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Abstract

In this thesis a general framework for calculations of the two-fermion interaction based on the

Functional Renormalisation Group (FRG) approach is developed. It comprises an implementation of

the corresponding flow equations in the spinful and in an SU(2)-symmetric version and for each of

them both, a pure momentum space parametrisation and a form-factor based parametrisation of the

two-fermion interaction are implemented. The form-factor based approach is in terms of the recently

developed Truncated Unity Functional Renormalisation Group (TUFRG) [2], for which this thesis

provides a generalisation to spinful systems. In addition, I show that the resulting implementation is

properly scaling in terms of parallelisation for a large number of multi-core CPUs and with the system

size according to the theoretical limitations. As the exploitation of symmetries of the two-fermion

interactions facilitates the treatment of larger system sizes due to the focus on independent elements,

these symmetries are discussed to some extent within this thesis.

The resulting code is first tested against well-established results for the t− t′ Hubbard model on a

square lattice, for which also the convergence of the TUFRG approach with an increasing length of

form-factors to the results of the full momentum parametrisation is shown. Based on these successful

tests the code is used to investigate two different three-dimensional systems by an application of the

TUFRG approach:

First, the simple cubic, isotropic Hubbard model is investigated where a transition to an antiferromag-

netic ground state is observed at half filling. The critical scale indicating this transition behaves similar

to the corresponding Néel temperature obtained by other approaches in dependence of the Hubbard-U

parameter in the weak coupling region. When this Hubbard model is successively hole-doped away

from half filling within this weak coupling region, the antiferromagnetic ordering first becomes in-

commensurate before a d-wave superconducting phase emerges. In the case of an even stronger hole

doping a dominant antiferromagnetic phase is observed again, which now features planar ordering

vectors (i.e. (π, π, 0)) instead of cube diagonal ones (i.e. (π, π, π)).

As a second application, the anisotropic Hubbard model with isotropic hoppings to first and to

second nearest neighbours within the xy-plane and with a weak hopping in the z-direction was con-

sidered, which was chosen to resemble the planar structure of cuprate or nickelate superconductors.

To investigate the influence of the additional hopping on the t − t′-diagram known from the two-

dimensional case, I focused on systems in which the chemical potential is chosen to fulfil the van-Hove

condition of the xy-plane. In this setting an increasing hopping in the z-direction leads to a decrease

of the critical scale for the antiferromagnetic and for the d-wave superconducting phase, while the

phase boundary between them only changes on a small level with respect to t′. The most striking

difference is the appearance of a p-wave superconducting phase and corresponding strong fluctuations

at large −t′ values in the ferromagnetic phase.
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Zusammenfassung

Im Rahmen dieser Dissertation wird ein allgemeines Framework für die Berechnung der effektiven

Wechselwirkung zwischen zwei Fermionen auf Basis der Funktionellen Renormierungsgruppe (FRG)

entwickelt. Dieses enthält eine Implementierung der entsprechenden Flussgleichungen für den Fall

vollständiger Spinabhängigkeit und für den SU(2)-symmetrischen Fall. Für beide Varianten existiert

sowohl eine Version, in der die vollständige Impulsabhängigkeit der Wechselwirkung erhalten ist,

sowie eine, in der die Wechselwirkung durch Formfaktoren parametrisiert wird. Die auf Formfak-

toren basierende Variante entspricht der vor kurzer Zeit vorgestellten Truncated Unity Functional

Renormalisation Group (TUFRG) [2], für die in dieser Dissertation eine Verallgemeinerung zu spin-

abhängigen Systemen entwickelt wurde. Darüberhinaus wird eine gute Skalierung der Implemen-

tierung der Flussgleichungen erreicht sowohl in Hinblick auf eine Parallelisierung mit einer hohen

Anzahl von multi-Kern CPUs, als auch in Hinblick auf die Systemgröße entsprechend der theoretis-

chen Limitierung. Die Ausnutzung von Symmetrien der Wechselwirkung zwischen zwei Elektronen

bewirkt, dass nur die voneinander unabhängigen Elemente dieser Wechselwirkung berechnet werden

müssen, wodurch größere Systeme numerisch behandelt werden können. Dementsprechend werden

diese Symmetrien ausführlich in dieser Dissertationsschrift behandelt.

Der resultierende Simulationscode wird zunächst gegen die bekannten Ergebnisse des t−t′ Hubbard

Models auf einem Quadratgitter getestet. Für diesen Fall wird auch gezeigt, dass die TUFRG mit

zunehmender Reichweite der Formfaktoren zu dem Ergebnis konvergiert, das aus der Parametrisierung

der Wechselwirkung im Impulsraum resultiert. Auf Basis dieser erfolgreichen Tests wird die vor-

liegende Implementierung genutzt, um zwei verschiedene dreidimensionale Systeme mithilfe der TUFRG

zu untersuchen:

Zunächst wird das kubische, isotrope Hubbard Model untersucht, das einen Phasenübergang zu einem

antiferromagnetischen Grundzustand bei halber Füllung zeigt. Es wird dabei festgestellt, dass die

kritische Skala, die in unserer TUFRG Implementierung diesen Übergang anzeigt, und die Néel Tem-

peratur, die aus anderen numerischen Herangehensweisen resultiert, in gleicher Weise vom Hubbard-U

Parameter im Bereich schwacher Wechselwirkung abhängen. Wird das halb gefüllte Hubbard Model

in diesem Bereich mit Löchern dotiert, so wird die antiferromagnetische Ordnung zunächst inkommen-

surat, bevor eine supraleitende Phase mit d-Wellen Ordnung auftritt. Wird das System darüberhin-

aus mit Löchern dotiert, so tritt wieder eine antiferromagnetische Phase auf, die jetzt planare Ord-

nungsvektoren (d.h. (π, π, 0)) an Stelle von Würfeldiagonalen (d.h. (π, π, π)) besitzt.

Als zweite Anwendung wird das anisotrope dreidimensionale Hubbard Model mit einem isotropen

Hüpfterm zu den nächsten zwei Nachbarn innerhalb der xy-Ebene und einem schwachen Hüpfterm in

der z-Richtung betrachtet, um die planare Struktur von Kupfer- oder Nickel-basierten Supraleitern

zu reproduzieren. Um den Einfluss des zusätzlichen Hüpfterms auf das t − t′ Phasendiagramm des

zweidimensionalen Falls zu untersuchen, wurde das chemische Potential so gewählt, dass die van-Hove

Bedingung in der xy-Ebene erhalten wird. In dieser Situation führt ein zunehmender Hüpfparameter

in z-Richtung zu einer Abnahme der kritischen Skala für die antiferromagnetische und für die d-Wellen

supraleitende Phase, während sich die Phasengrenze zwischen beiden in Bezug auf t′ kaum verändert

wird. Im Weiteren ist der auffälligste Unterschied das Auftreten starker supraleitender Fluktuationen

mit p-Wellen Symmetrie in der ferromagnetischen Phase bei großen −t′ Werten.
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1. Introduction

T he discovery of superconductivity in mercury in 1911 [3] raised the vision of physicists to achieve

this state of matter at room temperature. A material with this property would revolutionise the

energy system by a reduction of energy losses, lead to smaller generators, transformators and engines,

and allow for superconducting electronics which enables a significant increase in computation speed

[4]. However, in the succeeding research superconductivity in several other materials was observed,

which led to an increase in the critical temperature from ≈ 4K in mercury, to a maximum of ≈
30K in niobium compounds. The microscopic mechanism of these conventional superconductors was

theoretically well explained by the Bardeen-Cooper-Schrieffer (BCS) theory [5], according to which a

phonon induces an attractive interaction between electrons close to the Fermi-surface. This results

in the formation of so called “Cooper” pairs of two electrons which behave roughly as bosons, which

condensate into a macroscopic quantum state and which, thus, becomes energetically favourable below

a critical temperature.

However, heavy fermion superconductors [6] and organic superconductors [7], which were discovered

in 1979 and in 1980, could not be described by this theory which led to the name “unconventional

superconductors”. This group was enlarged when the first copper-oxide superconductor (LaSrCuO)

was discovered in 1986 [8], which boosted research, resulting in alloys with critical temperatures above

100K. As this is well above the boiling point of liquid nitrogen (77K), the naming “high-temperature

superconductor” (HTS) was established. In 2006 the first iron-pnictide superconductor was discovered

[9] (LaFePO). The experimental optimisation and a variation of the accompanying elements led to

both, the discovery of iron-chalcogenide superconductors and an increase of the critical temperature

to ≈ 100K (for a monolayer of the iron-chalcogenide FeSe on a SrTiO3 substrate [10, 11]) such that the

iron-based superconductors also belong to the group of HTS. Very recently superconductivity was also

observed in nickelates [12], for which one can expect a forthcoming increase in critical temperatures,

such that they may also belong to the group of HTS. Finally, superconductivity was found in hydrides

[13] for temperatures of ≈ 200K with a very high pressure of ≈ 100GPa, which is, therefore, far away

from realistic applications, so that we focus on the copper-, on the nickel- and on the iron-based

superconductors.

A feature which appears in the structure of all these HTS is a layer, which consists of the transition

metal ion (Cu/Ni/Fe) arranged on a square lattice and which are connected to each other via oxygen

atoms in the case of cuprates and nickelates or which are connected by tetrahedrically arranged P-,

As-, Se- or Ti-atoms above or below the plane in the case of iron-based superconductors. In both cases,

the ions forming the quadratic lattice are providing the superconducting mechanism. In cuprates, a

few of these planes can be stacked together by Ca-atoms to form an active block, which alternates with

charge reservoir blocks made of alkaline earth oxides. In the iron based case different atoms acting as

charge reservoirs can be placed in the hollow left by the tetrahedra. These properties provide a lot of

possibilities in terms of material combinations, dopants, number of layers, etc. to improve the critical

temperature.

As the critical temperatures of these HTS are still well below room temperature, the understanding

of the mechanisms that drive superconductivity is important, as these can point out modifications

by which the critical temperatures can be increased. While the BCS theory succeeded in this way

for the conventional superconductors, it fails in explaining the superconductivity for HTS due to a
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1. Introduction

shallow reservoir of charge carriers introduced by doping, which, in addition, feature strong Coulomb

correlations. As these connect the internal charge and spin degrees of freedom of the charge carriers a

description in terms of Landau’s quasiparticle picture is insufficient to describe all possible electronic

states [14, 15, 16, 17]. These correlation effects lead to a plethora of different many-particle states like

spin-density waves (SDW) and their peculiar forms of para-magnetism (PM), anti-ferro-magnetism

(AFM) and ferro-magnetism (FM), as well as charge-density waves (CDW) and also superconductivity

with all possible different kinds of ordering vectors and spatial behaviour [18, 19]. As charge, spin or

pairing fluctuations of the different possible orderings influence each other a variation of the parameters

of the system, like, for example, by doping or by an application of pressure, leads to a rich phase

diagram in which some phases coexist. In the case of a hole doping of cuprates, for example, an

antiferromagnetic phase is next to the superconducting phase which coexists with an incommensurate

spin-density wave and a charge-density wave for some parameter region and compete with each other

[20, 17]. Similarly, a coexistence of a spin-density wave regime with superconductivity was found for

FeSe [21, 22] as well as in the iron-pnictides 122 FeAs [23] in contradiction to the Meissner effect.

A lot of effort has, therefore, been taken by theoretical physicists to understand the correlated

electron system and to find out the mechanism of high temperature superconductivity within the last

35 years. As the material-specific properties calculated ab initio by the density functional theory

(DFT) do not include correlation effects because of the mean-field character of DFT [24, 25], by

the GW -approximation include only one of the three pairing channels [26, 27, 28] and are restricted

to weak interactions, or by higher level schemes like T -matrix approaches [29] or Parquet equations

[30, 31] are limited due to their numerical difficulty, the investigation of HTS is mainly based on

models which reduce the full complex system to the physically relevant part. Due to the large amount

of thermally reachable free states, the electrons close to the Fermi-surface are those from which

the correlation effects originate, so that a model, which is based on these states, is sufficient. The

simplest model is the Hubbard model [32, 33, 34], whose two-dimensional version was related to the

unconventional superconductivity in La2CuO4 by Anderson in 1987 [35, 36]. Since then, especially

the two-dimensional Hubbard model has been studied intensively by various methods with the aim

to understand the unconventional superconductivity, suggesting that superconductivity is driven by

antiferromagnetic correlations. However, as the active layers of the HTS are still embedded in a three-

dimensional structure, I will, in this thesis, investigate the influence of this third dimension on the

superconducting order observed in the two-dimensional model.

For the solution of models of interacting electrons suitable methods have to be used. While the

Quantum Monte Carlo method provides most accurate results, it can not be applied to all systems and

to all parameter ranges because of the so-called “sign-problem” [37, 38]. On the one hand, starting from

strong interactions the dynamical mean field theory maps the complex lattice problem to an impurity

model and asserts a local self-energy, by which it can only resolve local effects [39, 40]. On the other

hand perturbative methods start from weak interactions. However, the most commonly used ones are

based on the random phase approximation (RPA) [41, 42, 28] and on the Bethe-Salpeter Equation

(BSE) [43, 28] and treat only one kind of pairing interactions at a time, so that the full competition

between different phases can not be resolved. The corresponding next step in order to combine the

calculations of these different interactions is currently under development in terms of the parquet

approach [44, 45] and the so called T -matrix approach [29, 46]. Besides of these, different methods

have been developed within the last years to efficiently calculate the many-particle interactions, like

the dynamical vertex approximation [47], the dual fermion approach [48], TRILEX [49], QUADRILEX

[50], a dual parquet scheme [51] and others. However, the Functional Renormalisation Group (FRG),
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which is a formally exact theory, provides a natural combination of the different possible many-particle

interactions.

Renormalisation Group (RG) methods directly connect the microscopic description of the electron

system with an effective macroscopic one by successively including contributions from the interactions

between the electrons. Therefore, a scale parameter is introduced, which separates the electronic

modes into those, which are already included in an effective interaction, and those, which are not yet

included and whose interaction will be described by it. A successive lowering of the scale parameter

then leads to a full effective description of the system [52, 53]. The FRG approaches take over the RG

idea to generating functionals of many-particle Green’s functions or those of vertex functions which

become dependent on the scale. An expansion of the generating functionals in terms of the external

source fields leads to a hierarchy of coupled differential equations for many-particle Green’s functions

or interactions. Polchinski [54] therefore provided an expansion in terms of the bare interaction

initially for a φ4 theory, which was also adapted for the calculation of fermionic systems [55, 56, 57].

However, a formulation in terms of one-particle irreducible vertex functions, which was first derived

for bosonic systems [58], provided a computationally advantageous form, so that it was transferred to

fermionic systems by three different groups (Kopietz [59], Salmhofer and Honerkamp [60], and Halboth

and Metzner [61]) at the same time. While the provided system of differential equations is formally

exact, it consists of an infinite number of equations so that it has to be truncated. It has been shown

that a truncation at the two-particle interaction level provides good results, when the Fermi-surface

is sufficiently smooth and the interactions are sufficiently small.

As the FRG includes all two-particle channels in an unbiased way, it is suitable for the interaction of

correlation effects. Since its development and its first application the FRG has been further improved

in accuracy, as a small modification of the propagator can already include effects beyond the two-

particle truncation [62, 63]. Furthermore, an extension motivated by the Parquet-equation led to the

so-called multi-loop FRG, which aims at improving the FRG accuracy beyond the two-particle trun-

cation [64, 65, 66]. In addition, more efficient parametrisation schemes of the equations [67, 68] led to

a new approximative scheme called Truncated Unity Functional Renormalisation Group (TUFRG)[2],

due to which a much higher resolution of the interaction becomes reachable and supercomputers can

be used efficiently. Thus, the FRG based on Fermi-surface patching has successfully been applied

to several two-dimensional models containing up to three bands, like bilayer Hubbard models [69],

Graphene [70, 71, 72], the three band Emery model [73], nodal line materials (like ZrSiS) [74], iron-

based superconductors [75] or Sr2RuO4 [76, 77] to identify their corresponding phase diagrams. The

TUFRG approach now allows an investigation of three-dimensional models. In the scope of this thesis

I will apply it to the three-dimensional Hubbard model in order to understand the influence of the

third dimension on superconductivity in HTS.

All in all, this thesis is structured as follows:

In order to provide a unified theoretical foundation and notation the necessary preliminaries will

be introduced in chapter 2, namely the quantum mechanical notation used throughout this thesis

(sec. 2.1, 2.2), as well as the path integral formulation in terms of Grassmann fields (sec. 2.3).

Additionally, some background information on Group theory in the framework of solid state physics

is provided. In chapter 3 the theoretical background of this thesis is layed out. At first, I derive

some properties of the many-particle Green’s functions which are useful to simplify calculations (sec.

3.1). In a short excursus on the perturbation theory I introduce the diagrammatic representations

of fermionic interactions (sec. 3.2). In section 3.3 I provide a connection of the Green’s functions to

fermionic bilinears and susceptibilities, which are the experimentally accessible properties describing
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the correlation effects. The full set of Functional Renormalisation Group equations for systems with

or without SU(2)-symmetry is derived in section 3.5. Therein, I explicitly focus on the flow equations

for the two-particle interactions, the self-energy and the susceptibilities. Finally, the Truncated Unity

formulation for the two-particle interactions with and without SU(2)-symmetry are derived (sec. 3.6).

In chapter 4 the numerical implementation of the full (TU)FRG scheme is discussed by considering

all relevant elements and their behaviour under symmetries used to simplify calculations. Therefore,

I present momentum and frequency meshes as well as the construction of models (sec. 4.1). As the

behaviour of multi-orbital models under point-group symmetries is complicated, I provide a more de-

tailed analysis of it in terms of a natural basis. Based on the point group symmetries, the construction

of form-factors is discussed in section 4.2. In the approximation of static interactions or even zero-

temperature, the frequency integration or Matsubara summation of Green’s functions can be carried

out analytically. The corresponding derivations are, therefore, performed for different cut-off schemes

frequently used in FRG calculations (sec. 4.3). Finally, this chapter is ended by a discussion of the

parallelisation strategy for which corresponding scaling results are presented (sec. 4.5).

Chapter 5 is dedicated to the results obtained by the code presented above for the Hubbard model,

which itself is presented at the beginning of the corresponding chapter. In a first step, we investigate

the two-dimensional one-band Hubbard model and compare it with results previously obtained by

other groups to verify the correctness of our code (sec. 5.2). In section 5.3 the phase diagram of the

half-filled, simple-cubic three-dimensional Hubbard model obtained by the TUFRG is compared with

the results obtained by other methods, resulting in a good agreement between the methods in the case

of weak interactions. As the method provides reasonable results, it is further applied to this model

under doping, which results in a rich phase diagram, including d-wave superconductivity. In order to

return to our initial question I simulate the transition from two to three dimensions by varying the

movement of electrons in the z-direction. Corresponding phase diagrams are discussed in section 5.4

with the van-Hove condition in the two-dimensional planes, showing that superconductivity of p-wave

type can occur for specific sets of parameters.

Chapter 6 sums up all the results and provides an outlook for future developments.
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2. Preliminaries

T he field theoretical description of quantum mechanics established in this chapter, section 2.3,

is the basis of the derivation of the FRG equations. To provide the reader a coherent reading, we

introduce the general quantum mechanical notation used in this thesis (Sec. 2.1) and the Fock-space or

occupation number representation (Sec. 2.2) beforehand. To complete the mathematical background

required for this thesis we furthermore provide the reader some basic results from group theory in

section 2.4, which are necessary for the discussion of symmetries and for the derivation of form-factors.

Throughout this thesis we use Planck units, i.e. ~ = 1, kB = 1, and denote the temperature by T ,

while β := 1/T denotes its inverse.

2.1. Quantum Mechanical Notations

The electronic structure of a solid is generated by the electrons, which have to be described quan-

tum mechanically. The corresponding notation of the required mathematical objects and the most

prominent operators used throughout this thesis can be found in tables 2.1 and 2.2, respectively.

In general, the state of a quantum mechanical system is described by the state vector |ϕ〉, whose

time evolution is defined by the Schrödinger equation

i
∂

∂t
|ϕ〉 = Ĥ |ϕ〉 (2.1)

with the Hamiltonian Ĥ = Ĥ0 + Ĥint describing the physical system, which is split into a one-particle

part Ĥ0 and an interacting part Ĥint. This equation can, formally, be solved by the time-evolution

operator

Û(t) = exp
(
−iĤt

)
. (2.2)

However, there is an ambiguity in assigning the time dependence to the operator Â, to the state |ϕ〉
or to both. Therefore, three different pictures are commonly used:

3 dim. vector r := (rx, ry, rz)

configuration space O ⊂ Rn

state vector |ϕ〉 ∈ L2(O,C)

scalar product 〈ϕ|ψ〉 :=
∫
d3r ϕ∗(r)ψ(r)

operator Â

expectation value 〈Â〉ϕ := 〈ϕ| Â |ϕ〉
commutator [Â, B̂] := ÂB̂ − B̂Â
anti-commutator {Â, B̂} := ÂB̂ + B̂Â

Table 2.1.: Table of quantum mechanical notations.

unity operator 1̂

position operator r̂ = (r̂x, r̂y, r̂z)

momentum operator p̂ = (p̂x, p̂y, p̂z)

orbital momentum operator L̂ = (L̂x, L̂y, L̂z)

spin operator Ŝi = (Ŝx, Ŝy, Ŝz)

Hamilton operator Ĥ

particle Number operator N̂

modified Hamiltonian K̂ = Ĥ − µN̂

Table 2.2.: Table of basic quantum mechanical operators.
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2. Preliminaries

Schrödinger Picture |ϕ(t)〉S = Û(t) |ϕ〉 ÂS = Â (2.3)

Heisenberg Picture |ϕ〉 = |ϕ〉 Â(t) = Û†(t)ÂÛ(t) (2.4)

Interaction Picture |ϕ(t)〉I = e−iĤintt |ϕ〉 ÂI(t) = eiĤ0tÂe−iĤ0t . (2.5)

Regarding the argument of the time-evolution operator, one may consider the system based on an

imaginary time τ = it, which is advantageous for systems at finite temperature T . Such an imaginary

time picture can be obtained by a Wick rotation of the Hamiltonian, which is a continuation of

the Hamiltonian to imaginary times. As this imaginary time τ is real valued, it simplifies a lot of

calculations, but also gives rise to other difficulties. We define the imaginary time-evolution operator

in analogy to the real time one, given by equation (2.2), as

Û(τ) = exp
(
−Ĥτ

)
. (2.6)

The distinction between imaginary and real time becomes apparent by the use of t or τ as argument,

respectively. The different pictures defined in equations (2.3) to (2.5) can be formulated analogously

in imaginary times by the corresponding replacement of τ = it. The Fourier transformation of the

real time argument t and the corresponding inverse Fourier transformation

|ϕ(ω)〉 =

∫
dt eiωt |ϕ(t)〉 and |ϕ(t)〉 =

1

2π

∫
dt e−iωt |ϕ(ω)〉 (2.7)

converts the expression to the frequency domain with arguments ω and correspondingly back to real

time. The counterpart for finite temperatures is the Fourier series

|ϕ(τ)〉 =
1

β

∑
ωn

e−iωnτ |ϕ(ωn)〉 with coefficients |ϕ(ωn)〉 =

∫ β

0

dτ eiωnτ |ϕ(τ)〉 , (2.8)

which, for imaginary times, leads to the Matsubara frequencies ωn = 2n+1
β π for Fermions and νn = 2n

β π

for Bosons, indicated via a subscript n of the variable.

If several operators are applied to a system at different times, they have to be in the correct time

order due to the change of state resulting from the measurement process. To ensure this, we define

the time-ordering operator which commutes the operators correspondingly.

Definition 1 (Permutation Group and Time-Ordering Operator)

• The symmetric group of m elements Sm is defined as the group of all permutations of the

set {1, . . . ,m}.

• Let {Ôi(xi, ti)}iN,i≤m be a set of m operators acting on some arguments xi at time ti, and

let sgn(π) be the sign of the permutation π ∈ Sm. Then the imaginary time-ordering

operator T is defined as

T [Ô1(x1, τ1). . . Ôm(xm, τm)] :=
∑
π∈Sm

sgn(π)Θ(τπ(1) − τπ(2)). . .Θ(τπ(m−1) − τπ(m))

Ôπ(1)(xπ(1), τπ(1)). . . Ôπ(m)(xπ(m), τπ(m)) (2.9)
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The action of the time-ordering operator, therefore, leads to a reordering of all operators, such that

for every pair of operators the left one has a later time argument than the right one. That is, the final

order is

Ôn(xn, τn). . . Ô0(x0, τ0) with τn > τn−1 > . . . τ1 > τ0. (2.10)

An analogous time-ordering operator for imaginary times can be defined straight forwardly.

The general basis of a quantum mechanical system is given by the direct product of the position

or the momentum space and the spin space. The position and the momentum space are spanned by

their eigenvectors, which are orthonormal and complete according to

〈r|r′〉 = δ(r − r′) and

∫
dr |r〉 〈r| = 1

〈k|k′〉 = δ(k − k′) and

∫
dk |k〉 〈k| = 1

(2.11)

and which are related to each other according to

〈r|k〉 =
1

(2π)3
eikr. (2.12)

We define the projection of the state vector |ϕ〉 to the position or the momentum space basis as

wave-functions in position or in momentum space, respectively, given by

ϕ(r) := 〈r|ϕ〉 and ϕ(k) := 〈k|ϕ〉 . (2.13)

Based on equation (2.12) we obtain

ϕ(k) =

∫
dr ϕ(r) e−ikr and ϕ(r) =

1

(2π)3

∫
dk ϕ(k) eikr, (2.14)

which we define as the Fourier transformation of the wave-functions from position to momentum space

and the corresponding inverse Fourier transformations, respectively.

The atoms in a solid are positioned in a periodic arrangement, forming the Bravais lattice. All

vectors K, for which eiKR = 1 holds for all R of the Bravais lattice, form the reciprocal lattice and

are, therefore, called reciprocal lattice vectors. The Brillouin zone (BZ) B is then the part of the

momentum space, which is closer to K = 0 than to any other K, and we denote its volume by |B|.
Due to the condition on K the BZ is a square (cube) of side length 2π for a square (cubic) lattice.

We define the (inverse) lattice Fourier transformation similar to equation (2.14) as

f(k) =
∑
R

f(R) e−ikR and f(R) =
1

|B|

∫
dk f(k) eikR, (2.15)

with k ∈ B. In this thesis we treat a perfect crystalline solid state system, such that the periodic-

ity leads to a translational invariance of the Hamilton operator Ĥ. Therefore, the solutions of the

Schrödinger equation are common eigenstates of the Hamiltonian Ĥ and the translation operator T̂R.

Eigenfunctions of the translation operator are the plane wave-functions according to

T̂R |k〉 = e−ikR |k〉 , (2.16)
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where we denote k as Bloch wave-vector. Due to the previous discussions we note that any k′ always

has the same eigenvalue with respect to the translation vector as the corresponding Bloch wave-vector

k = k′ −K in the first Brillouin zone. It is, therefore, sufficient to find the eigenfunctions of Ĥ for

every Bloch momentum k separately, leading to the basis of Bloch vectors |Ψk,n,s〉, where n is the

band index. The band structure of the material is then formed by the eigenvalues εk,n,s as functions

of k, n and s.

While the Bloch vectors are delocalised due to their construction by plane waves, it is often useful

to work with a basis localised at the atomic positions. A direct approach is to take the atomic wave

basis |ϕ〉o,s with orbital o and spin s for each atom and move it to its position by ϕo,s,R = ϕo,s(r−R).

With

ψo,s,k =
1

N
∑
R

|ϕo,s,R〉 eikR (2.17)

we define a Bloch like vector as a basis for the electron system, which is an eigenstate of the translation

operator. However, the basis created by this approach is only orthogonal on one site, while orbitals

from different sites may overlap. To overcome this problem, we define the Wannier states as

|ΦR,o,s〉 =
1

|B|
∑
n

∫
d3k U †no(k) |Ψk,n,s〉 e−ikR, (2.18)

or

|Ψk,n,s〉 =
∑
o

∑
R

Uno(k) |ΦR,o,s〉 eikR, (2.19)

which form an orthonormal, complete basis for the electronic solid state system. U is a unitary matrix,

defining the map from Bloch bands n to Wannier orbitals o. As a shorthand notation for Bloch and

Wannier bases we only write the set of quantum numbers, i.e.

|kns〉 := |Ψk,n,s〉 , and |Ros〉 := |ΦR,o,s〉 , (2.20)

respectively. If, further, the explicit quantum numbers and bases are of no relevance for a statement,

we combine them according to

|x〉 := |Ros〉 and |k〉 := |kns〉 (2.21)

so that x and k also act as combined variables if used as argument. As we typically work with time

arguments for position space functions and with frequency arguments for momentum space functions,

we denote the whole collection of arguments by an integer according to 1 = (x, τ) or 1t = (x, t) for

imaginary or real times in position space and 1k = (k, ωn) or 1ω = (k, ω) for Matsubara or for real

frequencies in momentum space.

So far, we have established the basic notations for an efficient description of one particle. But as

we are interested in many electron effects, we introduce the corresponding space, the Fock space, for

their description in the next section.
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2.2. The Fock Space

The electronic part of a solid state system consists of N ∈ N identical electrons. As the considera-

tions of the previous section 2.1 hold for the basis of each particle, the N -particle Hilbert space HN
is the tensor product of all the N one-particle Hilbert spaces H according to

HN :=

N⊗
i=1

H with the canonical basis |x1. . . xN 〉 :=

N⊗
i=1

|xi〉 , (2.22)

equipped with the scalar product and the completeness relation in the form of

〈x1, . . . , xN |x′1, . . . , x′N 〉 =

N∏
i=1

〈xi|x′i〉 and
∑

x1,. . . ,xN

|x1, . . . , xN 〉 〈x1, . . . , xN | = 1̂, (2.23)

respectively. The many-particle wave-function ψN (r) := 〈r|x1, . . . , xN 〉 for fermions, as electrons are,

has to be antisymmetric to fulfil the Pauli criterion, that is, an interchange of the particles with

arguments xi and xj results in a change of sign. The Hilbert space of fermions FN is, hence, the space

created by antisymmetrising the states of the full N -particle Hilbert space HN , equipped with the

same scalar product and a closure relation with respect to the antisymmetrised basis. The expectation

value of an operator Â acting on a many-particle state is invariant under the antisymmetrisation, as

the fermions of the systems we consider are identical and indistinguishable.

In this construction we would have to know the exact state of each particle to construct the an-

tisymmetrised product state |x1〉 · · · |xN 〉, but as the particles are indistinguishable, we have to sum

over all equivalent states in which the particles interchange their states. Thus, it is of more relevance

to know if a state is occupied or not, as fermionic states can only be occupied once. Therefore, we

label all states of the one-particle basis {|xλ〉}λ∈N0 by a natural number λ and write their occupation

numbers ni ∈ {0, 1} in the state vector |n0 · · ·nj · · · 〉 which have to fulfil N =
∑
i ni. We define the

set of corresponding spaces as Fock space:

Definition 2 (Fock Space)

Let FN be the Hilbert space describing N -particles. Then the Fock space F is defined by

F :=
∞⊕
N=0

FN . (2.24)

The operation of adding or removing a state vector to the many-particle Hilbert space is given in

this occupation number representation by setting the corresponding occupation number from 0 to 1 or

from 1 to 0, respectively. This is, therefore, interpreted as addition or removal of particles from a state,

which corresponds to a transition from FN to FN+1 and vice versa. The corresponding operators are

defined as follows:
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Definition 3 (Creation, Annihilation and Number Operators)

Let |n1 · · ·nα · · · 〉 ∈ F be an N -particle Fock state. Then the fermion creation operator ĉ†α is

defined as

ĉ†α |n0 · · ·nα · · · 〉 :=


+ |n0 · · · 1 · · · 〉 for nα = 0 and

∑α−1
i=0 ni = N<α even

− |n0 · · · 1 · · · 〉 for nα = 0 and
∑α−1
i=0 ni = N<α uneven

0 for nα = 1

(2.25)

and the fermion annihilation operator ĉα is defined as the adjoint operator of the fermion

creation one, thus

ĉα |n0. . . nα. . . 〉 :=


+ |n0 · · · 0 · · · 〉 for nα = 1 and

∑α−1
i=0 ni = N<α even

− |n0 · · · 0 · · · 〉 for nα = 1 and
∑α−1
i=0 ni = N<α uneven

0 for nα = 0.

(2.26)

The number operator n̂α for state α is defined as

n̂α := ĉ†αĉα (2.27)

and the total number operator N̂ is defined as

N̂ :=

N∑
i=0

n̂i. (2.28)

We remark that, according to this definition, the subscript α of the creation, annihilation and

number operator refers to the state of the one-particle basis it is acting on. In addition, every state

in the Fock space can be described by all the corresponding creation operators acting on the vacuum

state |0〉. To account for the energy required or released by the addition or the removal of a particle,

respectively, the chemical potential µ is introduced. The full system with a varying number of particles

is, therefore, described by the generalised Hamiltonian K̂ := Ĥ − µN̂ . The following commutation

relations, again, directly follow from the definition of the creation and the annihilation operators,

which can easily be proved.

Corollary 2.1 (Anticommutation Relations for Creation and Annihilation Operators)

The anticommutation relation of the fermionic creation operators ĉ†α and the fermionic annihi-

lation operators ĉα are

{ĉ†α, ĉ†β} = 0 , {ĉα, ĉβ} = 0 and {ĉ†α, ĉβ} = δαβ . (2.29)

The creation and the annihilation operators can be transformed to another basis |β〉 by the closure

relation of this new basis. Thus, the operators become

ĉ†β =
∑
α

〈α|β〉 ĉ†α , ĉβ =
∑
α

〈β|α〉 ĉα. (2.30)
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When the new basis is the one of the position space {|r〉}, then the corresponding representation of

the wave-function φα(r) = 〈r|α〉 can be identified. The new operators are called field creation and

annihilation operators, which are given by

ψ̂†(r) :=
∑
α

φ∗α(r)ĉ†α and ψ̂(r) :=
∑
α

φα(r)ĉα, (2.31)

respectively.

In the many-particle setting, operators acting on all particles are classified according to the way

their action can be decomposed. The operator Â is called a one-particle operator when its action on

an N -particle direct-product state |x1, . . . , xN 〉 can be represented by

Â |x1, . . . , xN 〉 =

N∑
i=1

Âi |x1, . . . , xN 〉 , (2.32)

that is by the sum of Âi acting on each particle. Such an operator is, for instance, the kinetic energy

operator. When the action of the operator Â on an N -particle state is given by the sum of Âij acting

on pairs of particles, that is by

Â |x1, . . . , xN 〉 =
∑

1≤i≤j≤N
Âij |x1, . . . , xN 〉 , (2.33)

like the Coulomb operator, it is called a two-particle operator. Using the transformations given in

equation (2.30), all operators can be transformed to creation and annihilation operators in the Fock

basis. For one-particle and for two-particle operators T̂ and V̂ , respectively, this reads as

T̂ =
∑
λµ

〈λ|T |µ〉 ĉ†λĉµ with 〈λ|T |µ〉 =
∑
α

〈λ|α〉Uα 〈α|µ〉 (2.34)

V̂ =
1

2

∑
λµνρ

〈λµ|V |νρ〉 ĉ†λĉ†µĉν ĉρ with 〈λµ|V |νρ〉 =
∑
αβ

〈λµ|αβ〉Vαβ 〈αβ|νρ〉 . (2.35)

As the actions of creation and annihilation operators can directly be performed by changing the corre-

sponding occupation numbers in Fock space, this representation allows more efficient calculations. For

example, the action of annihilation operators on an empty state results in 0, so that it is advantageous

in the presence of several creation and annihilation operators to let the annihilation operators act

first, like in the two-particle operator case. This ordering is defined as normal ordering:

Definition 4 (Normal Ordering)

Multiple creation and annihilation operators are in normal order, when all creation operators

are left of the annihilation operators. The notation

: ÂiÂj : (2.36)

implies that the operators within the colons have to be commuted until they are in normal order.
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To illustrate the normal ordering, we consider the case of two operators, Âi and Âj , which can be

creation or annihilation operators. Then, normal ordering implies

: ÂiÂj :=

ÂiÂj for Âi = ĉ†i , Âj = ĉj

−ÂjÂi for Âi = ĉi, Âj = ĉ†j .
(2.37)

While only the lowest N states of a system of non-interacting electrons in its ground state at T = 0

are occupied by electrons, at finite temperatures T 6= 0 the system has a finite probability to be in an

other, excited, many-particle state. The whole system based on the set of possible states is described

by the grand canonical partition function.

Definition 5 (Grand Canonical Partition Function)

Let a many-particle system be described by the Hamiltonian Ĥ, the total number operator N̂ and

the chemical potential µ. Then the grand canonical partition function at inverse temperature

β is defined by

Z := Tr
(
e−β(Ĥ−µN̂)

)
, (2.38)

and the grand canonical potential is defined as

Ω := − 1

β
ln (Z) . (2.39)

According to the finite possibilities of the system to be in a particular state, we define the thermal

average of an operator, in which every state is weighted by its probability.

Definition 6 (Thermal Average)

Let the prerequisites be given as in definition 5, and let T̂ be the time-ordering operator. Then

the thermal average of an operator Â is defined as

〈Â〉 :=
1

ZTr
(
e−β(Ĥ−µN̂)T̂ [Â]

)
. (2.40)

While the formulation in the Fock basis is quite comfortable, one still requires the one-particle

basis functions, that is, the antisymmetrised eigenstates of the one-particle Hamilton operators. An

advantage is, therefore, to formulate the theory in the eigenstates of the annihilation operator as

shown in the following.
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2.3. Grassmann Fields and Path Integral

The eigenstates of the annihilation operators ĉ introduced in the previous section 2.2 are the Fock

states |ψ〉 ∈ F for which

ĉi |ψ〉 = ψi |ψ〉 (2.41)

holds. As two fermionic annihilation operators anticommute, their eigenvalues ψα have to be anti-

commuting, too. The Grassmann algebra, in the following defined without mathematical accuracy,

provides Grassmann numbers which fulfil this property. The definition further provides rules for the

calculation with these Grassmann variables.

Definition 7 (Grassmann Algebra)

• Variables ψi which anticommute, i.e.

{ψi, ψj} = ψiψj + ψjψi = 0 for i 6= j (2.42)

are called Grassmann numbers or Grassmann variables. Due to the anticommutation

they are nilpotent, that is ψ2
i = 0.

• The algebra generated by a set of N Grassmann variables {ψi}i≤N as generators with an

addition and an antisymmetric multiplication operation is called Grassmann algebra. Its

basis is spanned by all unique products of generators, resulting in a dimension of 2N .

• For N being even, the conjugation of a Grassmann variable is denoted by ψ̄ and is defined

as the complex conjugate ψ̄ := (ψ)∗ of its value. The conjugate of a product of Grassmann

variables is accordingly ψ̄n · · · ψ̄1 = (ψ1 · · ·ψn)∗.

• The derivative with respect to a Grassmann variable is defined as

∂

∂ψi
ψj := δij ,

∂

∂ψi
ψ̄j := 0,

∂

∂ψ̄i
ψj := 0. (2.43)

The derivatives anticommute with Grassmann variables and among themselves, i.e.
∂
∂ψi

(ψ̄jψk) = −ψ̄j ∂
∂ψi

ψj.

• The integration with respect to a Grassmann variable is defined as∫
dψi ψj := δij ,

∫
dψi 1 := 0 and

∫
dψiψ̄j := 0. (2.44)

Based on these Grassmann variables, we can define the eigenstates of the annihilation operator.
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Definition 8 (Fermionic Coherent State)

Let c†i be fermion creation operators with Grassmann numbers ψi as eigenvalues, and let |0〉 be

the vacuum state. Then the fermionic coherent state is given by

|ψ〉 = exp

(
−
∑
i

ψic
†
i

)
|0〉 , (2.45)

and the adjoint fermionic coherent state is given by

〈ψ| = 〈0| exp

(∑
i

ψ̄ici

)
. (2.46)

The Grassmann variables ψ(r) and ψ̄(r), which correspond to the field operators ψ̂(r) and ψ̂†(r),

respectively, are called Grassmann fields. All the results which are obtained for Grassmann variables

and their coherent states also hold for Grassmann fields and their coherent states. We collect some

properties of the fermionic coherent states in the following corollary.

Corollary 2.2 (Properties of Coherent States)

1. The fermion creation operator c†i acts on a fermionic coherent state like a field derivative,

that is c†i |ψ〉 = − ∂
∂ψi
|ψ〉.

2. The fermion annihilation operator ci acts on the adjoint fermionic coherent state like a field

derivative, that is 〈ψ| ci = 〈ψ| ∂
∂ψ̄i

.

3. The coherent states are not normalised to unity, but result in 〈ψ|ψ′〉 = exp
(∑

i ψ̄iψ
′
i

)
.

4. The closure relation is given by

∫ ∏
α

dψ̄i dψi, exp

(
−
∑
i

ψ̄iψi

)
|ψ〉 〈ψ| = 1. (2.47)

5. For Fock states |i〉, |j〉 and for Grassmann states |ψ〉 we have

〈i|ψ〉 〈ψ|j〉 = 〈−ψ|j〉 〈i|ψ〉 . (2.48)

6. The trace of an operator is given by

Tr (Â) =

∫ ∏
i

dψ̄i dψi exp

(
−
∑
i

ψ̄iψi

)
〈−ψ| Â |ψ〉 . (2.49)

7. Let |ϕ〉 be a Fock state. Then the Grassmann coherent state representation of fermions is

given by

|ϕ〉 =

∫ ∏
i

dψ̄i dψi exp

(
−
∑
i

ψ̄iψi

)
ϕ(ψ̄) |ψ〉 (2.50)

with ϕ(ψ̄) = 〈ψ|ϕ〉, the wave-function of the state |ψ〉 in the coherent state representation.
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8. The matrix element of an operator A(ĉ†α, ĉα) based on creation and annihilation operators

in normal-order in the coherent basis is given by

〈ψ|A(ĉ†i ĉi) |ψ′〉 = exp

(∑
i

ψ̄iψ
′
i

)
A[ψ̄i, ψ

′
i], (2.51)

where A[ψ̄i, ψ
′
i] is the normal-ordered operator with c†i and ci being replaced by ψ̄i and ψi,

respectively.

Proof: 1. By exploiting the definition of fermion coherent states (def. 8) and the Grassmann

derivative we derive

ĉ†i |ψ〉 = ĉ†i (1− ψiĉ†i )
∏
j 6=i

(1− ψj ĉ†j) |0〉 (2.52)

= ĉ†i
∏
j 6=i

(1− ψj ĉ†j) |0〉 (2.53)

= − ∂

∂ψi
(1− ψiĉ†i )

∏
j 6=i

(1− ψj ĉ†j) |0〉 (2.54)

= − ∂

∂ψi
|ψ〉 . (2.55)

2. The proof is analogous to the previous one.

3. The scalar product of two coherent states results in

〈ψ|ψ′〉 = 〈0|
∏
i

(1 + ψ̄iĉi)(1− ψiĉ†i ) |0〉 (2.56)

=
∏
i

(1 + ψ̄iψi) (2.57)

= exp

(∑
i

ψ̄iψi

)
(2.58)

which, in general, is unequal to 1.

4. We refer to [78], chapter 1.5. for this proof.

5. Equation (2.48) directly follows from the anticommutation of Grassmann numbers.

6. We start by writing out the trace in terms of occupation number states, insert the closure relation

(point 4, eq. 2.47) and the anticommutativity of scalar products (point 5, eq. (2.48)). Thus we

obtain for an operator Â

Tr (Â) =
∑
n

〈n| Â |n〉 (2.59)

=

∫ ∏
i

dψ̄i dψie
−∑

i ψ̄iψi
∑
n

〈n|ψ〉 〈ψ| Â |n〉 (2.60)

=

∫ ∏
i

dψ̄i dψie
−∑

i ψ̄iψi 〈−ψ| Â
∑
n

|n〉 〈n|ψ〉 (2.61)

=

∫ ∏
i

dψ̄i dψie
−∑

i ψ̄iψi 〈−ψ| Â |ψ〉 . (2.62)
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2. Preliminaries

7. Equation (2.50) directly results from the closure relation (point 4, eq. (2.47)) applied to a state

|ψ〉.

8. Writing 〈ψ| Â(ĉ†i , ĉi) |ψ′〉, we let ĉ†i act to the left and ĉi act to the right coherent state. This

directly leads to the result given in equation (2.51).

The coherent states provide a new basis for the many-particle system. Therefore, the partition function

can be reformulated in terms of these states as in the following corollary.

Corollary 2.3 (Partition Function in Coherent States)

Let ψi and ψ̄i be Grassmann variables, and let Ĥ, N̂ , µ and β be given as in definition 5. Then

the grand canonical partition function Z in a coherent state representation is given by

Z =

∫ ∏
i

dψ̄i dψi exp

(
−
∑
i

ψ̄iψi

)
〈−ψ| e−β(Ĥ−µN̂) |ψ〉 . (2.63)

Proof: Applying the trace in coherent states (eq. (2.49)) to the definition of the partition function

in definition 5 directly leads to equation (2.63).

As the configuration space of many-particle systems is very large, it is useful to define functional

integrals which are integrals over field configurations. We will briefly introduce them and use them

for the derivation of the FRG equations later on.

To motivate the formulation of path integrals we consider the time evolution of a system from state

|ψi〉 with components ψα,i at time ti to a final state 〈ψf | with components ψ̄α,f at time tf . Then a

matrix element of the evolution operator (see eq. (2.2)) is given by

U(ψf tf , ψiti) = 〈ψf | e−iH(tf−ti) |ψi〉 . (2.64)

We divide the time interval between initial and final state into M time steps of equal size ε =
tf−ti
M

and denote all intermediate points by tk, so that we arrive at the original system for M →∞, implying

ε→ 0. At each intermediate time point we insert the closure relation of the Grassmann fields with the

corresponding fields ψα,k and ψ̄α,k. When applying the Hamiltonian of the time-evolution operator of

the intermediate time slices to the states, the creation and the annihilation operators are in an order

which corresponds to the one generated by the series representation of the exponential function. The

error arising due to a normal ordering of this exponential is quadratic in the size of the time slice ε

and will vanish in the limit M →∞. Thus we obtain

U(ψ̄α,f tf , ψiti) = 〈ψf | e−iH[ĉ†,ĉ](tf−ti) |ψi〉

= lim
M→∞

∫ M−1∏
k=1

∏
α

dψ̄α,k dψα,ke
−∑M−1

k=1

∑
α ψ̄α,kψα,k

M∏
k=1

〈ψk| : e−i εH[ĉ†α,ĉα] : +O(ε2)) |ψk−1〉

= lim
M→∞

∫ M−1∏
k=1

∏
α

dψ̄α,k dψα,ke
−∑M−1

k=1

∑
α ψ̄α,kψα,ke

∑M
k=1(

∑
α ψ̄α,kψα,k−1−i εH[ψ̄α,k,ψα,k]). (2.65)

All the integrals in this formula are finite, as there is no metric in the Grassmann algebra. In the

limit M → ∞ it makes sense to replace the intermediate states ψα,k by introducing the Grassmann

trajectory ψα(t) and to define the time-derivative symbolically as ∂
∂tψα(t) :=

ψα,k−ψα,k−1

ε and the
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2.3. Grassmann Fields and Path Integral

Hamiltonian of the Grassmann trajectories as H(ψ̄α(t), ψα(t)) := H(ψ̄α,k, ψα,k−1). Rewriting the

exponential then results in

U(ψ̄α,f tf , ψα,iti) =

∫ ψ̄α(tf )

ψα(ti)

D[ψ̄α(t)ψα(t)] exp

(∑
α

ψ̄α(tf )ψα(tf )

)

exp

(
i

∫ tf

ti

dt

(∑
α

i ψ̄α(t)
∂ψα(t)

∂t
−H[ψ̄α(t), ψα(t)]

))
, (2.66)

which anticipates the definition of the path integral (cf. def. 9).

This formula is derived for the time-evolution operator and will change when, for example, an

operator acts between the initial and the final state. Based on this example, we, therefore, define the

path integral mathematically incomplete as the procedure for obtaining such an equation.

Definition 9 (Path Integral)

The path integral is defined as the limit of infinitely many discrete time-step splittings of the

evolution from an initial state to a final state. We formally define the notation of a path integral

as ∫ ψ̄α(tf )

ψα(ti)

D[ψ̄α(t), ψα(t)] := lim
M→∞

∫ M−1∏
k=1

∏
α

dψ̄α,k dψα,k. (2.67)

The representation of the partition function in Grassmann variables (see eq. (2.63)) can be simplified

by means of these path integrals according to the following lemma.

Lemma 2.4 (Partition Function in Path Integral Formulation)

Let Ĥ, N̂ , µ and β be given as in definition 5. Then the partition function Z in a path integral

formulation is given as

Z =

∫
ψi(β)=−ψi(0)

D[ψ̄(τ), ψ(τ)]

exp

(
−
∫ β

0

dτ

{∑
i

ψ̄i(τ)

(
∂

∂τ
− µ

)
ψi(τ) +H[ψ̄i(τ), ψi(τ)]

})
. (2.68)

Proof: The continuation of the time-evolution operator to imaginary times results in U(ψfτf , ψiτi) =

〈ψf | e−H(τf−τi) |ψi〉. The partition function in coherent states (cf. eq. (2.63)) can be identified as the

sum over diagonal matrix elements of this imaginary time-evolution operator over the time interval

[0, β]. Due to the trace there exist antiperiodic boundary conditions for fermions, such that ψi(β) =

−ψi(0). Using the results of the time-evolution operator in equation (2.66), the quadratic term in the

exponential cancels with the one in equation (2.63), such that the partition function becomes

Z =

∫
ψi(β)=−ψi(0)

D[ψ̄(τ), ψ(τ)] e−
∫ β
0
dτ{∑i ψ̄i(τ)( ∂∂τ−µ)ψi(τ)+H[ψ̄i(τ),ψi(τ)]}, (2.69)

which completes the proof.
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2. Preliminaries

As the exponential in the partition function is quite lengthy, we simplify the notation by introducing

the action as follows:

Definition 10 (Action)

Let ψi(τ), ψ̄i(τ) be Grassmann variables, and let H[ψ̄i(τ), ψi(τ)] be the Hamiltonian of a system

given in the coherent state basis. Then the action is defined as

S[ψ̄i(τ), ψi(τ)] :=

∫ β

0

dτ

{∑
i

ψ̄i(τ)

(
∂

∂τ
− µ

)
ψi(τ) +H[ψ̄i(τ), ψi(τ)]

}
. (2.70)

Based on these mathematical tools we are able to derive the FRG equations. In order to be able to

understand the symmetries of a solid and to derive the form-factor basis later on, we deal with the

basic theory of finite groups in the following.

2.4. Group Theory

The symmetry of the underlying lattice of a solid state system can be used for important simplifi-

cations, as all solid state properties have to transform under the corresponding symmetry operations.

In addition, the symmetries will be useful for the derivation of form-factors, which we will choose to

be basis functions corresponding to the point group symmetry. The framework for a proper treatment

of symmetries is given by the group theory, whose relevant parts will be introduced in this section,

based on Dresselhaus [79].

At first, we define the notation of symmetry operations according to Schoenflies.

Definition 11 (Schoenflies Notation for Symmetry Operations)

Consider the three-dimensional lattice of a solid state crystal. The axis with the highest order of

rotations is defined as principal axis. The symmetry operations are defined as:

• E: identity operation

• I: inversion operation, taking x 7→ −x, y 7→ −y, z 7→ −z

• Cn: rotation by 2π/n with n ∈ N

• σv: reflection on a vertical plane, i.e. through the principle axis

• σd: reflection on a diagonal plane, i.e. through the principle axis and bisecting the angle

between the two two-fold rotation axes orthogonal to the principal axis

• σh: reflection on a horizontal plane, i.e. perpendicular to the principle axis

• Sn: improper rotation, rotation by 2π/n with n ∈ N, followed by a reflection in the plane

orthogonal to the rotation axis.

