(c) Height profile as indicated in (b) which reveals an average atomic step density of 19 steps/μm.
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Figure 4.15.: Four-point resistance for the defective p-type Si(111)-(7×7) sample (22.5 kΩ cm)

depicted in Fig. 4.14, measured (a) by the linear distance-dependent method as function of the

probe distances s and x, and (b) by the rotational square method as function of rotation angle Θ.

(a) A fit according to the 3-layer model (red line) exhibits contributions from both the pure 3D case

(green line) and the pure 2D case (blue line), as indicated, and results in a surface conductivity

of σ2D = (6.1± 0.4)× 10−7 S/�. For the fit, the space charge region is described by values

(1.2× 10−3 S/m, width 22μm) originating from the calculation in Fig. 4.10(b). (b) A fit according

to Eq. 4.18 (red line) reveals the two conductivity components as σ‖ = (5.1± 0.2)× 10−7 S/�
and σ⊥ = (3.8± 0.1)× 10−7 S/�.

the calculation of the space charge region depicted in Fig. 4.10(b) is again used as input

(1.2× 10−3 S/m, width 22μm), as in the present case the p-type substrate exhibits the

same dopant concentration as before. It is observable that a substantial contribution from

the bulk (green line) appears, resulting in a deviation from the pure 2D behavior (blue

line) also for small tip distances. This is caused by the reduced value of the surface con-

ductivity which is approximately one order of magnitude smaller, when compared to the

results obtained before for samples with a similar step density, as in Figs. 4.4, 4.9 and 4.10.

Therefore, the steps can be excluded as a reason for the reduced value, which implies that

the surface itself is less conductive, e.g. due to the defects. This can be further proven

by the angle-dependent measurement in Fig. 4.15(b) which allows to disentangle the sur-
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face from the steps, and reveals from a fit [Eq. (4.18)] the two conductivity components as

σ‖ = (5.1± 0.2)× 10−7 S/� and σ⊥ = (3.8± 0.1)× 10−7 S/�. It can be seen that the

value for σ‖ is at least by a factor of 15 smaller than the results obtained before in Figs. 4.7

and 4.13. As σ‖ describes only the step-free terrace, it is reasonable to conclude that the

observed reduction in conductivity is indeed caused by the enhanced amount of defects in

the 7×7 reconstruction. In order to further verify that only the properties of the step-free

surface are changed, the step resistance can be recalculated by using additionally σ⊥ and

the step density �step. It results that

σtheo
step

(4.20)
=

�step
1
σ⊥ − 1

σ‖
= (28.3± 4.4) S/m (4.22)

which is identical to the step resistance determined before in section 4.3.

So, it can be concluded that the appearance of defects in the 7×7 reconstruction implies

a substantial reduction of the surface conductivity. In the present case, it has been re-

vealed that for an amount of only approximately 12% defects on the surface, the two-

dimensional conductivity is reduced by more than one order of magnitude, i.e. down to

σ12%def.
Si−7x7 = (5.1± 0.2)× 10−7 S/� for the step-free terraces. From a general point of

view, it is therefore important to ensure a good quality of the reconstruction under study in

order to obtain reliable conductivity values, as a defective surface may lead to an substan-

tially underestimated conductivity.

4.5. Summary

In this chapter, four-point resistance measurements based on a linear distance-dependent

tip setup have been combined with an analytically derived 3-layer conductance model,

in order to disentangle the surface conductivity on Si(111)-(7×7) surfaces from non-

surface contributions which are caused by the conductivity of the bulk and the space

charge region. The influence of atomic surface steps has been obtained by measure-

ments using the angle-dependent rotational square setup, which results in a step-free sur-

face conductivity of σSi−7×7
surf = (9± 2)× 10−6 S/� and in a atomic step conductivity of

σSi−7×7
step = (29± 9) S/m for the Si(111)-(7×7) surface. Furthermore, it has been revealed

that the type and concentration of dopants of the Si(111) substrates do not influence the

surface conductivity of the 7×7 reconstruction, as it is expected. However, if the step den-

sity on top of the substrate is increased due to a larger miscut angle, the total conductivity

of the surface which is a combination between step and terrace conductivity along the cur-

rent path, is substantially reduced, as the steps contribute by 80% to the total resistance.

A poor quality of the 7×7 reconstruction due to an enhanced amount of surface defects,

i.e. holes and adsorbates, can instantly reduce the conductivity of the step-free terrace. It

has been revealed that for approximately 12% defects on the surface, the terrace conduc-

tivity of Si(111)-(7×7) is reduced by one order of magnitude. The combined approach

presented here for the investigation of Si(111)-(7×7) comprises two quite generic mea-

surement methods, and thus, can be applied easily to various other systems with mixed
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2D-3D conduction channels, in order to allow for a determination of the corresponding

surface and step conductivities.

The results of this chapter, more specifically mainly from sections 4.1.3, 4.1.4 and 4.3, are

largely published in Ref. [103].





5. Analytical N-Layer conductance

model

In the previous chapter, it has been demonstrated that measurement data in the presence of

multiple conducting channels can be successfully described by a 3-layer model. However,

especially for the case of semiconductors this implies that only one layer is available for

modelling the space charge region which might not be very precise in general. In fact, it

is particularly the space charge region, which significantly governs the current injection

between surface and bulk channel, as it will be shown in this chapter. This motivates

the extension of the 3-layer model to a more generic model comprising N layers. In the

following, such an N -layer model for charge transport close to a surface is derived in

analogy to the formalism of the 3-layer model presented before. Moreover, the applicability

of the N -layer model is demonstrated by evaluating data from distance-dependent four-

point measurements of multiple semiconductors in combination with a calculation of the

near-surface band bending, in order to extract values for the surface conductivities.

5.1. The problem of separating conduction channels

As already motivated in the previous chapter, the separation of parallel conduction chan-

nels is a relevant task in the field of modern electronic devices. Due to the progressive

downscaling the surface-to-volume ratio increases continuously and particularly the sur-

face becomes more and more important as an additional conductance channel for charge

transport. In order to assess the influence of this surface channel on the device perfor-

mance or even functionalize the surface itself, a reliable value for the two-dimensional

surface conductivity has to be known. However, the determination from electrical four-

point measurements is quite a challenging task, as the main difficulty is to disentangle the

2D conductance at the surface from the conductance through other channels, e.g. the bulk

and the space charge layer.

Often indirect measurement methods are used for the separation of the 2D conductance at

the surface, but these methods have special requirements on the material and the prepara-

tion of the sample under study. For example, one method for separating the surface conduc-

tivity is based on the comparison of measurements before and after quenching the surface

states by adsorption of atoms or molecules [23, 79, 104–106]. The adsorption species has

to be chosen specifically for the material under study and for the quenched system sev-

eral conditions have to be carefully confirmed. First, all of the surface states have to be

quenched and, secondly, the conductivity of the near-surface space charge region has to

67
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(a) (b)

Figure 5.1.: Basic principle of the N -layer model for describing regions of different conductivity

along the z-direction by a layered structure with a constant conductivity in each layer. (a) Arrange-

ment of layers for a sample with a surface channel (red), a space charge region (blue) and a bulk

(green). An injected current distributes along several current paths (red lines), in dependence of the

conductivities of the different regions. (b) Conductivity profile σ(z) for the structure in (a). Based

on initial calculations of the space charge region, the strong z-dependent conductivity (blue line)

can be approximated by a step function (green line), while the values for surface and bulk remains

as free parameter to be determined by a fit to measurement data.

remain unchanged under the influence of the adsorbed surface layer. Thirdly, no additional

surface conductance has to be induced by the adsorbed layer. If one of these conditions is

not fulfilled, the experiments based on the difference method can result in underestimated

values for the surface conductivity.

So, it turns out that these indirect methods are not very reliable. Instead of modifying the

measurement itself, i.e. perform a special preparation of the sample, it is much more desir-

able to have a pure evaluation method, which allows to separate the conduction channels

inside a sample from standard (distance-dependent) four-point measurements obtained on

the surface. For this reason, here a generic multi-layer conductance model (N -layer model)

is presented, which is free of any measurement-related requirements. It allows for mod-

elling the measured four-point resistances on samples with regions of different conductivity

along their z-axis. For example, such different regions can be attributed to a surface chan-

nel, a space charge region caused by a near-surface band bending and a semi-infinite bulk.

By using the N -layer model these regions are approximated by a N -layered structure with

a fixed conductivity in each layer, as it is schematically shown in Figs. 5.1(a) and 5.1(b).

No special sample preparation is necessary and the model can directly be applied to the

raw data of standard distance-dependent four-point measurements. Thus, in combination

with the knowledge about the conductivity profile in the space charge region [Fig. 5.1(b)]

which can be gained easily for semiconductors by a calculation of the near-surface band

bending, this permits to directly extract a value for the surface conductivity of the specific

sample under study.

In the following section 5.2, several methods are discussed which are based mainly on

a 2-layer structure and are intended to model measurements for mixed 2D-3D conduction

channels. Moreover, the shortcomings of such 2-layer models are pointed out by emphasiz-

ing the significant influence of the space charge region on the current transport, which is vi-
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sualized by examples for the current distribution and the ratio of surface current. Secondly,

in section 5.3 the formalism of the analytical N -layer model is presented. In section 5.4,

the application of the N -layer model is demonstrated by means of distance-dependent four-

point measurements obtained with a multi-tip STM. For this purpose, several sets of data

obtained from the literature for the semiconductors Ge(100)-(2×1) and Si(100)-(2×1) with

different types and concentrations of doping are used, as well as direct measurements on

p-doped Si(111)-(7×7). From the N -layer model, values for the surface conductivities of

these materials are determined.

5.2. Composed 2D-3D conduction channels

A composed 2D-3D conduction channel, for example, arises from a combination of a con-

ductive surface on top of a conducting bulk material. The insufficiency of a description by

2-layer structures is unapparent at first glance, and therefore, will be specifically empha-

sized in the following.

5.2.1. Methods for approximating parallel channels

For pure 2D or pure 3D charge transport, analytic relations between the four-point resis-

tance and the conductivity exist (cf. chapter 3), e.g. for the equidistant probe setup

R2D
lin =

ln(2)

πσ2D

and R3D
lin =

1

2πσ3D

s−1. (5.1)

However, if a sample simultaneously consists of both channels, these two equations cannot

be applied any more.

For this purpose, often a simple approximation by a parallel-circuit consisting of the four-

point resistance of the surface and the bulk, e.g. according to Eq. (5.1) is used, i.e. [62,107]

R‖(s) =
(

1

R2D
lin

+
1

R3D
lin (s)

)−1

. (5.2)

Nevertheless, such an approach is very limited and has several shortcomings. In the par-

allel-circuit model a complete separation of the surface channel and the bulk is assumed.

Apart from the injection points, no transition of the injected current between surface and

bulk can occur, e.g. as in most cases also present immediately around the contacts. The

splitting of the current only takes place exactly at the injection points and depends on the

ratio of the four-point resistances of the two individual layers. However, the two-point

resistance, and not the four-point resistance, should determine which amount of current

flows through the surface channel and which part through the bulk [27]. Therefore, the

exact current path through the sample can depend also on details of the injection, e.g. the

contact diameter, which are not included in the parallel-circuit model. The most important

point, however, is the fact that in the approximation of the parallel-circuit model the current
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is injected equally into the surface channel and the bulk, and any influence of a possible

near-surface space charge region, which particularly exists in semiconductors, is neglected.

But especially this space charge region has a significant influence on the charge transport

through the sample, as it will be discussed in detail in the next section 5.2.2. Thus, it can be

expected that significant deviations appear, when the parallel-circuit model is compared,

for example, to a 3-layer model, as it will be demonstrated also in the next section.

A different approach presented in Ref. [31] uses an approximation for the surface current

to solve the current continuity equations for 2D and 3D resulting in a combination of both

2D and 3D conduction channels. This approach removes the artificial separation between

surface and bulk and uses a real injection geometry with extended tips, but it takes only into

account a two-layer structure consisting of the surface and the bulk, so that the results are

very similar to the parallel-circuit model. Any additional conductivity distribution between

the surface and the bulk caused by a space charge region is neglected, which is also the

major restriction in the parallel-circuit model. For this reason, the model can only be

applied, if no near-surface band bending occurs and a sharp transition between surface and

bulk exists.

Another approach published in Ref. [108] attempts to describe the deviation from a pure 3D

conductance behavior caused by an additional 2D channel with an expansion of distance-

dependent terms, and introduces an effective conductivity consisting of the bulk conductiv-

ity and a value for the deviation from the pure 3D case. However, although this model may

also be able to treat deviations caused by a near-surface space charge region, it is not suit-

able to determine a value for the surface conductivity, as the deviations from the pure 3D

conductance are only indicated by one numerical value, which cannot be easily interpreted

as a physical quantity.

In Ref. [61] a computational method is described using no longer an analytical model for

the four-point resistance but a finite element calculation for approximating the different

conduction channels in the sample. In this case, also the near-surface space charge layer

between the surface channel and the 3D bulk can be taken into account. However, as the

surface channel has only a depth of several Å, while the space charge layer may be extended

up to several μm, very different length scales are involved, so that the finite element cal-

culation of the complete sample geometry can be very sophisticated and computationally

time consuming.

5.2.2. Role of the space charge region

The best way to point out the significant role of the space charge region, which is especially

important for semiconductors, and the limited applicability of a two-layer model, like the

parallel-circuit model, is a comparison of the four-point resistance with the lowest N -layer

model including the influence of the space charge region, i.e. the 3-layer model which was

discussed in the previous chapter 4. Apart from the surface layer and the bulk region the

3-layer model uses only one additional layer to approximate the space charge region, but

despite this quite rough approximation it is able to describe four-point probe resistance
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measurements much better than the parallel-circuit model and was successfully applied

to determine the surface conductivity of the Si(111)-(7 × 7) surface, as shown before in

section 4.1.4.

5.2.2.1. Insufficiency of 2-layer models

In Fig. 5.2(a) the calculated distance-dependent four-point resistance for the Si(111)-(7×7)
surface on an n-doped substrate (700Ω cm) is shown (orange line) located between the two

limiting cases of pure surface conductance (dotted blue line) and pure bulk conductance

(dotted red line). The calculation is based on the 3-layer model with parameters obtained

in section 4.1.4, and assumes an equidistant linear tip configuration with a tip spacing

s. Using the same parameters for surface and bulk conductivity the four-point resistance

expected from the parallel-circuit model according to Eq. (5.2) is plotted as solid black

line, which exhibits a very strong deviation from the curve based on the 3-layer model. The

major reason for this behavior is the absence of the additional space charge layer between

surface and bulk in the parallel-circuit model. In the case of the Si(111)-(7× 7) surface on

an n-doped Si substrate with σB = 0.14 S/m the ratio between the average conductivity

of the space charge region σSC and the bulk can be estimated as σSC/σB = 0.002 (cf.

section 4.1.4). For smaller values of this ratio, the deviation of the 3-layer model from the

parallel-circuit model increases and the calculated four-point resistance approaches the 2D

case (magenta curve). On the other hand, if the ratio becomes larger, the deviation between

the two models decreases (green and blue curves). But only if the ratio σSC/σB is close

to 1 (red curve), the deviation between both models is so small, that the parallel-circuit

model can be used as approximation without a large error. This error is smallest, if the

near-surface space charge region vanishes completely, and in this case the parallel-circuit

model is a suitable simple approach to approximate the four-point resistance of a two-layer

structure consisting of a 2D and a 3D conduction channel.

5.2.2.2. Surface current

The significant influence of the space charge region can also be deduced from the amount of

current Isurf flowing through the surface compared to the totally injected current I . Based

on the 3-layer model, this ratio can be obtained by

Isurf
I

=
4σsurf

I

∫ ∞

0

dk
sin

(
3
2
ks
)

k

[
a(k)

(
ekzS − 1

)− b(k)
(
e−kzS − 1

)]
, (5.3)

whereby a tip distance of 3s between the current injecting tips is assumed and the co-

efficients a(k) and b(k) are given by Eq. (4.8). A derivation of a more general expres-

sion for the total amount of current inside the individual layers [Eq. (A.89)], from which

Eq. (5.3) can be obtained specifically for the surface, can be found in the appendix A.2.3.

In Fig. 5.2(b), the calculated percentage of the surface current based on Eq. (5.3) is shown

in dependence of both the conductivity ratios between space charge layer and bulk σSC/σB,

as well as surface and bulk σS z
−1
S /σB (thickness of surface layer zS ≈ 3Å). A constant
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Figure 5.2.: (a) Calculated four-point resistance of the Si(111)-(7 × 7) surface with a bulk con-

ductivity of σB = 0.14 S/m and a surface conductivity of σS = 5.14× 10−6 S/� as a function

of the equidistant probe distance s and with the ratio σSC/σB between the conductivities of the

space charge layer and the bulk as additional parameter (colored curves). The orange curve located

between the two limiting cases of pure 2D and pure 3D conductance (dotted blue and red curves)

is based on measurements (cf. section 4.1.4), while the magenta, green, blue and red curves corre-

spond to variations of the ratio σSC/σB over several orders of magnitude. The black curve results

from the description by the parallel-circuit model without considering an additional space charge

layer between surface and bulk. In the inset, the equidistant linear tip arrangement with the outer

current-injecting tips and the inner voltage-measuring tips is shown. (b) Calculated percentage of

surface current Isurf as function of the ratios σS z−1
S /σB between the surface conductivity and the

bulk (zS = 3Å), and σSC/σB between the conductivity of the space charge layer and the bulk. The

colored points correspond to the position of the curves in (a). Inside the region marked by the two

dotted lines the parallel-circuit model can be applied for describing the four-point resistance on the

surface with an error of less than 10%.

value of s = 50μm for an equidistant four-probe setup is assumed, i.e. the current tips

are spaced by 3s = 150μm. The calculation is again based on parameters obtained in

section 4.1.4 from the measurement of the Si(111)-(7× 7) surface.

For a vanishing space charge layer, i.e. σSC/σB ≈ 1, the amount of surface current ap-

proximately only depends on the ratio σS z
−1
S /σB and increases with an increasing ratio.

However, if the influence of the space charge layer becomes larger, i.e. if the ratio σSC/σB

deviates from 1, the contour lines in the plot get distorted, so that for large ratios the amount

of surface current is reduced and for small ratios enhanced. The reason for this behavior is

that the conductivity of the space charge layer controls the current injection into the bulk

below. If the near-surface band bending leads to a depletion zone or an inversion zone so

that the average conductivity in the space charge region is significantly reduced compared

to the bulk, then this region behaves as a blocking region preventing the injected current to

flow through the bulk, even if it has a very high conductivity. This results in an enhanced

surface domination of charge transport, which cannot be considered in the parallel-circuit

model. A direct visualization of the depth-dependent current density inside the sample
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(cf. Fig. 5.3) makes this fact even more obvious, as it is discussed in the following sec-

tion 5.2.2.3.

Thus, the parallel-circuit model has only a very limited applicability within a certain range

of conductivity parameters, where the space charge region does not play a significant role

for the current transport. In Fig. 5.2(b) the dotted lines indicate the region, inside which the

parallel-circuit model can be applied to four-point resistance measurements with an error of

less than 10%. Inside this region, the contour lines of the color plot are approximately per-

pendicular to the x-axis indicating that the surface current is nearly independent of the ratio

σSC/σB, which is an essential requirement for the application of the parallel-circuit model.

For comparison, the five colored points indicate the positions of the resistance curves from

Fig. 5.2(a). Only the red curve, which is very close to the parallel-circuit model, is lo-

cated inside the dotted region, while the orange curve representing a measurement of the

Si(111)-(7× 7) surface on an n-doped substrate is clearly outside the region.

5.2.2.3. Depth-dependent current density

A more direct way to visualize the significance of the space charge region on the cur-

rent transport is to plot the depth-dependent current distribution inside the sample. In

Fig. 5.3, such a simulated depth-dependent current density according to the 3-layer model

is depicted. The absolute value of the in-line component jx of the current density vector

j(x, y, z) is plotted in the xz-plane, i.e. at y = 0, as function of depth z into the sample and

lateral distance x along the tip positioning line. The simulation is based the formalism of

the 3-layer model, from which an expression for the current density in x-direction can be

derived, as it is shown in the appendix A.2.3. Specifically, for current injecting tips spaced

by 3s, it results from Eq. (A.76) for |jx(x, 0, z)| that

∣∣jx(x, 0, z)∣∣ = σ(z)

∣∣∣∣∣
∫ ∞

0

dkΦ(k, z)k

(
J1

(
k

[
x+

3

2
s

])
− J1

(
k

[
x− 3

2
s

]))∣∣∣∣∣ (5.4)

with

Φ(k, z) =

⎧⎪⎨
⎪⎩
a(k)ekz + b(k)e−kz

c(k)ekz + d(k)e−kz

f(k)e−kz

and σ(z) =

⎧⎪⎨
⎪⎩
σ1 for 0 ≤ z ≤ z1

σ2 for z1 ≤ z ≤ z2

σ3 for z2 ≤ z ≤ ∞,

(5.5)

whereby the coefficients a(k), . . . , f(k) are defined by Eq. (4.8). The calculation in Fig. 5.3

is based on the same parameters as used before in Fig. 5.2(b), e.g. as 3s = 150μm.

For the first case in Fig. 5.3(a), a very low conducting space charge layer with σSC  σB

(thickness zSC = 2.5μm) is used for the calculation, and the result shows that the majority

of the current flows through the surface layer (thickness zS = 3Å), whereas only a very

small amount of current is injected through the space charge layer into the bulk. The

current density inside the bulk material is one order of magnitude lower than in the case

of a vanishing near-surface band bending, where the space charge layer coincides with the

bulk (σSC ≈ σB), which is depicted in Fig. 5.3(b).
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Figure 5.3.: Color plots of the absolute value of the in-line component |jx(x, 0, z)| of the current

density vector j(x) in the xz-plane (y = 0) as a function of depth z into the sample and lateral

distance x along the tip positioning line. The current density is calculated from the 3-layer model

for a distance 3s = 150μm of the current-injecting tips, and for a sample with a bulk conductivity

σB = 0.14 S/m, a surface conductivity σS = 5.14× 10−6 S/� and an average thickness z2 =
2.5μm of the intermediate space charge layer. The average conductivity of the intermediate space

charge layer is varied in the three cases (a) – (c) showing the significant influence of the space

charge region on the vertical current distribution in the sample. According to the 3-layer model the

red dashed lines indicate the interfaces between the surface, the space charge layer and the bulk.

The black dotted vertical lines mark the position of the current-injecting tips on the surface. (a) In

the case of a very low conducting space charge layer with σSC  σB (σSC = 2.5× 10−4 S/m)

the majority of the current flows through the surface even if the bulk is highly conductive, as the

space charge region acts as a blockade for the injection into the bulk and an enhanced 2D transport

can be observed. (b) If σSC = σB , there is effectively no space charge region and the current flow

through the bulk takes place according to the bulk conductivity. In this case the four-point resistance

on the surface can be approximated by the parallel-circuit model. (c) If the space charge layer is

highly conductive with σSC � σB (σSC = 2.5× 102 S/m), the current flows not only through

the surface, but also equally through the space charge layer, while the current in the bulk is again

reduced.

On the other hand, if an accumulation zone is formed near the surface with a high conduc-

tivity compared to the bulk, this region can act as an additional conductance channel totally

surpassing the current flow through the bulk and also reducing the current through the sur-

face states. In this case shown in Fig. 5.3(c), where σSC � σB, the current flow through

the bulk is again reduced by an order of magnitude, while not only transport through the

surface states but also through the space charge region is now preferred equally. As the

space charge layer has a finite thickness, the current transport may seem to be purely 2-

dimensional for larger probe spacings and the usage of the parallel-circuit model for the

four-point resistance on such a system would result in a largely overestimated value for the

surface conductivity.

So, it can be concluded that the space charge region is a very important factor for both cur-

rent injection and current transport inside a sample. Thus, a 2-layer model is in general not

sufficient to describe the current transport through the individual conductance channels.

Although it results that the 3-layer model is obviously better suitable to describe measure-
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ment data over a much broader range of conductivity parameters than the parallel-circuit

model, there is still a basic restriction, namely the very rough description of the space

charge region by only a single layer. For this reason, it is useful to refine the 3-layer model

by introducing more layers, as it will be discussed in the next section.

5.3. Conductance model for N layers

Besides surface and bulk channel, the 3-layer model can offer only one remaining layer

with a fixed conductivity and thickness in order to describe the space charge region. How-

ever, especially for semiconductors which can have a very strong band bending near the

surface, this can be a major drawback, as the conductivity profile of the space charge re-

gion can exhibit a very strong dependence on the z-position. At latest for the case, when

an inversion layer is formed in the near-surface region, the rough approximation by a sin-

gle layer is not sufficient any more. The near-surface band bending and, thus, the specific

conductivity profile in the space charge region can be calculated for semiconductors quite

easily based on material parameters, as it will be discussed later on, but a conductance

model is needed which can use this information as input. Therefore, in order to allow

an approximation of such a conductivity profile by multiple layers, an N -layer model for

charge transport is introduced which exhibits a thin surface layer, N−2 layers for the near-

surface space charge region, and a semi-infinite bulk. In Fig. 5.1, it is visualized schemat-

ically, while Fig. 5.4 in the next section shows a more mathematical overview. Such a

multi-layer model was first proposed by Schumann and Gardner [99, 109, 110] and pri-

marily applied to the method of spreading resistance measurements [98,100,111], but also

extended to four-point measurements [101] for determining individual sheet conductivities.

However, as far as it is known, it has not yet been used for obtaining the conductivity of

surface states of semiconductors in combination with a calculated conductivity profile of

the space charge region as input.

A detailed description and mathematical derivation of the N -layer model is shown in the

following section 5.3.1. In section 5.3.2 the N -layer model is compared to the 3-layer

model in general and the applicability of both models is discussed.

5.3.1. Formalism

The formalism for the N -layer model is very similar to the 3-layer model presented before

in section 4.2. Thus, in the following only the principal differences will be highlighted and

discussed.

The N -layer model uses a structure as shown in Fig. 5.4 in order to describe the sample

properties. It consists of a thin surface layer, multiple intermediate layers and a semi-

infinite bulk, all of them characterized by their respective conductivities σ0, σn and σN−1,

and positions of the interfaces z0 and zn (n = 1, . . . , N − 2). At the surface a current I
is injected by a cylindrical tip with radius rt. Due to calculation requirements, the surface
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Figure 5.4.: The N -layer model consists of a layered sample structure with N layers described

by the conductivities σn and the positions of the interfaces zn (n = 0, . . . , N − 2), respectively.

The first layer 0 and the last layer N − 1 represent the surface layer and the semi-infinite bulk,

respectively. The other layers in between are used to approximate the z-dependent conductivity

profile of the space charge region. (It should be noted that all indices are shifted by −1 compared

to the 3-layer model.) The current I is injected by a cylindrical tip of radius rt at the origin on the

surface layer.

layer cannot be two-dimensional, so that again a finite thickness of one atomic layer (3Å)

is assumed. In the same way as shown in section 4.2, in order to determine the potential Φ
one starts with the Laplace equation

ΔΦ(ρ, ϕ, z) = 0 (5.6)

in cylindrical coordinates. By again considering the angle-independent polar symmetry for

one tip, the solution is basically identical to Eq. (4.3), but with the different notation for N
individual layers, the set of N equations reads in the present case as

Φ0(ρ, z) =

∫ ∞

0

[
a0(k) e

kz + a1(k) e
−kz

]
J0(kρ) dk (5.7a)

Φn(ρ, z) =

∫ ∞

0

[
a2n(k) e

kz + a2n+1(k) e
−kz

]
J0(kρ) dk, n = 1, . . . , N−1 (5.7b)

ΦN−1(ρ, z) =

∫ ∞

0

a2N−2(k) e
−kz J0(kρ) dk (5.7c)

with the 2N−1 independent coefficients a0(k), . . . , a2N−2(k) and the Bessel function J0. It

should be noted that in comparison to Eq. (4.3) for the 3-layer model all indices are shifted,

i.e. starting for the surface layer with 0 and not with 1 . The corresponding 2N−1 boundary

conditions are

σ0
∂

∂z
Φ0(ρ, 0) = −j0 H(rt − ρ) , (5.8a)

σn−1
∂

∂z
Φn−1(ρ, zn−1) = σn

∂

∂z
Φn(ρ, zn−1) , (5.8b)

Φn−1(ρ, zn−1) = Φn(ρ, zn−1) , (5.8c)

σN−2
∂

∂z
ΦN−2(ρ, zN−2) = σN−1

∂

∂z
ΦN−1(ρ, zN−2) , (5.8d)
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ΦN−2(ρ, zN−2) = ΦN−1(ρ, zN−2) , (5.8e)

which result again from the condition of current injection [Eq. (5.8a)] and continuity of

both potential [Eqs. (5.8c), (5.8e)] and current density [Eqs. (5.8b), (5.8d)]. Also, the

injected current density is again given by j0 = I
π r2t

(uniform flux condition) for a tip with

radius rt ≈ 25 nm.

In basically the same way, as shown explicitly in section 4.2 for the 3-layer model, a

matrix equation determining the coefficients a0(k), . . . , a2N−2(k) can be derived from

Eqs. (5.8a) – (5.8e), resulting in⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 · · · · · · · · · · · · 0

A0,1 0 0 · · · · · · · · · 0
0 0 · · · · · · · · · 0

0 0
A1,2 0 0 · · · · · · 0

0 0 0 0 · · · · · · 0
...

... 0 0 . . .
0 0 · · · ...

0 0 0 0 0 0 · · · 0
0 0 · · · 0 0

An−1,n 0 0 0
0 0 · · · 0 0 0 0 0
0 0 · · · · · · 0 0 . . .

0
...

... · · · · · · 0 0 0
0 0 · · · · · · · · · 0 0

B
0 0 · · · · · · · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0(k)
a1(k)
a2(k)
a3(k)
a4(k)

...

a2n−2(k)
a2n−1(k)
a2n(k)
a2n+1(k)

...

a2N−3(k)
a2N−2(k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I(k, σ0)
0
0
0
0
...

0
0
0
0
...

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.9)

with the submatrices

An−1,n =

(
σn−1

σn
−σn−1

σn
e−2kzn−1 −1 e−2kzn−1

1 e−2kzn−1 −1 −e−2kzn−1

)
(5.10)

and

B =

(
σN−2

σN−1
−σN−2

σN−1
e−2kzN−2 e−2kzN−2

1 e−2kzN−2 −e−2kzN−2

)
, (5.11)

and the expression

I(k, σ0) = − j0
σ0

∫ rt

0

ρ J0(kρ) dρ . (5.12)

Eq. (5.9) can be solved by means of numerical matrix inversion of the (2N−1)× (2N−1)
matrix.

For the potential at the surface, the same considerations apply, as shown before in Eq. (4.10)

and Eqs. (4.12) – (4.15) in section 4.2, except that the sum of the coefficients a(k) + b(k)
for the 3-layer model has to be replaced by a0(k) + a1(k) in the N -layer case. Thus, in
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analogy to Eq. (4.16), the four-point resistance for a linear equidistant probe setup with

spacing s can be expressed in the present case as

RN−lay
lin (s) =

2

I

∫ ∞

0

[
a0(k) + a1(k)

][
J0(ks)− J0(2ks)

]
dk . (5.13)

In Eq. (5.13), the numerical matrix inversion for obtaining the coefficients a0(k) and a1(k)
has to be performed for each single value of k, in order to allow the evaluation of the

integral over the Bessel functions. Thus, the calculation can be very time consuming for a

large number of layers, especially when the result is fitted to four-point measurement data.

Moreover, the conductivities σn and interface positions zn of all N layers are far too many

free parameters for being determined by a single fit. Therefore, the depth-dependent con-

ductivity profile σSCL(z) of the space charge region has to be calculated before, based on

the solution of Poisson’s equation using basic material parameters like the Fermi level pin-

ning of the surface states, the band-gap, the effective masses, the mobilities and the bulk

doping concentration and type [88]. A more detailed overview about near-surface band

bending will be given in the next chapter 6, and particularly, in section 6.4.1 the determi-

nation of the z-dependent charge carrier concentrations for the case of a semi-infinite bulk

material will be discussed. Based on these results the conductivity profile can be calculated

by [88]

σSCL(z) = e
[
μnn(z) + μpp(z)

]
(5.14)

with the charger carrier densities n(z) for electrons and p(z) for holes, and the correspond-

ing mobilities μn and μp, respectively. The approximation of such a conductivity profile

σSCL(z) by a step-like function of (N −2) steps, which is obtained by the condition of

a vanishing integrated deviation for each step1 [cf. insets of Fig. 5.5(a) and 5.5(b)], then

determines the values for the parameters σ1, . . . , σN−2 and z1, . . . , zN−2 as input for the

N -layer model.

The thickness of the surface layer z0 determines the vertical extension of the surface states

and can be approximated by the thickness of one atomic layer. However, it turns out that

a variation in the range from 1Å to 1 nm does not significantly change the obtained value

for the surface conductivity and results only in a small deviation below 1%. The value for

the bulk conductivity σN−1 can be determined by macroscopic resistivity measurements

and should be in agreement with the nominal doping concentration. Finally, only one free

parameter remains to be determined by a fit to measurement data, which is the surface

conductivity σ0.

The error on σ0 is obtained from the fitting error in the framework of the N -layer model.

As input for the fit, errors for the tip positions, the measured four-point resistance, the

calculated conductivity profile for the space charge region and the bulk conductivity are

used. As the calculation of the band bending uses several approximations, it is reasonable

to assume a larger error on the obtained conductivity profile. However, it shows that even

1Each step is chosen such that the integrated differences between the step-like function and the conductivity

profile (for this specific step) vanish.
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a relative error of 50% leads only to an error of approximately 5% to 15% in the surface

conductivity. The exact value depends both on the shape of the conductivity profile and

on the absolute values for the surface and bulk conductivity. For example, if the current

transport is mostly surface or bulk dominated, a large error for the calculated conductivity

profile does not have much influence on the obtained surface conductivity value. On the

other hand, if the space charge region forms an inversion layer, the exact shape of the

conductivity profile is more important, as it controls the current injection into the bulk.

Nevertheless, for the conductivity profiles shown in Figs. 5.6 – 5.9, the relative error is

assumed to be below 50%, so that the resulting errors on the surface conductivity fit well

in the denoted error limits of the values.

5.3.2. Comparison of 3-layer model and N-layer model

If the N -layer model is directly compared to the 3-layer model, the obvious main difference

is the more detailed description of the space charge region in the framework of the N -layer

model. However, in order to apply the N -layer model, it is necessary to know the exact

z-dependence of the conductivity in the space charge layer, as otherwise there are far too

many fit parameters, i.e. two for each layer. The z-dependent conductivity profile can

be obtained by a calculation using basic material parameters, which are well known for

semiconductors. However, if other material systems are studied, these material parameters

might not be known exactly and the calculation of the conductivity profile might be difficult

or not possible. Also if the preparation method of the sample influences the near-surface

doping concentration, the calculated conductivity profile might be not very accurate. In

these cases, the N -layer model cannot be used, but a description of the measured four-point

resistances by the 3-layer model is still possible, as here the average conductivity and the

average width of the space charge region are only two single fit parameters, which can be

obtained by a fit to the resistance data. Certainly, the description of the space charge region

is now much more approximated, but nevertheless it is possible to obtain an approximate

value for the surface conductivity for the studied material from the 3-layer model. A further

point concerning the applicability of the 3-layer and N -layer model is that the difference

between the two models also depends on the shape of the space charge region conductivity

profile and the values of the surface and bulk conductivity. If the transport is mostly surface

or bulk dominated, then the 3-layer model might be precise enough. But, if the space charge

region contributes significantly to current transport in lateral direction, then the description

by the 3-layer model might not be sufficient any more. Also if the space charge region

consists of an inversion layer, the approximation by a single step function cannot be very

precise and the N -layer model has to be used instead.

In order to demonstrate and visualize the possible differences between the 3-layer and N -

layer model with different number of layers N for two cases of sample parameters, a sim-

ulation of the distance-dependent four-point resistance is shown in Fig. 5.5. In Fig. 5.5(a)

the calculated four-point resistance is plotted as function of the equidistant probe spacing

based both on the 3-layer model and the N -layer model with N = 40 for different values

of the surface conductivity. In the inset the step-like approximations of the space charge
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Figure 5.5.: (a) Calculated four-point resistance for different values of the surface conductivity

(colored curves) as function of the equidistant probe distance s based on the 3-layer model (dashed

lines) and the N -layer model (solid lines) with N = 40. The calculation parameters for the bulk

conductivity and the space charge layer profile are based on the n-type, almost intrinsic Ge sample

(45Ω cm) shown in Fig. 5.7. The blue curves correspond to the four-point resistance in the equidis-

tant setup using the measured value of σ0 = 3.4× 10−4 S/� according to Fig. 5.7(a), while the

green and red curves show the expected four-point resistance for a reduced surface conductivity

value by a factor of 10 and 100, respectively. In the inset, the conductivity profile of the space

charge layer (red curve) and both the approximations by the 3-layer model (blue) and the N -layer

model (green) are shown. (b) Calculated four-point resistance based on different multi-layer models

with different number of layers N (colored curves) as function of the equidistant probe spacing s.

For the calculation an n-doped sample with a bulk resistivity of 10Ω cm and a surface conductivity

of 1.6× 10−7 S/� is assumed. The resulting calculated space charge conductivity profile exhibit-

ing a strong inversion zone is shown in the inset (black curve). The step-like approximations for the

different values of N are indicated by the dashed and solid colored curves.

layer for N = 3 and N = 40 are depicted exhibiting an equal area below the curves.

The calculation is based on the values of the n-type, almost intrinsic Ge sample shown in

Fig. 5.7 and only the surface conductivity is varied by a factor up to 100 for the different

colored curves. The blue curve corresponds to the measurement data in Fig. 5.7 (only the
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four-point resistance for an equidistant probe setup is now plotted) and the difference be-

tween the description by the 3-layer and N -layer model is quite small. The error in the

obtained surface conductivity is below 3% and so fits well in the denoted error limits given

in Fig. 5.7. The reason for the small difference is the high surface conductivity of the Ge

samples compared to the near-surface conductivity of the inversion layer. So, the transport

is mostly surface dominated and the space charge region does not contribute significantly to

the current transport in lateral direction. This enables the rough description of the increas-

ing near-surface conductivity by only a single value, as shown in the inset in Fig. 5.5(a),

without producing a large error. However, if the surface conductivity is reduced by a factor

of 10 or 100, the contribution of the space charge region to the lateral current transport in-

creases and the near-surface conductivity has to be taken into account more precisely. This

is visualized by the green and red curves showing an increasing deviation between 3-layer

and N -layer model for decreasing surface conductivity. For the green curve the error on

the surface conductivity would be approximately 13%, while in the case of the red curve

it would be already approximately 20%. This shows that the 3-layer model can be suitable

in some cases, but in general the N -layer model is more precise and takes into account

more information about the sample. So, if the N -layer model is usable, i.e. if the material

parameters are known, it should be preferred.

Fig. 5.5(b) shows a calculation based on the N -layer model for different number of layers

N . Again the four-point resistance is plotted as function of the equidistant probe spacing

s. In order to demonstrate the difference compared to the 3-layer model, a strong inversion

layer (inset) and a small surface conductivity of σS = 1.6× 10−7 S/� were chosen. In this

case, the 3-layer model cannot describe the conductivity profile properly, and the expected

four-point resistance (blue curve) deviates strongly from the calculated resistance based on

the N -layer model with N = 40 (red curve), which describes the conductivity profile very

precisely. Compared to N = 40, the usage of only the 3-layer model would result in this

case in a large relative error of 2.2 for the obtained surface conductivity. If more than 3
layers are used, the error decreases rapidly. In the case of N = 4 and N = 5 layers the

error for the surface conductivity would be approximately 20% compared to the detailed

description by the N = 40 layer model. If the number of layers is increased up to N = 12,

the error reduces to only 2%. This shows that a further increase of the layer number would

not increase significantly the precision of the obtained surface conductivity values, and that

already a quite small number of layers (10 to 20 layers) is suitable to obtain values with a

small error, which reduces the time consumption for the calculations. Certainly, the form

and the extent of the space charge region has a significant influence of the required number

of layers, so that it should be chosen specifically for the sample system under study.

In the following section, the application of the N -layer model is demonstrated.

5.4. Application of the N-layer model

The advantage of the N -layer model is that it can be used for evaluation of all distance-

dependent four-probe resistance measurements without the need of any special sample
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preparation before the measurement, e.g. in order to quench the surface states [79, 104–

106], or special measurement conditions, e.g. varying the temperature [83, 112, 113]. For

this reason, the N -layer model is applied first to some already published data of the semi-

conductor surfaces Ge(100) and Si(100), which were described previously by either pure

2D or pure 3D conductance, but not by a mixed transport channel. In combination with the

N -layer model, it is now possible to take into account simultaneously the current transport

through the 2D surface and through the 3D bulk, both influenced by the presence of the

near-surface space charge layer. So, in the end, the surface conductivities of the materials

can be determined from these standard four-point measurements only by a reevaluation of

the data. Additionally, the N -layer model is also applied to measurements of the Si(111)-

(7×7) structure on p-doped Si(111), which were already discussed in the sections 4.4.1.2

and 4.4.3, but should now be evaluated more precisely by using the N -layer model.

5.4.1. Germanium(100)-(2×1) surface

Distance-dependent four-point transport measurements on the Ge(100) surface were pub-

lished by Wojtaszek et al. [28]. They used a room-temperature, ultra-high vacuum multi-tip

STM and carried out four-point resistance measurements on Ge(100) substrates with differ-

ent bulk doping concentration and type. A symmetric linear probe configuration was used,

where the outer current-injecting tips have a distance D and the inner voltage-measuring

tips are separated by the distance s. The complete setup is symmetric with respect to

the centre plane of the tip positioning line. In Fig. 5.6(a), the experimental data for a p-

type Ga-doped sample with a nominal bulk resistivity of (0.1− 0.5)Ω cm are shown [28].

The measured four-point resistance is plotted as a function of the spacing s between the

voltage-measuring tips and with the distance D between the current-injecting tips as addi-

tional parameter. In the framework of the publication [28], these data were described by a

pure 3D conductance channel. However, it was mentioned that there were some systematic

deviations from the 3D model, which increasingly appear, if the voltage-measuring tips

approach the positions of the current-injecting tips, i.e. s/D ≥ 0.7, but the origin of these

deviations could not be explained quantitatively. In fact, for the symmetric linear tip con-

figuration, it is particularly the region with a ratio s/D close to 1, where the setup is most

sensitive to surface transport and a possible surface conductance channel would have the

most influence on the measured four-point resistance. So, it is reasonable to assume that

the observed deviations are caused by an additional 2D conductance channel through the

surface states of the Ge(100)-(2×1) surface, which cannot be considered by the pure 3D

model.

In order to describe this additional 2D transport channel more quantitatively, the existing

data are evaluated with the N -layer model. First, the near-surface band bending of the

p-type Ge(100) sample is calculated by solving Poisson’s equation and using a Fermi level

pinning at the surface of ∼ 0.11 eV above the valence band [114–116]. For the calculation

of the conductivity, the z-dependent mobility is approximated by the constant bulk value, as

the variation in the mobility is much less than the variation in the exponentially dependent

charge carrier density. Also a constant bulk doping concentration is assumed and variations
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{

Figure 5.6.: (a) Four-point resistance of a p-doped Ge(100) sample [nominal bulk resistivity (0.1−
0.5)Ω cm] as function of probe distance s between the inner voltage-measuring tips [28]. Different

colored data points correspond to different distances D in the symmetric linear tip configuration

shown in the inset. The solid lines represent one single fit to all data points using the N -layer model

for charge transport, which results in σS = (2.9± 0.6)× 10−4 S/� and ρB = (0.22± 0.01)Ω cm.

The dotted lines indicate the expected four-point resistances for a vanishing surface conductance

channel, i.e. σS = 0, taking into account only the space charge region and the bulk. (b) The

calculated conductivity profile of the space charge layer as function of the depth z into the sample

starting from the surface. This profile is approximated with N = 20 layers and used as input for

the N -layer model. The band diagram in the inset shows the surface pinning of the Fermi level EF

(red) located 0.11 eV above the valence band edge and the resulting near-surface band bending of

the conduction band EC (green) and the valence band EV (blue).

in the static charge density, e.g. caused by ion diffusion, are not taken into account, as

this process is usually not known. However, if the nature of ion diffusion is known, the

modified z-dependent bulk dopant distribution can be included in Poisson’s equation for the

calculation of the band bending. Fig. 5.6(b) shows the resulting calculated depth-dependent

conductivity profile of the space charge region consisting of a near-surface accumulation

layer. This conductivity profile is approximated by a step function of (N − 2) steps (N =
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20) determining the values for σn and zn to be used as input for the N -layer model (further

details details in section 5.3). For the symmetric linear tip setup the four-point resistance

according to the N -layer model is based on Eq. (4.15) and can be expressed as function of

s and D by the equation

RN−lay
lin,sym(s,D) =

2

I

∫ ∞

0

[
a0(k) + a1(k)

] [
J0

(
k
D − s

2

)
− J0

(
k
D + s

2

)]
dk (5.15)

which is fitted to the measurement data resulting in the colored solid curves shown in

Fig. 5.6(a). All four curves for the different values for the distance D correspond to only a

single fit with the surface conductivity σS and the bulk conductivity σB confined close to

the range of the nominal values as free parameters. As the conductivity profile of the space

charge region also depends on the bulk conductivity, an iterative fitting process is applied,

which includes the calculation of the space charge region and the fit to the data in each it-

eration. For values of σS = (2.9± 0.6)× 10−4 S/� and ρB = σ−1
B = (0.22± 0.01)Ω cm

the iterative process converges and the best fit is obtained describing the data very precisely

throughout the complete measurement range without any systematic deviations. A further

advantage is the resulting single value for each of the parameters σS and σB, which is suf-

ficient to describe precisely all four resistance curves for the different distances D. In the

case of a pure 3D model, as it is used for the fitting process in Ref. [28], it is not possible

to model all four data sets with only one value for the bulk conductivity σB. The 3D fit has

to be applied separately to each curve resulting in different values for σB spreading by a

relative deviation of ∼ 25%. However, the measured bulk conductivity should not change

during the variation of the tip configuration by the distance D on the same substrate.

This reveals that, even if the transport in the sample is mostly 3D dominated due to the

highly conductive bulk and the weak accumulation zone near the surface, a description of

the data by a pure 3D model is not sufficient and an additional 2D channel has to be taken

into account.

For validating the results for the additional surface conductance channel and ensuring that

the observed amount of two-dimensional conductance is not merely caused by the near-

surface accumulation layer, the dotted colored curves in Fig. 5.6(a) correspond to the ex-

pected four-point resistance for a vanishing surface channel. In these curves, only the bulk

conductivity and the conductivity profile of the space charge region according to Fig. 5.6(b)

are taken into account, while the value for the surface conductivity σS is set to zero. The

clearly visible deviation of the dotted curves from the measurement data verifies that an

additional 2D surface conductance channel is necessary for describing the measured four-

point resistance, and, therefore, proves the existence of conducting surface states.

Fig. 5.7(a) shows similar distance-dependent four-point resistance measurements on an n-

type doped, almost intrinsic Ge(100) sample with a nominal bulk resistivity of ∼ 45Ω cm
[28]. As the measurement data show an enhanced two-dimensional character of conduc-

tance, a pure 2D model was used in Ref. [28], which was justified by the presence of a

near-surface inversion layer totally preventing the current to be injected into the bulk and

acting as a 2D channel, which confines the current close to the surface. However, any pos-

sible presence of an additional 2D surface channel caused by surface states was neglected.
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Figure 5.7.: (a) Four-point resistance of an n-type doped, almost intrinsic Ge(100) sample (nomi-

nal bulk resistivity ∼ 45Ω cm) as function of probe distance s between the inner voltage-measuring

tips [28]. Different colored data points correspond to different distances D in the symmetric linear

tip configuration [inset in Fig. 5.6(a)]. The solid lines represent a single fit to all data points using

the N -layer model for charge transport (N = 20), which results in σS = (3.4± 0.2)× 10−4 S/�
and ρB = (45± 22)Ω cm. The dotted lines correspond to the expected four-point resistances with-

out any surface channel (σS = 0) taking into account only the bulk and the space charge region.

(b) Calculated conductivity profile of the space charge region as function of the depth z from the

surface (red line). The approximated profile (green line) is used as input for the N -layer model. In

the upper inset, the complete range of the conductivity profile of the space charge region exhibiting

a shape of an inversion layer is shown. The lower inset depicts the surface pinning of the Fermi

level EF (red) and the induced near-surface band bending of the conduction band EC (green) and

the valence band EV (blue).

In this case, a further disentanglement between the conductivity of the near-surface p-type

part of the inversion layer and the surface conductivity would be required.

So, it is tried again to describe the measurement data with the N -layer model. The cal-

culated conductivity profile of the space charge region shows the expected inversion layer

depicted in Fig. 5.7(b). For the calculation, the transition region between p-type and n-type
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of conduction has not been taken into account and only the absolute value of the conductiv-

ity is considered, but, as the majority of the current flows through the near-surface p-type

part of the inversion layer and through the surface channel, this approximation should be

suitable in the present case. The conductivity profile is described by a step function (green

line) and used in combination with the N -layer model for a fit to the data according to

Eq. (5.15). In Fig. 5.7(a), the two solid curves result from a single fit with the parameters

σS = (3.4± 0.2)× 10−4 S/� and ρB = σ−1
B = (45± 22)Ω cm, and describe the data

very precisely. For verification, the dotted lines shown in Fig. 5.7(a) again represent the

expected four-point resistance without any additional surface channel (σS = 0). The very

strong deviation from the measurement data indicates clearly that the observed transport

behavior cannot only be caused by the enhanced conductivity close to the surface due to

the inversion layer, but that there has to be an additional surface conductance channel also

on the n-type sample.

If the results for the p-type and n-type Ge(100) samples are compared, the values for the

obtained surface conductivity coincide within the error limits. This is expected, as the

surface states should not be influenced by the doping type of the substrate. Thus, this is

another confirmation that really the conductivity of the surface states was determined. By

combining the results of the p- and n-type sample, a more precise value for the surface

conductivity of the Ge(100)-(2×1) surface of σS,Ge(100) = (3.1± 0.6)× 10−4 S/� can be

obtained.

5.4.2. Silicon(100)-(2×1) surface

Distance-dependent four-point resistance measurements on p-type and n-type doped

Si(100) substrates were carried out by Polley et al. [27]. For the measurements, a room

temperature, ultra-high vacuum multi-tip STM was used with a linear equidistant tip con-

figuration with spacing s between adjacent tips. The current was injected by the outer

tips and the potential drop between the inner tips was measured. In Fig. 5.8(a), the mea-

sured four-point resistance is shown as a function of the tip distance s for an n-type (blue

points) and a p-type (red points) Si(100) substrate both with a nominal bulk resistivity

of (1 − 10)Ω cm. Although the bulk doping concentrations of p- and n-type sample are

similar, the observed transport behavior is completely different. In the p-type case, a 3D

conduction channel is more dominant, while in the n-type case the majority of current flows

through a 2D transport channel. Again, this was explained by the presence of an inversion

layer in the n-type sample preventing the current to flow through the bulk. So, the measured

data were described in Ref. [27] by a pure 3D conductance model for the p-type substrate

and by a pure 2D model in the n-type case. However, this approach cannot consider any

possible mixed 2D-3D conductance channels through the space charge region and the bulk

in both samples, and, especially, neglects the two-dimensional surface state, which should

be present on the Si(100)-(2×1) surface [117].

For refining the description of the measured data on the Si(100) substrates and for deter-

mining a value for the conductivity of the Si(100)-(2×1) surface state, the N -layer model

is used. Figs. 5.8(b) and 5.8(c) show the corresponding conductivity profiles of the space
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Figure 5.8.: (a) Four point resistance of a p-doped (red) and n-doped (blue) Si(100)-(2×1) sam-

ple [nominal bulk resistivity (1 − 10)Ω cm] as function of the equidistant probe distance s re-

produced from Ref. [27]. Fits to the data based on the N -layer model are depicted by the solid

lines resulting in σS = (1.9± 1.4)× 10−4 S/� and ρB = (7.5± 0.9)Ω cm (p-doped), and in

σS = (1.6± 0.4)× 10−4 S/� and ρB = (10.0± 7.5)Ω cm (n-doped). The dotted lines corre-

spond to the case of a vanishing surface channel (σS = 0). The inset shows the equidistant tip

configuration. (b),(c) Calculated conductivity profiles of the space charge region for the p- and n-

doped samples (red curves). The approximation by N = 20 layers (green curves) is used for the

N -layer model. In the insets, the near-surface band bending of the conduction band EC (green) and

the valence band EV (blue) caused by the surface pinning of the Fermi level EF (red) due to the

surface states located ≈ 0.31 eV above the valence band edge is shown.

charge region for the p-type and n-type Si(100) substrates, respectively. For the calcula-

tion, a Fermi level pinning of the surface states of ∼ 0.31 eV above the valence band is

used [83, 117, 118]. In the p-type case, a depletion zone is formed close to the surface,

while in the n-type case an inversion layer separates the bulk from the near-surface re-

gion. Again, the pn-transition is not considered for the inversion layer, as the n-type bulk

does not contribute significantly to current transport. The approximation of the conductiv-

ity profiles (green curves) is used as input for fitting the respective measurement data in

Fig. 5.8(a) according to Eq. (5.13). The results are depicted as solid curves in Fig. 5.8(a).
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For the p-type sample the fit parameters are σS = (1.9± 1.4)× 10−4 S/� for the surface

conductivity and ρB = (7.5± 0.9)Ω cm for the bulk resistivity, which is confined to the

range of the nominal value. In the n-type case, the values are σS = (1.6± 0.4)× 10−4 S/�
and ρB = (10.0± 7.5)Ω cm. The dotted colored curves in Fig. 5.8 correspond again to

the case of a vanishing surface conductivity, and show a large deviation for the n-doped

sample, while in the p-doped case the deviation is quite small, as the current transport is

mostly bulk dominated. So, the four-point resistance measurement for the p-type sample

in the chosen tip distance range is not very surface sensitive, and the determined value

for the surface conductivity has quite a large error, even if the curve fits quite well to the

data. The fitted curve for the n-type substrate shows some larger deviations due to a larger

spread and a slight increasing behavior of the data, which might be caused by tip position-

ing errors or influence of the sample edges. Also averaging of measurement results from

several samples rather than using single samples can lead to the visible behavior of the data.

However, the obtained value for the surface conductivity is more precise, as the transport

behavior in the n-type sample is now more dominated by the near-surface region. So, as

both values are still consistent within the error limits, the value resulting from the n-type

sample can describe the conductivity of the Si(100)-(2×1) surface state more precisely as

σS,Si(100) = (1.6± 0.4)× 10−4 S/�.

5.4.3. Silicon(111)-(7×7) surface

Finally, the N -layer model is applied to data measured on the Si(111)-(7×7) surface (p-

type substrate, 22.5 kΩ cm) which have been evaluated before by using the 3-layer model,

as depicted in the Figs. 4.10(a) and 4.15(a) in the sections 4.4.1.2 and 4.4.3, respectively.

These measurements should now be reevaluated in order to examine, if a description by

the more precise N -layer model will result in a modified value of the determined surface

conductivity. In Fig. 5.9(a) and 5.9(b), the distance-dependent four-point measurements

in the linear setup, corresponding to Fig. 4.10(a) and 4.15(a), respectively, are depicted

with a fit (red line) originating from the N -layer model. This time, for modelling the

space charge region, a much more precise approximation of the strongly depth-dependent

conductivity profile which is caused by the near-surface inversion zone, is achieved by

using 28 layers in total, as it is shown by the green step function in Fig. 5.9(c). It is visible

that in both cases the fits describe the data as well as before with the 3-layer model and

also no substantial deviations for the surface conductivities appear. While for Fig. 5.9(a)

the fitted value σ2D = (3.8± 0.3)× 10−6 S/� is exactly identical with the one obtained

before, the second conductivity value σ2D = (6.4± 0.3)× 10−7 S/� in Fig. 5.9(b) differs

slightly compared to the 3-layer model. However, the observed deviation is quite marginal

and still within the error tolerances. So, it can be concluded that for the present cases the

exact profile of the space charge region does not substantially influence the actual current

transport in the sample, so that even a very rough approximation of the existing inversion

zone by only one layer with fixed conductivity, as performed for the 3-layer model, is

sufficient in order to obtain a precise result for the surface conductivity. From a general

point of view, this shows that in some cases also a modelling by the more simple and
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Figure 5.9.: Distance-dependent linear four-point measurements on p-type Si(111)-(7×7) samples

(22.5 kΩ cm) which have been described before by the 3-layer model, are reevaluated by using the

N -layer model. A more precise approximation of the conductivity profile in the space charge region

by 28 layers is used (c). (a) Measurement data shown before in Fig. 4.10(a) in section 4.4.1.2. A fit

by the N -layer model (red line) results in the same value σ2D = (3.8± 0.3)× 10−6 S/� as before.

(b) Measurement data shown before in Fig. 4.15(a) in section 4.4.3. A fit by the N -layer model (red

line) results in a slightly different value of σ2D = (6.4± 0.3)× 10−7 S/� compared to before.

(c) Calculation similar to Fig. 4.10(b), but now with an approximation by 28 layers (stepped green

curve).

easier applicable 3-layer model is as effective as by the more complicate N -layer model.

However, this depends on several parameters, i.e. the absolute conductivity values and

ratios between the involved conduction channels in the sample, so that it has to be verified

individually for every sample under study.

5.5. Summary

In this chapter, an analytically derived N -layer model for current transport through multi-

ple layers of different conductivity has been presented with the aim to interpret distance-

dependent four-point resistance measurements on semiconductor surfaces more precisely.

Such a model especially allows for a better approximation of the space charge region, based
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Surface reconstruction Surface conductivity σS

Si(100)-(2×1) (1.6± 0.4)× 10−4 S/� [Sec. 5.4.2]

Ge(100)-(2×1) (3.1± 0.6)× 10−4 S/� [Sec. 5.4.1]

Si(111)-(7×7) (8.6± 1.9)× 10−6 S/� [Sec. 4.1.4]

Bi/Si(111)-(
√
3×√

3)R30◦ (1.4± 0.1)× 10−4 S/� [Sec. 4.1.3]

Ag/Si(111)-(
√
3×√

3)R30◦ (3.1± 0.4)× 10−3 S/� [120]

Table 5.1.: Surface conductivities of different reconstructed and passivated surfaces of silicon and

germanium.

on calculated data of the near-surface band bending. As motivation, the important role of

the space charge region for the current distribution in a sample has been emphasized and

the insufficiency of 2-layer conductance models neglecting this region completely has been

discussed, e.g. by the fact that already the lowest case of an N -layer model (i.e. N = 3)

in general allows for a much better description of four-point resistance data than the often

used parallel-circuit model. The formalism for the N -layer model and a discussion about

a reasonable number of layers has been performed. Moreover, the application of the N -

layer model has been demonstrated, both by the example of already published data from

the semiconductor surfaces Ge(100)-(2×1) and Si(100)(2×1) [28], as well as by using

data from the Si(111)-(7×7) surface, in the latter case with the aim to refine the evalu-

ation obtained already before with the 3-layer model. From all considered measurement

data, the conductivities of the surface states of the corresponding materials haven been

determined, as summarized in Tab. 5.1. For comparison, some additional surface conduc-

tivities of other reconstructed and passivated Si(111) surfaces are also listed. In total, the

presented evaluation method for four-probe resistance measurements by using an N -layer

conductance model is quite generic and, thus, can be easily applied to data from vari-

ous materials in order to determine the corresponding surface conductivities from standard

distance-dependent transport measurements.

Most of the results from this chapter, except for section 5.4.3, are published in Ref. [119].

Additionally, the N -layer-model depicted in section 5.3 is conceptually described in the

publication in Ref. [44].



6. Parasitic conduction channels in

topological insulator thin films

Up to now, only systems with a single 2D conduction channel have been considered, whose

conductivity should be extracted from measurements supported by theory, i.e. bulk semi-

conductors with 2D surface states and an (extended 3D) space charge region in between.

However, if a system features more than one 2D channel in parallel, it is much more com-

plicated to disentangle them. In the present chapter, this problem is addressed for the

example of thin film systems with topological insulator (TI) materials. Thin films of topo-

logical insulators usually exhibit multiple parallel conduction channels for the transport of

electrical current. Beside the topologically protected surface states (TSS), parallel channels

may exist, namely the interior of the not-ideally insulating TI film, the interface layer to

the substrate, and the substrate itself. It is an important issue to minimize the influence of

such parasitic parallel channels, in order to be able to take advantage from the auspicious

TSS properties for the current transport.

While interface and substrate channel can be characterized experimentally before film

growth, as shown later on, particularly the conductivity of the interior (bulk) of the thin

TI film is difficult to access by measurements. Hence, for this part, a theoretical approach

is presented here which consists in a calculation of the the near-surface band bending

in the TI film, and thus the mobile charge carrier density, based on parameters obtained

from surface-sensitive experimental methods, i.e. (gate-dependent) four-point resistance

measurements and angle-resolved photoelectron spectroscopy (ARPES). While in most

cases such calculations are prevented by the usually unknown concentration of uninten-

tional dopants inside the TI material, specifically for the thin-film limit it turns out that

the band bending is largely independent of the dopant concentration in the film. Thus, a

well-founded estimate of the total mobile charge carrier density and the conductivity of the

interior of the thin TI film proves possible. Hence, in combination with the conductivities

of the other parasitic channels, this finally gives rise to the possibility to disentangle the

important TSS channel from measurements, e.g. by means of a multi-layer conductance

model.

6.1. Parallel conduction channels in thin film systems

Topological insulators are candidates for future electronic devices and might be used for

low-power spintronics or quantum computing, due to the special properties of their topo-

logically protected surface states (TSS), such as spin-momentum locking and prohibited di-

91
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Figure 6.1.: Multiple parallel conduction channels in a topological insulator thin film. The current

transport can occur through the top and bottom TSS channels, but also through the interior of the

TI film, through the interface layer between film and substrate as well as through the substrate

itself. Position-dependent four-probe measurements on the surface can only differentiate between

the total 2D conductivity, i.e. the sum of all parallel channels in the thin film, and the 3D substrate

conductivity. Note that different from the schematic the film thickness (∼ nm) is much smaller than

the usual distance between the tips (∼ μm).

rect backscattering [121,122]. In recent years, the compound materials Bi2Se3, Bi2Te3 and

Sb2Te3, which belong to the class of van-der-Waals bonded chalcogenides, have emerged

as promising TI for applications at room temperature, essentially because of their pro-

nounced band gap [121, 123]. However, for taking advantage of the topological properties

of the TI in any transport device, the electrical current has to be transmitted predominantly

through the TSS. But for TI bulk crystals the parallel bulk conductance plays a signifi-

cant role. In fact, the transport through this parasitic channel may even surpass the current

transport through the TSS, as has been observed recently [30, 124]. While the influence

of the bulk can be suppressed if TI materials are grown as thin films on sufficiently low-

conducting substrates, also in this case multiple parallel conduction channels that partici-

pate in the total current transport may be present. This is visualized in Fig. 6.1. Beside the

TSS channels, the current can also flow through the interior of the not-ideally insulating TI

film, through the potentially highly conductive interface layer between the TI film and the

substrate, and through the substrate itself. Thus, it is an important task to design future de-

vices based on thin TI films in a manner that minimizes the fraction of the current through

the parasitic parallel transport channels.

Clearly, to achieve this goal the conductivities of the parasitic channels in actual MBE-

grown thin TI films have to be determined first. At first glance, obvious experiments to this

end are distance-dependent four-probe measurements on the surface to disentangle two-

dimensional (2D) from three-dimensional (3D) conductance channels, as depicted before

in chapters 4 and 5. However, the thickness of the grown TI films (typically 10 nm) poses a

challenge here. Specifically, the small vertical length scale makes it impossible to separate

the bulk conductance of the TI film as a 3D conductance from the 2D conductance of the

TSS, since for this purpose the probes would have to be spaced closer than one quarter

of the film thickness. But this is not possible, because this spacing would approach the
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tip radius [44, 60, 78]. For relevant MBE-grown TI films, position-dependent four-probe

measurements are thus only suitable to separate the total 2D conductivity σ2D
total of the thin

TI film, which comprises contributions from the top and bottom TSS, the interior of the thin

film and the interface channels (Fig. 6.1), from the 3D substrate conductivity. However,

since the conductivity of the substrate channel can easily be minimized by choosing an

appropriately low-doped substrate as template for the grown TI thin film, separating out its

conductivity is not the main issue.

It is thus evident that a different approach has to be taken to decompose what in practical

distance-dependent four-tip measurements appears to be an undifferentiated 2D conductiv-

ity, into the intrinsic TSS on the one hand and the parasitic thin-film and interface contribu-

tions on the other. In the following, this problem is addressed with a two-pronged strategy,

dealing separately with the interface and the thin-film channels. First, in the following

section 6.2, a method for measuring the conductivity of the interface channel is presented.

Then, in section 6.3, an approach for determining the conductivity of the interior of a thin

TI film is discussed, which uses input from both surface-sensitive measurement methods

and calculations of the near-surface band bending in the thin film, as shown in detail in

section 6.4.

6.2. Interface channel

The interface channel arises exactly at the boundary between a thin TI film and its underly-

ing substrate. At the interface the symmetry of the substrate is broken and a reconstruction

can establish on the topmost atomic layer of the substrate (i.e. interface reconstruction),

similar as it is also the case for a boundary to vacuum (i.e. surface reconstruction). How-

ever, in general the properties of such an interface reconstruction can differ from a surface

reconstruction (boundary to vacuum) due to the interaction with the thin TI film on top of

the substrate. As such a sandwiched geometry is generic for deposited thin films on bulk

substrates, also the interface channel is always present for such thin film systems. In de-

pendence of the actual reconstruction established at the interface, such an interface channel

can possibly exhibit a relative large two-dimensional conductivity when compared to the

TSS channel, and therefore might contribute significantly in current transport. In order to

be able to design a device based on a thin TI film in such a way that an appropriate inter-

face with a low conductivity is chosen, in a first step the influences of different interface

reconstruction have to be determined, which is discussed in the following.

The most common method for growing thin TI films is van-der-Waals epitaxy, and here it

can be observed that the interaction between the TI film and the substrate is very small. A

common substrate used for van-der-Waals epitaxy is Si(111). Here, an initial passivation

of the surface dangling bonds at the beginning of the growth process results in a weak

van-der-Waals coupling of the TI film to the underlying substrate [126–128]. At the same

time, due to this initial passivation an interface reconstruction of the Si(111) surface arises,

which can potentially have an appreciable two-dimensional conductivity, thus providing

an additional parasitic channel for current transport beneath the thin TI film [35,120,129].
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Figure 6.2.: Principle of measurement for determining the interface conductivity between a thin TI

film and the underlying substrate. For visualization, a scanning transmission electron microscopy

(STEM) image of the material Bi1Te1 and the corresponding crystal structure is used, as reproduced

from Ref. [125]. (a) For a thin TI film (i.e. Bi1Te1 in the shown example) on top of a Si(111) sub-

strate a van-der-Waals gap appears exactly at the interface layer (visible in STEM image and marked

in crystal structure). So, the film is spatially slightly separated from the (interface) reconstruction

of the substrate. (b) Due to the weak interaction between thin TI film and (Si) substrate, the inter-

face reconstruction, i.e. Te/Si(111)-(1×1) in the shown example, can be assumed to be equal to the

corresponding surface reconstruction without the TI film on top [as indicated by the transition from

(a) to (b)]. Then, the surface is directly accessible and its conductivity can be easily measured by

means of four-point probe measurements.

Scanning transmission electron microscopy has revealed that thin TI films often exhibit a

sharp interface to a Si(111) substrate [125, 128]. In combination with the predominantly

weak van-der-Waals interaction between TI and substrate, it results that the electronic prop-

erties of the TI film and the passivated substrate are largely decoupled. Because of this

decoupling, it is reasonable to assume that also the properties of the interface reconstruc-

tion in the composed TI/substrate system are largely equal to the properties of a surface

reconstruction obtained on the substrate without the TI film on top. This suggests that the

interface conductivity can in fact be measured as the surface conductivity of the relevant

surface reconstruction on the pure substrate. Evidently, it is then sufficient to prepare the

pertinent passivation layer on the Si(111) surface and measure its conductivity in order to

access the conductivity of the corresponding interface layer. Such measurements of a suit-

ably passivated Si(111) surface can then be routinely performed with a distance-dependent

four-probe experiment as seen before (cf. chapter 4). In Fig. 6.2, this measurement pro-

cedure is visualized by means of an example using measurement data for the material

Bi1Te1 [125].

In the following sections, surface conductivity measurements for several surface recon-

structions on Si(111) are discussed that are most relevant for the growth of (Bi1−xSbx)2Te3.
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Figure 6.3.: (a) STM image of the Te/Si(111)-(7×7) surface revealing covered terraces with a

roughness of σRMS = 65pm and the monoatomic steps of the underlying Si(111) substrate (U =
700mV, I = 130 pA). (b) Height profile across the step [along green line in (a)]. (c) Enlarged

region of the STM image from (a) [indicated by green square in (a)]. Traces of the characteristic

corner holes of the (7 × 7)-reconstruction are slightly visible. (d) Fourier transform of (c). The

distinct spots show clearly the periodicity of the (7× 7)-reconstruction.

They reveal that the surface conductivity strongly depends on the type of surface recon-

struction (Tab. 6.1). One may therefore expect that this pronounced variation translates to

the interface conductivity, meaning that the pertinent surface reconstruction needs to be

taken into account when disentangling the parasitic conduction channels from the TSS.

6.2.1. Te/Si(111)-(7×7)

For Te-based van-der-Waals epitaxy, a plausible interface reconstruction is the Te/Si(111)-

(7×7) reconstruction, which has been reported as a template for the growth of TI films

on Si(111) [130]. It can be prepared by depositing Te on top of a reconstructed Si(111)-

(7×7) surface. In a first step, the (7×7)-reconstruction of the Si(111) substrate (p-doped,

bulk resistivity 22.5 kΩ cm) is established by heating the substrate to 1200 ◦C and then

slowly decreasing its temperature. Next, the Si(111)-(7×7) surface is passivated by the

deposition of one monolayer (ML) Te at a substrate temperature of 300 ◦C, employing a

flux of 1 ML/min from a Knudsen cell. STM images of the surface reveal that the terraces

are covered by Te with a roughness of σRMS = 65 pm, and that the monoatomic steps

of the underlying Si(111) substrate with a height of 0.31 nm are still clearly visible, as

shown in the Figs. 6.3(a) and 6.3(b). On the terraces the characteristic corner holes of the

Si(111)-(7×7) reconstruction can still be identified [Fig. 6.3(c)], indicating that at least

some elements of the (7×7) Si reconstruction are still present below the Te layer. More
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clearly the corresponding periodicity can be seen as distinct spots in the Fourier transform

of the STM image, as shown in Fig. 6.3(d).

To determine the surface conductivity of the Te/Si(111)-(7×7) reconstruction, distance-

dependent four-probe measurements with a multi-tip STM at room temperature have been

performed. The tip configuration was chosen to be linear but not equidistant (cf. inset of

Fig. 6.4). In this non-equidistant arrangement, the distance x between one outer current-

injecting tip and the adjacent inner voltage-measuring tip is varied, while the other tips

remain constantly spaced by s = 50μm. Under these experimental circumstances, the

four-point resistance for a two-dimensional sheet depends on the distances s and x, as

specified before in chapter 3 by Eq. (3.48).

In Fig. 6.4 the measured four-point resistance of the Te/Si(111)-(7×7) surface is plot-

ted as function of the spacing x. The solid red line corresponds to a fit according to

Eq. (3.48). The fit corresponds well to the data and results in a surface conductivity of

σTe
7×7 = (8.3 ± 0.5) × 10−6 S/�, which is slightly larger than the surface conductivity

of the bare Si(111)-(7×7) surface, measured as σSi
7×7 = (5.1 ± 0.7) × 10−6 S/� in sec-

tion 4.1.4. Any contribution from the Si substrate can be excluded, as the 3D bulk channel

would result in a much larger four-point resistance than actually measured (indicated by

green arrow). In combination with the results from STM the surface conductivity mea-

surements suggest that the Si(111)-(7×7) reconstruction is still partly intact underneath

the deposited Te, while its conductivity is moderately increased by doping from Te. But if

σTe
7×7 is compared to typical TSS conductivities of σTSS ≈ 4 to 8×10−4 S/� [29,34], only

1% to 2% of the total current would flow through the interface channel, indicating that it

does not play a significant role in the overall current transport.

Figure 6.4.: Measured four-point resistance of the Te/Si(111)-(7×7) surface reconstruction as

function of the non-equidistant probe spacing x. The red line corresponds to a fit to the data

using a pure 2D model according to Eq. (3.48) and results in a surface conductivity of σTe
7×7 =

(8.3± 0.5)× 10−6 S/�. The 3D bulk channel of the Si substrate exhibits a much larger four-point

resistance than actually measured (indicated by green arrow). In the inset, the linear non-equidistant

probe configuration is visualized.
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6.2.2. Te/Si(111)-(1×1)

A further plausible interface termination for Te-based van-der-Waals epitaxy is the

Te/Si(111)-(1×1) surface. In fact, this reconstruction forms the most common template

and, for example, has been used for the growth of Bi2Te3 [126] and BiSbTe3 [131].

6.2.2.1. Preparation

In order to determine the surface conductivity by means of four-point probe measurements,

the (1×1)-reconstruction is established on a Si(111) substrate (p-doped, bulk resistivity

22.5 kΩ cm) and subsequently terminated with tellurium. First, the substrate is cleaned by

a 1% HF dip in order to remove any oxide on the surface, and, afterwards, immediately

introduced into the UHV chamber (within 10min). By heating the substrate to 700 ◦C the

hydrogen is desorbed from the surface and a clean Si(111)-(1×1) structure remains. Then,

the substrate is passivated by the deposition of Te with a flux of 1ML/min at different

substrate temperatures. It turns out that the substrate temperature during deposition sig-

nificantly influences the quality of the Te-terminated reconstruction, as it will be seen in

the following. The deposition has been performed at (a) room temperature for 1min, (b)

315 ◦C for 10min, and (c) 350 ◦C for 10min. At room temperature the Te only adsorbs on

the substrate, so that exactly 1 ML has been deposited. At the elevated temperatures there

is a balance between adsorption and desorption of Te on the substrate, so that despite the

longer deposition time in total also only 1 ML results on the substrate [132]. Subsequently

after finishing the deposition, the substrate is quenched to room temperature.

6.2.2.2. Different deposition temperatures

All of the three samples have been investigated as prepared in situ by STM and subse-

quent distance-dependent four-point measurements. The results are shown in Fig. 6.5. In

Fig. 6.5(a), a STM image of the (1×1)-reconstruction terminated with Te deposited at room

temperature is depicted. The visible topography suggests due to the large amount of single

patches on the surface that no closed Te termination on the Si(111) has been established.

The corresponding height distribution [Fig. 6.5(b)] is asymmetric (green curve) and ex-

hibits a width of σRMS = 280 pm. It can be fitted by a superposition of multiple Gaussian

peaks (red curve), as indicated in Fig. 6.5(b) by the dotted lines for the individual contri-

butions. The maxima of the three Gaussian parts are shifted with respect to each other by

310 pm (magenta and blue curve) and 220 pm (blue and yellow curve), and all exhibit dif-

ferent widths as indicated in the plot. The first value seems to correspond to the step height

of Si(111), thus the magenta distribution might be explained by the presence of pits in the

substrate arising from the HF preparation procedure [133,134], but since it is not similarly

present for other deposition temperatures [cf. Figs. 6.5(d) and 6.5(f)], it is more reasonable

to assume that the magenta part is attributed to holes in the Te surface termination, imply-

ing that the second part (blue) describes the Te termination itself. The third part (yellow)

can then be explained by adsorbates on top of the surface termination, e.g. excess material
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Figure 6.5.: STM and distance-dependent four-point probe measurements of the Te/Si(111)-(1×1)

surface reconstruction for Te deposited at different substrate temperatures, i.e. (a) – (b) at room

temperature, (c) – (d) at 315 ◦C, (e) – (f) at 350 ◦C. In (a) and in the insets of (c),(e) the STM

topography is shown with (a) U = −3.5V, I = 15pA, (c) U = −1.4V, I = 20pA, and (e)

U = −1V, I = 25pA. In (b),(d),(f) the corresponding height distribution of the STM topography

is depicted (green line). A multiple Gaussian peak fit reveals contributions by either holes (dashed

magenta line), the Te reconstruction itself (dashed blue line) and adsorbates (dashed yellow line).

All parts have different center positions and widths as indicated. In (c),(e) the four-point resistance

is plotted as function of the non-equidistant spacing x (tip configuration shown in inset of Fig. 6.4).

The data are fitted (red line) by a pure 2D model [Eq. (3.48)] resulting in (c) σTe∗
1×1 = (2.3± 0.1)×

10−7 S/� and (e) σTe
1×1 = (3.0± 0.2)× 10−7 S/�. For comparison, the curve of (c) is indicated in

(e) as dotted red line. A contribution from the 3D substrate (dashed green line) can be excluded.
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originating from the Te deposition, which show a twice as broad distribution than the other

two parts and are also much less present than the holes. So, from the height distribution

it can be concluded that the Te/Si-(1×1) termination is not closed, as the majority of the

surface consists out of holes and only a small fraction of it is covered by the Te termina-

tion itself. This is also in perfect accordance with the attempt of performing a four-point

measurement. Here, it turns out that it is not possible to inject any current into the surface.