In the following we introduce the mathematical group and define the point group and the crystal-

lographic point group as well.
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Definition 12 (Group)

1. Let G = {a, b, . . . } be a set of elements and let ◦ be an operation between two elements

a, b ∈ G. Then (G, ◦) is called a group, if and only if

• for all a, b ∈ G the element a ◦ b also is an element of G,

• the operation ◦ is associative, i.e. for a, b, c ∈ G the equality a ◦ (b ◦ c) = (a ◦ b) ◦ c
holds,

• there exists a neutral element e ∈ G, such that a ◦ e = e ◦ a = a holds for all a ∈ G,

• for all a ∈ G there exists an inverse element a−1 ∈ G, such that a ◦ a−1 = a−1 ◦ a = e,

2. If the set G is finite, the group is called finite.

3. A point group is a finite group consisting of elements which are symmetry operations,

which can be denoted by definition 11, and whose operation ◦ is their successive action.

4. A crystallographic point group is a point group which contains only (improper) rotations

with n ∈ {1, 2, 3, 4, 6}.

The restriction of n fixes the total number of possible crystallographic point groups to 32, while

there are infinitely many point groups. This restriction is based on the observation made in the

crystallography that no other structures have been obtained. However, quasi-crystals may have point

groups with, for example, n = 5.

Next we consider the multiplication of a group element with itself.

Theorem 2.5 (n-Repetitiveness of a Finite Group)

Let (G, ◦) be a finite group. Then there exists an n ∈ N, such that an := a ◦ a ◦ . . . ◦ a︸ ︷︷ ︸
n times

= e holds

for any a ∈ G.

Proof: Let y be a repetition, such that y = xp = xq with p > q. We can write p = q + n such that

y = xp = xq+n = xq ◦ xn (2.71)

but, by construction, it is also y = xq. Therefore, it follows that xn = e.

To assign a size to a group, we define its order and, based on the previous theorem, the order of a

group element.

Definition 13 (Order of Group and Elements)

Let (G, ◦) be a group. Then

• the order of the group is defined as the number of elements in the group,

• the order of an element a ∈ G is the smallest n for which an = e holds.

In a next step we relate elements to each other according to the following definition.
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Definition 14 (Conjugate Elements and Class)

1. Let (G, ◦) be a group and let a, b ∈ G. Then a and b are called conjugate, if and only if

b = x ◦ a ◦ x−1 for all x ∈ G.

2. The set of all conjugate elements of G is called a class.

These conjugate elements obtain some relations to each other, as the following theorem shows.

Theorem 2.6 (Same Order of Class Elements)

Let (G, ◦) be a group.

1. Let a, b, c ∈ G and let b be conjugate to a and let c be conjugate to b. Then c is conjugate

to a, too.

2. Let a1, a2, . . . , am ∈ G be a class. Then all the elements a1, a2, . . . , am of the class have the

same order.

Proof: 1. According to the definition of the conjugation we can write

b = x ◦ a ◦ x−1 and c = y ◦ b ◦ y−1 (2.72)

with x, y ∈ G. By substitution we obtain

c = y ◦ x ◦ a ◦ x−1y−1 = (y ◦ x) ◦ a ◦ (y ◦ x)−1, (2.73)

thus, c is conjugate to a as y ◦ x ∈ G.

2. Without loss of generality assume a1 to have the order n, i.e. an1 = e. As all aj are in the same

class, they are conjugated to a1 according to aj = x ◦ a1 ◦ x−1 for any x ∈ G. Then,

anj = (x ◦ a1 ◦ x−1) ◦ (x ◦ a1 ◦ x−1) ◦ · · · ◦ (x ◦ a1 ◦ x−1)︸ ︷︷ ︸n times. (2.74)

Due to the commutativity x ◦ x−1 = e, leading to anj = x ◦ an1 ◦ x−1 = x ◦ e ◦ x−1 = e, so that

aj has the same order n as a1 has.

So far, we have dealt with one group and its elements. However, it is interesting to relate two different

groups to each other, as it might be easier to deal with one of them instead of the other.

Definition 15 (Isomorph, Homomorph)

Let (G, ◦) and (F, ·) be two groups.

• If the groups have the same order and there exists a bijective map between their elements,

then (G, ◦) and (F, ·) are called isomorphic.

• If (G, ◦) has order n and (F, ·) has order m > n and there exists a surjective map M : G→
F , then (G, ◦) and (F, ·) are called homomorphic.
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2.4. Group Theory

Based on the isomorphic relation between two groups, we can relate the abstract groups to groups

based on matrices, which can be dealt with more easily.

Definition 16 (Representation)

Let G = (G, ◦) be an abstract group. Let R be a set of n-dimensional square matrices and let “·”
be the matrix-product operation so that R = (R, ·) is a group, called substitution group. If R
is homomorphic or isomorphic to G, R is called a representation of G and a matrix R(a) is

assigned to each element a of G, such that R(a ◦ b) = R(a) ·R(b) holds for all a, b ∈ G.

The representation of a group in terms of square matrices is helpful in several ways. At first

the quantum mechanical wave-function will transform under the symmetry operation similar to the

transformation of its matrix under the application of the symmetry matrix. Secondly, quantum

mechanical operators are typically written in matrix form, so that a symmetry operation in matrix

form can be applied to it more easily.

However, a representation is not unique, as a similarity transformation UR(a)U−1 with an invertible

square matrix U generates a new set of matrices, which is also a good representation. Additionally,

another representation can be obtained by combining two representations to a larger matrix, for

example, as(
R(a) 0

0 R′(a)

)
. (2.75)

This matrix is reducible, as all group elements are in the same block form. But, a similarity transfor-

mation of this latter matrix can mix up all the elements, such that the block form is lost. However,

the matrix remains reducible. Based on these observations we define some more terms to classify

representations.

Definition 17 (Properties of Representations)

Let R = (R, ·) be a representation of a group G based on a set R of n-dimensional square matrices

and the matrix-product operation denoted by “·”.

1. Then R is called n-dimensional.

2. Let R̃ = (R̃, ·) be another representation of G. Then R and R̃ are called equivalent, if

there exists a regular n-dimensional square matrix U , such that the equality

N(a) = U ·M(a) · U−1 (2.76)

holds for all a ∈ G and for the corresponding matrices M(a) ∈ R, N(a) ∈ R̃.

3. The representation R is called reducible, if it is equivalent to a representation in which all

matrices have a common block structure, i.e.

M(a) =

(
M1(a) 0

0 M2(a)

)
. (2.77)

Otherwise it is called irreducible.
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To understand the reducibility in more detail, assume a reducible representation Γr of a group

G which is irreducible in the group G′. This relation indicates that some interaction breaks up a

degenerate energy level in G′ into non- or less degenerate ones in group G. Due to group theory we

know which symmetry is related to this degeneracy and in how many levels it will split up.

As we have already stated, every representation has an arbitrariness with respect to a unitarity

transformation. Therefore, it is useful to work with the trace of a representation, which is called

character, as it does not change under these transformations.

Definition 18 (Characters)

Let G = (G, ◦) be a group and let R = (R, ·) be a corresponding representation. Let a ∈ G be

a group element and let R(a) be its representing matrix. Then the character of a is defined as

χ(a) = Tr (R(a)).

As the trace is independent under similarity transformations, the character is also independent. For

the character, the following theorem provides some very helpful relations.

Theorem 2.7 (Properties of Irreducible Representations)

Let G = (G, ◦) be a group with N elements, let there be nc classes Cq≤nc with nq elements each,

and let there be nirrep inequivalent irreducible representations given by Ri = (R, ·), i ≤ nirrep}.
Then

1. the dimension ni of a representation Ri is equivalent to the character of the identity map,

i.e. ni = χi(e),

2. the characters χi of Ri are the same for all elements of the same class,

3. the number nc of classes and the number of inequivalent irreducible representations nirrep

(i.e. different Ri of G) are equivalent,

4. the characters χi of a class Cq and those of a class Cq′ are orthogonal to each other, i.e.

nirrep∑
i=1

χi(Cq)χi(Cq′) = δqq′N/nq, (2.78)

5. the characters χi of a representation Ri and the characters χj of a representation Rj are

orthogonal to each other, i.e.

nc∑
q=1

hqχi(Cq)χj(Cq) = δijN. (2.79)

Proof: For the proofs of these statements we refer to [79], as they are lengthy and out of the scope

of this thesis.

Based on this theorem it is possible to write down all the characters of a class in an nc×nirrep square

table, called character table. The orthogonality relations simplify the calculations needed to fill those
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tables. Considering the orthogonality, one can regard the representation Γi creating an h-dimensional

vector space

V (Γi)
µ,ν = [RΓi

µν(a1), RΓi
µν(a2), . . . , RΓi

µν(ah)], (2.80)

in which particular vectors are labelled by the indices Γi, µ, ν. All distinct vectors in this space are

orthogonal, leading to the observation that two representations are orthogonal, if at least one of the

three indices differs.

Finally, we define the projection operator to an irreducible representation, which will be very useful

for the derivation of the form-factor basis.

Definition 19 (Projection Operator)

Let G be a group with irreducible representations Ri with character χi. Then the projection

operator

P(Ri) =
∑
g∈G

χ∗i (g)g (2.81)

projects out the contribution which transforms in Ri.

With the mathematical background at this stage, we are in a position to focus on the physical

problem of correlated electrons.
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C ondensed matter systems consist of atomic nuclei in a periodic arrangement and of electrons.

The nuclei of charge Zle (with e being the fundamental electronic charge and Zl the nuclear charge

number) are located at positions Rl and generate a periodic potential affecting the electrons. As

the atomic nuclei are significantly heavier than the electrons, calculations of the electronic system for

static nuclei result in small errors only. Therefore, the full condensed matter problem is separated

into an atomic and an electronic one by applying the Born-Oppenheimer approximation. As pointed

out in the introduction, the focus of this thesis is on the effects of electronic correlations, so that we

consider only the electronic problem whose corresponding Hamiltonian

Ĥ =

N∑
i=1

[
p̂2
i

2m
+ V (r̂i)

]
︸ ︷︷ ︸

=:Ĥ0

+

N∑
i=1

N∑
j=i+1

e2

|r̂i − r̂j |︸ ︷︷ ︸
=:ĤI

(3.1)

describes the N electrons of a condensed matter system in the periodic potential

V (r̂) = −
∑
l

Zle
2

|Rl − r̂|
(3.2)

of the atomic nuclei. The non-interacting part Ĥ0 of the Hamiltonian is a one-particle operator which

sums up the kinetic and the potential energy of each electron. The interacting part ĤI is a two-

particle operator, which describes the Coulomb-interaction between two electrons of the system. The

evaluation of this term is the crucial part for the description of the electronic system, as the duality of

representations makes an analytical solution impossible and as the large number of electrons makes a

numerical exact solution impossible, so that additional approximations to the full solid state electron

system are necessary1.

For many materials, like for example semi-conductors, the electronic system can well be described

by the behaviour of one electron in the effective potential of all the other electrons. In this case the

properties of the electronic system can be represented by one-particle expectation values. Many other

materials, like the HTS we are interested in, are not well described by such an effective one-particle

picture. In those cases, the expectation value of two one-particle operators differs from the product of

their expectation values, so that the electron-electron interaction has to be treated more accurately.

We define the correlation function which provides an objective measure to differentiate these types of

materials.

1In many cases, the Hamiltonian of the full electronic part is simplified to a model one, which can be discussed
more easily. To simplify the notation, all the following derivations and definitions are always with respect to the
Hamiltonian Ĥ, describing the system, its Fock basis or coherent states.

25



3. Theory

Definition 20 (Correlation Function and Correlated Electrons)

Let Â and B̂ be operators acting at (imaginary) space-time 1 and 2, respectively. Then their

correlation function is given by

χÂB̂(1, 2) :=
〈
Â(1)B̂(2)

〉
. (3.3)

Let Â and B̂ be one-particle electron operators. Then the electrons are uncorrelated, if

χÂB̂(1, 2) '
〈
Â(1)

〉〈
B̂(2)

〉
, (3.4)

otherwise they are correlated.

The simplest correlation functions are those in which Â and B̂ are fermion annihilation and creation

operators, like in χ(1t, 2t) = 〈c†1tc2t〉. Physically, this is the probability of finding an electron at space-

time 1t, when one is added at space-time 2t. This correlation function is the one-particle Green’s

function and will be discussed later on, as most one-particle expectation values can be derived from

it. In the limit 2t → 1+
t , for instance, it becomes the expectation value of the particle number.

Increasing the order of complexity, we let the operator product ÂB̂ consist of two electron creation

and two electron annihilation operators, such that the correlation function describes the correlations

between two electrons. The definition of the term correlated electrons according to equation (3.4)

is based on these operators. Physically, this equations states that electrons are correlated, when

the correlation function of the product of both one-particle operators is significantly different to the

product of the mean field expectation values of each operator. To obtain an operator product as

required, Â and B̂ are chosen as fermion-bilinears as given in the following definition.

Definition 21 (Fermion-Bilinears)

Let c†s(i) and cs(i) be the creation and the annihilation operators of a particle with spin s in a

solid at site and orbital index i and let σ be a Pauli matrix. Then we define:

1. Charge-Density operator: ρ̂(1) =
∑
s ĉ
†
s(1)ĉs(1).

2. Spin operators: Ŝi(1) = 1
2

∑
s,s′ ĉ

†
s(1)σiss′ ĉs′(1), where σi corresponds to the Pauli matri-

ces with i ∈ {0, x, y, z} .

3. Pairing operator: p̂(1, 2) = ĉs1(1)ĉs2(2).

One can directly see that charge- and spin-density operators are one-particle operators, thus

χcd(1, 2) := χρρ(1, 2) = 〈ρ̂(1)ρ̂(2)〉 and (3.5)

χijsd(1, 2) := χSiSj (1, 2) = 〈Ŝi(1)Ŝj(2)〉 (3.6)

are the charge- and the spin-density susceptibility, respectively. Contrary, the pairing operator gen-

erates particle pairs only with its adjoint counterpart, so that

χpd(1, 2) := χpp†(1, 2) = 〈p̂(1, 2)p̂†(1, 2)〉 (3.7)
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is the pairing susceptibility. When these susceptibilities become non-zero they indicate charge-density-

waves, spin-density-waves or pairing (superconducting) order, respectively. Frequently, the fermion-

bilinears are defined including a form-factor fn(x, y), whose spatial spread represents some typical

behaviour of the bilinears or susceptibilities under lattice symmetries, which is discussed in some

more detail in section 3.3.

As all three correlation functions consist of two creation and two annihilation operators they can

be obtained from a generalised correlation function (cf. def. 22) by taking the corresponding limits.

Definition 22 (Generalised Correlation Function)

Let the system be in thermal equilibrium and let 1, . . . , 4 be space- and (imaginary) time-

coordinates. Then the generalised correlation function is defined as the connected part of

the expectation value of two creation and two annihilation operators, i.e.

χ(12, 34) :=
〈
T̂ [ĉ(1)ĉ(2)ĉ†(3)ĉ†(4)]

〉
c

= 〈T̂ [ĉ(1)ĉ(2)ĉ†(3)ĉ†(4)]〉 −
〈
ĉ(1)ĉ†(4)

〉 〈
ĉ(2)ĉ†(3)

〉
+
〈
ĉ(1)ĉ†(3)

〉 〈
ĉ(2)ĉ†(4)

〉
. (3.8)

The restriction to the thermal equilibrium ensures that the particle number is conserved, as the

trace is zero in all other cases. The denotion of “connected” will be clarified by definition 29 later

on in this section. In the case of the limits 4 → 1− and 3 → 2− this generalised correlation function

becomes the charge-density correlation function after changing the order of operators. With the limits

2 → 1− and 4 → 3− one directly obtains the pairing correlation function. A similar combination of

exchanging the order of operators and taking limits to equal space-time coordinates leads to the

spin-density susceptibility.

A special kind of correlation functions, called response functions, is accessible by experiments.

They give the response of a physical observable to an external effect perturbing the equilibrium

state of the system. This can be the addition or the removal of particles or a perturbing field.

For the latter case we consider, exemplarily, the expectation value of an operator Â(1t) under the

perturbation of the form ϕ(2t) sB̂(2t), which is switched on at time t0. With the time-evolution

operator US(t, t0) = e
−i

∫ t
t0
dt′Ĥ+ϕ(2t)B̂(2t) the expectation value of the operator Â in the Heisenberg

picture becomes

δ
〈
ÂH(1t)

〉
pert

=
〈
Û†S(t1, t0)Â(1t)ÛS(t1, t0)

〉
(3.9)

=
〈
ÂH(1t)

〉
+ i

∫ t

t0

dt′ϕ(2t)
〈[
B̂H(2t), ÂH(1t)

]〉
+O(ϕ2) (3.10)

in a perturbation expansion in ϕ. The coefficients on the right hand side are called response functions

whose first order or linear term

χÂB̂(1t, 2t) :=
∂
〈
ÂH(1t)

〉
∂ϕ(2t)

= −iθ(t1 − t2)
〈[
ÂH(1t), B̂H(2t)

]〉
(3.11)

is also called susceptibility. This is, therefore, determined by the derivative of an expectation value

with respect to a perturbation. Thus, it can be regarded as the second derivative of the grand canoni-

cal potential (cf. def. 5) with respect to some perturbation, as expectation values of operators are the
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first derivative. Extending this procedure to non-local operators and to non-local perturbations, like

magnetisation and magnetic fields, the resulting susceptibilities depend on four arguments. Writing

the effects in terms of field operators, the expression takes the same form as the generalised correla-

tion function. Thus the generalised correlation function also contains the experimentally accessible

susceptibilities.

The calculation of the generalised correlation function is difficult, as the grand canonical partition

function, the grand canonical potential and the wave-function of the stationary Schrödinger equation

of the many-electron problem cannot be calculated for generic interacting electron systems. In the

following, we will, therefore, discuss a general form of correlation functions, which our approach to

solve the problem is based on.
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3.1. Green’s Functions

3.1. Green’s Functions

As all operators can be expressed by creation and annihilation operators in the occupation number

representation, we generalise the previous correlation function to an arbitrary number of operators.

Definition 23 (n-particle Green’s Function)

Let n ∈ N, and let 〈· · · 〉 denote the expectation value with respect to K̂ = Ĥ0 + ĤI − µN̂ and

〈· · · 〉0 the expectation value with respect to the non-interacting Hamiltonian K̂0 = Ĥ0 − µN̂ , and

let T be the time-ordering operator.

• Let ĉ†(it) and ĉ(it) be the creation and the annihilation operators of states xi = (ri, oi, si)

in the Heisenberg picture at real times ti ∈ R with it = (xi, ti). Then

– the n-particle (or 2n-point) real time Green’s function is defined as

G(2n)(1t, . . . , 2nt) := (−i)n
〈
T̂
[
ĉ(1t) · · · ĉ(nt)ĉ†(2nt) · · · ĉ†(n+ 1t)

]〉
and (3.12)

– the free or non-interacting n-particle real time Green’s function is defined as

G
(2n)
0 (1t, . . . , 2nt) := (−i)n

〈
T̂
[
ĉ(1t) · · · ĉ(nt)ĉ†(2nt) · · · ĉ†(n+ 1t)

]〉
0
. (3.13)

• Let ĉ†(i) and ĉ(i) be the creation and the annihilation operators of states xi = (ri, oi, si) in

the Heisenberg picture for imaginary times τ1, . . . , τ2n ∈ [0, ~β] with i = (xi, τi). Then

– the n-particle (or 2n-point) imaginary time Green’s function is defined as

G(2n)(1, . . . , 2n) :=
〈
T̂
[
ĉ(1) · · · ĉ(n)ĉ†(2n) · · · ĉ†(n+ 1)

]〉
and (3.14)

– the free or non-interacting n-particle (or 2n-point) imaginary time Green’s func-

tion is defined as

G
(2n)
0 (1, . . . , 2n) :=

〈
T̂
[
ĉ(1) · · · ĉ(n)ĉ†(2n) · · · ĉ†(n+ 1)

]〉
0
. (3.15)

These Green’s functions are the basic elements of a lot of approaches to many-particle physics and,

hence, are discussed extensively in basic literature ([78, 80, 28, 81, 82]), which this section is based

on.

In definition 23 the basis on which the operators act was chosen as the conventional position

space basis. As discussed in section 2.1 a translational invariant basis is advantageous to describe

solids, especially for working with lattice models. Therefore, we will typically work with lattice

Green’s functions, which are defined with respect to Wannier functions (see eq. 2.18). The basis

transformation is straight forward and results in a replacement of the position space argument by the

corresponding lattice vector argument in our notation. Therefore, we now denote x := (Ros) and

1 := (xτ), as already introduced in equation (2.21) and the following paragraph in the preliminaries.

Throughout this thesis we assume in all theorems and definitions in which Green’s functions appear,

that these are well defined according to this definition without mentioning all prerequisites.
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All the properties which will be discussed for the interacting Green’s function in this and in the

following section also hold for the free Green’s function due to the similarity of their definitions.

Based on our notation, we will derive these properties for the lattice imaginary time Green’s function,

although most of the properties also hold for position-space and for real time Green’s functions and

differences will be mentioned in short remarks. As the one-particle Green’s function has an extraordi-

nary significance, which will become evident in section 3.2, the superscript is neglected and we write

G(1, 2) := G(2)(1, 2).

A comparison of the definitions of the two-particle Green’s function G(4) and the generalised sus-

ceptibility χ (cf. def. 22) shows that these only differ by the restriction of χ to connected expectation

values. They are thus related by subtraction of the uncorrelated part from G(4) according to

χ(1, 2; 3, 4) = G4(1, 2; 3, 4)−G2(1; 4)G2(2; 3) +G2(1; 3)G2(2; 4), (3.16)

which we will derive in detail in the section about diagrammatic representations (see sec. 3.2.2).

Although we formally defined different Green’s functions for real and for imaginary time, both are

equivalent under the identification t = iτ and can be converted into each other. The restriction of the

imaginary time Green’s function to the interval [0, β] is required to ensure convergence for the trace

in an infinite basis. To illustrate this, let {|i〉} be a complete orthonormal basis built up from the

eigenstates of the modified Hamiltonian K̂ = Ĥ − µN̂ with eigenvalues Ei. For the expansion of the

trace in this basis set we assume, without loss of generality, τ1 > τ2 > . . . > τn > τ2n > . . . > τn+1

and write the Green’s function as

G(2n)(1, . . . , 2n) =
1

Z
∑
n

e−(β+τn+1−τ1)En 〈i| ĉ1e−τ1K̂ . . . eτn+1K̂ ĉ†n+1 |i〉 . (3.17)

For an infinitely large system, the number of eigenstates is infinite and its spectrum is unbounded,

i.e. the eigenenergies Ei can become infinitely large. Only under the requisition β+ τn+1− τ1 > 0 the

exponential factor can ensure a convergence of the sum. The choice of τn+1 and τ1 as smallest and

largest imaginary time, respectively, enforces all other imaginary times to be in an interval of size β.

3.1.1. Properties of the n-particle Green’s Function

Based on the general definition of the Green’s functions, we will analyse the n-particle Green’s

functions in this subsection and will focus on imaginary time arguments, as we have to deal with

systems at finite temperatures to obtain critical temperatures indicating phase transitions. The cor-

responding Green’s function is antiperiodic due to the cyclic property of the trace, which is also called

Kubo-Martin-Schwinger boundary condition [83].

Theorem 3.1 (Kubo-Martin-Schwinger Boundary Condition)

Let G2n be the n-particle Green’s function. Then the Green’s functions G2n at time τi = 0 and

τi = β for any i ∈ {1, . . . , 2n} are related by

G2n(x1τ1, . . . , xiτi = 0, . . . , x2nτ2n) = −G2n(x1τ1, . . . , xiτi = β, . . . , x2nτ2n). (3.18)
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Proof: First, we consider a special case and let τn+1 = 0. Then

G2n(x1τ1, . . . , xn+1 τn+1︸︷︷︸
=0

, . . . , x2nτ2n) =
〈
T̂
[
ĉx1

(τ1) · · · ĉ†xn+1
(0)
]〉

=
〈{
T̂
[
ĉx1

(τ1) · · · ĉ†xn+2
(τn+2)

]}
ĉ†xn+1

(0)
〉

def. 6
=

1

ZTr
(
ĉ†xn+1

(0) e−βK̂ T̂
[
ĉx1

(τ1) · · · ĉ†xn+2
(τn+2)

])
=

1

ZTr
(
e−βK̂ ĉ†xn+1

(β) T̂
[
ĉx1

(τ1) · · · ĉ†xn+2
(τn+2)

])
= −

〈
T̂
[
ĉx1

(τ1) · · · ĉ†xn+2
(τn+2)ĉ†xn+1

(β)
]〉

= −G2n(x1τ1, . . . , xn+1β, . . . , x2nτ2n).

(3.19)

In this derivation we used the cyclicity of the trace in the third line and the definition of a time-

dependent operator in the Heisenberg representation in the fourth line, and the commutation with

2n− 1 operators generates the “-” in the second last line. The validity of this relation for the last n

operators is obtained by their anticommutativity relation, while an analogous calculation is used to

obtain the result for the first n arguments.

Based on this boundary condition theorem, the imaginary time n-particle Green’s function can be

continued to an antiperiodic function for all τi ∈ R. That is, we can define for τ0
i ∈ [0, β] and for

m ∈ Z a time τmi = τ0
i +mβ outside the window [0, β] such that

G2n(x1τ1, . . . , xiτi = τ0
i , . . . , x2nτ2n) = (−1)mG2n(x1τ1, . . . , xiτi = τmi , . . . , x2nτ2n) (3.20)

defines the continuation of the imaginary time Green’s function to any τi ∈ R. However, as this

antiperiodically continued imaginary time Green’s function is not antiperiodic for all τ ∈ R, it cannot

be represented by the right hand side of the original Green’s function in equation (3.14).

Due to the definition of the Green’s function additional symmetries hold, summarised in the follow-

ing theorem.

Theorem 3.2 (Intrinsic Symmetries of the n-particle Green’s Function)

Let G2n(1, ..., 2n) be the n-particle (imaginary or real time) Green’s function. Then the following

symmetries hold:

1. Crossing Symmetry: The Green’s function is antisymmetric in permutations of the first

n as well as the last n arguments, i.e.

G2n(1, ..., i, ..., j, ..., n;n+ 1, ..., 2n) = −G2n(1, ..., j, ..., i, ..., n;n+ 1, ...2n) and

G2n(1, ..., n;n+ 1, ..., i, ..., j, ..., 2n) = −G2n(1, ..., n;n+ 1, ..., j, ..., i, ...2n)
(3.21)

for any index pair i, j ∈ [0, n] or i, j ∈ [n+ 1, 2n], respectively.

2. Complex Conjugation: Under complex conjugation the imaginary time Green’s function

shows the symmetry

(
G2n

)∗
(x1τ1, . . . , x2nτ2n) = G2n(x2n(−τ2n), . . . , x1(−τ1)). (3.22)
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Proof: 1. Consider the definition of the real or the imaginary time Green’s function. If two

creation or annihilation operators next to each other change their order in the time-ordered

product, their anticommutativity directly leads to a sign change. When other operators are

in between them, additional commutations of both operators with these sandwiched ones are

necessary. As this always requires two commutations, the resulting factor is one, such that the

total sign change is still the result of their commutation with each other.

2. Consider the definition of the imaginary time Green’s function with operators in the Heisenberg

picture and assume without loss of generality τ1 > τ2 > . . . > τn > τ2n > . . . > τn+1. Under

complex conjugation the time evolution exponents are real valued such that we obtain

(
G2n

)∗
(x1, τ1, . . . , x2nτ2n) =

〈
T̂
[
eτ1K̂ ĉx1e

−τ1K̂ · · · eτn+1K̂ ĉ†xn+1
e−τn+1K̂

]〉∗
=
〈
T̂
[
e−τn+1K̂ ĉxn+1e

τn+1K̂ · · · e−τ1K̂ ĉ†x1
eτ1K̂

]〉
=
〈
T̂
[
ĉxn+1

(−τn+1) · · · ĉx2n
(−τ2n)ĉ†xn(−τn) · · · ĉ†x1

(−τ1)
]〉

= G2n(x2n(−τ2n), . . . , x1(−τ1)),

(3.23)

where we used the crossing symmetry to arrange both, the creation and the annihilation opera-

tors, in the correct form in the last step.

Considering the real time Green’s function under complex conjugation, the exponents of the time-

evolution operators are complex and thus obtain a sign change under complex conjugation. Therefore,

following the proof of the imaginary time Green’s function, the time arguments keep their sign under

complex conjugation. Although these “symmetries” are no real symmetries in a physical sense, they

are very helpful to facilitate calculations. The behaviour of the Green’s functions under physical

symmetries is investigated in the following subsection.

3.1.2. Behaviour of Green’s Functions under Symmetries

We first consider a general symmetry operation of the system in order to simplify the derivation of

the behaviour under specific symmetries later on.

Theorem 3.3 (The n-particle Green’s Function under Symmetries)

Let Û represent a similarity transformation which commutes with the modified Hamiltonian K̂ =

Ĥ−µN̂ of the system, i.e. [Û , K̂] = 0. Then the n-particle Green’s functions do not change under

the transformation Û , i.e.

G̃(2n)(1, . . . , 2n) = G(2n)(1, . . . , 2n), (3.24)

with G̃(2n) being the transformed Green’s function.

Proof: This proof corresponds to the one of Rohringer [82]. The creation and the annihilation

operators change under the symmetry transformation according to

ˆ̃c†i = Û−1ĉ†i Û and ˆ̃ci = Û−1ĉiÛ , (3.25)
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so that the transformed n-particle Green’s function becomes

G̃(2n)(1, . . . , 2n) :=
〈
T̂
[
ˆ̃c1(τ1) · · · ˆ̃cn(τn)ˆ̃c†2n(τ2n) · · · ˆ̃c†n+1(τn+1)

]〉
. (3.26)

For the time evolution of annihilation operators terms of the form

ˆ̃ci(τi)ˆ̃cj(τj) = eτiK̂ ˆ̃ci e
−τiK̂ eτjK̂ ˆ̃cj e

−τjK̂

= eτiK̂ Û−1 ĉi Û e−τiK̂ eτjK̂ Û−1 ĉj Û e−τjK̂

= eτiK̂ Û−1 ĉi Û e−τiK̂ Û−1 Û eτjK̂ Û−1 ĉj Û e−τjK̂

= eτiK̂ Û−1 ĉi e
−τi ˆ̃K eτj

ˆ̃K ĉj Û e−τjK̂

(3.27)

arise with ˆ̃K = Û K̂ Û−1. This result is obtained for the creation operators, too, and, due to the

cyclicity of the trace, also for the left- and the rightmost terms. In a symbolic notation we thus get

G(2n)[ˆ̃c†, ˆ̃c, K̂] = G(2n)[ĉ†, ĉ, ˆ̃K], (3.28)

which means that either the operators ˆ̃c and ˆ̃c† or the Hamiltonian K̂ can be transformed, resulting

in the same Green’s function. According to the prerequisites Û commutates with the Hamiltonian

resulting in ˆ̃K = K̂. Thus the Green’s functions in the original and in the transformed system

coincide.

A physical interpretation of this theorem can be obtained from equation (3.28). The left hand

side is the Green’s function, in which creation and annihilation operators are transformed under an

active transformation Û and are expressed in terms of the old reference system. On the right hand

side the reference system is transformed, which is achieved by transforming the Hamiltonian with the

corresponding passive (or inverse) transformation. Thus, according to the equation, the active and

the passive transformation have to coincide.

We apply this general theorem to some specific symmetries of the system. To simplify the notation,

we will only write out the necessary dependencies which are subject to the symmetry operation in the

following corollary.

Corollary 3.4 (The n-particle Green’s Function under Symmetries of the System)

Let G(2n)(1, . . . , 2n) be the n-particle imaginary time Green’s function of a system described by

the modified Hamiltonian K̂ = ĥ− µN̂ .

1. Time Translation: Let K̂ be invariant under time translations. Then the Green’s function

in imaginary time is invariant under translations in time a ∈ R, i.e.

G2n(τ1, . . . , τ2n) = G2n(τ1 + a, . . . , τ2n + a). (3.29)

2. Spatial Translation: Let K̂ be invariant under a spatial translation r′ ∈ R3. Then the

Green’s function is also invariant under this translation, i.e.

G2n(r1, . . . , r2n) = G2n(r1 + r′, . . . , r2n + r′). (3.30)
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3. SU(2) Spin-Symmetry: Let K̂ be SU(2)-symmetric (spin-symmetric). Then the Green’s

function conserves the total spin, i.e. the sum of the spins of the creation operators equals

the sum of the one of the annihilation operators:

n∑
i=1

si =

2n∑
i=n+1

si, (3.31)

and it is symmetric with respect to a global spin flip, i.e.

G(2n)(s1, . . . , s2n) = G(2n)(−s1, . . . ,−s2n). (3.32)

4. Point Group Symmetry: Let K̂ be symmetric with respect to a point group Γ, and let

R̂ ∈ Γ be a symmetry operation of the point group. Then the Green’s function is symmetric

in the sense of

G(2n)(R̂(r1), . . . , R̂(r2n)) = G(2n)(r1, . . . , r2n). (3.33)

5. Time and Space Reversal Symmetry: Let K̂ be a purely real function of the creation

and the annihilation operators, then the n-particle Green’s function is also purely real.

6. Electron-Hole Symmetry: Let K̂ be electron-hole symmetric, i.e. K̂ does not change

under exchanging creation and annihilation operators up to a constant. Then the Green’s

function is electron-hole symmetric in the sense of

G(2n)(1, . . . , 2n) = (−1)nG(2n)(2n, . . . , 1). (3.34)

Proof: 1. Time Translation Symmetry:

We define the time translation operator by T̂τ := e−K̂τ , which commutes with the modified

Hamiltonian K̂, as the latter is time-independent. The creation and the annihilation operators

become

ˆ̃c†xi(τi) = eK̂τ ĉ†xi(τi) e
−K̂τ = ĉ†xi(τi + τ) and

ˆ̃c′xi(τi) = eK̂τ ĉxi(τi) e
−K̂τ = ĉxi(τi + τ),

(3.35)

which corresponds to a time evolution in the Heisenberg picture with τi + τ . As this holds for

all operators, we obtain for the choice of τ = a

G̃(2n)(τ1, . . . , τ2n) = G(2n)(τ1 + a, . . . , τ2n + a). (3.36)

Due to the commutativity of the time translation operator and K̂, we can apply theorem 3.3 to

obtain the assertion by

G(2n)(τ1 + a, . . . , τ2n + a) = G(2n)(τ1, . . . , τ2n). (3.37)

A corresponding result for the real time Green’s function can be obtained by performing the

same lines of the proof.
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2. Space Translation Symmetry:

The lattice translation operator T̂r′ is defined via its action on the creation and the annihilation

operators

ˆ̃c†r = T̂ −1
r′ ĉ†r T̂r′ = ĉ†r+r′ and ˆ̃cr = T̂ −1

r′ ĉr T̂r′ = ĉr+r′ , (3.38)

which moves their spatial argument by a vector r′. As the Hamiltonian itself is invariant under

lattice transformations, it commutes with this translation operator. Therefore, the transformed

Green’s function

G̃(2n)(r1, . . . , r2n) =
〈
T̂
[
T̂ −1
r′ ĉ†r1

T̂r′ T̂ −1
r′ ĉ†r2

T̂r′ · · · T̂ −1
r′ ĉrn+1

T̂r′
]〉

=
〈
T̂
[
ĉ†r1+r′ ĉ

†
r2+r′ · · · ĉrn+1+r′

]〉
= G(2n)(r1 + r′, . . . , r2n + r′)

(3.39)

is equal to the original Green’s function G(2n)(r1, . . . , r2n) according to theorem 3.3.

3. SU(2) Spin Symmetry:

The SU(2)-group is generated by the spin operators in three dimensions Ŝx, Ŝy and Ŝz, which

are defined in definition 21.2. By definition, a system is SU(2)-symmetric, if the Hamiltonian

commutes with all these generators, i.e.

[Ĥ, Ŝi] = 0 for all i ∈ {x, y, z}. (3.40)

To show the conservation of the total spin, we consider the spin component in z-direction. As Ŝz

is hermitian, the whole Hilbert space can be divided into two orthogonal subsets corresponding

to the eigenvalues. Based on the eigenvectors |Sz, α〉 of this space, which correspond to the

eigenvalues of Ŝz, the n-particle Green’s function can be rewritten as

G(2n)
s1,. . . ,s2n(1, . . . , 2n)

=
1

Z
∑
Sz

∑
α

〈Sz, α| e−βK̂ eτ1K̂ ĉ†s1 e−τ1K̂ · · · eτnK̂ ĉ†sn e−τnK̂ |Sz, α〉 , (3.41)

with explicitly written traces. The operators of the form eγK̂ , γ ∈ C do not change the value of

Sz, as [Ŝz, K̂] = 0, but they can change the state from α to α′. If we write s = 1
2 for spin up and

s = − 1
2 for spin down, the commutation relations of Ŝz with the creation and the annihilation

operators become

[Ŝz, ĉ
†
s] = s ĉ†s and [Ŝz, ĉs] = −s ĉs. (3.42)

From these commutators the effect of the creation and the annihilation operators on basis states

|Szα〉 directly follows as

ĉ†s |Sz, α〉 = |Sz + s, α′〉 and ĉs |Sz, α〉 = |Sz − s, α′〉 . (3.43)
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Evaluating the expectation value of the Green’s function in the |Sz, α〉-space results in

〈Sz, α| e−βK̂eτ1K̂ ĉ†s1e−τ1K̂ · · · eτnK̂ ĉ†sne−τnK̂ |Sz, α〉
= 〈Sz, α|Sz + s1 + · · ·+ sn − s2n − · · · − sn+1, α

′〉
= cSz,αα′δs1+···+sn−s2n−···−sn+1,0,

(3.44)

where cSz,αα′ is a constant depending on Sz, α and α′. The δ-expression resulting from this

evaluation implies s1 + . . . + sn = s2n + . . . − sn+1 and thus the conservation of the total spin.

From this we deduce the spin product

2n∏
i=1

(2s) = +1. (3.45)

Next, we consider a general rotation of a spin-state by an angle φ. We define the spin rotation

operator by

D̂(n, φ) = e−iφn·Ŝ , (3.46)

where n is a unit vector in three dimensions and φ ∈ [0, 2π). To simplify the derivation we

introduce Pauli spinors

ĉ =

(
ĉ↑
ĉ↓

)
and ĉ† =

(
ĉ†↑
ĉ†↓

)
(3.47)

which contain both spin components. The transformation according to the general treatment

results in

ˆ̃c†(n, φ) = eiφn·Ŝ ĉ† e−iφn·Ŝ and ˆ̃c(n, φ) = eiφn·Ŝ ĉ e−iφn·Ŝ . (3.48)

To simplify these operators, we take their derivatives with respect to φ, use the commutator of

Ŝi and c(†) and obtain the differential equation

d

dφ
ˆ̃c(†)(n, φ) = ieiφnŜ [n · Ŝ, ĉ(†)]e−iφn·Ŝ

= ±1

2
in · σ(T )ĉ′(†)(n, φ)

(3.49)

with the initial value ˆ̃c(†)(n, 0) = ĉ(†). The solution of this initial value problem is

ˆ̃c(†)(n, φ) = e±i
φ
2nσ

(T )

ĉ(†) =

[
cos

(
φ

2

)
1± sin

(
φ

2

)
n · σ(T )

]
ĉ(†) (3.50)

and can now be used in the Green’s function. As the Hamiltonian commutes with the spin

rotation operator D̂, theorem 3.3 implies

G̃(2n)(s1, . . . , s2n) =
〈
T̂
[
ˆ̃c†s1

ˆ̃c†s2 . . .
ˆ̃csn+1

]〉
= G(2n)(s1, . . . , s2n), (3.51)
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which is a general relation for any combination of n and φ. A spin-flip process is obtained by a

rotation of φ = π around the y-axis, n = (0, 1, 0)T , such that(
ˆ̃c
(†)
↑

ˆ̃c
(†)
↓

)
=

(
0 −1

1 0

)(
ĉ
(†)
↑
ĉ
(†)
↓

)
, (3.52)

resulting in ˆ̃c
(†)
↑ = −ĉ(†)↓ and ˆ̃c

(†)
↓ = ĉ

(†)
↑ . Inserting this into the Green’s function, writing ↑= − ↓

and vice versa results, under consideration of the spin product, in

G̃(2n)(s1, . . . , s2n) = G(2n)(−s1, . . . ,−s2n) (3.53)

as a special case of equation (3.51).

4. Point Group Symmetry:

As R̂ is a symmetry operation of the point group of the lattice, we define the corresponding

symmetry transformation by

ˆ̃c†(r) = R̂−1 ĉ†(r) R̂ = ĉ†(R̂(r)) and ˆ̃c(r) = R̂−1 ĉ(r) R̂ = ĉ(R̂(r)). (3.54)

According to the general result of symmetry operations, we directly derive

G̃(2n)(r1, . . . , r2n) = 〈R̂−1ĉ†(r1)R̂. . . R̂−1ĉ(rn+1)R̂〉
= 〈ĉ†(R̂(r1)). . . ĉ(R̂(rn+1))〉
= G(2n)(R̂(r1), . . . , R̂(r2n))

= G(2n)(r1, . . . , r2n),

(3.55)

which generates, due to the commutativity of K̂ and R̂, the requested relation according to

theorem 3.3.

5. Time and Space Reversal Symmetry:

As this symmetry is not considered any further in this thesis, we refer the interested reader to

the proof in [82].

6. Electron-Hole Symmetry:

As this symmetry is not considered any further in this thesis, we again refer the interested reader

to the proof in [82].

The solid state Hamiltonian (3.1) is invariant under translations by a lattice vector and under time

translations so that theorem 3.4 describes the behaviour of the Green’s function of a solid under those

symmetries. When a time argument of the Green’s function is chosen as the time translation, like,

for instance, a = −τ2n, the Green’s function depends on 2n− 1 time differences. Therefore, a Fourier

transformation reduces the dependencies to 2n− 1 frequency arguments. When the Green’s function

is defined for lattice sites Ri, then a similar treatment for the spatial arguments leads to a dependence

on 2n− 1 lattice vector differences or on n− 1 momentum dependencies. We exploit this reduction of

arguments by considering the corresponding momentum and frequency Green’s functions.

37



3. Theory

3.1.3. Momentum and Frequency Green’s Functions

We perform the transformation of the system to frequency and momentum space in order to exploit

the translation symmetries mentioned in theorem 3.4. As the system is periodic on the lattice and in

imaginary time, we can evolve it in the corresponding Fourier series as defined by equations (2.15) and

(2.8). Contrary we need a Fourier transformation for the position space and the real time arguments of

the Green’s function according to equations (2.14) and (2.7), as they are non-periodic. In the following

definition we focus on the Fourier transformation of the lattice Green’s function and imaginary time

one, as they will be needed further on. However, the Fourier transformation of the position space and

the real time Green’s functions can be defined in exact analogies.

Definition 24 (Fourier Transformation of Green’s Functions)

• Let G(2n)(R1, . . . ,R2n) be the n-particle lattice Green’s function with lattice vectors Ri. Let

ki be in the first Brillouin zone B for all i ∈ {0, . . . , 2n}, which has size |B|. Then the lattice

Fourier transformation is given by the series

G(2n)(k1, . . . ,k2n) :=
∑
R1

· · ·
∑
R2n

e−ik1·R1 · · · e−ikn·Rn eik2n·R2n · · · eikn+1·Rn+1 G(2n)(R1, . . . ,R2n) (3.56)

with the Fourier coefficients

G(2n)(R1, . . . ,R2n) =
1

|B|2n
∫
B

dk1 · · ·
∫
B

dk2n

G(2n)(k1, . . . ,k2n) eik1·R1 · · · eikn·Rn e−ik2n·R2n · · · e−ikn+1 ·Rn+1 . (3.57)

• Let G(2n)(τ1, . . . , τ2n) be the imaginary time n-particle Green’s function, and let ωi ∈{
(2l+1)π

β

∣∣∣ l ∈ N
}

be Matsubara frequencies ∀ i ∈ {0, . . . , 2n}. Then its Fourier series is

given by

G(2n)(τ1, . . . , τ2n) =
1

β2n

∑
ω1,. . . ,ω2n

G(2n)(ω1, . . . , ω2n) e−iω1τ1 · · · e−iωnτn eiω2nτ2n · · · eiωn+1τn+1 (3.58)

with the Fourier coefficients

G(2n)(ω1, . . . , ω2n) :=

∫ β

0

dτ1 . . .

∫ β

0

dτ2n

eiω1τ1 · · · eiωnτn e−iω2nτ2n · · · e−iωn+1τn+1 G(2n)(τ1, . . . , τ2n). (3.59)
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Corollary 3.5 (Momentum Space Invariance of the Green’s Function)

The momentum space Green’s function is invariant under a shift by a reciprocal lattice vector K,

that is

G2n(k1 +K, . . . ,k2n +K) = G2n(k1, . . . ,k2n). (3.60)

Proof: Based on the defining equation (3.56) the exponentials become, according to the shift,

exp(i(ki + K) · R). As exp(iK · R) = 1 only the original momentum variables remain, thus yielding

the assertion.

Theorem 3.6 (Momentum and Energy Conservation)

Let K̂ be invariant under translations by lattice vectors R and under imaginary time translations

by β. Let further G(2n)(x1τ1, . . . , x2nτ2n) be the n-particle lattice Green’s function. Then the

Green’s function only depends on (n − 1) time and lattice-vector differences, and the Fourier

transformation is given by

G(2n)(k1ω1, . . . , k2nω2n) = |B|β G̃(2n)(k1ω1, . . . , k2n−1ω2n−1, o2ns2n)∑
K

δ(K + k1 + . . . + kn,kn+1 + . . . + k2n) δ(ω1 + . . . + ωn, ωn+1 + . . . + ω2n), (3.61)

with the sum being over all reciprocal lattice vectors K.

Proof: Theorem 3.4 allows us to shift all spatial arguments of the Green’s function. For the lattice

Green’s function we therefore move one argument to the origin without loss of generality, we choose

R2n, and the Fourier transformation of equation (3.56) becomes

G(2n)(k1, . . . ,k2n) =
∑
R1

· · ·
∑
R2n

e−ik1·R1 · · · e−ikn·Rn eik2n·R2n · · · eikn+1·Rn+1 G(2n)(R1 −R2n, . . . ,R2n−1 −R2n,0). (3.62)

As the sums over lattice vectors Ri contain all the possible corresponding vectors, we can simply shift

all but R2n by R2n and write R̃i := Ri −R2n. The Fourier transformation thus becomes

G(2n)(k1, . . . ,k2n) =
∑
R̃1

· · ·
∑
R̃2n−1

∑
R2n

e−ik1·(R̃1+R2n) · · · e−ikn·(R̃n+R2n)

eik2n·R2n · · · eikn+1·(R̃n+1+R2n)G(2n)(R̃1, . . . , R̃2n−1,0). (3.63)

Reordering all the exponential terms according to the corresponding lattice vectors R results in the

term
∑
R2n

ei(k1+···+kn−k2n−···−kn+1)·R2n , which can be evaluated independent of the Green’s function

and results in |B|δ(K + k1 + · · · + kn − k2n − · · · − k2n+1). In this expression the reciprocal lattice

vector K is required, as all ki are in the first Brillouin zone, while this does not necessarily hold

for their sum. The Fourier transformation for the remaining 2n − 1 arguments can be performed as

before. As the argument R2n = 0 is constant and not transformed, we leave it out in the Fourier

transformed Green’s function.
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For the temporal Fourier transformation we proceed in analogous steps compared to the spatial

case. Therefore, due to the symmetry under a shift of times, all temporal arguments of the Green’s

function are moved by a = −τ2n such that the imaginary times Green’s function depends on n − 1

time differences. The time differences are then substituted by τ̃i = τi − τ2n for all arguments except

for τ2n. The transformation of the limits of the integral results in [−τ2n, β − τ2n] which is outside

of [0, β). However, due to the antiperiodicity of the Green’s function (cf. eq. (3.20)) any integral

over an interval of length β, as we have got it here, is equivalent to an integration over [0, β) so that

we can directly perform the Fourier transformation of the 2n−1 elements τ̃i. The evaluation of the

remaining integral
∫ β

0
dτ2n ei(ω1+. . .+ωn−ωn+1−. . .−ω2n)τ2n in the Fourier transformation then results

in β, δ(ω1 + . . . + ωn, ωn+1 + . . . + ω2n), completing the proof.

The δ-distributions in theorem 3.6 correspond to the conservation of momenta up to a reciprocal

lattice vector K and to the conservation of energy. That is, the combined energy of all created

particles has to equal the combined one of all annihilated particles in the corresponding expectation

value of the Green’s function. The same holds for the momenta up to K, as all ki have to be in the

first Brillouin zone, which does not hold for their sum. This theorem allows a significant simplification

of calculations, as the number of independent momenta and that of the frequencies is reduced by one.

However, the number of independent orbitals or bands and spins is not reduced.

3.1.4. Time Evolution of Green’s Functions

As the Green’s functions are time dependent, their time evolution is of particular interest and will be

used in the derivation of the perturbation theory (see section 3.2). For means of simplicity, we focus on

the non-interacting Green’s function in position space and write the time evolution theorem in terms

of position space and field operators, although it can analogously be derived in other representations.

Theorem 3.7 (Time-Evolution of Free Green’s Functions)

Let G
(2n)
0 be the free imaginary time Green’s function in position space so that i = (ri, oi, si, τi).

Then the free one-particle Green’s function G0 satisfies the equation of motion

β

(
∂

∂τ1
− ∇

2
r

2m
+ Vext(r)− µ

)
G0(1, 2) = δ(1, 2). (3.64)

For n ≥ 2 the time evolution of the n-particle Green’s function is given by

β

(
∂

∂τ1
− ∇

2
r

2m
+ Vext(r)− µ

)
G

(2n)
0 (1, . . . , 2n)

=

2n∑
`=n+1

(−1)`−n−1δ(1, `)G
(2n−2)
0 (2, . . . , n, n + 1, . . . , �̀, . . . , 2n) (3.65)

with �̀ denoting that the index ` is left out.

Proof: This proof is along the lines of the proof of thm. 4.7 in [81]. The free one-particle Green’s

function in terms of field operators in the interaction picture (2.5) is

G0(1, 2) = θ(τ1 − τ2)
〈
ψ̂I(x1τ1)ψ̂†I (x2τ2)

〉
0
− θ(τ2 − τ1)

〈
ψ̂†I (x2τ2)ψ̂I(x1τ1)

〉
0

(3.66)
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after having evaluated the time-ordering operator. Here the subscript of the brackets accounts for

taking the expectation value with respect to the non-interacting Hamiltonian in position space, i.e.

K̂0 = Ĥ0 − µN̂ =

∫
dr′ ψ̂†(r′)

(
−∇

2
r′

2m
+ Vext(r

′)− µ
)
ψ̂(r′). (3.67)

The τ1-derivative of G0 results in

∂τ1G0(x1τ1, 2τ2) = δ(τ1 − τ2)
〈
ψ̂I(x1τ1)ψ̂†I (x2τ2)

〉
0

+ θ(τ1 − τ2)
〈
∂τ1 ψ̂I(x1τ1)ψ̂†I (x2τ2)

〉
0

+ δ(τ2 − τ1)
〈
ψ̂†I (x2τ2)ψ̂I(x1τ1)

〉
0
− θ(τ2 − τ1)

〈
ψ̂†I (x2τ2)∂τ1 ψ̂I(x1τ1)

〉
0
,

(3.68)

where we used the distributional identity ∂τ1θ(τ1 − τ2) = δ(τ1 − τ2). Due to the anticommutation

rules for creation and annihilation field operators (cf. eq. (2.1)) the terms with δ functions can be

combined, and their evaluation results in δ(r1−r2)δo1,o2
δs1,s2 =: δ(x1, x2). Both remaining terms can

be combined using the time-ordering operator again, resulting in

∂τG(1τ1, 2τ2) = δ(x1, x2)δ(τ1 − τ2) +
〈
T̂ [∂τ1 ψ̂I(x1τ1)ψ̂†I (x2τ2)]

〉
0
. (3.69)

Hence, the remaining problem of this first part of the proof is to obtain the evolution equation for the

creation operator. Due to the interaction picture (cf. eq. (2.5)) the time-derivative results in

∂τ1 ψ̂I(x1τ1) = −eK̂0τ1 [ψ̂I(x1), K̂0]e−K̂0τ1 . (3.70)

As the non-interacting part of K̂0 consists of terms of the form ψ̂(xi)ψ̂
†(xi), the commutator becomes

[ψ̂I(x1), ψ̂†I (x2)ψ̂I(x2)] = [ψ̂I(x1), ψ̂†I (x2)]ψ̂I(x2) = δ(x1, x2)ψ̂I(x2) = δ(x1, x2)ψ̂I(x1), (3.71)

which leads to the following equation of motion

∂τ1 ψ̂I(x1τ1) =

(∇2
r1

2m
− Vext(r1) + µ

)
ψ̂I(x1τ1) (3.72)

for the field operator ψ̂I. The insertion into equation (3.69) leads to the assertion in equation (3.64).