Even with the tips in hard contact for applied voltages up to 10V only a current of less than

10 nA has been achieved. So, there seems to be no surface conductivity as the termination

is simply not connected.

In Figs. 6.5(c) and 6.5(d), the results for the deposition at a temperature of 315 ◦C are

depicted. The STM image [inset in Fig. 6.5(c)] still shows a patched structure but not as

separated as before in Fig. 6.5(a). The height distribution in Fig. 6.5(d) again shows an

asymmetric curve with now an increased width of σRMS = 420 pm. A multiple Gaussian

peak fit (red line) reveals that it is composed out of two parts shifted by ∼ 400 pm with

respect to each other. The width of the two parts are different and by comparing to the

results of Fig. 6.5(b) it can be assumed that the yellow curve is attributed to adsorbates,

while the blue curve is the Te termination itself. It seems that no holes are present, but

it should be noted that a small fraction might not be resolved and, thus, could lead to the

observed broadening of both parts compared to Fig. 6.5(b). Moreover, the broader and

more shifted adsorbate distribution (yellow) also suggests that the fraction of adsorbates

is substantially enhanced now. For the distance-dependent four-point measurements, a

non-equidistant tip configuration is chosen, as it was used before in section 6.2.1 and is

depicted in the inset in Fig. 6.4. The results are depicted in Fig. 6.5(c), where the four-

point resistance is plotted as function of the non-equidistant spacing x. From a fit (solid

red line) according to Eq. (3.48) a pure two-dimensional conductivity of σTe∗
1×1 = (2.3 ±

0.1)×10−7 S/� is obtained. A 3D contribution resulting from the Si substrate would result

in a four-point resistance along the dashed green curve and therefore can be excluded.

A third deposition at a temperature of 350 ◦C has been performed, in order to attempt, if the

quality of the Te/Si-(1×1) surface termination can be further improved and a higher surface

conductivity can be achieved. The STM image in Fig. 6.5(e) shows a uniformly covered

surface, which indicates by comparing to Fig. 6.5(c) that now a much more continuous Te-

termination at the surface has been achieved. Also the corresponding height distribution in

Fig. 6.5(f) is now nearly perfectly symmetric and with a width of σRMS = 200 pm much

narrower than before. There is still a slight imbalance, and when fitted again by multiple

Gaussian peaks (red line), apart from the major contribution by the Te termination (blue

curve) located at the center, a second small contribution arises (magenta curve), which

is shifted by a value of −310 pm. Again, this magenta part can be attributed to holes

in the surface termination, but due to the very small amount they are negligible in the

present case. Also it appears that no adsorbates are present indicating that the growth

temperature has been chosen optimally in order to enable all the adsorbates to contribute

to the (1×1)-termination and to cause any excess material to desorb from the surface.

So, a substrate temperature of 350 ◦C is the best choice for establishing the Te/Si(111)-

(1×1) reconstruction. The four-point measurement depicted in Fig. 6.5(e) reveals that the
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surface exhibits a two-dimensional conductivity of σTe
1×1 = (3.0 ± 0.2) × 10−7 S/�, as it

can be again deduced by a fit (red line) according to Eq. (3.48). The conductivity value

is only slightly enhanced compared to the value obtained in Fig. 6.5(c) [for comparison

indicated by dotted red line in Fig. 6.5(e)], even if the quality of the reconstruction seems

to be improved substantially. Again, a contribution of the 3D substrate to the measured

conductivity can be excluded, as the expected four-point resistance (dashed green curve)

differs significantly from the actual measurement.

In total, it can be concluded that the Te/Si(111)-(1×1) reconstruction exhibits a surface

conductivity of σTe
1×1 = (3.0 ± 0.2) × 10−7 S/�, which is substantially lower than the

conductivity of the Te/Si(111)-(7×7) surface. If this value is compared to typical TSS

conductivities of σTSS ≈ 4 to 8 × 10−4 S/�, it turns out to be much smaller, such that

the interface channel would contribute less than 1% to the total current transport in the

TI/substrate system. Evidently, this contribution is negligible.

6.2.3. Bi- and Se-based terminations

For Bi-based van-der-Waals epitaxy of TI films, a common growth template is the

Bi/Si(111)-(
√
3×√

3) surface reconstruction with one monolayer Bi coverage (also named

β-phase), which remains stable under Te flux [29, 130, 135–137]. The conductivity of this

surface reconstruction is σBi√
3×√

3
= (1.4±0.1)×10−4 S/�, as it has been shown previously

in section 4.1.3. This value is in the range of typical TSS conductivities, such that in this

case a substantial fraction (20% to 35%) of the total current through the TI/substrate sys-

tem would be transmitted by the interface channel. Because of this high parasitic conduc-

tance a Bi-terminated interface of the Si(111) substrate exhibiting the Bi/Si(111)-(
√
3×√

3)

reconstruction is not favorable for designing TI devices.

Similar results as for the Te/Si(111) interface terminations can also be expected for Se-

based van-der-Waals epitaxy on Si(111) [132, 138, 139]. However, exact values for the

surface conductivities of the respective (1×1) and (7×7) reconstructions have not yet been

reported in the literature. Furthermore, in the case of initial Se termination, depending

on the preparation parameters additional amorphous interface layers up to several nm in

thickness can occur [135,140]. Such extended interface regions can also have a significant

effect on the total interface conductivity, which then involves a superposition of the con-

ductivities of the Se/Si(111) substrate surface reconstruction and the additional amorphous

layer(s).

Thus, it can be concluded here that the interface conductivity between a thin TI film and

the substrate can have a significant influence on the overall current transport. It strongly

depends both on the material system and the preparation parameters. Identified values for

several common reconstructed interfaces are summarized in Tab. 6.1. For the example of TI

films grown by Te-based van-der-Waals epitaxy, such as Bi2Te3, Sb2Te3 and corresponding

ternary and quaternary compounds, the Te/Si(111)-(1×1) interface reconstruction is the

best choice, since it exhibits a very low parasitic conductivity that hardly influences the

current transport through the TSS channel. It is finally noted that potentially high interface
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Surface reconstruction Surface conductivity σS

Te/Si(111)-(7×7) (8.3± 0.5)× 10−6 S/� [Sec. 6.2.1]

Te/Si(111)-(1×1) (3.0± 0.2)× 10−7 S/� [Sec. 6.2.2]

Bi/Si(111)-(
√
3×√

3) 1 ML (1.4± 0.1)× 10−4 S/� [Sec. 6.2.3]

Table 6.1.: Surface conductivities of different passivated and reconstructed surfaces of Si(111)

used as a substrate for van-der-Waals epitaxy of thin TI films.

conductivities are a general problem not only for TI films but also for other van-der-Waals

thin films. They must therefore be determined individually for each material system at

hand.

6.3. Thin-film channel

The interior of the TI film is more difficult to separate out experimentally, simply because

it is sandwiched between the top and bottom TSS channels. Therefore, a resort to a calcu-

lation of its conductivity from experimentally accessible parameters is used. Generically,

the TI film conductivity is determined by the charge carrier concentration and the charge

carrier mobility. Within this chapter, the charge carrier mobility is regarded as a given ma-

terial parameter of the TI, and the focus is mainly on the determination of the charge carrier

concentration, which in a thin film is principally determined by the dopant concentration

and the band bending.

Because the concentration of (unintentional) dopants stemming from the growth process is

not known, the charge carrier concentration and conductivity of the film cannot be calcu-

lated directly. However, it will be shown here that in the thin-film limit a variation of the

dopant concentration does not influence the mobile charge carrier concentration in a sig-

nificant way. This is in stark contrast to the situation of a half-infinite bulk crystal, where

the doping through dopants in the material would lead to a strong shift of the band edges

with respect to the Fermi energy inside the bulk, and therefore also to a strong effect on

the mobile charge carrier concentration. In a thin film, the shift of the bands with respect

to the Fermi energy and the near-surface band bending are much smaller. The reason is

the long screening length compared to the film thickness [141–143]. The problem at hand

therefore boils down to a calculation of the band bending in the thin film, from which the

total charge carrier concentration in the film can be determined by integration, irrespective

of the (unknown) dopant concentration.

In order to determine the band bending, two distinct levels of approximation are used.

In the symmetric approximation, it is assumed that the TI has identical properties at its

surface to the vacuum and its interface to the substrate. In this case, the position of the

surface Fermi level relative to the Dirac point, which can be measured at the top TSS

by angle-resolved photoemission (ARPES), is enough to calculate the band bending. In
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contrast, in the asymmetric approximation the surface Fermi level and the Fermi level in

the thin film at the interface to the substrate are allowed to differ from each other. In this

case, ARPES alone is not enough to determine the band bending in the film. However,

if supplemented by gate-dependent four-probe transport measurements on the surface of

the TI, the combined experimental information is sufficient to determine the band bending,

the carrier concentration and thus the film conductivity. Based on this result, it is finally

possible to disentangle the conductivity of the TSS channels [131].

6.4. Band bending in topological insulators

In principle, the bulk of a TI should be insulating, if the Fermi energy is located in the

bulk band gap with only the Dirac cone of the TSS crossing it. But unintentional doping

during the growth process may cause a considerable bulk conductivity [30, 124]. This in

turn may result in an unwanted, substantial current flowing through the interior of the TI

film rather than through the TSS. Fortunately, it is principally possible to influence the bulk

conductivity of the TI by growing the material as a thin film with a large surface-to-volume

ratio, realized for instance by film thicknesses in the range 10 to 100 nm [126]. In any thin

film, there is an influence of the surface and interface states on the film’s bulk conductivity,

because charge may be transferred between the surface states and the interior of the film,

resulting in near-surface and near-interface band bendings and corresponding space charge

regions, and a concomitant reduction or increase of the concentration of mobile charge

carriers in the film.

For trivial, non-topological surface and interface states with their often large density of

states, the pinning of the Fermi level at the surface and interface states usually plays a

decisive role for the band bending [88]. In contrast, there exists no Fermi level pinning

by topological surface states, because the density of states in their Dirac cones is com-

paratively small. As a consequence, the filling levels of the TSS (i.e. the Dirac cone) on

the energy axis are expected to change with each charge that is transferred between TSS

and film interior. This warrants the re-examination of the common phenomenon of band

bending in thin films for the special situation of a TI material.

In this chapter, the TI thin film is modelled as a narrow-bandgap semiconductor without

Fermi level pinning. The near-surface band bending induced by the top and bottom TSS

is calculated in a semi-classical approach, which includes both classical electrostatics and

quantization effects that arise from the vertical confinement of electrons in the thin film

with thicknesses in the range of several nanometers. Specifically, in the first step Pois-

son’s equation, which relates the band curvature to the space charge density, is solved

under appropriate boundary conditions. The resultant band bending potential is used in

Schrödinger’s equation to calculate the quantized eigenenergies which give rise to mul-

tiple subbands inside the conduction and valence bands. Since these subbands result in

a modification of the effective density of states of valence and conduction bands, Pois-

son’s equation must be solved a second time. Note that an exact solution would require

a fully self-consistent solution of Poisson’s and Schrödinger’s equations. Here, this self-
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consistency cycle is truncated after one and a half iterations, deriving the final band bending

and mobile charge carrier concentrations from the second solution of Poisson’s equation.

Initially, this scheme is applied to the simple case of a semi-infinite bulk crystal with a

single surface to vacuum. This serves as a reference for the thin film calculations which in-

volve two boundaries, i.e. a surface to vacuum as well as an interface to the film substrate.

Here, symmetric boundary conditions are assumed first, i.e. equal charge carrier densities

in the top and bottom TSS. Finally, the more general case of asymmetric boundary condi-

tions in a thin film is presented. Further details of the calculations are described below in

the sections 6.4.2 and 6.4.3.

Throughout this chapter, the following notation is used: The chemical potential (Fermi

energy EF ) is constant across the TI film. The z-dependent position of the valence band

edge is denoted as EV (z). Relative to the valence band edge, the Fermi levels at the top

surface, in the bulk of the TI, and at the bottom interface to the substrate are designated as

Etop
F ≡ EF − Etop

V , Ebulk
F ≡ EF − Ebulk

V , and Ebottom
F ≡ EF − Ebottom

V , respectively.

6.4.1. Near-surface band bending in a semi-infinite bulk crystal

In this section, the band bending and its determining parameters are discussed for the case

of a semi-infinite bulk crystal with one topological surface state at the surface (top TSS).

6.4.1.1. Formalism

Poisson’s equation which is expressed by

d2

dz2
Φ(z) = −ρ(z)

ε0εr
(6.1)

relates the space charge density ρ(z), measured in units of charge per area, to the spatial

curvature of the bands in the space charge region. In writing down this equation, the

assumption is used that parallel to the surface no spatial dependence of the bands occurs,

i.e. Φ(x, y, z) = Φ(z). The potential Φ(z) is given by

qΦ(z) = EF − Eintrinsic(z) (6.2)

with q being the elementary charge and Eintrinsic(z) the intrinsic level, while the band

bending is defined as

V (z) ≡ Φ(z)− Φb, (6.3)

where Φb is the potential in the bulk, i.e. Φb ≡ Φ(z → ∞). In the calculations of band

bending, specific material parameters of the TI are used as input, i.e. in particular the band

gap and the effective masses of electrons and holes. Moreover, a parabolic approximation

for the bulk band edges is used in order to calculate the effective densities of states N eff
C

and N eff
V in the valence and conduction bands that determine the mobile charge carrier
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densities in the (bulk) TI. Further details on this can be found in section 6.5.1. Finally, the

non-degeneracy of the TI is assumed, such that the Fermi distribution can be approximated

by the Boltzmann distribution.

By introducing the dimensionless potentials

u(z) =
q

kBT
Φ(z) and v(z) =

q

kBT
V (z), (6.4)

where T is the temperature and kB the Boltzmann constant, Poisson’s equation (6.1) be-

comes [88, 144]

d2v

dz2
= − q2

ε0εrkBT

(
nb − pb + pbe

−v − nbe
v
)
. (6.5)

The quantities nb and pb denote the electron and hole densities in the bulk, respectively,

which are proportional to eub . The first two terms on the right correspond to the static

charge caused by the dopant atoms in the material and the last two terms on the right

specify how the mobile charge carrier densities in the space charge region are modified by

the band bending v(z). Eq. (6.5) can be expressed as

d2v

dz2
=

1

L2

(
sinh(ub + v)

cosh(ub)
− tanh(ub)

)
, (6.6)

with the effective Debye length

L =

√
ε0εrkBT

q2(nb + pb)
. (6.7)

By multiplying both sides of Eq. (6.6) with 2dv
dz

and using 2dv
dz

d2v
dz2

= d
dz
(dv
dz

dv
dz
), it can be

integrated to yield, after taking the square root,

dv

dz
= sgn(−v)

√
2

L

√
cosh(ub + v)

cosh(ub)
− v tanh(ub) + c. (6.8)

The integration constant c must be determined from the boundary conditions. For a semi-

infinite bulk crystal the boundary conditions are

dv

dz

∣∣∣∣∣
z→∞

= 0 and v(0) = vtop =
1

kBT

[
Etop

F − Ebulk
F

]
. (6.9)

Inserting these boundary conditions into Eq. (6.8) and expressing the hyperbolic functions

by exponentials leads to the solution [88, 144]

z(v) = sgn(−v)
L√
2

∫ v(z)

vtop

√
eub + e−ub

eub(ev′ − v′ − 1) + e−ub(e−v′ + v′ − 1)
dv′. (6.10)

More details on the derivation of Eqs. (6.5) – (6.10) are listed in the appendix A.3.

Eq. (6.10) can be integrated numerically and inverted to determine the band bending v(z).
Since the latter is influenced decisively by the boundary condition, i.e, the surface position

of the Fermi level relative to the band edges (Etop
F ), in the next section it will be turned to

a discussion of the factors which determine this parameter.
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6.4.1.2. Topological surface states

The Fermi energy at the surface of a conventional semiconductor is often pinned at a fixed

position Etop
F relative to the band edges. This is a consequence of a high density of states

of the semiconductor surface states. In contrast, the surface density of states of the intrinsic

TSS in TIs is relatively low, which is the outcome of the specific linear dispersion of the

TSS, i.e. the Dirac cone E(k) = �vFk [145]. As a result, there is no pinning of Etop
F by

the intrinsic TSS at the surface of a TI.

The charge carrier density of Dirac electrons in the TSS, generated by charge transfer from

the film, can be written as a function of energy E up to which the cone is filled as [131]

nTSS(E) =
1

4π�2v2F

(
E2 − E2

0

)
. (6.11)

Here, E0 represents an initial filling level that may be caused by surface doping due to

surface defects or adsorbates (see below). In the absence of surface defects, E0 = 0. The

filling level of the Dirac cone in a TI, i.e. the surface Fermi energy Etop
F , can be determined

by surface-sensitive ARPES measurements and then used as a known parameter in the band

bending calculations. Since there is no pinning, Etop
F is subject to several external factors,

in particular the bulk dopant concentration, the density of adsorbates on the surface, and

the presence of a gate voltage. The influence of these parameters will be discussed in more

detail below.

6.4.1.3. Non-topological, trivial defect states

The charge neutrality level (CNL) of a surface state is the position of the Fermi level at

which the surface is uncharged. In the case of a TI the CNL of the intrinsic TSS coincides

Figure 6.6.: Principle of the formation of the CNL level of the TI surface for the presence of

additional charged trivial defect states (DS). Both the DS (magenta) located around EDS and the

TSS (Dirac cone, orange) would be filled up to their individual charge neutrality levels (dotted

lines), if they were artificially separated from each other [left parts of (a) and (b)]. However, if the

DS and TSS are combined (right parts), a charge transfer occurs, resulting in a common aligned

CNL (green line). This final CNL is influenced by the position of the DS (EDS) either above (a) or

below (b) the Dirac point (DP).
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with the Dirac point. However, the presence of additional trivial defect states (DS) at

the surface of the TI, for example surface vacancies or additional adsorbates, may have a

strong influence on the CNL of the TSS. Specifically, the surface doping caused by such

trivial defects may modify the filling level of the TSS in order to fulfill charge neutrality of

the surface. Therefore, the CNL of the combined TSS/DS system (considered as isolated

from the bulk) is generally not located at the Dirac point. A schematic that illustrates

the shift of the surface CNL from the intrinsic value of the TSS, i.e. the Dirac point, to a

new value that is determined by surface charge neutrality between the DS and the TSS is

displayed in Fig. 6.6. The density of states of the trivial DS (magenta) is centered around

EDS. For the position of EDS two different cases are considered in Figs. 6.6(a) and 6.6(b).

Initially (before electrical connection with the TSS), the DS is neutral and filled up to its

charge neutrality level EDS (dotted magenta line). The isolated Dirac cone of the TSS

(orange) is also neutral and filled up to the Dirac point which represents the initial charge

neutrality level CNL0 of the TI surface (dotted orange line). If the trivial DS and the

TSS are connected, a charge transfer occurs, yielding a common value for the CNL of the

TI surface (dotted green line). For a DS above the Dirac point, as shown in Fig. 6.6(a),

electrons flow into the TSS, increasing the filling level of the Dirac cone and reducing

the filling level of the DS. As a result, the DS becomes positively charged and the TSS

negatively charged, but in total the neutrality condition is maintained. Similarly, for a

DS positioned below the Dirac point, Fig. 6.6(b), charge transfer occurs in the reverse

direction. Electrons from the TSS flow into the DS, which results in a negative DS and a

positive TSS with a common CNL below the Dirac point. In the examples in Fig. 6.6, the

DS is either completely filled or completely depleted by the charge transfer to or from the

TSS, respectively. However, depending on the properties of the DS, i.e. its position EDS

and width, it is also conceivable that the DS remains partially filled after charge transfer.

In conclusion, the CNL of the TI surface and thus the filling level of the TSS is influenced

by the presence of any additional trivial DS. Both a change of the filling level of the DS

and a shift of EDS provoke a corresponding shift of the surface CNL. This overall surface

CNL becomes relevant when the charge exchange between the surface and the bulk of the

TI is enabled and influences the resultant near-surface band bending.

6.4.1.4. Charge transfer between TSS and bulk

Generally speaking, band bending is governed by the condition of charge neutrality: the

total charge (per unit area) in surface states and the total mobile charge per unit area in

the space charge layer must be equal and of opposite sign. This charge neutrality involves

charge transfer between the surface and the space charge layer. To understand this charge

transfer conceptually, a situation is considered in which surface and bulk are initially dis-

connected [146]. In this situation, the filling level of the TI surface (comprising TSS and

DS) corresponds to its charge neutrality level (CNL) at which the separated TI surface it-

self is neutral (only in the absence of any DS, this CNL coincides with the Dirac point).

In the separated bulk, neutrality implies the absence of any band bending below the sur-

face, thus the charge neutrality level corresponds to the bulk Fermi level. If surface and
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bulk are connected to each other, the separate CNL of bulk and surface will in general not

be aligned to each other. As a consequence, charge will flow from the component with

the higher CNL to the component with the lower one. In the process, surface and space

charge layer will become charged and the bands in the near-surface region will bend, but

overall charge neutrality is conserved. The CNL of the TI surface (TSS plus DS) can thus

be described as the initial filling level up to which the (neutral) TI surface is filled before

equilibration with the bulk. As such, it is not a quantity that can be measured.

6.4.1.5. Relevant parameters for overall band bending

For an extended bulk crystal, the surface CNL, the surface Fermi energy Etop
F , and the

bulk Fermi energy Ebulk
F (which represents the bulk dopant concentration) all influence the

charge that finally resides in the TSS and space charge layer, and thus the band bending.

The three parameters are interdependent: if two of them are given, the third one is fixed

by the charge neutrality condition. It is clear that the surface CNL, and thus also the

initial filling level of the TSS, is a conceptual quantity that describes a neutral TI surface

(comprising both TSS and DS) which is isolated from the bulk of the TI crystal; it is

therefore not measurable. However, the surface Fermi energy Etop
F and thus the final filling

level of the Dirac cone can be directly observed by ARPES measurements. In contrast, the

exact value for the bulk Fermi energy Ebulk
F is not known, as the exact density of dopants

in the bulk TI material is often unspecified, so that Ebulk
F has to remain as a free parameter

in the calculations.

6.4.1.6. Example calculations

In order to explore the interplay of the three key parameters and their impact on the band

bending in a semi-infinite bulk TI crystal, Fig. 6.7 outlines band diagrams for three different

bulk dopant concentrations, i.e. nondegenerate p-doped [Fig. 6.7(a)], intrinsic [Fig. 6.7(b)]

and nondegenerate n-doped [Fig. 6.7(c)]. For the calculated diagrams, a specific value for

either Etop
F (blue) or the surface CNL (gray) is used – the respective other parameter results

from the condition of charge neutrality. For all three blue diagrams in Figs. 6.7(a) – 6.7(c),

the value of Etop
F is fixed to the midgap position. Such a situation was experimentally

realized in the quaternary BiSbTeSe system [147], for example.

For the p-doped TI in Fig. 6.7(a), a downward band bending with a negatively charged

space charge region is obtained. The TSS is positively charged, as indicated by the cal-

culated CNL above EF . The filling level of the Dirac cone has thus been reduced and

electrons have flown into the space charge region (highlighted blue area). In case of an

even stronger downward band bending, as obtained for example by a degenerately doped

bulk, a non-topological two-dimensional electron gas (2DEG) with quantized states is ex-

pected near the surface. This has been observed experimentally [148–150]. In this limit,

the description by Poisson’s equation has to be replaced by the Schrödinger-Poisson ap-

proach even for an extended bulk crystal.
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Figure 6.7.: Principle of band bending in extended TI bulk crystals for three different bulk dopant

concentrations, i.e. (a) p-doped (Ebulk
F = 35meV, pbulk = 4× 1017 cm−3), (b) intrinsic (Ebulk

F =
130meV, nbulk = pbulk = 1 × 1016 cm−3), and (c) n-doped (Ebulk

F = 225meV, nbulk = 4 ×
1017 cm−3), in combination with fixed values for either the surface Fermi energy Etop

F (blue) or

the charge neutrality level CNL (gray) of the TI surface (TSS plus DS). On the left of each panel,

the partially filled (highlighted orange area) Dirac cone of the TSS is shown, and on the right the

calculated conduction and valence bands are plotted as function of depth z into the crystal. The

Fermi energy EF (dashed line, constant) and both the surface Fermi energy Etop
F and the bulk

Fermi energy Ebulk
F (blue arrows) are indicated. For the blue diagrams Etop

F is fixed to a midgap

value of 130meV, resulting in different band bendings and CNL positions (dotted lines) from (a)

to (c). In contrast, the gray diagrams (b,c) exhibit a fixed CNL at 230meV [same as in (a)], so that

in this case Etop
F varies from (a) to (c) and the shape of band bending differs from the blue-colored

case. Further calculation parameters m∗, vFermi, T , EDirac and Egap are listed in Tab. 6.2.

In Fig. 6.7(b), the bulk Fermi energy Ebulk
F is in the midgap position, representing the

intrinsic character of the bulk of the TI. In conjunction with the assumed midgap position

of Etop
F this results in flat bands. In this case, the calculated CNL is equal to EF , indicating

that no charge transfer has occurred. Note that the CNL in Fig. 6.7(b) is different from the

one in obtained in Fig. 6.7(a), because its value must depend on Ebulk
F if a constant midgap

position of Etop
F is assumed.

For the n-doped TI in Fig. 6.7(c), an upward band bending is obtained, if a midgap position

of Etop
F is assumed (blue lines). The calculated CNL is now far below the EF , indicating a

charge transfer of electrons from the bulk into the Dirac cone.

If on the other hand the CNL is assumed to be constant (instead of Etop
F as discussed above),

the resulting band bendings for the same three bulk dopant concentrations as considered

before turn out to be completely different. This is demonstrated by the gray band diagrams

in Figs. 6.7(b) – 6.7(c). Physically, a constant value for the CNL corresponds to a fixed

surface configuration with a specific density of surface defects or adsorbates. Specifically,

in Fig. 6.7(b) the flat bands for the midgap position of Ebulk
F give way to a downward band

bending, because now Etop
F , being dependent on both Ebulk

F and CNL, is not positioned

midgap any more. Similarly, in Fig. 6.7(c) the same position of the CNL as for the gray

bands in Fig. 6.7(b) yields a much weaker upward band bending, with a different position

of Etop
F (dashed gray line).

Two conclusions can be drawn from the above examples: (1) Comparing blue versus gray

bands in each panel, Figs. 6.7(b) and 6.7(c), it can be observed that a variation of the

CNL due to surface defect states directly influences Etop
F , if the bulk dopant concentration
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remains constant. Therefore, if the surface defect concentration is increased over time,

a shifting Etop
F is expected. This effect of surface degradation due to long-time storage

of TIs in vacuum or exposure to air has indeed been observed experimentally by ARPES

measurements [148,151,152]. (2) Comparing the blue bands in Fig. 6.7(a) and gray bands

in Figs. 6.7(b) and 6.7(c) among each other (fixed CNL) shows that the bulk dopant con-

centration, which varies from Figs. 6.7(a) to 6.7(c), has a strong influence on Etop
F and

therefore also on the band bending. Thus, for an extended semi-infinite bulk crystal both

the surface Fermi energy Etop
F and the bulk dopant concentration, represented by Ebulk

F ,

must be known to perform an exact calculation of the near-surface band bending (Note that

this makes the knowledge of difficult-to-determine CNL superfluous, because the latter is

at any rate determined by Etop
F and Ebulk

F ). Remarkably, this is in contrast to the situation

for thin TI films, for which the band bending can be calculated reasonably well without the

knowledge of Ebulk
F , as it will be shown in the next section.

6.4.2. Symmetric band bending in a thin film

In this section, a symmetric approach for the calculation of the band bending in thin films

with two topological states at the boundaries is presented.

6.4.2.1. Top and bottom topological surface states

In the case of a thin TI film, there exist two TSS, one each at the top and bottom sur-

faces of the film (note that the bottom surface of the film corresponds to its interface to

the substrate). The bottom TSS is not directly accessible by surface sensitive methods and

therefore difficult to investigate. Thus, if no further information is available, it is a rea-

sonable first approximation to assume that the properties, in particular the filling levels, of

the bottom TSS are identical to the top TSS. This symmetric approximation, in which only

information about the top TSS is needed and in which the boundary conditions on the top

and bottom surfaces are the same, is considered in the present section.

For a thin film of thickness d with two surfaces and Etop
F = Ebottom

F , the problem is sym-

metric with respect to z0 = d/2, and the appropriate boundary conditions are

dv

dz

∣∣∣∣
z0=

d
2

= 0 and v(0) = v(d) = vtop =
1

kBT

[
Etop

F − Ebulk
F

]
. (6.12)

The solution of Eq. (6.8) for these boundary conditions, which evidently must lead to a

symmetric band bending, can be expressed in the interval of 0 ≤ z ≤ d
2

by

z(v) = A

v(z)∫
vtop

√√√√ eub + e−ub

eub

(
ev′−ev(

d
2)−v′+v

(
d
2

))
+e−ub

(
e−v′−e−v( d

2)+v′−v
(
d
2

)) dv′ (6.13)

with the prefactor A = sgn(−v) L√
2
. More details about the derivation can be found in

appendix A.3.3. Eq. (6.13) has to be calculated iteratively, because the potential v
(
d
2

)
is not
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known a priori. In the first iteration step, v
(
d
2

)
is determined by numerical inversion, i.e.

the upper limit of the integral is set to v(z) = v
(
d
2

)
and z(v) = d

2
is inserted. Afterwards,

the equation can be solved for the remaining values v(z) in the interval 0 ≤ z < d
2
. The

case of symmetric band bending in a thin film has been considered before in the framework

of the Schottky approximation [153, 154]. However, the latter approximation is only valid

for depletion layers with a strong band bending |eVtop| � kBT , whence all free charge

carriers are transferred from the interior of the film into the TSS, resulting in a completely

depleted and insulating material in the film. But since both direction and quantity of the

charge transfer are influenced by several parameters, as illustrated in section 6.4.1 in detail,

depletion layers with small band bending as well as accumulation layers are conceivable,

for which a description within the Schottky approximation is insufficient.

6.4.2.2. Quantization

Due to finite thickness of the film, the quantization arising from the confinement of elec-

trons in the direction perpendicular to the film must be taken into account. As stated above,

this requires the solution of coupled Poisson’s and Schrödinger’s equations. For weak band

bending, which turns out to be the relevant situation for the thin TI films studied here (see

below), the potential can be approximated as a square potential with infinite barriers when

solving the Schrödinger equation. Further details of the calculation can be found in sec-

tion 6.5. It turns out that the calculated mobile charge carrier density in the thin TI film,

which is discussed in the following, is reduced by a factor of 2 to 2.5 compared to the

purely classical approach in which only Poisson’s equation is solved.

6.4.2.3. Influence of the film thickness

In addition to the three parameters which jointly determine the band bending of a semi-

infinite bulk TI crystal (see above), a fourth parameter becomes relevant in the thin-film

limit — the film thickness d. It influences the amount of charge which can be transferred

between the surface and the TI film. As the film thickness decreases, the total charge

that can be transferred into the space charge region becomes increasingly limited, with the

result of a less pronounced band bending, because charge neutrality imposes the same limit

on the surface charges (TSS/DS) on both surfaces. Again, all four parameters Etop
F , Ebulk

F ,

CNL and d are interdependent, such that one parameter is given by the other three.

In order to illustrate the effect of limited charge transfer by means of an example, in Fig. 6.8

the calculated band bending at room temperature is displayed for the TI material BiSbTe3
(considered in more detail in section 6.4.2.6) as function of depth z for three different

bulk dopant concentrations, i.e. n-doped [Fig. 6.8(a)], intrinsic [Fig. 6.8(b)] and p-doped

[Fig. 6.8(c)]. The red band diagrams belong to a 10 nm thin film, while the blue bands

represent the corresponding extended bulk crystal with the same bulk dopant concentration

and position of the surface Fermi energy Etop
F . For the calculation, the band gap is set

to 260 meV and a fixed Etop
F = 240meV has been chosen. Moreover, the Dirac point

coincides with the edge of the valence band and the effective mass is set to m∗ = 0.15me,
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Figure 6.8.: Calculated band diagrams using the symmetric approximation for a 10 nm BiSbTe3
thin film for three different dopant concentrations, i.e. (a) n-doped (Ebulk

F = 225meV, nbulk =
4×1017 cm−3), (b) intrinsic (Ebulk

F = 130meV, nbulk = pbulk = 1×1016 cm−3), and (c) p-doped

(Ebulk
F = 35meV, pbulk = 4× 1017 cm−3). For all diagrams, the surface Fermi energy Etop

F is set

to 20 meV below the conduction band edge resulting from ARPES measurements [131]. Further

parameters of the calculation are listed in Tab. 6.2. In the central parts of the panels (a) – (c), the

conduction and valence bands of the thin film are shown as function of depth z from the surface

(red lines), while in the left parts of (a) – (c) the partially filled Dirac cone (orange) of the top TSS is

depicted. The blue lines show the band bending in a corresponding extended bulk crystal exhibiting

the same dopant concentration as the thin film. The Fermi energy (dashed green line) and both

Ebulk
F and Etop

F (arrows) are indicated. In contrast to the bulk case, the band positions in the thin

film are not influenced significantly by the dopant concentration. The CNLs (colored dotted lines)

are different for the thin film (red) and the bulk (blue), but in both cases positioned above Etop
F ,

giving rise to a downward band bending due to a transfer of negative charges from the TSS to the

film or bulk.

in agreement with ARPES measurements [131]. All parameters of the calculation are

summarized in Tab. 6.2.

In Fig. 6.8, it can be observed that for the bulk crystal (blue curves) the dopant concentra-

tion, represented in the calculations by the value of the bulk Fermi energy Ebulk
F , strongly

influences the actual Ebulk
F , and results in a strong increase of the near-surface band bend-

ing in Fig. 6.8(b) (intrinsic material) and 6.8(c) (p-doped material), since Etop
F is fixed close

to the conduction band by construction. In contrast, in the thin-film limit (red curves) the

bending of the bands remains weak and largely independent of the dopant concentration,

even for different dopant types (Fig. 6.8(a) n-doped vs. Fig. 6.8(c) p-doped). Thus, in the

thin film the valence band position relative to the Fermi level can differ strongly from its

value in a bulk crystal with the same dopant concentration [Fig. 6.8(c)]. This at first glance

surprising behavior of the film can be rationalized by the behavior of the CNL of the TSS,

which turns out to be very different for the thin film (red dotted lines in Fig. 6.8) and the

bulk (blue dotted lines): On the one hand, charge transfer from the TSS into the TI (only

this direction occurs in Fig. 6.8) is strongly suppressed for the thin film – the red (thin film)

CNL appears always close to EF at the surface, while the blue (bulk) CNL is consistently

located above the red one, for Fig. 6.8(c) actually substantially above the red. On the other

hand, even the comparatively little charge that is transferred from the TSS into the thin film

is sufficient to change the whole film from intrinsic to n-type [Fig. 6.8(b)] or indeed from

p-type to n-type [Fig. 6.8(c)]. At this point, it has to be distinguished between the dopant
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Parameter Value

m∗ 0.15me

vFermi 5.6× 10−5 ms−1

T 300K
EDirac 0 eV (at valence band)

Egap 0.26 eV

Etop
F (Vgate = 0V) 0.24 eV

ntop
TSS (Vgate = 0V) 4× 1012 cm−2

Table 6.2.: Different fixed parameters used as input for the band banding calculations for the TI

system BiSbTe3 as reported in Ref. [131].

and doping concentrations in the TI material. The former describes the concentration of

defects in the material, determined by the growth conditions, while the latter specifies the

concentration of mobile charge carriers in the material. In an extended crystal the concen-

tration of dopants directly controls the concentration of mobile carriers, i.e. the doping, but

for a thin TI film with an additional source of charges, the TSS, this is not true. For exam-

ple, in Fig. 6.8(b) the dopant concentration in the film corresponds to an intrinsic bulk TI

material, but the additionally transferred charges from the TSS are sufficient to nearly fully

n-dope the film [Fig. 6.8(b)], or even completely saturate all acceptors in the p-type film

material of Fig. 6.8(c) and still result in essentially the same n-doping as in Fig. 6.8(b).

As there is a small increase in charge transfer from Figs. 6.8(a) to 6.8(c), also the band

bending increases slightly, but it is still very weak compared to the bulk case (blue).

In conclusion, Fig. 6.8 illustrates a significant difference compared to the case of the semi-

infinite bulk crystal in the section 6.4.1: For a 10 nm thin film the band bending across the

complete film is largely independent of the dopant concentration in the film; in fact, the

bands remain nearly flat at the surface position Etop
F for widely varying bulk dopant levels.

Thus, the position of the Fermi energy inside the film deviates strongly from the bulk Fermi

energy Ebulk
F of a corresponding semi-infinite bulk crystal with the same dopant concentra-

tion. Notably, this allows the approximation of the total mobile charge carrier concentration

in the thin film from information gained from surface-sensitive measurements, even if the

dopant concentration inside the film material remains unknown.

6.4.2.4. Screening

The weak band bending in the thin TI film is linked to the long screening length L com-

pared to the small film thickness d. This is immediately obvious from Eq. (6.6), which

shows that the curvature of the band bending potential v is inversely proportional to the

square of L. A small curvature of course also limits the value of v that can be reached over

the thickness d  L of the film. If the film thickness d approaches the screening length L,

the total charge transfer between TSS and film becomes larger, resulting in an increasingly
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stronger band bending. For d > 2L, the space charge region in the film becomes the same

as in an extended bulk crystal.

According to Eq. (6.7), the screening length L also depends on the carrier densities nb+pb.
The larger nb + pb, the shorter is L. Therefore, the near independence of the band bending

on the bulk dopant concentration in the thin film is only found for not too high dopant

levels in the TI material. Furthermore, a long screening length can also be caused by a

large dielectric constant, which is characteristic for many TI materials. For example, for

BiSbTe3 a value of εr ≈ 100 is reported [141–143].

6.4.2.5. Degenerate doping

In Fig. 6.8, only non-degenerate doping levels in the TI have been considered, all of which

apparently lead to a downward band bending. Of course, it is in principle also possible that

the dopant concentration is sufficiently high for the TI material to be degenerately n-doped,

with Ebulk
F above the conduction band edge. According to the calculations, electrons from

the film then flow into the TSS. But because of the limited number of available charge

carriers, the Fermi energy in the film drops below the conduction band and in the end

nearly coincides with Etop
F , resulting in a weak upward band bending. Thus, again the

finite film thickness d  L leads to an effective suppression of band bending in the film in

the case of a slight degenerate doping.

Only for very strong degenerate doping the screening length can become so small that a

stronger band bending is obtained in the thin TI film, leading to a pronounced dependency

of the charge carrier density in the film on the film dopant concentration. However, the

case of such a strong degenerately doped TI film, where the Fermi energy is located deep

inside the bulk bands, is undesirable, as in this case the interior of the film will become the

dominant parasitic conduction channel due to the high DOS of the bulk states. State of the

art growth of ternary or even quaternary materials avoids this undesirable case of degen-

erate doping. Furthermore, it is clear that for degenerately doped materials the Boltzmann

approximation is not valid any more. Instead, all calculations must employ the Fermi-Dirac

distribution. Indeed, such calculations are possible, but the equations are more complex.

Thus, all calculations presented in this chapter are performed for the more relevant case of

non-degenerate doping. It has to be noted that already a surface Fermi level Etop
F only 20

meV below the conduction band edge, which is assumed in Fig. 6.8, stretches the validity

of the Boltzmann approximation. In this case, the deviation between the Fermi-Dirac and

Boltzmann distributions is up to 50%, but as the value of the Boltzmann distribution is

larger compared to the Fermi-Dirac distribution, i.e. fFD(E−EF ) < fB(E−EF ), the band

bending, when calculated with the Boltzmann distribution, will only be overestimated. The

true band bending will be even smaller.

6.4.2.6. The example of BiSbTe3

Within this chapter, the focus is on the specific TI material (Bi1−xSbx)2Te3 with x = 0.5,

i.e. BiSbTe3, which was studied extensively in Ref. [131, 155]. Fig. 6.8 used above to
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illustrate generic properties of band bending in thin TI films, was already calculated for this

case. The assumption of a fixed Etop
F in Figs. 6.8(a) to 6.8(c) corresponds to the situation in

which a definite value of Etop
F is measured by ARPES on an MBE-grown BiSbTe3 film; the

different values of the surface CNL in Figs. 6.8(a) to 6.8(c) would then indicate different

surface concentrations of adsorbates and/or surface defects. From this perspective, each

band diagram in Fig. 6.8 corresponds to a distinct initial state which after charge transfer

between the surface and the film interior results in the final state observed by a particular

ARPES measurement (i.e. in the present case Etop
F = 240 meV [131]). The aim is to identify

the most likely initial state and therefore also the corresponding band bending scenario.

In BiSbTe3, the surface Fermi energy Etop
F is observed to be very close to the conduction

band edge, as measured by ARPES [131, 155]. As demonstrated in Fig. 6.8, this results in

weak downward band bending for p-, intrinsic and n-type dopant concentrations. On the

other hand, if the film material is strongly or even degenerately n-doped, a result can also

be a weak upward bending (see section above). Generally, such a situation with upward

band bending, obtained for a Etop
F positioned further away from the conduction band edge,

has been discussed recently within the Schottky approximation [153, 154]. However, a

high dopant concentration in the bulk would be in contradiction with the aim to grow

films of ternary TI material systems with a minimal conductivity of the interior of the film

gap [126]. For this reason, the case of upward band bending is excluded for the material

BiSbTe3 discussed here.

Furthermore, as long as Etop
F in BiSbTe3 is positioned below the conduction band edge,

as observed in ARPES [131, 155], a strong downward band bending which would produce

a non-topological 2DEG near the surface can also be excluded. A 2DEG has been ob-

served in recent studies [148–150], but in all these cases Etop
F is positioned deep inside the

conduction band, while the Fermi energy inside the film material is still inside the band

gap.

The doping character of a thin TI film can be strongly influenced by the stoichiometric

composition [151, 156, 157]. In some experiments on (Bi1−xSbx)2Te3 and (Bi1−xSbx)2Se3
with stoichiometric parameters x �= 0.5, the surface Fermi energy Etop

F is found closer to

mid-gap [158,159]. If such a situation occurs, for appropriate film thicknesses and screen-

ing lengths the thin film could possibly become fully depleted, as almost all negative mo-

bile charge carriers flow into the TSS. This would result in a midgap position of the Fermi

energy inside the film, and, in these circumstances, the film material would be completely

insulating. However, this state of affairs can be excluded for the case of BiSbTe3, since

Etop
F is located very close to the conduction band edge, as measured by ARPES [131,155].

Therefore, it can be concluded that for BiSbTe3 from the experiment in Ref. [131] the band

bending must be weakly downward.

6.4.2.7. Mobile charge carrier density

Within the Boltzmann approximation, the mobile charge carrier density can be calculated

from the potential v(z) by ne(z) = nb exp[v(z)] and ph(z) = pb exp[−v(z)] for electrons

and holes, respectively. Integrating the sum of ne(z) and ph(z) over the thickness d of the
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thin film results in the total mobile charge carrier density

nfilm

(
Etop

F , Ebulk
F

)
=

∫ d

0

ni

[
e[ub(Ebulk

F )+v(z,Etop
F ,Ebulk

F )] + e−[ub(Ebulk
F )+v(z,Etop

F ,Ebulk
F )]

]
dz

(6.14)

inside the film material, with ni denoting the intrinsic charge carrier concentration. In gen-

eral, nfilm is both dependent on the dopant concentration in the film, which is represented

in the equation by the bulk Fermi energy Ebulk
F of a corresponding bulk crystal with same

dopant density, and on the surface Fermi energy Etop
F .

In Fig. 6.9, the total mobile charge carrier density as function of the dopant level expressed

by the bulk Fermi energy Ebulk
F is plotted for a thin film of BiSbTe3 with d = 10 nm [131].

The surface Fermi energy Etop
F is an additional free parameter. As long as Etop

F is well

within the band gap of BiSbTe3, the charge carrier concentration in the thin film is nearly

independent of Ebulk
F , i.e. nfilm(E

top
F , Ebulk

F ) ≈ nfilm(E
top
F ). Only in the vicinity of the band

edges, where also the Boltzmann approximation becomes less accurate, a deviation from

(a)
(b)

(c)

Figure 6.9.: (a) Integrated total mobile charge carrier density nfilm based on the symmetric ap-

proximation for a thin TI film as function of the dopant concentration represented by the bulk Fermi

energy Ebulk
F . The surface Fermi energy Etop

F is an additional parameter. For Ebulk
F inside the

band-gap, the calculated film carrier density is approximately constant and, thus, independent of

the dopant concentration. The type of majority carriers in the thin film [either electrons (red) or

holes (blue)] is indicated. On the upper horizontal axis, the associated 3D majority charge carrier

densities of a bulk crystal, i.e. pbulk on the left and nbulk on the right, are shown. The green squares

correspond to the values of Ebulk
F and Etop

F used in the band diagrams in Figs. 6.8(a) – 6.8(c), while

the dotted green line corresponds to a vertical cut plotted in Fig. 6.15 along the red dotted diagonal.

For comparison, the dotted gray line shows the strong exponential dependence of the total charge

carrier density expected inside an extended bulk crystal (values converted to 2D units by integrat-

ing over a width of 10 nm inside the bulk). (b),(c) Individual contributions of electrons (b) and

holes (c).
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the constant charge carrier concentration is observed. Note that the mobile charge carrier

concentration is of course influenced by the surface Fermi energy Etop
F .

As a quantitative example, for Etop
F = 240meV, as found in Ref. [131], the calculated

charge carrier concentration in the BiSbTe3 film is ∼ 6× 1011 cm−2, which is close to the

charge carrier density inside the Dirac cone of the top TSS of 4 × 1012 cm−2, indicating

that there may be a contribution by the interior of the film to the overall charge transport

in the TI system. Fortunately, in this example it turns out that the mobility of the bulk

material at room temperature is very low (< 2 cm2/Vs) compared to the TSS channels

[131, 156–158, 160], with the result that the conductivity of the film interior is negligible.

However, this could be completely different for other material systems, especially at low

temperatures, where the mobility may be larger by factors of 10 to 50. Thus, each case has

to be considered individually.

Thus, it can be concluded that by measuring the surface Fermi energy Etop
F , the charge

carrier concentration inside the TI thin film can be determined, even if the dopant concen-

tration (Ebulk
F ) is unknown. If also the mobility of the TI material is known, the conductivity

of the parasitic conduction channel that is constituted by the film interior in the TI system

can directly be calculated. It should be stressed again that this is in strong contrast to

the behavior of an extended bulk crystal, where the charge carrier density shows a strong

dependence on the dopant concentration, which is indicated by the dotted gray curve in

Fig. 6.9.

6.4.2.8. General interplay of parameters

In conclusion of this part, some further examples of near-surface band bending in thin TI

films should be shown. This examples are selected in such a way that the influence of the

individual parameters on the specific shape of the bands is visualized, so that the general

mechanism of band bending is revealed more clearly. As already discussed in detail in

sections 6.4.1.5 and 6.4.2.3, the charge transfer between the TSS and the TI bulk (and thus

the band bending) is determined by four interdependent parameters: the charge neutrality

level (CNL) of the combined TSS/DS system, the surface Fermi energy Etop
F , the bulk

Fermi energy Ebulk
F (given by the bulk dopant concentration), and the film thickness d. If

three of them are given, the fourth parameter is fixed by the condition of charge neutrality.

In order to demonstrate the interplay of these four parameters and their effect on the band

bending, several cases with different initial conditions are considered and plotted as band

diagrams in Fig. 6.10 and Fig. 6.11. Each band diagram is again calculated for both a

10 nm thin film (red) and the equivalent bulk crystal (blue) of the TI material BiSbTe3,

which was also considered throughout before. However, the difference to Fig. 6.8 is that

now the parameters of the calculation are not solely based on measurements, but chosen

with the aim to exemplify as clearly as possible their strong influence on the shape of band

bending. In each set of band diagrams, i.e. Figs. 6.10(a) – 6.10(c), Figs. 6.11(a) – 6.11(c)

and Figs. 6.11(d) – 6.11(f), the dopant concentration, represented by Ebulk
F , is varied from

n- to p-type.
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Figure 6.10.: Calculated band bending for a 10 nm thin film (red) and equivalent bulk crystal (blue)

of the TI BiSbTe3 as presented in Fig. 6.8, but now for a fixed mid-gap position of the surface Fermi

energy Etop
F = 130meV. From (a) to (c) the dopant concentration is varied, which is represented

by different values for the bulk Fermi energy Ebulk
F : (a) 225meV, (b) 130meV, and (c) 35meV.

Because the parameter Etop
F differs from the case displayed in Fig. 6.8, the resulting band bendings

and CNLs are also different.

Figure 6.11.: Calculated band bending for a 10 nm thin film (red) and equivalent bulk crystal (blue)

of the TI BiSbTe3 as presented in Fig. 6.8, but now for a fixed value of the charge neutrality level

(black dotted line), i.e. for a fixed surface defect density, with CNL = 250meV for (a) to (c) and

CNL = 200meV for (d) to (f). From (a) to (c) and (d) to (f) the dopant concentration is varied, as

represented by the bulk Fermi energy Ebulk
F : (a),(d) 225 meV, (b),(e) 130 meV, and (c),(f) 35 meV.

In contrast to the data shown in Fig. 6.8, the parameter CNL is constant among the top (bottom)

panels, such that the calculated values for Etop
F come out different for both thin film and extended

bulk crystal on the one hand, and for different dopant concentrations on the other hand. Due to the

alignment of the Fermi energy EF (green dashed line) throughout all plots and the different values

of Etop
F , the Dirac cones for the thin film and the extended bulk are vertically displaced with respect

to each other and plotted separately on the left of each panel.

In Fig. 6.10, the surface Fermi energy is set to a constant mid-gap position of Etop
F =

130meV. This results in distinct CNL values for the thin film and the bulk crystal, and

also for the three different dopant concentrations. While for the extended bulk crystal the
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change of CNL and band bending with dopant concentration is significant, it is rather small

for the thin film: For all dopant concentrations in Fig. 6.10, the Fermi level in the thin film

remains very close to mid-gap, because mobile charges flow almost completely into the

TSS. The interior of the film is thus intrinsically doped (fully depleted), irrespective of

the dopant concentration in the film material. If moreover the TI material is intrinsic (i.e.

Ebulk
F in mid-gap position), the CNL is independent of the film thickness d and therefore

coincides for the thin film and the bulk cases [Fig. 6.10(b)], resulting in flat bands in both

cases.

In Fig. 6.11, the charge neutrality level (black dotted line) is kept constant and fixed at

250meV for Figs. 6.11(a) – 6.11(c) and at 200meV for Figs. 6.11(d) – 6.11(f). Because all

band diagrams in Fig. 6.11 are aligned to a common Fermi level (green), the CNL and the

Dirac cones for the thin film and for the extended bulk appear vertically displaced, but the

position of the CNL with respect to the conduction band is the same in both cases (black

dotted arrows). A fixed CNL corresponds to the same specific concentration of surface

defects in all cases. As a result, the calculated values for Etop
F are now different for both

thin film and extended bulk crystal on the one hand, and for different dopant concentrations

on the other hand. Also the shape of band bending varies between all cases [even upward

band bending is observed in Fig. 6.11(d)].

The calculations in Fig. 6.11 show that the CNL (resulting from a certain concentration

of surface defects) directly influences the position of the surface Fermi energy Etop
F , and

correspondingly the overall band bending. As Etop
F is accessible by ARPES, this effect

is directly visible in measurements. For example, a variation of Etop
F with time due to

an increasing surface contamination has been experimentally observed [148, 150–152].

Concomitantly, the filling level of the TSS changes, and thus the concentration of charge

carriers inside. This in turn may lead to different properties of the TSS, e.g. a different

conductivity. For this reason, it is difficult to characterize the TI properly after exhibiting

it to ambient conditions, as it is for example necessary for the lithographic fabrication of

electrical contacts for subsequent conductivity measurements. Only as long as ultra-high

vacuum conditions are maintained, a change of the TSS properties due to adsorbates on

the surface (and corresponding change of CNL) can be excluded. This highlights the great

advantage of in situ transport measurements by means of multi-probe STM.

6.4.3. Asymmetric band bending in a thin film

So far, the band bending has been treated by a symmetric approach assuming equal surface

Fermi energies Etop
F and Ebottom

F . However, in general, different environments and thus

different surface defect densities will result in distinct surface Fermi energies Etop
F and

Ebottom
F at the top and the bottom of the TI film. Therefore, the boundary conditions at the

top and bottom surfaces are not identical, yielding an asymmetric band bending. In this

situation, the calculation of the band bending is more complex than in the symmetric limit.

An outline is given in the following section, while in section 6.4.3.2 the practical usage is

demonstrated based on information from gate-dependent measurements.
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Figure 6.12.: Three different cases A - C for the asymmetric potential v(z) of a 10 nm thin film

with different surface potentials vtop and vbottom on the top and bottom surface of the TI film,

respectively, plotted as function of depth z from the top surface. The coordinates z1 and z2 are

indicated. In order to visualize that the shape of potential depends strongly on the boundary con-

ditions, several distinct potential curves are plotted: solid and dotted lines in each panel exhibit

boundary conditions with inverted signs. For case B, the blue curves display the potentials obtained

by interchanging the values of vtop and vbottom.

6.4.3.1. Formalism

In the following, the equations for the calculation of the asymmetric band bending which

are based on the solution of Poisson’s equation given before in Eq. (6.8), are presented in

detail.

Concerning the shape of the potential, three different cases, labelled A to C, can be distin-

guished. They are shown schematically in Fig. 6.12 and fulfill the conditions

(A)
dv

dz

∣∣∣∣
z=z0

= 0 for 0 ≤ z0 ≤ d, (6.15)

(B)
dv

dz

∣∣∣∣
z=z0

�= 0 for 0 ≤ z0 ≤ d, (6.16)

(C) v(z = z0) = 0 for 0 ≤ z0 ≤ d. (6.17)

For cases A and B the signs of the surface potentials vtop and vbottom are equal, while for

case C the signs are opposite. To simplify the calculation of the band bending for cases

A and C, the function v(z) is split into two branches, namely v1(z1) with z1 ≡ z for

0 ≤ z ≤ z0 and v2(z2) with z2 ≡ d− z for z0 ≤ z ≤ d (or equivalently d− z0 ≥ z2 ≥ 0).
Note that the origin of z2 is located at the bottom surface of the thin film and that z2
increases towards the top surface, whereas z1 (and z) have their origin at the top surface

and increase towards the bottom one. The transition between v1 and v2 at z0 must be

continuous and differentiable, leading to the following matching conditions between the

branches:

(A) v1(z0) = v2(d− z0) =: v0 and
dv1
dz1

∣∣∣∣
z1=z0

= −dv2
dz2

∣∣∣∣
z2=d−z0

= 0, (6.18)

(C) v1(z0) = v2(d− z0) = 0 and
dv1
dz1

∣∣∣∣
z1=z0

= −dv2
dz2

∣∣∣∣
z2=d−z0

. (6.19)
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Two additional boundary conditions are determined by the initial values of the potential at

the surfaces of the film., i.e. for cases A and C it is

(A), (C) v1(0) = vtop and v2(0) = vbottom. (6.20)

For case B only one function, either v1(z1) or v2(z2), needs to be calculated, and thus the

two boundary conditions are either

(B)
v1(0) = vtop and v1(d) = vbottom,

or v2(0) = vbottom and v2(d) = vtop,
(6.21)

respectively. Thus, in the end, for each branch two boundary conditions are available, as it

is necessary.

In detail, the band bending vi(zi) for cases A to C is obtained by inserting the appropriate

boundary conditions from Eqs. (6.18) – (6.21) into Eq. (6.8). Hereby, the index i = 1, 2
denotes the two branches v1(z1) and v2(z2) of the potential v(z), and vtop,bottom represents

the corresponding surface potential, i.e. for i = 1 the first index (top) and for i = 2 the

second index (bottom) has to be used. Below, the results are discussed individually for

each case. Additional information about the derivation of the solutions can be found in the

appendix A.3.4.

Case A

In the left panel of Fig. 6.12, the band bending corresponding to case A is shown. The

surface potentials vtop and vbottom are either both positive (red solid line) or both negative

(red dotted line) and exhibit only a small difference. If z0 is chosen at the extremum

(minimum or maximum) of v(z), the two branches v1(z1) and v2(z2) can be calculated in

analogy to Eq. (6.13) for the intervals 0 ≤ z1 ≤ z0 and 0 ≤ z2 ≤ d− z0 by

zi(vi) = Ai

vi(zi)∫
vtop,
bottom

√
eub + e−ub

eub (ev′ − ev0 − v′ + v0) + e−ub (e−v′ − e−v0 + v′ − v0)
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

=: FA(ub, v
′, v0)

dv′ (6.22)

with the prefactor Ai = sgn(−vi)
L√
2
, respectively. An additional auxiliary condition is

sgn(−vtop)
L√
2

[∫ v0

vtop

FA(ub, v
′, v0) dv′ +

∫ v0

vbottom

FA(ub, v
′, v0) dv′

]
− d = 0 (6.23)

which results from the first matching condition of case A [Eq. (6.18)] and determines the

constant v0.
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Case B

In case B (center panel of Fig. 6.12) there is no local extremum in the potential v(z) be-

cause the difference between the boundary values vtop and vbottom is larger than in case A,

resulting in a more pronounced slope of the band potential. The calculation of the gate-

dependent band bending in section 6.4.3.2 assumes case B. Again, both vtop and vbottom
have the same sign, either positive (solid lines) or negative (dotted lines). Although not im-

perative, also two branches of v(z) are defined in the present case: Specifically, z0 is placed

at the surface which has the smaller surface potential, i.e. z0 ≡ 0 if |vtop| < |vbottom| and

z0 ≡ d if |vbottom| < |vtop|. In the former case v(z) is given by v2(z2), in the latter by

v1(z1). If the values of vtop and vbottom are interchanged, v1(z1) has to be replaced by

v2(z2) or vice versa. Both potential functions can be calculated by

zi(vi) = sgn(−vi)
L√
2

∫ vi(zi)

vtop,bottom

√
eub + e−ub

eub (ev′ − v′ + c) + e−ub (e−v′ + v′ + c)
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

=: FB(ub, v
′, c)

dv′ (6.24)

based on the conditions(
zi = z1 ∧ 0 ≤ z1 ≤ d

) ⇔ |vtop| > |vbottom|, (6.25a)(
zi = z2 ∧ 0 ≤ z2 ≤ d

) ⇔ |vtop| < |vbottom|. (6.25b)

The auxiliary condition which determines the constant c, reads as

sgn
(|vtop| − |vbottom|

)
sgn(−vtop)

L√
2

∫ vbottom

vtop

FB(ub, v
′, c) dv′ − d = 0 . (6.26)

Case C

Case C is visualized in the right panel of Fig. 6.12. As vtop and vbottom have opposite

signs, there must appear a root at a finite z between 0 and d. This z is identified with the

z0 that separates the potential into two branches v1 and v2. In the thin TI film, this root

corresponds to a change of the type of band bending, from a depletion to an accumulation

zone or vice versa. Both branches can be calculated by applying Eq. (6.24) separately for

0 ≤ z1 ≤ z0 and for 0 ≤ z2 ≤ d− z0, with the modified auxiliary condition

sgn(−vtop)
L√
2

∫ vbottom

vtop

FB(ub, v
′, c) dv′ − d = 0 (6.27)

that determines the constant c.

Transition between the cases A - C

Starting from the symmetric case of band bending with vtop = vbottom, case A has to be

applied if there is only a slight imbalance between vtop and vbottom that breaks the symme-

try between the top and bottom surfaces of the film. The transition to case B occurs once
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the local minimum (maximum) of the potential function v(z) reaches one of the surfaces

of the film (z0 = 0 or z0 = d) because the difference between |vtop| and |vbottom| becomes

sufficiently large. Within the coordinates of the two branches v1,2(z1,2) (see above) the po-

tential minimum (maximum) is then located at z1,2 = d. So, the condition for the transition

point is

dv1,2
dz1,2

∣∣∣∣
z1,2=d

= 0. (6.28)

This condition is fulfilled for a potential value v1,2(d) which can be expressed relative to

the surface potential vtop,bottom by introducing a threshold Δ as v1,2(d) = vtop,bottom −Δ.

This threshold then determines the maximum difference between vtop and vbottom up to

which no transition between case A and B occurs. In analogy to Eq. (6.13), the threshold

Δ follows as

Ai

vtop,
bottom

− Δ∫
vtop,
bottom

√√√√√ eub + e−ub

eub
(
ev

′−evtop,bottom−Δ−v′+vtop,bottom−Δ
)

+e−ub
(
e−v′−e−vtop,bottom+Δ+v′−vtop,bottom+Δ

) dv′ = d (6.29)

with the prefactor Ai = sgn(−vi)
L√
2
. When the absolute value of the difference between

vtop and vbottom is smaller than Δ, i.e.
∣∣|vtop| − |vbottom|

∣∣ ≤ Δ, case A is used. When the

difference is larger than Δ, i.e.
∣∣|vtop| − |vbottom|

∣∣ > Δ, case B has to be applied. If the

signs of vtop and vbottom become different, the transition to case C occurs.

6.4.3.2. Information from gate-dependent measurements

To calculate the band bending in a thin film with asymmetric boundary conditions, both

Etop
F and Ebottom

F have to be known. While Etop
F can be measured by ARPES (see above),

Ebottom
F must be extracted from gate-dependent four-point transport measurements. The

procedure is described in detail in Ref. [131]. To this end, a bottom gate electrode is inte-

grated into the substrate of the TI film and the four-point resistance of the film is measured

with a multi-tip STM as function of the applied gate voltage. Due to quantum capacitance

effects that arise because the DOS in the TSS is small, the induced electric field of the gat-

ing electrode does not only have a strong influence on the filling level of the bottom TSS,

but also on that of the top TSS. Thus, it can be concluded that Ebottom
F can be determined

via gate-dependent measurements, if Etop
F is known.

For the quantization effects, the potential in the film is approximated by a triangular well

of length d with infinite barriers on both sides. Its slope is determined by the difference

between the top and bottom surface Fermi levels Etop
F and Ebottom

F . This approximation is

applicable if the band bending in the film is weak, otherwise the potential would exhibit a

curvature. Further details of the calculations are discussed in the section 6.5.

In Fig. 6.13, the asymmetric band bending in a BiSbTe3 film with d = 10 nm is shown

for three different gate voltages, i.e. +30V, 0V, and −30V. All three band diagrams are
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Figure 6.13.: Gate-dependent band bending for a 10 nm thin BiSbTe3 film with intrinsic dopant

concentration (Ebulk
F = 130meV, nbulk = pbulk = 1× 1016 cm−3) as function of the depth z into

the film for different gate voltages, i.e. 30V (a), 0V (b) and −30V (c). The calculation is based

on asymmetric boundary conditions with the same parameters as used in Fig. 6.8 and additional

information from gate-dependent transport measurements [131]. In the central part of each diagram,

the bands inside the thin film are depicted, while on the left and right side of the panels the top and

bottom TSS are shown, respectively. The Fermi energy EF (green dashed line) and both Etop
F and

Ebottom
F (green arrows) are indicated. Due to different surface Fermi energies Etop

F at z = 0 and

Ebottom
F at z = 10nm [(a) 250meV, 220meV; (b) 240meV, 155meV; (c) 225meV, 50meV]

the resulting band bending in the thin film is asymmetric. The bottom gate voltage influences both

surface Fermi levels in a different way, as described in detail in Ref. [131], and leads to an increase

in the strength of band bending from (a) to (c). Hence, the mobile charge carrier density inside the

thin film is significantly influenced by the gate voltage.

calculated for an intrinsic film dopant concentration (i.e. Ebulk
F = 130meV). Similar to

the symmetric case, the band bending turns out to be approximately the same for differ-

ent dopant concentrations (not shown). However, Fig. 6.13 clearly shows that the varying

gate voltage causes different concentrations of induced charge carriers in the top and bot-

tom TSS [131], and thus results in different filling levels of the Dirac cones and different

surface Fermi energies Etop
F and Ebottom

F . Specifically, the band bending increases if the

gate voltage becomes more negative [Figs. 6.13(a) – 6.13(c)], as the charge carrier con-

centration in the bottom TSS is stronger influenced by the gating than in the top TSS. As

a consequence, also the charge carrier density in the thin film varies strongly with gate

voltage. This dependency of the total mobile charge carrier density on the gate voltage is

plotted for the case of a BiSbTe3 film with d = 10 nm in Fig. 6.14(a). The inset depicts

the measurement setup used in Ref. [131]. However, if the dopant concentration in the thin

film is changed at a fixed gate voltage, the integrated charge carrier density remains nearly

constant. This is illustrated in Fig. 6.14(b), where the strongly z-dependent carrier density

resulting from Fig. 6.13 is integrated over the film [Eq. (6.14)] and plotted as function of

the film dopant concentration, represented by the bulk Fermi energy of a corresponding

extended crystal, and the applied gate voltage as additional parameter. It can be observed

that nearly the same behavior results as in the symmetric approximation (Fig. 6.9), i.e. the

total mobile charge carrier density nfilm in the thin film is nearly independent of Ebulk
F . It

does, however, strongly depend on the applied gate voltage.
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Figure 6.14.: (a) Calculated total mobile charge carrier density nfilm inside a 10 nm thin BiSbTe3
film as function of the applied gate voltage (solid green line). The calculation is based on asym-

metric boundary conditions for a thin film with intrinsic dopant concentration nbulk = pbulk =
1 × 1016 cm−3 (Ebulk

F = 130meV) and on parameters from Ref. [131]. The individual contribu-

tions by electrons (red) and holes (blue) are depicted by the dotted lines. In the inset, the transport

measurement setup and the sample configuration from Ref. [131] is shown. (b) Integrated total

mobile charge carrier density inside the 10 nm BiSbTe3 film as function of dopant concentration

(represented by Ebulk
F of a corresponding extended crystal) and gate voltage as additional parameter.

6.4.3.3. Comparison between asymmetric and symmetric boundary conditions

Finally, the results for asymmetric boundary conditions are compared to those obtained in

the symmetric case. It is to be expected that for a given parameter set Etop
F and Ebottom

F

the mobile charge carrier density nfilm will differ from one that is calculated in the sym-

metric approximation. This becomes apparent in Fig. 6.15, where the total mobile charge

carrier density of a BiSbTe3 film with d = 10 nm is plotted (based on parameters from

Ref. [131]) as function of the top and bottom surface Fermi levels. The diagonal dotted red

line corresponds to symmetric boundary conditions with Etop
F = Ebottom

F . The plot reveals

that for a specific measured Etop
F and unknown Ebottom

F , i.e. along a vertical cut through

the diagram, nfilm can vary by up to one order of magnitude. It should be noted that the

contour lines in Fig. 6.15 are symmetric, because both electrons and holes contribute to

the total mobile charge carrier density. The blue points correspond to the charge carrier

densities obtained for the gate-dependent band diagrams in Figs. 6.13(a) – 6.13(c), while

the dotted connection line between the blue points expresses the general gate-dependency

of nfilm shown in Fig. 6.14(a), providing the corresponding Etop
F and Ebottom

F . For example,

for Etop
F = 240meV and Ebottom

F = 156meV, as determined in Ref. [131] for a vanishing

gate voltage, the calculated charge carrier density in the film is ∼ 2× 1011 cm−2, which is

only one third of the value calculated in the symmetric approximation.

Thus, it can be concluded that the charge carrier density in the thin TI film can be calcu-

lated more precisely with asymmetric boundary conditions. Because the gate-dependent

measurements not only provide the band bending but also the charge carrier mobility in the

film, the conductivity of the interior of the TI film can finally be determined [131].
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(a)

(b)

(c)

Figure 6.15.: (a) Color plot of the mobile charge carrier density nfilm as function of the top and

bottom surface Fermi energy Etop
F and Ebottom

F , respectively, for the specific case considered in

Ref. [131]. The charge carrier density is calculated for a thin film with intrinsic dopant concentra-

tion. The diagonal dotted red line indicates the symmetric case with Etop
F = Ebottom

F and corre-

sponds to a cut at the position of the dotted green line in Fig. 6.9. The marked blue points correspond

to the charge carrier concentrations resulting from the band diagrams depicted in Figs. 6.13(a) –

6.13(c), while the dotted black line in between shows the general gate-dependent behavior. (b),(c)

Same plots as in (a), but showing the individual contributions of electrons (b) and holes (c).

6.5. Schrödinger-Poisson approach for band bending in

thin films

In this section, first the concept of the effective density of states in the classical Poisson

approach is discussed. Moreover, the modifications of the classical calculation of the band

bending, specifically concerning the effective density of states, which are necessitated by

the Schrödinger-Poisson approach, are presented.

6.5.1. Classical Poisson approach

6.5.1.1. Concept of effective density of states

The charge carrier density in the conduction band (electrons) is given by

ne(z) =

∫ ∞

EC(z)

ndos
C (E − EC(z))

1

e
E−EF
kBT + 1

dE (6.30)

with the Fermi energy EF , the conduction band edge EC(z) and the density of states

ndos
C,2D(E) = m∗

e

π�2
and ndos

C,3D(E) = (2m∗
e)

3/2

2π2�3

√
E for the 2D and 3D cases, respectively,
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assuming parabolic bands. For non-degenerate semiconductors with the Fermi energy po-

sitioned well in between the band edges the Boltzmann approximation for the Fermi-Dirac

distribution can be used. Eq. (6.30) can then be approximated as [88]

ne(z) = N eff
C e

− (EC (z)−EF )
kBT (6.31)

with the effective density of states N eff
C,2D = m∗

ekBT
π�2

and N eff
C,3D = 2

(
2m∗

eπkBT
h2

)3/2

for the 2D

and 3D cases, respectively. Conceptually, the effective density of states N eff corresponds

to a theoretical density of states that would be present, if all empty states of the conduction

band were concentrated at the lower conduction band edge at EC . The charge carrier

density in the valence band (holes) can be described in the same way by using the effective

hole mass m∗
h and the valence band edge EV (z) in Eq. (6.31), resulting in

ph(z) = N eff
V e

EV (z)−EF
kBT (6.32)

with N eff
V,2D =

m∗
hkBT

π�2
and N eff

V,3D = 2
(

2m∗
hπkBT

h2

)3/2

for the 2D and 3D cases, respectively.

6.5.1.2. Effective density of states in the Poisson approach

For the calculation of the near-surface band bending EC(z) and EV (z) within the classical

approach, the Poisson equation specified before in Eq. (6.5) for the dimensionless potential

v(z) has to be solved. In this equation, the first two terms on the right side correspond to

the static charge density ρstatic = q[N+
D −N−

A ] caused by the homogeneous concentration

of charged donors N+
D and acceptors N−

A in the material, which can be expressed by the

mobile bulk charge carrier densities nb and pb by using the condition of charge neutrality

nb +N−
A = pb +N+

D (6.33)

as ρstatic = q[nb − pb]. The last two terms on the right side of Eq. (6.5) correspond to

the position-dependent mobile charge density ρmobile(z) = q[p(z) − n(z)] of electrons

and holes, which can be expressed by the Eqs. (6.45) and (6.48) (see below). Thus, with

ρ(z) = ρstatic + ρmobile(z) and the dimensionless potential v(z), the Poisson equation in its

present form directly follows from Eq. (6.1). With the definition given in Eqs. (6.2) – (6.4),

i.e. based on

qΦ(z) = kBTu(z) = EF − Ei(z), (6.34)

the potential v(z) can be written as

v(z) =
q

kBT

[
Φ(z)− Φb

]
=

1

kBT

[
Eb

i − Ei(z)
]
, (6.35)

where the indices i and b denote the intrinsic level and the bulk limit (for z → ∞), re-

spectively. The intrinsic level Eb
i in the bulk material depends on the effective densities of

states as

Eb
i

(
N eff

C , N eff
V

)
=

Eb
C + Eb

V

2
+

kBT

2
ln

(
N eff

V

N eff
C

)
. (6.36)
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Eq. (6.36) is also valid for all other values of z, such that

Ei(z) =
EC(z) + EV (z)

2
+

kBT

2
ln

(
N eff

V

N eff
C

)
. (6.37)

If the Eqs. (6.36) and (6.37) are inserted into Eq. (6.35) and additionally the relation be-

tween the band edges Egap = EC(z) − EV (z) = Eb
C − Eb

V is used, the potential v(z) can

be expressed as

v(z) =
1

kBT

[
Eb

V − EV (z)
]

. (6.38)

Thus, from a solution v(z) of the Poisson equation [Eq. (6.5)] the final shape of band

bending EV (z) with respect to the bulk valence band edge Eb
V can be calculated as

EV (z) = Eb
V − kBTv(z) . (6.39)

Eq. (6.39) does not directly depend on the effective densities of states. However, in order

to obtain the potential v(z) by solving Poisson’s equation [Eq. (6.5)], the knowledge of the

effective densities of states N eff
C and N eff

V is required, because the charge carrier densities

inside the bulk nb and pb depend on them, which will be shown in the following.

By using Eq. (6.31) and additionally inserting the relation for the intrinsic charge carrier

density which immediately follows from n2
i = ne(z) ph(z), i.e.

ni

(
N eff

C , N eff
V

)
=
√

N eff
C N eff

V e
− Egap

2kBT (6.40)

with the band gap Egap = EC(z)−EV (z), the mobile electron charge carrier density ne(z)
can be rewritten as

ne(z)
(6.31)
= N eff

C e
− (EC (z)−EF )

kBT =
√
N eff

C N eff
V e

−EC (z)+EV (z)

2kBT

√
N eff

C

N eff
V

e
−EC (z)−EV (z)

2kBT e
EF
kBT

(6.40)
= ni

(
N eff

C , N eff
V

)
e

EF
kBT

√
N eff

C

N eff
V

e
−EV (z)−EC (z)

2kBT . (6.41)

From Eq. (6.37) it follows that

e
−Ei(z)

kBT = e
−EC (z)−EV (z)

2kBT
− 1

2
ln

(
Neff
V

Neff
C

)
= e

−EC (z)−EV (z)

2kBT

(
e
ln

(
Neff
V

Neff
C

))− 1
2

= e
−EC (z)−EV (z)

2kBT

√
N eff

C

N eff
V

,

(6.42)

and by inserting Eq. (6.42) into Eq. (6.41), the equation

ne(z)
(6.42)
= ni

(
N eff

C , N eff
V

)
e

EF−Ei(z)

kBT
(6.34)
= ni

(
N eff

C , N eff
V

)
eu(z) (6.43)
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is obtained. Then, the electron charge carrier density inside the bulk nb can be expressed

as

nb = ni

(
N eff

C , N eff
V

)
e

EF−Eb
i (Neff

C ,Neff
V )

kBT
(6.34)
= ni

(
N eff

C , N eff
V

)
eub(Neff

C ,Neff
V ) . (6.44)

If the exponential term in Eq. (6.43) is expanded by ub and the definition for the potential

v(z) in Eq. (6.35) is used, the electron charge carrier density can be rearranged as

ne(z)
(6.35)
= ni

(
N eff

C , N eff
V

)
eub(Neff

C ,Neff
V )+v(z) (6.44)

= nb

(
N eff

C , N eff
V

)
ev(z). (6.45)

Following similar considerations as shown in Eqs. (6.41) – (6.45), but starting with

Eq. (6.32), the hole charge carrier density results in

ph(z) = ni

(
N eff

C , N eff
V

)
e
−EF−Ei(z)

kBT
(6.34)
= ni

(
N eff

C , N eff
V

)
e−u(z) , (6.46)

inside the bulk it is given by

pb = ni

(
N eff

C , N eff
V

)
e
−

EF−Eb
i (Neff

C ,Neff
V )

kBT
(6.34)
= ni

(
N eff

C , N eff
V

)
e−ub(Neff

C ,Neff
V ) (6.47)

and by introducing the potential v(z) it can be expressed as

ph(z)
(6.35)
= ni

(
N eff

C , N eff
V

)
e−ub(Neff

C ,Neff
V )−v(z) (6.47)

= pb
(
N eff

C , N eff
V

)
e−v(z) . (6.48)

Thus, the effective densities of states N eff
C and N eff

V can have a crucial influence on the

shape of band bending. They are necessary for the calculation of the bulk charge carrier

densities nb and pb [Eqs. (6.44) and (6.47)], which in turn are needed for the solution v(z)
of the Poisson equation [Eq. (6.5)] and for the determination of the charge carrier densities

ne(z) and ph(z) inside the space charge region [Eqs. (6.45) and (6.48)]. For an extended

3D crystal or a pure 2D sheet, in conjunction with the assumption of parabolic bands, the

effective densities of states that were presented above can be used. However, for a system

in which charge carriers are confined in one direction to within a length of the order of

the wave length of the electrons, quantization effects have to be taken into account. This

is outlined in the following section. The above considerations for semiconductors can be

transferred straightforwardly to topological insulators, employing the arguments presented

in section 6.4.

6.5.2. Quantum mechanical modifications

In order to take quantization effects on the occupation of the valence and conduction bands

into account, which arise from an electron confinement on the length scale of the wave

function, e.g. in thin films with thicknesses in the range of a few nm, a quantum mechanical

approach must be used and the Schrödinger equation has to be solved in addition to the

Poisson equation. For thin TI films a model system is used which is extended in the x- and
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y-directions, but confined in the z-dimension. The quantized band states resulting from the

solution of the Schrödinger equation can then be expressed by modified effective densities

of states and used as input for the band bending calculation.