For the general case of a non-interacting n-particle Green’s function in the interaction picture

G
(2n)
0 (1, . . . , 2n) =

〈
T̂
[
ψ̂I(x1τ1) · · · ψ̂I(xnτn)ψ̂†I (x2nτ2n) · · · ψ̂†I (xn+1τn+1)

]〉
0

= (−1)
n(n−1)

2

〈
T̂
[
ψ̂I(x1τ1) · · · ψ̂I(xnτn)ψ̂†I (xn+1τn+1) · · · ψ̂†I (x2nτ2n)

]〉
0

(3.73)

the arguments are reordered according to their index numbering. Like in the one-particle Green’s

function, the evaluation of the time-ordering operator is crucial for the equation of motion, as it leads

to Heaviside functions. This becomes challenging, as all combinations of times are principally possible.

Based on the symmetry group Sm, the n-particle Green’s function can, according to definition 1,

be rewritten as

G
(2n)
0 (1, . . . , 2n) = (−1)

n(n−1)
2

∑
π∈S2n

sgn(π)θτ (π1 − π2) · · · θτ (π2n−1 − π2n)
〈
ψ̂

(†)
I (π1). . . ψ̂

(†)
I (π2n)

〉
0

(3.74)
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with the abbreviation πi := π(i). Here, the time argument is included in the argument i and the

notation

ψ̂
(†)
I (i) =

ψ̂I(i) for 1 ≤ i ≤ n
ψ̂†I (i) for n+ 1 ≤ i ≤ 2n

(3.75)

simplifies the general expression for all possible time orderings. As the derivative only acts on τ1 we

fix this argument and write out all the corresponding terms, i.e. those, in which πi = 1. All the other

arguments τi with i 6= 1 can still be permuted in any possible way, such that the remaining part is

rewritten as a sum over all permutations σ of the reduced set S2n−1:

G
(2n)
0 (1, . . . , 2n) = (−1)

n(n−1)
2

∑
σ∈S2n−1

sgn(σ)

(
θτ (1− σ2)θτ (σ2 − σ3) · · · θτ (σ2n−1 − σ2n)

〈
ψ̂I(1)ψ̂

(†)
I (σ2) · · · ψ̂(†)

I (σ2n)
〉

0

− θτ (σ2 − 1)θτ (σ2 − σ3) · · · θτ (σ2n−1 − σ2n)
〈
ψ̂

(†)
I (σ2)ψ̂I(1) · · · ψ̂(†)

I (σ2n)
〉

0

+ · · ·

+ θτ (σ2 − σ3) · · · θτ (σ2n−1 − 1)θτ (1− σ2n)
〈
ψ̂

(†)
I (σ2) · · · ψ̂I(1)ψ̂

(†)
I (σ2n)

〉
0

− θτ (σ2 − σ3) · · · θτ (σ2n−1 − σ2n)θτ (σ2n − 1)
〈
ψ̂

(†)
I (σ2)ψ̂I(1) · · · ψ̂(†)

I (σ2n)ψ̂I(1)
〉

0

)
.

(3.76)

The τ1-derivative acting on this equation results in δ-distributions due to the Heaviside functions

and in time-derivatives of the field operator ψ̂(1) like in the case of the one-particle Green’s function.

The time-derivative of the operator is obtained by combining equation (3.72) with the time-ordering

operator and results in

(−1)
n(n−1)

2

〈
T̂
[
∂τ1 ψ̂I(1) · · · ψ̂I(n)ψ̂†I (n+ 1) · · · ψ̂†I (2n)

]〉
0

(3.77)

=

(∇2
r1

2m
− Vext(r1) + µ

)
G

(2n)
0 (1, . . . , 2n). (3.78)

In order to evaluate the action of the τ1-derivative on the Heaviside functions, we start by considering

only the first two summands in equation (3.76). The resulting δ-distributions can be combined as

follows

δτ (1− σ2) · · ·
〈
ψ̂I(1)ψ̂

(†)
I (σ2) · · ·

〉
+ δτ (σ2 − 1) · · ·

〈
ψ̂I(2)ψ̂

(†)
I (σ1) · · ·

〉
0

(3.79)

= δτ (1− σ2) · · ·
〈{
ψ̂I(1), ψ̂

(†)
I (σ2)

}
· · ·
〉

0
. (3.80)

According to theorem 2.1 the anticommutator is zero for σ2 ≤ n and δx(1− σ2) for n+ 1 ≤ σ2 ≤ 2n,

so that the temporal and the quantum number δ-distributions can be combined. For these first two

terms the sum over all permutations σ ∈ S2n−1 can, therefore, be restricted by enforcing ` := σ(2) ∈
{n+ 1, . . . , 2n} which leads to

2n∑
`+1

δ(1, `)
∑

σ∈S2n−1

σ2=`

sgn(σ)θτ (1− σ3) · · · θτ (σ2n−1 − σ2n)
〈
ψ̂

(†)
I (σ3) · · · ψ̂(†)

I (σ2n)
〉

0
. (3.81)
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In order to obtain a form which can be identified as a Green’s function, this expression has to be

reformulated as a sum over all permutations of the reduced set

{2, 3, . . . , n, . . . , �̀, . . . , 2n} := {2, 3, . . . , n, . . . , `− 1, `+ 1, . . . , 2n} (3.82)

instead of the constraint σ(2) = `. Each permutation σ ∈ S2n−1 is, therefore, decomposed into

σ = σ′ ◦ σ`, (3.83)

where σ′ ∈ Sn−2 and σ` is a cyclic permutation of all variables up to `, making ` the first one, while

all arguments behind ` are left unchanged, i.e.

(σ`(2), . . . , σ`(2n)) = (`, 2, . . . , �̀, . . . , 2n). (3.84)

Due to the decomposition order the total permutation can be rewritten as

(σ′l, σ
′
2, . . . , σ

′
l−1, σ

′
l+1, . . . , σ

′
2n) = (σ2, . . . , σ2n) (3.85)

with σ′ ∈ S2n−1. We note that the sign function then becomes

sgn(σ) = sgn(σ′) sgn(σl) = sgn(σ′) (−1)` (3.86)

so that the sum over all permutations in equation (3.81) can be rewritten as one over σ′ ∈ S2n−1 with

the constraint σ′(`) = `. As ` is unchanged under this constraint, only 2n− 2 elements are permuted

so that the sum can be replaced by a sum over all permutations π ∈ S2n−2 of the reduced set given

in equation (3.82). Equation (3.81) now results in

2n∑
`+1

δ(1, `)(−1)`
∑

π∈S2n−2

sgn(π)θτ (1− π2) · · · θτ (πl−1 − πl+1) · · · θτ (π2n−1 − π2n)

〈
ψ̂

(†)
I (π2) · · · ψ̂(†)

I (πl−1)ψ̂
(†)
I (πl+1) · · · ψ̂(†)

I (π2n)
〉

0
, (3.87)

which is the result of the τ1-derivative on the Heaviside functions for the first two summands in

equation (3.76). All other terms can be treated analogously, resulting in

β

(
∂

∂τ1
− ∇

2
x1

2m
∇2
x1

+ Vext(x1)− µ
)
G

(2n)
0 (1, . . . , 2n) = (−1)

n(n−1)
2

2n∑
`=n+1

δ(1, `)(−1)`

∑
π∈S2n−2

sgn(π) (θτ (1− π2) · · · θτ (πl−1 − πl+1) · · · θτ (π2n−1 − π2n)

+ θτ (π2 − 1)θτ (1− π3) · · · θτ (πl−1 − πl+1) · · · θτ (π2n−1 − π2n)

+ · · ·+ θτ (π2 − π3) · · · θτ (πl−1 − πl+1) · · · θτ (π2n − 1))

〈ψ̂(†)
I (π2) · · · ψ̂(†)

I (πl−1)ψ̂
(†)
I (πl+1) · · · ψ̂(†)

I (π2n)〉0,

(3.88)

where the index 1 appears at all possible positions in the product of Heaviside functions. Therefore,

the explicitly written sum of products of Heaviside functions (second to fourth line) can be rewritten

as

θτ (π2 − π3) · · · θτ (π`−1 − π`+1) · · · θτ (π2n−1 − π2n), (3.89)
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which matches the Heaviside function product of a (n − 1)-particle Green’s function. Indeed, after

reordering the field operators, which results in an additional factor (−1)
(n−1)(n−2)

2 , the expression

matches the definition of such an (n− 1)-particle Green’s function∑
π∈S2n−2

sgn(π)θτ (π2 − π3) · · ·θτ (π`−1 − π`+1) · · · θτ (π2n−1 − π2n)

〈
ψ̂

(†)
I (π2) · · · ψ̂(†)

I (π`−1)ψ̂
(†)
I (π`+1) · · · ψ̂(†)

I (π2n)
〉

0

= (−1)
(n−1)(n−2)

2 G
(2n−2)
0 (2, . . . , n, n+ 1, . . . , �̀, . . . , 2n).

(3.90)

Substituting the corresponding part in equation (3.88) finally yields the assertion.

By equation (3.65), the time evolution of the free n-particle Green’s function can directly be related

to the non-interacting (n − 1)-particle Green’s function. The resulting hierarchy of Green’s func-

tions can, in principle, be solved when the free one-particle Green’s function is known. However, as

correlation effects are relevant for HTS, the time evolution of the interacting Green’s function is of

more interest. Let us consider a system with an interaction of the type V̂ = Vijklĉ
†
i ĉ
†
j ĉlĉk. Then the

commutator [ĉ, V̂ ], appearing in the time-derivative of the operators in equation (3.70), generates an

expression with one annihilation and two creation operators. This increases the number of operators

in the expectation value by two, so that each n-particle Green’s function additionally depends on the

(n+1)-particle Green’s function. This unbounded hierarchical problem requires intelligent approaches

like the perturbation theory (see section 3.2) to obtain results for interacting systems. A different

approach is the FRG, which takes a different path, but also starts with the non-interacting Green’s

function (see section 3.5). Before we proceed in these directions, we note some observations based on

theorem 3.7.

According to equation (3.64), G is, indeed, a Green’s function in the mathematical sense. Thus, we

define the inverse Green’s function as follows.

Definition 25 (Inverse one-particle Green’s Function)

Let G be given as in theorem 3.7. Then the integral kernel Q defined by∫
dx′

1

β

∫ β

0

dτ ′ Q(x, τ ;x′, τ ′)G(x′, τ ′) := β

(
∂

∂τ
− ∇

2
r

2m
+ Vext(x)− µ

)
G(x, τ) (3.91)

is called the inverse one-particle Green’s function and we define G1
0(1, 2) := Q(1, 2).

Based on this definition, we can reformulate the equation of motion in a dense way.

Corollary 3.8 (Reformulation of the Equation of Motion)

Let G−1
0 be the integral kernel as defined in equation (3.91). Then the equation of motion of the

one-particle Green’s function can equivalently be written as∫
d3G1

0(1, 3)G0(3, 2) = δ(1, 2), (3.92)
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and the time evolution of the n-particle Green’s function for n ≥ 2 can equivalently be written as∫
d1′ G1

0(1, 1′)G(2n)
0 (1′, . . . , 2n) =

2n∑
`+1

(−1)`−n−1δ(1, `) G
(2n−2)
0 (2, . . . , n, n + 1, . . . , �̀, . . . , 2n). (3.93)

Proof: These reformulations directly follow from the definition of the integral kernel (cf. def. 25) in

combination with theorem 3.7.

Although the results in theorem 3.7 were explicitly derived for a specific choice of time arguments

and in the position space representation, they can be transferred to the other Green’s functions we

are dealing with, as we point out in the following remark.

Remark 3.9

1. Similar time evolution equations can be derived for the other temporal arguments of the

Green’s function, in which the time-derivative changes signs for the last n arguments.

2. Although these equations were explicitly derived for field operators, they also hold in the

general occupation number representation. Then the differential part has to be transformed

to the corresponding basis, so that transformation terms appear in a form like, for instance,

〈α| T̂ |α′〉 for the kinetic energy.

3. According to definition 25 and item 2 we will, most of the time, work with the inverse

Green’s function instead of the explicit spatial differential operators, to account for all cases

independent of the specific choice of basis.

4. A similar derivation for the real time Green’s function leads to corresponding results.

Based on these observations we are in a position to find an explicit analytical expression for the

one-particle Green’s function.

Theorem 3.10 (Non-Interacting Single-Particle Green’s Functions)

Let εi be the one-particle energies of the non-interacting time-invariant Hamiltonian K̂0 such

that
∑n
i εi = En, n ∈ N0, are the energy eigenvalues of the n-particle system. Then the free

single-particle Green’s function for Matsubara frequencies ωn is represented in the eigenbasis of

K̂0 by

G0(x1, x2;ωn) =
δ1,2

iωn − ε1
, (3.94)

and its real frequency Green’s function is represented in the eigenbasis of K̂0 by

G0(x1, x2;ω) =
δ1,2

ω − ε2 + iη
+

δ1,2
ω − ε2 − iη

. (3.95)
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Proof: As the Hamiltonian K̂0 is time-invariant, the imaginary time Green’s function only depends

on the time difference τ1 − τ2 (cf. thm. 3.4.1 and thm. 3.6). As τ1, τ2 ∈ [0, β] the new relative time

is within the interval [−β, β]. As the imaginary time Green’s function is antiperiodic according to

theorem 3.1 we can write G(x1, x2; τ1−β) = −G(x1, x2; τ1) so that the temporal Fourier transformation

becomes

G0(x1, x2;ωn) =
1

2

∫ β

−β
dτ G0(x1, x2; τ) eiωnτ

=
1

2

∫ β

0

dτ G0(x1, x2; τ) eiωnτ +
1

2

∫ β

0

dτ G0(x1, x2; τ − β) eiωn(τ−β)

=
1

2

∫ β

0

dτ G0(x1, x2; τ) eiωnτ − 1

2

∫ β

0

dτ G0(x1, x2; τ) (−1)eiωnτ

=

∫ β

0

dτ G0(x1, x2; τ) eiωnτ .

(3.96)

Thus, the time argument of the Green’s function is restricted to τ ∈ [0, β], which is equal to setting

τ2 = 0. The time ordered Green’s function in the basis φi is given as

G0(x1, x2; τ1 = τ, τ2 = 0) = −
〈
T̂
[
ĉ1(τ)ĉ†2(0)

]〉
= − 1

Z
∑
i

〈φi| e−βK̂0eK̂0τ ĉx1
e−K̂0τ ĉ†x2

|φi〉 .
(3.97)

As we consider the eigenbasis of the Hamiltonian K̂0 for which the creation and the annihilation

operators raise or lower the occupation number of the state they act on, the action of K̂0 on the

state ĉ†2 |ψi〉 results in Ei + ε2, because the creation operator adds a particle with energy ε2 to the

system. As only terms with equal initial and final states are contributing, the operator ĉ has to delete

a particle in the state in which ĉ†2 has created one. Hence we obtain

G0(x1, x2; τ1 = τ, τ2 = 0) = − 1

Z
∑
i

e−βEie(Ei−Ei−ε2)τ 〈ψi| ĉx1
ĉ†x2
|ψi〉

= − 1

Z
∑
i

e−βEie−ε2τ 〈ψi| 1− n̂ |ψi〉 δ1,2

= −e−ε2τ (1− nF (ε2))δ1,2,

(3.98)

by an application of the anticommutation relation (thm. 2.1) and the number operator. Using this

Green’s function in the Fourier transformation (3.96), we finally obtain the desired result in

G0(x1, x2;ωn) = −
∫ β

0

dτ e(iωn−ε2)τ (1− nF (ε2))δ1,2

= − δ1,2
iωn − ε2

(1− nF (ε2))
(
e(iωn−ε2)β − 1

)
︸ ︷︷ ︸

=−1

=
δ1,2

iωn − ε2
.

(3.99)

The real time Green’s function does not exhibit a periodicity so that the time-integral spans over

the whole real axis. Thus both time orderings have to be treated separately. As the Hamiltonian is

time-independent, the discussion of equation 3.98 can be done analogously for both terms, resulting

in

G0(x1t1 = t, x2t2 = 0) = i θ(t) e−iε2(t) (1− nF (ε2)) δ1,2 − i θ(−t) e−iε2t nF (ε2) δ1,2. (3.100)
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As t ∈ R the terms with the Fermi-function for t in the first part cancel with those for −t in the

second one, resulting in

G0(x1t1 = t, x2t2 = 0) = i θ(t) e−iε2(t) δ1,2 − i θ(−t) e−iε2t δ1,2. (3.101)

In order to make the Fourier transformation

G0(x1t1 = t, x2t2 = 0) = i

∫ ∞
0

dt ei(ω−ε2)t δ1,2 − i
∫ 0

−∞
dt ei(ω−ε2)t δ1,2 (3.102)

convergent, we add an infinitesimal convergence factor by setting ω → ω ± iη with “+” for the first

and “-” for the second term and with η = 0+, i.e. an infinitely small positive number. From this we

obtain

G0(x1, x2;ω) =
δ1,2

ω − ε2 + iη
− δ1,2
ω − ε2 − iη

, (3.103)

which proves equation 3.95.

We remark that this property is obtained when the creation and the annihilation operators act

on the eigenbasis of the Hamiltonian. When the Green’s function in another basis set is subject of

the calculation, the change of the basis for creation and annihilation operators, as given by equation

(2.30), has to be inserted. Therefore, the result derived here can be transferred to any other basis by

the application of the corresponding transformation matrices.

These analytic formulas for the non-interacting Green’s functions provide a starting point for the

calculation of interacting Green’s functions, which can be built based on them. Such an approach is

provided by the perturbation theory.
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3.2. Perturbation Theory

As discussed in the previous section, the interacting Green’s function cannot be calculated based

on its time evolution. As the many-body wave-function is unknown a direct evaluation is also not

possible. We will, therefore, develop a perturbation expansion in the interaction V for the grand

canonical potential and for the n-particle Green’s function.

3.2.1. Perturbation Expansion

The corresponding perturbation series are given by the Gell-Mann-Low theorem, whose original

form is based on the quantum mechanical states. Here we provide it in a formulation for expectation

values, as this is more suitable for our purposes.

Theorem 3.11 (Gell-Mann-Low Theorem)

Let V̂ be an interaction operator in the interaction picture (cf. eq. (2.5)). Then the grand

canonical partition function can be represented by a formal power series according to

Z =
∞∑
k=0

(−1)k

k!

∫ β

0

dλ1 · · ·
∫ β

0

dλk Tr (e−βK̂0T [V̂I(λ1) · · · V̂I(λk)]), (3.104)

and the interacting temperature n-particle Green’s functions are represented by the Gell-Mann-Low

formula

G2n(1, . . . , 2n) =
∞∑
k=0

(−1)k

k!

∫ β

0

dλ1 · · ·
∫ β

0

dλk〈
T̂ [V̂I(λ1) · · · V̂I(λk) ĉ1(τ1) · · · ĉn(τn) ĉ†2n(τ2n) · · · ĉ†n+1(τn+1)]

〉
0
, (3.105)

with thermal averages taken with respect to the free modified Hamiltonian K̂.

Proof: This proof is a generalisation of the one of theorem 4.6 in the dissertation thesis of Giulio

Schober [81] and the corresponding one in chapter 7 in the book of Fetter and Walecka [80]. The

change of an operator Ô from the interaction picture to the Heisenberg picture is given by

Ô(τ) = eK̂τ e−K̂0τ Ô I(τ)eK̂0τ e−K̂τ , (3.106)

which motivates the definition of a time-evolution operator in the form of

Û(τ, τ ′) := eK̂0τe−K̂(τ−τ ′)e−K̂0τ
′

(3.107)

for τ, τ ′ ∈ R. The change between both pictures can then be rewritten as

Ô(τ) = Û(0, τ) ÔI(τ) Û(τ, 0). (3.108)

The time-evolution operator satisfies the group property

Û(τ, τ ′) Û(τ ′, τ ′′) = Û(τ, τ ′′), (3.109)
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is not unitary and fulfils the equation of motion according to

∂

∂τ
Û(τ, τ ′) = eK̂0τ K̂0 e

−K̂(τ−τ ′) e−K̂0τ
′ − eK̂0τ K̂ e−K̂(τ−τ ′) e−K̂0τ

′

= eK̂0τ (K̂0 − K̂) e−K̂0τ Û(τ, τ ′)

= −V̂I(τ) Û(τ, τ ′).

(3.110)

For the initial condition Û(τ0, τ0) = 1̂, which holds at initial time τ0, the equation of motion has

a unique solution Û(τ, τ0) for τ > τ0 according to the Picard-Lindelöf theorem. An explicit repre-

sentation of the solution Û(τ, τ0) is obtained by a successive integration of the equation of motion

Û(τ1, τ0) = Û(τ0, τ0) +
∞∑
k=1

(−1)k
∫ τ1

τ0

dλ1

∫ λ1

τ0

dλ2 · · ·
∫ λk−1

τ0

dλk V̂I(λ1) · · · V̂I(λk)

:=

∞∑
k=0

(−1)k
∫ τ1

τ0

dλ1

∫ λ1

τ0

dλ2 · · ·
∫ λk−1

τ0

dλk V̂I(λ1) · · · V̂I(λk)

=
∞∑
k=0

(−1)k

k!

∫ τ1

τ0

dλ1 · · ·
∫ τ1

τ0

dλk T̂ [V̂I(λ1) · · · V̂I(λk)]

(3.111)

with λi ∈ [τ0, τ1], and with the time-ordering operator in the last line symmetrising the expression.

The definition of the time-evolution operator in equation (3.107) leads to

e−K̂τ = e−K̂0τ Û(τ, 0), (3.112)

so that the partition function can be rewritten as

Z = Tr (e−βK̂) = Tr (e−βK̂0 Û(β, 0)). (3.113)

The insertion of the explicit form of Û as provided by equation (3.111) then leads to the desired result.

Turning to the n-particle Green’s function we assume descending times τ1 > . . . > τn > τn+1 >

. . . > τ2n such that

G(2n)(1, . . . , 2n) = (−1)
n(n−1)

2
1

ZTr
(
e−βK̂ ĉx1(τ1) · · · ĉ†x2n

(τ2n)
)
, (3.114)

in which the prefactor results from commuting the last n operators to correct time ordering. By

applying equation (3.112) and by transferring the operators to the interaction picture (cf. eq. (3.108))

this Green’s function becomes

G(2n)(1, . . . , 2n)

= (−1)
n(n−1)

2
1

ZTr
(
e−βK̂0 Û(β, 0)Û(0, τ1)ĉI,x1(τ1)Û(τ1, 0) · · · Û(0, τ2n)ĉ†I,x2n

(τ2n)Û(τ2n, 0)
)

= (−1)
n(n−1)

2
1

ZTr
(
e−βK̂0 Û(β, τ1)ĉI,x1(τ1)Û(τ1, τ2) · · · Û(τ2n−1, τ2n)ĉ†I,x2n

(τ2n)Û(τ2n, 0)
)
.

(3.115)

All the operators in the expansion of the time-evolution operator Û(τ1, τ2) in equation (3.111) are

within the time interval [τ1, τ2] and in correct time order. Thus its insertion into this equation for

the Green’s function will maintain the correct time order, and the time-ordering operator T̂ can be

introduced without any further changes. All time-evolution operators Û can be moved to the left
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and can be combined due to their group property (cf. eq. (3.109)), which results in the time ordered

expression

G(2n)(1, . . . , 2n) = (−1)
n(n−1)

2
1

ZTr
(
e−βK̂0 T̂

[
Û(β, 0) ĉIx1

(τ1) · · · ĉ†Ix2n
(τ2n)

])
. (3.116)

After re-establishing the original order of operators, the Gell-Mann-Low formula

G(2n)(1, . . . , 2n) =
1

ZTr
(
e−βK̂0 T̂

[
Û(β, 0) ĉIx1

(τ1). . . ĉ†Ixn+1
(τn+1)

])
(3.117)

is obtained by using U from equation (3.111). For any time-order different to the one assumed in this

calculation, the proof can be performed analogously, leading to the same result.

Physically, the Gell-Mann-Low theorem means that an initial state is adiabatically connected to a

final state of the system. For instance, if the system is in the non-interacting ground state at τ = 0

and the interaction is slowly switched on such that it can not leave this ground state, the system

evolves to the fully interacting state at the first τi. Conversely, if the interaction is slowly switched

off after the last time τf , it connects the fully interacting state with the ground state at τ = β. These

relations are more apparent in the original form of the theorem for real times (cf. ref. [80, 84]) where

the system evolves from the ground state at t→ −∞ to the fully interacting system at t = 0 and back

to the ground state at t→∞.

The Gell-Mann-Low theorem provides an expansion of the Green’s functions and of the grand

canonical partition function in terms of interactions. To illustrate this, we consider an interaction

V of m particles which conserves the particle number. Each occurrence of this interaction adds m

creation and m annihilation operators to the expectation value. Therefore, when k interactions of m

particles are inserted, the resulting expectation value on the right hand side corresponds to the Green’s

function G
(2n+k·2m)
0 , where k · 2m legs are connected with interactions. That is, every interacting n-

particle Green’s function is related to an 2n+k · 2m-particle non-interacting Green’s function. The

latter could be determined by the time evolution of Green’s functions (cf. thm. 3.7), such that we

arrive at a consistent set of equations for the interacting system. However, Wick’s theorem provides

a useful simplification to avoid the hierarchies resulting from this approach by combining pairs of

creation and annihilation operators to single-particle Green’s functions.

Theorem 3.12 (Wick Theorem for non-interacting n-particle Green’s Functions)

The non-interacting n-particle Green’s function G
(2n)
0 (1, . . . , 2n) factorises into products of non-

interacting one-particle Green’s functions G0, i.e.

G
(2n)
0 (1, · · · , 2n) =

∑
π∈Sn

sgn(π)G0(1;πn+1) · · · G0(n;π2n)

= det ([G0(i, n+ j)]i,j=1,. . . ,n) ,

(3.118)

where the second line is a reformulation in terms of a determinant.
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Proof: The proof directly follows from the equation of motion of the n-particle Green’s function (see

thm. 3.7). The reformulated equation of motion (3.93) is multiplied with G(2′, 1), and an integral

over the new internal variable 1 is performed. With the equivalence∫
d1

∫
d1′ G0(2′; 1) G−1

0 (1; 1′) G(2n)
0 (1′, 2, . . . , 2n)

=

∫
d1′ δ(2′, 1′) G(2n)

0 (1′, 2, . . . , 2n) = G
(2n)
0 (2′, 2, . . . , 2n), (3.119)

the left hand side can be reformulated. A straight forward evaluation of the right hand side results in

G
(2n)
0 (2′, 2, . . . , 2n) =

n∑
k=1

(−1)1+k G0(2′;n+k)G
(2n−2)
0 (2, . . . , n;n+1, . . . ,���n+k, . . . , 2n). (3.120)

The theorem can now be proved by induction in n. For n = 1 the equation (3.118) trivially holds.

Assuming that it is also fulfilled for (n− 1), that is, it holds for G(2n−2), equation (3.120) becomes

G
(2n)
0 (2′, 2, . . . , 2n) =

n∑
k=1

(−1)1+kG
(2)
0 (2′; 1 + k)

∑
π∈Sn−1

sgn(π)

G0(2;πn+1) · · ·G0(k + 1;πn+k)G0(k + 2;πn+k+2). . . G0(n;π2n)

=
∑
π∈Sn

sgn(π)G0(1;πn+1) · · ·G0(n;π2n),

(3.121)

showing that the assertion also holds for n. Writing the right hand side of this expression in a matrix

form with respect to the arguments, this expression results in the determinant of this matrix.

When a creation and an annihilation operator are combined to form a Green’s function in the sense

of the Wick Theorem, they are said to be contracted.

An application of the Wick theorem (thm. 3.12) to the right hand side of the Gell-Mann-Low

theorem (thm. 3.11) generates all possible contractions of creation and annihilation operators. To

illustrate this and to introduce some terms, which will be properly defined in section 3.2.2, we assume

a two-particle interaction like the Coulomb interaction. This corresponds to an interaction order of

m = 2 according to the considerations made before providing the Wick theorem. As all variables

introduced by applying the Wick theorem only appear as integral variables they will be labelled as

combined integer index with a tilde (e.g. 1̃). We refer to them as internal arguments and to those

which also appear on the left hand side as external arguments. The Green’s function of equation

(3.105) thus becomes

G(2n)(1, . . . , 2n) =
1

Z
∞∑
k=0

(−β)k

k!2k

(
k∏
i=1

∫
d1̃i · · ·

∫
d4̃i V◦(1̃i, 2̃i; 3̃i, 4̃i)

)
×G(2n+4k)

0 (1, . . . , n, 1̃1, 2̃1, . . . , 1̃k, 2̃k;n+1, . . . , 2n, 3̃1, 4̃1, . . . , , 1̃k, 2̃k)

=
1

Z
∞∑
k=0

(−β)k

k!2k

∑
π∈S2n+4k

(
k∏
i=1

∫
d1̃i · · ·

∫
d4̃i V◦(1̃i, 2̃i; 3̃i, 4̃i)

)
(3.122)

× sgn(π)G0(1;πn+1) · · ·G0(n;π2n)G0(3̃1;π1̃1
)G0(4̃1;π2̃1

) · · ·G0(3̃k;π1̃k
)G0(4̃k;π2̃k

),

where π permutes the last n + 2k arguments creating all possible combinations of the first n+2k

arguments with the last n+2k arguments. All these possibilities can basically be split into three
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categories: First, there are terms in which a Green’s function connects two external arguments,

which, therefore, describes a particle not interacting with any other particle. Second, several Green’s

functions can connect only internal arguments, thus forming a so called bubble. Third, several

Green’s functions connect external points with internal ones, thus referring to interactions between

particles. As the partition function can be seen as a Green’s function without external legs, it only

consists of terms of the second kind, which, therefore, are called vacuum bubbles, i.e.

Z =
∞∑
k=0

1

2kk!

∑
π∈S2k

(−β)k

(
k∏
i=1

∫
d1̃i · · ·

∫
d4̃i V◦(1̃i, 2̃i; 3̃i, 4̃i)

)
× sgn(π) G0(3̃1;π1̃1

) G0(4̃1;π2̃1
) · · ·G0(3̃k;π1̃k

) G0(4̃k;π2̃k
). (3.123)

As the terms arising due to the combination of perturbation expansion and Wick theorem always

have a similar structure, the introduction of diagrams is useful, which on the one hand visualise the

physical processes taking place and on the other hand simplify the calculations.

3.2.2. Diagrams

The numerous terms arising from the perturbation expansion in combination with the Wick theorem

always consist of Green’s interactions, whose internal arguments are connected to each other or to

external arguments by single-particle Green’s functions. Their systematic visualisation is achieved by

the generalised Feynman diagrams, which are defined in the following according to reference [81].

Definition 26 (External and Internal Arguments)

Let 1, . . . , 2n and 1̃, . . . , 2̃m denote the arguments of a contribution to the perturbation expansion

and Wick contraction of the n-particle Green’s function. Then

1. the arguments 1, . . . , n are denoted as external ingoing arguments, and the arguments

n+1, . . . , 2n are denoted as external outgoing arguments.

2. the arguments 1̃, . . . , m̃ are called internal ingoing arguments and the arguments

m̃+1, . . . , 2̃m are called internal outgoing arguments for all m-particle interactions in

the perturbation expansion.

Definition 27 (Generalised Feynman Diagrams)

Let G(2n)(1, . . . , 2n) be an n-particle Green’s function given by a perturbation series with the m-

particle interaction V◦(1̃, . . . , 2̃m) provided by the Gell-Mann-Low formula (3.105) on which the

contractions due to the Wick theorem are performed. Then we define the diagrammatic elements

as follows:

1. All external arguments are represented as points at which exactly one Green’s function starts

(external ingoing) or ends (external outgoing), and they are called external slots.
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...

...

Figure 3.1.: The basic diagrammatic elements defined in definition 27 (from left to right): The bare
propagator, the interacting Green’s function, the two-particle interaction and a general n-
particle interaction.

Figure 3.2.: Graphical representation of the operation of cutting a propagator line of the left diagram:
An unconnected line is inserted (middle) and a permutation of the slots of the line which is
supposed to be cut with the new external arguments is performed (right).

2. The interaction is represented by a filled rectangle which has m internal ingoing slots for

1̃, . . . , m̃ and m internal outgoing slots for m̃+1, . . . , 2̃m. The bare slots are marked by

short unconnected in- or outpointing arrows, respectively.

3. Each non-interacting one-particle Green’s function G0(a, b) is represented by an open arrow

connecting an outgoing slot a with an ingoing slot b, called propagator.

4. Each full one-particle Green’s function G(a, b) is represented by a filled arrow connecting an

outgoing slot a with an ingoing slot b, called full propagator.

A diagram obtained by these rules is called a Generalised Feynman Diagram.

The basic diagrammatic elements are illustrated in figure 3.1. We remark that due to the Wick

theorem there is no need to define a diagram for an n-particle Green’s function. These diagrammatic

elements and their corresponding rules allow us to draw all possible contributions to the n-particle

Green’s function based on the perturbation expansion. The operation of cutting a propagator, which is

diagrammatically illustrated in figure 3.2, is helpful to classify these diagrams. Physically, we consider

a propagator G0(1̃, 2̃) which connects two internal slots 1̃ and 2̃. Cutting this propagator then results

in

G0(1̃; 2̃) 7→ (−1)G0(1̃; 2̃′)G0(1̃′; 2̃). (3.124)

This operation can be viewed as adding a propagator G0(1̃′; 2̃′) to the full Feynman diagram and then

permuting one of the indices with one of G0(1̃; 2̃), resulting in the minus sign.

We define the following nomenclature taken from [81] for the classification of diagrams, illustrated

in figure 3.3.
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Definition 28 (Classification of Generalised Feynman Diagrams)

Let F be a Generalised Feynman diagram constructed in accordance with definition 27. Then

1. (a subset of) the Feynman diagram F is called a bubble diagram if it has no connection

to an external slot;

2. the Feynman diagram F is called bubble-free if every interaction vertex is connected (by a

series of Green’s functions) to at least one external slot;

3. the Feynman diagram F is called connected if it has at least one interaction vertex and if

every interaction vertex is connected (by a series of Green’s functions) to all external slots.

In the following, let F be a connected Feynman diagram with 2n external slots. Then

4. a propagator is called internal if it connects two internal slots, and it is called external if

it connects an external with an internal slot;

5. an internal propagator is called non-essential if the diagram remains connected after cut-

ting the propagator and it is called essential otherwise;

6. an essential propagator is called an extremity propagator if the diagram is separated

into two parts, of which one has exactly two external slots. Otherwise it is called a torso

propagator;

7. the diagram is called one-line-reducible (or one-particle-reducible) if it has at least

one essential line, and it is called one-line-irreducible (or one-particle-irreducible)

otherwise;

8. the diagram is called amputable if it has at least one extremity line, and it is called non-

amputable or fully amputated otherwise;

9. the diagram is called n-line irreducible (or n-particle irreducible) if it remains con-

nected after cutting n internal lines simultaneously, and it is called n-line reducible (or

n-particle reducible) otherwise.

Figure 3.3.: Diagrammatic representation of the terms defined in Def. 28. The lines connecting the graph
with the labels 1, . . . , 6 are external lines, while all the others are internal ones. The lines
connecting the two interactions in the left (1̃− 2̃, 3̃− 4̃) and the line connecting the rightmost
interaction with itself (9̃−1̃0) are non-essential, as the graph remains connected upon cutting
those lines, while the other two internal lines (5̃ − 6̃, 7̃ − 8̃) are essential, so that the graph
is one-particle irreducible. The graph is also amputable, as the line 7̃ − 8̃ is an extremity
propagator, as after cutting, the part of the rightmost interaction has exactly two external
lines, while the line 5̃ − 6̃ is a torso-propagator. Considering only the part of the diagram
containing the two interactions to the left, one obtains a two-particle reducible diagram, as
it separates after the simultaneous splittings of the two propagators 1̃− 2̃ and 3̃− 4̃.
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According to the rules above two classes of sub-diagrams can be identified which appear multiple

times in the displayed and in higher order Green’s functions. It is sufficient to calculate only one

of them exemplarily, as topologically equal diagrams always result in the same value. First, every

contributing connected diagram can be accompanied by an infinite series of bubble diagrams. As the

partition function in the denominator also consists of an infinite series of bubble diagrams (cf. eq.

(3.123)), these contributions will cancel according to the cancellation theorem 3.13, which we will

introduce next. Second, any unconnected, bubble-free diagram consists of at least two connected

diagrams with lower order in n. To exclude these diagrams, we will deal with connected Green’s

functions, which we will introduce in definition 29 below, in which those contributions are subtracted.

Theorem 3.13 (Cancellation Theorem)

Let G(2n) be the n-particle Green’s function and let V◦ be an m-particle interaction. Then G(2n) is

represented by the sum over all bubble-free Feynman graphs with 2n external slots and k interaction

vertices, i.e.

G(2n)(1, . . . , 2n) =
∞∑
k=0

(−β)k

k!2k

∑
π∈S2n+m·k
π bubble-free

(
k∏
i=1

∫
d1̃i · · ·

∫
d2̃mi

× V◦(1̃i, . . . m̃i; m̃+1i, . . . , 2̃mi)
)

sgn(π)G0(1;πn+1) · · ·G0(n;π2n)

×G0(m̃+11;π1̃1
) · · ·G0(2̃m1;πm̃1

) · · ·G0(m̃+1k;π1̃k
) · · ·G0(2̃mk;πm̃k).

(3.125)

Proof: We abbreviate the expression behind the sum over the permutations in equation (3.122) by

Val[n, k, π] := (−β)k

(
k∏
i=1

∫
d1̃i · · ·

∫
d2̃mi V◦(1̃i, . . . m̃i; m̃+1i, . . . 2̃mi)

)
sgn(π)G0(1;πn+1) · · ·

· · ·G0(n;π2n)G0(m̃+11;π1̃1
) · · ·G0(2̃m1;πm̃1

) · · ·G0(m̃+1k;π1̃k
) · · ·G0(2̃mk;πm̃k), (3.126)

where the indices refer to the information characterising a contribution, that is 2n external legs, k

interactions and the permutation π.

Every Feynman graph resulting from a permutation π ∈ S2n+m·k can be uniquely decomposed into

π = π′ ◦σ, that is into a bubble-free graph π′ ∈ S2n+m·l and a pure vacuum bubble graph σ ∈ Sm·(k−l)
with l ∈ {0, . . . , k}. The sign of such a decomposition is sgn(π) = sgn(π′) sgn(σ) and the contribution

becomes

Val [n, k, π] = Val [n, l, π′] Val [0, k − l, σ]. (3.127)

When these terms are inserted into the sum over the permutations, several of them produce the

same contribution, as it is irrelevant which l interactions are connected to the external slots and which

k−l interactions appear only inside the bubble terms. Therefore, the sum in equation (3.126) can be

rewritten as

∑
π∈Sn+2k

Val [n, k, π] =
k∑
l=0

k!

l!(k − l)!
∑

π′∈Sn+2l

π′bubble free

Val [n, l, π′]
∑

σ∈S2(k−l)

Val [0, k − l, σ], (3.128)
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where the stochastic factor counts all the possibilities to arrange those k vertices into a bubble-free

and into a bubble part. The Green’s function can now be rewritten as

G(2n)(1, . . . , 2n)

=
1

Z
∞∑
k=0

k∑
l=0

1

l! 2l

∑
π′∈Sn+2l

π′bubble free

Val[n, l, π′]
k!

l!(k − l)!
∑

σ∈S2(k−l)

Val[0, k − l, σ], (3.129)

where the summation can be rewritten according to

∞∑
k=0

k∑
l=0

f(l)g(k − l) =

∞∑
l=0

∞∑
l′=0

f(l)g(l′) =

∞∑
l=0

f(l)

∞∑
l′=0

g(l′). (3.130)

Hence, the desired result is obtained by

G(2n)(1, . . . , 2n) =
1

Z
∞∑
l=0

1

l!2l

∑
π′∈Sn+2l

π′bubble free

Val[n, l, π′]
∞∑
l′=0

1

l′!

∑
σ∈S2l′

Val[0, l′, σ]

=
∞∑
l=0

1

l!2l

∑
π′∈Sn+2l

π′bubble free

Val[n, l, π′],

(3.131)

where we identified the sum over vacuum bubbles by the partition function as given in equation

(3.123). As this cancels the prefactor Z−1, the expansion of Val[n, l, π′] equals the assertion.

This theorem provides a proper expansion of the n-particle Green’s function in terms of interactions,

as the expansion of the partition function in the denominator, which could give rise to unbounded

terms, was cancelled. Moving to the second part of reoccurring diagrams, we first observe that the one-

particle Green’s function only consists of connected Feynman diagrams. For Green’s functions with

n ≥ 2, however, the expression still contains non-connected Feynman diagrams, as discussed before.

These non-connected diagrams can be regarded as different combinations of connected diagrams for

k ∈ {1, . . . , n− 1} particles. As these have already been calculated according to their contribution to

Green’s functions of lower order, the only relevant new contributions are the connected terms.

Definition 29 (Connected n-particle Green’s Function)

Let Val [n, k, π] be defined for an n-particle Green’s function G(2n) like in equation (3.126).

Then the connected n-particle Green’s function G
(2n)
c is given by the sum over all connected

diagrams with n external ingoing and n external outgoing points, i.e.

G(2n)
c (1, . . . , 2n) :=

∞∑
k=0

1

k!2k

∑
π∈Sn+2k

π connected

Val [n, k, π]. (3.132)
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The sum over all connected diagrams is obtained by subtracting all combinations of non-connected

diagrams which are contained in the sum of all permutations. As the non-connected diagrams can be

identified as connected Green’s functions of lower order, this is equivalent to

G(2n)
c (1, . . . , 2n) = G(2n)(1, . . . , 2n)−

∑
σ∈S2n

sgn(σ)
n−1∏
k=1

n mod(k)∑
ik=0

(G(2k)
c )ik

∣∣∣∣∣∣∑n−1
k=1 kik=n

. (3.133)

In this equation

(a) the sum over permutations permutes all external arguments, which, for the sake of shortness,

are not written in the product part,

(b) the product and the sum in the subtracted part create all possible combinations of Green’s

functions of lower order, where

(c) the sums are restricted by modulo operations, as a Green’s function of order k can only appear

n × mod (k) times to fit the requirement of 2n external legs. However, the combination of

Green’s functions can still result in terms with more external legs than the left hand side has,

such that

(d) the restriction
∑n−1
k=1 kik = n is required, stating that only those diagrams contribute in which

exactly 2n external legs are obtained.

In order to illustrate this formula, we exemplarily consider the two- and the three-particle Green’s

functions as simplest cases. The subtracted part of the two-particle Green’s function has the form

G G, on which the permutations yield the connected Green’s function as

G(4)
c (1, 2; 3, 4) = G(4)(1, 2; 3, 4)−G(1; 3)G(2; 4) +G(1; 4)G(2; 3). (3.134)

The subtracted part of the three-particle Green’s function has terms of two kinds, G(4)G and G G G.

By permutations we obtain 24 different possibilities to arrange the external legs for the first case and

six different possibilities for the second case. The high number of 24 for the first case arises as there

are six different possibilities for the external legs to connect to the two-particle Green’s function and

four different possibilities to arrange them at the incoming and at the outgoing legs of it. As the latter

are related by the symmetry of the Green’s function, as discussed in section 3.1.1, it is sufficient to

calculate the value of the diagram only once and then exploit the symmetry relations.

3.2.3. Diagrammatic Groups

Despite all the previous simplifications for the connected diagrams, the right hand side of their

interaction expansion still contains an infinite sum over all interactions. As two-particle interactions,

like the Coulomb interaction denoted by V◦ and diagrammatically depicted by a wave line, are the

most important ones for interacting electrons, we restrict ourselves to these in the following. The

interaction expansion of the single-particle Green’s function in terms of these two-particle interactions

is diagrammatically displayed in figure 3.4. As some groups of sub-diagrams appear repeatedly we

combine them to the self-energy and to effective interactions as follows.
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1st Order:

2nd Order:

3rd Order:

Particle-Hole Direct Particle-Hole Crossing

Pairing

Figure 3.4.: Feynman Diagrams of the zeroth, first, second and (incomplete) third order interaction
expansion corresponding to the Gell-Mann and Low theorem and to the Wick theorem
for the one-particle Green’s function. Here, the bare interaction V◦ is represented by an
undirected wave line. The contributions to the self-energy of this expansion (see def. 30)
are in blue. Those parts of the diagram which can be replaced by a full Green’s function
(see text) are red. The third-order diagrams are grouped corresponding to the channels
they belong to. Remark that this diagrammatic representation does not account for correct
prefactors and signs.

...

Figure 3.5.: The diagrammatic representation of the Dyson equation.

Definition 30 (Diagrammatic Groups)

Let F be the Feynman diagram of the n-particle Green’s function G(2n) of a system with a

two-particle interaction. Then we define:

• Self-Energy: The sum of all one-particle irreducible sub-diagrams of F with one inter-

nal incoming and one internal outgoing slot defines the self-energy Σ. The self-energy is

diagrammatically represented by a circle labelled with Σ with corresponding two slots.

• Effective Interaction: All one-particle irreducible diagrammatic blocks with two internal

incoming and two internal outgoing slots define the effective interaction γ(4). It is dia-

grammatically represented by a filled square with two incoming slots on its left side and two

outgoing slots on its right side.

The first contributions to the self-energy and to the effective interaction are diagrammatically

displayed in figure 3.4. As the expansion of the interacting one-particle Green’s function consists of
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- -

Figure 3.6.: Diagrammatic representation of the Schwinger-Dyson equation for the calculation of the
self-energy.

all the sub-diagrams contained in the self-energy connected by a non-interacting one-particle Green’s

function, its formula can be rewritten as

G(1; 2) = G0(1; 2) +G0(1; 1̃)Σ(1̃; 2̃)G0(2̃; 2) +G0(1; 1̃)Σ(1̃; 2̃)G0(2̃; 3̃)Σ(3̃; 4̃)G0(4̃; 2) + . . .

= G0(1; 2) +G0(1; 1̃)Σ(1̃; 2̃)G(2̃; 1)

=
[
G−1

0 (1; 2)− Σ(1; 2)
]−1

,

(3.135)

which is the Dyson equation for the Green’s function2, whose Feynman diagram is depicted in fig-

ure 3.5. Here, we implicitly assumed an integration over internal arguments. In a first approxi-

mation only the first-order contributions are considered, so that the self-energy becomes Σ(1; 2) =

V◦(1, 1̃)G(1̃; 1̃+)δ(1, 2) + V◦(1; 2)G(1; 2), which are the well known Hartree and Fock contributions

[85, 86]. To become more accurate we investigate the diagrams contributing to the self-energy and

identify sub-diagrams which appear in the self-energy itself and are connected to the rest of the dia-

gram by two propagators (sub-diagrams in blue in fig. 3.4). Such sub-diagrams will appear at each

internal line in the infinite expansion so that we can convolute those contributions to the self-energy.

In this way the diagram is simplified by replacing the self-energy block and its connecting free Green’s

functions by one full Green’s function.

In the diagrams contributing to the self-energy we can identify contributions of the effective in-

teraction. At first, it seems reasonable to connect the effective interaction with itself to obtain the

self-energy. However, this approach will lead to an overcounting of diagrams such that it is given by

the Schwinger-Dyson equation

Σ(1; 2) = −V◦(1; 1̃)G(1; 2̃)G(1̃; 3̃)γ(4)(3̃, 2̃; 4̃, 2)G(4̃; 1̃)

+ V◦(1; 1̃)G(1; 1+)δ(1, 2) − G(1; 2)V◦(1; 2), (3.136)

in which we explicitly account for the Hartree and Fock terms and which is diagrammatically shown

in figure 3.6.

By the introduction of diagrammatic groups we shifted the difficulty of the calculation of an infinite

amount of diagrams to the calculation of the effective interaction. When we investigate the structure

of the diagrams it consists of, we observe that it contains, on the one hand, the bare two-particle

interaction, which is, in this discussion, the Coulomb interaction V◦, but which can in general be

non-local and non-instantaneous, and, on the other hand, it contains complicated diagrams including

several interactions. Within the latter ones there often is at least a sub-diagram in which two interac-

tions are connected to each other by two propagators so that this sub-diagram can be convoluted to

2The first line is motivated by the classification of diagrams, however, the convergence of this series is not guaranteed.
The formally exact form of the Dyson equation is, therefore, provided by the third line, as will be derived in chapter
3.4, corollary 3.16.
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Figure 3.7.: Diagrammatic representation of the vertex decomposition according to the parquet scheme
and to the corresponding Bethe-Salpeter equations.

a two-particle reducible effective interaction. If this procedure is repeated as often as possible, large

parts of the diagrams can directly be obtained when the two-particle reducible effective interaction is

known. The full effective interaction then contains all contributions which are two-particle reducible

and those which are not. As there are three different ways of defining the two-particle reducibility,

three different channels can be identified, corresponding to pairing and to two different particle-hole

channels. This decomposition leads to the Parquet approach, which is defined as follows.

Definition 31 (Parquet Theory)

Consider the generalised Feynman diagrams of the effective interaction γ(4)(1, 2; 3, 4) of a system

with a two-particle interaction V◦, and let 1, 2 denote ingoing and 3, 4 outgoing slots. Then the

full interaction γ(4) is decomposed as

γ(4)(1, 2; 3, 4) = Λ(1, 2; 3, 4) + Φp(1, 2; 3, 4) + Φd(1, 2; 3, 4) + Φc(1, 2; 3, 4), (3.137)

in which the contributions are defined as

1. Fully Irreducible Λ: All the diagrams which cannot be separated into two parts by cutting

two full propagator lines, i.e. two-particle irreducible diagrams;

2. Pairing Channel Φp: Cutting two propagators separates the labels 1, 2 from the labels 3, 4;

3. Direct Particle-Hole Channel Φd: Cutting two propagators separates the labels 1, 3 from

the labels 2, 4, and;

4. Crossing Particle-Hole Channel Φc: Cutting two propagators separates the labels 1, 4

from the labels 2, 3;

and they are diagrammatically represented by squares with corresponding labels and two ingoing

and two outgoing slots.

The contributions which are not reducible in a channel r are called the irreducible part in

channel r and are defined as Φ̄r := γ(4) − Φr.
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The set of Parquet equations

γ(4) = Φr + Φ̄r (3.138)

in combination with the set of Bethe-Salpeter equations (BSE)

γ(4) = Φ̄r + Φ̄r(GG)rγ(4), (3.139)

for r ∈ {p, d, c} is called the Parquet approach. The approximation Λ = V◦ in the Parquet

approach is called Parquet approximation.

A contribution which is reducible in one channel (i.e. it belongs to Φr) is irreducible in the other

ones (i.e. it belongs to Φ̄r’ 6=r) so that the decomposition of the contributions into the different channels

is unique. Therefore the Parquet approach, which is represented in form of diagrams in figure 3.7,

provides a full self-consistent set of equations to obtain the full two-particle interaction γ(4). The

BSE (cf. eq. (3.139)) generates all the contributions of the corresponding channel, that is all the

contributions which are two-particle reducible in this channel. As a connection of two full vertices

γ(4) would lead to a double-counting of ladder-type diagrams, the full vertex γ(4) is connected to

the irreducible part Φ̄r of this channel. But as the irreducible part of channel r Φ̄r is obtained by

all the contributions from channels r′ 6= r, the BSEs of the other channels are required to be solved

beforehand. This can still be resolved by a self-consistency condition including all the contributions.

However, due to the corresponding iterative character the contributions from the previous iteration

have to be removed to avoid a double-counting. This problem can be solved by reformulating the

equation based on Φr = γ(4) − Φ̄r into

Φr = Φ̄r(GG)rγ(4), (3.140)

so that only the reducible parts are calculated for each channel. Due to the Parquet equation (cf.

eq. (3.137)), the full interaction consists of all these contributions, such that this set of three BSEs

constitutes a simpler self-consistent approach, which avoids double-counting right from the beginning.

At the same time, the self-energy and this two-particle effective interaction form another self-consistent

set of equations, as the full propagators in the BSE (3.140) includes the self-energy. The connected

two-particle Green’s function now is obtained by adding full propagators to the four legs of the two-

particle interaction. As the discussion of the diagrams is based on two-particle interactions, all the

Green’s functions of higher order will be based on combinations of two-particle effective interactions

and full propagators.

This Parquet approach was proposed by De Dominicis and Martin in 1964 [30, 31] and was applied

to the Kondo model by Abrikosov [87]. Although this set of equations remains numerically difficult it

was used for some basic investigations especially of the Hubbard model [88, 89, 90]. However, due to

the complexity, additional approximations are very common and have to be chosen appropriately for

the physical problem. Taking the initial interaction from a dynamical mean field theory calculation

leads to the DΓA approach developed by Rohringer [82, 91]. A replacement of all the interactions by

the bare interaction leads to the fluctuating exchange (FLEX) method [92, 93, 94], which contains all

the channel contributions in a ladder form.
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A different approach based on one-particle properties is provided by the Hedin equations [26], which

are defined in definition 32 and are depicted in figure 3.8.

Definition 32 (Hedin Equations)

Let V◦ be a local interaction between two particles, i.e. V◦(1+, 2). Let G̃0 be the non-interacting

Green’s function with respect to the one-particle Hamiltonian including the Hartree potential

H0(1) + V◦(1, 2)G(2; 2+), and let Σxc be the self-energy excluding the Hartree contribution. Then

the set of equations

G(1; 2) = G0(1; 2) +G0(1; 1̃)Σxc(1̃; 2̃)G(2̃; 2), (3.141)

Σxc(1; 2) = iG(1; 1̃)W (1+; 2̃)Γ̃(1̃; 2; 2̃), (3.142)

W (1; 2) = V◦(1; 2) + V◦(1; 1̃)P (1̃; 2̃)W (2̃; 2), (3.143)

P (1; 2) = −iG(1; 1̃)G(2̃; 1)Γ̃(1̃; 2̃; 2), (3.144)

Γ̃(1; 2; 3) = δ(1; 2)δ(1; 3) +
δΣxc(1; 2)

δG(1̃; 2̃)
G(1̃; 3̃)G(4̃; 2̃)Γ̃(3̃; 4̃; 3) (3.145)

is called Hedin Equations in imaginary time. W is called screened interaction and P is

called polarisability.

This set of equations is focusing on the screening of the bare Coulomb interaction by electron-hole

pairs, which plays an important role in solids and, therefore, treats those explicitly in terms of the

polarisability (cf. eq. (3.144)) and the screened interaction (cf. eq. (3.143)). This, however, corresponds

to the direct electron-hole channel of the Parquet approach, in which the dependence of the Coulomb

interaction on only two spatial coordinates and its instantanity is exploited. All the other channels,

the non-local and the non-instantaneous interactions are generated by the three-point interaction Γ̃.

The Hedin equations are usually derived by the Schwinger functional derivative technique, and the

Feynman diagrams we presented here are only used to illustrate and classify the corresponding results.

In the analytical derivation a time-dependent test-potential ϕ is introduced and set to zero after the

calculation. Its effect on the Green’s function and the effective potential gives rise to the set of Hedin

equations [26, 95]. Obviously, the set of Hedin equations has to be treated self-consistently, which is, in

general, not possible, as the functional derivative of the self-energy in the equation for the three-point

vertex can not be treated in an exact way, neither analytically nor numerically.

The simplest approximation is Γ̃(1; 2; 3) = δ(1; 2)δ(1; 3). When inserted into the self-energy equation

it becomes Σ(1; 2) = G(1; 2)W (1+; 2), from which the name GW -approximation is derived. In this

approximation the polarisability becomes

P (1; 2) = G(1; 2)G(2; 1), (3.146)

so that the screened interaction is a pure screening of the full interaction by electron-hole terms. An

approximation of this form for the interaction is called random-phase approximation, which is

always present in the GW -approximation. The calculation of band structures based on this approach

is, by now, a standard in solid state theory and is implemented in several codes for ab initio calculations

[96, 97]. In contrast to the density functional theory (DFT) [24, 25], the resulting band structures are

physically meaningful and do not result from an effective one-particle problem. Calculations based
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Figure 3.8.: Diagrammatic representation of the full set of Hedin equations. Due to the locality in space
and time, the bare (effective) interaction is collapsed to a (double) wave line.

on the GW -approximation therefore provide significantly better results for the electronic structure

of materials compared to the Kohn-Sham bands obtained by DFT. However, in the case of strongly

correlated materials there is still a significant difference between experimentally measured properties

and the GW -based results. This can be achieved by iterating the self-consistent set of Hedin equations

to generate an expansion of the self-energy in terms of the screened interaction [26, 98]. The GW -

approximation therefore accounts for the first order. The second order expression requires the first

order three-point interaction. The insertion of the first order Σ into the functional derivative results

in W +G δW
δG of which only the first one contributes to the first order, as the second term generates a

second order contribution in W . The third order contribution to Σ then consists of the G δW
δG part of

the derivative of the first order Σ combined with the zeroth order Γ, the W part of the first order Σ

combined with first order Γ and the derivative of the second order Σ combined with the zeroth order

Γ. As the expansion becomes more involved in the following orders, this can best be represented by

diagrams (cf. app. of [26]).

For an efficient calculation different contributions appearing in the expansions are typically com-

bined to an effective four point interaction called T -matrix [29, 99]. Due to the different contributions

a T -matrix can be defined for each channel which can be calculated independently by a BSE. There-

fore, it can be seen as an intermediate method between the GW -approximation and the Parquet

approach. These additional contributions to the self-energy become important for physical effects

close to completely filled or to completely empty bands, so that current research aims at adding them

to ab initio calculations in the context of the GW -approximation. With this insight it has been shown

that magnons have an effect on the band-structure of iron, cobalt and nickel [100, 46].

The presented perturbation expansion in terms of interactions is, due to its character, limited to

weak interactions. However, with the different approximations it provides one possibility of calculating

the full interacting Green’s function as well as the partition function of the system. As the physical

observables of correlations are the susceptibilities, we regard their relation in the following.
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3.3. Fermionic Bilinears and Susceptibilities

As the fermionic bilinears and the susceptibilities set up by them are rarely discussed in literature

we discuss their theoretical background at this point and repeat the corresponding definitions for the

sake of completeness. The susceptibilities we are interested in are based on the fermionic bilinears

of the charge, the spin and the pairing operators as provided by definition 21. Here, we generalise

the corresponding definitions to non-local density- and spin-operators and to a generalised pairing

operator as

ρ̂n(1, 2) =
∑
s

ĉ†s(1)ĉs(2) fn(1, 2), (3.147)

Ŝin(1, 2) =
1

2

∑
s,s′

ĉ†s(1)σiss′ ĉs′(2) fn(1, 2) and (3.148)

p̂n(1, 2) = ĉs1(1)ĉs2(2) fn(1, 2). (3.149)

The form-factor fn allows all possible combinations of the corresponding creation and annihila-

tion operators and can, therefore, be used for a spatial characterisation of the operator. To obtain

susceptibilities of these generalised operators in analogy to those in equations (3.5)-(3.7) we have to

combine the operators with their adjoint, as the expectation value will otherwise be zero. Thus, the

charge-density χcd, the spin-density χsd or the pairing susceptibility χp are given by

χcd,nn′(1, 2) := 〈ρ̂n(1, 2)ρ̂†n′(1, 2)〉, (3.150)

χijsd,nn′(1, 2) := 〈Ŝin(1, 2)(Ŝjn′)
†(1, 2)〉 and (3.151)

χp,nn′(1, 2) := 〈p̂n(1, 2)p̂†n′(1, 2)〉, (3.152)

respectively. A special case of the spin-density susceptibility is the magnetic-density susceptibility

χmd (cf. [66]) given by

χmd,nn′(1, 2) := χzzsd,nn′(1, 2) = 〈Ŝzn(1, 2)(Ŝzn′)
†(1, 2)〉. (3.153)

Due to the translational symmetry of the lattice it is useful to transform the bilinears to momentum

space, resulting in

ρ̂n(q) =
1

β|B|
∑
s

∫
dk ĉs(k)ĉ†s(k + q)fn(k, q), (3.154)

Ŝin(q) =
1

β|B|
1

2

∑
ss′

∫
dk ĉs(k)σiss′ ĉ

†
s′(k + q)fn(k, q) and (3.155)

p̂n,ss′(q) =
1

β|B|

∫
dk ĉ†s(k)ĉ†s′(q − k)fn(k, q). (3.156)

For convenience we only choose form-factors which are static and which solely depend on the

fermionic momentum, that is fn(k, q) = fn(k), as they already provide a full set of basis functions

(cf. sec. 3.6). When we consider the susceptibilities in momentum space, the transfer-momentum q

has to be equal in both bilinears according to the same argument as in lattice space. Therefore the

susceptibilities are momentum conserving. Moreover, q is a bosonic momentum, as it results from

the difference between two fermionic momenta. A similar consideration focusing on the translational

symmetry with respect to time leads to the dependence on a bosonic frequency ν, so that the sus-
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ceptibilities depend on the generalised bosonic momentum q = (ν, q). As four fermionic creation

and annihilation operators appear in all the different susceptibilities and as the total spin sb of a

susceptibility is the sum of them it is bosonic. Hence the susceptibilities behave as bosonic objects.

The generalised form of the one-particle operators also introduces a dependence on two form-factor

indices. As those form-factors describe the spatial character of the particle pairs, they allow us to

categorise, for example, instabilities in terms of an s- or a d-wave character (cf. sec. 4.2).

The explicit form of the density or of the magnetic susceptibility in terms of creation and annihilation

operators reveals that both of them are different linear combinations of the same terms consisting of

two creation and of two annihilation operators, i.e.

χcd/md,nn′ = a fn(1, 2) f∗n(1, 2)
(〈
ĉ†↑(1) ĉ↑(1) ĉ†↑(2) ĉ↑(2)

〉
+
〈
ĉ†↓(1) ĉ↓(1) ĉ†↓(2) ĉ↓(2)

〉
±
〈
ĉ†↑(1) ĉ↓(1) ĉ†↓(2) ĉ↑(2)

〉
±
〈
ĉ†↓(1) ĉ↓(1) ĉ†↑(2) ĉ↑(2)

〉)
, (3.157)

with a constant a, where the upper line corresponds to χcd and the lower one to χmd. Therefore,

when the four different two-particle expectation values required for the charge susceptibility χcd (cf.

eq. (3.150)) and for the magnetic susceptibility χmd (cf. eq. (3.153)) are directly calculated they can be

combined to either of the two susceptibilities. Due to this similarity and as χmd is the z-spin-density

wave, we use the extended spin-vector. That is, it includes the identity matrix as zeroth component

such that Ŝ0 = ρ̂, which leads to χcd = χ00
sd . Treating the x- and the y-spin-density waves in the same

way as χcd/md in equation (3.157) one observes that χxxsd and χyysd are different linear combinations

of the same terms, too. A corresponding treatment of the other possible combinations of the spin

operators Ŝi∈{0,x,y,z} leads to similar combinations, each consisting of four different terms, which differ

by prefactor signs after changing between x- and y- or between 0- and z- spin components. As all

the different terms in the susceptibilities are different linear combinations of the expectation values of

creation and annihilation operator pairs, we combine them in a matrix:
〈ĉ†↑ĉ↓ĉ

†
↓ĉ↑〉 〈ĉ

†
↑ĉ↓ĉ

†
↑ĉ↓〉 〈ĉ

†
↑ĉ↓ĉ

†
↓ĉ↓〉 〈ĉ

†
↑ĉ↓ĉ

†
↑ĉ↑〉

〈ĉ†↓ĉ↑ĉ
†
↓ĉ↑〉 〈ĉ

†
↓ĉ↑ĉ

†
↑ĉ↓〉 〈ĉ

†
↓ĉ↑ĉ

†
↓ĉ↓〉 〈ĉ

†
↓ĉ↑ĉ

†
↑ĉ↑〉

〈ĉ†↓ĉ↓ĉ
†
↓ĉ↑〉 〈ĉ

†
↓ĉ↓ĉ

†
↑ĉ↓〉 〈ĉ

†
↓ĉ↓ĉ

†
↓ĉ↓〉 〈ĉ

†
↓ĉ↓ĉ

†
↑ĉ↑〉

〈ĉ†↑ĉ↑ĉ
†
↓ĉ↑〉 〈ĉ

†
↑ĉ↑ĉ

†
↑ĉ↓〉 〈ĉ

†
↑ĉ↑ĉ

†
↓ĉ↓〉 〈ĉ

†
↑ĉ↑ĉ

†
↑ĉ↑〉

, (3.158)

in which we omitted, for the sake of brevity, the form-factors fn(k)f∗n′(k
′) and the arguments which

have the form ĉ†(k)ĉ(k+ q)ĉ†(k′)ĉ(k′ + q) in all the terms. According to the previous discussion, this

matrix splits into four 2 × 2-blocks where the expectation values of Ŝx and of Ŝy are obtained from

linear combinations of the upper left one, while the lower right one can be combined to form those of

Ŝ0 and Ŝz. The lower left and the upper right part of it contain the combinations of both pairs.

A further analysis of the contributing terms reveals that the matrix elements can equally be refor-

mulated in terms of the generalised spin-density operators

n̂↑,n(1, 2) := fn(1, 2) ĉ†↑(1)ĉ↑(2) and

n̂↓,n(1, 2) := fn(1, 2) ĉ†↓(1)ĉ↓(2)
(3.159)

and the operators

Ŝ+
n (1, 2) := fn(1, 2)

(
Ŝx(1, 2) + iŜy(1, 2)

)
= fn(1, 2)

(
ĉ†↑(1)ĉ↓(1)

)
and

Ŝ−n (1, 2) := fn(1, 2)
(
Ŝx(1, 2)− iŜy(1, 2)

)
= fn(1, 2)

(
ĉ†↓(1)ĉ↑(1)

)
.

(3.160)
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That is, the lines of the matrix (3.158) correspond to Ŝ+, Ŝ−, n̂↓ and n̂↑ and the elements reflect the

expectation values of their combinations.

In a spin-symmetric system the creation and the annihilation operators corresponding to the same

argument need to have the same spin if their contribution shall not vanish, as it is preserved by

the Hamiltonian. Therefore, only the lower right 2 × 2-block of the matrix (3.158) is non-zero and,

therefore, only the magnetic- and the charge-density susceptibilities do not vanish.

The pairing susceptibility, as defined above, depends on both pairs of spins of the inserted pairing

bilinears so that all spin combinations are possible. In analogy to the charge- and the spin-density

case presented above, we combine all the possible contributions in a matrix:
〈ĉ↑ĉ↓ĉ†↓ĉ

†
↑〉 〈ĉ↑ĉ↓ĉ

†
↑ĉ
†
↓〉 〈ĉ↑ĉ↓ĉ

†
↓ĉ
†
↓〉 〈ĉ↑ĉ↓ĉ

†
↑ĉ
†
↑〉

〈ĉ↓ĉ↑ĉ†↓ĉ
†
↑〉 〈ĉ↓ĉ↑ĉ

†
↑ĉ
†
↓〉 〈ĉ↓ĉ↑ĉ

†
↓ĉ
†
↓〉 〈ĉ↓ĉ↑ĉ

†
↑ĉ
†
↑〉

〈ĉ↓ĉ↓ĉ†↓ĉ
†
↑〉 〈ĉ↓ĉ↓ĉ

†
↑ĉ
†
↓〉 〈ĉ↓ĉ↓ĉ

†
↓ĉ
†
↓〉 〈ĉ↓ĉ↓ĉ

†
↑ĉ
†
↑〉

〈ĉ↑ĉ↑ĉ†↓ĉ
†
↑〉 〈ĉ↑ĉ↑ĉ

†
↑ĉ
†
↓〉 〈ĉ↑ĉ↑ĉ

†
↓ĉ
†
↓〉 〈ĉ↑ĉ↑ĉ

†
↑ĉ
†
↑〉

, (3.161)

with the argument structure ĉ(k)ĉ(q−k)ĉ†(k′)ĉ†(q−k′) for all the terms. In this matrix representation

we observe a similar block structure and spin combination structure as in the spin-density case. When

we consider the lower right 2 × 2-block of elements, which is built from pairing operators with equal

spins, that is p̂ss, we observe that the spin is conserved on the diagonal ones while it is flipped on the

other ones. Therefore, in the case of an SU(2)-symmetry, only the diagonal ones will be non-zero. We

also can identify the diagonal elements to belong to a triplet pairing with a total spin sb = 1 and a

total magnetic momentum mb = ±1. The upper left 2×2-block is based on the pairing operators with

opposite spins, that is p̂ss̄ with s̄ = −s. Therefore, the sum over these elements results in the triplet

pairing susceptibility with the total magnetic moment mb = 0. To obtain singlet pairing, that is with

the total spin sb = 0 and the total magnetic moment mb = 0, we need to subtract the second line from

the first one. The upper right and the lower left block, again, are combinations of the singlet- and

the triplet-pairing operators. Like in an SU(2)-symmetric system non-vanishing terms have to have

the same number of creation operators and of annihilation operators for each spin direction, as the

Hamiltonian preserves the spin. Thus, only the upper left block and the diagonal part of the lower

right block are non-zero, so that it is sufficient to consider the singlet and the triplet pairings.

As the different susceptibilities depend on a characteristic combination of fermion operators, we

denote those consisting of a creation and of an annihilation operator as electron-hole (eh) fermion-

bilinear, those consisting of two annihilation operators as hole-hole (hh) fermion-bilinear and those

consisting of two creation operators as electron-electron (ee) fermion-bilinear. Both, hh and ee fermion-

bilinears obviously belong to the class of pairing bilinears.

To investigate the question whether the system approaches an ordered state, we have to observe

if the corresponding static susceptibility shows a divergence. In the case of a charge-density wave

state the static susceptibility resulting from the sum of the four elements of the lower right block

of the spin-susceptibility matrix diverges. The q-vector corresponding to the divergence defines the

wave-vector of the density-wave, while the form-factors fn(q, p) define their symmetry in momentum

space. This symmetry can exemplarily be shown for the two-dimensional case on a square lattice:

The susceptibility is said to have the character of an s-wave, when a rotation in the plane is not

changing its value. It is said to have a dx2−y2 -wave character, when the values differ by the factor of

−1 under a rotation of π/2. Similar considerations hold for the magnetic susceptibility, which consists

of the same sub-matrix, but with alternating signs according to equal or unequal spin polarisations.

This susceptibility indicates an (anti-)ferromagnetic ordering, spin-density-waves and nematic states
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Figure 3.9.: Diagrammatic representation of the electron-hole (left) and electron-electron (right) suscep-
tibility.

resulting from Pomeranchuk instabilities. Similarly, the system is in a spin-singlet or in a spin-

triplet pairing state when, according to the pairing matrix, the sum of the corresponding pairing

susceptibilities with total spin sb = 0 or sb = ±1 shows a divergence.

All the elements of both susceptibility matrices above can be obtained from the generalised

susceptibility, so that the two-particle Green’s function can be used to calculate them. As the two-

particle Green’s function depends on four arguments, while the susceptibilities discussed here only

depend on two of them, the correct limits have to be taken, as discussed subsequent to definition 22.

Diagrammatically this corresponds to connecting the two legs of the two-particle Green’s function

with each other. When we employ the results from the perturbation theory at this point, we obtain

the susceptibilities as

χeh(1′; 2′) = G(1; 2)G(2−; 1−)+ (3.162)∫
d1̃ · · ·

∫
d4̃G(1; 1̃)G(2; 2̃) γ(4)(1̃, 2̃; 3̃, 4̃)G(3̃; 1−)G(3̃, 2−) and (3.163)

χee(1′; 2′) = fn(1; 2; 1′)G(1; 2)G(1−; 2−)+ (3.164)∫
d1̃ · · ·

∫
d4̃G(1; 1̃)G(1−; 2̃) γ(4)(1̃, 2̃; 3̃, 4̃)G(3̃; 2−)G(3̃, 2−). (3.165)

Thus, the susceptibilities consist of a loop of two propagators plus a two-particle interaction that

has two pairs of propagators connected to each other. In the case of (spin-) density-susceptibilities

the incoming legs of the interaction are pairwise connected to the outgoing legs, while for pairing

susceptibilities both incoming and both outgoing legs are connected to each other as illustrated in

figure 3.9. In the SU(2)-symmetric case, both connected pairs differ by the same bosonic spin sb, while

in the general case the susceptibility can have different bosonic spins for the two propagator pairs.

The contributions of the propagator loop only contain one-particle contributions and usually diverge

at T = 0 (or at Λ = 0 in the FRG case, cf. sec. 3.5), while the second one contains the effects of

particles interacting with each other, as it includes the two-particle interactions γ(4). Therefore, the

second term is the relevant part to observe real phase transitions at finite T caused by correlation

effects. The FRG thus aims at a direct calculation of this two-particle interaction. The FRG also

allows a direct calculation of the susceptibilities, such that we define the generating functionals for

both, for fermionic interactions and for susceptibilities based on fermionic bilinears in the following.
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3.4. Generating Functionals

In the preceding section we observed that the two-particle interaction is a relevant term for the

occurrence of phases based on many-particle effects. For the FRG equations, the field theory is

employed, which basically replaces the creation and the annihilation operators by the corresponding

Grassmann variables in the expectation values. Thus the definitions and the derivations of the previous

sections can be performed analogously. We remark, however, that no time-ordering operator appears

in the field-theoretical definition of Green’s functions, as the functional integral always represents

time-ordered products.

It is well known that expectation values of observables like particle number, magnetisation or

entropy can be obtained as derivatives of the grand canonical partition function. For the particle

number operator N̂ , for example,

〈N̂〉 =
1

β

∂ lnZ
∂µ

(3.166)

holds, so that the grand canonical partition function can be viewed as the generating functional of

the particle expectation value. The aim of this section is to generalise this observation and find

similar generating functionals for the Green’s functions, its connected sibling or the effective action by

corresponding derivatives. These generating functionals will provide a simple generic form for further

calculations. For all the following derivations and definitions we let ψ̄, ψ be Grassmann fields and let

S[ψ̄, ψ] = (ψ̄, G−1
0 ψ) + V [ψ̄, ψ] be the action as defined in definition 10. Based on these prerequisites

we define as follows:

Definition 33 (Generating Functional for Green’s Functions)

The functional

G[η, η̄] :=
1

Z

∫
D[ψ, ψ̄] exp

(
−S[ψ̄, ψ]

)
exp

(
(η̄, ψ) + (ψ̄, η)

)
(3.167)

is called the generating functional for Green’s functions and the fields η̄, η are called source

fields.

Theorem 3.14 (Generation of n-particle Imaginary Time Green’s Functions)

The generating functional G as defined in definition 33 generates all imaginary time n-particle

Green’s functions.

Proof: The differentiation of G by the source fields η and η̄ results in

δG[η̄, η]

δη(1)
= − 1

Z

∫
D[ψ̄, ψ] e−S[ψ̄,ψ] ψ̄(1) e(η̄,ψ)+(ψ̄,η) = −

〈
ψ̄(1)

〉
|η̄=η=0 and

δG[η̄, η]

δη̄(1)
=

1

Z

∫
D[ψ̄, ψ] e−S[ψ̄,ψ] ψ(1) e(η̄,ψ)+(ψ̄,η) = 〈ψ(1)〉 |η̄=η=0 ,

(3.168)

respectively. Here, the thermal average, as discussed at the end of section 2.3, is identified for vanishing

source fields. The corresponding expectation values will be zero, as Grassmann fields only give non-

zero expectation values in pairs. To obtain those pairs the same number of η and η̄ derivatives have
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to be performed on the generating functional G. Generalising this result and taking care of the minus

sign resulting from the derivatives with respect to some η we obtain

G(2n)(1, . . . , 2n) = (−1)n
δ2nG[η̄, η]

δη̄(1) · · · δη̄(n)δη(2n) · · · δη(n+ 1)

∣∣∣∣
η̄=η=0

, (3.169)

where the source fields are set to zero at the end, so that only the real fermionic fields remain.

Identifying the field expectation value with the definition of the Green’s function (def. 23) completes

the proof.

As mentioned in the discussion of Feynman diagrams, it is advantageous to consider only connected

Green’s functions (see def. 29), as, otherwise, some contributions are calculated several times. The

corresponding generating functional is easily obtained from the general Green’s function one.

Definition 34 (Generating Functional for Connected Green’s Functions)

Let G be the generating functional for Green’s functions as given in definition 33. Then the

functional

W[η̄, η] := − ln

(G[η̄, η]

Z

)
= − ln

∫
D[ψ̄, ψ] exp

(
−S[ψ̄, ψ]

)
· exp

(
(η̄, ψ) + (ψ̄, η)

)
(3.170)

is called generating functional for connected Green’s functions.

In this definition the term 1/Z removes the grand canonical partition function from the definition

of G so that only the functional integral remains.

Theorem 3.15 (Generation of n-particle Connected Green’s Functions)

The generating functional W as given in definition 34 generates all connected imaginary time

n-particle Green’s functions.

Proof: We will not give a full proof of this theorem, but we will exemplarily show that it holds for

one- and for two-particle connected Green’s functions. By differentiation with respect to the source

fields η̄ and η we obtain

− δ2

δη̄1δη2

[
ln
〈
e(η̄,ψ)+(ψ̄,η)

〉]∣∣∣
η=η̄=0

= − δ

δη̄1

[〈
e(η̄,ψ)+(ψ̄,η)

〉−1 〈
ψ̄2e

(η̄,ψ)+(ψ̄,η)
〉]∣∣∣∣

η=η̄=0

=


〈
ψ1e

(η̄,ψ)+(ψ̄,η)
〉〈

ψ̄2e
(η̄,ψ)+(ψ̄,η)

〉
〈
e(η̄,ψ)+(ψ̄,η)

〉2
∣∣∣∣∣∣
η=η̄=0

−

〈
ψ1ψ̄2e

(η̄,ψ)+(ψ̄,η)
〉

〈
e(η̄,ψ)+(ψ̄,η)

〉
= Gc(1; 2).

(3.171)

As we consider fermions, all the terms with an unequal number of creation and annihilation field

operators vanish, and, therefore, only the second term in the second last line is non-zero. This term

is identified as the one-particle Green’s function, which equals the one-particle connected Green’s

function as discussed in the section on Feynman diagrams (cf. section 3.2.2).
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For the more interesting two-particle case, we derive

− δ4

δη̄1δη̄2δη4δη3

[
ln
〈
e(η̄,ψ)+(ψ̄,η)

〉]∣∣∣
η=η̄=0

=
δ2

δη̄1δη̄2


〈
ψ̄4e

(η̄,ψ)+(ψ̄,η)
〉〈

ψ̄3e
(η̄,ψ)+(ψ̄,η)

〉
〈
e(η̄,ψ)+(ψ̄,η)

〉2 +

〈
ψ̄4ψ̄3e

(η̄,ψ)+(ψ̄,η)
〉

〈
e(η̄,ψ)+(ψ̄,η)

〉
∣∣∣∣∣∣
η=η̄=0

=


〈
ψ1ψ2ψ̄4ψ̄3e

(η̄,ψ)+(ψ̄,η)
〉

〈
e(η̄,ψ)+(ψ̄,η)

〉 (3.172)

−

〈
ψ2ψ̄3e

(η̄,ψ)+(ψ̄,η)
〉〈

ψ1ψ̄4e
(η̄,ψ)+(ψ̄,η)

〉
−
〈
ψ1ψ̄3e

(η̄,ψ)+(ψ̄,η)
〉〈

ψ2ψ̄4e
(η̄,ψ)+(ψ̄,η)

〉
〈
e−(η̄,ψ)+(ψ̄,η)

〉2
∣∣∣∣∣∣
η=η̄=0

= G(4)(1, 2; 4, 3)−G(1; 4)G(2; 3) +G(2; 4)G(1; 3)

= G(4)
c (1, 2; 4, 3).

From the second to the third line, again, the vanishing of terms with an unequal number of creation

and annihilation operators has been considered. The observation that the second last line equals the

connected two-particle Green’s function given in equation (3.134), completes this part of the proof.

For Green’s functions of higher order corresponding derivatives of higher order have to be calculated

with respect to the commutation rules for Grassmann fields.

In section 3.3 we discussed that the effective interaction is the relevant part leading to phase

transitions. For a definition of a generating functional for these terms, we have to take into account

that the expectation values of the creation and the annihilation operators are non-zero when the

source terms of W are present. These expectation values define new average fields by

φi(η̄, η) := 〈ψi〉η̄,η = − δ

δη̄i
W[η̄, η] and φ̄i(η̄, η) := 〈ψ̄i〉η̄,η̄ =

δ

δηi
W[η̄, η]. (3.173)

An inversion of these relations leads to an expression for the source fields in terms of these new fields,

that is η(φ̄, φ) and η̄(φ̄, φ). The generating functional for the effective action can now be defined based

on the Legendre transformation of W[η̄, η] with respect to the new average fields φ and φ̄.

Definition 35 (Generating Functional for the Effective Action)

Let W[η̄, η] be the generating functional for connected Green’s functions and let φ and φ̄ be

the average fields of the field variables ψ and ψ̄, respectively, generated by W in the presence

of sources η and η̄ according to equation (3.173). Then the generating functional for the

effective action Γ is defined by the Legendre transformation of W with respect to the average

fields, i.e.

Γ[φ̄, φ] :=W[η̄(φ̄, φ), η(φ̄, φ)] +
(
φ̄, η
)

+ (η̄, φ) . (3.174)

In analogy to the Green’s functions the one-particle irreducible n-particle vertex functions are

defined based on this generating functional.
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Definition 36 (One-particle Irreducible n-particle Vertex Functions)

Let Γ, φ and φ̄ be as defined in definition 35. Then the one-particle irreducible n-particle

vertex functions are defined as

γ2n(1, . . . , 2n) :=
δ2nΓ[φ̄, φ]

δφ̄1 · · · δφ̄nδφ2n · · · δφn+1

∣∣∣∣
φ=φ̄=0

. (3.175)

Before we derive some properties and relations between both generating functionals we define the

matrices of the derivatives of second order as helpful quantities.

Definition 37 (Matrices of the Second Order Derivatives)

Let η and η̄ be source fields of G and let φ and φ̄ be the average fields of ψ and ψ̄ as provided by

definition 35. Then the second order derivatives are provided by the operators

δ2
η(1, 2) :=

(
−δη̄1

δη2
δη̄1
δη̄2

δη1
δη2

−δη1
δη̄2

)
and δ2

φ(1, 2) :=

(
δφ̄1

δφ2
δφ̄1

δφ̄2

δφ1
δφ2

δφ1
δφ̄2

)
. (3.176)

Based on these helpful operators and the two definitions above (def. 35 and def. 36) the following

corollary is directly obtained.

Corollary 3.16 (Properties of the Generating Functional for Effective Action)

Let φ, φ̄, η, η̄ and Γ be as given in definition 35. Then the following holds:

1. The effective potential satisfies the reciprocity relations

δ

δφ̄
Γ[φ̄, φ] = η and

δ

δφ
Γ[φ̄, φ] = −η̄.

(3.177)

2. The Legendre transformation of Γ is the generating functional W.

3. In the absence of sources the effective action is stationary.

4. The matrices of the derivatives of second order of Γ and W are reciprocal to each other, i.e.

δ2
φΓ = (δ2

ηW)−1. This particularly implies G = (γ(2))−1

5. The self-energy Σ can be written as Σ = G−1 − γ(2).

6. The expansion of the generating functional Γ in Grassmann fields is given by

Γ[φ̄, φ] =

∞∑
n=0

(−1)n

(n!)2
γ(2n)(1, . . . , 2n)φ̄1 · · · φ̄nφ2n · · ·φn+1. (3.178)
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7. The n-particle interactions γ(2n) are one-particle irreducible and for n ≥ 2 given by

γ(2n) = (1)n
∞∑
k

1

k!2k

∑
π∈Sn+2k

π one-line-irreducible

Valamp [n, k, π], (3.179)

with Valamp being the amputated Feynman diagrams defined by equation 3.126.

8. The n-particle connected Green’s functions G(2n) for n ≥ 2 are related to the one-particle

irreducible interactions γ(2n) by

G(2n)
c (1, . . . , 2n)

= (−1)nG(1, 1̃) · · ·G(n, ñ)G(2n, 2̃n) · · ·G(n+1, ñ+1)γ(2n)(1̃, . . . , 2̃n) +R (3.180)

with R being the remainder which consists of all the tree diagrams built up by at least two

interactions γ(2m) of order m ≤ n connected by propagators and which contains at least one

torso line.

Proof: 1. By performing the differentiation, applying the chain rule and inserting the definition

of the fields φ and φ̄, one directly obtains

δ

δφ̄i
Γ[φ̄i, φi] =

(
δW
δηj

,
δηj
δφ̄i

)
+

(
δη̄j
δφ̄i

,
δW
δη̄j

)
+

(
δφ̄j
δφ̄i

, ηj

)
−
(
φ̄j ,

δηj
δφ̄i

)
+

(
δη̄j
δφ̄i

, φj

)
=

(
φ̄j ,

δηj
δφ̄i

)
−
(
δη̄j
δφ̄i

, φj

)
+ ηi −

(
φ̄j ,

δηj
δφ̄i

)
+

(
δη̄j
δφ̄i

, φj

)
= ηi,

(3.181)

which is the desired result. Remark that we implicitly assumed a summation over the indices

appearing twice. An analogous calculation for the field φ results in the companion equation.

2. Due to the definition of Γ and to the reciprocity relations of the fields as provided by corollary

3.16.1, W is the Legendre transformation of Γ according to

W[η̄, η] = Γ[φ̄(η̄, η), φ(η̄, η)]− (η̄, φ)−
(
φ̄, η
)
. (3.182)

3. In the absence of sources, the reciprocity relations in corollary 3.16.1 are equal to zero. Therefore,

the generating functional does not change with respect to fields and thus is stationary in this

case.

4. The calculation of the derivatives of the average fields and the use of the chain rule result in

δ(3, 1) =
δφ3

δφ1
=

δ

δφ1

[
−δW
δη̄3

]
= −

(
δ2W
δη̄3δη2

,
δ2Γ

δφ̄2δφ1

)
+

(
δ2W
δη̄3δη̄2

,
δ2Γ

δφ2δφ1

)
δ(3, 1) =

δφ̄3

δφ̄1
=

δ

δφ̄1

[
δW
δη3

]
=

(
δ2W
δη3δη2

,
δ2Γ

δφ̄2δφ̄1

)
−
(
δ2W
δη3δη̄2

,
δ2Γ

δφ2δφ̄1

)
0 =

δφ3

δφ̄1
=

δ

δφ̄1

[
−δW
δη̄3

]
= −

(
δ2W
δη̄3δη2

,
δ2Γ

δφ̄2δφ̄1

)
+

(
δ2W
δη̄3δη̄2

,
δ2Γ

δφ2δφ̄1

)
0 =

δφ̄3

δφ1
=

δ

δφ1

[
δW
δη3

]
=

(
δ2W
δη3δη2

,
δ2Γ

δφ̄2δφ1

)
−
(
δ2W
δη3δη̄2

,
δ2Γ

δφ2δφ1

)
.

(3.183)

72



3.4. Generating Functionals

Rewritten in matrix form, we obtain(
δ3,1 0

0 δ3,1

)
=

∫
d2

(
− δ2W
δη̄3δη2

δ2W
δη̄3δη̄2

δ2W
δη3δη2

− δ2W
δη3δη̄2

)(
δ2Γ

δφ̄2δφ1

δ2Γ
δφ̄2δφ̄1

δ2Γ
δφ2δφ1

δ2Γ
δφ2δφ̄1

)

=:

∫
d2 δ2

ηW δ2
φΓ(2; 1),

(3.184)

and it can directly be observed that the matrix of the derivatives of second order for Γ is the

inverse of the matrix of the second order derivatives of W, in short-hand notation

δ2
φΓ = (δ2

ηW)−1. (3.185)

When the fields vanish we directly obtain

γ(2) = δ2
φΓ
∣∣
φ=φ̄=0

= (δ2
ηW)−1

∣∣
η=η̄=0

= G−1. (3.186)

5. According to part 4 of this corollary the one-particle effective interaction is the inverse of

the Green’s function. As the full one-particle Green’s function fulfils the Dyson equation (eq.

(3.135)), it can be replaced by γ(2) and rearranged, so that it results in

Σ = G−1
0 − γ(2). (3.187)

As G−1
0 corresponds to the non-interacting system, the self-energy corresponds to the difference

between the interacting and the non-interacting system. Therefore, this relation is frequently

used to define the self-energy.

6. The expansion of Γ[φ̄, φ] in Grassmann fields φ and φ̄ is

Γ[φ̄, φ] =

∞∑
n=0

(−1)n

(n!)2

×
∫

d1 · · ·
∫

d2n
δ2nΓ[φ̄, φ]

δφ̄1 · · · δφ̄nδφ2n · · · δφn+1

∣∣∣∣
φ̄=φ=0

φ̄1 · · · φ̄nφ2n · · ·φn+1 (3.188)

where γ(2n) can directly be identified as expansion coefficients.

7. A proof of the one-particle irreducibility and the expansion in Feynman diagrams based on

the FRG method can be found in Schober [81], theorem 5.17. An alternative approach to this

theorem in terms of a diagrammatic expansion is provided by Negele and Orland [78], though,

it is not a rigorous general proof.

8. To obtain the expansions for the n-particle Green’s function, similar calculations as performed

for corollary 3.16.4 are necessary with 2n−1 field derivatives acting on φi. The result of the

action of a first field derivative has already been obtained in equation (3.183). Additional field

derivatives can directly act either on Γ, or on W, which then result in additional terms of the

form δmΓ
δφ1···δφm . Due to the chain rule the derivative of W is connected to all the terms of the

derivatives of Γ. As we consider fermions, only those terms with an equal number of Grassmann

and conjugated Grassmann fields contribute, and the derivatives can be rewritten in terms of

n-particle Green’s functions and n-particle interactions. Due to the product rule the sum of all

the possible terms arising from the differentiation has to vanish.
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G4

Figure 3.10.: Graphical representation of a term contributing to the three-particle Green’s function. As
the two-particle interactions are connected via a torso line, the contribution is one-particle
irreducible.

In the case that all the derivatives first act on W, we obtain the n-particle Green’s function

with γ(2) at all but one of its legs. If we, therefore, add G as the inverse to γ(2) to all the

corresponding legs, we obtain the pure n-particle Green’s function which has to sum up to zero

with all the other terms. In the other extreme case, in which all the additional derivatives act on

Γ, we obtain γ(2n) connected to a one-particle Green’s function. Due to the addition of G all of

its legs become connected to such a Green’s function, thus leading to the first term of equation

(3.180).

In all the other terms the derivative leads to a Green’s function connected to at least two, but

less than n−1 interactions. Therefore, only terms of G2n−2 appear in there, such that we can

recursively consider these cases. Starting for the two-particle case, the restriction to fermions

only allows two different terms, resulting in

G4(1, 2; 3, 4) = G(1, 1̃)G(2, 2̃) γ(2n)(1̃, 2̃; 3̃, 4̃)G(3̃, 3)G(4̃, 4). (3.189)

Considering the three-particle case, one can observe besides the extreme terms containing G6 or

γ(6), a third term arises from the differentiation, namely

G4(1, 2; 4, 1̃) γ(4)(1̃, 2̃; 3̃, 4̃)G(3, 2̃)G(3̃, 5)G(4̃, 6). (3.190)

In this term, we can insert the expression for the two-particle Green’s function, resulting in two

two-particle interactions γ(4) connected to each other by one one-particle Green’s function. In

a diagrammatic representation this connection line corresponds to a torso-line, as the diagram

splits into two parts when it is cut. A diagrammatic representation of this argument is shown

in figure 3.10. The procedure just presented has to be continued for Green’s functions of higher

order, resulting in the fact that the residue of equation (3.180) always contains a torso-line.

Based on these functionals, the calculation of susceptibilities, which was the motivation of our

discussion, is still not directly possible. However, according to the discussion in section 3.3, the

susceptibilities can be obtained by calculating the effective actions and by adding closed Green’s

function loops to them. In the same section we also discussed that susceptibilities behave as bosons.

By adding source terms of the fermion bilinears to the generating functional we are, therefore, able

to derive an explicit expression for them.
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Definition 38 (Generating Functional for the Effective Action and for Susceptibilities)

Let ψ, ψ̄ be Grassmann fields, η, η̄ fermionic source fields, B a boson-like field based on a

fermionic bilinear, and let J be the corresponding source field. Furthermore, let

S[ψ, ψ̄, J ] = −(ψ,G−1
0 ψ) + V [ψ̄, ψ] + (J,B) (3.191)

be the effective action of the system. Then

W[η̄, η, J ] = − ln

∫
D[ψ, ψ̄] e−S[ψ̄,ψ,J] e(η̄,ψ)+(ψ̄,η) (3.192)

is the generating functional for connected fermionic Green’s functions and for the

susceptibilities and its Legendre transformation

Γ[φ̄, φ, J ] =W[η̄(φ̄, φ), η(φ̄, φ), J ] +
(
φ̄, η
)

+ (η̄, φ) (3.193)

is the generating functional for the effective action and for the susceptibilities.

Any derivative of W with respect to the source fields J leads to the corresponding fermion bilinear

appearing in the the expectation value. Therefore, for any fermion bilinear we are interested in, we

add the corresponding source term. Although the fermion bilinears are treated as bosons, they are

defined by a fixed combination of fermion creation and annihilation operators. As only expectation

values with an equal number of them are non-zero, the non-local charge- and spin-density bilinears

appear with an equal number of fermionic creation and annihilation operators, while two additional

creation (annihilation) operators appear for each (adjoint) pairing operator. As the fermion bilinears

are characterised by a form-factor (see section 3.3), a form-factor index appears for each fermion

bilinear in the expectation value.

In analogy to the n-fermion interactions or vertices as derivatives of the Γ[φ̄, φ] functional, the

Legendre transformation allows us to define corresponding n-fermion and m-boson vertices as follows:

Definition 39 (One-particle Irreducible n-Fermion, m-Boson Interactions)

Let Γ be as defined in definition 38. Let ni and nj be the number of incoming and outgoing

slots, respectively, and 2n = ni+nj. Then the one-particle irreducible n-fermion m-boson

interactions (or vertices) are

γ(2n,m)
η (1, . . . , ni;ni+1, . . . , 2n; 1′, . . . ,m′) :=

δ(2n+m)Γ[φ̄, φ, J ]

δφ̄1 · · · δφ̄niδφ2n · · · δφni+1J1′ · · · Jm′

∣∣∣∣
φ=φ̄=J=0

(3.194)

with η denoting the type of present fermion-bilinear fields.

When the fermion bilinear field is replaced by a purely bosonic one, this interaction would require

ni = nj . In our case however, the interaction is only non-zero if the total number of Grassmann

and adjoint Grassmann fields of the fermion bilinear and of fermions adds up to zero, that is if
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ni − nj =
∑m
i=0 σ(Bmi) with σ(Bmi) = −2, 0, 2 for B ∝ p†, B ∝ ψ̄ψ and B ∝ p, respectively.

Therefore, ni + nj will always be an even number such that we define their sum as 2n.

For the rest of this thesis we will maintain the argument structure of the n-fermion m-boson in-

teraction as incoming fermions, outgoing fermions and bosons when bosons or fermion bilinears are

present. When there is no argument in one of the fermionic parts, we will place a “·” in the corre-

sponding place to clarify the correspondence of the arguments to the fields, while we will drop the

bosonic arguments and the bosonic index η when they are absent.

As the fermionic part of this generating functional equals the one in definition 35, the results given

in corollary 3.16 still hold. The field expansion in corollary 3.16.6, however, now also has to include

the bosonic fields and thus becomes

Γ[φ̄, φ, J ] =
∞∑

m,ni,nj=0

(−1)nj

m!ni!nj !

∫
d1 · · ·

∫
d2n

∫
d1′ · · ·

∫
dm′

× γ(2n,m)
η (1, . . . , ni;ni + 1, . . . , n; 1′, . . . ,m′) φ̄1 · · · φ̄niφ2n · · ·φni+1J1′ · · · Jm′

:=

∞∑
m,n=0

A(2n,m)Λ[φ̄, φ, J ].

(3.195)

Obviously, solely derivatives with respect to the generating Grassmann fields generate the effective

one-particle irreducible interactions γ(2n,0) like before. Each derivative with respect to the source fields

J , however, leads to a bosonic field or a fermion bilinear. Therefore, two derivatives with respect to

the generator of an electron-hole bilinear like ρ or Si lead to corresponding susceptibilities of electron-

hole type γ
(0,2)
eh = χeh. Two derivatives with respect to the generators of a pairing bilinear p and its

adjoint bilinear p̄ lead to the pairing susceptibility γ
(0,2)
ee = χee. A combination of one derivative with

respect to the source terms J and one with respect to two Grassmann fields results in vertices γ(2,1)

representing the interaction between a fermion-bilinear and a pair of fermions. Those interactions

will be called fermion-boson interaction in the following, which also includes the case of fermion-

bilinears due to their boson-like behaviour. If the fermion-bilinear present in such an interaction is

of electron-hole type, it has to couple to a Grassmann field and an adjoint one and we denote it

by γ
(2,1)
eh . If the fermion-bilinear is of hole-hole type, the interaction has to couple to two adjoint

Grassmann fields, resulting in the hole-hole fermion-boson interaction γ
(2,1)
hh , while the adjoint case

of electron-electron fermion-bilinears leads to the electron-electron fermion-boson interaction γ
(2,1)
ee .

Those fermion-boson interactions will be needed in the flow equations in order to generate the full

interacting susceptibilities.

As the following derivation of the FRG equations is based on the n-fermion m-boson vertices γ(2n,m)

we consider their symmetries, too.

Corollary 3.17 (Properties of Effective Fermion-Boson Interactions)

Let γ(n,m) be the n-fermion m-bilinear interaction according to definition 39. Then it obeys the

following symmetry relations:

1. For the fermionic part the crossing symmetries hold

γ(n,m)(1, . . . , i, . . . , j, . . . , ni;ni + 1, . . . , 2n; 1′, . . . ,m′)

= −γ(n,m)(1, . . . , j, . . . , i, . . . , ni;ni + 1, . . . , 2n; 1′, . . . ,m′), and (3.196)
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γ(n,m)(1, . . . , ni;ni + 1, i, . . . , j, . . . , . . . , 2n; 1′, . . . ,m′)

= −γ(n,m)(1, . . . , ni;ni + 1, . . . , j, . . . , i, . . . , 2n; 1′, . . . ,m′), (3.197)

while the bosonic (bilinear) part is invariant under the exchange of particles so that

γ(n,m)(1, . . . , 2n; 1′, . . . , i, . . . , j, . . .m′)

= γ(n,m)(1, . . . , 2n; 1′, . . . , j′, . . . , i′, . . . ,m′). (3.198)

2. The complex conjugation inverts the order of fermionic and bosonic arguments and

changes the times of the fermionic arguments, i.e.

(
γ(2n,m)(x1τ1, . . . , x2nτ2n;x1′τ1′ , . . . , xm′τm′)

)∗
= γ(2n,m)(x2n(−τ2n), . . . , x1(−τ1);xm′(−τm′), . . . , x1′(−τ1′)), (3.199)

which, in the frequency domain, results in

(
γ(2n,m)(x1ω1, . . . , x2nω2n;x1′ν1′ , . . . , xm′νm′)

)∗
= γ(2n,m)(x2n(−ω2n), . . . , x1(−ω1);xm′(−νm′), . . . , x1′(−ν1′)). (3.200)

3. Let Ĥ be invariant under a translation a ∈ R in time. Then γ(2n,m) also is invariant under

time translations, i.e.

γ(2n,m)(τ1, . . . , τ2n; τ1′ , . . . , τm′) = γ(2n,m)(τ1 +a, . . . , τ2n+a; τ1′+a, . . . , τm′+a). (3.201)

4. Let Ĥ be invariant under a translation r′ ∈ R3 in space. Then γ(2n,m) also is invariant

under spatial translations, i.e.

γ(2n,m)(r1, . . . , r2n; r1′ , . . . , rm′) = γ(2n,m)(r1+r′, . . . , r2n+r′; r1′+r
′, . . . , rm′+r

′). (3.202)

5. Let Ĥ be SU(2)-symmetric. Then γ(2n,m) conserves the total spin, i.e.

2n∑
i=1

si =
m∑
i=0

s′i, (3.203)

and is symmetric under a global spin-flip, i.e.

γ(2n,m)(s1, . . . , s2n; s1′ , . . . , sm′) = γ(2n,m)(−s1, . . . ,−s2n;−s1′ , . . . ,−sm′). (3.204)

6. Let Ĥ be symmetric under a point-group Γ and let R̂ ∈ Γ be a symmetry operation of the

point group. Then γ(2n,m) is symmetric under the point group operation R̂ according to

γ(2n,m)(r1, . . . , r2n; r1′ , . . . , rm′) = γ(2n,m)(R̂(r1), . . . , R̂(r2n); R̂(r1′), . . . , R̂(rm′)). (3.205)
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7. The Fourier transformation of γ(2n,m)(1, . . . , 2n; 1′, . . . ,m′) is given by

γ(2n,m)(k1ω1, . . . , k2nω2n; k1′ω1′ , . . . , km′ , ωm′)

=
1

(2π)d(2n+m)β2n+m

∫
dr1 · · ·

∫
dr2n

∫ β

0

dτ1 · · ·
∫ β

0

dτ2n

e−i(k1·r1+ω1τ1) · · · e−i(kn·rn+ωnτn) ei(k2n·r2n+ω2nτ2n) · · · ei(kn+1·rn+1+ωn+1τn+1)

e−i(k1′ ·r1′+ω1′τ1′ ) e−i(km′ ·rm′+ωm′τm′ )γ(2n,m)(1, . . . , 2n; 1′, . . . ,m′). (3.206)

Proof: 1. This directly follows from the anticommutivity of Grassmann fields and from the com-

mutivity of the corresponding fermionic bilinears and bosons.

2. For the fermionic part, the proof is along the same line with the one of theorem 3.2. For the

bosonic part, the same considerations combined with the observation that B∗(τ) = B(−τ) lead

to the desired result. The result in the frequency domain is directly obtained by the insertion

of the imaginary time relation into the Fourier transformation.

3. This proof is along the same line with the one of corollary 3.4.1.

4. This proof is along the same line with the one of corollary 3.4.2.

5. This relation is proved along the same lines with the one of corollary 3.4.3. Every fermion

bilinear adds terms of ±s1′±s2′ to the spin summation in equation (3.44), where “+” refers to a

creation and “−” to an annihilation operator. As the total number of incoming momenta again

has to equal the total number of outgoing momenta, the bosonic spin is maintained within the

interaction, leading to the desired result.

6. This proof is along the same line with the one of corollary 3.4.4.

7. This relation directly follows from applying the Fourier transformation to the generating func-

tional.
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3.5. Functional Renormalisation Group

The main principle of the renormalisation approach is based on the idea of Wilson [52, 53]. The

underlying concept is to split the whole energy range into windows of a finite energy range and then,

successively, consider interactions within these. In more detail, all high energetic modes above a

first cut-off whose interactions are described by a model Hamiltonian are summed up to construct

an effective Hamiltonian. This is then used for an energy window between the first and a second

cut-off, where, again, all corresponding modes are integrated out to obtain another effective action.

Repeating this procedure down to zero energy leads to the total effective interaction between particles

of the particular model and thus to the correct partition function of the system. Mathematically,

this approach is based on the splitting of the covariance and the measure with respect to the scale

parameter, thus providing a semi-group property. However, such an iterative, analytical treatment is

only possible for a few models like the Ising model [101, 59].

To cast the renormalisation procedure into a generally applicable and numerically treatable math-

ematical form, the limit of infinitesimally sized energy windows is taken, so that a real non-negative

cut-off parameter Λ defines this window. Thus, ordinary differential equations for the effective one-

particle irreducible n-fermion m-boson3 interactions (including susceptibilities) can be derived, which

are called flow equations. The solution to these differential equations is then a flow through the phase

space from the non-interacting system to the full interacting system. This approach is called func-

tional renormalisation group (FRG), as it casts the semi-group approach of the Wilson renormalisation

group into a functional form. There exist different approaches to this method, like, for example, the

one by Polchinski [54] or the one by Wetterich [58, 102]. The formulation for interacting fermions

based on the formulation of Wetterich was derived by Salmhofer and Honerkamp [60, 103], as well as

[59] at basically the same time. While Metzner et al. provide an extensive review on this method in

[104], our derivation is rather based on the derivations by Schober [81].