Specifically, the solution proceeds in three steps: In the first step, Poisson’s equation is

solved for a classical 3D system with a finite width in the z-direction, assuming a parabolic

shape of the bands (as shown in detail in section 6.4). In the next step, the resulting band

bending potential v(z) is used in the Schrödinger equation to calculate quantization levels.

To this end, the top and bottom surfaces of the thin film are treated as potential barriers

which are very high compared to the potential inside the film. This is justified by the

large work function of the TI in comparison to its band gap [161–163]. Moreover, it turns

out that the band bending in all considered cases has a rather weak curvature, such that

the problem can be framed in terms of generic potential wells. In other words, the exact

solutions of the Schrödinger equation for the given v(z) are approximated very well by

the solutions for potential wells of either square or triangular shapes. Their quantized

eigenenergies result in a modification of the densities of states within the conduction and

valence bands. In particular, the bands are not continuous any more, but instead multiple

discrete two-dimensional subbands arise for each of both bands due to the confinement in

one dimension. The correspondingly modified effective densities of states of this quasi-

two-dimensional system are used in the final calculation step, in which Poisson’s equation

is solved once again to determine the band bending v(z) in the thin film.

6.5.2.1. Square well

Symmetric boundary conditions for the calculation of the band bending in thin films, which

are presented in section 6.4.2, result in a potential without a slope and only with very weak

curvature. This potential can be approximated by a square well with infinite barriers on

both sides, resulting in a confinement in the z-direction, while the x- and y- directions are

assumed to be infinitely extended. The solution of the Schrödinger equation for such a

square well results in the eigenenergies [164]

Ej(kx, ky) = εj +
�
2

2m∗
(
k2
x + k2

y

)
with εj =

�
2

2m∗

(
jπ

d

)2

(6.49)

with the integer number j = 1, 2, . . . and the film thickness d. The electron charge carrier

density in the conduction band then results from the sum over all subbands j as

ne,square =
∑
j≥1

n2D
j

(6.31)
=

∑
j≥1

m∗
ekBT

π�2
e
−(

EC+εj−EF )
kBT =

[
m∗

ekBT

π�2

∑
j≥1

e
− εj

kBT

]

���������������������������������������������������������������������������������������������������������������������������������

Neff
C,square

e
− (EC−EF )

kBT ,

(6.50)

where the two-dimensional charge carrier density n2D
j of the subband j is given by

Eq. (6.30) with the integration starting from EC + εj . According to Eq. (6.31) it can be

expressed by using the Boltzmann approximation. From a comparison of Eq. (6.50) with
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Eq. (6.31) the modified effective density of states N eff
C,square can be extracted as

N eff
C,square =

m∗
ekBT

π�2

∑
j≥1

e
− εj

kBT
(6.49)
=

m∗
ekBT

π�2

∑
j≥1

e
− �

2π2j2

2m∗
ekBTd2 . (6.51)

The modified effective density of states N eff
V,square of the valence band is given by the

same expression, albeit replacing the effective mass m∗
e with m∗

h. Note that N eff
C,square and

N eff
V,square only depend on the width of the square well, i.e. the thickness d of the thin TI

film. In particular, the solutions are independent of the value of the surface Fermi energy

Etop
F , since the potential barriers (work function) at the top and bottom surfaces of the film

are high compared to the potential in the film. Because of the relatively high work function

(e.g. ≈ 5 eV for Bi2Te3 [161, 162]), any corrections resulting from the principally more

accurate solution of a square well with finite barrier height remain rather small, such that

the approximation of the barriers as being infinitely high is well justified in this case.

6.5.2.2. Triangular well

If the band bending in thin films is calculated with asymmetric boundary conditions (sec-

tion 6.4.3), the square well potential is not a suitable approximation any more. While the

band bending potential still shows a very weak curvature, it now exhibits a constant slope

that is determined by the difference between the top and bottom surface Fermi energies

Etop
F and Ebottom

F (cf. Fig. 6.13 in section 6.4.3). Hence, a triangular well of thickness d
with infinitely high barriers at either surface of the thin film provides a better description

of the band bending potential. The potential in a triangular well can be expressed as

Vtriangle(z) = qFz (6.52)

where the slope F is determined by the difference between the top and bottom surface

Fermi energies

F
(
Etop

F , Ebottom
F

)
=

Etop
F − Ebottom

F

q d
. (6.53)

With this potential the Schrödinger equation reads[
− �

2

2m∗
d2

dz2
+ qFz

]
Ψ(z) = EΨ(z) (6.54)

which after the variable substitution

ξ(z) =

(
2m∗qF

�2

) 1
3

�����������������������������������������������������������

:=ξ0

(
z − E

qF

)
(6.55)

becomes

d2

dξ2
Ψ(ξ) = ξΨ(ξ). (6.56)
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A solution of Eq. (6.56) is given by [164]

Ψ(ξ) = Ai(ξ) + CBi(ξ) (6.57)

where Ai(ξ) and Bi(ξ) are the Airy functions and C is a constant. By inserting the bound-

ary conditions Ψ(ξ(z = 0)) = 0 at the top surface and Ψ(ξ(z = d)) = 0 at the bottom

surfaces of the thin film, the equation system

Ai(ξ(0)) + CBi(ξ(0)) = 0

Ai(ξ(d)) + CBi(ξ(d)) = 0 (6.58)

is obtained. Eliminating the constant C and resubstitution finally results in

Ai

(
ξ0

(
d− E

qF

))
−

Ai

(
−ξ0

E
qF

)
Bi

(
−ξ0

E
qF

) Bi

(
ξo

(
d− E

qF

))
= 0. (6.59)

Eq. (6.59) has to be solved numerically to determine the quantized eigenenergies Ej that

satisfy the equation. If these eigenenergies are calculated for a specific potential slope F ,

they can be inserted for εj in Eq. (6.51) to determine the modified effective densities of

states N eff
C,triangle and N eff

V,triangle for the conduction and valence bands, respectively. These

effective densities of states can then be used as input for the final step of the band bending

calculation. However, it has to be noted that they now depend not only on the width d of

the triangular well (the film thickness), but also on the slope F of the potential, which in

turn depends on the difference between the top and bottom surface Fermi energies. Thus,

N eff
C,triangle and N eff

V,triangle have to be calculated for each pair Etop
F , Ebottom

F separately.

Within the above approximation of the Schrödinger-Poisson approach, only the eigenen-

ergies resulting from the solution of the Schrödinger equation are used, while the simul-

taneously determined wave functions Ψ(z) are not considered. However, in principle the

probability density |Ψ(z)|2 resulting from the electron and hole wave functions must be in-

serted as an additional factor in front of the corresponding mobile charge carrier densities

in the differential equation [Eq. (6.5)] before solving the Poisson equation in the final step.

Evidently, this complicates the solution due to the additional z-dependence. Since the ef-

fect of the |Ψ(z)|2-induced modification of the mobile charge carrier densities on the band

bending is expected to be small, the wave functions are neglected and a uniform distribution

of the mobile carriers in each subband across the thin film is assumed, as discussed above.

This may lead to a slight overestimation of the band bending in the immediate vicinity of

the surfaces, where the effect of the probability density on the mobile charge carrier dis-

tribution is strongest, because (1) the weak curvature in conjunction with the large barrier

height implies that the subband wave functions tend to vanish towards the film surfaces,

and (2) at room temperature nearly only the first subband is occupied (≈ 95%) such that

the probability density of the mobile carriers in the center of the thin film is at maximum

and decreases towards the surfaces (e.g. as for the case of a square well the wave function

of the lowest energetic state is the first mode of sine).
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If not the integrated mobile charge carrier density is of interest, but the position-dependent

distribution of the mobile charge carriers nfilm(z) = ne(z) + ph(z) in the thin film, one

may use the following approximation for obtaining a more exact solution by addition-

ally including the probability density of the corresponding wave functions: In Eq. (6.14)

in section 6.4.2.7, the probability densities |Ψ(z)|2 could be used as prefactor to the corre-

sponding charge carrier densities ne(z) and ph(z). With this approximation, the probability

density has no effect on the band bending potential v(z) itself, but simply modifies the dis-

tribution of the mobile charge carriers in the film. Evidently, this approach is only useful

if the z-dependence of the carrier density nfilm(z) in the thin film is of interest. If only the

total mobile charge carrier density of the film is important, as it results from the integration

of Eq. (6.14), the additional factor |Ψ(z)|2 makes no difference.

6.6. Summary

In this chapter, it was shown that thin TI films usually exhibit parallel conduction channels

through the interface layer and the interior of the film. These parasitic channels participate

in the overall current transport and therefore can potentially reduce the fraction of the total

current that flows through the TSS channel significantly. As a consequence, the desired

benefit from the unique properties of the TI, for instance spin-momentum locking, would

be partially lost. However, if the parasitic transport channels are understood in detail, the

possibility arises to tune them towards a negligible influence compared to the auspicious

TSS channel.

In order to determine the interface conductivity of thin TI films grown by van-der-Waals

epitaxy, only the initial substrate termination has to be prepared and, afterwards, the inter-

face conductivity can directly be measured by surface-sensitive four-probe transport mea-

surements performed with a multi-tip STM.

The conductivity of the film interior can be determined by a combination of surface-

sensitive experimental methods, such as ARPES and gate-dependent four-probe transport

measurements, and band bending calculations in the thin-film limit. In the latter the TI film

is treated similar to semiconductors, but without the assumption of Fermi level pinning, be-

cause the DOS of the TSS is typically small. In the symmetric approximation, where the

measured value of the top surface Fermi level from ARPES is also applied to the non-

accessible bottom surface, the total mobile charge carrier density in the film material can

be calculated. This calculation is possible even if the concentration of dopants that are un-

intentionally incorporated during film growth is unknown, because in the thin-film limit the

carrier density is nearly independent of the film dopant concentration for the desirable case

of moderate film doping, i.e. a non-degenerate doping. The band bending calculations can

be refined by employing asymmetric boundary conditions, if gate-dependent four-probe

measurements on the top surface are used as additional input besides ARPES. Then, the

conductivity of the interior of the thin film can be calculated unambiguously and the role

of this channel for current transport in the TI system can be evaluated.

It is finally stressed that the methods presented in this chapter are rather general and can be
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applied to very different classes of TI materials. The information gained in this way can be

important for designing future electronic devices based on TI materials in such a way that

the majority of current is exclusively transported by the TSS, and thus most benefit can be

gained from the topological properties of the material in question.

The results described in this chapter are largely published in Ref. [165], except for the data

presented in section 6.2.2 which are included in Ref. [125] to a small extent. Additionally,

results from section 6.4.3.2 are used in the publication in Ref. [131].





7. The weak topological insulator

Bi14Rh3I9

Besides two-dimensional surface channels, as treated throughout before, also one-

dimensional conducting channels can exist at surfaces. In this case, the main difficulty

which arises for characterizing their transport properties, is to disentangle them from a sur-

rounding 2D surface channel. In this chapter, this problem is addressed by the example

of a weak topological insulator. For this purpose, the first experimentally realized weak

topological insulator Bi14Rh3I9 is investigated by means of a multi-tip STM. The class of

weak topological insulators can be understood in first order by a reduction of the dimen-

sionality, as it is formed by a stack of 2D topological insulators. In contrast to strong 3D

topological insulators, as discussed in detail in the previous chapter, a weak 3D TI does

not exhibit two-dimensional surface states, but one-dimensional edge states on the top sur-

face. These one-dimensional channels appearing at all step edges are predicted to form

ballistically conducting lines on the surface making weak topological insulators a very in-

teresting candidate for future electronic devices. In the following, these edge states on the

top surface are probed by scanning tunneling spectroscopy and scanning tunneling poten-

tiometry. Furthermore, the overall conductivity of the surface is measured by means of

distance-dependent four-point measurements.

7.1. Weak topological insulators

Similar to strong topological insulators, also weak topological insulators exhibit topologi-

cally protected states, giving rise to the well-known properties of topological materials, i.e.

spin-momentum locking and prohibited direct backscattering. However, there are some

differences between strong and weak TIs concerning the dimensionality and position of

the topological states. In principle, the term weak is slightly misleading, as it was initially

introduced to express the expected instability of the topological surface states caused by

disorder, which might introduce a gap in the surface states [166, 167]. However, recent

works have elaborated that disorder can even stabilize the surface state resulting in a robust

topological state also in weak TIs [168–171].

Strong three-dimensional TIs exhibit topologically protected two-dimensional surface

states inside the band-gap on all surfaces. Inside the bulk material these states are not

present, which results in an insulating bulk, if the Fermi energy is positioned inside the

band-gap. Due to the states present on the surfaces, these surfaces are often termed as

bright surfaces.

135
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Figure 7.1.: Principle of the formation of a weak 3D topological insulator. A stack of multiple non-

interacting 2D topological insulators with one-dimensional edge states can be used to construct a

weak 3D topological insulator. The weak 3D TI exhibits bright surfaces along the stacking direction

and dark surfaces without topological states perpendicular to the stacking. Every islands on the dark

surface exhibits a 1D topological edge state. The drawing is reproduced from Ref. [175].

In contrast, a weak TI does not have surface states on all surfaces. This can be easily under-

stood by the structure of a weak TI, which is visualized in Fig. 7.1. A simple way to con-

struct a weak 3D TI is the stacking of multiple 2D TI sheets on top of each other with sup-

pressed interlayer interaction [166, 172]. The 2D TI sheets only exhibit one-dimensional

topological edge states at the surroundings of the sheets but no states on the surface itself

(dark surface) due to the reduced dimensionality. The resulting stack, i.e. the weak 3D TI,

then shows bright surfaces on all sides along the stacking direction due to the combined

1D edge states of the single layers, but the surfaces perpendicular to the stacking, i.e. the

topmost and the bottommost surface, remain dark without any topological surface states.

This implies then that also single-layer islands on the dark surfaces are surrounded by

one-dimensional topological edge states at the step edges. Due to the special topological

properties the backscattering in these 1D channels is predicted to be prohibited, so that an

ideal conductance in the ballistic transport regime is expected with a conductivity of e2/h,

as long as time-reversal symmetry is not broken [171, 173]. As the 1D edge states appear

at every boundary of the dark surface, it is also possible to scratch a 1D channel into the

surface [174]. This gives rise to the possibility to artificially produce a network of ballis-

tically conducting lines on a weak topological insulator making it an interesting candidate

for future electronic devices.

7.2. Bi14Rh3I9 crystal

Bi14Rh3I9 was the first synthesized weak topological insulator material [176, 177]. In the

following, its structure and surface topography probed by STM are discussed.

7.2.1. Crystal structure

The compound Bi14Rh3I9 consists of two different ionic layers, which are alternately

stacked, as it is visualized in Fig. 7.2(a). These two layers are the 2D topological insu-

lator [(Bi4Rh)3I]2+ and the trivial insulator [Bi2I8]2−. The 2D TI exhibits a graphene-like

honeycomb lattice formed by the heavy elements Bi, Rh and I, which are arranged in
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Figure 7.2.: (a) Crystal structure of Bi14Rh3I9 consisting of an alternately stacking of the 2D topo-

logical insulator [(Bi4Rh)3I]2+ and the insulating spacer [Bi2I8]2−. (b) Top view of the honeycomb

lattice structure of the 2D TI. (a) and (b) are reproduced from Ref. [175].

hexagonal rings of rhodium-centered bismuth cubes with the iodine atoms in the center

[Fig. 7.2(b)]. In contrast to graphene the spin-orbit interaction in Bi14Rh3I9 is much larger

due to the heavy elements, which in combination with the graphene-like structure gives

rise to topological effects [178]. The trivial insulating layers act as a spacer preventing an

interlayer coupling between the 2D TI layers. The spacing between two consecutive 2D TI

layers is equal to 1.25 nm [175].

7.2.2. Sample preparation

The Bi14Rh3I9 crystals were synthesized by Dr. Bertold Rasche from the Department of

Chemistry at the TU Dresden as described in Ref. [177]. Afterwards the crystals were

transported to the Research Center Jülich under ambient conditions. All crystals were

rather small in size up to approximately 1× 1× 0.2mm3. For the STM measurements,

one crystal is glued with a carbon-based glue (DuPont 7105), which is expected not to

(a) (b) (c)

Figure 7.3.: (a) Bi14Rh3I9 crystal glued with a carbon-based glue onto a Omicron sample holder.

(b) Optical microscope image of the cleaved crystal inside the UHV (c) Enlarged image of a light-

reflecting region of the crystal surface with a STM tip in front of it.
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(a) (b) (c)

Figure 7.4.: (a) Large-area STM image of the Bi14Rh3I9 surface (U = 500mV, I = 110 pA).

(b) Enlarged STM image of a double step edge on the Bi14Rh3I9 surface (U = −15mV, I =
90pA). (c) Height profile along the green line marked in (b). Two different step heights of 0.8 nm
and 0.4 nm are visible belonging to the 2D TI and the spacer layer, respectively.

react with the Bi14Rh3I9 compound, onto a standard Omicron sample holder, as shown

in Fig. 7.3(a). Afterwards the sample holder with the Bi14Rh3I9 crystal was baked at a

temperature of 120 ◦C for curing the glue.

In order to obtain a clean surface of the Bi14Rh3I9 for the STM measurements, the crystal

was cleaved inside the UHV chamber. This is possible due to the weak coupling of the

layers in the Bi14Rh3I9 structure. For this purpose, a piece of copper tape with a small

metal wire at the upper end (not shown here) was pushed onto the crystal surface before it

was transferred into the UHV. Inside the UHV chamber, the metal wire could be grabbed

with the pincers at the manipulator and the copper tape was pulled from the crystal surface

at a pressure of 1× 10−10 mbar. As a few layers of the crystal remain at the copper tape, the

Bi14Rh3I9 surface was cleaved and a clean surface for STM investigations was established.

In Fig. 7.3(b), an image of the cleaved Bi14Rh3I9 crystal is shown, which is obtained by the

optical microscope mounted at the multi-tip STM with lowest magnification. It is visible

that the surface is not perfectly flat, as the light is not reflected homogeneously, which was

always the case for the Si substrates measured before. This makes it much more difficult to

identify and control the tips in front of the crystal surface. The only possibility is to zoom

into the strongly light-reflecting regions, where the tips can be clearly seen [Fig. 7.3(c)].

However, as these reflecting regions are not very large, one has to be careful to bring all

four tips together without a collision between them or with the crystal surface.

7.2.3. Surface topography probed by STM

Large-area STM scans of the Bi14Rh3I9 surface, as shown in Fig. 7.4(a), reveal that there

is no flat surface on the micrometer scale, but multiple islands which are partly connected

and exhibit step edges with different heights. It turns out that basically two distinct step

heights are present which can be identified with steps from the two different layers of

the crystal, i.e. the 2D TI and the spacer [175]. Enlarged STM scans of step edges, as
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depicted exemplarily in Fig. 7.4(b) with the corresponding height profile in Fig. 7.4(c),

reveal that the apparent heights1 of neighbouring layers are 0.8 nm and 0.4 nm which can

be attributed to the step heights of a 2D TI layer and a spacer layer, respectively [175].

Thus, the apparent step height of two combined adjacent layers, which is equal to the

apparent spacing between two consecutive layers of the same type, i.e. between two 2D

TI layers or two spacer layers, is with 1.2 nm in accordance with the crystal structure

(1.25 nm) shown before in Fig. 7.2. In the following, such a composed layer of 2D TI

and spacer is denoted as double layer (DL), irrespective of the stacking order, and the step

present at the collective edge of this two adjacent layers is referred to as double step. In

the same way, in order to commonly denote either 2D TI or spacer, the term single layer

is used, while on the other side two consecutive double layers are termed as a quadruple

layer (QL).

Without resolving the atomic structure of the surface it is not directly possible from the

STM image to conclude, which layer is the topmost layer, i.e. the 2D TI or the spacer.

However, by measuring the different step heights at step edges, which are composed out of

the basic layer heights, it is possible to identify the layers. Moreover, an identification of

the spacer layer is also possible by the thermovoltage obtained from potentiometry mea-

surements (cf. Fig. 7.18), as it will be discussed in more detail later on in section 7.5.2.2.

Since one disadvantage of the first method, i.e evaluating the step topography, is that in

order to properly assign all of the layers at least one single spacer layer has to be found

in the STM image which seems to be rarely the case for the studied crystals, particularly

the potentiometry is a better alternative for identifying the layers. From both methods it

turns out that for the studied crystals the dominant topmost layer is the 2D TI layer and

that the majority of step edges are extended over either a single or multiples of double lay-

ers, thus exhibiting a height of multiples of 1.2 nm. This implies that basically only steps

between 2D TI layers are present, while there are only a very few regions on the surface,

where the spacer layer appears. Such a result seems to be in contrast to the findings from

Ref. [175], where the spacer was the predominant layer on top, but such differences might

be explained by some variations in the preparation or cleaving process of the crystals, or

in the crystal growth itself. Nevertheless, here this statement can be well founded by the

STM data, as shown in the following sections.

7.3. Probing the edge state by scanning tunneling

spectroscopy

An appropriate method for measuring the edge state of Bi14Rh3I9 at step edges is scanning

tunneling spectroscopy. This method combines the excellent spatial resolution of the STM

tip with an additional energy resolution, and thus is suitable to reveal not only the lateral

position of the edge states on the surface, but also their distribution in energy with respect

to the Fermi level, as it will be shown in this section.

1In STM, an apparent step height results from a combination of geometric and electronic effects.
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7.3.1. Measurement principle

In principle, a conventional STM in constant-current mode does not directly measure the

topography of a sample surface, but it more specifically images a contour of constant local

density of states (LDOS) while scanning over the surface, as beside the distance between

tip and sample also the LDOS of the surface influences the tunneling current in dependence

of the applied bias voltage [179, 180]. This can be used for directly probing the LDOS of

the surface. In first order approximation, the derivative of the tunneling current dI/dV
is directly proportional to the LDOS of the sample surface at the tip position and at the

corresponding energy of the applied bias voltage [181]. So, by ramping the bias voltage

and simultaneously measuring dI/dV by means of a lock-in amplifier, the LDOS can be

measured locally on the sample surface as function of energy. For this point spectroscopy

mode, the tip has to be stabilized prior to measurement at one point of the surface and the

STM feedback loop has to be switched off for avoiding a tip crash at the zero crossing of the

bias voltage. Another measurement mode is the acquisition of dI/dV -maps. Here, the bias

voltage is not ramped, but the dI/dV signal is recorded simultaneously during scanning.

This enables to directly image the spatial distribution of the LDOS at the corresponding

energy of the applied bias voltage. In contrast, the point spectroscopy mode gives direct

access to the energetic dependence of the LDOS at one specific point of the surface. For

obtaining both, i.e spatial and energetic resolution, in one measurement, either point spec-

troscopy measurements at each pixel of the STM image have to performed during scanning,

which is very time consuming, or multiple dI/dV -maps at different bias voltages have to be

recorded. The latter is more suitable for determining local changes of the LODS at distinct

energies, which is desired for measuring the edge state of Bi14Rh3I9. With the software of

the multi-tip STM it is possible to record up to 10 dI/dV -maps at different bias voltages

line-by-line, i.e. the same line is measured consecutively after each time changing the bias

voltage. When all different values for the voltage are passed, the next line is scanned. This

method reduces the drift effects between the dI/dV images significantly and allows for a

better comparison of the spatial distribution of the LDOS for different energies. All of the

dI/dV -maps presented below in the sections 7.3.2 and 7.3.3 are recorded by this method.

As all spectroscopic measurements are acquired at room temperature, the possible energy

resolution is significantly reduced compared to low-temperature measurements. It can be

approximated by

ΔE ≈
√

(3.3 kBT )2 + (2.5 eVmod)2 (7.1)

with the temperature T and RMS value of the modulation voltage Vmod [182]. For room

temperature (T = 300K) and a modulation voltage of Vmod,RMS = 8.8mV a energy reso-

lution of ΔE ≈ 88meV is obtained.

7.3.2. Step edges

Low-temperature point spectroscopy measurements at 6K on Bi14Rh3I9 have already been

performed in Ref. [174] as shown in Fig. 7.5. It was found that the LDOS in the vicinity
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Figure 7.5.: Low-temperature (6K) spectroscopic dI/dV measurement of the surface of

Bi14Rh3I9 at different positions, as indicated. The plot is reproduced from Ref. [175].

of step edges of the 2D TI layer shows a significant increase in intensity (gray curve)

compared to the LDOS of the 2D TI layer terraces (red curve). Furthermore, the peak in the

LDOS at the step edges is located inside the band gap of the 2D TI ranging from −0.15 eV
to −0.35 eV. As in the case of Bi14Rh3I9 the energy dispersion of the topological state is

different from most strong 3D TIs, as it results from tight-binding calculations [175], such

a peak inside the band gap of the 2D TI is expected for the presence of the topological

edge state. In contrast, for the topological state of strong 3D TIs forming a Dirac cone

at the surface with a vanishing LDOS at the Dirac point, the dI/dV curve would show a

minimum at the Dirac point while increasing towards the boundaries of the bulk band gap.

The spacer layer (blue curve) exhibits only a pronounced band gap with an approximately

vanishing LDOS inside corresponding to its nature of a trivial insulator. As the band gap of

the 2D TI and the position of the edge state is not located at the Fermi energy, the 1D edge

channels are not directly accessible for electric transport measurement, which is discussed

below in section 7.4 in more detail.

In Fig. 7.6 the edge state is spatially resolved by several dI/dV maps acquired with the

multi-tip STM. A double step edge is chosen with the 2D TI as the topmost layer, i.e. a

step over a 2D TI layer and the adjacent spacer layer, as it is shown by the STM image

in Fig. 7.6(a) and the corresponding height profile in Fig. 7.6(b). The Figs. 7.6(c) – 7.6(i)

depict the dI/dV images recorded at different bias voltages as labeled in the corresponding

image. It is visible that in between a bias voltage of −15mV and −250mV a pronounced

intensity arises exclusively at the position of the double step edge, while this intensity

vanishes for bias voltages of −400mV and lower values, as well as for voltages of 250mV
and higher. There is a slight shift of the energies compared to the measurement presented

in Fig. 7.5, but a reason for this can be the cleaving procedure of the crystal during sample

preparation, which can influence the properties of the surface, as it is discussed in more

detail below in section 7.4. Also due to the lower energy resolution at room temperature

the peak in the LDOS for the edge state appears much broader. But in total, the measured

intensity of the edge state is located inside the band gap of the 2D TI, the intensity of the

edge state is continuous along the step edge and the measured width of the state is smaller

than approximately 2 nm, which is all in accordance with previous measurements [174].

Due to the distinct values of bias voltage used in the measurement in Fig. 7.6, the voltage
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Figure 7.6.: Spectroscopic dI/dV measurement of a double step edge [STM image in (a), height

profile in (b)] on Bi14Rh3I9 for different bias voltages [(c) – (i)]. The step is formed by two con-

secutive single-layer steps of the 2D TI and the spacer with the 2D TI layer as topmost layer on the

terraces. A slightly appearing parallel step edge in (a) is caused by double-tip effects. Measurement

parameters are: U = 400mV (a), Istab = 300 pA, Vmod,RMS = 9mV, fmod = 980Hz.

range of the peak intensity of the edge state cannot be determined precisely. In order to

improve that a second measurement was performed, as shown in Fig. 7.7, with a more

narrow range of bias voltages. Here, a surface structure with step edges of different height

was chosen, i.e. one double step edge and a trench in the surface with a depth of 2.4 nm
ranging over four layers, both with the 2D TI as topmost layer at the terraces. In Fig. 7.7(a)

the STM image of the structure is shown and in Fig. 7.7(b) the corresponding height profile

is depicted. The Figs. 7.7(c) – 7.7(l) show the measured dI/dV maps for bias voltages from

100mV to −250mV. Here, it is clearly visible that the intensity of the edge state appears

at approximately +15mV and vanishes at −250mV with the maximum located around

−150mV. So, the maximum is shifted by approximately 100mV compared to Ref. [174],
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Figure 7.7.: Spectroscopic dI/dV measurement of a double and quadruple steps [STM image in

(a), height profile in (b)] on the Bi14Rh3I9 surface for different bias voltages [(c) – (l)]. The topmost

layer on the terraces is the 2D TI. Measurement parameters are: U = 100mV (a), Istab = 90pA,

Vmod,RMS = 18mV, fmod = 980Hz.

which can be caused by a different surface morphology, as discussed later in section 7.4.

The intensity of the edge state at the quadruple step appears slightly stronger than that at
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Figure 7.8.: Spectroscopic dI/dV measurement of a single-layer step of the spacer and the 2DTI

on the Bi14Rh3I9 surface for different bias voltages [(a) – (c)]. The white arrow indicates the

position of the spacer step edge. Topography and height profile are shown in Figs. 7.4(b) and

7.4(c). Measurement parameters are: Istab = 90pA, Vmod,RMS = 9mV, fmod = 980Hz.

the double step [cf. Figs. 7.7(i) – 7.7(k)], which is expected due to twice edge channels

at this position and the corresponding pronounced LDOS. Compared to the measurement

in Fig. 7.6, the width of the edge state seems to be much broader now, but this is most

probably a measurement artefact and caused only by a very blunt tip, as it is also visible

from the reduced sharpness of the topography in Fig. 7.7(a). Nevertheless, a positive side

effect is that the spatial broadening of the edge state intensity due to the blunt tip makes it

more visible in the dI/dV maps. A subsequent dI/dV -measurement on a smaller area of

the same step structure can be found in Fig. B.2 in the appendix B together with another

measurement on a different double step edge (Fig. B.3), both yielding similar results as

discussed before.

The topological edge state should only appear at the step edges of the 2D TI layers, while

it should not be present at the edges of the insulating spacer layer. For proving this, a

dI/dV measurements is performed at two adjacent single-layer steps, as it is shown in

Fig. 7.8. The corresponding topography of the steps was already shown in Fig. 7.4(b)

together with the height profile [Fig. 7.4(c)], which identify them unambiguously as steps

in the 2D TI and the spacer layer, respectively. The dI/dV maps in Figs. 7.8(a) – 7.8(c)

show that for an energy around −150meV, where the LDOS of the edge state located at

the step edge of the 2D TI shows its maximum intensity, there is a vanishing intensity

at the position of the spacer layer step edge, which is indicated by the white arrow in

Fig. 7.8(b). As the single-layer step of the spacer is only present at the position marked

by the arrow, i.e. below the green line of the height profile indicated in Fig. 7.4(b), the

vanishing LDOS can only be observed at this position. On the left and the right side of

the arrow, the step edge changes to a double step, so that here the edge state of the 2D

TI appears again. Also for other energy values no pronounced intensity of the LDOS at

the spacer edge appears [Figs. 7.8(a) and 7.8(c)] indicating that no additional edge state

is present. A further prove for the disappearance of the edge state at the spacer layer can

be obtained from thermovoltage measurements [cf. Fig. 7.18(b)], as it will be discussed in

section 7.5.2.2.
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Figure 7.9.: STM images of scratches with different depth [(a),(c),(e)] into the Bi14Rh3I9 surface

performed with a tungsten STM tip and the corresponding height profiles [(b),(d),(f)]. Measurement

parameters are: U = −500mV, I = 90pA.

7.3.3. Artificial scratches induced by tip contact

A unique property of a weak TI is, that the edge states appear at every step edge of the 2D

TI sheet on the dark surface. This makes it possible to artificially create such edge channels

by simply scratching a trench into the surface [174]. If the depth of such a trench is ex-

tended at least over one 2D TI layer, an topological edge channel is obtained at the position

of the scratch. So, in principle, a complete network of such one-dimensional ballistically

conducting lines on the surface can be fabricated which makes 3D weak topological insu-

lator to an interesting material for future electronic devices.

7.3.3.1. Scratching into the surface

For scratching structures into surfaces, one can benefit from the usage of a multi-tip. With

such an instrument, the scratch can be fabricated with one tip, and the subsequent imaging

of the scratched surface can be done by using another tip. If only a STM with one tip is

available, the subsequent STM scan after the scratch can be very challenging, but it may

work. However, any additional spectroscopic measurement with the same tip used for the

scratch is nearly impossible.

Here, a multi-tip STM is used, where first two tips are brought together in the same re-
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gion of the sample surface. Then, the tip, which is intended to be used for scratching,

is approached into tunneling contact and afterwards into hard contact with the surface, as

described before in section 2.3.2. Afterwards, the tip is pushed even more downwards

for several nanometers, which can be precisely controlled by the z-piezo, and then moved

slowly across the sample surface by using the lateral movement of the piezo-scanner in

the full range of up to 3.6μm. In this way, a scratch into the topmost 2D TI layer of the

Bi14Rh3I9 crystal is obtained, as it is shown in Fig. 7.9 for different indentation depths of

the tip. The subsequent imaging of the scratch is done by the second tip by moving it to the

position of the scratch, which can be controlled by the optical microscope, and performing

a large-area scan in order to find the scratch on the surface.

As the STM tips are arranged in an angle of 45 ◦ with respect to the surface, and therefore

act like a spring, they can bend away from the surface when being pushed towards it. So,

the movement necessary for the scratching tip in z-direction is always much higher than

the obtained indentation depth of the tip into the sample [44]. For this reason, the depth

of the scratches depicted in Fig. 7.9 are always much smaller than the z-movement of the

tip into the surface with respect to the position of initial hard contact. For Fig. 7.9(a) the

movement in z-direction was approximately 10 nm, but the maximum depth of the scratch

is only ∼0.4 nm, as it can be deduced from the corresponding height profile in Fig. 7.9(b).

In this case, not even the topmost layer is completely scratched and additionally a lot

of residues of the tip are visible along the scratch. By increasing the setpoint of the tip

indentation up to 100 nm, a much deeper scratch is obtained as shown in Figs. 7.9(c) and

7.9(d). Now, the depth is ∼7 nm, so that it is extended approximately over 6 double layers,

i.e. 6 consecutive 2D TI layers. Besides the main scratch a second smaller scratch with

depth of 1 nm can be observed resulting from a special microstructure of the tip. When

the tip is further pushed into the surface by increasing the z-setpoint up to 300 nm, the

obtained tip indentation also increases resulting now in a scratch with a depth of ∼17 nm
and a corresponding extension over 14 2D-TI layers, as it is depicted in the Figs. 7.9(e) and

7.9(f). With increasing indentation depth also the width of the scratches slightly increases

from 80 nm [Figs. 7.9(a) and 7.9(c)] to 130 nm [Fig. 7.9(e)]. However, the width also

depends on the sharpness of the used tip.

7.3.3.2. dI/dV -spectroscopy of scratches

In order to prove that the topological edge states of the Bi14Rh3I9 are also present at arti-

ficial scratches on the surface, a dI/dV measurement is performed at a small area of the

scratch depicted in Fig. 7.9(c). The results of the measurement are plotted in Fig. 7.10.

The considered part of the scratch shown in Fig. 7.10(a) also exhibits the 7.5 nm deep

trench in the center and the additional smaller trench next to it with a depth of 1.2 nm
corresponding to exactly one double layer, as it can be deduced from the height profile in

Fig. 7.10(b). The bias voltage-dependent spectroscopic images in Figs. 7.10(c) – 7.10(l)

show unambiguously a pronounced intensity of the LDOS at the position of the trenches

within a range from −15mV to −250mV with a maximum at −150mV, as it was exactly

the case for the appearance of the topological state at step edges shown in section 7.3.2



7.3. Probing the edge state by scanning tunneling spectroscopy 147

Figure 7.10.: Spectroscopic measurements of an artificially created scratch into the Bi14Rh3I9
surface shown in (a) with the height profile in (b). (c) – (l) dI/dV maps at different bias voltages.

The pairs of colored arrows in (a) and (i) correlate features in the topography to the intensity in the

LDOS as discussed in the text. Measurement parameters are: U = 350mV (a), Istab = 300 pA,

Vmod,RMS = 7mV, fmod = 980Hz.
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before. Beside the deep main trench in the center, which shows a spatially broad intensity

of the edge state over the complete width of the trench [Fig. 7.10(i)], also all smaller rifts in

the topmost layers next to the main trench exhibit a pronounced LDOS and, therefore, an

edge state, e.g. as it is marked by the pair of green arrows in the Figs. 7.10(a) and 7.10(i).

Very small near-surface scratches with a depth of only a few Å, which are visible on the

right side in parallel to the deep trench, show a reduced intensity of the LDOS, as they are

extended at maximum only over one 2D TI layer, but their edge states seem to be spatially

very well-defined. These states form nearly an ideal narrow line along the trench with a

width of only a few nm, which is similar to the shape of the edge states at step edges, as it

is visible at the position of the pair of white arrows [Figs. 7.10(a) and 7.10(i)]. A second

measurement at another scratch in the Bi14Rh3I9 surface yielding similar results can be

found in Fig. B.4 in the appendix B.

7.4. Four-point probe measurements

In principle, in order to attempt to measure the conductivity of the 1D edge channels on

the dark surface of the Bi14Rh3I9, local charge transport measurements can be performed

with the multi-tip STM. However, in the present case it turned out that the band gap of

the 2D TI and the edge states located inside are not positioned at the Fermi energy, as

shown before in section 7.3.2. So, unfortunately the edge states are not directly accessible

by electrical transport measurements without any possibility of gating or chemical doping.

Nevertheless, the possible appearance of further conductance channels for charge transport

in the Bi14Rh3I9 can be revealed by distance-dependent four-point probe measurements on

the surface, as it is discussed in the following.

7.4.1. Linear tip configuration

In order to separate a possible overall surface conductance of the topmost layer in

Bi14Rh3I9, which in the present case turned out to be predominantly the 2D TI layer, as

discussed before, from any bulk contributions, the non-equidistant linear tip configuration

with tip distances on the μm-scale can be used, as it is visualized in Fig. 7.11(c). The results

of the corresponding four-point measurements are depicted in Fig. 7.11(a), where the ob-

tained four-point resistance is plotted as function of the non-equidistant spacing x between

the outer current injecting tip and the adjacent inner voltage measuring tip [Fig. 7.11(c)],

while the equidistant spacing s = 20μm between the other tips is kept constant. For each

tip position, the four-point resistance is extracted from the slope of an I(V )-curve, while

the injected current is up to 500μA.

The measured data cannot be described properly by either a pure 2D or a pure 3D transport

model, as it is indicated by the corresponding fits of the blue and green dotted lines [cf.

Eqs. (3.48) and (3.50)], respectively, which indicates that both conductance channels in

parallel are present. Therefore, a multi-layer model for charge transport consisting of a 2D

surface channel and a 3D bulk channel is used, which is outlined in Fig. 7.11(b). Such a
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Figure 7.11.: (a) Measured four-point resistance using the non-equidistant linear tip configuration

as function of the spacing x between one current injecting tip and the adjacent voltage measuring

tip [as shown in (c)]. The spacing between the other tips is set to s = 20μm. Both fits according

to a pure 2D (blue) and a pure 3D (green) transport model are depicted by the dotted lines, while

a fit using a two-layered model [as shown in (b)] is indicated by the solid red line, resulting in

σ2D = (6.4± 0.5)× 10−2 S/� and σ3D = (9.2± 0.8)× 103 S/m. These two individual contri-

butions of 2D and 3D transport resulting from the two-layer model are plotted separately as dashed

blue and green curves, respectively. (b) Sketch of the applied two-layer model consisting of a 2D

surface channel and 3D bulk channel in parallel. (c) Optical microscope image of the tips on the

surface arranged in the non-equidistant linear configuration with the distances s and x. (d) STS

measurement data (upper curve) as obtained in Ref. [183] and DFT calculations (lower curves) for

the LDOS of the 2D TI layer in dependency of its position inside the crystal. The band gap region

is marked by the highlighted red area. This plot is reproduced from Ref. [183].

two-layered model can be described in the same way as the 3-layer model presented before

in section 4.2 by Eq. (4.17), when the conductivities of the space charge layer and the bulk

are set to the same value.2 This proceeding is applicable in the present case, as it turns

out that the space charge region does not have much influence on the current transport, so

that an intermediate layer is not needed. The application of such a 2-layer model results

in the best fit to the experimental data, as shown by the solid red line in Fig. 7.11(a),

yielding conductivities for the 2D and 3D contributions of σ2D = (6.4± 0.5)× 10−2 S/�
and σ3D = (9.2± 0.8)× 103 S/m, respectively. For the calculations, the thickness of the

surface layer is set to 8Å, in accordance with the thickness of one 2D TI layer, and the

depth of the bulk is assumed to be infinitely. The individual 2D and 3D contributions are

visualized by the dashed blue (2D) and green (3D) lines in Fig. 7.11(a). If both conductivity

values for the 2D surface and the 3D bulk are compared directly, it turns out that a finite

sheet of ∼ 7μm thickness with a bulk conductivity of 9.2× 103 S/m would exhibit the

same conductivity as the surface layer with 6.4× 10−2 S/�. Thus, it can be deduced that

2In order to obtain the coefficients a(k) and b(k), the conductivities of the surface σ1 and the intermediate-

layer σ2 have to be equalized in Eq. (4.11).



150 7. The weak topological insulator Bi14Rh3I9

the conductivity of the topmost layer is enhanced by a factor of 7μm
1.2 nm

∼ 5800 compared

to one of the layers below, whereby as interlayer spacing 1.2 nm is assumed, since the

insulating spacer does not contribute to transport.

The transport measurements reveal that besides a bulk channel also a sizeable contribution

of the 2D surface conductance to current transport exists. In principle, one would expect

that for a weak topological insulator the surface conductivity of the dark surface vanishes

and also the bulk material is largely insulating, giving rise to transport only through the

one-dimensional edge states on the surface. However, this is only true, if the Fermi energy

is located inside the band gap of the material, both inside the bulk and at the surface. More-

over, the Fermi energy has to coincide with the energetic position of the topological edge

states at the surface. Unfortunately, for the Bi14Rh3I9 this is not the case, as it was already

visible from the spectroscopic measurements shown in section 7.3.2 revealing that partic-

ularly at the surface the Fermi energy is not located inside the band gap. A more detailed

insight can be obtained by DFT calculations performed for a thin film consisting of two 2D

TI layers and two spacer layers, which are alternatingly stacked [183]. In Fig. 7.11(d), the

calculated density of states of the 2D TI layer is plotted as function of energy for different

positions in the crystal, i.e. for increasing distance from the surface (lower three curves).

It is visible that at the surface the topmost 2D TI layer is strongly n-doped (yellow curve),

so that the band gap (highlighted red area) is shifted substantially away from the Fermi

energy, which is in accordance with measurements of the LDOS at the surface (top curve).

Immediately at the position of the Fermi energy an increased density of states is present,

which in turn leads to a high conductivity of the surface layer, as it also results from the

four-point measurements. It should be noted that the large LDOS at the Fermi energy is not

visible in the low-temperature measurements due to a pronounced Coulomb gap [183]. For

the subsurface 2D TI layer the band gap starts to shift towards the Fermi energy (magenta

curve) and already for the third 2D TI layer (orange curve) the bulk position is reached

with the Fermi energy located directly at the conduction band edge. In this case, the den-

sity of states directly at the Fermi energy vanishes, but as the transport measurements are

performed at room temperature, the thermal broadening of the Fermi edge leads to an exci-

tation of charge carriers into the conduction band and still results in a certain conductivity

of the bulk material, as measured in Fig. 7.11(a). If the density of states at the Fermi energy

is compared between bulk and surface [Fig. 7.11(d)], it is directly visible that inside the

bulk it is much more suppressed, which supports the measurement results that the surface

of the Bi14Rh3I9 crystal is significantly more conductive than the bulk material.

A possible reason for the shift of the band gap of the surface 2D TI layer compared to the

bulk position is the charge transfer between neighbouring layers. Due to the ionic stacking

of the Bi14Rh3I9 crystal each individual layer is charged, and it turns out that the twofold

positive charge of the 2D TI layer [(Bi4Rh)3I]
2+ results from a transfer of one electron per

unit cell to each of the two surrounding spacer layers [Bi2I8]
2− [183]. This case occurs in

the equilibrium inside the bulk and results in a Fermi energy located at the upper edge of

the band gap. However, at the surface the symmetry of the crystal is broken, as one of the

spacer layers is missing. So, charge transfer can occur only to the spacer layer below and

one negative charge per unit cell remains at the topmost 2D TI layer. This results in a strong
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Figure 7.12.: (a) Measured four-point resistance using the rotational square method as function of

the rotation angle and corresponding fit to the data (solid red line). The distance between the tips

positioned at the edges of the square is s = 20μm. (b),(c) Optical microscope images of the four

tips arranged in the square configuration for two distinct rotation angles.

n-doping of the surface and the Fermi energy is correspondingly shifted into the conduction

band. The extent of this shift can be influenced by the ratio between 2D TI layer and spacer

layer covering the surface. A decreasing fraction of the spacer layer directly leads to an

increased n-doping and a pronounced shift of the Fermi energy. So, the initial cleaving

procedure of the crystal can influence the surface properties significantly. Moreover, such

an excessive n-doping of the surface is perfectly in accordance with the findings that the

majority of the surface is covered by the 2D TI layer and not by the spacer.

7.4.2. Square tip configuration

In order to investigate the anisotropy of the surface conductance of the Bi14Rh3I9 crys-

tal additional four-point measurements are performed using the rotational square method.

In Fig. 7.12(a), the measured four-point resistance is plotted as function of the rotation

angle for a tip distance at the edges of the square of s = 20μm. The correspond-

ing tip configuration is visualized by the optical images for two distinct rotation angles

shown in the Figs. 7.12(b) and 7.12(c). A fit according to Eq. (3.83) describes the data

very well (solid red line), and results in the two components of the surface conductiv-

ity σx = (9.9± 0.6)× 10−2 S/� and σy = (5.5± 0.2)× 10−2 S/�. So, the resulting

anisotropy is σx/σy ≈ 2. The geometric mean
√
σxσy = (7.4± 0.3)× 10−2 S/� is in

accordance with the measured conductivity in the linear tip configuration shown in the pre-

vious section. The minor deviation between both values can be explained by the additional

contribution of the bulk conduction channel, which is not taken into account in Eq. (3.83).

However, as the surface channel dominates in the present case, the deviation is only very

small and, therefore, negligible.
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In principle, one would expect on average an anisotropy for the surface conductance of

a weak TI exhibiting on one hand a slightly conducting dark surface, e.g. as it may arise

from a surface Fermi energy not located around the center of the band gap, and on the other

hand ballistically conducting edge channels aligned along a preferential direction, e.g. as it

results from a favoured direction of the step edges on the surface. Such a slightly preferred

step orientation can be observed in Fig. 7.4(a) for the Bi14Rh3I9 surface. However, in the

present case the topological edge channels do not substantially participate in current trans-

port, as discussed before. Moreover, the 2D TI surface layer is so highly conductive with

σ2D = 6.4× 10−2 S/� that it totally surpasses the conductance of a single 1D ballistic

channel with G1D,ball =
e2

h
≈ 4× 10−5 S by three orders of magnitude. Even if the total

number of step edges inside the square of 20× 20μm2 is considered, it would require more

than 103 ballistic channels in parallel for at least equalizing both conductivities. However,

for an edge-state-induced anisotropy a higher conductivity along the direction of the edge

channels compared to the surrounding dark surface is necessary. Both reasons, i.e. the edge

states not located at the Fermi energy and the highly conductive dark surface, imply a pro-

nounced current flow through the surface layer rather than through the edge channels, thus

any contribution of the topological states to the measured anisotropy has to be excluded.

So, the observed anisotropy in the surface conductivity is most probably caused only by an

additional resistance arising from step edges located perpendicular to the current path, e.g.

as it was similarly observed for the Si(111)-(7×7) surface in section 4.3. However, in the

case of Bi14Rh3I9 two different kinds of step edges are present on the surface, i.e. edges

at the spacer and at the 2D TI layer. Even if basically only steps at collective edges of

both layers were considered, which in fact seem to be favoured, it would be very difficult

to determine a reliable value for the step density, since neither these steps are uniformly

distributed nor only double steps appear, but mostly steps with a multiple height of them.

Thus, it is not useful to conclude for the single step resistivity without the knowledge of

the specific step distribution inside the measured quadratic area on the surface.

7.5. Probing the edge state by scanning tunneling

potentiometry

A further powerful tool of a multi-tip STM is scanning tunneling potentiometry. With this

method the current-induced local potential on the surface of a sample can be mapped and

thus, based on the potential distribution the influence of small nano-scaled structures, e.g.

as defects and step edges, on the lateral current transport can be revealed. In the following,

scanning tunneling potentiometry is used to investigate the surface of the Bi14Rh3I9.

7.5.1. Measurement principle

The possibility to perform scanning tunneling potentiometry measurements with the multi-

tip setup was implemented recently [120]. The acquisition of the potential signal is done in
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parallel to a standard STM scan. For each pixel of the scanned area the tip is first stabilized

according to the constant-current mode. Then, the feedback is switched off and the applied

tip bias voltage is swept in order to search for a vanishing tunneling current. At this point,

where no tunneling current appears, the Fermi levels of tip and sample are aligned and the

applied bias voltage is exactly equal to the local surface potential. Afterwards, the feedback

is switched on again and the tip moves to the next pixel, where the complete procedure is

repeated.

In principle, so far this can be done also with a single-tip STM. However, the great ad-

vantage of the multi-tip STM is that besides the scanning tip two further tips can be used

to inject a lateral current across the scanned area. Usually, such a transport field is ap-

plied while performing scanning tunneling potentiometry, as the influence on the lateral

transport wants to be studied. So, any local deviations of the potential from the overall

slope of the transport field give insight into the perturbations of local structures onto the

overall lateral current flow. However, also potentiometry without applying a transport field

exists, as discussed later. With two STM tips the current can be applied in various direc-

tions and in direct vicinity to the scanned sample area. This would be not possible with

fixed contacts on the sample, as needed for a single-tip STM. Additionally, the fourth tip

of a multi-tip STM is very useful as reference by probing the sample potential stationary

at a fixed position, in order to reveal any potential fluctuations caused by a variation of the

injected current. Such potential fluctuations also affect the potential image and have to be

subtracted from the measured signal.

7.5.2. Potentiometry at step edges

In order to probe the edge channels the scanning tunneling potentiometry measurements

are performed at the step edges of the 2D TI layer on the Bi14Rh3I9 surface. Fig. 7.13 shows

(a) (b) (c)

Figure 7.13.: Scanning potentiometry measurement of double-stepped islands on the Bi14Rh3I9
surface. The topmost layer of the islands and the terrace is the 2D TI layer. (a) Topography image

(U = −100mV, I = 240 pA). The green square marks the section which is measured in Fig. 7.17.

(b) Potential map of the same area as in (a). A transport current of Itransp ≈ 600μA is applied

along the vertical direction (current direction pointing upwards) by two tips spaced by a distance of

7.5μm. (c) Height profile of the islands along the green line in (a).
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the results of such a measurement for the topography [Fig. 7.13(a)] and the corresponding

potential landscape [Fig. 7.13(b)]. The imaged area of the surface exhibits islands with an

double step edge at the borderlines, i.e. a combined step of a spacer and a 2D TI layer,

as it can be seen in the corresponding height profile shown in Fig. 7.13(c). The topmost

layer on both the island and the surrounding terrace is the 2D TI layer. This cannot di-

rectly be deduced from the image in Fig. 7.13(b), but it is visible in Fig. 7.16(a) showing

a larger overview of the same surface region (section of Fig. 7.13 is indicated by the green

square), in which a single step of the spacer layer can be measured [Fig. 7.16(c)], so that

the arrangement of the layers can be identified.

7.5.2.1. Transport field

For the potentiometry measurement, a transport field is applied along the vertical direction

of the potential map shown in Fig. 7.13(b). A current of Itransp ≈ 600μA is injected by ap-

plying a voltage of Utransp = 250mV with two tips spaced by a distance of 7.5μm, while

the scanned area is approximately in the center between the two tips. During measurement

the injected current is not perfectly constant, but varies slightly along the vertical (slow)

scanning direction around its nominal value of 600μA by approximately ±20μA. This is

visible in Fig. 7.14(a), which shows a record of the current through one of the injecting

tips during the potentiometry scan. A reason for this current fluctuation is that the contacts

between tip and sample are not perfectly stable, as the tip might drift either away from or

towards the sample surface with time. In turn, this changes slightly the contact resistance at

the injecting tips, and, as the applied transport voltage remains constant, also the injected

current is changed. As the thermal drift of the tips is rather slow, the change in current

occurs predominantly along the vertical scanning direction and not along a single line of

the potentiometry scan. Nevertheless, even if the current fluctuation appears to be rather

small, it has a serious impact on the measured potential landscape in the potentiometry

scan. A time-dependent injection current leads to a change of the voltage drop across the

sample with time. Additionally, a changed ratio between the voltage drop across the sam-

ple and the voltage drop at the injection points (contact resistance) causes a lateral shift of

(a) (b) (c)

Figure 7.14.: Additional measurement signals for the potentiometry measurement shown in

Fig. 7.13. (a) Injected current recorded during the potentiometry scan. (b) Reference potential

recorded during the potentiometry scan. The potential is acquired with the fourth STM tip at a

fixed position in hard contact with the surface. (c) Position-dependent tunneling current during the

acquisition of the potentiometry signal.
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the potential distribution inside the sample, i.e. the zero point shifts with time. Both effects

are time-dependent, but in a potentiometry scan acquired at a fixed position on the sample,

they appear to be position-dependent along the vertical direction and, as they cannot be

distinguished from the real local potential fluctuations, they result in a (line by line) dis-

tortion of the measured potential landscape. For this reason, it is often useful to rotate the

scanning direction by 90◦ with respect to the transport field, in order to decouple it from the

potential fluctuations along the slow scanning direction. However, this was not done for the

measurements presented in this section. In order to disentangle such undesired fluctuation

effects reliably from the transport field, the usage of an additional reference is possible,

which clearly identifies the time-dependent contributions. For this reason, the fourth STM

tip is used as a stationary voltage probe at a fixed position in hard contact with the sam-

ple. Such a record of the stationary potential fluctuations for the potentiometry scan from

Fig. 7.13(b) is shown in Fig. 7.14(b), which exhibits a rather large time-dependent3 change

in potential of approximately 4mV along the vertical direction. This reference signal can

then be subtracted from the measured potential, which in the present case has been already

done for the potential map shown in Fig. 7.13(b). In Fig. 7.14(c), the tunneling current

during potentiometry measurement is depicted. As expected, it does not show any signifi-

cant structures and is almost always close to zero, which excludes any additional artefacts

in Fig. 7.13(b) due to a non-vanishing tunneling current during potential acquisition.

As for the potentiometry the scanned area is located in the center in between the current

injecting tips, and the distance towards the tips is rather large compared to the size of the

scan, the current density can be assumed to be homogeneous in the measured area. So, in

the potentiometry data in Fig. 7.13(b) this should result in a linear slope of the potential

along the vertical direction. However, as the surface conductivity of the topmost 2D TI

layer is extremely large, as discussed in the previous section 7.4, the potential drop at the

surface on the length scale of the scanned area is so small that it is not visible in the potential

map. This can be directly understood by looking at a calculation of the expected potential

drop as function of the scan size, as it is plotted in Fig. 7.15. For the calculation, a four-

point probe setup is used with a linear symmetric tip configuration, where the outer current

injecting tips are spaced by D = 7.5μm and arranged symmetrically with respect to the

inner voltage measuring tips, as shown in the inset in Fig. 7.15(a). Such a tip arrangement

is equivalent to the potentiometry setup, if the scanned region is assumed to be positioned

in between the two inner tips, i.e. the voltage measuring tips would be placed on the top

and bottom scan line in the corresponding potentiometry image, respectively. So, in this

case the spacing s between the inner two tips directly equals the edge length of the scanned

area in the potentiometry setup. In the inset in Fig. 7.15(a), this scanned area, as it would

be present for the corresponding potentiometry setup, is indicated by the yellow square

between the inner tips. The calculated voltage drop at the surface is based on a two-

layer model in analogy to Eq. (5.15) and incorporates the results of the previous four-point

measurements for surface and bulk conductivity, as discussed in section 7.4. Moreover,

a lateral current of 600μA is assumed, as it was similarly applied for the potentiometry.

3Since the tip is fixed (not scanning), the apparent position-dependent image is only a record of the time-

dependent signal at the tip position.
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(a) (b)

Figure 7.15.: Calculated voltage drop as function of the spacing s between the voltage measuring

tips arranged in a linear symmetric tip configuration [shown in the inset of (a)]. The calculation

is based on a two-layer model in analogy to Eq. (5.15) and on the conductivity parameters for

the Bi14Rh3I9 crystal (σ2D = (6.4± 0.5)× 10−2 S/� and σ3D = (9.2± 0.8)× 103 S/m), as

obtained in section 7.4. Furthermore, the parameters of the potentiometry measurement depicted

in Fig. 7.13 are used, i.e. a transport current of Itransp ≈ 600μA and a spacing of the current

injecting tips of D = 7.5μm. In order to achieve a direct comparison with the potentiometry

setup, the spacing s is assumed to be equal to the lateral scan size of a corresponding potentiometry

measurement [corresponding scan area indicated as yellow square in the inset of (a)]. (a) Overview

of the non-linear function for the potential drop, which exhibits a maximum at s = D (gray line).

(b) Magnification of the linear regime of the function for values of s, which are in the range of scan

sizes used for potentiometry measurements. Inset: Further magnification to the nanometer regime.

In Fig. 7.15(a), an overview of the voltage drop as function of the spacing s between the

inner tips, i.e. the vertical scan size, is plotted, which exhibits the expected non-linear

dependency for the symmetric configuration. The maximum of the curve (vertical gray

line) is at the value s = D = 7.5μm, where the positions of the voltage measuring tips and

current injecting tips coincide, i.e. both have the same spacing. Certainly, a comparison

with a corresponding potentiometry setup is not very useful for this specific case, as such a

tip arrangement is not realistic and the involved distances are way too large. However, the

simulation can give some insight into the lateral distribution of the transport field used for

the potentiometry, as at the position s = D the value of the simulated curve in Fig. 7.15(a)

directly corresponds to the voltage drop caused by the applied transport field between the

current injecting tips. As the maximum of the simulated curve with ∼ 8mV is much

lower than the transport voltage of ∼ 250mV, the majority of the applied voltage drops

directly at the contact resistances between the tips and the surface. In the present case, both

contact resistances sum up to a value of Rcontact ∼ 242mV/600μA ∼ 403Ω, while the

resistance of the Bi14Rh3I9 crystal itself is only R ∼ 8mV/600μA ∼ 13Ω. This leads to

a contribution of ∼ 97% for the contact resistance with respect to the total resistance. It

should be noted here that such a determination of the contact resistance is only possible,

because the conductivity of the Bi14Rh3I9 crystal is already known before due to a prior

four-point measurement.
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(a) (b)

(c) (d) (e)

Figure 7.16.: Large-size potentiometry measurement of the same surface region as in Fig. 7.13

[position of the image in Fig. 7.13(a) is indicated by the green square in (a)]. (a) Topography image

(U = −150mV, I = 240 pA). (b) Potential map of the same area as in (a). A transport field is

applied along the vertical direction (pointing upwards) with Itransp = 600μA and a tip spacing of

7.5μm. (c) Height profile along the green line indicated in (a). From the profile a single spacer

layer can be identified indicating that the sample area in Fig. 7.13 (green square) only exhibits the

2D TI layer as topmost layers. (d) Potential profile across the step edges between 2D TI layer and

spacer layer [left green line in (b)]. (e) Potential profile along the vertical direction [right green line

in (b)] indicating the overall voltage drop due to the transport field. From a linear fit (red line) a

value of 560μV/μm can be extracted.

In order to focus more on the potential drop across a single potentiometry scan, Fig. 7.15(b)

depicts a magnification of the linear regime appearing for smaller tip distances s, which

are now on the length scale of the scanned regions for the potentiometry. In the inset

of Fig. 7.15(b), a further magnification down to the nanoscale regime is shown, which is

similar to the scan size used in Fig. 7.13(b). Here, it is visible that for a vertical scan size of

100 nm, as it is the case in Fig. 7.13(b), only a potential drop of about 46μV is expected.

Such a small slope of ∼ 460μV/μm is not visible in the small-sized potential map in

Fig. 7.13(b), as it is exceeded by the appearance of much stronger features at the step edges

and on the terraces, which will be discussed in the following paragraph. Nevertheless, if

the size of the potentiometry scan is increased, also a larger total voltage drop across the

imaged area due to the transport field is expected, which then can be identified even against

the background of larger local features. This is the case in Fig. 7.16, where such a large-

area potentiometry measurement is shown, which corresponds to an overview scan of the

same Bi14Rh3I9 region as before with the section depicted in Fig. 7.13(a) located at the

position of the green square in Fig. 7.16(a). For the potential map depicted in Fig. 7.16(b)
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a similar transport field is applied as before (Itransp = 600μA, tip spacing 7.5μm). In the

potential map itself, no voltage drop from the transport field is clearly visible, but from the

profile line along the vertical direction, as shown in Fig. 7.16(e), the potential slope can

be unambiguously identified. From a linear fit to the profile line a value of 560μV/μm
can be extracted, which is very close to the expected value discussed before. Indeed, the

voltage drop of the transport field can now be identified, but apart from that the large-

size potential map in Fig. 7.16(b) is not very useful, as at the same time any local potential

structures cannot be resolved precisely. However, especially such local changes induced by

the transport field, e.g. along the edge channels, are of special interest. This local potential

structure can only be resolved in smaller-sized measurements, as in Fig. 7.13, but since

here not even the overall transport field is visible, it is impossible to measure any local

changes caused by the transport current. So it can be concluded that any influence of a

transport field on the local potential at the edge channels of the Bi14Rh3I9 crystal cannot be

revealed, as the surface conductivity of the present crystals is simply too large. (It should

be noted that even if the detection would be possible, no potential changes are expected

for the present crystals, as here the edge channels are not located at EF and so do not

participate in current transport, as already discussed before).

7.5.2.2. Thermovoltage

In fact, it turned out that the transport field seems to have no significant influence on the

potential landscape of the Bi14Rh3I9 surface. When the potentiometry is performed without

any transport field, the potential map shows exactly the same structure as before with a

transport field. For example, this is visible in Fig. 7.17, where an enlarged section of the

surface region shown before in Fig. 7.13 [indicated by the green square in Fig. 7.13(a)]

is measured. If the potential map in Fig. 7.17(b) is compared to the one in Fig. 7.13(b),

apart from the enlargement nearly no difference can be identified. In both images a strong

contrast in the potential signal appears exactly at the position of the step edges of the 2D TI

(a) (b) (c)

Figure 7.17.: Enlarged potentiometry scan of a section of the region depicted in Fig. 7.13 [marked

with a green square in Fig. 7.13(a)]. (a) Topography image (U = −100mV, I = 240 pA). (b)

Potential map of the same area as in (a). No transport field is applied. (c) Potential profile across

the step edge [along the green line in (b)].
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layer islands, where the edge channel is supposed to be located. However, it can be clearly

excluded that this contrast is caused by real current transport inside the sample due to the

missing transport field in Fig. 7.17(b). In the vicinity of the step edge, there is a confined

drop of the local potential, while the potential on both the 2D TI island and the surrounding

2D TI terrace is equal. A profile line across the step, as shown in Fig. 7.17(c), reveals that

the strength of the potential drop is about 900μV and the spatial extent is ∼ 1 nm to 2 nm,

which equals nearly exactly the expected width of the edge channel. Furthermore, from the

profile in Fig. 7.17(c) and the map in Fig. 7.17(b) it is visible that the potential drop at the

step edges is not symmetric. It appears that there is always a sharp potential drop on the

outer surroundings of the islands, while on the inner side of the edge channel, i.e. the side

pointing towards the center of the islands, the potential rather slowly increases again up to

the same value as on the surrounding terrace. In addition to the sharp potential drop at the

step edges, there are further patches on both the terrace and the islands, which exhibit a

more blurry and apparent arbitrary variation or the surface potential. However, the strength

of these variations is on the same scale as for the step edges.

The measured local potential structure seems to be a static feature of the Bi14Rh3I9 sur-

face, as it is identically present for both with and without a transport field. A reason for

such a feature is the appearance of thermovoltage, which arises due to a slight temperature

difference between tip and sample. Such a temperature mismatch can occur easily during

STM measurement, as, e.g. already some incident light is sufficient to heat either tip or

sample, and the thermal coupling in the vacuum across the tunneling barrier is only very

weak. Different temperatures lead to different Fermi distributions in tip and sample, and,

as a result, a thermocurrent arises without any applied bias voltage. In order to compen-

sate this thermocurrent a specific voltage Vth has to be applied at the tunneling contact.

During a potentiometry measurement without an applied transport field, it is exactly this

thermovoltage Vth, which is measured by the condition of a vanishing tunneling current.

By using the Tersoff-Hamann approach for the tunneling current, the first (leading) term of

the thermovoltage Vth can be expressed as [120, 184, 185]

Vth(x, y) =
π2k2
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where Tt and Ts are the temperatures of the tip and sample, respectively, and ρs(x, y, E) is

the (position-dependent) local density of states (LDOS) of the sample. The temperatures

are rather fixed parameters for a specific potentiometry measurement, but due to the spatial

dependence of the LDOS also a lateral variation of the thermovoltage Vth can be obtained.

The LDOS term within the parentheses in Eq. (7.2) can be rewritten in a shorter way

resulting in

Vth(x, y) ∝
(
T 2
t − T 2

s

) d ln [ρs(x, y, E)]

dE
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E=EF

. (7.3)

From Eq. (7.3), it is directly visible that not the absolute value of the LDOS is crucial for

the thermovoltage, but only the derivative of the logarithmic value, i.e. the local slope of

the LDOS. So, it can be concluded that with a measurement of the thermovoltage Vth the



160 7. The weak topological insulator Bi14Rh3I9

(a) (b)

(c) (d)

Figure 7.18.: Potentiometry measurement at a step edge of a spacer layer on top of a 2D TI layer.

(a) Topography image (U = −500mV, I = 210 pA) (b) Potential map of the same area as in (a).

No transport field is applied. A contrast between the regions of the 2D TI layer and the spacer

layer is visible. (c) Height profile across the step edge of the spacer layer [along the green line

indicated in (a)]. (d) Potential profile across the step edge of the spacer layer [along the green line

line indicated in (b)].

spatial variations of the slope of the LDOS at the Fermi energy EF can be mapped on the

sample surface.

From the potential maps in Figs. 7.13(b) and 7.17(b) it therefore results that at the position

of the step edges around the 2D TI islands a significant change of the LDOS occurs. Ex-

actly such a behavior would be expected for an edge state, but, however, it does not prove

any topological properties, as in principle such a voltage drop can also be caused by trivial

states being present only at the step edges. Moreover, also across the terraces a certain

variation of the LDOS is present without a correlation to any topographic feature.

In both measurements (cf. Figs. 7.13 and 7.17) the 2D TI layer is the topmost layer ev-

erywhere in the depicted sample area, so that no potential difference between islands and

surrounding terraces is visible, as the LDOS is equal for both. However, this can be dif-

ferent, if not only double-layer steps are present, but also single-layer steps between 2D TI

and spacer layer, as it is the case in the measurement in Fig. 7.18. Here, a certain area of

the sample is covered by the spacer as topmost layer, as it is visible from the STM image

in Fig. 7.18(a) and the height profile in Fig. 7.18(c). In the corresponding potential map

in Fig. 7.18(b) a strong contrast appears between the spacer and the surrounding 2D TI
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layer. The potential drop occurs now on the complete spacer island, and has a strength of

∼ 500μV, as it can be deduced from the profile line in Fig. 7.18(d). Thus, in the present

case the position of the spacer layer can be identified also from the potential map.

This potentiometry-based approach in order to distinguish between spacer and 2D TI as

topmost layer can even be applied, if no single-layer step edge appears in the mapped

sample area, i.e. the surface is completely covered by either the spacer or the 2D TI layer.

Thus, for this purpose potentiometry is more advantageous compared to measuring the step

heights directly, since the latter requires at least one single step edge of the spacer, while

the contrast in thermovoltage is an inherent feature of the spacer surface itself. However,

since potentiometry only allows to determine potential differences, but not absolute values,

another reference is necessary in this case. Such a reference can be obtained by using the

potential variation caused by the edge state of a 2D TI layer, as measured before. In

Fig. 7.18(b) the voltage drop occurring at the position of an edge state with respect to the

2D TI surface [measured for the double step at the top of Fig. 7.18(b)] is with ∼ 900μV
in accordance to the prior results from Fig. 7.17(b). Thus, it immediately follows that

the difference in potential between spacer surface and edge states of the 2D TI layer at a

double step edge would be only ∼ 400μV, if the spacer forms the topmost layer. With

this information it is possible to unambiguously distinguish both types of layers from a

potentiometry measurement, thus allowing to identify the regions of the Bi14Rh3I9 covered

by a spacer or a 2D TI as topmost layer, e.g. in Fig. 7.13. As already discussed before,

from multiple large-size scans it turns out that the majority of the surface is covered by the

2D TI layer, while the spacer layer appears only in very few regions.

It should be explicitly noted here that in Figs. 7.18(b) and 7.18(d) no additional voltage

drop exactly at the edge of the spacer layer island occurs. So, it can be excluded that the

edge state causing the voltage drop of ∼ 900μV, as visible in Figs. 7.13(b) and 7.17(b), is

present around the spacer islands. This gives a further prove that the edge state observed

before appears only at the step edges of the 2D TI layer and not at the one of the spacer

layer, which is in accordance with the topological edge state.

In Fig. 7.16(b), also a potential drop at a spacer layer is visible (lower left edge of the

image), but from the profile line in Fig. 7.16(d) it seems to have a larger value above 1mV.

A reason is that in this case not only a single spacer layer is present, but in close vicinity

to it also a double-layer step (2D TI and spacer layer) exists. However, at the edge of a 2D

TI layer a much larger voltage drop appears. Due to the limited spatial resolution of the

large-size scan in Fig. 7.16(b) it is assumable that both contributions cannot be separated,

and therefore the visible potential drop mainly originates from the step edge and not from

the spacer. Further on, its strength is basically in accordance to the value of ∼ 900μV
resulting from the edge state, when the enhanced uncertainty is considered (±200μV), as

visible on the terraces in Fig. 7.16(d). Thus, the measurement in Fig. 7.18 should be more

precise.

From the strength of the potential drops obtained before, two estimates are possible: (a) the

temperature difference between tip and sample can be calculated, and (b) the ratio between

the LDOS slope of the edge channel and the plain 2D TI layers at the Fermi energy can be

approximated.
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First, the temperature difference between tip and sample during measurement should be

estimated. In order to do this, the measured potential drop between spacer and 2D TI layer,

i.e. ΔV th
2DTI↔spacer, obtained in Fig. 7.18(b) is used. By taking into account Eqs. (7.2) and

(7.3), it follows that

ΔV th
2DTI↔spacer = V th

2DTI − V th
spacer (7.4)

=
π2k2

B

6e

(
T 2
t − T 2

s

)[ d ln [ρ2DTI(E)]

dE

∣∣∣∣
EF

����������������������������������������������������������������������������������������������������������

∼30 eV−1

− d ln [ρspacer(E)]

dE

∣∣∣∣
EF

���������������������������������������������������������������������������������������������������������������

∼0

]
. (7.5)

In Eq. (7.5), the slope of the logarithmic LDOS at EF for the 2DTI layer is approximated

by a value obtained from a DFT calculation [183], while the corresponding value for the

spacer layer is taken from a dI/dV -measurement [174], as shown before in Fig. 7.5, and

additionally verified by the calculation in Ref. [183]. By inserting the measured value of

ΔV th
2DTI↔spacer ∼ 500μV into Eq. (7.5), a temperature difference between tip and sample

of ΔT ∼ 2K can be obtained (Tt = 300K is assumed). A possible explanation for such a

relative large temperature mismatch might be that prior to any four-tip STM measurements

always a source of light is needed, which illuminates the sample in order to see the actual

positions of the tips in the optical microscope. Even if the measurement itself is done with-

out any light, a possibly enhanced temperature of the sample caused by the illumination

before can persist also during potentiometry measurement, and would lead to the observed

thermovoltage.

In a second step, an estimation of the ratio between the LDOS slope of the edge channels

and the 2D TI layer is given by using the potential drop measured at the step edges in

Fig. 7.17(b), i.e. ΔV th
edge↔2DTI. It follows that

ΔV th
edge↔2DTI = V th

edge − V th
2DTI (7.6)

⇔ V th
edge = ΔV th

edge↔2DTI

�����������������������������������������������������������

∼900μV

+ V th
2DTI
�

(7.5)
= ΔV th

2DTI↔spacer∼500μV

(7.7)

⇔ V th
edge ∼ 1400μV. (7.8)

For the ratio then results

d ln[ρedge(E)]

dE

∣∣∣
EF

d ln[ρ2DTI(E)]
dE

∣∣∣
EF

(7.3)∼ V th
edge

V th
2DTI

∼ 1400μV

500μV
∼ 2.8 (7.9)

and for the slope of the logarithmic LDOS of the edge channel an approximation of
d ln[ρedge(E)]

dE

∣∣∣
EF

∼ 84 eV−1 can be obtained. So, the LDOS slope of the edge state is ap-

proximately by a factor 3 larger than the one of the 2D TI layer, which indicates a stronger

increase (or decrease) of the LDOS near the Fermi edge, as it is expected for the topo-

logical edge state. As the measured thermovoltage only depends on the derivative of the
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(a) (b)

Figure 7.19.: Potentiometry measurement on the 2D TI layer of the Bi14Rh3I9 surface without any

significant step edges. (a) Topography image (U = −110mV, I = 240 pA). (b) Potential map of

the same area as in (a). No transport field is applied. A strong contrast along a line across the image

is visible, which does not correspond to any topographic structure in (a).

(logarithmic) LDOS, no further information about the exact value of the LDOS of the edge

channel is possible. Moreover, since the edge channel is not located immediately at the

Fermi energy, all of the previous findings can describe at most only the tail of the edge

state extended towards the Fermi edge (cf. Figs. 7.6 and 7.7).

However, some conclusion can be drawn from the thermovoltage measurements shown

before. It is visible that the LDOS exactly at the 2D TI step edges differs from the one of

the plain 2D TI layers. This proves the existence of an edge state on the Bi14Rh3I9 surface,

which appears exactly at the steps of the 2D TI layer, exhibits a spatial width of ∼ 2 nm
and is not present at the steps of the spacer layer. This result confirms the previous results

from the spectroscopic measurements in section 7.3 and indicate that the topological edge

state has been measured.

At the end of this section, it should be noted that an edge state has not necessarily to

appear only on the surface, but it can also be present inside a subsurface layer of the

Bi14Rh3I9 crystal. For example, this is visible in the thermovoltage measurement depicted

in Fig. 7.19. In Fig. 7.19(a) the topography of a plain 2D TI layer is shown, while the

corresponding potential map is presented in Fig. 7.19(b). It is visible that in Fig. 7.19(b)

a narrow potential drop occurs along a straight line across the surface region, as it was

similarly observed before for the edge state at the 2D TI layer step edges [Fig. 7.13(b)].

However, when compared to Fig. 7.19(a), no topographic feature can be identified, which

correlates to the measured potential structure. So, it can be concluded that there is obvi-

ously no step edge on the surface and that the observed change in the LDOS along the line

has to be caused by a structural feature being present below the topmost 2D TI layer, which

is not observable in the topographic image. An explanation would be that there is a line

defect in the second (or lower) 2D TI layer below the surface, e.g. a dislocation line, which

does not cause a change in the topographic height, but exhibits an edge state along the

defect line. This locally changed LDOS in the subsurface layer then also contributes to the

tunneling process and, therefore, causes a shift of the thermovoltage also on the surface,

which can be measured by potentiometry. This proves the thermovoltage measurement to

be a versatile tool for detecting changes of the LDOS not only exactly on the sample sur-
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face, but also in subsurface layers, similarly as it can be also achieved with spectroscopic

dI/dV measurements.

7.6. Summary

Within this chapter the weak topological insulator Bi14Rh3I9 has been investigated in order

to reveal the one-dimensional topological edge state, which is expected to be present at

every step edge on the dark surface of the 2D TI layers inside the stacked material. In

spectroscopic dI/dV measurements this edge state can be observed exactly at the step

edges of the 2D TI layers, exhibiting a spatial extent of ∼2 nm around the step edge and an

energetic maximum of the LDOS located around ∼−150meV. This indicates that for the

present crystals the edge state is not located exactly at the Fermi energy. Furthermore, the

edge state is similarly also present at trenches, which can be artificially scratched into the

surface. From distance-dependent four-point measurements in combination with a two-

layer model the conductivities of the surface and the subsurface (bulk) channel can be

deduced as σ2D = (6.4± 0.5)× 10−2 S/� and σ3D = (9.2± 0.8)× 103 S/m. It turns out

that the surface conductivity of the present crystals is quite large due to surface doping.

Scanning potentiometry measurements are performed with and without a transport field.

Due to the facts that the edge state cannot contribute to current transport, as not located

at EF , and that the overall surface conductivity is very large, it is not possible to reveal

the topological nature of the edge state from the potential distribution during real current

transport. However, measuring only the thermovoltage without lateral current transport

turns out to be sufficient in order to find spatial variations of the LDOS at the position of

step edges. Here, a local potential drop of ∼900μV can be observed exactly at the step

edges of the 2D TI layers, while it is not present at the steps of the spacer layer. Thus,

it is possible to reveal substantial LDOS changes present only at the edges of the 2D TI

layer, as it is expected for the topological edge state and in accordance with the previous

spectroscopic measurements.