In order to restrict the energy to a finite window in the formalism, we take the common choice of

modifying the free Green’s function by a cut-off. We remark that alternatives to this choice exist,

like, for example, a regularisation of the two-particle interaction (cf. e.g. [105]). Our choice leads to

the following definition:

Definition 40 (Cut-Off and Regularised Free Green’s Function)

Let G0 be the free one-particle Green’s function of a system. Then we call Λ ∈ [0,∞) the cut-off

parameter, flow parameter or scale parameter, if G0 is regularised by Λ such that

GΛ
0 =

0 for Λ = Λ0

G0 for Λ→ Λf .
(3.207)

GΛ
0 is then called the regularised free Green’s function and QΛ := (GΛ

0 )−1 is called the

inverse operator or the covariant.

According to this definition, the regularised free Green’s function vanishes when all modes of the

system are cut away, and it becomes the original free Green’s function when all modes are included,

3For reasons of brevity we refer to interactions of fermions and fermion-bilinears also as fermion-boson interactions, as
the latter show a boson-like behaviour.
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that is when the full system is restored. These conditions leave space for different choices of the

implementation of the cut-off. One possibility [106] is to add a regulator RΛ with RΛ0 = ∞ and

RΛf = 0 to the inverse propagator Q = G−1
0 so that

QΛ(1; 2) = Q(1; 2) +RΛ(1; 2) (3.208)

fulfils the conditions. Alternatively, one can multiply the free Green’s function with a cut-off function

CΛ with CΛ0 = 0 and CΛf = 1 so that

GΛ
0 (1; 2) = CΛ(1; 2)G0(1; 2). (3.209)

A further discussion on the actual choice of cut-off functions can be found in chapter 4.3 with some

focus on numerical details.

When the regularised free Green’s function is inserted into the generating functionals G, W or Γ,

all of these and all of their derivatives become regularised and depend on the flow parameter Λ. That

is, the average fields φ and φ̄ needed for the Legendre transformation from W to Γ, all connected

Green’s functions, and all one-particle irreducible n-fermion m-boson vertices γ(2n,m) depend on the

scale parameter Λ, which is indicated by the superscript Λ 4. Flow equations for γ(2n,m)Λ are obtained

by the comparison of fields, when the field expansion of Γ is introduced into its Λ-derivative, as we

will derive in the subsequent section.

3.5.1. Functional Flow Equations

As Γ is the Legendre transformation of the generating functional of connected Green’s functions

WΛ we first derive the flow equation for WΛ.

Theorem 3.18 (Flow Equation for the Generating Functional of Connected Green’s

Functions)

Let GΛ
0 be the regularised free Green’s function and let WΛ[η, η̄, J ] be the generating functional

of connected Green’s functions given by definition 34. Then its flow equation is given by

d

dΛ
WΛ[η, η̄, J ] =

(
δWΛ

δη
,

[
δQΛ

δΛ

]
δWΛ

δη̄

)
+ Tr

([
δQΛ

δΛ

]
δ2WΛ

δη̄δη

)
. (3.210)

Proof: By rewriting the derivative of the generating functional as

d

dΛ
WΛ[η, η̄, J ] = −eWΛ d

dΛ
e−W

Λ

(3.211)

its explicit expression can be written without the logarithm. The evaluation of the derivative results

in

d

dΛ
WΛ = −eWΛ

∫
D[ψ̄, ψ] (ψ̄, Q̇Λψ) e−S[ψ̄,ψ,J] e(η̄,ψ)+(ψ̄,η)

= −eWΛ

(−δη, Q̇Λδη̄)

∫
D[ψ̄, ψ] e−S[ψ,ψ̄,J] e(η̄,ψ)+(ψ̄,η)︸ ︷︷ ︸

e−WΛ

,
(3.212)

4Most derivations of the FRG equations shift the Λ-dependence to the source fields η and η̄, so that φ and φ̄ remain
Λ independent. Although both choices result in the same flow equations, our choice appears more natural.
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where the Grassmann fields are rewritten with source term derivatives. The first derivative of the

scalar product gives rise to a term of the form (δη̄WΛ)e−W
Λ

. The second derivative then leads to a

similar term with δηWΛ and to a second derivative of WΛ. The latter term only is non-zero when

both derivatives correspond to fields with the same quantum numbers, as fermionic fields can only

appear in pairs, and can, therefore, be written in terms of a trace. This leads to

d

dΛ
WΛ = eW

Λ

e−W
Λ

(
δWΛ

δη
, Q̇Λ δWΛ

δη̄

)
+ Tr

(
Q̇Λ δ

2WΛ

δηδη̄

)
, (3.213)

which is the desired result.

In the next step, we use the Legendre transformation to obtain the flow equation for ΓΛ[φΛ, φ̄Λ, J ].

Theorem 3.19 (Flow Equation for the One-particle-irreducible Vertex Generating

Functional)

Let QΛ be the inverse, regularised free propagator, let φΛ and φ̄Λ be average fields as defined in

equation (3.173), let QΛ = (GΛ
0 )−1 and GΛ be given by

QΛ =:

(
QΛ 0

0 −QΛt

)
and GΛ =:

(
GΛ 0

0 −GΛt

)
= (δ2

φΓΛ)−1
∥∥
φ=φ̄=J=0

(3.214)

with QΛt(1; 2) = QΛ(2; 1) and GΛt(1; 2) = GΛ(2; 1). Let furthermore

Σ̃Λ[φΛ, φ̄Λ, J ] := (GΛ)−1 − δ2
φΓΛ[φΛ, φ̄Λ, J ] be the field independent part of the interaction.

Then the flow equation for the generating functional of one-particle irreducible interactions is

given by the Wetterich equation [58]

d

dΛ
ΓΛ[φΛ, φ̄Λ, J ] +

(
δΓ

δφΛ
,
∂φΛ

∂Λ

)
+

(
δΓ

δφ̄Λ
,
∂φ̄Λ

∂Λ

)
= −

(
φ̄Λ, Q̇ΛφΛ

)
− 1

2
Tr
(
Q̇Λ(δ2

φΓΛ[φΛ, φ̄Λ, J ])−1
)
, (3.215)

or, equivalently, by

d

dΛ
ΓΛ[φΛ, φ̄Λ, J ] +

(
δΓ

δφΛ
,
∂φΛ

∂Λ

)
+

(
δΓ

δφ̄Λ
,
∂φ̄Λ

∂Λ

)
= −

(
φ̄Λ, Q̇ΛφΛ

)
− Tr

(
Q̇ΛGΛ

)
+

1

2
Tr
(
−GΛQ̇ΛGΛ

(
Σ̃Λ[φ̄Λ, φΛ, J ] + Σ̃Λ[φ̄Λ, φΛ, J ]GΛΣ̃Λ[φ̄Λ, φΛ, J ] + . . .

))
. (3.216)

Proof: AsWΛ depends on the flow parameter, so do the φΛ- and the φ̄Λ-fields, as they are determined

by the relation φΛ = −∂η̄WΛ and φ̄Λ = ∂ηWΛ. Then, with the definition of ΓΛ, we obtain

d

dΛ
ΓΛ[φ̄Λ, φΛ, J ] =

d

dΛ
WΛ[η(φ̄Λ, φΛ), η̄(φ̄Λ, φΛ), J ] +

(
d

dΛ
φ̄Λ, η

)
+

(
η̄,

d

dΛ
φΛ

)
. (3.217)

The left hand side of equation (3.215) is obtained by identifying η and η̄ in the last two terms of the

right hand side as derivatives of Γ due to the reciprocity relation (cf. thm. 3.16.1) and by shifting them

to the left hand side. Only the flow equation of WΛ is left on the right hand side, which itself is given

by theorem 3.18. Due to the definition in equation (3.173) φΛ and φ̄Λ replace the first derivatives ofW
with respect to source fields. To express the second field derivative of W, which appears in the trace

of Γ, we will use the reciprocity relation (see thm. 3.16.4). Therefore, this term has to be cast into a
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corresponding matrix form on which the trace acts additionally. As field derivatives anticommute, we

get δη̄δη = −δηδη̄, so that

QΛ(x1, x2)δη̄2
δη1
WΛ =

1

2

(
QΛ(x1, x2)δη̄2

δη1
WΛ −QΛ(x2, x1)δη2

δη̄1
WΛ

)
= −1

2
Tr

((
QΛ(x1, x2) 0

0 −QΛ(x2, x1)

)(
−δη̄2

δη1
δη̄2
δη̄1

δη2
δη1

−δη2
δη̄1

)
WΛ

)

= −1

2
Tr
(
QΛδ2

ηWΛ
)
,

(3.218)

where the integration variables of the second term were exchanged in the intermediate step, and the

off-diagonal elements do not contribute due to the trace. With the reciprocity relation (see thm.

3.16.4) δ2
ηWΛ can be replaced by (δ2

φΓΛ)−1, resulting in the expression (3.215).

To prove equation (3.216) the definition5 of Σ̃Λ is rearranged to

δ2
φΓΛ[φΛ, φ̄Λ, J ] = (GΛ)−1 − Σ̃Λ[φΛ, φ̄Λ, J ], (3.219)

and its inverse is expanded according to

(
δ2
φΓΛ

)−1
=
(

1−GΛΣ̃Λ
)−1

GΛ

=
∞∑
n=0

(
GΛΣ̃Λ

)n
GΛ.

(3.220)

We note that, although this series is mathematically exact, it only converges if |GΣ̃| < 1.6

By inserting this into expression (3.215), the term of order zero of the sum − 1
2Tr (Q̇ΛGΛ) is sepa-

rated and becomes, due to the definition of the given matrices, −Tr (Q̇ΛGΛ). By exploiting the cyclic

property of the trace, all the other terms in the trace then directly lead to the expression in equation

(3.216).

For a deeper understanding of Σ̃, we regard the second derivative of the fermionic field expansion

of Γ. Obviously, the constant terms with n = 0 vanish and those with n = 1 become constant in

fermionic fields. Without bosons, this constant coefficient is the inverse Green’s function according to

γ(2,0)Λ
∣∣∣
φ̄Λ=φΛ=0

= (GΛ)−1
∣∣
φ̄Λ=φΛ=0

= diag(GΛ,−(GΛ)t)−1. Due to its significance, which we pointed

out in chapter 3.1, this term was separated and all field-dependent parts were moved to −Σ̃Λ. Its

field expansion, therefore, has no terms for n = 0 and for n = 1, m = 0, while the other terms are

two-dimensional matrices of the second field derivatives of the expansion of Γ.

As the obtained flow equations are for the generating functionals, a numerical implementation is

not possible. By an expansion in terms of fields we can obtain the corresponding flow equations for

either the n-particle Green’s functions or for the many-particle interaction functions.

5Σ̃ can alternatively be defined with a global −-sign, resulting in an alternating sign in the expansion of eq. 3.216.
This, however, is fixed by the −-sign appearing in the field expansion of Σ̃ compared to the alternative choice, cf.
thm. 3.21.

6In weakly interacting systems Σ is typically small, ensuring a convergence of this series.
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3.5.2. Vertex Flow Equations

Before we introduce the expansion of ΓΛ in equation (3.216) in terms of fields we define some objects

which will simplify the notation later on.

Definition 41 (Single-Scale Propagator and Dual Propagator)

Let GΛ and QΛ be defined as in theorem 3.19, equation (3.214). Then the single-scale propa-

gator is defined as

SΛ(1; 2) := −
∫

d1̃

∫
d2̃GΛ(1; 1̃) Q̇Λ(1̃; 2̃)GΛ(2̃; 2) (3.221)

with the corresponding matrix form

SΛ := −GΛ Q̇Λ GΛ = diag(SΛ,−(SΛ)t). (3.222)

The dual propagator is defined as

LΛ(1, 2; 3, 4) := GΛ(1; 3) SΛ(2; 4) + SΛ(1; 3)GΛ(2; 4). (3.223)

The diagonal form of SΛ directly follows from the diagonal form ofGΛ andQΛ. LΛ is also symmetric

under simultaneous exchanges of both, incoming and outgoing arguments, that is LΛ(x1, x2;x3, x4) =

LΛ(x2, x1;x4, x3). For numerical calculations it can be advantageous to use another, equivalent form

of the single-scale propagator:

Corollary 3.20 (Alternative Form of the Single-Scale Propagator)

The single scale propagator can equally be written as

SΛ(1; 2) =
dGΛ(1; 2)

dΛ

∣∣∣∣
ΣΛfixed

. (3.224)

Proof: We start by differentiating GΛ(GΛ)−1 = 1 resulting in

d(GΛ)

dΛ
= −GΛ d(GΛ)−1

dΛ
GΛ = −GΛ d(GΛ

0 )−1

dΛ
GΛ +GΛ dΣΛ

dΛ
GΛ = SΛ +GΛ dΣΛ

dΛ
GΛ, (3.225)

where we used the Λ-derivative of the Dyson equation (3.135) for the reformulation in terms of the

inverse free Green’s function GΛ
0 . When the self-energy ΣΛ is fixed, the Λ-derivative of ΣΛ vanishes,

which leads to the requested expression.

Turning back to equation (3.216), an expansion of ΓΛ in terms of fields yields flow equations for the

many-particle interactions γ(2n,m). As Σ̃ is defined as Σ̃Λ[φΛ, φ̄Λ, J ] := (GΛ)−1− δ2
φΓΛ[φΛ, φ̄Λ, J ] the

field expansion of ΓΛ also induces a field expansion of Σ̃Λ. A flow equation for each n-fermion m-boson

interaction is then obtained by comparing the appearing fields on both sides of the equation, as the

interactions are only the corresponding expansion coefficients. Based on the structure of the equation,

the field derivatives on the right hand side remove fields of the vertices and instead connect internal

propagators to the free slot. Therefore, the first contribution to an n-fermion interaction always is an
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(n+1)-fermion interaction connected to itself by a single-scale propagator. This introduces an infinite

hierarchical dependence on interactions of higher order. The other terms which are generated by the

series are all combinations of n or less fermion interactions, coming along with (2n − 2) fermionic

and m bosonic fields, which form a connected Feynman graph. That is, every fermion interaction is

connected to one or to two others either by one single-scale propagator and by one Green’s function or

by two Green’s functions. Accordingly, the total number of external bosonic lines to the interactions

has to equal the requested one on the left hand side, although the bosons can reside on different

interaction vertices. The set of flow equations we will consider is derived in the following theorem.

Theorem 3.21 (Flow Equations for Interactions)

Let ΓΛ be the scale-dependent, one-particle irreducible generating functional (cf. def. 38) obeying

the flow equation in theorem 3.19 and let its expansion be given by equation (3.195). Then the

flow equations of lowest order are given as follows:

0) For the grand canonical potential as

β
d

dΛ
ΩΛ =

∫
d1̃

∫
d2̃ Q̇Λ(1̃; 2̃)GΛ(2̃; 1̃). (3.226)

1) For the self-energy as

d

dΛ
ΣΛ(1; 2) =

∫
d1̃

∫
d2̃ SΛ(1̃; 2̃) γ(4,0)Λ(1, 2̃; 2, 1̃). (3.227)

2) For the two-fermion interaction as

γ̇(4,0)Λ(1, 2; 3, 4) = −
∫

d1̃

∫
d2̃ SΛ(1̃; 2̃) γ(6,0)Λ(2̃, 1, 2; 1̃, 3, 4)

+ T P,Λ(1, 2; 3, 4) + T D,Λ(1, 2; 3, 4) + T C,Λ(1, 2; 3, 4), (3.228)

with

T P,Λ(1, 2; 3, 4) =
1

2

∫
d1̃ · · ·

∫
d4̃ L(1̃, 2̃; 3̃, 4̃) γ(4,0)Λ(1, 2; 1̃, 2̃) γ(4,0)Λ(3̃, 4̃; 3, 4)

T D,Λ(1, 2; 3, 4) =

∫
d1̃ · · ·

∫
d4̃ L(1̃, 2̃; 3̃; 4̃) γ(4,0)Λ(1, 3̃; 3, 2̃) γ(4,0)Λ(4̃, 2; 1̃, 4)

T C,Λ(1, 2; 3, 4) = −
∫

d1̃ · · ·
∫

d4̃ L(1̃, 2̃; 3̃; 4̃) γ(4,0)Λ(1, 3̃; 4, 2̃) γ(4,0)Λ(4̃, 2; 1̃, 3).

(3.229)

3a) For the electron-hole fermion-boson interactions as

γ̇
(2,1)Λ
eh,n (1; 2; 1′) =

∫
d1̃

∫
d2̃ S(1̃; 2̃)γ

(4,1)Λ
eh,n (1, 2̃; 2, 1̃; 1′)

+
1

2
LΛ(1̃, 2̃; 3̃, 4̃) γ

(2,1)Λ
eh,n (3̃; 2̃; 1′) γ(4,0)Λ(1, 4̃; 2, 1̃). (3.230)
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3b) For the electron-electron fermion-boson interactions as

γ̇(2,1)Λ
ee,n (·; 1, 2; 1′)

=
1

2

∫
d1̃ · · ·

∫
d4̃ LΛ(1̃, 2̃; 3̃, 4̃) γ(2,1)Λ

ee,n (·; 1̃, 2̃; 1′) γ(4,0)Λ(3̃, 4̃; 1, 2). (3.231)

4a) For the electron-hole susceptibilities as

χ̇Λ
eh,nn′(1

′, 2′) =

∫
d1̃

∫
d2̃ S(1̃; 2̃) γ

(2,2)Λ
eh,nn′(2̃; 1̃; 1′, 2′)

+

∫
d1̃ · · ·

∫
d4̃ LΛ(1̃, 2̃; 3̃, 4̃) γ

(2,1)Λ
eh,n (3̃; 2̃; 1′) γ(2,1)Λ

eh,n′ (4̃; 1̃; 2′). (3.232)

4b) For the electron-electron susceptibilities as

χ̇Λ
ee,nn′(1

′, 2′) =

∫
d1̃

∫
d2̃ S(1̃; 2̃) γ

(2,2)Λ
ee,nn′ (2̃; 1̃; 1′, 2′)

+

∫
d1̃ · · ·

∫
d4̃ LΛ(1̃, 2̃; 3̃, 4̃)γ(2,1)Λ

ee,n (·; 1̃, 2̃; 1′) γ(2,1)Λ
hh,n (3̃, 4̃; ·; 2′). (3.233)

Proof: 7The derivations of these flow equations are based on the insertion of the field expansion of Γ

(see eq. (3.195)) and on the induced expansion of Σ̃ into equation (3.216). In this proof we implicitly

assume an integration or sum over all doubly appearing arguments, to shorten the notation to the

relevant part. In this proof we first discuss terms cancelling each other in the flow equation, then

consider the action of derivatives on terms of the expansion in general and finally derive the explicit

flow equations.

At first, we show that the left hand side of equation (3.216) can be rewritten as

∂γ(2n,m)

∂Λ
φ̄1. . . φ̄niφ2n. . . φni+1J1′ . . . Jm′ . (3.234)

As the presence of bosonic fields will not change the relation, we only treat the coefficient A(2n,0)Λ

explicitly, while a generalisation to an arbitrary m is straight forward. Further, we regard, in this

proof, the case of an equal number of φ and φ̄ fields and write n instead of ni to simplify the notation.

Considering now the first term of the left hand side of equation (3.216), the scale derivative of the field

expansion of Γ can act on the γ(2n,m) coefficients, as well as on the fields φΛ or φ̄Λ. The derivative

then yields

d

dΛ
A(2n,0)Λ =

[
γ̇(2n,0)Λ(1, . . . , 2n; )φ̄Λ

1 · · · φ̄Λ
nφ

Λ
2n · · ·φΛ

n+1

+ γ(2n,0)Λ(1, . . . , 2n; )

{
˙̄φi
δ

δφ̄i
φ̄Λ

1 · · · φ̄Λ
nφ

Λ
2n · · ·φΛ

n+1 + φ̇Λ
i

δ

δφΛ
i

φ̄Λ
1 · · · φ̄Λ

nφ
Λ
2n. . . φ

Λ
n+1

}]
. (3.235)

Here we can see that the Λ derivative of a field φΛ(i) can be introduced by inserting φ̇Λ
i δφΛ

i
in front

of it. Moving these two fields to the front of the whole term does not yield a sign. According to this,

the corresponding terms can be written as ( ˙̄φΛ, δΓ
δφ̄Λ ) + (φ̇Λ, δΓδφΛ ). Due to the anticommutativity of

7We remark that the negative sign of Σ̃ resulting in “−A” is essential for fixing the signs.
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the Grassmann fields, this exactly cancels the other terms on the left hand side of equation (3.216),

leading to

∞∑
m,n=0

(−1)n

m!(n!)2
γ̇(2n,m)(1, . . . , 2n; 1′, . . .m′)φ̄Λ

1 · · · φ̄Λ
nφ

Λ
2n · · ·φΛ

n+1J1′ . . . Jm′ . (3.236)

Before we move on and compare the terms of different order, we determine the field expansion of

Σ̃. Therefore we calculate the action of the different second order derivatives on the terms A2n,m. We

start with

δφ̄αδφβA2n,m = δφ̄αδφβ
(−1)nj

m!ni!nj !
γ(2n,m)Λ(1, . . . , ni;n+ 1, . . . , 2n; 1′, . . . ,m′)

φ̄1 · · · φ̄niφ2n · · ·φni+1J1′ · · · Jm′ (3.237)

which is 0 for ni, nj = 0. To let δφβ act on the corresponding fields, it first has to commute through ni

adjoint fields, resulting in a factor of (−1)ni . As ni+nj is even, the sign vanishes. Due to the product

rule this derivative acts on all φ fields, resulting in nj additive terms with alternating signs because

of the additional commutation. The resulting Kronecker-δ’s in each term then contract the argument

of the field on which the derivative acted and the argument of the derivative β. With the integrals

the Kronecker-δ’s can be evaluated such that the argument of the corresponding field in γ(2n,m)Λ is

replaced by β. As γ(2n,m)Λ is antisymmetric with respect to the arguments, we can move the argument

to the same place and rename the other ones, such that all terms become equal, resulting in a factor

nj . Similarly the action of δφ̄α results in ni equal terms. Thus we obtain in total

δφ̄αδφβA2n,m =
1

m!(ni − 1)!(nj − 1)!
γ(2n,m)Λ(α, 2, . . . , ni;n+ 1, . . . , 2n− 1, β; 1′, . . . ,m′)

φ̄2 · · · φ̄niφ2n−1 · · ·φni+1J1′ · · · Jm′ . (3.238)

As the field derivatives anticommute, we have, with

δφαδφ̄βA2n,m = −δφ̄βδφαA2n,m, (3.239)

the same result as provided by equation (3.238) up to a global factor of −1 and an exchange of α and

β. The derivative δφ̄αδφ̄βA2n,m vanishes for ni ≤ 1. Otherwise, the evaluation of the derivative δφ̄β
results, like before, in ni equivalent terms. In a similar way, the action of the other derivative on the

remaining ni − 1 adjoint Grassmann fields results in ni − 1 equivalent terms. Thus the full derivative

is provided by

δφ̄αδφ̄βA2n,m =
(−1)nj

m!(ni − 2)!nj !
γ(2n,m)Λ(β, α, 3, . . . , ni;n+ 1, . . . , 2n, ; 1′, . . . ,m′)

φ̄3 · · · φ̄niφ2n · · ·φni+1J1′ · · · Jm′ . (3.240)

Similarly, the derivative δφαδφβA2n,m can be evaluated, after both derivatives have been commuted

through the φ̄ fields resulting in a factor (−1)2ni = 1. Thus the derivative results in

δφαδφβA2n,m =
(−1)nj

m!ni!(nj − 2)!
γ(2n,m)Λ(1, . . . , ni;n+ 1, . . . , 2n− 2, α, β; 1′, . . . ,m′)

φ̄1 · · · φ̄niφ2n−2 · · ·φni+1J1′ · · · Jm′ . (3.241)
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When we consider the expansion of Σ̃Λ = G−1 − δ2
φΓΛ based on these results now, we observe that

G−1 cancels the contribution of γ(2,0)Λ(α;β). The expansion of Σ̃ is, therefore, based on all A2n,m

where at least two fields of each type appear.

Next, let us consider the first term of the series, that is 1
2Tr (SΛΣ̃Λ). Due to the diagonal structure

of SΛ and the trace only terms with ni = nj contribute. Evaluating the corresponding term results

in

1

2

(
SΛ(1; 2)γ(2n,m)Λ(1̃, . . . , ni;ni + 1, . . . , 2n− 1, 2̃; 1′, . . .m′)

−SΛ(2; 1)γ(2n,m)Λ(2̃, . . . , ni;ni + 1, . . . , 2n− 1, 1̃; 1′, . . .m′)
)

= SΛ(1; 2)γ2n,m(1̃, . . . , ni;ni + 1, . . . , 2n− 1, 2̃; 1′, . . .m′)

(3.242)

by exchanging the variables of γ(2n,m). We remark that the corresponding fields of the vertex are not

written here, for the sake of brevity.

The terms of second order in the series are provided by

1

2
Tr
(
SΛ δ2

φmA
2n,mGδ2

φmA
2n′,m′

)
=

1

2
Tr
(
SΛδφ̄δφA2n,mGΛδφ̄δφA2n′,m′ + StΛδφδφ̄A2n,mGtΛδφδφ̄A2n′,m′

− SΛδφ̄δφ̄A2n,mGtΛδφδφA2n′,m′ − StΛδφδA2n,mGΛδφ̄δφ̄A2n,m
)
. (3.243)

The first two terms of these contributions are only non-zero if each of the two interactions has the same

number of free incoming and outgoing legs. In contrast, the third and fourth term also contribute if

the number of fields differs, that is ni 6= nj . When the trace is evaluated, we obtain for the first two

terms

1

2

(
SΛ(1̃; 3̃)δφ̄3̃

δφ2̃
A2n,mGΛ(2̃; 4̃)δφ̄4̃

δφ2̃
A2n′,m′

+ SΛ(3̃; 1̃)δφ3̃
δφ̄2̃
A2n,mGΛ(4̃; 2̃)δφ4̃

δψ̄1̃
A2n′,m′

)
. (3.244)

As we will make a comparison of coefficients to obtain the flow equations, we observe that for any

choice of A2n,m and A2n′,m′ there is a corresponding one in which both contributions exchange roles.

In this case the SΛ and GΛ are exchanged in the second term compared to the first one. Therefore, a

relabelling of the corresponding internal indices allows us to rewrite the expression as

1

2
LΛ(1̃, 2̃; 3̃, 4̃)δφ̄3̃

δφ2̃
A2n,mδφ̄4̃

δφ2̃
A2n′,m′ . (3.245)

Similarly the last two terms of equation (3.243)

− 1

2

(
SΛ(1̃; 3̃)δφ̄4̃

δφ̄3̃
A2n,mGΛ(4; 2)δφ2̃

δφ1̃
A2n′,m′

+ SΛ(3̃; 1̃)δφ1̃
δφ2̃
A2n,mGΛ(1̃; 4̃)δφ̄3̃

δφ̄1̃
A2n,m

)
(3.246)

can be cast into

−1

2
LΛ(1̃, 2̃; 3̃, 4̃)δφ̄2̃

δφ̄3̃
A2n,mδφ4̃

δφ1̃
A2n′,m′ . (3.247)
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Based on these general results we can insert the different terms of the expansion and perform a

comparison of coefficients to obtain the corresponding flow equations. We start with the term of order

zero, that is the one which is constant in fields.

0) The lowest order of the expansion on the left hand side of equation (3.236) is ni = nj = m = 0,

that is, it is constant in fields. By identifying the corresponding term on the right hand side

of equation (3.216) as Tr (Q̇G) the flow equation for the grand canonical potential is directly

obtained as

γ̇(0,0)Λ = βΩ̇Λ = −Tr (Q̇ΛGΛ) = Q̇Λ(1̃; 2̃)GΛ(2̃; 1̃). (3.248)

1) The next order of the field expansion is ni = nj = 1 and m = 0, that is, it is of first order

in fermionic fields, which will lead to the flow equation for the self-energy (cf. eq. (3.227)).

The terms on the right hand side which, contain one of both types of the Grassmann fields,

are (φ̄Λ, Q̇φΛ) and according to equations (3.242) and (3.238) one of the form SΛγ(4,0)Λ. This

results in

− γ̇(2,0)Λ(1; 2) φ̄Λ
1 φ

Λ
2 = −Q̇Λ(1; 2) φ̄Λ

1 φ
Λ
2 − SΛ(1̃; 2̃)γ(4,0)Λ(2̃, 1; 2, 1̃)φ̄Λ

1 φ
Λ
2 . (3.249)

By rearranging the terms, by identifying Σ = Q − γ(2,0) and by using the antisymmetry in

arguments of γ(4,0)Λ we obtain the required flow equation of the self-energy

Σ̇Λ(1; 2) = Q̇Λ − γ̇(2,0)Λ = SΛ(1̃; 2̃)γ(4,0)Λ(1, 2̃; 2, 1̃). (3.250)

Due to this and to the field independent flow equation we have taken care of all the terms outside

the trace on the right hand side. Thus, there are only terms originating from the trace which

contribute to the flow equations of higher order.

2) Next, we consider terms of second order in Grassmann fields (i.e. ni = nj = 2, m = 0) which is,

for the left hand side of equation (3.236)

1

4
γ̇(4,0)Λ(1, 2; 3, 4) φ̄1 φ̄2 φ4 φ3. (3.251)

As this is an equal number of both types of Grassmann fields the first term of the trace on the

right hand side contributes as −1/4SΛ(1̃; 2̃)γ(6,0)Λ(2̃, 1, 2; 1̃, 3, 4). Also all the terms in equation

(3.243) contribute, as they all have two Grassmann fields of both types if γ(4,0)Λ is inserted into

both places. Evaluating the first two terms we obtain, according to equation (3.245),

1

2
LΛ(1̃, 2̃; 3̃, 4̃) γ(4,0)Λ(3̃, 1; 3, 2̃) γ(4,0)Λ(4̃, 2; 4, 1̃). (3.252)
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As we consider fermionic interactions which have to be antisymmetric, this term on the right

hand side has to be antisymmetric, too. As there are two incoming indices and two outgoing

indices, the antisymmetrisation operator Â applied to both interactions results in

Â
(
γ(4,0)Λ(3̃, 1; 3, 2̃) γ(4,0)Λ(4̃, 2; 4, 1̃)

)
=

1

(2!)2

(
γ(4,0)Λ(3̃, 1; 3, 2̃) γ(4,0)Λ(4̃, 2; 4, 1̃)− γ(4,0)Λ(3̃, 2; 3, 2̃) γ(4,0)Λ(4̃, 1; 4, 1̃)

−γ(4,0)Λ(3̃, 1; 4, 2̃) γ(4,0)Λ(4̃, 2; 3, 1̃) + γ(4,0)Λ(3̃, 2; 4, 2̃) γ(4,0)Λ(4̃, 1; 3, 1̃)
)
. (3.253)

The first and the last, as well as the second and the third line can be combined, as they equal

each other pairwise by relabelling the internal indices. When the antisymmetry of the interaction

under exchange of its arguments is exploited, this finally results in

1

4
LΛ(1̃, 2̃; 3̃, 4̃)

(
γ(4,0)Λ(1, 3̃; 3, 2̃) γ(4,0)Λ(4̃, 2; 1̃, 4)

−γ(4,0)Λ(3̃, 2; 2̃, 3) γ(4,0)Λ(1, 4̃; 4, 1̃)
)
. (3.254)

The first term constitutes the direct electron-hole contribution T D,Λ and the second one the

crossing electron-hole contribution T C,Λ up to a prefactor of 1/4. Finally, we consider the last

two terms originating from equation (3.243), which can be considered according to equation

(3.247) and results in

−1

2
LΛ(1̃, 2̃; 3̃, 4̃)

1

2
γ(4,0)Λ(1, 2; 1̃, 2̃)

1

2
γ(4,0)Λ(3̃, 4̃; 3, 4) (3.255)

This contribution is already antisymmetric, as all the terms obtained from the antisymmetry

operator can be converted to the same form due to the antisymmetry of the interaction. This

is exploited to change the sign, such that we can directly identify it as the pairing contribution

T P,Λ up to a prefactor of 1/4. By combining all the results the prefactors of 1/4 cancel out, and

the flow equation for the two-fermion interaction equals the assertion in equation (3.228).

3) The next terms of the expansion to be considered are the interactions γ(2,1)Λ. As the same

boson or fermion bilinear field has to appear in the expansion on both sides, the bosonic terms

appearing on the right hand side have to be of the same kind. First, we regard the fermion-boson

interaction of electron-hole type, which is based on ni = nj = 1 and m = 1, that is

−γ̇(2,1)Λ
eh,n (1; 2; 1′) φ̄1 φ2Jeh,n(1′). (3.256)

As an equal number of Grassmann and adjoint Grassmann fields is present, the first term of the

series on the right hand side contributes as −SΛ(1̃; 2̃)γ
(4,1)Λ
eh,n (1, 2̃; 2, 1̃; 1′). A second contribution

originates from the term containing the interactions γ
(2,1)
eh,n and γ(4,0). As they can appear in

both positions in equation (3.243) the corresponding terms can be evaluated via equation (3.245).

Combining all the contributions we obtain

γ̇
(2,1)Λ
eh,n (1; 2; 1′) = S(1̃; 2̃)γ

(4,1)Λ
eh,n (1, 2̃; 2, 1̃; 1′)

+
1

2
LΛ(1̃, 2̃; 3̃, 4̃) γ

(2,1)Λ
eh,n (3̃; 2̃; 1′) γ(4,0)Λ(1, 4̃; 2, 1̃), (3.257)

in which we exploited the antisymmetry of γ(4,0)Λ to change the sign of the second contribution.
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Second, we consider the term

1

2
γ̇(2,1)Λ

ee,n (·; 1, 2; 1′) φ2 φ1Jee,n(1′) (3.258)

based on ni = 0, nj = 2 and m = 1. As this term requires only two Grassmann fields and no

adjoint ones, the second order terms of the geometric series is the first one to contribute. In fact

only the last two terms of equation (3.243) contribute with the interactions γ
(2,1)Λ
ee,n and γ(4,0)Λ

in either position. According to equation (3.247) we thus obtain

γ̇(2,1)Λ
ee,n (·; 1, 2; 1′) =

1

2
LΛ(1̃, 2̃; 3̃, 4̃) γ(2,1)Λ

ee,n (·; 1̃, 2̃; 1′) γ(4,0)Λ(3̃, 4̃; 1, 2). (3.259)

Similarly, a flow equation for γ
(2,1)Λ
hh,n can be obtained as

γ̇
(2,1)Λ
hh,n (1, 2; ·; 1′) =

1

2
LΛ(1̃, 2̃; 3̃, 4̃) γ

(2,1)Λ
hh,n (3̃, 4̃; ·; 1′) γ(4,0)Λ(1, 2; 1̃, 2̃). (3.260)

4) Finally, we derive the flow equations for the susceptibilities χΛ
ee,n = γ

(0,2)Λ
ee,n and χΛ

eh,n = γ
(0,2)Λ
eh,n .

The fermion bilinears on the right hand side of equation (3.216) have to correspond to those

which the susceptibilities are based on. As there are no Grassmann fields present on the left

hand side, the first term of the series results in 1/2SΛ(1̃; 2̃) γ
(2,2)Λ
η (2̃; 1̃; 1′, 2′) for both cases with

η denoting the channel we consider. The second order term on the right hand side can contain

two interactions in which as many fermions are created as are destroyed such that none of them

remains. The electron-hole susceptibility is based on two electron-hole bilinears, such that a

combination of two electron-hole fermion-boson interactions γ
(2,1)Λ
eh,n creates the correct number

of bosonic fields. As both of them contain an equal number of both Grassmann field types, only

the first part of equation (3.243) contributes and equation (3.245) provides the corresponding

contribution. The full flow equation, therefore, results in

χ̇Λ
eh,nn′(1

′, 2′) = S(1̃; 2̃) γ
(2,2)Λ
eh,nn′(2̃; 1̃; 1′, 2′)

+ LΛ(1̃, 2̃; 3̃, 4̃)γ
(2,1)Λ
eh,n (3̃; 2̃; 1′) γ(2,1)Λ

eh,n′ (4̃; 1̃; 2′). (3.261)

The electron-electron susceptibility is based on a pairing and on an adjoint pairing fermion-

bilinear so that a combination of the corresponding electron-electron and of the hole-hole

fermion-boson interactions creates the required bosonic fields in the second order term. Both

of the required fermion-boson interactions come with either two Grassmann or with two ad-

joint Grassmann fields, so that only the last two terms of equation (3.243) contribute. These

terms can be combined as in equation (3.247) such that the full flow equation for the pairing

susceptibility is

χ̇Λ
ee,nn′(1

′, 2′) = S(1̃; 2̃) γ
(2,2)Λ
ee,nn′ (2̃; 1̃; 1′, 2′)

+ LΛ(1̃, 2̃; 3̃, 4̃)γ(2,1)Λ
ee,n (·; 1̃, 2̃; 1′) γ(2,1)Λ

hh,n′ (3̃, 4̃; ·; 2′). (3.262)

With these flow equations the proof is completed and παντα ρει [107].
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Remark 3.22

As obtained by theorem 3.21, the two last contributions to the two-particle interaction are related

by

T D,Λ(1, 2; 3, 4) = −T C,Λ(1, 2; 4, 3). (3.263)

A diagrammatic representation of the flow equations in theorem 3.21 can be found in figure 3.11,

which also visualises the physical significance of the different contributions. Two distinct classes of

diagrams can be distinguished here: First, in the flow equations of interactions with the same number

of incoming and of outgoing slots a diagram appears in which an interaction with one additional pair

of incoming and outgoing slots is connected to itself by a single-scale propagator. By those diagrams,

higher order interactions are included in the interactions of lower order, which constitutes a hierarchy

of interactions. The second type of diagrams are those in which two interactions are connected with

each other by a pairing or by an electron-hole propagator. These dual propagators consist of a single-

scale propagator and a full Green’s function (cf. def. 41) for either of the two particles, although only

one of both possibilities is displayed in the diagrams. Therefore these contributions correspond to pairs

of particles interacting twice with each other. For higher orders than those displayed here, diagrams

with a closed loop consisting of several interactions connected by (single-scale) propagators can appear.

We note that despite our analytical derivation a purely diagrammatical one is also possible, see for

example the PhD-thesis by Jakobs [108].

For the self-energy only one diagram of the first type appears, so that it contains the rescaling

of the single-particle properties due to the interactions with all the other particles at higher energy

scales. The flow equation of the two-particle interaction consists of one diagram of the first type and

thus contains all effective three-particle interactions. In addition there are three two-particle reducible

contributions. Due to the three possible ways of two-particle reducibility they can be identified as

the pairing, the direct and the crossing electron-hole contributions. The electron-hole type diagrams

differ by an exchange of external variables, which diagrammatically results in crossed external legs.

Therefore, the effective interaction at a scale Λ contains all the possible interactions of a pair of

particles with energies larger than Λ, as two full interactions are connected to each other.

The flow equations contributing to the fermion-boson vertices are given by the corresponding vertex

connected to a two-fermion interaction by a dual propagator. Thus, they include all the terms in

which their outgoing/incoming particles interact with each other. In the electron-hole case, there is

an additional contribution of a one-boson two-fermion vertex connected to itself, again representing

all two-particle irreducible contributions. Finally the susceptibilities or two-boson interactions consist

of two fermion-boson interactions connected by pairing or by electron-hole propagators. Thus they

represent the creation of a particle pair or of an electron-hole pair from a bosonic field and create a

bosonic field by their annihilation, which we have already seen before for the susceptibilities in section

3.3, where the form-factors could be interpreted as fermion-boson interactions.

Solving the set of flow equations corresponds to a simultaneous integration in the range Λ0 →∞↘ 0

of all of them. The initial conditions are chosen corresponding to the assumption of a free system at

the initial scale Λ0. That is, the self-energy is assumed to vanish and the two-fermion interaction is

set to a model dependent interaction. When the flow equation of the susceptibilities is integrated over

the range in the absence of interactions, the integrated susceptibilities have to equal the free part as
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Figure 3.11.: Diagrammatic representation of the flow equations as provided by theorem 3.21
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described in equation (3.162). Therefore the initial fermion-boson interaction γ
(2,1)Λ
η has to be chosen

as the form-factor of the fermion bilinear it corresponds to. These form-factors obtain a different

non-local structure due to their flow-equations, which then leads to the corresponding interacting

susceptibilities. We remark that there are also approaches in which the flow starts with an effective

action obtained by other methods like DMFT [109] which already include some modes, so that the

initial scale has to be adapted as well as the initial conditions.

When we focus on the flow-equation of the two-fermion interaction with its four contributions, we

observe that it maintains its decomposition upon this integration.

Corollary 3.23 (Decomposition of the Two-Fermion Interaction)

Let γ(4,0)Λ be given as in theorem 3.21 and let it obey the flow equation provided by 3.228. Then

for any Λ ∈ [0,∞), γ(4,0)Λ can be decomposed according to

γ(4,0)Λ = γ(4,0)Λ0 +

∫ Λ

Λ0

dΛ′ γ(6,0)Λ′SΛ′ + ΦP,Λ + ΦD,Λ + ΦC,Λ (3.264)

with

ΦP,Λ :=

∫ Λ

Λ0

dΛ′ T P,Λ′ , ΦD,Λ :=

∫ Λ

Λ0

dΛ′ T D,Λ′ and ΦC,Λ :=

∫ Λ

Λ0

dΛ′ T C,Λ′ . (3.265)

Proof: The assertion directly follows from the linearity of the integration.

As these given flow equations are only of lowest order of an infinite hierarchy of diagrams, this

set of equations has to be truncated. In this thesis we employ the common approximation and only

consider contributions of an order 2n+m < 5, which is neglecting the interactions of higher order,

that is γ(6,0)Λ, γ(4,1)Λ and γ(2,2)Λ in theorem 3.21.

However, the replacement of S by Ġ, called Katanin substitution (see thm. 3.24) as proposed in

[62], introduces diagrams in which a tadpole diagram γ(4,0)ΛSΛ is on the replaced internal line, so

that it includes contributions of the vertex of higher order 2(n + 1). Hence, if we consider diagrams

up to a fixed power nmax of V there is an unresolved ambiguity of choosing either SΛ or ĠΛ [63].

In the following theorem (based on section 2.2 in [63]) we explicitly show for the γ(4,0)Λ-interaction

that it contains contributions originating from γ(6,0)Λ, which can then be generalised to any order of

nmax straight forwardly. To simplify the notation we do not write all the dependencies explicitly, but

keep the notation in form of traces, which is an intermediate step between theorems 3.19 and 3.21,

where the contributing terms due to the expansion have already been identified. In this form the flow

equation for the two-particle interaction reads

γ̇(4,0)Λ = −1

2
Tr
(
SΛγ(6,0)Λ

)
+

1

2
Tr
(
SΛγ(4,0)ΛGΛγ(4,0)Λ

)
. (3.266)

The flow equation for the three-particle interaction [63] becomes, in this form,

γ̇(6,0)Λ = −1

2
Tr
(
SΛγ(8,0)Λ

)
+

1

2
Tr
(
SΛγ(6,0)ΛGΛγ(4,0)Λ

)
− 1

2
Tr
(
SΛγ(4,0)ΛGΛγ(4,0)ΛGΛγ(4,0)Λ

)
. (3.267)
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Theorem 3.24 (Katanin Substitution)

Let γ(2n,0)Λ = 0 for all n ≥ 4. Consider the flow equation for γ(4,0)Λ for the initial conditions

γ(6,0)Λ0 = 0 and GΛ0 = 0. Then the flow equation (3.228) holds in the approximation to third

order in γ(4,0)Λ with the replacement

LΛ(1, 2; 3, 4) =
1

2

d

dΛ
GΛ(1; 3)GΛ(2; 4) (3.268)

and with

1

2

d

dΛ
Tr
(
GΛ γ(4,0)Λ GΛ γ(4,0)Λ GΛ GΛ γ(4,0)Λ

)
(3.269)

replacing the γ(6,0)Λ term.

Proof: In equation (3.225) we derived

ĠΛ = SΛ +GΛΣ̇ΛGΛ, (3.270)

that is the replacement leads to an error of Σ̇Λ. According to its flow equation (3.227) this is of first

order in γ(4,0)Λ. Based on this we consider the flow equation (3.267) of the three-particle interaction

γ(6,0)Λ of which the γ(8,0)Λ contribution vanishes according to the approximation. While the term in

which three γ(4,0)Λ are connected with each other contribute right from the beginning, the contribu-

tions with γ(6,0)Λ being connected to γ(4,0)Λ only arise during the flow due to the initial condition for

γ(6,0)Λ. Therefore, these contributions are of fourth order in γ(4,0)Λ and the flow equation becomes

γ̇(6,0)Λ = −1

2
Tr
(
SΛγ(4,0)ΛGΛγ(4,0)ΛGΛγ(4,0)Λ

)
+O((γ(4,0)Λ)4). (3.271)

Replacing SΛ by ĠΛ in this expression leads to another term of fourth order in γ(4,0)Λ due to equation

(3.270). As Λ-derivatives of γ(4,0)Λ also lead to terms of fourth order, we can write the differential

equation as

γ̇(6,0)Λ = −1

6

d

dΛ
Tr
(
GΛ γ(4,0)Λ GΛ γ(4,0)Λ GΛ γ(4,0)Λ

)
+O((γ(4,0)Λ)4). (3.272)

This equation can be integrated according to the initial conditions when the terms of fourth order are

neglected, which results in

γ(6,0)Λ = −1

6
Tr
(
GΛ γ(4,0)Λ GΛ γ(4,0)Λ GΛ γ(4,0)Λ

)
. (3.273)

This corresponds to a diagram in which every vertex has two external slots and two internal ones.

When equation (3.273) is inserted into the flow equation of γ(4,0)Λ, the single-scale propagator can

connect two slots of the same vertex or two from different ones. In both cases there are three equivalent

possibilities due to the cyclicity of the trace. When a two-particle vertex is connected to itself, terms

of the form γ(4,0)ΛSΛ appear, which can be identified as the flow equation of the self-energy ΣΛ.

Combining these terms with the ones of second order and using equation (3.270) yields

Tr
(
SΛγ(4,0)ΛGΛγ(4,0)Λ

)
+ Tr

(
GΛΣ̇ΛGΛγ(4,0)ΛGΛγ(4,0)Λ

)
= Tr

(
ĠΛγ(4,0)ΛGΛγ(4,0)Λ

)
. (3.274)
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The remaining terms of third order in γ(4,0)Λ are those in which the vertices are connected to each

other by SΛ. By replacing this SΛ by ĠΛ we again obtain an error of fourth order in γ(4,0)Λ. When

the derivative is written in front of the trace we also obtain derivatives of γ(4,0)Λ, which also introduce

terms of fourth order. In total, this leads to

1

2

d

dΛ

(
GΛγ(4,0)ΛGΛγ(4,0)ΛGΛGΛγ(4,0)Λ

)
+O((γ(4,0)Λ)4). (3.275)

As we consider the weak coupled regime, the desired expression is obtained by neglecting the term of

fourth order.

In the proof of theorem 3.24 we neglected contributions of fourth order in γ(4,0)Λ and inserted

the two-particle self-energy Σ which is reasonable for our investigations. This scheme was, however,

originally introduced to fulfil Ward identities up to a higher order in a truncated flow equation [62]. In

the corresponding paper it is shown that the frequency or momentum Ward identities are fulfilled for

a momentum or frequency cut-off, respectively, for one order higher in γ(4,0)Λ than the truncation to

second or third order. In addition, the substitution of SΛ by ĠΛ leads to an additional improvement

of the Ward identities, as the non-overlapping diagrams, which are those where a vertex is connected

to itself, are absent. Additionally, it is shown that the Ward identities are exactly fulfilled in the

ladder approximation.

The so-called multi-loop FRG [64, 66] can be regarded as an extension of the results obtained by

this proof. As it originally results from the Parquet equation, we will compare it to the FRG equations

in the following section.

3.5.3. Comparison of the Perturbation Theory and the Functional

Renormalisation Group

The flow equations provided in theorem 3.21 and the Parquet equations defined in definition 31

exhibit some similarities, which become apparent in the diagrammatic representation. However, while

the Parquet equations provide a self-consistent set of equations to calculate the two-particle inter-

action, the FRG equations are differential equations for it. Only when the flow equation (3.228) is

integrated over the full range of the scale parameter from Λ0 →∞ to 0, the full two-particle interaction

is obtained, which is, according to corollary 3.23,

γ(4,0)Λ=0 = γ(4,0)Λ0 −
∫ 0

Λ0

dΛ γ(6,0)ΛSΛ +

∫ 0

Λ0

dΛ T P,Λ +

∫ 0

Λ0

dΛ T D,Λ +

∫ 0

Λ0

dΛ T C,Λ. (3.276)

The resulting γ(4,0)Λ=0 is the same object as the two-particle interaction in the Parquet approach.

From the direct comparison of equations (3.276) and (3.137) one would assume that the different

contributions
∫
Tr to the FRG flow equation equal Φr of the Parquet equation. This is, however, not

the case, as we will argue in the following8. The simplest way to arrive at this point is to assume

a scale dependence for the Parquet objects and calculate the derivatives. We assume that the two-

particle irreducible contribution Λirr is scale independent while all the other contributions Φr depend

on the scale Λ. The derivative, therefore, results in γ̇(4,0)Λ =
∑

r ΦΛ
r . In the BSE for each contribution

the derivative results in derivations of each object, that is γ(4,0)Λ, Φ̄Λ
r and either of the two Green’s

functions (see fig. 3.7). The expression in which the derivative acts on the Green’s functions is the

8I want to emphasize that the following analysis was performed at the beginning of the work on my PhD thesis and
remained unpublished. However, a similar comparison was published by Kugler et al.[64] shortly afterwards.
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one most similar to the FRG one. However, this Parquet dual propagator contains the derivative of

either Green’s function while the FRG dual propagator consists of a single-scale propagator and a

full Green’s function. If we replace the single-scale propagator by the Katanin substitution (cf. thm.

3.24) this difference is removed. However, the second striking difference, namely that a full vertex

is connected to a channel-irreducible interaction, remains untouched by this. In order to make this

equation equal to the FRG one we require the channel reducible part interaction Φ̄r to become the

full interaction. To obtain this we consider the contribution in which the derivative acts on the full

interaction. In this way the derivative Φ̇Λ
r is itself inserted into the equation, by which we obtain a term

of the form γ(4,0)ΛĠΛGΛ
(
Φ̄Λ

r G
ΛGΛΦ̄Λ

r

)
. The last part of the expression in brackets is two-particle

reducible in the channel r which we consider and, therefore, creates the lowest order contribution to

ΦΛ
r . An other contribution resulting from the insertion of Φ̇Λ

r is one in which the derivative acts on the

full interaction again. This allows us to iteratively insert Φ̇Λ
r into the equation and obtain all orders

of reducible diagrams in channel r, which can be combined to obtain the full FRG flow equation.

Although we identified an equivalence between one part of the scale-derivative Parquet equation and

the FRG equation, other contributions appear, too, which, in the FRG case, have to be contributed by

γ(6,0)Λ. In order to replace the derivation of the full interaction and the channel-irreducible interaction

the scale derivative BSEs of the other channels have to be inserted. As derivatives acting on full

and on channel irreducible interactions appear again, this procedure has to be repeated infinitely

often, until all derivatives only act on Green’s functions (see figure 3.12 for an illustration of this

process). A diagrammatical comparison shows that corresponding loop terms are, indeed, present

in the contributions from the six-point interaction. Nonetheless, the FRG equations typically are

truncated by neglecting the three-particle interaction due to their numerical complexity. Therefore

a recent attempt to make both approaches provide equal results is the addition of contributions

arising from the scale-derivative of the Parquet equations to the FRG flow equations for the two-

particle interaction. As the successive insertion of derivatives increases the number of dual-propagator

loops, the contributions can be classified by their total number of loops in addition to the two-

particle reducibility. The scale derivative of a Green’s function appears in only one loop, so that an

inductive structure with the classic FRG equations at lowest order allows an efficient calculation for all

orders. This so called multi-loop FRG (mFRG) has recently been developed, discussed and applied

in [64, 65, 110, 66] and reveals a good convergence of the mFRG interaction towards the Parquet

interaction with an increasing loop-number.

Next, we consider the self-energy provided by the perturbation theory (Schwinger-Dyson Equation,

see eq. 3.136) and compare it to the FRG one (see eq. 3.227). If we proceed in the same way as

before and make the objects of the perturbation theory scale-dependent and consider the derivative

of the self-energy, we obtain contributions of the form V◦Ġ from the Hartree and Fock terms. The

term including the two-fermion interaction now splits up into four contributions, as every Green’s

function and the vertex are subject to the scale-derivative. When we take the derivative of the

Green’s function, we obtain terms of the form V Λ
◦ G

ΛGΛγ(4,0)Λ, of which one is particle-particle and

two are particle-hole reducible. Therefore these contributions, as well as the Hartree and Fock terms,

are contained in γ(4,0),ΛĠΛ. As ĠΛ = SΛ +GΛΣ̇ΛGΛ (cf. eq. (3.225)) this already provides the FRG

flow equation (3.227) as well as an additional contribution γ(4,0)ΛGΛΣ̇ΛGΛ. The derivative of the full

interaction itself requires a successive insertion of its own flow equation similar to the previous case for

the interactions. This insertion always leads to a term reducible in one of the channels according to

the combination of two interactions in the SDE. However, in an actual numerical calculation one may

simply insert the derivative of the interaction calculated in the same step. Thus, from an analytical
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contribution

contribution

Figure 3.12.: Schematic representation of the procedure to obtain the derivative of the Parquet equation
for the pairing channel. As the derivative also acts on the interactions, they have to
be replaced by the derivative of its constituents, here we illustrate the insertion of the
direct particle-hole contribution. In the inserted channel the derivative of the two-particle
interactions has to be replaced again, here illustrated by an insertion of the pairing channel.
This procedure continues until only the derivative of the dual propagator remains, thus
resulting in an infinite hierarchy of equations.

point of view, the self-energies based on FRG and the scale-derivative of the SDE differ by two terms,

which is similarly obtained by an actual diagrammatical expansion of the interaction in [65].

Finally, let us take a look at the susceptibilities. In both cases they are characterised by an ingoing

boson which generates a pair of fermions, which annihilates into a boson again. In the FRG case

this creation and annihilation takes place in fermion-boson interactions which may have a momentum

and spin structure. Two of those interactions are then connected by a single-scale propagator and

by a Green’s function to form the susceptibility. On the contrary, in the perturbation theory this

fermion-boson interaction is point-like, that is structureless, and the susceptibility consists of two

contributions. At first there is a bubble, where two Green’s functions connect the two fermion-boson

points. Second, there is a contribution where these fermion-boson points are connected via two pairs of

Green’s functions to a full two-fermion interaction. In order to compare both cases, we reformulate the

susceptibility of the perturbation theory by introducing extended fermion-boson interactions, which

combine the point-like interaction as such and this very interaction connected to the two-fermion

interaction, such that the susceptibility can be rewritten in terms of two fermion-boson interactions

of this kind connected by a pair of Green’s functions, which is a formulation that allows a further

comparison between the FRG and the perturbation theory.

If the objects in the perturbation theory formulation are assumed to be scale-dependent and if we

keep the higher order interactions fixed for the corresponding Λ, the newly obtained flow equation

for susceptibilities directly equals the one of the FRG, when the derivative of the Green’s function is

replaced by the single-scale operator according to corollary 3.20. The derivative applied to the equation

of the fermion-boson interaction only affects the Green’s functions because we keep γ(4,0)Λ fixed, and

because the point-like fermion-boson interaction is scale-independent. Again, due to corollary 3.20, we

can replace the Green’s function with the scale-derivative by the single-scale propagator. Then, only
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the point-like interaction has to be replaced by the extended fermion-boson interaction to make this

perturbation theory based flow-equation equal to the FRG one. This corresponds to the insertion of a

dual propagator and a two-fermion interaction between the point-like interaction and the single-scale

propagator Green’s function pair.

Taking all these arguments into consideration shows that all the contributions of the FRG equations

in our truncation to 2n + 2m < 5 are contained in the perturbation theory. However, by a scale-

dependent treatment of the perturbation theory, additional terms arise. Those terms can partially be

included in the truncated FRG equations by calculating multi-loop corrections [66].

3.5.4. SU(2)-Symmetric Flow Equations

Although we employ the 2n + 2m < 5-vertex truncation and although we don’t use the multi-

loop extension, the FRG equations are still highly involved. In fact, each integration step of the

differential equation of the two-particle interaction requires to perform four integrations (respective

sums) over all degrees of freedom. As many systems exhibit an SU(2)-symmetry, the calculation can

be simplified by exploiting the resulting symmetries according to theorem 3.4.3 (see also [60]). The

spin is, therefore, treated explicitly and is extracted from the general label i in this section. According

to the conservation of the total spin the one-particle Green’s functions, the self-energy, the single-

scale propagator and the electron-hole fermion-boson vertex are diagonal in spin space, that is, for

example, Gs1;s2(1; 2) = G(1; 2)δs1,s2 , while the electron-electron fermion-boson interactions become

γ
(2,1)Λ
ee;s1,s2(1; 2; 1′) = γ

(2,1)Λ
ee (1; 2; 1′)δs1,−s2 . The full two-particle interaction can now be written as

γ(4,0)Λ
s1,s2;s3,s4(1, 2; 3, 4) = −V Λ(1, 2; 3, 4)δs1,s3δs2,s4 + V̄ Λ(1, 2; 3, 4)δs1,s4δs2,s3 , (3.277)

with V Λ and V̄ Λ being spin-independent interactions. The flow equations of these SU(2)-symmetric,

spin-independent objects are given by the following theorem.

Theorem 3.25 (SU(2)-Symmetric Flow Equations)

Let the system under consideration be SU(2)-symmetric, let the flow equation for the n-fermion

and m-boson interactions γ(2n,m)Λ in the 2n + 2m < 5-vertex truncation be given by theorem

3.21 and let i = (ri, oi, τi). Let, furthermore, V Λ be the spin-independent two-fermion interaction

corresponding to γ(4,0)Λ. Then the full two-particle vertex is given by

γ(4,0)Λ
s1,s2;s3,s4(1, 2; 3, 4) = −V Λ(1, 2; 3, 4)δs1,s3δs2,s4 + V Λ(1, 2; 4, 3)δs1,s4δs2,s3 , (3.278)

and the flow equations are given as follows:

1) For the self-energy as

ΣΛ(1, 2) =

∫
d1̃

∫
d2̃ SΛ(1̃; 2̃)

(
−2V Λ(1, 2̃; 2, 1̃) + V Λ(1, 2̃; 1̃, 2)

)
. (3.279)

2) For the two-particle interaction as

V̇ Λ(1, 2; 3, 4) = T̄ P,Λ(1, 2; 3, 4) + T̄ D,Λ(1, 2; 3, 4) + T̄ C,Λ(1, 2; 3, 4), (3.280)
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with

T̄ P,Λ(1, 2; 3, 4) = −
∫

d1̃ · · ·
∫

d4̃ L(1̃, 2̃; 3̃, 4̃) V Λ(1, 2; 1̃, 2̃) V Λ(3̃, 4̃; 3, 4),

T̄ D,Λ(1, 2; 3, 4) =

∫
d1̃ · · ·

∫
d4̃ L(1̃, 2̃; 3̃, 4̃)

(
−2V Λ(1, 3̃; 3, 2̃) V Λ(4̃, 2; 1̃, 4)

+ V Λ(1, 3̃; 3, 2̃) V Λ(4̃, 2; 4, 1̃) + V Λ(1, 3̃; 2̃, 3) V Λ(4̃, 2; 1̃, 4)
)
.

T̄ C,Λ(1, 2; 3, 4) =

∫
d1̃ · · ·

∫
d4̃ L(1̃, 2̃; 3̃, 4̃) V Λ(1, 3̃; 2̃, 4) V Λ(4̃, 2; 3, 1̃).

(3.281)

3a) For the electron-hole fermion-boson interaction as

˙̄γ
(2,1)Λ
eh,n (1; 2; 1′s) =

∫
d1̃ · · ·

∫
d4̃ L(1̃, 2̃; 3̃, 4̃) γ̄

(2,1)Λ
eh,n (3̃; 2̃; 1′s)(

2V Λ(1, 4̃; 2, 1̃)δs′1,0 − V
Λ(1, 4̃; 1̃, 2)

)
. (3.282)

3b) For the electron-electron fermion-boson interaction as

˙̄γ(2,1)Λ
ee,n ( ; 1, 2; 1′s)

= −1

2

∫
d1̃ · · ·

∫
d4̃ L(1̃, 2̃; 3̃, 4̃) γ̄(2,1)Λ

ee,n ( ; 1̃, 2̃; 1′s) V
Λ(3̃, 4̃; 1, 2). (3.283)

4) And for the susceptibilities as

χ̄Λ
eh,nn′(1

′, 2′, sb)

=

∫
d1̃ · · ·

∫
d4̃ LΛ(1̃, 2̃; 3̃, 4̃) γ̄

(2,1)Λ
eh,n (3̃; 2̃; 1′sb)γ̄

(2,1)Λ
eh,n (4̃; 1̃; 2′sb)(1 + δsb), (3.284)

χ̄Λ
ee,nn′(1

′, 2′, sb)

=

∫
d1̃ · · ·

∫
d4̃ LΛ(1̃, 2̃; 3̃, 4̃) γ̄(2,1)Λ

ee,n (·; 1̃; 2̃; 1′sb)γ̄
(2,1)Λ
hh,n (3̃, 4̃; ·; 2′sb)(1 + δsb). (3.285)

Proof: Due to the conservation of the total spin the interaction can be decomposed into

γ(4,0)Λ
s1,s2;s3,s4(1, 2; 3, 4) = −V Λ(1, 2; 3, 4)δs1,s3δs2,s4 + V̄ Λ(1, 2; 3, 4)δs1,s4δs2,s3

= −γ(4,0)Λ
s1,s2;s4,s3(1, 2; 4, 3) = V Λ(1, 2; 4, 3)δs1,s4δs2,s3 − V̄ Λ(1, 2; 4, 3)δs1,s3δs2,s4 ,

(3.286)

where the second line results from the anticommutativity of the arguments (cf. thm. 3.17.1). By

comparing these lines we get

V̄ Λ(1, 2; 3, 4) = V Λ(1, 2; 4, 3) = V Λ(2, 1; 3, 4), (3.287)

so that the full decomposed vertex is given by equation (3.278).

Next, we consider the different flow equations of theorem 3.21:
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1) Due to the SU(2)-symmetry the self-energy ΣΛ and the single-scale propagator SΛ are diagonal

in spin-space. An insertion of the above decomposition into the flow equation of the self-energy

(cf. eq. (3.227)) and an evaluation of the spin-sums then directly results in

Σ̇Λ(1, 2) =

∫
d1̃

∫
d2̃ SΛ(1̃; 2̃)

(
−2V Λ(1, 2̃; 2, 1̃) + V Λ(1, 2̃; 1̃, 2)

)
. (3.288)

By the evaluation of the spin-sum s1 = s2 also holds on the right hand side of the equation, as

expected. The resulting spin-δs were, therefore, left out.

2) When the decomposition of the two-particle interaction is inserted into the left hand side of its

flow equation (3.228) two different terms are obtained. As V Λ is spin-independent and as both

terms in equation (3.278) are related by symmetry, it is sufficient to consider the flow for only

one combination of spins. Without loss of generality we choose to derive the flow equation for

the spin combination given by δs1s3δs2s4 and note that exactly the same set of terms would arise

for the other choice. As the Green’s functions and the single-scale propagators are diagonal in

spins, the particle-particle propagator is given by

LΛ
s1,s2,s3,s4(1, 2; 3, 4) = LΛ(1, 2; 3, 4)δs1s3δs2s4 . (3.289)

Now consider the pairing contribution to the two-particle interaction. An insertion of the decom-

position (cf. eq. (3.278)) leads to four terms for which we can evaluate the internal spin-sum. We

observe that due to this evaluation the term which originates from the first part of the decompo-

sition at each interaction and the terms originating from the second part of the decomposition

at each corresponding place obtain the same external argument and spin structure so that both

are. Similarly, the other two terms become equal with an external argument and spin structure

where arguments 3 and 4 changed corresponding to the first case. In combination, the prefactor

thus vanishes and the pairing channel becomes

T P,Λ
s1,s2,s3,s4(1, 2; 3, 4) =

∫
d1̃ · · ·

∫
d4̃ L(1̃, 2̃; 3̃, 4̃)(

V Λ(1, 2; 1̃, 2̃) V Λ(3̃, 4̃; 3, 4)δs1s3δs2s4 − V Λ(1, 2; 1̃, 2̃) V Λ(3̃, 4̃; 4, 3)δs1s4δs2s3
)

(3.290)

for SU(2)-symmetric vertices. In the direct electron-hole channel no combinations of vertices

are equivalent, so that we obtain

T D,Λ
s1,s2,s3,s4(1, 2; 3, 4) =

∫
d1̃ · · ·

∫
d4̃ L(1̃, 2̃; 3̃, 4̃)

(
2V Λ(1, 3̃; 3, 2̃)V Λ(4̃, 2; 1̃, 4)δs1s3δs2s4

− V Λ(1, 3̃; 3, 2̃)V Λ(4̃, 2; 4, 1̃)δs1s3δs2s4 − V Λ(1, 3̃; 2̃, 3)V Λ(4̃, 2; 1̃, 4)δs1s3δs2s4

+ V Λ(1, 3̃; 2̃, 3)V Λ(4̃, 2; 4, 1̃)δs1s4δs2s3
)
,

(3.291)

in which the factor 2 in front of the first term of the right hand side results from the spin

summation of the inner loop. According to remark 3.22, the same result except for a global

minus sign is obtained for the crossing channel by exchanging the arguments 3 and 4. All

the terms on the right hand side have contributions from both possible spin-combinations in

equation (3.278), which also appear on the left hand side. As it is sufficient to calculate V Λ only

for one spin-combination, we compare the coefficients for the choice of δs1s3δs2s4 and denote

the corresponding terms as T̄ Λ for each channel. Thus T̄ P,Λ and T̄ C,Λ each consist of one

contribution, while T̄ D,Λ consists of three contributions. We note that by this term, all spin
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combinations are possible, thus allowing a fermion-boson interaction for singlet- and one for

triplet-pairings.

3a) For this proof we consider the flow equation for the fermion-boson interactions. In the same way

as for the purely fermionic interactions in theorem 3.4 it can be shown that the total spin has

to be zero and is invariant under a global spin flip if the system is SU(2)-symmetric. Therefore,

the electron-electron interaction gains a factor δs1+s2,sb , while the corresponding factor for the

electron-hole interaction is δs1−s2,sb . Thus, as fermions have the spin s = ± 1
2 , the possible

bosonic spins are sb ∈ {−1, 0, 1}. To obtain sb = ±1 both electrons must have equal spins in

the electron-electron case, while they must have opposite spins in the electron-hole case. For

the bosonic spin sb = 0 this relation holds vice versa, that is equal spins in the electron-hole

case and opposite spin directions in the electron-electron case. Because of this consideration it

is obvious that the bosonic spin is sufficient to characterise the spin in both cases of γ(2,1)Λ. Due

to the invariance under a global spin-flip, the cases for sb = +1 and for sb = −1 are equal, so

that we can restrict our investigation to sb ∈ {0,+1}.

When the spin decomposition is introduced into the flow equation of the electron-hole fermion-

boson vertex, we have to consider the different possible spin combinations explicitly, as an

internal spin loop comes into place. The fermion-boson interaction on the right hand side comes

in with δs̃2−2̃3,sb
, the dual propagator requires δs̃1s̃3 and δs̃2s̃4 , while the first term of equation

(3.278) introduces δs̃4,s̃1δs1,s2 . This term can, therefore, only contribute if all internal spins are

in the same direction, which only is the case for sb = 0. In this case it gains a factor of 2 by the

internal spin-sum. The second term of equation (3.278) always contributes and can be evaluated

straight forwardly, such that the full flow equation becomes

˙̄γ
(2,1)Λ
eh,n (1; 2; 1′) =

1

2

∫
d1̃ · · ·

∫
d4̃ L(1̃, 2̃; 3̃, 4̃) γ

(2,1)Λ
eh,n (2̃; 3̃; 1′)(

2V Λ(1, 4̃; 2, 1̃)δs1′ ,0 − V Λ(1, 4̃; 1̃, 2)
)
. (3.292)

3b) An insertion of the spin decomposed two-particle vertex (see eq. (3.278)) into the electron-

electron case results in two terms, and for each of them the evaluation of the spin-sums results

in a spin-combination given by δs1+s2,sb . By using the antisymmetry of the electron-electron

vertex under the exchange of fermion arguments and the symmetry of V Λ under the exchange

of both arguments, both terms become equal, resulting in

˙̄γ(2,1)Λ
ee,n (·; 1, 2; 1′) = −

∫
d1̃ . . .

∫
d4̃ L(1̃, 2̃; 3̃, 4̃) γ(2,1)Λ

ee,n (·; 1̃, 2̃; 1′) V Λ(3̃, 4̃; 1, 2). (3.293)

4) Taking into account the flow equations of the susceptibilities, namely equation (3.233) or equa-

tion (3.232), the same considerations as used above lead to the observation that the incoming

and the outgoing bosons must have the same spin and that it is sufficient to consider sb ∈ {0, 1}.
After performing two internal spin-sums we obtain terms of the form δs̃1+s̃4,s′1δs̃1+s̃4,s′2 in the

pairing case and terms of the form δs̃1−s̃4,s′1δs̃1−s̃4,s′2 in the electron-hole case. For an evaluation

of the remaining sums the different possible bosonic spin-states have to be considered, due to

the limited fermionic states. There are, in both cases, two different spin configurations to obtain

the s′1 = s′2 = 0 case, such that a factor of 2 arises. Contrariwise, only one possibility exists to

obtain the s′1 = s′2 = ±1 state. Thus the assertions for these cases are obtained.
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Figure 3.13.: Diagrammatic representation of the SU(2)-symmetric flow equations as provided by theorem
3.25.

These flow equations are diagrammatically depicted in figure 3.13. The rectangular box now rep-

resents the SU(2)-symmetric vertex in which the spin is conserved along the short lines. The flow

equations, in general, look similar to those of the spinful case in which the former vertex is replaced

by the SU(2)-symmetric one. The main difference is that the contribution of the direct electron-hole

channel to the effective two-particle interaction now consists of three different diagrams. In contrast

tu the spinful interaction previously discussed in corollary 3.17, the SU(2)-symmetric vertex itself is

less symmetric.

Corollary 3.26 (Symmetries of the SU(2)-Symmetric Vertex)

Let V Λ be the SU(2)-symmetric interaction as defined in equation (3.278) based on γ(4),Λ. Then

V exhibits the crossing symmetry

V (1, 2; 3, 4) = V (2, 1; 4, 3) (3.294)

and the complex conjugation

V (1, 2; 3, 4) = V ∗(4, 3; 2, 1) (3.295)
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Proof: This directly follows from insertion of (3.278) into corollary 3.17.

We note that the other symmetries stated in corollary 3.17 hold in the same way for V as they

hold for γ(4),Λ. Similar to the spinful case the two-fermion interaction decomposes according to the

following corollary.

Corollary 3.27 (Decomposition of the SU(2)-Symmetric Two-Fermion Interaction)

Let V Λ be given as in theorem 3.25, and let it obey the flow equation provided by equation (3.280).

Then, for any Λ ∈ [0,∞), V Λ can be decomposed according to

V Λ = V Λ0 + Φ̄P,Λ + Φ̄D,Λ + Φ̄C,Λ (3.296)

with

Φ̄P,Λ :=

∫ Λ

Λ0

dΛ′ T̄ P,Λ′ , Φ̄D,Λ :=

∫ Λ

Λ0

dΛ′ T̄ D,Λ′ and Φ̄C,Λ :=

∫ Λ

Λ0

dΛ′ T̄ C,Λ. (3.297)

In order to further simplify the computation, we next consider the translational symmetry in time

and space and use the corresponding Fourier transformations.

3.5.5. Flow Equations in Frequency and in Momentum Space

Up to this point all the flow equations have been derived in lattice space and in (imaginary) time.

Therefore, all the interactions depend on 2n+m generalised quantum numbers, and the integration

over two-particle propagator loops includes four integrals/sums of the generalised quantum index

i = (ri, oi, si, τi). As we consider a time-invariant solid state system with a periodic lattice, a trans-

formation to momentum and to frequency space reduces the number of the corresponding independent

arguments and the number of integrals, due to the conservation of energy and momentum according to

theorem 3.17 and 3.6. Therefore we exploit the notation of the interactions with a reduced number of

generalised momentum arguments while all the spin and orbital indices have to be maintained. When

we denote the fermionic arguments by k = (k, ω), the bosonic arguments by q = (q, ν) and when we

use o = (o, s) as a combined spin and orbital index the conservation of energy and momentum leads

to the notation

γ(4,0)Λ
o1o2,o3o4

(k1, k2; k3)βδk1+k2,k3+k4
= γ(4,0)Λ

o1o2,o3o4
(k1, k2; k3, k4) (3.298)

γ
(2,1)Λ
eh,n;o1,o2

(k1; ·; q)βδk1−k2,q = γ
(2,1)Λ
eh,n;o1,o2

(k1; k2; q) (3.299)

γ(2,1)Λ
ee,n;o1o2

(·; k1; q)βδk1+k2,q = γ(2,1)Λ
ee,n;o1o2

(·; k1, k2; q) and (3.300)

γ
(0,2)Λ
η,nn′ (q1)βδq1,q2 = γ

(0,2)Λ
η,nn′ (q1, q2), (3.301)

which can analogously be obtained for the SU(2)-symmetric case.

In order to arrive at flow equations in frequency in and momentum space we simplify the notation

by the following definitions.
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Definition 42 (Generalised Momentum and Position Space Notation)

Let k = (k, ωn) and let x = (R, τ) be the generalised momentum and position space arguments.

Then their product is defined as

xk := Rk − τωn. (3.302)

The integral in the generalised momentum space is defined as∫
dk :=

∫
d
k

|B|
∑
ωn

. (3.303)

The integral in the generalised position space is defined as∫
dx :=

∑
R

∫
dτ . (3.304)

The δ-distribution in the generalised momentum space is defined as

δk1,k2
:= |B|δk1,k2

δω1,ω2
. (3.305)

We remark that the number of orbital and spin arguments (in the absence of an SU(2)-symmetry)

can not be reduced in such a way. As the lattice symmetry allows us to represent the interaction with

a reduced number of arguments, we define the corresponding interaction as follows:

Theorem 3.28 (Frequency and Momentum Space Flow Equations)

Let the system under consideration be time-independent and periodic on a lattice. Let oi = (oi, si)

be a combined spin-orbital index, let ki = (ki, ωi) be a generalised fermionic momentum and let

qi = (qi, νi) be the generalised bosonic momentum. Let the flow equations for the n-fermion and

m-boson interactions γ(2n,m)Λ in the 2n+ 2m < 5-vertex truncation be as given in theorem 3.21.

Then the flow equations for the corresponding interactions in frequency and in momentum space

are given as follows:

1) For the self-energy as

Σ̇Λ
o1;o2

(k) =
1

β

∫
dk′

∑
õ1,õ2

SΛ(k′)õ1;õ2
γ

(4,0)Λ
o1,õ2;o2,õ1

(k, k′; k). (3.306)

2) For the two-fermion interaction as

γ̇(4,0)Λ
o1o2,o3o4

(k1, k2; k3) = T P,Λ
o1o2,o3o4

(k1, k2; k3)+

T C,Λ
o1o2,o3o4

(k1, k2; k3) + T D,Λ
o1o2,o3o4

(k1, k2; k3), (3.307)

with

T P,Λ
o1o2,o3o4

(k1, k2; k3) =
1

β

∫
dk

∫
dk′

∑
õ1...õ4

1

2
Lõ1õ2,õ3õ4

(k, k′)

γ
(4,0)Λ
o1o2,õ1õ2

(k1, k2; k) γ
(4,0)Λ
õ3õ4,o3o4

(k, k′; k3) δk′,k1+k2−k,
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T D,Λ
o1o2,o3o4

(k1, k2; k3) =
1

β

∫
dk

∫
dk′

∑
õ1...õ4

Lõ1õ2,õ3õ4
(k, k′)

γ
(4,0)Λ
o1õ3,o3õ2

(k1, k; k3) γ
(4,0)Λ
õ3o2,õ1o4

(k′, k2; k) δk′,k+k3−k1

T C,Λ
o1o2,o3o4

(k1, k2; k3) = − 1

β

∫
dk

∫
dk′

∑
õ1...õ4

Lõ1õ2,õ3õ4
(k, k′)

γ
(4,0)Λ
o1õ3,o4õ2

(k1, k; k4) γ
(4,0)Λ
õ4o2,õ1o3

(k′, k2; k) δk′,k+k4−k1
,

(3.308)

in which we wrote k4 = k1 + k2 − k3 for the sake of brevity.

3) For the fermion-boson interactions as

γ̇
(2,1)Λ
eh,n;o1,o2

(k1; ·; q) =
1

2

1

β

∫
dk

∑
õ1...õ4

Lõ1õ2;õ3õ4
(k, k + q)

γ
(2,1)Λ
eh,n;õ2;õ3

(k + q; ·; q) γ(4,0)Λ
o1õ4;o2õ1

(k1, k + q; k2), (3.309)

γ
(2,1)Λ
ee,n;·,o1o2(·; k1; q) =

1

2

1

β

∫
dk

∑
õ1...õ4

LΛ
õ1õ2,õ3õ4

(k, q − k)

γ
(2,1)Λ
ee,n;·,õ1õ2

(·; k; q) γ
(4,0)Λ
õ3õ4,o1o2

(k, q − k; k1). (3.310)

4) For the susceptibilities as

γ̇
(0,2)Λ
eh,nn′(q) =

1

β

∫
dk

∑
õ1...õ4

LΛ
õ1õ2,õ3õ4

(k, k − q)

γ
(2,1)Λ
eh,n;õ3,õ2

(k; ·; q) γ(2,1)Λ
eh,n′;õ4õ1

(k − q; ·; q), (3.311)

γ̇
(0,2)Λ
ee,nn′ (q) =

1

β

∫
dk

∑
õ1...õ4

LΛ
õ1õ2,õ3õ4

(k, q − k)

γ
(2,1)Λ
ee,n;·,õ1õ2

(·; k; q) γ
(2,1)Λ
hh,n′;õ3õ4,·(k; ·;−q). (3.312)

Proof: In order to arrive at the formulation of the flow equations in frequency and in momentum

space a Fourier transformation has to be performed for all the arguments in the equations of theorem

3.21. The resulting momentum space objects fulfil the relations given by theorem 3.6, that is, the

one-particle Green’s function is diagonal in frequency and in momentum space, and the two-fermion

interaction depends on three independent frequencies and momenta, while the fourth is fixed by the

conservation of energy and momentum. Similar relations hold for the fermion-boson interactions, so

that the difference between the two fermionic, generalised momenta is the bosonic one.

Before we perform the transformations explicitly, we note the following helpful relation∫
dx ei(k1−k2)x =

∫ β

0

dτ
∑
R

ei(k1−k2)R−i(ω1−ω2)τ = β|B|δω1,ω2
δk1,k2

= βδk1,k2
, (3.313)

as the corresponding terms will appear frequently.
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1) The Fourier transformation of the flow equation of the self-energy (see eq. (3.227)) is given by

Σ̇o1,o2
(k1)βδk1,k2

= Σ̇o1,o2
(k1; k2)

=

∫
dx1

∫
dx2 e

−ik1x1 eik2x2 Σ̇o1,o2(x1;x2)

=
∑
õ1,õ2

∫
dx1

∫
dx2 e

−ik1x1eik2x2

·
∫

dx̃1

∫
dx̃2 Sõ1,õ2(x̃1; x̃2) γ

(4,0)Λ
o1,õ2;o2,õ1

(x1, x̃2;x2, x̃1),

(3.314)

which includes the conservation of energy and momentum (cf. thm. 3.6). To obtain the full

expression in momentum space, SΛ and γ(4,0)Λ given in position space have to be replaced by

their Fourier transformed counterparts, that is

SΛ(x̃1; x̃2) =
1

β2

∫
dk′1

∫
dk′2 e

ik′1x̃1 e−ik
′
2x̃2 SΛ

õ1;õ2
(k′1; k′2) and

γ
(4,0)Λ
o1,õ2;o2,õ1

(x1, x̃2;x2, x̃1) =
1

β4

∫
dk′′1 · · ·

∫
dk′′4 e

ik′′1 x1eik
′′
2 x̃2e−ik

′′
3 x2e−ik

′′
4 x̃1

γ
(4,0)Λ
o1,õ2;o2,õ1

(k′′1 , k
′′
2 ; k′′3 , k

′′
4 ).

(3.315)

Due to the translational invariance in time and space, the momentum space objects can be

replaced by βδk′1,k′2S
Λ
õ1;õ2

(k1) and βδk′′1 +k′′2 ,k
′′
3 +k′′4 γ

(4,0)Λ
o1,õ2;o2,õ1

(k′′1 , k
′′
2 ; k′′3 ). When, after the insertion

of these Fourier transformations, all the terms containing the same x-index are combined and

the corresponding integrals are evaluated, we obtain∫
dx1

∫
dx2

∫
dx̃1

∫
dx̃2 e

−i(k1−k′′1 )x1 ei(k2−k′′3 )x2 ei(k
′
1−k′′4 )x̃1 e−i(k

′
2−k′′2 )x̃2

= β4δk1,k′′1 δk2,k′′3 δk′1,k′′4 δk′2,k′′2 (3.316)

for these terms. Due to this, all but one of the momentum space integrals can easily be evaluated,

resulting in

Σ̇o1,o2
(k1)δk1,k2

=
1

β

∑
õ1,õ2

∫
dk′2 S

Λ
õ1;õ2

(k′2)γ
(4,0)Λ
o1,õ2;o2,õ1

(k1, k
′
2; k1) δk1,k2

, (3.317)

which equals the assertion. To simplify the procedure in the following, we observe that the

internal arguments which are connected by the propagator obtain the same momentum, while

the external arguments obtain the same momentum dependence as required by the expression

on the left hand side.

2) We proceed analogously for the two-particle interaction and leave out the orbital indices, as

we have seen that these are not affected by the Fourier transformations. In a first step, the

transformation to momentum space yields

γ̇(4,0)Λ(k1, k2; k3)βδk1+k2,k3+k4
= γ̇(4,0)Λ(k1, k2; k3, k4)

=
1

β4

∫
dx1 · · ·

∫
dx4 e

−ik1x1e−ik2x2eik3x3eik4x4 γ̇(4,0)Λ(x1, x2;x3, x4), (3.318)
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where the right hand side of the flow equation has to be inserted. We will treat all the three terms

of the right hand side separately, starting with the pairing channel. The Fourier transformation

of the two-propagator term results in

LΛ(x̃1, x̃2; x̃3, x̃4) =
1

β4

∫
dk′1 · · ·

∫
dk′4 e

ik′1x̃1eik
′
2x̃2e−ik

′
3x̃3e−ik

′
4x̃4LΛ(k′1, k

′
2; k′3, k

′
4)

=
1

β2

∫
dk′1 · · ·

∫
dk′4 e

ik′1x̃1eik
′
2x̃2e−ik

′
3x̃3e−ik

′
4x̃4LΛ(k′1, k

′
2)δk′1,k′3δk′2,k′4 ,

(3.319)

while the transformation of the interactions is analogous to the one in the self-energy case with a

change to the correct arguments. When the terms corresponding to either of the eight position

space arguments are combined, each of them again results in a term of the form βδki,kj , as

expected. Therefore, we can replace the pairs of position space arguments which are connected

by LΛ with the same momentum argument. This procedure corresponds to the evaluation of all

but two momentum space integrals, resulting in

T P,Λ(k1, k2; k3, k4) =

∫
dk′1

∫
dk′2 δk1+k2,k′1+k′2 δk′1+k′2,k3+k4

LΛ(k′1, k
′
2) γ(4,0)Λ(k1, k2; k′1) γ(4,0)Λ(k′1, k

′
2; k3). (3.320)

Due to the combination of arguments, we can rewrite the second δ-distribution as δk1+k2,k3+k4
,

such that the reduced argument form corresponding to the translational invariance can be used

on the left hand side and the term equals the assertion. At this point we kept up both momentum

integrals to simplify the notation, as otherwise k′2 has to be replaced by k1 +k2−k′1 whenever it

appears in LΛ and γ(4,0)Λ. In the electron-hole channels the same steps have to be performed,

but the combinations of the lattice space arguments are different so that different exponential

terms are combined. When the momentum space integrals are evaluated for the direct ph-term,

we obtain

T D,Λ(k1, k2; k3, k4) =

∫
dk′1

∫
dk′2 δk1+k′2,k3+k′1 δk′1+k2,k′2+k4

LΛ(k′1, k
′
2) γ(4,0)Λ(k1, k

′
1; k3) γ(4,0)Λ(k′2, k2; k′1). (3.321)

Playing around with the arguments of the δ-distribution, we can turn them into the required

form of δk1+k2,k3+k4
δk′1−k′2,k1−k3

. As the crossing electron-hole term is related to the direct one

by simply changing the last two arguments, we can directly read off its Fourier transformation

as

T C,Λ(k1, k2; k3, k4) =

∫
dk′1

∫
dk′2 δk1+k′2,k4+k′1 δk′1+k2,k′2+k3

LΛ(k′1, k
′
2) γ(4,0)Λ(k1, k

′
1; k4) γ(4,0)Λ(k′2, k2; k′1), (3.322)

for which the δ-distributions can be reformulated to δk1+k2,k3+k4
δk′1−k′2,k1−k4

, as required.

3) The Fourier transformation of the fermion-boson vertices is along the same lines. The transfor-

mation rules for the bosonic arguments are similar to the fermionic case with the generalised

bosonic momentum q = (q, ν) replacing the fermionic one. From this it follows that the con-

servation of momentum and energy for the fermion-boson vertex becomes γ
(2,1)Λ
eh,n (k1; k2; q) =

γ
(2,1)Λ
eh,n (k1; ·; q) β δk2−k1,q in the electron-hole case and a corresponding expression with δk1+k2,q
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in the electron-electron case. When we evaluate the expression by the same procedure as above,

the flow equation becomes

γ̇
(2,1)Λ
eh,n (k1; k2; q) =

∫
dk′1

∫
dk′2 L

Λ(k′1, k
′
2) γ

(2,1)Λ
eh,n (k′2; ·; q) γ(4,0)Λ(k1, k

′
2; k2)

δk′2−k′1,q δk′2−k′1,k2−k1
. (3.323)

An evaluation of the k′2-integral allows us to write the second δ-distribution in terms of the

external arguments q, k1 − k2, thus enabling the expression with reduced arguments. A similar

treatment of the electron-electron case leads to

γ̇(2,1)Λ
ee,n (·; k1, k2; q) =

∫
dk′1

∫
dk′2 L

Λ(k′1, k
′
2) γ(2,1)Λ

ee,n (·; k′1; q) γ(4,0)Λ(k′1, k
′
2; k1)

δk′1+k′2,q δk1+k2,k′1+k′2 , (3.324)

which, with the same arguments as in the electron-hole case, equals the assertion.

4) For the corresponding equations for the susceptibilities, we proceed in the same way and first

obtain the conservation of energy and momentum as

γ̇
(0,2)Λ
ee/eh (·; ·; q1)β δq1,−q2 = γ̇

(0,2)Λ
ee/eh (·; ·; q1, q2) (3.325)

for both susceptibilities, which we consider next. In the pairing case, the momentum space

transformation of the elements in the flow equation then results in

γ̇
(0,2)Λ
ee,nn′ (·; ·; q1,−q2) =

∫
dk′1

∫
dk′2 γ

(2,1)Λ
ee,n (·; k′1; q1)LΛ(k′1, k

′
2) γ

(2,1)Λ
hh,n′ (k′1; ·; q2)

δk′1+k′2,q1δk′1+k′2,−q2 , (3.326)

which can be combined to δk′1+k′2,q1δq1,−q2 and thus equals the assertion. A similar treatment of

the electron-hole susceptibility results in

γ̇
(2,0)Λ
eh,nn′(·; ·; q1)βδq1,−q2 =

∫
dk′1

∫
dk′2 γ

(2,1)Λ
eh,n (k′1; ·; q1)LΛ(k′1, k

′
2) γ

(2,1)Λ
eh,n′ (k′2; ·; q2)

δk′1−k′2,q1 δ−k′1+k′2,q2 , (3.327)

which completes the proof.

In the same way we transform the SU(2)-symmetric flow equation to momentum and to frequency

space.

Theorem 3.29 (SU(2)-Symmetric Flow Equation in Momentum and in Frequency

Space)

Let the system under consideration be SU(2)-invariant, time-independent and periodic. Let oi

be an orbital index, let ki = (ki, ωi) be the generalised fermion momentum and qi = (qi, νi)

be the generalised bosonic momentum. Let the flow equations for the n-fermion and m-boson

interactions γ(2n,m)Λ in the 2n+ 2m < 5-vertex truncation be given as in theorem 3.25. Then the

flow equations for the corresponding interactions in momentum and in frequency space are given

as follows:
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1. For the self-energy as

Σ̇Λ
o1,o2

(k) =
1

β

∫
dk′ SΛ

õ1,õ2
(k′)

(
−2V Λ

o1õ2,o2õ1
(k, k′; k) + V Λ

o1õ2,õ1o2
(k, k′; k′)

)
. (3.328)

2. For the two-particle interaction as

V Λ
o1o2,o3o4

(k1, k2; k3) = T̄ P,Λ
o1o2,o3o4

(k1, k2; k3)

+ T̄ C,Λ
o1o2,o3o4

(k1, k2; k3) + T̄ D,Λ
o1o2,o3o4

(k1, k2; k3), (3.329)

with

T̄ P,Λ
o1o2,o3o4

(k1, k2; k3) = − 1

β

∫
dk

∫
dk′

∑
õ1...õ4

Lõ1õ2,õ3õ4
(k, k′)

V Λ
o1o2,õ1õ2

(k1, k2; k) V Λ
õ3õ4,o3o4

(k, k′; k3)δk′,k1+k2−k,

T̄ D,Λ
o1o2,o3o4

(k1, k2; k3) =
1

β

∫
dk

∫
dk′

∑
õ1...õ4

Lõ1õ2,õ3õ4
(k, k′) δk′,k+k3−k1(

−2V Λ
o1õ3,o3õ2

(k1, k; k3) V Λ
õ4o2,õ1o4

(k′, k2; k)

+ V Λ
o1õ3,o3õ2

(k1, k; k3) V Λ
õ4o2,o4õ1

(k′, k2; k4)

+V Λ
o1õ3,õ2o3

(k1, k; k′) V Λ
õ4o2,õ1o4

(k′, k2; k)
)
,

T̄ C,Λ
o1o2,o3o4

(k1, k2; k3) =
1

β

∫
dk

∫
dk′

∑
õ1...õ4

Lõ1õ3,õ2õ4
(k, k′)

V Λ
o1õ3,õ2o4

(k1, k; k′) V Λ
õ4o2,o3õ1

(k′, k2; k3) δk′,k+k4−k1
,

(3.330)

in which we wrote k4 = k1 + k2 − k3 for the sake of brevity.

3. For the fermion-boson vertices as

γ̇
(2,1)Λ
eh n;o1,o2

(k1; ·; q) =
∑
õ1...õ4

∫
dk Lõ1õ3;õ2õ4

(k, k + q) γ
(2,1)Λ
eh ,n;õ2;õ3

(k; ·; q)

(
2V Λ

o1õ4;o2õ1
(k1, k + q; k2)− V Λ

o1õ4;õ1o2
(k1, k + q; k)

)
, (3.331)

γ(2,1)Λ
ee,n;o1o2

(·; k1; q) = −1

2

∫
dk

∑
õ1...õ4

LΛ
õ2õ3,õ1õ4

(k, q − k)

γ
(2,1)Λ
ee,n;õ2õ3

(k; q) V Λ
õ4õ1,o1o2

(q − k, k; k1). (3.332)

4. For the susceptibilities the flow equations are the same as in the non SU(2)-symmetric case

(cf. thm. 3.28) with the additional factors 1 + δsb accounting for doubly occurring terms like

in theorem 3.25.

Proof: The proof is along the same lines with the one for the spinful version in theorem 3.28. How-

ever, the lattice space and the time arguments are exchanged in some terms of the SU(2)-symmetric

flow equations in comparison to this previous case, which leads to a corresponding exchange of momen-

tum arguments. With respect to this let us regard the two terms of the self-energy. While the first term

has exactly the same order of arguments as the one in the spinful case, the third and the fourth argu-

ment of the second term switch places, so that its Fourier transformed vertex is V Λ
o1o′1;o2o′2

(k, k′; k′, k).

Observing the contribution of the direct electron-hole to the two-fermion interaction under this aspect,
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we can find that all three terms differ by an exchange of arguments in lattice space and, therefore, in

momentum space, too. However, the main momentum transfer for all three contributions remains the

same as in the spinful case, that is k1 − k3.

An analysis of the structure of the two-particle interaction flow equations in the generalised

momentum arguments reveals that each channel shows a characteristic dependence on one specific

generalised transfer momentum. This transfer is bosonic, as it results from a combination of two

incoming fermionic momenta, so that each contribution can be parametrised by one bosonic and by

two fermionic generalised momenta as defined in table 3.1. For the generalised bosonic momentum

transfer we introduce the Mandelstam variables (cf. table 3.1) with the same notation as used for

two-particle interactions considered in high energy physics. The corresponding contributions to the

flow equation of the two-fermion interaction, therefore, become

T̃ P(s, ks, k
′
s) = T P(k1, k2; k3)

T̃ D(u, ku, k
′
u) = T D(k1, k2; k3)

T̃ C(t, kt, k
′
t) = T C(k1, k2; k3),

(3.333)

and the analogous holds for the SU(2)-symmetric case. The conservation of momentum of the

two-fermion interaction can be described equivalently in either of the channels, as δk1+k2,k3,k4
=

δk1−k3,k4−k2
= δk1−k4,k3−k2

. Therefore, it is correctly described by either of the channel specific

variables, so that

γ(4,0)Λ(k1, k2; k3) = γ̃(4,0)Λ,P(s; ks, k
′
s)

= γ̃(4,0)Λ,D(u; ku, k
′
u)

= γ̃(4,0)Λ,C(t; kt, k
′
t),

(3.334)

and analogously for the SU(2)-symmetric interaction. In the channel contributions T P, T D and T C to

the flow equation we observe that the two-fermion interaction appears in the channel specific variables.

The same holds for the contributions to the flow equation of the SU(2)-symmetric interaction V Λ with

the exception of ¯T D in which both, V Λ,D and V Λ,C, appear.

The fermion-boson interactions are naturally characterised by one fermionic and by one bosonic

argument due to the conservation of energy and momentum such that both fermionic momenta differ

by or add up to the bosonic one. This naturally introduces a parametrisation of the two-particle

interaction appearing in their flow equations by the same fermionic and bosonic momenta, as well

as the internal fermionic momentum. Hence the two-fermion interaction is required in the pairing

channel parametrisation for the electron-electron fermion-boson vertex, while this is, for the electron-

hole case, a parametrisation corresponding to the direct channel. In the SU(2)-symmetric case the

same observation holds, but with a combination of one interaction in the direct and one in the crossing

channel parametrisation for the electron-hole fermion-boson interaction.

P s := k1 + k2 = k3 + k4 ks := k1 k′s := k3

D u := k1 − k3 = k4 − k2 ku := k1 k′u := k4

C t := k1 − k4 = k3 − k2 kt := k1 k′t := k3

Table 3.1.: Mandelstam variables for the channel-specific momentum transfer.
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The parametrisation just introduced for the two-particle interaction is also motivated by an analysis

of the momentum structure (without frequency) of typical ordering in the ground state. As discussed

in the section about susceptibilities (cf. sec. 3.3), the significant contribution for correlation effects

originates from the two-particle vertex. Because of the closed electron-hole or the particle-particle

propagator loops their incoming and outgoing fermions must exactly differ by the incoming bosonic

momentum. Thus the vertex must have exactly the same momentum structure in the case of charge-

or spin-density waves with the same bosonic transfer momentum. Analysing the vertex at the phase

transition shows that the dependence on the transfer momentum, which indicates the reached phase,

is strong, while the dependence on the two fermionic ones is weak.

Therefore, this mixed fermionic-bosonic parametrisation is more natural and frequently used [103,

67]. However, the different channels for the two-particle interaction require inequivalent fermion-

bosonic arguments which have to be transformed to the full fermionic parametrisation according to

the right hand side of table 3.1. In the following section we will derive a numerically advantageous

form for the calculation of the two-particle interaction which exploits this parametrisation.
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3.6. Truncated Unity Functional Renormalisation Group

Based on the observations in the previous section, a form-factor based flow equation is developed

in this section, called Truncated Unity FRG (TUFRG), which follows the approach by Lichtenstein

and de la Peña [2], which was generalised by me in collaboration with others in reference [111].

This approach provides a computationally beneficial parametrisation of the two-particle interaction

for calculations, which was applied to the two-dimensional Hubbard model on square [2] and on

hexagonal lattices [72, 112]. Additionally, a corresponding parametrisation of the Parquet equations

was developed in collaboration with me [113]. Although the fermionic-bosonic parametrisation just

introduced holds for generalised momenta, only the momentum k is explicitly treated in this part, as

an advantageous parametrisation is easily derived from the underlying lattice [75]. On the contrary,

a similarly efficient parametrisation of the frequency domain is not yet available and is still subject

of current research [114, 115, 116, 117, 118], so that the frequency dependence remains unaffected in

this part.

To derive the TUFRG flow equations we first introduce the form-factor basis and projections be-

tween this basis and the momentum space. Based on the decomposition of the two-particle interaction

we then derive the flow equations for three chantices of which each one corresponds to one channel of

the original flow equations. As this parametrisation is for the interaction alone, no flow equations for

fermion-boson interactions or susceptibilities are considered here.

3.6.1. Form-Factors, Projections and Chantices

The full two-particle interaction exhibits the features of an emerging phase when the corresponding

phase boundary is reached. That is a strong dependence on the bosonic momentum, characterising

the emerging phase, and a weak dependence on the two fermionic arguments, which coincides with

the natural parametrisation of the channel leading to the phase. Therefore, it is reasonable to project

the fermionic arguments to a basis of slowly varying form-factors, which is defined in the following.

Beforehand, we remark that all momentum space integrals in this section implicitly cover the whole

Brillouin zone B and contain the scaling factor 1|/|B|, that is
∫

dk :=
∫
B

dk
|B| .

Definition 43 (Form-Factor Basis)

1. Let {fi(R)}i∈N with fi : R3 → C be an orthonormal set of functions based on linear combi-

nations of the functions δR which reference the Bravais lattice vectors R. Then the set is

called a form-factor basis which fulfils the completeness and the orthonormality relations,

i.e. ∑
n

fn(R) f∗n(R′) = δ(R−R′) and
∑
R

fm(R) f∗n(R) = δm,n. (3.335)

2. Let {fi(k)}i∈N be the Fourier transformation of the set {fi(R)}i∈N, as defined in 1. Then

the set {fi(k)}i∈N is called the momentum space form-factor basis which also fulfils

the completeness and the orthonormality relations, i.e.

∑
n

fn(k) f∗n(k′) = |B|δ(k − k′) and

∫
B

dk fm(k) f∗n(k) = δm,n. (3.336)
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Here, the lattice space and the momentum space form-factors are related by the Fourier transfor-

mation, that is

fn(R) =

∫
dk e−ikRfn(k) and fn(k) =

∑
R

eikRfn(R). (3.337)

According to the aforementioned convention, the Fourier normalisation factor is absorbed in the

momentum space integral.

The exact choice of form-factors is intentionally left open in the definition. One natural choice is

the direct use of Bravais lattice vectors, which are also referred to as bond vectors, as argument δR.

As this set has to be truncated for numerical calculations, it is useful to work with a low number

of form-factors, but simultaneously reach a high accuracy. In order to achieve this we choose a

set of basis functions which is symmetric under the point group symmetry of the lattice leading to

linear combinations of the Bravais vectors with the same lengths. It is assumed that even less form-

factors are sufficient to achieve the same accuracy by this approach. Additionally, the momentum

space representation after symmetrisation has a simple form consisting of linear combinations of sine

and cosine functions, which can be equal to the typical form of the form-factors appearing in the

susceptibilities. More details about the derivation and the implementation of the form-factor basis

can be found in chapter 4.2.

This definition leaves a freedom of choice for the real form-factor basis. The obvious choice is a

direct usage of the Bravais lattice vectors, while exploiting the point group symmetry of the solid state

system leads to a symmetrised set of basis functions. As those fit to the system under investigation,

the number of necessary form-factors is expected to be reduced. In addition, their momentum space

representation in the symmetrised form has a simple form consisting of linear combinations of sine and

cosine functions. In order to be able to use the form-factor basis for the two-particle vertex and the

contributions to its flow equation a corresponding projection between the two basis sets is required.

But as the bosonic momenta, which are supposed to be kept up, are different combinations of the

original fermionic momenta for each of the three channels (cf. table 3.1), it is necessary to define the

projection operations separately for all three channels.

Definition 44 (Projection between Form-Factor Basis and Full Momentum Basis)

Let υ ∈ {s,u, t} be a Mandelstam variable of the P, D or C channel, respectively, and let kυ and

k′υ be the corresponding weak dependencies according to table 3.1. Let X be a two-particle object

(e.g. γ̄(4,0),Λ, V̄ Λ, T̄ P,Λ, ...) in the natural parametrisation of a channel, i.e. X(v,kυ,k
′
υ), and

let {fj}j∈N be a form-factor basis as defined in definition 43. Then

1. the projections of X to a channel υ in the form-factor space is defined by

P̂i[X]mn(υ) :=

∫
dkυ

∫
dk′υ fm(kυ) f∗n(k′υ)X(υ,kυ;k′υ); (3.338)

2. the back-projection of an object in the form-factor space to the natural parametrisation of

this channel is defined as

X(υ,kυ,k
′
υ) =

∑
m,n

(
P̂υ[X]mn(υ)

)
f∗m(kυ) fn(k′υ). (3.339)
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To illustrate the projections just defined, let us consider the projection of the full two-particle

interaction to the pairing channel. In order to apply the projection, first the interaction has to be

parametrised in the momenta of the pairing channel, which is γ(4,0)(ks, s− ks;k′s). In a second step,

the projection can be performed, resulting in

P̂[γ(4,0)]mn(s) =

∫
dks

∫
dk′s fm(ks) f

∗
n(k′s) γ

(4,0)(ks, s− ks;k′s). (3.340)

Hence the notation of the left hand side requires both steps. Similarly, the projection to the other

channels first requires a re-parametrisation in the natural coordinates of the channel, before the actual

projection can be performed. If one inserts this projected object into the back-projection, one obtains,

due to the completeness-relation of form-factors, the original interaction in the natural parametrisation

of the channel it was in. For the case that the projection is applied to the vertices γ(4,0)Λ and V Λ

and, due to their decomposition, to their channel contributions Φυ and Φ̄υ, respectively, we define the

resulting objects as follows:

Definition 45 (Projected Vertex and Chantices)

1. Let γ(4,0)Λ be the full two-particle interaction in the 2n < 5 approximation, which decomposes

according to corollary 3.23 as

γ(4,0)Λ = γ(4,0)Λ0 + ΦP,Λ + ΦD,Λ + ΦC,Λ. (3.341)

Then the vertex projected to channel υ ∈ {P,D,C} is defined as

γ(4,0)υ,Λ
mn (υ) := Pυ[γ(4,0)Λ]mn(υ), (3.342)

and the pairing, direct electron-hole and crossing electron-hole chantices are defined, re-

spectively, as

PΛ
mn(s) := P̂P[ΦP,Λ]mn(s), DΛ

mn(u) := P̂D[ΦD,Λ]mn(u) and

CΛ
mn(t) := P̂C[ΦC,Λ]mn(t).