The main problems in measuring any transport-related properties of the edge channel di-

rectly are that the edge state is not located at EF at that the surrounding dark surface is

not insulating, but exhibits an extensive conductivity due to undesired doping. So, for fu-

ture measurements this two issues have to be resolved by fabricating appropriate Bi14Rh3I9
crystals. Then, it would be possible to reveal the topological properties from the potential

distribution on the surface during current transport. Exactly along the edge channel a con-

stant potential would be expected with a potential drop only at the beginning and at the end

of the one-dimensional channel, as it applies for an ballistic channel, while the surrounding

(dark) surface still exhibits the normal diffusive transport, i.e. it shows a potential slope due

to the transport field.

Some excerpts of the data presented in sections 7.4.1 and 7.5.2.1 are included in the publi-

cation in Ref. [186].



8. Conclusion

Within the framework of this thesis, the relevant issue of disentangling parallel conduction

channels inside conductive materials, based on information from electrical transport mea-

surements on the surface, has been researched. In general, such parallel channels can be

present, when the conductivity of the material is not completely homogeneous, i.e. when

continuous regions in parallel along the current path exist which exhibit an increased or re-

duced conductivity compared to each other. Specifically, when current transport in lateral

direction is considered, as it results from an injection solely at the surface, such regions

are mainly formed either by layers in parallel to the surface, ranging from rather thick seg-

ments down to single atomic layers, or by spatially-limited paths on the surface itself. As

it has been shown throughout this thesis, such specific properties apply to a wide range of

various material systems. Besides straightforwardly to handle single 2D or 3D conducting

channels, highly conductive two-dimensional surface states on top of bulk semiconductors

with a band-bending-induced space charge region in between have been investigated, as

well as quasi-2D epitaxially grown thin films of topological insulators with multiple 2D

conducting channels inside caused by the interior of the film, the topological surface states

on top and bottom side and the interface to the bulk substrate. Furthermore, also one-

dimensional edge states appearing on surfaces of weak topological insulators, surrounded

by both a conductive surface layer and an underlying bulk crystal, have been covered. All

of these systems exhibit both different compositions and very different properties of the

parallel channels, e.g. as dimensionality and length-scale. If the properties of one of these

conducting channels are of interest, e.g. the conductivity, the difficult task arises, how to

disentangle this specific channel from all the other channels in parallel. Such a question is

particularly of high importance for the development of future electronic devices, as only

the knowledge about the strength of conduction channels allows for improvements in order

to keep undesired effects due to parasitic channels, e.g. as high current consumption, as less

as possible, or even enables new developments by taking advantage of specific channels,

e.g, based on topological states.

Here, in order to approach this problem, the primarily used experimental tool has been

a multi-tip STM which allows to perform position-dependent electrical four-probe resis-

tance measurements on surfaces with tip spacings within the micro- or even nanoscale.

The fundamentals of such an instrument operating at room temperature and under ultra-

high-vacuum conditions have been presented in chapter 2. However, for the majority of

cases, not only experimental measurements are sufficient, but also supporting theoretical

models are necessary, in order to describe the measured data properly and to extract the

relevant information about the materials under study, e.g. as the conductivity of the surface

states. For this reason, within this thesis two different types of multi-layer models have

165
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been developed and the application of a further calculation-based method using input from

surface-sensitive experiments has been shown up.

In order to determine the conductivity of materials exhibiting either a pure 2D or 3D chan-

nel, it is sufficient to perform distance-dependent four-probe measurements with a linear

tip configuration, as the specific distance-dependency of the four-point resistance is char-

acteristic for the dimensionality of the sample. Moreover, simple analytic expressions exist

in order to obtain the conductivity from such measurements, as shown in chapter 3. In a

similar manner, by performing angle-dependent measurements, the anisotropy on the sur-

face, e.g. as caused by atomic steps, can be studied. However, if both conduction channels

are combined, i.e. as it is the case for surface states present on top of a semiconducting

bulk, it starts to get complicated. Here, the expressions for pure 2D and 3D channels can-

not be applied any longer, thus, a new model is needed relating the measured resistance

data to the properties of the conducting channels. Moreover, it has turned out that a 2-

layer model is not sufficient in general, as especially in semiconductors the near-surface

space charge region has a significant influence on both the current injection and the lateral

transport, and, therefore, has to be taken into account. Thus, first a 3-layer model has been

introduced in chapter 4 which is based on basic analytical expressions. This model offers a

description of the sample by a surface channel, a channel through the space charge region

and a bulk channel, all of them with individual conductivities and thicknesses. Distance-

dependent four-probe resistance measurements in combination with such a 3-layer model

have successfully allowed to reliably reveal the long-sought conductivity of the Si(111)-

(7×7) surface states. Moreover, in order to further disentangle the surface channel into

the contributions of step-free terrace and the atomic steps, the rotational square method

has been applied. Thus, a combination of both, i.e. distance-dependent measurements sup-

ported by a 3-layer model and the angle-dependent setup, has unambiguously allowed to

separate the influences of defect density in the surface reconstruction and step density of

the Si(111) on the overall conductivity of the surface layer.

In order to refine the quite rough approximation of the space charge region within the 3-

layer model by only a single layer of fixed conductivity, in chapter 5 an extended model

with N layers has been presented. Such a model allows for a more precise description of the

strongly z-dependent conductivity inside the space charge zone, which especially applies

when an inversion layer is present. However, due to the very large number of parameters,

the N -layer model cannot be only fitted to resistance measurement data, but needs addi-

tional information from band bending calculations as input. These calculations are based

on basic material parameters which are known for semiconductors, but not necessarily for

other materials under study. Thus, the N -layer model can indeed be more precise, but on

the other hand the 3-layer model is more flexible in application, as the only prerequisite

is a set of distance-dependent four-point resistance data and all relevant information can

be obtained from a fit to the data. It has been demonstrated that with an N -layer model it

is possible to precisely extract the surface conductivities for Ge(100)-(2×1) and Si(100)-

(2×1). Nevertheless, for the case of Si(111)-(7×7), it has turned out that the obtained value

for the conductivity of the surface states is basically the same as the one resulting from the

3-layer model before, thus, implying that in this case already a 3-layer model is sufficient.
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However, obviously this depends in general on the specific properties of the space charge

region.

For epitaxially grown thin films, multiple two-dimensional conducting channels in parallel

can exist, as it has been discussed specifically for the case of topological insulator materials

in chapter 6. Here, besides the ordinary bulk substrate, the interface layer, the quasi-2D

interior of the film and the surface states can participate in current transport. Particularly,

for TI materials the surface states split into two parts, i.e. the topological states on top

and bottom side of the film. In order to determine the conductivity of the interface chan-

nel, it can be investigated prior to film growth by means of distance-dependent four-probe

measurements on a corresponding substrate exhibiting the same surface reconstruction as

present later on underneath the thin TI film. Due to the weak coupling between TI film

and substrate, the properties of the interface layer can be expected to be the same without

the film on top. The film itself is more difficult to handle, since due to its quasi-2D na-

ture any distance-dependent measurements cannot help to disentangle the interior of the

film from the TSS channels. For this purpose, the film conductivity has been deduced

from the mobile charge carrier concentration inside which can be obtained by a calculation

of the near-surface band bending with additional information from surface-sensitive mea-

surements, i.e. angle-resolved photoemission spectroscopy and gate-dependent four-point

measurements. Specifically, for the thin-film limit, it has turned out that the amount of

charge carriers inside the film is nearly independent from the usually unknown dopant con-

centration and only governed by more easily accessible surface properties. So, this method

allows for a reliable estimation of the film conductivity, and thus, by revealing the con-

tribution of the film interior to current transport, helps to determine the TSS conductivity

from measurements.

Another type of conducting channels are one-dimensional channels arising from edge states

on surfaces, e.g. present on weak topological insulators, as it has been treated in chap-

ter 7 specifically for the material Bi14Rh3I9. In contrast to all of the conduction channels

discussed before, such edge states are localized on the accessible surface, and thus their

presence can be easily verified by means of scanning tunneling spectroscopy which has

revealed an enhanced density of states in the vicinity of step edges compared to the sur-

roundings. Moreover, these edge states also evolve at artificial scratches which in principle

allows to create an arbitrary pattern of ballistically conducting channels on the surface.

However, as it holds for all conduction channels, in order to actually contribute to current

transport the involved electronic states have to be located at the Fermi edge, but for the case

of Bi14Rh3I9 it has turned out that the edge states are only close to the Fermi energy. Fur-

thermore, due to unintentional surface doping the surrounding dark surface exhibits a ex-

tremely large conductivity, as deduced from distance-dependent four-point measurements.

Both facts make it very difficult to disentangle the 1D channels from transport measure-

ments, but nevertheless an attempt has been started. Since due to the small lateral extent of

the edge channels a contacting by four tips is very difficult, scanning tunneling potentiom-

etry is the method of choice. However, as expected, here no transport-related contrast is

visible and the same structure appears in subsequent thermovoltage measurements without

a transport field, thus only proving the existence of the edge states but not showing their
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transport properties. Nevertheless, for a more sophisticated sample, in principle it would

be possible to disentangle the edge channels by using the presented methods.

A further project which has been started, concerns a method to reveal spin-polarized trans-

port in topological insulators. Due to the spin-momentum locking in the topological states,

a spin-polarized current can be generated simply by inducing a lateral current flow in

the TSS channel. By means of a four-point measurement with one spin-polarized tip in-

volved, an additional contribution from a spin-voltage can be measured besides the ohmic

part, which allows for conclusions about the spin-polarization of the current in the TSS,

as it has been already reported, but only for the case of lithographically-fabricated con-

tacts [187–190]. In order to prepare for such spin-polarized four-point measurements, a

setup for an electromagnetic coil has been developed which allows for an in situ switch-

ing of the spin-polarization of a ferromagnetic STM tip. More details about this coil can

be found in the appendix C.3. However, due to limited time, such measurements have

not been performed within this thesis, but the project has been continued successfully by

Arthur Leis [38].

Finally, it should be stressed that all methods and theoretical models presented within this

thesis are universally applicable, and thus can be applied basically to many other sys-

tems than covered here, in order to extract relevant information about their properties from

surface-sensitive measurements. Particularly, the 3- and N -layer models might provide a

substantial improvement in understanding and interpreting distance-dependent measure-

ments on surfaces in order to disentangle multiple conduction channels, and thus can lead

to a considerable progress in the field of transport measurements based on multi-tip STMs.

Also, the demonstrated method for obtaining the conductivity of thin TI films can be very

advantageous in general, as it provides information about a region which is non-accessible

by direct measurements and thus helps to characterize the TSS channel in order to allow

for a fabrication of tailored TI films based on the obtained information.

In total, the presented methods can support the applicability of the multi-tip STM tech-

nique, and thus can help that it evolves to an even more powerful tool in the future. Indeed,

many further fields of applications are conceivable for this universal technique, e.g. the

investigation of magneto-transport down to the nanoscale at low temperatures or the study

of time-dependent transport phenomena by developing a multi-tip instrument in analogy to

a time-resolved single-tip STM [191]. Particularly for this two cases, some work for the

implementation has already been done up to now. Thus, multi-tip STM proves to be an

interesting technique with high potential for future research.
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Appendix A. Mathematical derivations

In this first part of the appendix, several mathematical derivations are presented as supple-

ment in order to provide more fundamentals about the equations and statements shown in

the chapters 3 – 6.

A.1. Tip configurations for 2D systems

A.1.1. Linear tip configuration with arbitrary alignment

In order to show in general that for an anisotropic system a linear tip configuration is not

suitable for revealing the two conductivity components σx and σy from four-point measure-

ments, an arbitrarily aligned in-line setup is considered, as depicted in Fig. A.1. The four

tips have a symmetrical spacing with a distance L between the outer current injecting tips

(A,B) and a distance s between the inner voltage probing tips (C,D). The linear geometry

is rotated by an angle θ with respect to one of the principal axes (here the x-axis) of the

anisotropic system. Thus, the positions of the four tips can be expressed as

xA =

(
0
0

)
, xB = L

(
cos(θ)
sin(θ)

)
, xC =

L−s

2

(
cos(θ)
sin(θ)

)
, xD =

L+s

2

(
cos(θ)
sin(θ)

)
. (A.1)

In order to consider a 2D system, these vectors have to be inserted into Eq. (3.73) and the

four-point resistance according to RAB,DC =
−ΦAB

CD

I
has to be calculated. It follows with

Figure A.1.: Arbitrarily rotated linear tip configuration for an anisotropic system. A symmetric

arrangement is chosen with a spacing L between the outer (current injecting) tips at positions A
and B, and a spacing s between the inner (voltage measuring) tips located at C and D. The in-line

setup is rotated by θ with respect to the principal axes of the anisotropic system.

191
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the prefactor A := 1
4π

√
σxσy

that

R2D
lin = −A ln

[
σy

(
L+s
2

cos(θ)− L cos(θ)
)2

+ σx

(
L+s
2

sin(θ)− L sin(θ)
)2

σy

(
L+s
2

cos(θ)
)2

+ σx

(
L+s
2

sin(θ)
)2

× σy

(
L−s
2

cos(θ)
)2

+ σx

(
L−s
2

sin(θ)
)2

σy

(
L−s
2

cos(θ)− L cos(θ)
)2

+ σx

(
L−s
2

sin(θ)− L sin(θ)
)2
]

(A.2)

= −A ln

[
σy (−L+ s)2 cos2(θ) + σx (−L+ s)2 sin2(θ)

σy (L+ s)2 cos2(θ) + σx (L+ s)2 sin2(θ)

× σy (L− s)2 cos2(θ) + σx (L− s)2 sin2(θ)

σy (−L− s)2 cos2(θ) + σx (−L− s)2 sin2(θ)

]
(A.3)

ln[a2]=2 ln[a]

= −2A ln

[
σy (L− s)2 cos2(θ) + σx (L− s)2 sin2(θ)

σy (L+ s)2 cos2(θ) + σx (L+ s)2 sin2(θ)

]
(A.4)

= −2A ln

[
(L− s)2

(
σy cos

2(θ) + σx sin
2(θ)

)
(L+ s)2

(
σy cos2(θ) + σx sin

2(θ)
)
]

(A.5)

ln[a2]=2 ln[a]

= −4A ln

[
L− s

L+ s

]
(A.6)

− ln[a]=ln[ 1a ]

=
1

π
√
σxσy

ln

[
L+ s

L− s

]
. (A.7)

Specifically, for an equidistant configuration, i.e. L = 3s, follows that

R2D,anisotropic
lin,e (σx, σy) =

1

π
√
σxσy

ln

[
3s+ s

3s− s

]
=

1

π
√
σxσy

ln[2] . (A.8)

Thus, it turns out that the resulting four-point resistance does not depend on the rotation

angle θ of the linear tip setup. As a result, only the geometric mean σ =
√
σxσy of the

anisotropic conductivity components can be measured, in the same way as it also applies

for the isotropic case [cf. Eq. (3.44)] . So, it is proven that for any possible alignment of

an in-line tip setup it is not possible to reveal σx and σy individually from a four-point

measurement. For this purpose, a square or a rhombic tip configuration has to be used.

A.1.2. Rhombic tip configuration

In the rhombic tip configuration, both the current and voltage tips are each positioned

at the opposite corners of a rhombus which in general can be characterized by its two

diagonals s̃ and L, or by the side length s and the interior angle γ. However, here only

the special case of a square is considered, so that s̃ = L =
√
2s and γ = π

2
. Such a tip
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Figure A.2.: Rhombic tip configuration for the special case of a square with side length s, so that

s̃ = L =
√
2s and γ = π

2 . The current injecting tips (A,D) as well as the voltage measuring tips

(B,C) are positioned at the opposite corners of the square. The current direction, i.e. the diagonal

AD of the square, is rotated by α with respect to the principal axes of the anisotropic system. The

angle α is differently defined compared to the rotation angle θ of the square tip configuration, i.e.

θ = α + π
4 . The labels of the tips are chosen in such a way that the configuration, i.e. (AD,BC),

is comparable to the square configuration as depicted in Fig. 3.7.

arrangement is depicted in Fig. A.2 with the current injecting tips at A and D, and the

voltage probing tips at B and C. The orientation of the square is characterized by the

angle α between the current direction, i.e. the diagonal AD of the square, and one of the

principal axes of the anisotropically conducting sample system, i.e. the orientations of σx

and σy, respectively. The rotation angle α is differently defined compared to the angle θ
of the square configuration [cf. Eq. (3.83)], as in the present case the current direction is

along the diagonal of the square, thus it follows that θ = α + π
4
.

According to the drawing in Fig. A.2, the positions of the four tips can be expressed as

xA =

(
0
0

)
, xB =

L√
2

(
cos

(
α + π

4

)
sin

(
α + π

4

)) , xC =
L√
2

(
cos

(
α− π

4

)
sin

(
α− π

4

)) and

xD = L

(
cos(α)
sin(α)

)
.

(A.9)

The terms in the arguments can be simplified by using the trigonometric addition theorems,

so that

sin
(
α± π

4

)
= sin(α) cos

(π
4

)
± cos(α) sin

(π
4

)
=

1√
2

[
sin(α)± cos(α)

]
(A.10)

cos
(
α± π

4

)
= cos(α) cos

(π
4

)
∓ sin(α) sin

(π
4

)
=

1√
2

[
cos(α)∓ sin(α)

]
(A.11)

Thus, the two position vectors xB and xC can be rewritten as

xB =
L

2

(
cos(α)− sin(α)
sin(α) + cos(α)

)
, xC =

L

2

(
cos(α) + sin(α)
sin(α)− cos(α)

)
. (A.12)

In order to consider a 2D system, these vectors can be inserted into Eq. (3.73) by corre-

spondingly exchanging the tip coordinates due to the different configuration in the present
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case. Subsequently, the four-point resistance according to RAD,BC = − ΦAD
CB

I
can be calcu-

lated. It follows with the prefactor A := 1
4π

√
σxσy

that

R2D
rh = −A ln

[
σy

(
L
2
[cos(α)−sin(α)]−L cos(α)

)2
+σx

(
L
2
[sin(α)+cos(α)]−L sin(α)

)2
σy

(
L
2
[cos(α)−sin(α)]

)2
+σx

(
L
2
[sin(α)+cos(α)]

)2
× σy

(
L
2
[cos(α)+sin(α)]

)2
+σx

(
L
2
[sin(α)−cos(α)]

)2
σy

(
L
2
[cos(α)+sin(α)]−L cos(α)

)2
+σx

(
L
2
[sin(α)−cos(α)]−L sin(α)

)2
]
(A.13)

= −A ln

[
σy (− cos(α)− sin(α))2 + σx (− sin(α) + cos(α))2

σy (cos(α)− sin(α))2 + σx (sin(α) + cos(α))2

× σy (cos(α) + sin(α))2 + σx (sin(α)− cos(α))2

σy (− cos(α) + sin(α))2 + σx (− sin(α)− cos(α))2

]
(A.14)

= −A ln

[
σy (sin(α) + cos(α))2 + σx (sin(α)− cos(α))2

σy (sin(α)− cos(α))2 + σx (sin(α) + cos(α))2

×σy (sin(α) + cos(α))2 + σx (sin(α)− cos(α))2

σy (sin(α)− cos(α))2 + σx (sin(α) + cos(α))2

]
(A.15)

ln[a2]=2 ln[a]

= −2A ln

⎡
⎢⎢⎢⎣
σy

(
sin2(α) + 2 sin(α) cos(α) + cos2(α)

)
+ σx

(
sin2(α)− 2 sin(α) cos(α) + cos2(α)

)
σy

(
sin2(α)− 2 sin(α) cos(α) + cos2(α)

)
+ σx

(
sin2(α) + 2 sin(α) cos(α) + cos2(α)

)

⎤
⎥⎥⎥⎦(A.16)

sin2(α)+cos2(α)=1

= −2A ln

[
σy (1 + 2 sin(α) cos(α)) + σx (1− 2 sin(α) cos(α))

σy (1− 2 sin(α) cos(α)) + σx (1 + 2 sin(α) cos(α))

]
(A.17)

= −2A ln

[
σy + σx − 2 sin(α) cos(α) (σx − σy)

σy + σx + 2 sin(α) cos(α) (σx − σy)

]
(A.18)

= −2A ln

⎡
⎣σy

[
1 + σx

σy
− 2 sin(α) cos(α)

(
σx

σy
− 1

)]
σy

[
1 + σx

σy
+ 2 sin(α) cos(α)

(
σx

σy
− 1

)]
⎤
⎦ . (A.19)

Thus, after further rearrangement according to ln(a−1) = − ln(a), the four-point resistance

for a square-shaped rhombic tip configuration on an anisotropic 2D sheet can finally be

written as

R2D
rhombic(σx, σy, α) =

1

2π
√
σxσy

ln

⎡
⎢⎢⎣1 +

σx

σy
+ 2 sin(α) cos(α)

(
σx

σy
− 1

)
1 + σx

σy
− 2 sin(α) cos(α)

(
σx

σy
− 1

)
⎤
⎥⎥⎦. (A.20)
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Figure A.3.: Normalized plots of the relation R(α)
√
σxσy for a rhombic tip configuration as func-

tion of the rotation angle α with the ratio σx/σy as additional parameter. (a) Overview for a large

range of ratios σx/σy of of the π-periodic function. (b) For smaller ratios σx/σy ≤ 10, the curve is

similar to sine, but with half periodicity.

The expression only depends on the rotation α of the square and does not include any dis-

tance between the tips, i.e. the side length s, in the same way as it has been found also

for the square configuration. In Fig. A.3, the angle dependence of the function is visual-

ized by normalized plots of R2D
rhombic

√
σxσy with several different ratios σx

σy
as additional

parameter. It is visible that the four-point resistance is π-periodic and point symmetric

with respect to the origin. The latter is a direct consequence from the fact that already a

rotation by π
2

basically corresponds to an exchange of the pairs of current and voltage tips

(with additional exchange of the voltage polarity in order to get the minus sign), so that

|R(α + π
2
)| = |R(α)|. This is in contrast to the square configuration, for which such an

exchange is only achieved after an rotation of π. For smaller ratios σx

σy
< 5 [Fig. A.3(b)],

the shape of the function is similar to sine (but still with half periodicity) and also similar

to the resistance of the square configuration (but shifted by π
4
). The zero-crossings of the

four-point resistance indicate the orientations of the principal axes of the anisotropic sys-

tem, i.e. the directions of high (σx) and low (σy) conductivity. Thus, one advantage of the

rhombic configuration is that these directions can be more precisely determined from the

positions of the zero-crossings, than it is the case for the corresponding maxima in a square

configuration.

A.1.3. Van der Pauw configuration for infinite 2D sheets

In the following, the modified van der Pauw equation [cf. Eq. (3.95)] will be derived for the

case of an infinitely extended sheet which has an infinite number of mirror planes, thus an

arbitrary placement of a linear tip setup is possible. For a general in-line tip arrangement

with the spacings e, f , and g, as indicated in Fig. A.4 for the two electrical configurations

(AB,CD) and (AC,DB), the position vectors of the tips can be expressed as (without
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(a) (b)

Figure A.4.: Arbitrarily spaced linear tip arrangement with spacings e, f and g as indicated for the

electrical configuration (a) (AB,CD) and (b) (AC,DB).

loss of generality is yi = 0)

xA = −
(
e+

f

2

)
êx, xB =

(
f

2
+ g

)
êx, xC = −f

2
êx, xD =

f

2
êx. (A.21)

If an infinitely extended 2D system is considered, these vectors can be inserted into

Eq. (3.23). Thus, by exchanging the tip coordinates correspondingly, it follows for the

four-point resistances of the two configurations (AB,CD) and (AC,DB) that

R2D,lin
AB,CD =

1

4πσ2D

ln

[
g2e2

(e+ f)2(f + g)2

]
=

1

2πσ2D

ln

[
eg

(e+ f)(f + g)

]
(A.22)

R2D,lin
AC,DB =

1

4πσ2D

ln

[
(f + g)2(e+ f)2

(e+ f + g)2f

]
=

1

2πσ2D

ln

[
(f + g)(e+ f)

f(e+ f + g)

]
, (A.23)

respectively. It has to be ensured that both resistances in Eqs. (A.22) and (A.23) are pos-

itive, which is achieved by calculating the absolute values. For the logarithmic function

ln(x) it applies that

∣∣ln (x)∣∣ =
⎧⎨
⎩
ln (x) if x ≥ 1

ln

(
1

x

)
if x < 1.

(A.24)

Thus, it has to be checked first, if the arguments of the logarithms in Eqs. (A.22) and (A.23)

are smaller or greater than one. So, it has to be verified or falsified that

(A.22)

⇒ eg

(e+ f)(f + g)
> 1 ⇔ eg > f 2 + fg + ef + eg

⇔ 0 > f 2 + fg + ef
e,f,g > 0

⇒ not true ⇒ R2D,lin
AB,CD < 0

(A.25)

(A.23)

⇒ (f + g)(e+ f)

f(e+ f + g)
> 1 ⇔ f 2 + fe+ fg + eg > f 2 + fe+ fg

⇔ eg > 0
e,g > 0

⇒ true ⇒ R2D,lin
AC,DB > 0.

(A.26)
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Based on this information the absolute values of Eqs. (A.22) and (A.23) can be expressed

as

∣∣∣R2D,lin
AB,CD

∣∣∣ = 1

2πσ2D

∣∣∣∣∣ln
[

eg

(e+ f)(f + g)

]∣∣∣∣∣
(A.24)
(A.25)

=
1

2πσ2D

ln

[
(e+ f)(f + g)

eg

]
(A.27)

∣∣∣R2D,lin
AC,DB

∣∣∣ = 1

2πσ2D

∣∣∣∣∣ln
[
(f + g)(e+ f)

f(e+ f + g)

]∣∣∣∣∣
(A.24)
(A.26)

=
1

2πσ2D

ln

[
(f + g)(e+ f)

f(e+ f + g)

]
, (A.28)

respectively. Eqs. (A.27) and (A.28) can be rearranged, so that

(A.27)

⇒ −2πσ2D

∣∣∣R2D,lin
AB,CD

∣∣∣ = − ln

[
(e+ f)(f + g)

eg

]
= ln

[
eg

(e+ f)(f + g)

]
(A.29)

⇔ e−2πσ2D|R2D,lin
AB,CD| = eg

(e+ f)(f + g)
(A.30)

(A.28)

⇒ −2πσ2D

∣∣∣R2D,lin
AC,DB

∣∣∣ = − ln

[
(f + g)(e+ f)

f(e+ f + g)

]
= ln

[
f(e+ f + g)

(f + g)(e+ f)

]
(A.31)

⇔ e−2πσ2D|R2D,lin
AC,DB| = f(e+ f + g)

(f + g)(e+ f)
. (A.32)

By adding Eqs. (A.30) and (A.32), it finally follows the equation

e−2πσ2D|R2D,lin
AB,CD| + e−2πσ2D|R2D,lin

AC,DB| = eg

(e+ f)(f + g)
+

f(e+ f + g)

(f + g)(e+ f)
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

=
eg+fe+f2+fg
eg+fe+f2+fg

(A.33)

⇔ e−2πσ2D|R2D,lin
AB,CD| + e−2πσ2D|R2D,lin

AC,DB| = 1 (A.34)

which represents the modified van der Pauw equation.

A.2. Supplements for 3-layer model

A.2.1. Hankel transformation

The Hankel transform of a function f(t) is generally defined as [192, 193]

Fν(u) =

∫ ∞

0

dt f(t)tJν(ut) (A.35)

with Jν denoting the Bessel function of the first kind. The inverse transformation, i.e. for

retrieving f(t) back, is given again by the Hankel transform of Fν(u). If the definition

in Eq. (A.35) is compared to Eq. (4.6a) which is considered as example in the following,
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then it is obvious that the left side of the equation already is the Hankel transform of the

coefficients a(k)−b(k). Thus, for separating the coefficients it is sufficient to apply another

Hankel transformation. By extending both sides with ρJ0(k
′ρ) and integrating over

∫∞
0

dρ,

it results that

ρJ0(k
′ρ)
∫ ∞

0

dk σ1 [a(k)−b(k)] kJ0(kρ) = −j1H(rt−ρ)ρJ0(k
′ρ) (A.36)

⇔ σ1

∫ ∞

0

dρ ρJ0(k
′ρ)
∫ ∞

0

dk [a(k)−b(k)] kJ0(kρ) = −j1

∫ ∞

0

dρH(rt−ρ)ρJ0(k
′ρ) (A.37)

⇔ σ1

∫ ∞

0

dk [a(k)−b(k)] k

∫ ∞

0

dρ ρJ0(k
′ρ)J0(kρ)

������������������������������������������������������������������������������������������������������������������������������

= 1
k
δ(k−k′)

= −j1

∫ ∞

0

dρH(rt−ρ)ρJ0(k
′ρ) (A.38)

⇔ σ1

∫ ∞

0

dk [a(k)−b(k)] δ(k − k′) = −j1

∫ ∞

0

dρH(rt−ρ)ρJ0(k
′ρ) (A.39)

⇔ σ1 [a(k
′)−b(k′)] = −j1

∫ rt

0

dρ ρJ0(k
′ρ) (A.40)

k′→k

⇔ σ1 [a(k)−b(k)] = −j1

∫ rt

0

dρ ρJ0(kρ). (A.41)

Hereby, in Eq. (A.39) the orthogonality of the Bessel functions is applied, while in

Eq. (A.40) the special properties of the Delta distribution and the Heaviside step function

are used. In the same way, the transformation can be applied to the other Eqs. (4.6b) –

(4.6e) in order to retrieve the coefficient functions.

A.2.2. Coefficients a(k) + b(k)

In the following, it will be shown that from Eq. (4.8) a solution for the coefficients a(k) +
b(k) according to Eq. (4.11) can be derived. In order to make the displayed equations

clearer, the abbreviations σ21 =
σ2

σ1
and σ32 =

σ3

σ2
are introduced. Thus, Eq. (4.8) reads as⎛

⎜⎜⎜⎜⎜⎝

1 −1 0 0 0

ekz1 −e−kz1 −σ21e
kz1 σ21e

−kz1 0

ekz1 e−kz1 −ekz1 −e−kz1 0

0 0 ekz2 −e−kz2 σ32e
−kz2

0 0 ekz2 e−kz2 −e−kz2

⎞
⎟⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎝

a(k)

b(k)

c(k)

d(k)

f(k)

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

I(k, σ1)

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎠ . (A.42)

Division of the rows by common factors leads to⎛
⎜⎜⎜⎜⎜⎝

1 −1 0 0 0

1 −e−2kz1 −σ21 σ21e
−2kz1 0

1 e−2kz1 −1 −e−2kz1 0

0 0 1 −e−2kz2 σ32e
−2kz2

0 0 1 e−2kz2 −e−2kz2

⎞
⎟⎟⎟⎟⎟⎠

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

:=A

·

⎛
⎜⎜⎜⎜⎜⎝

a(k)

b(k)

c(k)

d(k)

f(k)

⎞
⎟⎟⎟⎟⎟⎠

�������������������������������

:=x

=

⎛
⎜⎜⎜⎜⎜⎝

I(k, σ1)

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎠

�������������������������������������������������������

:=b

. (A.43)
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Eq. (A.43) has the form Ax = b, so that it can be solved in general by means of matrix

inversion, since x = A−1b. However, as only the coefficients a(k) and b(k) need to be

determined and the matrix exhibits several empty entries, a suitable alternative is to use

Cramer’s rule. According to this rule the solution for the components xi of the vector x
is given by xi =

det(Ai)
det(A)

with the modified matrix Ai in which the i-th column is replaced

by the vector b, and the determinant det(A) of the matrix A [194, 195]. Thus, it can be

written that

a(k) + b(k) =
det(A0) + det(A1)

det(A)
. (A.44)

For simplifying the calculation of the determinants, the matrices have first to be rearranged

by Gaussian elimination. Specifically, for determinants the following rules apply: (1)

exchanging two rows or columns leads from det(A) to −det(A), (2) adding a multiple of

a row or column to another leaves det(A) unchanged, and (3) dividing a column or row

by a factor c results in c det(A). In general, determinants are not additive, i.e. det(A) +
det(B) �= det(A + B), but if two matrices Ã and B̃ (both with entries cij) differ only

by the k-th column (with entries aik and bik, respectively), it is in component notation

det(Ã) + det(B̃) =
∑

i1,...,in
εi1...inci1· · · (aikk + bikk) · · · cinn1 (used in Eq. (A.48)). Also

the Laplace expansion (LE) can be applied which expresses the determinant of a matrix in

weighted terms of the determinants of sub-matrices with reduced size [196].

First, the numerator of Eq. A.44 is considered. With the notation det(A) = |A| it follows

that

⇒ det(A0) + det(A1) (A.45)

=

∣∣∣∣∣∣∣∣∣∣∣

× 1
I(k,σ1)

I(k, σ1) −1 0 0 0

0 −e−2kz1 −σ21 σ21e
−2kz1 0

0 e−2kz1 −1 −e−2kz1 0

0 0 1 −e−2kz2 σ32e
−2kz2

0 0 1 e−2kz2 −e−2kz2

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣

× 1
I(k,σ1)

⏐⏐⏐0
⏐0

1 I(k, σ1) 0 0 0

1 0 −σ21 σ21e
−2kz1 0

1 0 −1 −e−2kz1 0

0 0 1 −e−2kz2 σ32e
−2kz2

0 0 1 e−2kz2 −e−2kz2

∣∣∣∣∣∣∣∣∣∣∣
(A.46)

= I(k, σ1)

∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 0 0

0 −e−2kz1 −σ21 σ21e
−2kz1 0

0 e−2kz1 −1 −e−2kz1 0

0 0 1 −e−2kz2 σ32e
−2kz2

0 0 1 e−2kz2 −e−2kz2

∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 0

0 1 −σ21 σ21e
−2kz1 0

0 1 −1 −e−2kz1 0

0 0 1 −e−2kz2 σ32e
−2kz2

0 0 1 e−2kz2 −e−2kz2

∣∣∣∣∣∣∣∣∣∣∣
(A.47)

1εi1...in denotes the Levi-Civita symbol of n-th dimension
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= I(k, σ1)

∣∣∣∣∣∣∣∣∣∣∣

LE

1 −2 0 0 0

0 −e−2kz1−1 −σ21 σ21e
−2kz1 0

0 e−2kz1−1 −1 −e−2kz1 0

0 0 1 −e−2kz2 σ32e
−2kz2

0 0 1 e−2kz2 −e−2kz2

∣∣∣∣∣∣∣∣∣∣∣
(A.48)

= I(k, σ1)

∣∣∣∣∣∣∣∣∣

LE × e2kz1 × e2kz2

−e−2kz1−1 −σ21 σ21e
−2kz1 0

e−2kz1−1 −1 −e−2kz1 0

0 1 −e−2kz2 σ32e
−2kz2

0 1 e−2kz2 −e−2kz2

∣∣∣∣∣∣∣∣∣
(A.49)

= I(k, σ1)e
−2kz1e−2kz2

⎡
⎢⎢⎣[−e−2kz1 − 1

]
∣∣∣∣∣∣∣
−1 −1 0

1 −e−2k(z2−z1) σ32

1 e−2k(z2−z1) −1

∣∣∣∣∣∣∣
| LE

− [
e−2kz1 − 1

]
∣∣∣∣∣∣∣
−σ21 σ21 0

1 −e−2k(z2−z1) σ32

1 e−2k(z2−z1) −1

∣∣∣∣∣∣∣
| LE

⎤
⎥⎥⎦ (A.50)

= I(k, σ1)e
−2k(z2+z1)

⎡
⎢⎢⎣−[e−2kz1 + 1

]
⎛
⎜⎜⎝−

∣∣∣∣∣−e−2k(z2−z1) σ32

e−2k(z2−z1) −1

∣∣∣∣∣
������������������������������������������������������������������������������������������������������������

=e−2k(z2−z1)(1−σ32)

+

∣∣∣∣1 σ32

1 −1

∣∣∣∣
������������������������

=−1−σ32

⎞
⎟⎟⎠

− [
e−2kz1 − 1

]
⎛
⎜⎜⎝− σ21

∣∣∣∣∣−e−2k(z2−z1) σ32

e−2k(z2−z1) −1

∣∣∣∣∣
������������������������������������������������������������������������������������������������������������

=e−2k(z2−z1)(1−σ32)

−σ21

∣∣∣∣1 σ32

1 −1

∣∣∣∣
������������������������

=−1−σ32

⎞
⎟⎟⎠
⎤
⎥⎥⎦ (A.51)

= I(k, σ1)e
−2k(z2+z1)

[[
e−2kz1 + 1

] (
e−2k(z2−z1) − σ32e

−2k(z2−z1) + 1 + σ32

)
+ σ21

[
e−2kz1 − 1

] (
e−2k(z2−z1) − σ32e

−2k(z2−z1) − 1− σ32

)]
(A.52)

= I(k, σ1)e
−2k(z2+z1)

[[
e−2kz1 + 1

] (
e−2k(z2−z1) + 1− σ32

[
e−2k(z2−z1) − 1

])
+ σ21

[
e−2kz1 − 1

] (
e−2k(z2−z1) − 1− σ32

[
e−2k(z2−z1) + 1

])]
(A.53)
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In the same way, the denominator of Eq. (A.44) can be calculated as

⇒ det(A) =

∣∣∣∣∣∣∣∣∣∣∣

⏐0+ ⏐0× e−2kz1 +

1 −1 0 0 0

1 −e−2kz1 −σ21 σ21e
−2kz1 0

1 e−2kz1 −1 −e−2kz1 0

0 0 1 −e−2kz2 σ32e
−2kz2

0 0 1 e−2kz2 −e−2kz2

∣∣∣∣∣∣∣∣∣∣∣
(A.54)

=

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0

1 1− e−2kz1 −σ21 0 0

1 1 + e−2kz1 −1 −2e−2kz1 0

0 0 1 −e−2kz2 + e−2kz1 σ32e
−2kz2

0 0 1 e−2kz2 + e−2kz1 −e−2kz2

∣∣∣∣∣∣∣∣∣∣∣

| LE

(A.55)

=

∣∣∣∣∣∣∣∣∣

× e2kz2

1− e−2kz1 −σ21 0 0

1 + e−2kz1 −1 −2e−2kz1 0

0 1 −e−2kz2 + e−2kz1 σ32e
−2kz2

0 1 e−2kz2 + e−2kz1 −e−2kz2

∣∣∣∣∣∣∣∣∣

| LE

(A.56)

= e−2kz2

⎡
⎢⎢⎣[1−e−2kz1

]
∣∣∣∣∣∣∣
−1 −2e−2kz1 0

1 −e−2kz2+e−2kz1 σ32

1 e−2kz2+e−2kz1 −1

∣∣∣∣∣∣∣
| LE

+σ21

∣∣∣∣∣∣∣

LE

1+e−2kz1 −2e−2kz1 0

0 −e−2kz2+e−2kz1 σ32

0 e−2kz2+e−2kz1 −1

∣∣∣∣∣∣∣

⎤
⎥⎥⎦

(A.57)

= e−2kz2

⎡
⎢⎢⎣[1− e−2kz1

]
⎛
⎜⎜⎝−

∣∣∣∣∣ −e−2kz2 + e−2kz1 σ32

e−2kz2 + e−2kz1 −1

∣∣∣∣∣
����������������������������������������������������������������������������������������������������������������������������������������������������������������

=e−2kz2−e−2kz1−σ32(e−2kz2+e−2kz1 )

+2e−2kz1

∣∣∣∣1 σ32

1 −1

∣∣∣∣
�������������������������

=−1−σ32

⎞
⎟⎟⎠

+ σ21

[
1 + e−2kz1

] ∣∣∣∣∣−e−2kz2 + e−2kz1 σ32

e−2kz2 + e−2kz1 −1

∣∣∣∣∣
�����������������������������������������������������������������������������������������������������������������������������������������������

=e−2kz2−e−2kz1−σ32(e−2kz2+e−2kz1 )

⎤
⎥⎥⎦ (A.58)

= e−2kz2
[[
1−e−2kz1

](−e−2kz2+e−2kz1+σ32e
−2kz2+σ32e

−2kz1−2e−2kz1−2σ32e
−2kz1

)
+ σ21

[
1 + e−2kz1

] (
e−2kz2 − e−2kz1 − σ32e

−2kz2 − σ32e
−2kz1

)]
(A.59)
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= e−2k(z2+z1)
[[
1− e−2kz1

](−e−2k(z2−z1) − 1 + σ32e
−2k(z2−z1) − σ32

)
+ σ21

[
1 + e−2kz1

] (
e−2k(z2−z1) − 1− σ32e

−2k(z2−z1) − σ32

)]
(A.60)

= e−2k(z2+z1)
[[
e−2kz1 − 1

](
e−2k(z2−z1) + 1− σ32

[
e−2k(z2−z1) − 1

])
+ σ21

[
e−2kz1 + 1

] (
e−2k(z2−z1) − 1− σ32

[
e−2k(z2−z1) + 1

])]
. (A.61)

The results from Eqs. (A.53) and (A.61) have to be inserted into Eq. (A.44). In order to

simplify the fraction, the exponential functions can be expressed in terms of hyperbolic

tangent which is defined as tanh(x) = ex−e−x

ex+e−x = e2x−1
e2x+1

. Thus, by factorisation of the terms

inside the square brackets it results that

a(k) + b(k) =
det(A0) + det(A1)

det(A)
(A.62)

(A.53)
(A.61)

= I(k, σ1)

(
e−2k(z2−z1) + 1− σ32

[
e−2k(z2−z1) − 1

])
+ σ21

e−2kz1−1
e−2kz1+1

(
e−2k(z2−z1) − 1− σ32

[
e−2k(z2−z1) + 1

])
e−2kz1−1
e−2kz1+1

(
e−2k(z2−z1) + 1− σ32

[
e−2k(z2−z1) − 1

])
+ σ21

(
e−2k(z2−z1) − 1− σ32

[
e−2k(z2−z1) + 1

]) (A.63)

= I(k, σ1)

(
1− σ32

e−2k(z2−z1)−1
e−2k(z2−z1)+1

)
+ σ21 tanh(−kz1)

(
e−2k(z2−z1)−1
e−2k(z2−z1)+1

− σ32

)
tanh(−kz1)

(
1− σ32

e−2k(z2−z1)−1
e−2k(z2−z1)+1

)
+ σ21

(
e−2k(z2−z1)−1
e−2k(z2−z1)+1

− σ32

) (A.64)

= I(k, σ1)

(
1− σ32 tanh(−k[z2 − z1])

)
+ σ21 tanh(−kz1)

(
tanh(−k[z2 − z1])− σ32

)
tanh(−kz1)

(
1− σ32 tanh(−k[z2 − z1])

)
+ σ21

(
tanh(−k[z2 − z1])− σ32

) (A.65)

tanh[x]=
− tanh[−x]

= I(k, σ1)

(
1 + σ32 tanh(k[z2 − z1])

)
+ σ21 tanh(kz1)

(
tanh(k[z2 − z1]) + σ32

)
− tanh(kz1)

(
1 + σ32 tanh(k[z2 − z1])

)
− σ21

(
tanh(k[z2 − z1]) + σ32

) (A.66)

= −I(k, σ1)

1 + σ32 tanh(k[z2 − z1])

tanh(k[z2 − z1]) + σ32

+ σ21 tanh(kz1)

tanh(kz1)
1 + σ32 tanh(k[z2 − z1])

tanh(k[z2 − z1]) + σ32

+ σ21

. (A.67)

With the expression for I(k, σ1) given in Eq. (4.9) and the definitions for σ21 and σ32 intro-

duced before, the result in Eq. (A.67) is equal to Eq. (4.11). In principle, the inverse of the

matrix in Eq. (A.43) can also be determined numerically in order to obtain the coefficients
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a(k)+b(k). However, with the analytical solution from Eq. (A.67) the computational costs

for calculating the Bessel integrals in Eq. (4.16) are much less, since the matrix inversion

has not to be performed for every single value of k. Specifically, this can be of advantage,

when the model is fitted to a large amount of measurement data.

A.2.3. Current density and total current

In general, the current density j inside a material is given by the conductivity σ and the

gradient of the potential Φ, i.e. j = −σ∇Φ. Thus, in the framework of the 3-layer model it

can be calculated by using the potential from Eq. (4.3) which reads in Cartesian coordinates

Φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ1(x, y, z) =

∫ ∞

0

dk
[
a(k)ekz+b(k)e−kz

]
�������������������������������������������������������������������������������������������������������������������

:=Φ1(k,z)

J0

(
k
√

x2 + y2
)

for 0 ≤ z ≤ z1

Φ2(x, y, z) =

∫ ∞

0

dk
[
c(k)ekz+d(k)e−kz

]
�������������������������������������������������������������������������������������������������������������������

:=Φ2(k,z)

J0

(
k
√
x2 + y2

)
for z1 ≤ z ≤ z2

Φ3(x, y, z) =

∫ ∞

0

dk f(k)e−kz

�������������������������������

:=Φ3(k,z)

J0

(
k
√
x2 + y2

)
for z2 ≤ z ≤ ∞,

(A.68)

and the layer-dependent conductivity

σ(z) =

⎧⎪⎨
⎪⎩
σ1 for 0 ≤ z ≤ z1

σ2 for z1 ≤ z ≤ z2

σ3 for z2 ≤ z ≤ ∞.

(A.69)

As a result, the current density vector j(x) is besides the position-dependence also de-

pendent on the parameters of the layers, i.e. σi and zi. In the following, only the in-line

component of the current density between two tips will be considered, since this com-

ponent is relevant for lateral current transport and, e.g. is sufficient for visualizing the

depth-dependence or calculating the total amount of current through one specific layer.

The in-line direction of the two tips is assumed to be aligned along the x-axis (without loss

of generality). If the variables inside the expression for the potential are separated for each

case by introducing

Φ(k, z) =

⎧⎪⎨
⎪⎩
Φ1(k, z) for 0 ≤ z ≤ z1

Φ2(k, z) for z1 ≤ z ≤ z2

Φ3(k, z) for z2 ≤ z ≤ ∞,

(A.70)

as indicated in Eq. (A.68), it follows for the current density component j̃x (at first arising

only from one source at the origin) that

j̃x(x, y, z) = −σ(z)∂xΦ(x, y, z) (A.71)
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= −σ(z)

∫ ∞

0

dkΦ(k, z) ∂xJ0

(
k
√

x2 + y2
)

(A.72)

For the derivative of Bessel functions it holds that d
dx
Jα(x) =

1
2
[Jα−1(x)− Jα+1(x)]. Fur-

thermore, it is J−α(x) = (−1)αJα(x) = Jα(−x), so that d
dx
J0(x) = −J1(x). Thus, it

follows that

j̃x(x, y, z) = σ(z)

∫ ∞

0

dkΦ(k, z)
kx√
x2 + y2

J1

(
k
√

x2 + y2
)
. (A.73)

The same holds for a current sink, except that the sign is inverted due to the negative

potential. If now two tips are considered which are positioned along the x-axis at xA

(source) and xB (sink), respectively, it immediately results for the total component jx by

superposition (in the same way as it holds for the superimposed potential in Eq. (4.13)) that

jx(x, y, z) = j̃x(x− xA, y, z)− j̃x(x− xB, y, z) (A.74)

= σ(z)

∫ ∞

0

dkΦ(k, z)

[
k(x− xA)√
(x− xA)2 + y2

J1

(
k
√
(x− xA)2 + y2

)

− k(x− xB)√
(x− xB)2 + y2

J1

(
k
√
(x− xB)2 + y2

)]
. (A.75)

For an appropriately chosen coordinate system with the origin exactly in the center between

the two tips which are assumed to be spaced by |xA − xB| = 3s,2 Eq. (A.75) changes to

jx(x, y, z) = σ(z)

∫ ∞

0

dkΦ(k, z)

⎡
⎣ k

(
x+ 3

2
s
)

√(
x+ 3

2
s
)2

+ y2
J1

⎛
⎝k

√(
x+

3

2
s

)2

+ y2

⎞
⎠

− k
(
x− 3

2
s
)

√(
x− 3

2
s
)2

+ y2
J1

⎛
⎝k

√(
x− 3

2
s

)2

+ y2

⎞
⎠
⎤
⎦. (A.76)

By integration over the yz-plane the total lateral current Ix(x) in x-direction can be ob-

tained. If the integration is performed only for one specific layer, i.e. in z-direction from

zi−1 to zi, then the total current I ix(x) inside the i-th layer can be calculated (with this

notation it is assumed that z0 = 0 and z3 → ∞). If one starts again with one tip first, it is

Ĩ ix(x) =

∫ zi

zi−1

dz

∫ ∞

−∞
dy j̃x(x, y, z) (A.77)

(A.73)

=

∫ ∞

0

dk

∫ zi

zi−1

dz σ(z)Φ(k, z)

������������������������������������������������������������������������������������������������������������������

:=Zi(k)

∫ ∞

−∞
dy

kx√
x2 + y2

J1

(
k
√

x2 + y2
)

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

:=Y (k,x)

(A.78)

2With such a distance, the result is comparable to an equidistant four-point probe setup with spacing s.
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While the integral Zi(k) is trivial, the integral Y (k, x) can be solved by means of variable

substitution with

a(y) =

√
x2 + y2

x

⇔ y = x
√
a2 − 1

and

da

dy
=

y

x
√

x2 + y2
=

√
a2 − 1

xa

⇔ dy =
xa√
a2 − 1

da

(A.79)

Thus, it follows that

Y (k, x) = 2

∫ ∞

0

dy
kx√
x2 + y2

J1

(
k
√
x2 + y2

)
(A.80)

= 2

∫ a(∞)

a(0)

da
xa√
a2 − 1

k

a
J1 (kxa) (A.81)

= 2kx

∫ ∞

1

da
J1 (kxa)√
a2 − 1

�����������������������������������������������������������������������������������������

[197]
= −π

2
J 1

2

(
1
2
kx
)

��������������������������������

[197]
=

√
4

πkx
sin

(
kx
2

)
N 1

2

(
1
2
kx
)

�����������������������������������

[197]
= −

√
4

πkx
cos

(
kx
2

)

(A.82)

= 4 sin

(
kx

2

)
cos

(
kx

2

)
��������������������������������������������������������������������������������������������������������������������������

= 1
2
sin(kx)

(A.83)

= 2 sin(kx). (A.84)

If both coefficients in Eq. (A.68) for each layer i are relabelled as ai(k) and bi(k) (with

a3 = 0), respectively, a general expression for the integral Zi(k) can be given as

Zi(k) = σi

∫ zi

zi−1

dz
[
ai(k)e

kz + bi(k)e
−kz

]
(A.85)

=
σi

k

[
ai(k)e

kz − bi(k)e
−ikz

]zi
zi−1

(A.86)

=
σi

k

[
ai(k)

(
ekzi − ekzi−1

)− bi(k)
(
e−kzi − e−kzi−1

)]
with i = 1, 2, 3. (A.87)

Hence, the total current arising from a source at xA and a sink at xB is given by a superpo-

sition as

I ix(x) = Ĩ ix(x−xA)− Ĩ ix(x−xB) = 2

∫ ∞

0

dk Zi(k)
[
sin(k[x−xA])− sin(k[(x−xB])

]
.

(A.88)

With a symmetric tip arrangement and a spacing |xA − xB| = 3s, it follows that

I ix(x) = 2

∫ ∞

0

dk Zi(k)

[
sin

(
k

[
x+

3

2
s

])
− sin

(
k

[
x− 3

2
s

])]
. (A.89)
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If the center plane between the two current tips is considered (at x = 0), it holds for the

current density due to symmetry that j(0, y, z) = jx(0, y, z)êx. Thus, the current in x-

direction calculated before corresponds to the total amount of current inside the sample.

Explicitly, it can be written for the total current I i in the i-th layer that

I i = I ix(0) = 2

∫ ∞

0

dk Zi(k)

[
sin

(
3

2
ks

)
− sin

(
−3

2
ks

)
�������������������������������������������������������������

=− sin( 3
2
ks)

]
(A.90)

= 4

∫ ∞

0

dk Zi(k) sin

(
3

2
ks

)
. (A.91)

Obviously, all currents I i through the individual layers should sum up to the injected cur-

rent I =
∑

i I
i.

A.3. Supplements for band bending calculations

In this appendix, more details about the steps for solving Poisson’s equation in general and

the subsequent determination of integration constants for different boundary conditions

which lead to the solutions presented in section 6.4, are listed.

A.3.1. General solution

In the following, it is shown more explicitly, how the Eqs. (6.6), (6.8) and (6.10) in sec-

tion 6.4.1.1 can be obtained from Poisson’s equation (6.5) [88, 144].

For the derivations, the expressions for the electron and hole charge charge carrier densities

specified before in Eqs. (6.43) and (6.45), and Eqs. (6.46) and (6.48) as

ne(z) = nie
u(z) = nbe

v(z) (A.92)

ph(z) = nie
−u(z) = pbe

−v(z), (A.93)

respectively, have to be used. By equating Eqs. (A.92) and (A.93) for ni, it results that

nbe
v(z)e−u(z) = pbe

−v(z)eu(z), (A.94)

and thus

pb = nbe
2v(z)e−2u(z) (A.95)

Starting now with the factorisation of Eq. (6.5) on the right side by nb + pb, it follows that

d2v(z)

dz2
= − q2(nb + pb)

ε0εrkBT
����������������������������������������������������

(6.7)
= 1

L2

nb − pb + pbe
−v(z) − nbe

v(z)

nb + pb
(A.96)
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(A.95)
= − 1

L2

1− e2v(z)e−2u(z) + ev(z)e−2u(z) − ev(z)

1 + e2v(z)e−2u(z)
(A.97)

= − 1

L2

ev(z)−u(z)
(
e−v(z)+u(z) − ev(z)−u(z) + e−u(z) − eu(z)

)
ev(z)−u(z) (e−v(z)+u(z) + ev(z)−u(z))

(A.98)

= − 1

L2

eu(z)−v(z) − e−(u(z)−v(z)) − (
eu(z) − e−u(z)

)
eu(z)−v(z) + e−(u(z)−v(z))

. (A.99)

With the definitions for the hyperbolic sine and cosine functions sinh(x) = ex−e−x

2
and

cosh(x) = ex+e−x

2
, respectively, it results that

d2v(z)

dz2
= − 1

L2

sinh[u(z)− v(z)]− sinh[u(z)]

cosh[u(z)− v(z)]
(A.100)

tanh(x)=
sinh(x)
cosh(x)

=
1

L2

(
sinh[u(z)]

cosh[u(z)− v(z)]
− tanh[u(z)− v(z)]

)
. (A.101)

From Eqs. (6.3) and (6.4) it is visible that u(z) = ub + v(z). Thus, Eq. (6.6) results.

For obtaining Eq. (6.8), an integration by means of separation of variables is performed.

By multiplying both sides of Eq. (6.6) with 2dv
dz

it can be written that

2
dv

dz

d2v

dz2
�������������������������

= d
dz [

dv
dz ]

2

=
2

L2

dv

dz

(
sinh[ub + v(z)]

cosh(ub)
− tanh(ub)

)
(A.102)

∫
dz

[
d

dz

(
dv

dz

)2
]
=

2

L2

∫
dv

(
sinh[ub + v(z)]

cosh(ub)
− tanh(ub)

)
(A.103)

(
dv

dz

)2

=
2

L2

(
cosh[ub + v(z)]

cosh(ub)
− v(z) tanh(ub) + c

)
(A.104)

dv

dz
= sgn[−v(z)]

√
2

L

√
cosh[ub + v(z)]

cosh(ub)
− v(z) tanh(ub) + c

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

=: D(v(z), c)

.(A.105)

The introduction of the sign function in Eq. (A.105) is owed to the definition of the band

bending given before in Eq. (6.3) which implies that v(z → ∞) = 0. Thus, it holds for

the derivative that dv
dz

< 0 for v(z) > 0 and dv
dz

> 0 for v(z) < 0. The integration constant

c has to be determined from boundary conditions. Another integration of Eq. (A.105) by

separation of variables yields

sgn[−v(z)]
L√
2

∫ v(z)

v(0)

dv′
1

D(v′(z), c)
=

∫ z

0

dz = z(v). (A.106)

The value for v(0) has to be determined from a second boundary condition. Eq. (A.106)

defines implicitly the band bending v(z).
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A.3.2. Infinite bulk material

The case of an infinite bulk material is considered by the boundary conditions given in

Eq. (6.9). Applied to Eq. (A.105), it immediately results for the constant c that

dv

dz

∣∣∣∣
z→∞

= 0
v(z→∞)=0

⇔ D(0, c) = 0 ⇔ 1 + c = 0 ⇔ c = −1 (A.107)

Thus, it follows that

D(v(z),−1) =

√
cosh[ub + v(z)]

cosh(ub)
− v(z) tanh(ub)− 1 (A.108)

=

√
cosh[ub + v(z)]− v(z) sinh(ub)− cosh(ub)

cosh(ub)
(A.109)

=

√
eub+v(z) + e−(ub+v(z)) − v(z)eub + v(z)e−ub − eub − e−ub

eub + e−ub
(A.110)

=

√
eub (ev(z) − v(z)− 1) + e−ub (e−v(z) + v(z)− 1)

eub + e−ub
. (A.111)

By inserting Eq. (A.111) into Eq. (A.106), the solution from Eq. (6.10) is obtained.

A.3.3. Thin film with symmetric approach

For a thin film within the symmetric approach, the boundary conditions are given by

Eq. (6.12). It follows for the constant csym that

dv

dz

∣∣∣∣
z= d

2

= 0 ⇔ D

(
v

(
d

2

)
, csym

)
= 0 (A.112)

⇔ csym = v

(
d

2

)
tanh(ub)−

cosh
[
ub + v

(
d
2

)]
cosh(ub)

(A.113)

Thus, it results that

D(v(z), csym) =

√
cosh[ub+v(z)]−cosh

[
ub+v

(
d
2

)]−[v(z)−v
(
d
2

)]
sinh(ub)

cosh(ub)
(A.114)

=

√
eub+v(z)+e−(ub+v(z))−eub+v( d

2)−e−(ub+v( d
2))−[v(z)−v

(
d
2

)]
(eub−e−ub)

eub+e−ub
(A.115)

=

√√√√eub

(
ev(z)−ev(

d
2)−v(z)+v

(
d
2

))
+e−ub

(
e−v(z)−e−v( d

2)+v(z)−v
(
d
2

))
eub+e−ub

. (A.116)

Inserting Eq. (A.116) into Eq. (A.106) leads to Eq. (6.13).
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A.3.4. Thin film with asymmetric approach

A.3.4.1. Case A

The boundary conditions for case A can be found in Eqs. (6.18) and (6.20). It is obvious

that the constant cAasym is equal for both branches, since

dv1
dz1

∣∣∣∣
z=z0

= −dv2
dz2

∣∣∣∣
z2=d−z0

= 0
v1(z0)=v2(d−z0)=v0⇔ D

(
v0, c

A
asym

)
= 0. (A.117)

From a comparison with Eq. (A.112), it is immediately visible that

cAasym = v0 tanh(ub)− cosh[ub + v0]

cosh(ub)
(A.118)

Thus, it is

D
(
v(z), cAasym

)
=

√
eub(ev(z)−ev0−v(z)+v0)+e−ub(e−v(z)−e−v0+v(z)−v0)

eub+e−ub
. (A.119)

With the arguments for the two branches discussed in section 6.4.3.1, Eq. (A.119) can be

inserted into Eq. (A.106), thus resulting in Eq. (6.22) for vi(zi). The auxiliary condition

for v0 specified in Eq. (6.23) can be obtained from Eq. (A.106) as

v1(z0) = v0 ⇔ z0 = sgn[−v1(z1)]
�����������������������������������������������������������

=sgn(−vtop)

L√
2

∫ v0

vtop

dv′
1

D(v′(z), cAasym)
(A.120)

v2(d− z0) = v0 ⇔ d− z0 = sgn[−v2(z2)]
�����������������������������������������������������������

=sgn[−v1(z1)]

L√
2

∫ v0

vbottom

dv′
1

D(v′(z), cAasym)
. (A.121)

Thus, by inserting Eq. (A.120) into Eq. (A.121), it directly follows Eq. (6.23).

A.3.4.2. Case B

For case B the boundary conditions are given by Eq. (6.21). As no specific condition for
dv
dz

exists, the integration constant cBasym cannot be expressed explicitly. Thus, it follows

directly from Eq. (A.105) that

D
(
v(z), cBasym

)
=

√
eub

(
ev(z) − v(z) + cBasym

)
+ e−ub

(
e−v(z) + v(z) + cBasym

)
eub + e−ub

. (A.122)

The constant cBasym is implicitly defined for each branch by the conditions

v1(d) = vbottom ⇔ d = sgn[−v1(z1)]
�����������������������������������������������������������

=sgn[−vtop]

L√
2

∫ vbottom

vtop

dv′
1

D(v′(z), cBasym)
(A.123)



210 Appendix A. Mathematical derivations

v2(d) = vtop ⇔ d = sgn[−v2(z2)]
�����������������������������������������������������������

=sgn[−vtop]

L√
2

∫ vtop

vbottom

dv′
1

D(v′(z), cBasym)
���������������������������������������������������������������������������������������������������������������������������������������������������������������

= − ∫ vbottom
vtop

dv′ 1
D(v′(z),cB

asym)

. (A.124)

It is visible that Eqs. (A.123) and (A.124) differ only in the sign which can be expressed

by sgn(|vtop|−|vbottom|). Thus, both conditions can be condensed to the expression given

by Eq. (6.26).

A.3.4.3. Case C

The boundary conditions for case C are given by the Eqs. (6.19) and (6.20). Again, no

explicit condition for dv
dz

exists, however, it can be concluded from Eq. (A.105) that the

integration constant cCasym is equal for both branches, since

dv1
dz1

∣∣∣∣
z0

= −dv2
dz2

∣∣∣∣
d−z0

v1(z0)=0
=v2(d−z0)

⇔ sgn[−v1(z1)]D
(
0, cC1

asym

)
= −sgn[−v2(z2)]
�����������������������������������������������������������

=− sgn[−v1(z1)]

D
(
0, cC2

asym

)
(A.125)

⇔ cC1
asym = cC2

asym =: cCasym. (A.126)

Thus, D
(
v(z), cCasym

)
is given in analogy to Eq. (A.122). The constant cCasym can be ob-

tained from the two conditions

v1(z0) = 0 ⇔ z0 = sgn[−v1(z1)]
�����������������������������������������������������������

=sgn(−vtop)

L√
2

∫ 0

vtop

dv′
1

D(v′(z), cCasym)
(A.127)

v2(d− z0) = 0 ⇔ d− z0 = sgn[−v2(z2)]
�����������������������������������������������������������

=− sgn[−v1(z1)]

L√
2

∫ 0

vbottom

dv′
1

D(v′(z), cCasym)
���������������������������������������������������������������������������������������������������������������������������������������������������������������

= − ∫ vbottom
0

dv′ 1
D(v′(z),cC

asym)

. (A.128)

Eq. (A.127) has to be inserted into Eq. (A.128). Since it holds for case C by construction

that sgn(vtop) = − sgn(vbottom), both integrals can be combined, resulting in the condition

given by Eq. (6.27).



Appendix B. Measurement data

In this second part of the appendix, supplementary measurement data can be found.

• Composed large-size STM image showing all of the step edges below the Si(111)-

(7×7) surface reconstruction in the sample region used for the angle-dependent four-

point measurement from Fig. 4.13 in section 4.4.2 [Fig. B.1].

• dI/dV measurement of a double-layered step edge on the Bi14Rh3I9 surface.

[Fig. B.2].

• Enlarged dI/dV measurement of the same step edges on the Bi14Rh3I9 surface as

depicted in Fig. 7.7 in section 7.3.2 [Fig. B.3].

• dI/dV measurement of a scratch on the Bi14Rh3I9 surface [Fig. B.4].
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Figure B.1.: Composed large-size STM scan depicting a part of the substrate region, on which

the angle-dependent four-point measurement in Fig. 4.13 (section 4.4.2) has been performed. The

complete (7×7) surface in between the tips (distance of 50μm along the blue line) is imaged, which

enables to count all of the involved step edges. The individual STM images are aligned according

to the shape of the step edges. The green circle indicates the envelope formed by the differently

orientated squares of each angle-dependent measurement. Along the circle the distinct tip positions,

i.e. the tip indentations, are partially visible. During acquisition of the individual STM images the

tip has been changed, as indicated.
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Figure B.2.: Spectroscopic dI/dV measurement of a double-layered step edge on the Bi14Rh3I9
surface, as discussed for similar data in section 7.3.2. Measurement parameters are: U =
500mV (a), Istab = 86pA, Vmod,RMS = 9mV, fmod = 980Hz.
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Figure B.3.: Enlarged spectroscopic dI/dV measurement of the same step edges on the Bi14Rh3I9
surface as depicted in Fig. 7.7 in section 7.3.2. Measurement parameters are: U = 100mV (a),

Istab = 350 pA, Vmod,RMS = 9mV, fmod = 980Hz.



215

Figure B.4.: Spectroscopic dI/dV measurement of a scratch on the Bi14Rh3I9 surface, as dis-

cussed for similar data in section 7.3.3. Measurement parameters are: U = 50mV (a), Istab =
300 pA, Vmod,RMS = 7mV, fmod = 980Hz.





Appendix C. Technical information

In this third part of the appendix, further technical information about the experimental

setup are provided.

C.1. Technical documents

In the following, several technical documents are listed:

• Drawing of the annealing station used for cleaning silicon substrates by direct current

heating [Fig. C.1].

• Screenshot of the Createc software used for operating the multi-tip STM [Fig. C.2].
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Figure C.1.: Drawing of the direct current annealing station for silicon samples mounted on a

standard Omicron sample holder. The annealing station is attached to a transfer rod inside the UHV

chamber. All dimensions in mm.
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Figure C.2.: Screenshot of the Createc software used for operating the multi-tip STM.
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C.2. Coordinate systems for tip positioning

For movement of the four tips in the plane of the sample surface, basically two different

types of coordinate systems have to be distinguished, i.e. the (four) tip coordinate systems

and the scan coordinate system, as it is depicted in Fig. C.3.

Each of the four tips has its own individual tip coordinate system, whose y-axis is basically

aligned always along the projection of the tip axis onto the sample surface. More general,

it is pointing along the radial direction from the corresponding slider of the tip to the center

of the STM, but in practice this typically coincides with the orientation of the tips. The

origin of each tip coordinate system is located at the idle position of the corresponding

tip. Thus, in total four tip coordinate systems exist, each of them rotated by an angle of

90°. All (manual) coarse movements of a tip are based on its tip coordinate system. The

control buttons inside the STM software for slip-stick movement (Ramp controller) and

piezo offset (Pan view) are controlling the x- and y- direction within the coordinate system

of the currently selected tip.

Furthermore, for scanning a global scan coordinate system exists which applies to all four

tips. The alignment of this scan coordinate system corresponds to the orientation of the

tip coordinate system of tip 1, as visualized in Fig. C.3. All tips are scanning within

this global coordinate system, whereby the x-direction always points along the fast scan

direction. This fact is particularly important, when scanning with all four tips at the same

time. Within the scan coordinate system, the idle positions of each of the four tips are

distinguished, as this allows for a control of the scanned area for each tip with respect to

its idle position. In a more strict sense, even four different scan coordinate systems exist,

but which differ solely by a translation of their respective origins to the corresponding tip

idle positions.

The control of the scanned area for a specific tip inside the software during data acquisi-

Figure C.3.: Arrangement of the individual coordinate systems of the four tips (blue) which are

used for positioning, and the commonly used scan coordinate system (black). In the center, an

optical microscope image is depicted showing the four tips in front of the sample surface.
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(a) (b)

Figure C.4.: (a) Scan areas (colored) of the four tips on the sample surface. The individual tip

coordinate systems are indicated by color next to the tips, as well as the common scan coordinate

system (black). The yellow lines mark the scan directions (line-by-line) of the individual tips, when

scanning over the surface. If the four tips are initially placed at the colored points, as indicated,

then their relative positions do not change during collective scanning. Thus, after the scans, they

end up at the correspondingly colored points at the bottom. The overlap of the commonly scanned

area of the surface is indicated by the surrounding dotted black line. (b) View of the scanned image

as it appears in the STM software during data acquisition. The scanning direction of the tip (line-

by-line) is marked by the yellow line. The scan coordinate system (black), and thus the image is

mirrored at the x-axis with respect to the sample surface as it appears in the optical microscope.

tion (functions SetXYOffset-Top, SetXYOffset-Center, SetXYOffset-Zoom) takes place with

respect to the scan coordinate system. Also, the values for the x- and y-offset of the piezos

which are controllable by the two boxes in the Parameter/Scan-window in the software,

refer to the scan coordinate system, and thus control immediately the position of the cor-

responding tip in the scanned image. A conversion of the entered offset-values to the tip

coordinate system of the currently active tip in order to actuate the proper piezocontacts

occurs internally by the software.

A rotation of the scan coordinate system is adjustable by the box Rotation within the Pa-

rameter/Scan-window. A positive value causes a clockwise rotation of the scan coordinate

system around the idle position of the active tip (origin). Within the rotated state, the

x-direction is still pointing along the fast scanning direction. Only if the control button

RotCenter is active, the rotation occurs around the center of the currently chosen scan area.

While doing so, the idle position of the tip is changed automatically by selecting proper

values for the piezo offsets. However, an important point is that the numbers for x- and

y-offset within the Parameter/Scan-window still refer to the not rotated scan coordinate

system, i.e. Rotation-value set to zero. Thus, these values do not correspond to the direc-

tions of the rotated scan coordinate system and particularly, not to the orientation of the

acquired scan image.

A collective scanning of all four tips at the same time is possible, since the tips are moving
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within the common scan coordinate system. Thus, the relative position between the four

tips stays the same during scanning, as it is visualized in Fig. C.4(a) by the correspondingly

colored points at the indicated tip positions and at the expected end position of the scans.

Each tip scans its individually selected area (colored) line-by-line (yellow arrows), but

cannot collide with another tip, as no crossing of the tip movements occurs. Hence, this

allows to image an specific area of the sample with four tips at the same time, as indicated

in Fig. C.4(a) by the colored segment surrounded by the dotted black line. For example,

this can be very useful, when it is desired to contact specific small features on the sample

surface by multiple tips, or when the distances between the tips should be determined based

on the shift of the individual scan images with respect to each other. Nevertheless, from

the point of view of one specific tip, the scan orientation appears to be rotated for each tip.

This has to be taken into account, when looking at the visualization of the tip positions

inside the software (PanView). Here, the scan area seems to be rotated for each tip, as it is

depicted within the tip coordinate system for each tip individually.

Within the acquired scan image, the scan coordinate system is mirrored along the x-axis.

Thus, the y-axis is always pointing downwards, as shown in Fig. C.4(b). This implies that

also the image of the sample surface is mirrored when appearing on the screen. If the piezo-

offset of a tip is disregarded for a moment, the tip idle position before a scan is located at

(0, 0) [Fig. C.4(b)]. When starting the measurements, the tip moves initially to (−x0, 0)
and then starts scanning in x-direction line-by-line over the surface. The final position of

the tip after the scan is at (x0, y0). Afterwards, the tip returns to the initial position.

C.3. Setup of an in situ electromagnet for switching the

tip spin polarisation

In order to prepare for spin-polarized transport measurements with the four-tip STM, a

small electromagnet was developed with the aim to enable an in situ switching of the spin-

polarization of one ferromagnetic nickel tip in the four tip setup by a strong short-time

pulse of magnetic field. Such a method is favourable, since in this case the tip has not to

be unmounted in order to change polarisation outside the UHV environment, and thus the

currently chosen measurement region on the sample surface will not be lost. Hence, this

enables to measure subsequently with different spin-polarisation at the same position and

therefore allows for exclusion of any influence of position-dependent sample properties

when comparing the results. For this purpose, an electromagnetic coil with a ferrite core

has been constructed which is attached to a standard sample holder, as it is depicted in

Fig. C.5. In this way, the coil can be handled similar to a standard sample, as shown in

Fig. C.5(a), so that no modifications of the UHV chamber are necessary. Moreover, the

coil can be positioned on top of the multi-tip STM by usage of the adjustable heating stage

which at the same time provides the electrical contacts [Fig. C.5(b)].

A cross-sectional view of the coil setup with dimensions is depicted in Fig. C.5(c). The

ferrite core at the lower end is made out of Armco iron which has a high degree of purity
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(a) (b)

(d) (e)

(c)

Figure C.5.: (a),(b) View of the electromagnetic coil inside the UHV environment. The handling

is similar to a standard sample (a) and for operation the heating stage is used in order to enable

contacting and positioning above the multi-tip STM (b). (c) Cross-sectional view of the setup with

dimensions. The ferromagnetic core coil (core in grey, copper wire in brown) is attached to a

standard sample holder (at top) with electrical contacts (cyan). (d) Front view of the coil positioned

above the multi-tip STM. The lower end of the ferrite core has a distance of ∼1mm from the STM

tips with the sample in between (not drawn). (e) Simulation of the magnetic field strength inside

the ferrite core (colored area) for a current density of 22A/mm2, a wire diameter of 0.5mm and

500 turns. The cross section of the coil (wire) is indicated by the rectangles. The simulation has

been performed by Dr. Helmut Soltner (ZEA-1, Research Center Jülich).

and, thus, a high permeability. The core is attached to the sample holder at the top by a

threaded rod made out of stainless steel. Moreover, the sample holder provides two isolated

electrical contacts (depicted in cyan color), in the same way as used for the direct current

annealing of silicon samples, which are connected to the ends of the wire of the coil in the

present setup. The coil itself (depicted in brown color) consists out of 480 turns of a Kapton

coated copper wire with outer diameter of 0.47mm (copper diameter 0.4mm) with a total

length of about 20m. During fabrication a UHV compatible glue was used in order to fix

the wire. Due to the limited space in the direct vicinity of the STM, the wire is coiled with a

step at the lower end which allows to approach the ferrite core as close as possible towards

the STM tips. This is necessary for achieving a sufficient high magnetic field at the position

of the STM tips in order to switch the spin polarization. When approached, the apex of the

core (diameter 3mm) is spaced by about 1mm from the end of the tips, as it is visualized

in Fig. C.5(d). This minimal distance is necessary, since during STM measurements the

sample is placed in between tips and ferrite core, whereby the sample surface is pointing

downwards towards the tips and the ferrite core is positioned very closely (∼100μm) above

the backside of the sample. Here, a direct touch of core and sample should be avoided in
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Figure C.6.: Measurements of the magnetic field strength of the coil with a Hall sensor under

ambient conditions. (a) Magnetic field as function of the current inside the coil measured at a

distance of Δx = 1mm apart from the core apex. (b) Magnetic field as function of the distance

Δx from the core apex along the symmetry axis of the coil (current 5.4A). (c) Magnetic field as

function of lateral displacement Δy perpendicular to the symmetry axis of the coil (at a distance

Δx = 1mm, current 5.4A). The measurements have been performed by Arthur Leis.

order to prevent an enhanced disturbance of the STM measurements by vibrations.

The shape of the ferrite core is on the one hand chosen in such a way that for a close

distance to the core, where the tip position is expected, the strength of the magnetic field

is as high as possible, but on the other hand a fast decrease is achieved for larger distances

in order to prevent undesired stray fields and a coupling to the magnets of the tip holders.

Particularly, the latter point is important, since such a magnetic coupling could induce a

movement of the tips which has to be absolutely avoided. For this reason, the ferrite core

has a large lateral extend on the upper end of the coil and additionally covers also partly

the outside of the coil. Furthermore, a 1mm thin iron plate is spot-welded to the inner pin

of the core at the lower side, thus covering the open bottom side of the coil (not visible

in Fig. C.5). With such a shape the magnetic field lines are guided in lateral direction and

thus, do not have such a large extent in z-direction. A simulation of the magnetic field

strength inside the core, as depicted in Fig. C.5(e), shows that besides a very dense field

directly in the center, the field at the core apex (here at the top side) is about 400mT, while

on the outer side of the core a substantial decrease of the field occurs. Another fact, which

is advantageous at multi-tip STMs is that the tips are usually longer than in standard STM

due to the fact that they are arranged under an angle towards the surface. Thus, longer tips

can be utilized in order to increase the distance between the ferrite core and the tip holders

even more.

In order to characterize the electromagnet, the magnetic field distribution in z- and lateral

direction as function of current has been measured under ambient conditions by a Hall

sensor. The results are shown in Fig. C.6. For a distance of 1mm below the apex of

the core (on the symmetry axis of the coil), a magnetic field of about 310mT can be

achieved by using a current of 5.4A [Fig. C.6(a)]. Such a current strength corresponds

to a current density of 45A/mm2 inside the copper wire, and thus is way too high for

a stable continuous operation of the coil, since the thermal heating would damage the
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wire. However, for a pulsed operation for pulses below 10 s with a sufficient large time in

between for cooling down, this high current density is tolerated by the coil. Inside an UHV

environment, the pulse duration has to be reduced a bit more, since otherwise the thermal

heating leads to a substantial increase in pressure. For a current of 5.4A, the magnetic

field as function of distance in z-direction is depicted in Fig. C.6(b) showing a quite fast

decrease in field strength. The lateral distribution for a displacement Δy perpendicular

to the symmetry axis (at a distance of 1mm in z-direction) is depicted in Fig. C.6(c),

exhibiting a slightly reduced decrease compared to the z-direction.
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