(3.343)

2. Let V Λ be the SU(2)-invariant two-particle interaction, which decomposes according to corol-

lary 3.27 as

V Λ = V Λ0 + Φ̄P,Λ + Φ̄D,Λ + Φ̄C,Λ. (3.344)

Then the vertex projected to channel υ ∈ {P,D,C} is defined as

V υ,Λmn (υ) := Pυ[V Λ]mn(υ), (3.345)

and the SU(2)-symmetric pairing, direct electron-hole and crossing electron-hole chantices

are defined as

P̄Λ
mn(s) := P̂P[Φ̄P,Λ]mn(s) D̄Λ

mn(u) := P̂D[Φ̄D,Λ]mn(u) and

C̄Λ
mn(t) := P̂C[Φ̄C,Λ]mn(t).

(3.346)
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As the definition of the chantices9 is based on the splitting of the full vertex (cf. eq. (3.264)), the flow

equation of the vertex directly provides a flow equation for each chantex. That is, the flow equation

of the chantex is the contribution of the channel it is based on to the full flow equation, projected to

the form-factor space. In detail, the explicit flow equations of the chantices are given by

ṖΛ
mn(s) =

∫
dks

∫
dk′s fm(ks) f

∗
n(k′s) T P,Λ(ks, s− ks;k′s) (3.347)

ḊΛ
mn(u) =

∫
dku

∫
dk′u fm(ku) f∗n(k′u) T D,Λ(ku,k

′
u − u;ku − u) (3.348)

ĊΛ
mn(t) =

∫
dkt

∫
dk′t fm(kt) f

∗
n(k′t) T C,Λ(kt,k

′
t − t;k′t). (3.349)

When these flow equations are calculated, the full vertex is required in each integration step, as it

appears in the contributions T . Therefore the back-projections of the chantices to the full vertex are

required, which becomes

ΦP,Λ(k1,k2;k3) =
∑
m,n

PΛ
mn(k1 + k2) f∗m(k1) fn(k3)

ΦD,Λ(k1,k2;k3) =
∑
m,n

DΛ
mn(k1 − k3) f∗m(k1) fn(k1 + k2 − k3)

ΦC,Λ(k1,k2;k3) =
∑
m,n

CΛ
mn(k3 − k2) f∗m(k1) fn(k3)

(3.350)

by the back-substitution to full fermionic momenta. Before we further consider the flow equations,

we consider the symmetries of the objects in the form-factor space.

Corollary 3.30 (Symmetries of the Projections)

Let X be either the two-particle interaction without spin-symmetry (i.e. γ(4,0)Λ) or the two-particle

interaction with spin-symmetry (i.e. V Λ). Let PΛ, CΛ and DΛ or P̄Λ, C̄Λ and D̄Λ denote the

corresponding chantices according to definition 45. Then the following symmetry relations hold:

1. Let K be a reciprocal lattice vector. If X is invariant under a shift of K in every argument

in the momentum space, then P,C and D are invariant under a shift of K, too.

2. Let Pυ be the projection to channel υ ∈ {P,C,D}. Then the vertex X projected to the

form-factor space is symmetric according to

PP[X]mn;o1o2,o3o4(s) = (PP[X]nm;o3o4,o1o2(s))
∗
, (3.351)

PD[X]mn;o1o2,o3o4
(u) = (PD[X]nm;o4o3,o2o1

(u))
∗

and (3.352)

PC[X]mn;o1o2,o3o4
(t) = (PC[X]nm;o3o4,o1o2

(t))
∗
. (3.353)

3. The chantices are symmetric according to

PΛ
mn;o1o2,o3o4

(s) =
(
PΛ
nm;o3o4,o1o2

(s)
)∗

(3.354)

DΛ
mn;o1o2,o3o4

(u) =
(
DΛ
nm;o4o3,o2o1

(u)
)∗

(3.355)

CΛ
mn;o1o2,o3o4

(t) =
(
CΛ
nm;o3o4,o1o2

(t)
)∗

(3.356)

and similarly for the SU(2)-symmetric cases P̄Λ, D̄Λ and C̄Λ.

9This corresponds to channel vertices and has no relation to spirituality.
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4. The direct and the crossing channel are symmetric according to

Dmn;o1o2,o3o4(u) = −Cmn;o1o2,o4o3(u) in the spinful case.

5. The chantices are symmetric with respect to the lattice symmetry according to

PΛ
mn(s) = PΛ

R̂−1(m)R̂−1(n)
(R̂(s)), (3.357)

where R̂−1(m) denotes fm(R̂−1(k)). This analogously holds for the other channels.

Proof: 10

1. At this point, we only consider the pairing channel, as the proof is analogous for the other

channels, so that we have to show PΛ
mn(s) = PΛ

mn(s + K). The projection of a general four-

fermion object X under the considered shift

PP[X]mn(s+K) =

∫
dks

∫
dk′s fm(ks) f

∗
n(k′s)X(ks, s+K − ks;k′s)

=

∫
dks

∫
dk′s fm(ks) f

∗
n(k′s)X(ks, s− ks;k′s)

= PP[X]mn(s)

(3.358)

reveals a corresponding invariance due to the one of X. The required invariance of the chantex

P results from this relation, if X = ΦP,Λ is invariant in each argument. As ΦP,Λ is obtained by

an integration of T P,Λ over the full range of the scale, it is sufficient to consider the latter one.

In the expression for T P,Λ the initial translation by K causes a shift of one incoming momentum

of the first and of one outgoing momentum of the second vertex by the same K. As the vertex

is periodic with respect to each argument according to corollary 3.5, this is equal to the vertices

without the shift. Therefore, T is invariant under a shift of K and with the first part of this

proof this translates to PΛ
mn(s).

2. Due to the definition of the projection operator (see def. 44), the vertex has to be symmetric

with respect to an exchange of arguments. Because of the complex conjugation symmetry (see

cor. 3.17.2) the two-particle interaction in the three different parametrisations becomes

γ(4,0)Λ
o1o2,o3o4

(ku,k
′
u − u;ku − u,k′u) =

(
γ(4,0)Λ
o4o3,o2o1

(k′u,ku − u;k′u − u,ku)
)∗

(3.359)

and, in combination with the crossing symmetry, we get

γ(4,0)Λ
o1o2,o3o4

(ks, s− ks;k′s, s− k′s) = γ(4,0)Λ
o2o1,o4o3

(s− ks,ks; s− k′s,k′s)

=
(
γ(4,0)Λ
o3o4,o1o2

(k′s, s− k′s;ks, s− ks)
)∗

and (3.360)

γ(4,0)Λ
o1o2,o3o4

(kt,k
′
t − t;k′t,kt − t) = γ(4,0)Λ

o2o1,o4o3
(k′t − t,kt;kt − t,k′t)

=
(
γ(4,0)Λ
o3o4,o1o2

(k′t,kt − t;kt,k′t − t)
)∗
, (3.361)

that is a symmetry under an exchange of kv and k′v. An insertion of the left and of the right

hand side of these equations in the definitions of the projections (see def. 44) now reveals the

10Although the vertices in momentum space only have three independent arguments, all of them are denoted here to
help the reader follow the corresponding steps.
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symmetries with respect to the form-factors. As all of the symmetries applied here are also

present in the SU(2)-symmetric case (cf. cor. 3.26) the corresponding proof is in direct analogy.

3. For any υ ∈ {P,D,C}, all the contributions T υ,Λ to the flow equation show the same behaviour

under the complex conjugation and under the crossing symmetry as the full vertex. Therefore,

the same considerations as presented in point 2 above lead to the corresponding result.

4. In the non SU(2)-symmetric case we get T D,Λ(x1, x2;x3, x4) = −T C,Λ(x1, x2;x4, x3) (see rem.

3.22), which also holds after a Fourier transformation. Employing this in the projection operator

directly results in the requested relation.

5. Again, we treat this exemplarily for the projection of an object X to the pairing channel, as the

projections to the other channels are analogous. The full vertex is symmetric under the point

group operation R̂ according to

γ(4,0)Λ(k1,k2;k3,k4) = γ(4,0)Λ(R̂(k1), R̂(k2); R̂(k3), R̂(k4)). (3.362)

Projecting this to the pairing channel leads to

PP[X]mn(s) =

∫
dks

∫
dk′s fm(ks) f

∗
n(k′s)X(ks, s− ks;k′s)

=

∫
dks

∫
dk′s fm(ks) f

∗
n(k′s)X

Λ(R̂(ks), R̂(s− ks); R̂(k′s))

=

∫
dks

∫
dk′s fm(R̂−1(ks)) f

∗
n(R̂−1(k′s))X(k̃s, ŝ− k̃s; k̃′s)

= PP[X]R̂−1(m)R̂−1(n)(R̂(s)),

(3.363)

where we changed the integration variables from ks to k̃s := R̂(ks) and analogously for k′s,

which leads to the inverse symmetry operation for the argument of the form-factors. We left

out orbital indices, which have their own map with respect to point group symmetries.

In comparison to our parametrisation there exists a symmetrised one (cf. Lichtenstein [2]) which

preserves more symmetries than our approach does. However, as momenta of the form (k1−k2)/2

appear, the momentum integrations also have to cover the second Brillouin zone and the invariance

under translations by reciprocal lattice vectors is lost. Although symmetry considerations can translate

all the properties back to the first Brillouin zone, we keep the simpler form with a reduced number of

symmetries. However, exploiting those already facilitates the calculation of the flow equation for the

chantices.

3.6.2. Chantex Flow Equations

The equations (3.347)-(3.349) provide the flow equations for the three chantices. However, as the

largest object of the calculations is the full two-particle vertex, it is advantageous to keep only its

form-factor-based version as it will be significantly smaller. It is, therefore, useful to project the dual

propagators to the form-factor basis, too, so that all the elements only depend on the main momentum

and on the form-factor indices.
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Definition 46 (Projected Propagators)

Let LΛ be the dual propagator as provided in definition 41. The projections to the form-factor

basis in the pairing and in the electron-hole channel lead to projected propagators which are

defined as

Lp,Λ
ij (s) :=

∫
dk fi(k) f∗j (k) LΛ(k, s− k) and (3.364)

Leh,Λ
ij (u) :=

∫
dk fi(k) f∗j (k) LΛ(k,k − u), (3.365)

respectively.

This definition seems unfavourable, as the propagators then obtain one additional dependency. Nev-

ertheless, this form is numerically advantageous, as all the objects which appear in the flow equations

for the chantices are provided in the form-factor basis, depending on the same one bosonic transfer

momentum. The right hand side of the flow equation therefore becomes a product of three matrices

in the form-factor space for each channel, which can easily be calculated by standard algorithms.

Corollary 3.31 (Flow Equations for Chantices in the Form-Factor Space)

Let PΛ, CΛ and DΛ be the chantices of the pairing, the crossed electron-hole and the direct

electron-hole channel as defined in definition 45. Let furthermore γ(4,0)υ,Λ be the full vertex

projected to channel υ ∈ {P,C,D}, and let LΛ be the projected propagator as given by definition

46. Then the flow equation for the three chantices are given by

ṖΛ
mn(s; o1o2; o3o4) =

1

2

∑
ij

∑
o′1...o

′
4

γ
(4,0)P,Λ
mi (s; o1o2, o

′
1o
′
2)

Lp,Λ
ij (s; o′1o

′
2, o
′
3o
′
4) γ

(4,0)P,Λ
jn (s; o′3o

′
4, o3o4), (3.366)

ḊΛ
mn(u; o1o2; o3o4) =

∑
ij

∑
o′1...o

′
4

γ
(4,0)D,Λ
mi (u; o1o

′
4, o3o

′
1)

Leh,Λ
ij (u; o′1o

′
3, o
′
2o
′
4) γ

(4,0)D,Λ
jn (u; o′2o2, o

′
1o3), (3.367)

ĊΛ
mn(t; o1o2; o3o4) = −

∑
ij

∑
o′1...o

′
4

γ
(4,0)C,Λ
mi (t; o1o

′
4, o4o

′
1)

Leh,Λ
ij (t; o′1o

′
3, o
′
2o
′
4) γ

(4,0)C,Λ
jn (t; o′2o2, o

′
3o3). (3.368)

Let the system be SU(2)-symmetric and let P̄Λ, C̄Λ and D̄Λ be the chantices of the pairing, the

crossed electron-hole and the direct electron-hole channel as defined in definition 45. Let further-

more V υ,Λ be the full vertex projected to channel υ ∈ {P,C,D} and let LΛ be the propagator as

given by definition 46. Then the flow equations of the three chantices are given as

˙̄PΛ
mn(s; o1o2; o3o4) =

∑
ij

∑
o′1...o

′
4

V P,Λ
mi (s; o1o2, o

′
1o
′
2)

Lp,Λ
ij (s; o′1o

′
2, o
′
3o
′
4) V P,Λ

jn (s, ; o′3o
′
4, o3o4), (3.369)
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˙̄DΛ
mn(u; o1o2; o3o4) =

∑
ij

∑
o′1...o

′
4

Leh,Λ
ij (u; o′1o

′
3, o
′
2o
′
4)

(
2V D,Λ

mi (u; o1o
′
4, o3o

′
1) V D,Λ

jn (u; o′2o2, o
′
3o4)

− V D,Λ
mi (u; o1o

′
4, o3o

′
1) V C,Λ

jn (u; o′2o2, o4o
′
3)

− V C,Λ
mi (u; o1o

′
4, o
′
1o3) V D,Λ

jn (u; o′2o2, o
′
3o4)

)
,

(3.370)

˙̄CΛ
mn(t; o1o2; o3o4) = −

∑
ij

∑
o′1...o

′
4

V C,Λ
mi (t; o1o

′
4, o4o

′
1)

Leh,Λ
ij (u; o′1o

′
3, o
′
2o
′
4) V C,Λ

jn (u; o′2o2, o
′
3o3). (3.371)

Proof: For the chantex of the pairing channel in its corresponding parametrisation the projection

leads to

Ṗmn(s) = P[T P,Λ]mn(s) =
1

2

∫
dk

∫
dks

∫
dk′s

γ(4,0)Λ(ks, s− ks;k, s− k) Lp,Λ(k, s− k) γ(4,0)Λ(k, s− k;k′s, s− k′s) fm(ks) f
∗
n(k′s), (3.372)

where the orbital indices are left out to simplify the notation, as they are of no relevance here. The

insertion of unities corresponding to the completeness of the form-factor basis as given by equation

(3.336) leads to

Ṗmn(s) =
1

2

∫
dk

∫
dk′

∫
dk′′

∫
dks

∫
dk′s γ

(4,0)Λ(ks, s− ks;k, s− k)

δ(k − k′) Lp,Λ(k′, s− k′) δ(k′ − k′′) γ(4,0)Λ(k′′, s− k′′;k′s, s− k′s) fm(ks) f
∗
n(k′s)

=
1

2

∫
dk

∫
dk′

∫
dk′′

∫
dks

∫
dk′s

∑
i,j

fm(ks) γ
(4,0)Λ(ks, s− ks;k, s− k) f∗i (k)

fi(k
′) Lp,Λ(k′, s− k′) f∗j (k′) fj(k

′′) γ(4,0)Λ(k′′, s− k′′;k′s, s− k′s) f∗n(k′s),

(3.373)

where the projection of γ(4,0)Λ and of LΛ to the form-factor space can be identified according to

equations (3.347) and (3.364), which then provides the desired expression.

The procedure is analogous for the derivation of the other two channels in the non-SU(2)-symmetric

case as explicitly shown in appendix A.1.1. The derivation of the three channels in the SU(2)-

symmetric case is analogous, too. However, as the SU(2)-symmetric D-channel has a peculiar mo-

mentum structure in its arguments, its derivation is shown explicitly here, while we refer to appendix

A.1.2 for the other channels. Performing the same steps as before for the D-channel we get

˙̄Dmn(u) = PD[T̄ D,Λ]mn(u)

=

∫
dk

∫
dk′

∫
dk′′

∫
dku

∫
dk′u

∑
i,j

fi(k
′) Leh,Λ(k,k − u) f∗j (k′) (3.374)
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×
(
2fm(ku) V Λ(ku,k − u;ku − u,k) f∗i (k) fj(k

′′) V Λ(k,k′u − u;k − u,k′u) f∗n(k′u)

−fm(ku) V Λ(ku,k − u;ku − u,k) f∗i (k) fj(k
′′) V Λ(k,k′u − u;k′u,k − u) f∗n(k′u)

−fm(ku) V Λ(ku,k − u;k,ku − u, ) f∗i (k) fj(k
′′) V Λ(k,k′u − u;k − u,k′u) f∗n(k′u)

)
,

where the second vertex of the second term and the first vertex of the third term do not have their

arguments in the parametrisation of the D-channel, but in the one of the C-channel. As V Λ can not

exchange the two incoming or the two outgoing legs alone, this problem can not be healed by exploiting

symmetries of the vertex, as is done in the non SU(2)-symmetric case. Instead, the placement of the

arguments corresponds to a projection of the vertex to the crossing channel at the main momentum

u. Therefore, the corresponding vertices are identified as projections of the vertex to the crossing

channel, and thus the assertion is obtained.

In the just derived flow equations, the projection of the full vertex to the three different channels

appear. However, it is convenient and memory-efficient to directly project the propagators to the

other channels instead of recovering the full vertex in each integration step. While this projection

is directly obtained from applying the back-projection of a channel and the back-projection to the

other one an analogous formulation in position space can be advantageous for some choices of form-

factors. Therefore the following theorem gives the corresponding channel-to-channel projection rules.

The projection of the full vertex to the three different channels is a fundamental part of the flow

equations of the chantices. When the projections provided by definition 44 are directly applied, two

steps are necessary: First, the full vertex has to be recovered and then it has to be projected to each

channel again. As this intermediate step requires a large amount of memory and as it is, therefore,

numerically demanding, it is advantageous to project the chantices directly from one channel to the

other. In the momentum space, this projection is directly obtained by combining the back-projection

of a channel and the projection to another one. This transformation requires two momentum space

integrals for each bosonic momentum which cannot be simplified due to the involved momentum

structure. As the form-factors are linear combinations of Kronecker-δs with respect to bond vectors in

the lattice space, the transformation to this basis is advantageous. The arising combinatorial problem

corresponding to the different non-vanishing combinations of form-factors can be calculated in advance

of the calculation, such that at run-time only the Fourier transformation of the chantex to the lattice

space is required. The expressions for these direct projections are provided by the following corollary:

Corollary 3.32 (Channel-to-Channel Projections)

Let P̂υ be the projection operator to a channel υ ∈ {P,D,C} in a form-factor basis {fn}n, and

let P , C, D be chantices according to definition 45. Neglecting the orbital and the frequency

dependency, which is unaffected by the projection, the projections between the channels can be

given as follows:

1. Projection of the D-channel to the P-channel:

P̂P[D]mn(s) =

∫
dks

∫
dk′s fm(ks) f

∗
n(k′s)

∑
ij

f∗i (ks) fj(s−k′s)DΛ
ij(ks−k′s) (3.375)

=
∑
ij

∑
R1,R2,R3

fm(R1−R3) f∗n(R2−R3) f∗i (R1) fj(R2) e−is·R2 Dij(R3).
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2. Projection of the C-channel to the P-channel:

P̂P[C]mn(s) =

∫
dks

∫
dk′s fm(ks) f

∗
n(k′s)

∑
ij

f∗i (ks) fj(k
′
s) C

Λ
ij(ks+k′s−s) (3.376)

=
∑
ij

∑
R1,R2,R3

fm(R1−R3) f∗n(R2+R3) f∗i (R1) fj(R2) eis·R3 Cij(R3).

3. Projection of the P-channel to the D-channel:

P̂D[P ]mn(u) =

∫
dku

∫
dk′u fm(ku) f∗n(k′u)

∑
ij

f∗i (ku) fj(ku−u) PΛ
ij (ku+k′u−u)

(3.377)

=
∑
ij

∑
R1,R2,R3

fm(R1−R2−R3) f∗n(R3) f∗i (R1) fj(R2) eiu·(R2+R3) Pij(R3).

4. Projection of the C-channel to the D-channel:

P̂D[C]mn(u) =

∫
dku

∫
dk′u fm(ku) f∗n(k′u)

∑
ij

f∗i (ku) fj(ku−u) CΛ
ij(ku−k′u) (3.378)

=
∑
ij

∑
R1,R2,R3

fm(R1−R2−R3) f∗n(−R3) f∗i (R1) fj(R2) eiu·R2 Cij(R3).

5. Projection of the P-channel to the C-channel:

P̂C[P ]mn(t) =

∫
dkt

∫
dk′t fm(kt) f

∗
n(k′t)

∑
ij

f∗i (kt) fj(k
′
t) P

Λ
ij (kt+k

′
tt) (3.379)

=
∑
ij

∑
R1,R2,R3

fm(R1−R3) f∗n(R2+R3) f∗i (R1) fj(R2) eit·R3 Pij(R3).

6. Projection of the D-channel to the C-channel:

P̂C[D]mn(t) =

∫
dkt

∫
dk′t fm(kt) f

∗
n(k′t)

∑
ij

f∗i (kt) fj(kt−t)DΛ
ij(ktk

′
t) (3.380)

=
∑
ij

∑
R1,R2,R3

fm(R1−R2−R3) f∗n(−R3) f∗i (R1) fj(R2) eit·R2 Dij(R3).

7. These equations can analogously be used to describe the projections between the SU(2)-

symmetric chantices, that is between P̄ , D̄ and C̄.

Proof: We exemplarily prove the projection of the D-channel chantex to the P-channel and refer to

appendix A.2 for the other proofs. In order to project the D-channel to the P-channel, the arguments

of ΦD have to be expressed in the coordinates of the P-channel, i.e. ΦD(ks − k′s,ks, s − ks). In the

back-projection (see eq. (3.339)) the coordinates u, ku and k′u also have to be expressed in terms of

the P-channel ones, leading to

P̂P[D]mn(s) =

∫
dks

∫
dk′s fm(ks) f

∗
n(k′s)

∑
i,j

f∗i (ks) fj(s− k′s)Dij(ks − k′s), (3.381)
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which equals the first line of the assertion (cf. eq. (3.375)). A Fourier transformation of the part

behind the sum into the position space leads to∑
i,j

∑
R1,R2,R3

eiks·R1 f∗i (R1) e−i(s−k
′
s)·R2 fj(R2)e−i(ks−k

′
s)·R3 Dij(R3). (3.382)

Resorting the exponentials according to the appearance of ks and k′s, and assigning them to the

remaining first part of the expression results in∫
dks

∫
dk′s fm(ks) e

iks·(R1−R3) f∗n(k′s) e
−ik′s·(−R2−R3) e−is·R2 , (3.383)

where the integral over the form-factor multiplied with an exponential with the same argument can

be identified as the Fourier transformation of the corresponding position space form-factor, resulting

in

P̂P[D]mn(s) =
∑
i,j

∑
R1,R2,R3

fm(R1 −R3) f∗n(−R2 −R3) f∗i (R1) fj(R2) e−is·R2Dij(R3), (3.384)

which is our second assertion in equation (3.375).

Based on the flow equations given in corollary 3.31 and the projections in corollary 3.32 the TUFRG

flow equations for the two-particle interaction can now be performed. The Fourier transformation of

the chantex based on the lattice space expression can be combined with the combinatorial prefactor

arising from the four form-factors, thus resulting in a square matrix with the size of the number of

momenta which describes the full projection.

If the calculation of the flow equation for susceptibilities is additionally requested, the full vertex

has to be recovered, as it appears in the flow equation of the fermion-boson vertices. However, if a

projection of the fermion-boson interaction to the form-factor space is introduced, it might be possible

to directly evaluate its flow equation as a matrix-vector product in the form-factor space. On the other

hand, if the susceptibility is calculated in a post-processing way it becomes, by the insertion of unities,

χee
mn(s) =

∑
ij

Lpp,Λ
mi (s) γ

(4,0)P,Λ
ij (s) Lpp,Λ

jn (s), (3.385)

which is also easy to evaluate.

Before we discuss the numerical implementation of the full flow equations, we shortly compare the

TUFRG to other, similar approaches which the TUFRG is based on.

3.6.3. Similar Form-Factor Approaches to the Functional Renormalisation Group

Preceding to the Truncated Unity approach presented here, two other parametrisations of the FRG

equations based on form-factors were developed. In the “Exchange Parametrisation” proposed

by Husemann et al. [67], the full vertex was decomposed into contributions representing the three

physical channels, that is the superconducting channel Φ̃SC, the magnetic channel Φ̃M and the forward

scattering channel Φ̃K. This decomposition is defined by

Φ̃SC(s,ks,k
′
s) := ΦP(ks, s− ks;k′s)

Φ̃M(t,kt,k
′
t) := ΦC(kt,k

′
t − t;k′t)

Φ̃K(u,ku,k
′
u) := −2ΦD(ku,u− k′u;u− ku) + ΦC(ku,u− k′u;k′u).

(3.386)
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Thus, the superconducting and the magnetic channels are equal to the P- and the C-channel de-

fined in this thesis, while the forward scattering channel is a linear combination of the D- and the

C-channel of the TUFRG approach. In the exchange parametrisation, the interactions of these chan-

nels are decomposed into a bosonic propagator and two fermion-boson vertices. The latter ones are

then parametrised by a momentum-dependent form-factor and by a fermion-boson vertex which only

depends on frequencies and the bosonic momentum argument [114]. A proper formulation of this

decomposition generates Λ-dependencies on all the introduced quantities. Hence, flow-equations for

all the objects of each channel, that is the bosonic propagator and the fermion-boson vertices, have to

be solved, while the form-factors are typically approximated to be scale-independent. On the contrary,

the TUFRG uses a projection to a fixed form-factor basis, thus not introducing any additional flow

equations.

As the introduction of form-factors results from an expansion of the vertices, it is not straight

forward to introduce an additional set. Therefore, the dual propagator can not be projected to the

corresponding form-factor basis, and thus the main dependence remains the momentum index. For

numerical calculations, this leads to an ambiguity concerning the order of the elements with respect

to their argument, which is always disadvantageous for parallelised approaches.

In the “singular mode” FRG (SMFRG) proposed by Wang et al. [68] the full vertex is projected

to the three different channels as given by definition 44. That is, three different versions of the same

object are treated, and for each one a separate flow equation has to be calculated. In this approach

the dual propagators are also projected to the form-factor basis, such that the flow equations are a

matrix product in the form-factor space like in the TUFRG case, which is numerically advantageous

compared to the exchange parametrisation. In total, this SMFRG approach requires three numerical

steps: First, the calculation of the projected electron-hole and of the particle-particle propagator.

Second, the calculation of the vertex projected to channel X V X by projecting the previous change of

all the channels Y δV Y to it. Third, the calculation of the new change of the full vertex projected to

each channel. This approach has been successfully applied to different model systems like graphene

[68], the Kagome lattice at van-Hove filling [119], superconducting FeSe systems [120, 121] and doping

effects in LaOCrAs [122].

The steps of the SMFRG are analogous to the ones in the TUFRG, but it is based on the chantices

instead of the projected full vertex. This basic element of the SMFRG, however, leads to a difficulty

when the exchange propagator is of interest like, for example, for a stability analysis. In addition,

reconstructing the full vertex to, for example, calculate the flow of self-energies or fermion-boson

vertices, even poses ambiguities. When the back-projection of a projected vertex is considered, only

sharp momentum structures of this particular channel are reconstituted, while those of the other

channels are smeared out. Therefore, this back-projection should be combined with the decomposition

of the full vertex (see cor. (3.23)), which additionally requires the inversion of a large matrix to filter

out the contributions of the other channels. On the contrary, the full vertex can easily be recovered in

the TUFRG approach, as each chantex directly corresponds to one contribution to the decomposition

of the full vertex. Thus, the back-projection directly results in the full vertex and at the same time

the chantices represent the exchange propagators.
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A numerical calculation of the flow equations in theorems 3.28 or 3.29 is a challenging task. At

this point we exemplarily consider the two-particle interaction γ(4,0)Λ or V Λ, respectively, which are

the most important objects in our calculation and, at the same time, the most costly objects in

terms of memory as well as numerical operations, as they scale with n3
k · n3

ω · n4
o, with nk being the

number of momenta, nω the number of frequencies and no the number of orbitals1 of the system under

investigation. The scaling becomes nk · n2
ff · n3

ω · n4
o, with nff representing the number of form-factors

in the case of the TUFRG vertex flow equations (cf. thm. 3.31).

In this chapter we now present our numerical approach to overcome these difficulties. At first,

we provide some information on the general scheme of the FRG calculation (section 4.1) and the

calculation of form-factors (section 4.2). As the calculation of the particle-particle propagators is a

numerically expensive task, we provide some additional approximations in combination with their

analytical results, simplifying the numerical calculation in section 4.3. For further simplifications, we

exploit both, the symmetries of the vertex itself (cf. cor. 3.17.1, 3.17.2) and the symmetries of the lattice

(cf. thm. 3.17 and 6) in the way described in section 4.4. Finally, in section 4.5 the parallelisation

scheme of the code is described, which employs vectorisation and shared and distributed memory

parallelisation.

4.1. Numerical Setup

Our implementation of the FRG flow equations is written in object oriented C++ and its basic

structure is displayed in figure 4.1. In order to perform the corresponding calculations, a momentum

mesh and a frequency mesh are required, as well as form-factors in the case of truncated unities (cf. sec.

4.2). Based on these objects the initial interaction γ(4,0)Λ0 (or V Λ0) is set up according to a provided

model. Typically, the fermion-boson interactions and the susceptibilities at the initial scale are set to

zero, but they could also be initialised in agreement with the provided model. From this setup the

FRG flow loop is started. For each integration step at Λi the right hand side of the flow equation has

to be calculated. So first, the electron-hole and the particle-particle propagators are calculated, which

require the momentum and the frequency mesh and, in the case of the TUFRG also the form-factors.

For a TUFRG calculation the second step is the projection from one channel to the others, so that the

projection of the full vertex projected to one channel is obtained. Then, the product of the vertex,

dual propagator and vertex with the correct combination of momenta, frequencies and orbitals can

be calculated. The following integration step for the interactions can then either be performed by

the crudest approach, that is V Λi+1 = V Λi + dV Λi · dΛ, or by integration schemes of higher order for

which we use the odeint library [123]. If neither the vertex diverges nor the final scale for Λ is reached

(typically Λf = 0) a new Λi+1 is determined and a new flow step is performed. Otherwise, the flow is

stopped, and the final vertex is analysed.

In the following subsections we present some properties of the momentum mesh, the frequency

mesh, the model and implications derived from the choice of the band or the orbital basis.

1In the spinful case the spin index is treated as part of the orbital index so that the number of orbitals is doubled.
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Set up initial
interaction γΛi=0

for Λi=0 = Λ0

Calculate
Lp,Λi , Leh,Λi

Calculate RHS
of flow equation

Determine dΛi;
Λi+1 := Λi − dΛi

Perform scale in-
tegration for γΛi+1

Check if
max |γΛi+1 | > γ̄
or Λi+1 = 0?

Set i=i+1

False

Project initial
interaction
to γX,Λi=0 ,

∀X ∈ {P,D,C}

Calculate
Lp,Λi

ij , Leh,Λi

ij

Calculate RHS
of flow equation

Determine dΛi;
Λi+1 := Λi − dΛi

Perform scale inte-
gration for PΛi+1 ,
DΛi+1 , CΛi+1

Project XΛi+1 to
obtain γY,Λi+1 ,
∀X,Y ∈ {P,D,C}

Check if
max |γX,Λi+1 | > γ̄

∀X ∈ {P,D,C}
or Λi+1 = 0?

Set i=i+1

Use TUFRG

FalseAnalyse final
interaction

True

True

Full Momentum Mesh TUFRG

Set up:
- Momentum mesh
- Frequency mesh
- Formfactors
- Model Hamiltonian

Figure 4.1.: The basic scheme of the code developed within this thesis for the FRG with the vertex in
a pure momentum representation (left) and in the TUFRG parametrisation. To simplify
the representation we use the abbreviation γ := γ(4,0) for the two-fermion interaction and
γ̄ := γmax for the threshold which is used to determine the divergence of the flow. The
SU(2)-symmetric version of the code follows the same scheme with γ replaced by its SU(2)-
symmetric counterpart.
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−π −π/2 0 π/2 π

kx

−π

−π/2

0

π/2

π

k
y

Figure 4.2.: Left: Representation of the N -patch FRG discretisation taken from Metzner [104]. The
Brillouin zone is divided into N patches. All interactions depending on a momentum in the
patch are represented by the corresponding momentum located at the Fermi-surface, as the
dominant interactions are expected close to the Fermi-surface.
Right: Regular two-dimensional lattice of 25×25 points used in the presented code with the
inset displaying the refinement of 15×15 points, which is used for the evaluation of the dual
propagator.

4.1.1. Momentum Mesh

The momentum mesh can be restricted to the interval [0, 2π) for each dimension as the vertex is

2π-periodic in each argument, although the basis vectors of the momentum mesh are not necessarily

orthogonal. Therefore, all the additions of momenta have to be back-folded into this momentum space.

Due to this it is sufficient for the bosonic argument to be located in this very momentum space, when

the mixed fermionic-bosonic notation is used.

As the low energy momenta which are close to the Fermi-surface are the most relevant ones for

driving phase transitions, the first FRG approaches used an N -patch scheme [124]. This means that

N momentum points are defined on the Fermi-surface on which the vertices are represented, and

the whole Brillouin zone is divided into N patches, each belonging to exactly one momentum point

(cf. fig. 4.2). Thus, two momenta normally do not exactly add up to another momentum point so

that the resulting point is projected to the point on the Fermi-surface of the patch it results in,

thus destroying momentum conservation. This approach was improved by adding further shells of

momenta, but, nevertheless, it did not heal the problem of destroyed momentum conservation. In

order to maintain this, we choose a uniform momentum grid (as first done in [125]) which has to be

sufficiently small spaced, so that the Fermi-surface has a proper resolution. Furthermore, a proper

resolution is even more important for the dual propagator term L, as it has a strong momentum

dependence, because some combinations lead to divergences. Therefore, each momentum of the vertex

grid is resolved into a set of fine momenta for the dual propagator calculation. The contribution of the

dual propagators to the corresponding vertex elements is then calculated as the average over those fine

points. In our approach the refinement is chosen to be uniform for each coarse momentum. However, a

different refinement can be implemented for the particle-particle propagator and for the electron-hole

propagator, where only the points which exhibit sharp features are treated more accurately, as it has

been done by Lichtenstein and de la Peña [2, 126, 112].
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4.1.2. Frequency Mesh

For the frequency mesh there does not exist such a restriction. Formally, infinitely many Mat-

subara frequencies with a spacing of 2π
β have to be taken into consideration. A proper choice of

truncation, therefore, mainly depends on the inverse temperature β. An appropriate frequency in-

terval [−ωn, . . . , ωn] has to be chosen such that at least Matsubara sums of the propagators for the

temperature converge with respect to ωn. As the addition of frequencies can lead to frequencies out-

side of the chosen interval, the interval for bosonic frequencies has to be at least twice the size of

the fermionic one. However, this separated treatment of fermionic and bosonic frequencies opens the

possibility of different approximations for both of them. When the addition of vertices is outside the

frequency box, the required vertex element is chosen as the one with the largest frequency in this

argument. That is, when the addition of frequencies is outside the interval, the closest one in the

interval is chosen, which destroys the energy conservation.

Contrary to this, Wentzell, Hille and Tagliavini [115, 66] use a mixed fermionic-bosonic frequency

mesh. In their approach the exact flow inside the full frequency interval is accompanied by a flow

of three different objects representing the asymptotic behaviour of the vertex for large frequencies.

These three asymptotic limits are achieved by a) sending one fermionic frequency to infinity while

maintaining the dependence on the bosonic and on one fermionic frequency; b) by sending both

fermionic frequencies to infinity while maintaining the bosonic one; and c) by sending all frequency

arguments to infinity.

Alternatively, each channel may only conserve its full bosonic frequency-dependence. When the

projection between the channels is required, one may only use the zero-frequency part of the other

channel or the zero-frequency of the current channel expressed by the other one [117, 118].

A description of the frequency-dependence in terms of Lorentz curves has been suggested by Huse-

mann [114]. However, these functions do not provide a natural basis of the frequency domain. There-

fore an analogous expansion in frequencies similar to the TUFRG one is not available so far. A

corresponding frequency-dependence of the interaction is, therefore, not yet implemented in the code

presented here.

4.1.3. Model and Basis

Our code is capable of calculating the FRG flow for different types of models which have to be

provided by the user through a specific C++ class. Typically, a model is an approximation to the full

many-body problem of the solid state Hamiltonian given by equation (3.1), which makes computations

of the physically most relevant part feasible. As most effects occur close to the Fermi-surface, usually

only those orbitals are considered, which create the bands close to it, while the effects of all the

other electrons are included by effective or screened interactions. We will describe the approximation

exemplarily for the Hubbard model in chapter 5.

A generic model Hamiltonian in the Wannier basis |R, o〉 (cf. eq. (2.18)) has the form of

Ĥ = Ĥ0 + Ĥint (4.1)

with the one-particle part

Ĥ0 =
∑
R,R′

∑
o,o′

ĉ†RoH0(Ro,R′o′) ĉR′o′ (4.2)
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and the interacting part

Ĥint =
∑

R1,. . . ,R4

∑
o1,. . . ,o4

V(R1o1, . . . ,R4o4) ĉ†R1o1
ĉ†R2o2

ĉR4o4
ĉR3o3

. (4.3)

Here, H0(RoR′o′) is the expectation value of the one-particle Hamiltonian in Wannier orbitals provid-

ing the kinetic energy, and V is the interaction between two particles. A generalisation to interactions

between 2n-orbitals is straightforward. In our case the orbital index o also contains the spin quantum

number when required. A transformation of the operators to reciprocal space leads to a representation

of the Hamiltonians in Bloch states |k, o〉, which can be used in our framework. Then, the one-particle

part is given by

Ĥ0 =
∑
o,o′

∫
dk ĉ†ko H0(k, o, o′) ĉko′ (4.4)

and the interacting part is given by

Ĥint =

∫
dk1 · · ·

∫
dk4

∑
o1,. . . ,o4

V(k1o1, . . . , R4o4) ĉ†k1o1
ĉ†k2o2

ĉk4o4
ĉk3o3

. (4.5)

However, it is advantageous to work in the band space, as the one-particle Hamiltonian is diagonal

here. The basis, in this case, has the additional advantage that the one-particle Green’s function can

easily be set up. This is achieved by the basis transformation

|k, n〉 =
∑
o

Uno(k) |k, o〉 (4.6)

with the unitary matrix U(k), which diagonalises the one-particle Hamiltonian according to

B0(k, n) =
∑
o,o′

U∗no H0(k, o, o′) Uno′(k), (4.7)

such that the operator can be written as

Ĥ0 =
∑
n

∫
dk ĉ†kn B0(k, n) ĉkn. (4.8)

The Bloch states |k, n〉 as the corresponding eigenstates of H0(k, n) are only defined up to a phase ϕ,

which we will discuss later in this section.

The transformation of the interacting part of the Hamiltonian takes the form

Ĥint =

∫
dk1 · · ·

∫
dk4

∑
n1,. . . ,n4

γ(4,0)(k1n1, · · · ,k4n4)

× U∗n1o1
(k1) U∗n2o2

(k2) Un4o4
(k4) Un3o3

(k3) ĉ†k1n1
ĉ†k2n2

ĉk4n4
ĉk3n3

. (4.9)

In our numerical approach, the model can be provided either in a band setting (i.e. by eq. (4.8) and

eq. (4.9)) or in an orbital setting (i.e. by eq. (4.4) and eq. (4.5)). In the latter case, the one-particle

Hamiltonian is numerically diagonalised by using the Eigen library [127] to enable the construction

of one-particle Green’s functions in the band basis. As the transformation matrices U(k) are thus
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obtained, it is possible to perform the flow either in orbital or in momentum space. In the former

case, the one-particle Green’s function is obtained by calculating

GΛ
o1o2

(kω) =
∑
n

U∗no1
(k)GΛ

n(k, ω) Uno2
(k) (4.10)

for every set of quantum numbers, which increases the numerical work. Contrary, due to the diago-

nality of the Green’s functions, a reduction of numerical demands is expected for a calculation in the

band basis. Therefore, two of the internal orbital sums can be evaluated analytically so that the band

indices at the propagator lines have to be equal to those at the vertex. In this case, however, the ver-

tex has to be transformed to the band basis according to equation (4.9). A momentum-independent

interaction can become momentum-dependent by the transformation matrices, which is called the

orbital makeup. This orbital makeup can have a significant impact on the results of the correspond-

ing calculations, like, for example, the phase diagram [75]. At the end of the calculation, however,

the interaction between different orbitals is usually analysed such that a back-transformation to the

corresponding basis has to be performed.

Turning back to the free phase φn(k) of the eigenstates in the band basis, a transformation of the

form |k, n〉 → eiφn(k) |k, n〉 leaves the one-particle part invariant due to its cancellation. An analogous

transformation can also be defined for the orbital states. As this transformation by a phase leads

to a convolution in position space, it has a strong influence on the localisation of Wannier orbitals.

Therefore, it can be used to find the maximally localised Wannier functions (MLWF), when these

are calculated based on bands, like, for example, Kohn-Sham bands from density functional theory

(DFT) calculations [128, 129](cf. also the code Wannier90 [130]). In the following, however, we will

use this phase to construct a so called “natural basis”, which ensures the point group symmetry of

the two-particle interactions. The corresponding discussion is based on Maier [131, 132] (sec. 2.2.2).

In the multi-orbital Wannier basis the point group transformations can be represented by orbital-

dependent matrices M := Moo′(k), which combine the three-dimensional matrices corresponding to

the mesh and the transformation map of the orbitals. The latter is necessary, because a symmetry

operation could map a px-orbital to a py- or to a pz-orbital including a phase factor or, in the case

of a lattice with more than one kind of atom in the unit cell, it could map an orbital of atom A to

an orbital of atom B. As the Hamiltonian describing the system should be symmetric with respect to

this point group, the following theorem provides a sufficient condition to exploit it for a reduction of

the calculations.

Theorem 4.1 (Point Group Symmetry of the Hamiltonian in Wannier Basis)

Let |ko〉 be the Wannier basis in momentum space and H0(k, o1o2) the corresponding Hamilto-

nian. Let further M(k) be a unitary matrix representing a point group element of Γ transforming

momentum and orbital arguments so that |ko〉 →
∣∣∣R̂(k)o′

〉
= M(k) |ko〉. Then the Hamiltonian

is symmetric under the point group if and only if

H0(R̂(k)) = M(k)H0(k) M†(k) (4.11)

holds for the one-particle Hamiltonian, and
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V
(
R̂(k1)o1, R̂(k2)o2, R̂(k3)o3, R̂(k4)o4

)
=

∑
o′1,. . . ,o

′
4

Mo1o′1(k1)Mo2o′2(k2)M†o4o′4
(k4)M†o3o′3

(k3) V(k1o
′
1,k2o

′
2,k3o

′
3,k4o

′
4) (4.12)

holds for the interacting Hamiltonian.

Proof: We consider the Hamiltonian Ĥ0 and write the creation and the annihilation operators as

vectors in orbitals as ĉk and ĉ†k, respectively, and the Hamilton matrix as H such that

Ĥ0 =

∫
dk ĉ†k H(k) ĉk. (4.13)

In the following we will only consider the part under the integral on the right hand side of this equation.

By the transformation ĉk → ĉ′
R̂(k)

= M(k)ĉk it becomes

(ĉ′)†
R̂(k)
H(R̂(k)) ĉ′

R̂(k)
= ĉ†kM

†(k)H(R̂(k))M(k) ĉk, (4.14)

which equals the non-transformed Hamiltonian if equation (4.11) holds.

Transforming the operators for the interacting part in the same way leads to equation (4.12).

When this Wannier basis in momentum space is transformed by a phase, that is by |ko〉 →
ei$o(k) |ko〉, it results in an equivalent basis, and the transformation matrices M(k) have to change

their form according to

Mo1o2
(k)→ eiϕo1 (R̂(k)) Mo1o2

(k) e−iϕo2 (k). (4.15)

Thus, the precise form of the matrices M depends on the phase ϕ, such that a momentum-independent

matrix Mo1o2
gains a momentum-dependence. Moreover, the multi-orbital model is invariant under a

point group symmetry, irrespective of the phase ϕ.

Concerning the band basis, we would like to obtain a similar relation for its behaviour under point

group symmetries. As the eigenvalues of the band Hamilton matrix B are invariant to unitary matrices,

which is the case for the transformation matrices M(k) in theorem 4.1, B can be cast into a form

such that B(R̂(k)) = B(k) holds. However, the fulfilment of the requirements on the interacting part

becomes more intricate. This requires the transformation matrices to fulfil an additional condition,

as given by the following theorem.

Theorem 4.2 (Point Group Symmetry of the Hamiltonian in Band Basis)

Let |ko〉, H0(k, o1o2) and M(k) be as in theorem 4.1. Let further U(k) be a unitary trans-

formation matrix diagonalising H0(k, o1o2) to B(k, n) in the corresponding band basis |kn〉 =∑
o Uno(k) |ko〉. If the transformation matrices additionally fulfil the condition

U(R̂(k)) = U(k) M†(k), (4.16)

then the one-particle and the interacting Hamiltonian in the band basis are symmetric under point

group symmetries at the same time.
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Proof: For the one-particle Hamilton matrix we use

B(k) = U(k)H0(k) U†(k) (4.17)

in combination with equation (4.11), which leads to

B(R̂(k)) = U(R̂(k))H(R̂(k))U †(R̂(k))

= U(R̂(k)) M(k)H(k) M†(k)U †(R̂(k))

= U(R̂(k)) M(k)U †(k) B(k)U(k) M†(k)U †(R̂(k)).

(4.18)

When we insert U(R̂(k)) according to equation (4.16) the unitary matrices cancel each other, so that

we obtain B(R̂(k)) = B(k).

Considering the many-particle interaction the transformation leads to

Vn1n2,n3n4
(R̂(k1)R̂(k2), R̂(k3)R̂(k4))

= Un1o1
(R̂(k1))Un2o2

(R̂(k2))Vo1o2,o3o4
(R̂(k1)R̂(k2), R̂(k3)R̂(k4))U∗o4n4

(R̂(k4))U∗o3n3
(R̂(k3))

= Un1o1(R̂(k1))Mo1o′1(k1) Un2o2(R̂(k2))Mo2o′2(k2)

Vo′1o′2,o′3o′4(k1k2;k3k4)M∗o4o′4
(k4) U∗o4n4

(R̂(k4))M∗o3o′3
(k3) U∗o3n3

(R̂(k3)),

(4.19)

where the sum over indices appearing twice is implicitly assumed. Implying condition (4.16) makes

the matrices M vanish due to their unitarity, so that this expression becomes

Vn1n2,n3n4(R̂(k1)R̂(k2), R̂(k3)R̂(k4))

= Un1o1
(k1) Un2o2

(k2) Vo′1o′2,o′3o′4(k1k2;k3k4) U∗o4n4
(k4) U∗o3n3

(k3)

= Vn1n2,n3n4
(k1k2;k3k4).

(4.20)

This equation shows the invariance of the interaction under the corresponding transformation.

Theorem 4.2 imposes an additional condition on the diagonalising matrices U(k), which has to be

fulfilled for a point group symmetric Hamiltonian. It corresponds to the requirement that H0(R̂(k))

and H0(k) have to be diagonalised by the same U(R̂(k))M(k), which is unique for a U(k) due to

the group properties. A band basis in which the Hamilton matrix is point group symmetric is called

natural basis. Such a natural basis is a basis for which the transformation matrices additionally fulfil

the condition provided by equation (4.16).

The natural basis, however, is still invariant with respect to a basis transformation eiϕn(k) with

ϕn(R̂(k)) = ϕn(k). This leads to new basis states and, as discussed before, to a change of the

transformation matrices M(k) such that condition (4.16) has to be formulated with respect to the

transformed matrix.

This undefined phase factor φ(k) might, however, cause some difficulties in the corresponding

calculations, as it can have a significant effect on the transformation between lattice and band space

as this phase factor is undefined in numerical calculations. Therefore, the transformation matrices

have to be smoothed so that all of them correspond to the same smooth phase factor φ(k). However,

when only one band is considered, as in the Hubbard model in chapter 5, the transformation to a

band basis trivially results in a natural basis.
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4.2. Form-Factors

In order to determine the form-factors we consider bond shells, that is, the set of all Bravais lattice

vectors with the same length. The number of form-factors corresponding to a shell has to equal

the number of its constituting Bravais lattice vectors. In principle, these vectors themselves already

form a sufficient set of form-factors. However, form-factors corresponding to the lattice symmetry

are assumed to provide better results for the same number of form-factors. The derivation of the

corresponding symmetrised form-factors is, therefore, based on the results of group theory, presented

in section 2.4 for the 32 crystallographic point groups. When a projection is applied to a trial bond

vector of the shell for every irreducible representation according to theorem 19, a linear combination

of bond vectors is obtained which requires the character table of the point group. This result is the

corresponding symmetrised form-factor, unless it is the null-vector. Therefore, the code contains a

generic algorithm to derive the set of form-factors (based on Platt [75], appendix 6.3.3), which is

described in the following:

1. For a given shell j, find all Bravais lattice vectors Rj with respect to the origin, which can be

obtained by applying the symmetry operations of the group.

2. For each irreducible representation Ri:

a) take a trial vector R̃ of this shell and

b) apply the projection operator P(Ri) =
∑
g∈G χ

∗
i (g)g to it.

c) If the result is a (non-zero) linear combination of Rj vectors of this shell, take it as m-th

form-factor f
(j)
m of this shell; otherwise this reducible representation does not contribute to

the form-factor basis.

d) If this representation is of higher dimension, i.e. n(E) > 1, and if the projection of this

representation does not reach all the vectors of this shell, repeat the previous three steps

(a-c) with linear independent trial vectors of this shell, until all vectors are reached. If

this leads to more than one contribution, diagonalise the coefficient-vectors by the Gram-

Schmidt procedure.

3. Normalise the coefficients so that
∑
R f

(j)∗
m (R) f

(j)
m (R) = 1 with R denoting all Bravais lattice

vectors.

4. Finally, take Rj = δ0,Rj and perform the Fourier transformation of the form-factors into mo-

mentum space.

In order to exemplify this procedure, we consider the point group of a two-dimensional square lattice,

which is labelled C4v in Schoenflies notation, and has the character table displayed in table 4.1. The

symmetry operations that map the lattice on itself are a rotation by π/2 forming the group C2, and

rotations by π/4 and by −π/4 which form the group C4. In addition, there are the two classes of

C4v E C2 2C4 2σv 2σd
A1 1 1 1 1 1
A2 1 1 1 -1 -1
B1 1 1 -1 1 -1
B2 1 1 -1 -1 1
E1 2 -2 0 0 0

Table 4.1.: Character table for the crystallographic point group C4v.
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reflections, each consisting of two operations. Class σv is created by the reflection planes along the x-

or the y-axis, class σd is formed by the planes bisecting the angle between the x- and the y-axis. As

representation of the group C4v we can, therefore, use the group which consists of the corresponding

matrices .

The zeroth shell only consists of the on-site vector R = 0, leading to the form-factor f0(R) := δ0,R

with the constant momentum space representation 1
(2π)d

, with d denoting the dimension. The first

shell is formed by the vectors R ∈ {R±x,R±y}, with Rx = aex, Ry = aey, R−x = −aex and

R−y = −aey being the corresponding lattice vectors in positive and negative x- and y-direction with

the lattice spacing a. The projection of the first irreducible representation A1 acting on the trial

vector R+x results in

P(A1)R+x = χ∗A1
(E)R+x + χ∗A1

(C2)R−x + χ∗A1
(C4)R+y + χ∗A1

(C−1
4 )R−y

+ χ∗A1
(σ1

v)R+x + χ∗A1
(σ2

v)R−x + χ∗A1
(σ1

d)R+y + χ∗A1
(σ2

d)R−y

= 2R+x + 2R−x + 2R+y + 2R−y.

(4.21)

This form-factor is normalised by a division by 8, as each term yields non-zero only if R = R±x or

R = R±y. The real space form-factors resulting from this procedure applied to all the irreducible

representations of the point group C4v are summarised in table 4.2 for the first three shells of neigh-

bours. However, as the irreducible representation E1 is the only one with a dimension of n = 2, we

additionally regard it in more detail. For the trial vector R+x the projection results in

P(E1)R+x = 2R+x − 2R−x, (4.22)

and hence does not reach all the vectors of this shell. Taking the trial vector R+y, which has not yet

been reached, this projection results in

P(E1)R+y = 2R+y − 2R−y, (4.23)

so that now all lattice vectors have been reached, resulting in the two contributions corresponding to

the representation displayed in table 4.2. Applying the Fourier transformation to these lattice space

form-factors in the upper part of table 4.2 leads to their momentum space representation as displayed

in the lower part of table 4.2, which are smooth functions, as they are linear combinations of sine and

cosine functions.

For the fourth shell there exist eight neighbour vectors of the same length, but we only have five

irreducible representations. As there are no zero-entries in the character table for the one-dimensional

representations, it can reach all of their corresponding vectors leading to four form-factors. Concerning

the four missing form-factors we observe that the E1-representation does only reach two bond vectors

at a time. Hence, a repetition of the projection operation to the E1-representation with four different

trial vectors is required to reach all of them. Thus, we finally obtain the total number of eight form-

factors for the fourth shell, which are also shown in position and in momentum space in table 4.2. A

simple test directly shows the orthogonality of all form-factors obtained so far.

In the case of the Oh-symmetry, the Eg-representation results in two non-orthogonal coefficient-

vectors for the form-factors, corresponding to the momentum space representations 2 cos(kz)−cos(kx)−
cos(ky) and 2 cos(kx) − cos(ky) − cos(kz). By applying the Gram-Schmidt orthonormalisation pro-

cedure the second expression becomes cos(kx) − cos(ky). We provide the resulting momentum space
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form-factors of the Oh-point group for the nearest neighbour and for the second nearest neighbour

shells in the section on the 3D-Hubbard model (table 5.2 in section 5.3).

For a later discussion we define the following naming convention for some of the form-factors:

Definition 47 (Form-Factor Denomination)

1. The form-factor f = 1
(2π)d

is called on-site or s-wave form-factor.

2. The form-factor f = 1
(2π)2 (cos(kx) + cos(ky)) in two dimensions, and analogously f =

1
(2π)3 (cos(kx) + cos(ky) + cos(kz)) in three dimensions, is called extended s-wave form-

factor.

3. The form-factor f = 1
(2π)d

(cos(kx)− cos(ky)) is called dx2−y2-wave form-factor.

4. The form-factor f = 1
(2π)d

(2 cos(kz)−cos(kx)−cos(ky)) is called dz2−x2−y2- or dz2−r2-wave

form-factor.

5. The form-factor f = 1
(2π)d

sin(ki) with i ∈ x, y, z is called pi-wave form-factor.

4.3. Implementation of Green’s Functions

Based on the implementation of the basic elements, the momentum mesh, the frequency mesh, the

model and the form-factors described in the previous sections, we are now at a point at which the

Green’s functions and the electron-hole and the particle-particle propagators can be calculated. We

only consider their representation in band basis, as the transformation to the orbital basis has already

been discussed in section 4.1.3. We start this section by defining some of the most frequently used

cut-off functions, which are all multiplicative according to equation (3.209) and whose explicit form

is important for the functions mentioned above.

Definition 48 (Definition of Cut-Offs)

Let CΛ be a cut-off function which regularises G0 such that GΛ
0 = CΛG0 fulfils the requirements

of definition 40. Then CΛ is called a

• sharp momentum shell cut-off if and only if CΛ(k) = θ(|εk| − Λ),

• smooth momentum shell cut-off if and only if CΛ(k) is a smooth function of the momentum,

• sharp frequency cut-off if and only if CΛ(ω) = θ(|ω| − Λ),

• smooth frequency cut-off if and only if CΛ(ω) is a smooth function of the frequency,

• ω-frequency cut-off [67] if and only if CΛ(ω) = ω2

ω2+Λ2 ,

• mixed cut-off if and only if CΛ(k, ω) depends on both, momenta k and frequencies ω,

• interaction cut-off [125] if and only if CΛ = Λ, and

• temperature cut-off [124] if and only if CΛ=T =̂T 1/2, with temperature T as flow parameter.
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The basic idea of these cut-off functions is to regulate the low energy part, in which the typical infra-

red divergences occur. Although the type of cut-off varies according to this definition, the physical

properties of the system remains the same independent of the specific choice, as a first basic discussion

[125] pointed out. However, small differences in the critical scale might appear which vanish when the

multiloop FRG is applied [66].

Before some of the different cut-off schemes are discussed in more detail, we present some derived

forms of the full Green’s function and the single-scale propagator, simplifying the implementation

later on.

Corollary 4.3 (Full Green’s Function and Single-Scale Propagator with Cut-Off)

Let the free Green’s function be defined by a multiplicative cut-off function (cf. eq. (3.209)). Then

the full Green’s function takes the explicit form

GΛ =
CΛ

iω − ε− CΛΣΛ
, (4.24)

and the single-scale propagator takes the explicit form

SΛ =
(iω − ε)∂ΛC

Λ

[iω − ε− CΛΣΛ]2
. (4.25)

Proof: Based on the Dyson-equation (3.135) and on the explicit form of the free Green’s function

(cf. thm. 3.10) we obtain the desired result from

(GΛ)−1 =
iω − ε
CΛ

− ΣΛ (4.26)

by inversion. With theorem 3.20 the single-scale propagator then becomes

SΛ =
d

dΛ
GΛ

∣∣∣∣
Σ fixed

=
∂ΛC

Λ

iω − ε− CΛΣΛ
+

CΛ∂Λ(CΛΣΛ)

[iω − ε− CΛΣΛ]2
=

(iω − ε)∂ΛC
Λ

[iω − ε− CΛΣΛ]2
, (4.27)

which is, again, the desired result.

This corollary shows that the difference between the cut-off schemes stems from their explicit form

and their derivatives. In the following we, therefore, discuss those cut-off schemes in more detail which

are relevant for this thesis, that is the sharp frequency cut-off (cf. sec. 4.3.1), the ω-frequency cut-off (cf.

sec. 4.3.2) and the interaction cut-off (cf. sec. 4.3.3). For these cut-offs we, furthermore, provide results

in three steps of approximations. First, in the static vertex approximation we assume a frequency-

independent vertex. We assume the most important interactions to happen at zero frequency transfer

and with the lowest fermionic frequency, such that we approximate the full vertex by the corresponding

one. In the flow equation of this static vertex the internal arguments are thus related to each other due

to the conservation of energy, so that the remaining Matsubara sum can be calculated independently.

In the case of the self-energy the internal frequency only appears in the single-scale propagator,

so that the corresponding Matsubara sum can be evaluated independently, too. However, this will

not lead to a frequency structure of the self-energy, when the calculation initially started with a

frequency-independent self-energy. We will often use this approximation, as it was shown for the two-

dimensional Hubbard model that the inclusion of higher frequencies changes the results only slightly

[67]. However, this approximation allows an analytical evaluation of the Matsubara sum, as only the
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propagators remain frequency-dependent, so that a significant numerical advantage can be achieved.

Second, to target the ground state phase we additionally go to the zero-temperature limit, where the

Matsubara sums become integrals. Third, in addition to the previous approximations, we neglect self-

energy effects, which enables simplified analytical evaluations of the propagator loops. In section 4.3.4

we finally provide some short comments on momentum-shell cut-offs and on temperature cut-offs.

4.3.1. The Sharp Frequency Cut-Off

In the case of the sharp frequency cut-off CΛ = θ(|ω| − Λ), the flow parameter runs from Λ0 →∞
down to ↘ 0. Although Matsubara frequencies are not continuous, we work with the formal Λ-

derivative which, in this case, is only given in the sense of a distribution, as dΛC
Λ = −δ(|ω| −Λ). As

the Matsubara frequencies have a finite spacing, the resulting expression is only well defined in the

limit T → 0, where the Matsubara sum converges according to 1
β

∑
ωn
→ 1

2π

∫
dω . The expressions

of this cut-off result in products of Heaviside functions with a Dirac-delta distribution, which can be

solved with the help of the Morris Lemma [133].

Theorem 4.4 (Morris Lemma)

Let δα be a function which converges to the Dirac-δ distribution for α → 0, and let θα be a

function that converges to the Heaviside function in the same limit. Let further f(x, θ(x)) be a

sufficiently smooth function in both arguments. Then

δα(x)f(x, θ(x))
α→0−−−→ δ(x)

∫ 1

0

duf(0, u). (4.28)

Proof: For a proof of this theorem we refer to [133].

Based on this lemma the single-scale propagator can be reformulated as

SΛ(k, ω) = − lim
α→0

δα(|ω| − Λ)
iω − εk

[iω − εk − θ(|ω| − Λ)ΣΛ(k, ω)]2

= −δ(|ω| − Λ)

∫ 1

0

du
iω − εk

[iω − εk − uΣΛ(k, ω)]2

= − δ(|ω| − Λ)

iω − εk − ΣΛ(k, ω)
,

(4.29)

while the Green’s function becomes

GΛ(k, ω) =
θ(|ω| − Λ)

iω − εk − θ(|ω| − Λ)ΣΛ(k, ω)
. (4.30)

The frequency integral in the flow equation of the self-energy becomes an integral over the single-scale

propagator, which is evaluated according to

− 1

2π

∫
dω

δ(|ω| − Λ)

iω − εk − ΣΛ(k, ω)
=

1

2π

εk + ΣΛ(k,Λ) + εk + ΣΛ(k,−Λ)

(iΛ− εk − ΣΛ(k,Λ))(−iΛ− εk − ΣΛ(k,−Λ))
. (4.31)
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As the reformulation in equation (4.29) only holds when no other Heaviside or Dirac functions are

present, the propagators are given as

LΛ(kω, sν) = − 1

2π

θ(|ω| − Λ)

iω − εk − θ(|ω| − Λ)ΣΛ(k, ω)
· (iω′ − εk′)δ(|ω′| − Λ)

[iω′ − εk′ − θ(|ω′| − Λ)ΣΛ(k′, ω′)]2

− (ω,k) ↔ (ω′,k′), (4.32)

with ω′ = ω + ν and k′ = k + s for the electron-hole propagator and ω′ = −ω + ν and k′ = −k + s

for the particle-particle propagator. These expressions can, principally, be reformulated due to the

Morris lemma (thm. 4.4), resulting in very lengthy expressions, which we do not present here2. In the

static vertex approximation ν = 0 the frequency integral can be solved, as only terms with |ω| = Λ

give contributions which result in the electron-hole propagator

LΛ
ph(kω,u0) = − 1

2π

(
iΛ− εk′

(iΛ− εk − 1
2ΣΛ(k,Λ))(iΛ− εk′ − 1

2ΣΛ(k′,Λ))2

+
−iΛ− εk′

(−iΛ− εk − 1
2ΣΛ(k,Λ))(−iΛ− εk′ − 1

2ΣΛ(k′,Λ))2

)
(4.33)

and in the particle-particle propagator

LΛ
pp(kω, s0) = − 1

2π

( −iΛ− εk′
(iΛ− εk − 1

2ΣΛ(k,Λ))(−iΛ− εk′ − 1
2ΣΛ(k′,Λ))2

+
iΛ− εk′

(−iΛ− εk − 1
2ΣΛ(k,Λ))(iΛ− εk′ − 1

2ΣΛ(k′,Λ))2

)
. (4.34)

In the Katanin scheme (see thm. 3.24) the propagator becomes

LΛ(kω, sν) =
θ(|ω| − Λ)

iω − εk − θ(|ω| − Λ)ΣΛ(k, ω)
· −(iω′ − εk)δ(|ω′| − Λ) + θ(|ω′| − Λ)∂ΛΣΛ(k, ω′)

[iω′ − εk − θ(|ω′| − Λ)ΣΛ(k, ω′)]2

+ (k, ω) ↔ (k′, ω′), (4.35)

which requires the derivative of the self-energy for a calculation. This derivative can be obtained

either by first calculating the corresponding diagram, or by taking the result of the previous step.

However, as this is unknown, a further analytical treatment is impossible. By neglecting self-energy

effects we are able to further evaluate this term in the static vertex limit, resulting in

LΛ
ph(kω,u0) =

1

2π

(
1

(iΛ− εk)(iΛ− εk+u)
+

1

(−iΛ− εk)(−iΛ− εk+u)

)
(4.36)

and

LΛ
pp(kω, s0) =

1

2π

(
1

(iΛ− εk)(−iΛ− ε−k+s)
+

1

(−iΛ− εk)(iΛ− ε−k+s)

)
(4.37)

for the electron-hole and for the particle-particle propagators, respectively.

2The result is easily obtained, for example, by Mathematica and fills half an A4 page.
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4.3.2. The ω-Frequency Cut-Off

The cut-off of the form CΛ = ω2
/ω2+Λ2 has a scale-parameter of the form Λ :∞↘ 0. The derivative

of this function is dΛC
Λ = −2Λω2

/(ω2+Λ2)2, leading to the Green’s function

GΛ(kωn) =
ω2

ω2+Λ2

iω − εn(k)− ω2

ω2+Λ2 ΣΛ
n(kω)

(4.38)

and to the single-scale propagator

SΛ(kωn) = −
2Λ ω2

(ω2+Λ2)2 (iω − εn(k))

(iω − εn(k)− ω2

ω2+Λ2 ΣΛ
n(kω))2

. (4.39)

Combining both of them leads to the two-particle propagator

LΛ(kω, sν) =
ω2

ω2+Λ2

iω − εn(k)− ω2

ω2+Λ2 ΣΛ
n(kω)

·
−2Λ ω′2

(ω′2+Λ2)2 (iω′ − εn(k′))

(iω′ − εn(k′)− ω′2
ω′2+Λ2 ΣΛ

n(k′ω)′)2

+ (k, ω) ↔ (k′, ω′), (4.40)

with, again, ω′ = ω + ν and k′ = k + s for the electron-hole propagator and with ω′ = −ω + ν and

k′ = −k + s for the particle-particle propagator. In the Katanin scheme this becomes

LΛ(kω, sν) =
ω2

ω2+Λ2

iω − εn(k)− ω2

ω2+Λ2 ΣΛ
n(kω)

·
−2Λ ω′2

(ω′2+Λ2)2 (iω′ − εn(k′)) + ω2

ω2+Λ2 δΛΣΛ
n(kω)

(iω′ − εn(k′)− ω′2
ω′2+Λ2 ΣΛ

n(k′ω)′)2

+ (k, ω) ↔ (k′, ω′). (4.41)

In the static vertex approximation discussed above we have already pointed out that the self-energy

will not develop a frequency dependence, so that the Matsubara sums of the single-scale propagator

and the two-particle propagators can, in principle, be evaluated in the standard procedure by using the

residue theorem. However, the cut-off causes the denominator to be a polynomial of third order whose

zeros are very lengthy expressions. Therefore, we skip an analytical evaluation and directly consider

the approximation of the vanishing self-energy where the scale-derivative of the full Green’s function

and the single-scale propagator coincide, that is SΛ|Σ=0 = −dΛG
Λ|Σ=0 = −dΛG

Λ
0 with the derivative

of the free Green’s function. The evaluation of the Matsubara sum of the single-scale propagator (cf.

app. B) then results in

SΛ(k)
∣∣
Σ=0

= dΛG
Λ(k)

∣∣
Σ=0

= dΛG
Λ
0 (k) =

εn(k)

2(Λ + εn(k))2
nF(−Λ) +

Λ

2(Λ + εn(k))
n′F(−Λ)

− εn(k)

2(Λ− εn(k))2
nF(Λ) +

Λ

2(Λ− εn(k))
n′F(Λ) +

2ε2
n(k)Λ

2(ε2
n(k)− Λ2)2

nF(εn(k)). (4.42)

An analogous calculation can be performed for the particle-particle and for the electron-hole prop-

agator, which leads to lengthy expressions due to the sum of four poles, of which the poles at ±Λ

have second order, and the poles at ε1 and ε2 may become degenerate, such that two cases have to

be treated (for the explicit expressions see appendix B). However, in the zero-temperature limit the

Fermi-function, which is used as weighting function, becomes a Heaviside function so that the resulting
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expressions can significantly be simplified. In fact, the zero-temperature particle-particle propagator

thus becomes

LΛ
pp =


1

4(ε1+ε2)

(
ε1(3|ε1|+Λ)
(|ε1|+Λ)3 + ε2(3|ε2|+Λ)

(|ε2|+Λ)3

)
for ε1 6= −ε2

−3ε21−4|ε1|Λ+Λ2

4(|ε1|−Λ)4 for ε1 = −ε2,

(4.43)

and the electron-hole propagator is

LΛ
ph =


− 1

4(ε1−ε2)

(
ε1(3|ε1|+Λ)
(|ε1|+Λ)3 − ε2(3|ε2|+Λ)

(|ε2|+Λ)3

)
for ε1 6= ε2

3ε21+4|ε1|Λ−Λ2

4(|ε1|−Λ)4 for ε1 = ε2.

(4.44)

4.3.3. The Interaction Cut-Off

When the interaction cut-off function CΛ = Λ is applied to the free Green’s function, it requires a

flow from Λ0 = 0 to Λf = 1 to obtain the correct limiting cases. When the fields are rescaled corre-

spondingly, this leads to a continuous scaling of the bare interaction with Λ2. Hence the interaction is

continuously increased from vanishing at Λ0 = 0t to its full form at Λ = 1. However, it does not lead

to a physical regularisation, which is one which regularises divergences. Thus it is only applicable for

investigations in which no divergences occur, which is typically achieved by sufficiently large temper-

atures. But in the approximation of the neglected self-energy this cut-off leaves the dual propagator

terms in a simple form, which can be calculated at the beginning and which only requires numerically

cheap modifications during the FRG flow. Thus it can be well applied to screen temperature ranges

to deduce an estimate for the transition temperature to some ordered phase [125].

With this cut-off the full Green’s function and the single-scale propagator become

GΛ(kωn) =
Λ

iω − εn(k)− ΛΣΛ
n(kω)

(4.45)

and

SΛ(kωn) =
iω − εn(k)

(iω − εn(k)− ΛΣΛ
n(kω))2

, (4.46)

respectively. The resulting two-particle propagator is then obtained as

LΛ(kω, qν) =
Λ

iω − εn(k)− ΛΣΛ
n(kω)

· iω′ − ε(k′)
(iω′ − εn′(k′)− ΛΣΛ

n′(k
′ω′))2

+ (k, ω)↔ (k′, ω′) (4.47)

again with ω′ = ω + ν and k′ = k + s for the electron-hole propagator and with ω′ = −ω + ν and

k′ = −k + s for the particle-particle propagator. In the Katanin scheme this becomes

LΛ(kω, qν) =
Λ

iω − εn(k)− ΛΣΛ
n(kω)

· iω
′ − ε(k′) + Λ2∂ΛΣΛ

n(k′ω′)

(iω′ − εn′(k′)− ΛΣΛ
n′(k

′ω′))2
+ (k, ω)↔ (k′, ω′). (4.48)

Again, in the static vertex approximation, it is possible to evaluate these expressions by the residue

theorem, as the self-energy will not develop any frequency dependence. We have, however, not cov-

ered this case and, therefore, directly consider the approximation of neglected self-energy and static
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vertices. In this case the Λ-derivative can directly be evaluated and be moved out of the Matsub-

ara summation, which now equals the standard two-particle propagator Matsubara sum. Thus the

two-particle propagators become

LΛ
pp(k, q) = 2Λ

1− nF(εn(k))− nF(εn′(q − k))

εn(k) + εn′(q − k)
(4.49)

for the particle-particle case and

LΛ
ph(k, q) = 2Λ

nF(εn(k))− nF(εn′(k + q))

εn(k)− εn′(k + q)
(4.50)

for the electron-hole case. The scale-independent part of these expressions can be evaluated at the

beginning of the calculation and only has to be multiplied by the actual scaling parameter Λ in the

following integration steps to obtain the actual dual propagator. This is already a very simple form,

which can be calculated very efficiently. By an additional T = 0 limit the Fermi-functions become

Heaviside functions, which simplify the calculation in the way that more dual propagator terms become

exactly zero and do not contribute.

Beside of these frequently used cut-off schemes other ones are possible, which will be discussed in

the following. A special case is the treatment of the temperature as a cut-off parameter.

4.3.4. Further Cut-Off Schemes

The temperature spans the mesh of Matsubara frequencies by ωn = (2n + 1)πT such that each

frequency n itself decreases. In this case it is, therefore, useful to keep n instead of ωn as an argument.

In corresponding calculations, however, the energy conservation still connects the entries with the same

n, which previously was the frequency number. In order to obtain the temperature as flow parameter,

the temperature dependence has to be shifted from the bare interaction to the quadratic part, which

is achieved by a rescaling of the Grassmann fields to ψ′(kn) = T 3/4ψ(kωn) and ψ̄′(kn) = T 3/4ψ̄(kωn).

The corresponding bare propagator thus becomes

GΛ
0 (kn) =

T
1
2

iωn − ε(k)
, (4.51)

and the flow equations can be derived by the same procedure as given in chapter 3.5. Formally,

this corresponds to a cut-off function of CΛ=T = T
1
2 . The flow equations for n-particle vertices are

analogous to the previous ones up to a factor of T
3n
2 . This cut-off has the advantage that it directly

leads to a critical temperature for the phase-transition in one calculation, while other cut-off schemes

need several calculations at different temperatures to determine it. Additionally, local symmetries

and their Ward identities are fulfilled for the exact flow at every step of the it. Thus it is easier to

consider them for truncated schemes.

Momentum cut-off schemes have the advantage that the frequency structure of the propagators and

of the vertices are not affected, so that the evaluation of Matsubara frequencies can often be performed

analytically. However, when self-energy corrections are present, the Fermi-surface changes during the

flow, so that the momentum cut-off has to be adapted to the new surface. Additionally, these cut-offs

suppress electron-hole excitations with a small momentum transfer q in the shell |ε(k+ q)| − |ε(k)| <
2Λ. Therefore, the limits q → 0 and Λ→ 0 do not commute any more, so that the forward scattering
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spinful SU(2)-symm.
indep. elements share indep. elements share

no symmetry 120,472,567 1.00 7,529,536 1.00
complex conj. 60,313,120 0.50 3,783,976 0.50
crossing sym. 30,272,592 0.25 3,765,160 0.50

comp.+cross. sym. 15,174,810 0.13 1,901,788 0.25
C4v sym. 22,127,616 0.18 1,382,976 0.18

all above symmetries 4,131,255 0.03 519,189 0.07

Table 4.3.: The number of independent elements in the two-dimensional Hubbard model, when different
symmetries are exploited, and the share to the full calculation. In the spinful case both spin-
orbitals are treated separately, while in the SU(2)-symmetric case only one band is present.

for q → 0 can only be investigated at the end of the flow, making stability analyses difficult [104].

Due to these problems, we have not used any momentum shell cut-off in our investigations.

4.4. Symmetries

In order to reduce the numerical demands in terms of memory demand and computation time we

exploit the symmetries of the system, which have been presented in theorem 3.17. For this purpose

it is sufficient to save only one representative for each of the symmetrically equivalent elements. For

each representative another structure holds the full set of indices it belongs to. In order to obtain

the other elements again, a pointer to the saved element and two integers of ±1 are saved, which

represent the possible sign change and the complex conjugation in form of a multiplication, so that

comparison operations can be avoided which may slow down the code. But the total memory demand

is hardly reduced by this approach. However, the number of elements which have to be calculated

is significantly reduced for the vertex as well as for the dual propagators. In table 4.3 we show the

number of elements which have to be calculated for the two (spin-)orbitals and for the one-band

two-dimensional Hubbard model in the static-vertex approximation based on a momentum lattice of

14× 14.

For the case that both vertex-inherent symmetries are exploited, this table shows that it is sufficient

to calculate only every fourth vertex element in the SU(2)-symmetric case and only every eighth in

the spinful case. This should already reduce the calculation time to approximately 25 % and to

13 % compared to the full vertex ones. As these symmetries should always be present, even systems

without point group symmetries can gain such speed-ups. However, when the point group symmetry

can additionally be exploited, the calculation of only 3 % and of 7 % of the vertex is necessary in the

spinful and in the SU(2)-symmetric case, respectively. Thus the calculation can gain a speed-up of

up to an order of magnitude by exploiting all symmetries. Additional symmetries may lead to even

further gains in performance. However, as the full vertex has to be recovered for the flow step leading

to some overhead, these performance gains can only be achieved approximately.

Contrary to these considerations, a phase transition is typically accompanied by a break of symme-

try. Hence, when the symmetries are explicitly encoded to obtain the gain in performance, it might

become impossible to obtain the phase originating from a break of symmetries. Therefore, in our code

all the symmetries have a switch, so that one can either profit from the symmetries of the system or

have the possibility of investigating all possible symmetry-breaking phases.
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4.5. Performance and Parallelisation

The largest object we are dealing with in our FRG approach is the two-particle interaction γ(4,0)Λ.

Now let us consider the case of a momentum mesh spanned by nk momenta, a frequency mesh using

nωF
fermionic and nωB

bosonic frequencies and a model which requires no (spinful) orbitals or bands.

Then the size of the full vertex is n3
k ·n2

ωF
·nωB

·n4
o. The calculation of the right hand side of the flow

equation in each FRG integration step (cf. eq. (3.28)) requires a momentum space integration and

a Matsubara frequency and orbital summations for each vertex element. This results in a numerical

complexity of n4
k · n3

ωF
· nωB

· n8
o. Due to this bad scaling in orbitals, only a few orbitals are feasible

within the FRG approach. As pointed out in section 4.1.3 a treatment of the system in band basis,

however, reduces the internal summations so that the scaling in bands (which have the same dimension

as the orbitals) becomes n6
o. Alternatively, when SU(2)-symmetry is present, only half the number

of orbitals is necessary. Hence, the size of the vertex is reduced by a factor of 16, and the numerical

complexity of an FRG step even is reduced by a factor of 196.

Employing the TUFRG with nFF form-factors only has an effect on the complexity in momentum

space, so that we only consider the corresponding part here. The size of the vertex then becomes

nk · n2
FF instead of n3

k and with equations (3.366)-(3.368) the numerical complexity of one TUFRG

integration step becomes nk · n4
FF instead of n4

k. However, in each integration step a projection

between the different channels as provided by equations (3.375)-(3.380) is required. If this projection

is performed in momentum space (first line in the corresponding equations), it has a total complexity of

n3
k ·n4

FF for each element. By shifting the arguments in such a way that the vertex which is projected

only depends on one of the integration variables, the other integral can be calculated in advance.

Thus, the runtime scaling is reduced to n2
k · n4

FF. We implemented this projection as a product of

three matrices of which the vertex-independent ones were calculated either once at the beginning of

the flow (KS,AM) or for each RG step to save memory (KS,SM). A fit to the corresponding scaling

curves of these two versions (cf. top row of fig. 4.3) indeed reveal a scaling of n2.2
k · n4

FF in good

agreement to the assertion.

When the projections are performed in position space (second line of the corresponding equations

(3.375)-(3.380)), the sum over position space arguments can be performed in advance, resulting in

a numerical complexity of nk · n4
FF, which is of the same order as the matrix multiplication of the

TUFRG step. However, in this approach the vertex itself has to be Fourier transformed to lattice

space which has a complexity of nk · nbonds, with nbonds referring to the number of bonds required

by the combinatorial evaluation of the form-factor and the position space sums. We implemented

a corresponding projection (RS,SM) which reveals an impressive scaling (cf. fig. 4.3) of n0.9
k · n2.8

FF,

which is even better than expected. As the pre-evaluation of the combinatorics allows us to only sum

the non-vanishing form-factor combinations, the scaling behaviour can be improved. However, the

projection to lattice space can be combined with the combinatorial evaluation providing an nk × nk
matrix for each form-factor projection (RS,AM). As this requires n4

FF of those matrices this approach

is restricted by the available memory, so that we can not obtain a proper scaling in momentum space.

However, this approach reveals a form-factor scaling of n4
FF, as expected.

A comparison of the four different projection schemes displayed in figure 4.3 shows that the pro-

jections in lattice space with a pre-evaluation of the combinatorics with a separate treatment of the

Fourier transformation to lattice space of the vertex (RS,SM) is superior to the other approaches, as

it is memory efficient, fast and the best in terms of scaling. It even beats the matrix multiplication

approach, which usually is advantageous on modern processors.
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Figure 4.3.: Scaling of different implementations of the projection operation (described in the text) be-
tween channels (top row) and the calculation of the dual propagators in form-factor space
(bottom row) with respect to momentum resolution and form-factor resolution. The gray
dashed lines represent fits to the scaling curves.

The second demanding part in each step is the calculation of the dual propagator in the form-factor

basis (cf. eq. (3.364)-(3.365)) which involves a momentum space integral so that its theoretical scaling

is n2
k · n2

FF. Our implementation, as displayed in the lower row of figure 4.3, indeed reveals a scaling

of n1.9
k · n2.0

FF, as expected. As the integral is performed on a mesh where each coarse momentum is

refined, this calculation scales linear with the number of refined momenta both, in theory and in the

implementation.

The two operations discussed above are in terms of total time the most relevant ones for the

calculation of the right hand side of the TUFRG flow equation. Comparing both of them we note that

the calculation of the projected dual propagator is always significantly more time demanding than the

projection according to the (RS,SM) scheme. However, this only holds for small momentum meshes

and for a low number of form-factors in the other projection schemes, due to their disadvantageous

scaling behaviour.

Still, with a total scaling of n2
k ·n2

FF TUFRG calculations are computationally demanding in order to

gain results in a desirable precision. Therefore, we aim at using all forms of parallelisation which high-

performance computation is offering, that is single-instruction multiple-data (SIMD), shared memory
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parallelisation (OpenMP) and distributed data parallelisation (MPI), which will be regarded in more

detail in the following subsections.

4.5.1. Single-Instruction Multiple-Data and Memory Access

In order to gain an insight into SIMD parallelisation we regard the CPU as the heart of a computer.

Modern CPUs (e.g. Intel Haswell) use registers with a length of 512 bits on which the arithmetic

logical unit (ALU) can work. As such registers can typically store eight values of double precision

(compiler-dependent), the same operation can simultaneously be performed on all of them by this

ALU. As this can be regarded as treating the successive values in the register as a vector, this

procedure is also called vectorisation, which is the most prominent implementation of SIMD. When

the corresponding CPU architecture-dependent option is provided to the compiler, it tries to optimise

the code for those operations. Modern CPUs contain several ALUs which are specialised to perform

add, multiply or combined multiply-add operations. The data required for the operations have to

be loaded to the processor. This is typically (architecture-dependent) done by passing three levels

of cache, which become larger, but also slower to access, the further away they are from the CPU

and the closer they are to the main memory. The vertex usually is too large to fit into the cache, so

that a permanent data transfer from the main memory to the CPU is required. Such a data stream

is possible, when the elements of the vertex are accessed successively, which then is also in perfect

alignment for vectorisation.

However, in a straight forward implementation of the flow equations we may move through the

elements of the first vertex successively, but the values of the second vertex are distributed in mem-

ory, as they are determined by momentum and by frequency conservation. To enable a good data

throughput we only treat those parts of the vertices and the bubble which we put in a memory aligned

structure. Hence, the corresponding part of the calculation has a perfect memory access and can use

vectorisation perfectly, too. Although all values have to be touched twice, this approach significantly

improves the performance of the code.

4.5.2. Shared Memory Parallelisation

A compute node of a cluster consists of several CPUs which share their memory. In our code we

employ OpenMP, which distributes the loop over the elements whose calculation is assigned to one

node, namely to a number of threads which run in parallel. In the perfect matching case, the number

of threads equals the number of CPUs of a node. When a CPU is assigned to more than one thread,

this is called multi-threading, which can still result in a gain in performance. This shared memory,

however, leads to difficulties, as all processes work on the same memory. While one process has loaded

some data into its cache and performs some calculations on it, another thread may have changed the

original data. As the loop over elements which have to be calculated is parallelised, each element is

only written to by one thread, while unchanged vertex elements are read. In cases in which this can

not be verified in such a simple way, every thread obtains its own part of memory in which it saves

its results, which are combined with the results of the other threads at the end of the parallel section.

In figure 4.4 we show the shared memory scaling of our SU(2)-symmetric TUFRG implementation

on JURECA [1] based on a calculation of the two-dimensional Hubbard model with 35 coarse mesh

momenta refined by 15 momenta in each direction and 3 shells of form-factors. We employ one node

which contains two Intel Xeon E5-2680 v3 Haswell CPUs with 12 cores each. The implemented code
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Figure 4.4.: The OMP (left) and MPI (right) scaling behaviour for the calculation of the right hand side
for one RG step obtained on JURECA.

scales well up to 12 threads, where the scaling totally breaks down. This probably corresponds to one

of the two CPUs blocking the memory access of the other one, so that only 12 of the 24 nodes can work

properly. When more than 24 threads are assigned to one node, more than one process is executed

on one core, which is called Simultaneous Multi Threading, which provides a slight performance gain

in our case.

4.5.3. Distributed Memory Parallelisation

Compute clusters consist of several thousands of nodes, each with its own memory, which are

connected to all the others by a high-speed network. To parallelise the calculation for all the nodes

we distribute the vertex increment dV , which results from the right hand side of the flow equations

(cf. eq. (3.28)), to all the nodes participating in the calculation. Due to the distributed memory each

node only knows the part of the increment that was calculated by itself. The results of each part of

the vertex are, therefore, sent to all the other processes by a collective communication scheme. For

this task we employ the Message Passing Interface (MPI) standard. In fact, for the momentum-grid

FRG it is sufficient to have only one communication, after the right hand side of the flow-equation has

been calculated, so that the integration step can be performed for all processes in the same way. In

the TUFRG case the projection is already distributed over several nodes, so that one communication

is required to pass the results of the projection to all processes, and a second one is necessary to

distribute the results of the right hand side of the TUFRG flow equation (see eq. (3.366)-(3.371)).

In figure 4.4 we present the scaling behaviour of our code with respect to the MPI parallelisation.

The timing is obtained for a calculation of the two-dimensional Hubbard model without the usage of

symmetries on a coarse lattice of 55 momenta refined by 25 momenta in each direction and 2 shells

of form-factors. For this setting we observe an impressive, almost perfect scaling up to 256 nodes for

our implementation of the TUFRG flow equation. Such a scaling allows us to employ a large number

of nodes to obtain results from TUFRG calculations within a reasonable amount of time.

Finally, we remark that the systems we have been investigating were sufficiently small, so that each

node could save the full vertex. When the system becomes too large, this parallelisation scheme has

to be modified such that one node only holds one part of the vertex and obtains the part required for

the calculations from the other nodes.
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A s we discussed at the beginning of chapter 3, it is not possible to solve the full solid state

Hamiltonian (see eq. (3.1)), neither analytically nor numerically. The numerical limitations of a

bad scaling with the number of bands also restrict the application of the (TU)FRG developed in the

previous chapter, which formally could be used to calculate the full solid state interaction starting from

a free electronic system. It is, therefore, necessary to employ a simplified model, which is sufficient to

obtain the relevant interactions.

In the scope of this thesis we aim at developing methods to determine the electronic ground states

of materials with correlation effects. As the energy levels close to the Fermi-energy are the most

relevant ones for those effects, it is reasonable to use a simple model which describes the bands close

to it. One of the simplest ones is the Hubbard model, which contains an approximate kinetic term and

an interaction term, as we will derive in the following. So far, this model has been used to describe

copper- and iron-based superconductors and basic metals, but it has also served as a toy model for

method developments, which is the case for us, too.

The non-interacting part of the solid state Hamiltonian is diagonal in the Bloch-Basis, such that

the Hamiltonian can be written as

Ĥ =

∫
dk
∑
n,s

(εk,n,s − µ) ĉ†kns ĉkns + Ĥint. (5.1)

We remark that this Hamiltonian is not necessarily invariant under point group transformations of

the momentum lattice as discussed in section 4.1.3, and a unitary transformation to the natural basis

is required to achieve this property. In this discussion, however, the natural basis is not required and

we express the Hamiltonian in Wannier states according to equation (2.34) as

Ĥ =
∑
s

∑
oo′,RR;

(
−tRo,R′o′ − µδoo′δRR′

)
ĉ†Ros ĉR′o′s

+
1

2

∑
ss′

∑
R1...R4

∑
o1...o4

UR1o1,...,R4o4
ĉ†R1o1s

ĉ†R2o2s′
ĉR3o3s′ ĉR4o4s (5.2)

with

tRo,R′o′ = −〈Ro|
(
− p

2

2m
+ V (r̂)

)
|R′o′〉 and (5.3)

UR1o1,...,R4o4
= 〈R1o1| 〈R2o2|

e2

|r − r′| |R3o3〉 |R3o3〉 . (5.4)

Basically the terms tRo,R′o′ represent the overlap of orbital o at atom R with the orbital o′ at atom R′

with respect to the kinetic energy and the atomic potential operators. Figuratively, one speaks of the

kinetic energy of an electron which moves from the latter orbital to the former one, and the parameter

t is called “hopping” parameter. The terms UR1o1,...,R4o4 stand for the energy of the interaction of

two electrons scattered from orbitals o3 at R3 and o4 at R4 to orbitals o2 at R2 and o1 at R1.

As the Wannier basis states are linear combinations of Bloch states they are, in general, not eigen-

states of the non-interacting Hamiltonian. However, in the case of flat bands the dispersion εkn
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becomes k-independent, such that there is a one-to-one correspondence between Bloch bands and

Wannier basis orbitals. This corresponds to electrons tightly bound to atomic nuclei which are thus

localised. This is the case for partially filled d- or f -orbitals in transition metals and rare earths.

The Hamiltonian in equation (5.1) still is the full solid-state Hamiltonian in a different basis and

therefore still not computable. Based on the physical significance of the different terms of the Wannier

Hamiltonian we can derive reasonable approximations to describe the physics of the system under

investigation.

As the ground state phases are mainly driven by low energy excitations, we focus on the one-particle

energy bands εkn close to the Fermi-energy in the low-temperature limit T � TF . We further simplify

our model by the assumption that only one band crosses the Fermi-energy and all the other bands are

strictly separated from this band. Hence we drop the orbital dependence of the hopping parameter

and write tR,R′ and UR1,...,R4
.

In addition, the materials of interest in this thesis have half-filled d- or f -orbitals which are localised,

such that the Wannier basis functions φ(r−R) have their maximum at r = R and decay rapidly with

increasing distance |r −R|. In the crudest approximation, namely the atomic limit, these functions

do not overlap, such that the one-particle energy εkn becomes k-independent and tR,R′ = εδR,R′ .

Therefore, in this approximation no inter-atomic transport is possible, such that additional terms

have to be taken into account to describe the physics of interest. Hence we allow for nearest and

for next-nearest neighbour hoppings and set all other hopping parameters to zero. We simplify our

notation by writing tij = tRi,Rj and < i, j > for nearest neighbour sites and � i, j � for second

nearest neighbour sites.

For an approximation of the interaction term we assume that the Wannier orbitals are sufficiently

strong localised, such that they do not overlap. As the Coulomb interaction decreases by 1//r and as

the overlap of Wannier orbitals is rapidly decreasing due to their localisation, we only consider the

on-site interactions and the nearest neighbour interactions. This is also motivated by the assumption

that the strongest interactions dominate the physics at low temperatures. For the local interactions,

all Wannier orbitals are located at the same site R which can, due to the Pauli principle, only be

occupied by one spin-up and by one spin-down electron. The corresponding term thus becomes

1

2

∑
Ri

∑
s,s′

URiRi,RiRi ĉ
†
Ris

ĉ†Ris′ ĉRis′ ĉRis =
∑
Ri

U ĉ†Ri↑ĉRi↑ĉ
†
Ri↓ĉRi↑ =

∑
Ri

U n̂i↑n̂i↓ (5.5)

with U := URiRi,RiRi . The nearest neighbour contributions can be of two different kinds. First, the

classical electrostatic Coulomb interaction between two electrons located at neighbouring sites Ri and

Rj is described by the direct interaction URiRj ,RjRi . This term can be rewritten as∑
<Ri,Rj>

∑
s,s′

URiRj ,RjRi ĉ
†
Ris

ĉ†Rjs′ ĉRjs′ ĉRis =
∑

<Ri,Rj>

∑
s,s′

Vij n̂is n̂js′ . (5.6)

Second, the other term originating from the nearest neighbour contribution is the exchange contribu-

tion, in which the creation and the annihilation operators of different spins are at the same site Ri or

Rj . Using spin and charge operators, this term can equivalently be written as

∑
<Ri,Rj>

∑
s,s′

URiRj ,RiRj ĉ
†
Ris

ĉ†Rjs′ ĉRis′ ĉRjs = −2
∑

<Ri,Rj>

Jij

(
ŜiŜj +

1

4
n̂in̂j

)
(5.7)
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Figure 5.1.: Schematic representation of the effects included in the Hubbard model with onsite-repulsion
U (blue), nearest neighbour hopping t and second nearest neighbour hopping t′ (red) on an
isotropic two-dimensional lattice.

with Jij := URiRj ,RiRj . Considering only this term, a coupling of Jij > 0 decreases the energy for

a parallel alignment of spins, thus inducing a tendency to a ferromagnetic phase, while a coupling

of Jij < 0 reduces the energy for an antiparallel alignment of spins, thus inducing a tendency to

antiferromagnetism.

Hubbard [32] estimated the strength of the different contributions based on the atomic 3d-orbital

wave-functions as Wannier functions and arrived at U ≈ 20 eV, Vij ≈ 6 eV and Jij ≈ 0.03 eV for

transition metals. These rather rough estimates, and the assumption of very well localised Wan-

nier functions with little overlap offer the possibility of approximating the interaction by the local

interaction term alone.

Combining all the approximations from above, we arrive at the Hubbard model Hamiltonian

H = −
∑

<i,j>,s

ti,j ĉ
†
i,s ĉi,s −

∑
�i,j�,s

ti,j ĉ
†
i,s ĉi,s + U

∑
i

n̂i↑ n̂i↓. (5.8)

The different effects are illustrated in figure 5.1: the kinetic energy corresponds to a hopping of

electrons between the sites, while the interaction represents the costs of two electrons being located

at the same site. Comparing this Hubbard Hamiltonian with the original one, reveals that it has been

significantly simplified. Therefore, let us shortly recapitulate the most important approximations.

First, due to the restriction to one band close to the Fermi-energy all the interactions with electronic

states in the other bands are neglected. Although these terms are small in comparison to the intra-

band interaction, they are not negligible. Hence the Hubbard-interaction U has to be chosen in such

a way that it contains the screening effects of the other bands. As these screening effects depend on

the form and on the energetic location of the other bands, a general construction of U is not possible.

For real materials this can quite accurately be done by constrained RPA calculations. In the scope of

this thesis it is, therefore, treated as a phenomenological parameter.

Second, the restriction to the on-site interaction is justified by a comparison of the parameter

strengths. While screening effects reduce the values estimated by Hubbard, the exchange contribution

Jij is still two to three orders of magnitude smaller than the on-site interaction, and thus its negligence

is justified. However, Hubbard [32] estimates that screening reduces the direct interaction Vij only by

a factor of 2 and thus remains 10 − 20 % of the on-site one. While Hubbard estimates these values

for 3d electrons in transition metals in general, we observe a similar range of values obtained from

DFT calculations for electrons in the O p-orbitals and La 3d-orbitals in La2CuO4 which form the

conduction band [134] (see table 5.1). Therefore, this direct interaction also has to be considered for
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Schluter [134] McMahan [135] Hirayama [136]

Ud 10− 12 eV 9.4eV 9.6 eV
Up 6− 8 eV 3.6eV 6.1 eV
Vpd < 4 eV 0.8eV 2.7 eV

Table 5.1.: Parameters of the extended Hubbard Hamiltonian for La2CuO4 taken from ref. [134] and ref.
[135]. Here, p refers to O p-orbital electrons and d refers to La 3d-electrons, so that Ud and Up
are the on-site interactions at the La and the O sites, respectively, and Vpd is the interaction
between these sites.

an accurate description of those materials, leading to the extended Hubbard model, which is out of

scope of this thesis.

Finally, we restrict ourselves to nearest and to second nearest neighbour hoppings, which is justified

in the case of strong localised orbitals. If the orbitals become less localised, this limitation can be

lifted by including longer ranged hopping terms. In the scope of this thesis we also treat the neighbour

hoppings as phenomenological parameters.

Despite its simplicity there exists neither an analytical nor a numerical solution for the Hubbard

model. While the hopping terms are diagonal in momentum space, the interaction is diagonal in lattice

space. Thus, there does not exist a common basis which prevents an analytical solution. Physically

spoken, the kinetic term tends to delocalise the electrons, while the interaction tends to localise them.

For a numerical solution, one has to represent the Hamiltonian in one of the bases and one is restricted

to a finite lattice of N sites. But as every site has four possible states, the total number of states

scales as 4N . Thus, an exact numerical solution is restricted to small systems in which finite size

effects become important and might spoil the physics.

Despite these limitations, the Hubbard model has frequently been used in the solid state theory, as it

contains the two most important energy scales, which are the kinetic energy given by the hopping t and

the potential energy of the repulsion of two electrons at the same site given by U . In the ground state,

the total energy has to be minimised, which leads to a competition between these effects. Considering

the half-filled case on a square lattice with nearest neighbour hopping only, the kinetic energy is

minimised when every particle can hop to all neighbouring sites. This is the case when every first site

is doubly occupied while every second site is empty, or if every first site is occupied by a spin-up and

every second one is occupied by a spin-down electron. However, a double occupation of a site goes

along with an energetic cost of the Hubbard interaction U > 0, making the first state less favourable,

while every hopping in the second case leads to a double occupancy of the corresponding site and hence

goes along with an energy cost of U . Hence, the ground state phase of the Hubbard model depends

on the relation U/t. Thus, by tuning these parameters and those of the extensions to second nearest

neighbour hoppings and to nearest neighbour interactions the Hubbard model exhibits a big variety

of features like metallic or isolating behaviour, (unconventional) superconductivity, magnetic phases,

Mott-insulator transitions and more. Therefore it is frequently used as basis model for correlated

electron systems.

However, despite more than 50 years of research on this model, it has only been solved for some

special cases like the single site (t = 0)-limit, the non-interacting (U = 0)-limit [137] or in one-

dimension [138] or in infinity-dimensions [139]. In the following sections of this chapter we will first

present the computational details of our calculations and then discuss the two-dimensional case, the

three-dimensional case and the transition from 2D to 3D.
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5.1. Computational Details and Analysis

The calculations of the Hubbard model presented in the upcoming sections were performed based on

the FRG code presented in section 4. As the Hubbard model is SU(2)-symmetric, the corresponding

SU(2)-symmetric flow equations were employed to obtain the two-particle interactions. The reference,

against which the TUFRG is tested, are calculations based on the SU(2)-symmetric full lattice space

FRG provided by equation (3.280) in section 5.2. Based on this successful comparison, the two-

and three-dimensional Hubbard models are investigated based on the SU(2)-symmetric TUFRG flow

equations presented in corollary 3.31 with the lattice-space projections of corollary 3.32.

As we aim at treating large numbers of momentum points, we take the static limit such that the

interactions become frequency-independent1. As the ground state phase is independent of static self-

energies which mainly cause a shift of the chemical potential, we neglect self-energy contributions

in our calculations. Employing the Ω-cut-off we can, therefore, analytically solve the Matsubara

frequency sum according to section 4.3.2. With these approximations we have an effective one-band

model which is only treated in momentum and in form-factor space. To obtain even larger systems we

additionally exploit the lattice symmetry to reduce the computational costs as presented in section 4.4.

The lattice sizes for the interactions as well as for the propagators which were used for the different

calculations are always presented in the corresponding sections.

The initial parameter Λ0 at which the flow starts should be significantly larger than the band width

and is presented separately for each investigation, as it is model-dependent. The initialisation of the

vertex as V = U is trivial for the full lattice FRG, while there is an ambiguity in the TUFRG case. In

principle, the initial interaction U can equivalently be cast to the different channels or be treated as

a flow-independent component, as its projection to any channel is simply U for all on-site form-factor

components. For our calculations we take it as this flow-independent component.

As we are interested in the transition to ordered states, the natural choice would be to perform the

(TU)FRG flow at finite temperatures. If the metallic state is the ground state, no phase transition

appears and Λ = 0 can be reached. If a phase transition takes place at the investigated temperature,

a divergence appears at a finite critical cut-off Λc. Therefore, several calculations of the same system

parameters for different temperatures are required to obtain a transition temperature. As our calcu-

lations typically require 20-30 hours on 14 compute nodes for one parameter set, we want to avoid

such a large number of calculations. Therefore the (TU)FRG flow is performed at T = 0 so that we

will obtain a divergence of the flow at a finite critical cut-off scale Λc for all sets of model parameters.

This Λc defines a window of modes which were not integrated to obtain the interaction at this critical

scale. In comparison to this, the band gap results from an integration of all modes except those within

the band gap in the BCS theory of superconductivity or in the spin-density wave mean-field theory

in the weak coupling limit at a constant density of states. The band gap itself then corresponds to

the critical temperature up to a factor of unity. We therefore assume that the critical scale Λc is an

upper estimate for the critical temperature.

Starting with the initial configuration the (TU)FRG equations are evaluated for decreasing Λ, and

the largest element of the two-particle interaction is obtained in each step. If this largest element

exceeds a threshold which also depends on the bandwidth, the flow is stopped, and the corresponding

cut-off parameter is taken as critical parameter Λc. The type of the phase the system turns into can

be obtained by the divergence of the corresponding susceptibility (see discussion in section 3.3). To

1We also take the T = 0-limit, which will be discussed below.
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obtain the full description of the system the flow should be continued to Λ = 0, which requires an

accurate treatment of symmetry breaking. This can be done in a purely fermionic way [63] or by the

introduction of bosonic fields due to a decoupling by a Hubbard-Stratonovich transformation [140].

However, the current (TU)FRG approach is not suitable for this. Hence the phase has to be deduced

from the susceptibility which is obtained either by integrating its flow equations [103, 61] or by a

post-processing calculation. It has recently been shown that the post processing susceptibility based

on the flow of the two-fermion interaction with the multi-loop extension converges to the susceptibility

obtained by its flow equation [66]. The post-processing susceptibility which is based on the two-fermion

interaction in the corresponding channel at the critical scale can be compared with the flow-based

susceptibility at this scale based on references [103, 61] which display both of them. For the two-

dimensional Hubbard model these representations reveal that the two-fermion vertex itself already

exhibits the features of all possible arising phases. That is (see sec. 5.2.1 for more details), for example,

a strong divergence for a momentum transfer of (π, π) and one of half the intensity for a momentum

transfer (π,−π) if the anti-ferromagnetic susceptibility diverges, or a strong ordering feature with total

momentum 0 which changes in sign upon a rotation by π/2, if the d-wave superconducting susceptibility

diverges. In this way, the final interaction can be compared to an effective Hamiltonian, which exhibits

the corresponding features [104]. This becomes more accurate, when a mean-field decoupling of the

two-fermion interaction at the final scale is performed to obtain the phase properties, as described in

references [141, 142].

Hence, we did not calculate any susceptibilities, but focused on the effective interaction at the critical

scale. Thus, the emerging phase is obtained by a comparison of the final two-fermion interaction of

the full lattice space FRG calculation to the effective mean-field Hamiltonians, as we consider a well-

known parameter range as a reference. In the TUFRG case the diverging component of the vertex

projected to one channel, which leads to the termination of the flow, is directly associated to the

emerging phase. Hence we directly obtain the diverging channel (pairing, charge or magnetic), the

ordering vector (s, u or t) and the form-factor symmetry based on the form-factors associated to the

corresponding indices. This approach is reasonable, as a post-processing susceptibility based on these

two-fermion interactions corresponds to the product of two dual-propagators projected to this channel

with the projected vertex. As these dual propagators in general exhibit their largest values at the

same momenta as the interaction and as the product of them with the projected interaction is largest

for equal form-factors, the post-processing susceptibility will just show the same type of phase as the

projected vertex. Although the approach performed in this thesis is less accurate than the FRG+MF

one it is sufficient to indicate which ordering tendencies can be expected in different parameter ranges.
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Figure 5.2.: A: Unit cells of the lattice of different copper-oxide superconductors. The characteristic CuO
square layers in which the superconductivity takes place can be identified at the top and
at the bottom of the unit cells except for YBCO, where it is above and below the Yttrium
atom.
B: The relevant CuO-lattice with the Cu dx2−y2 and O pσ orbitals forming the valence bonds
is displayed. Figure taken from [143].

5.2. The 2D-Hubbard Model

Copper-based high-temperature superconductors consist of active layers of CuO2, where four copper

atoms form a square structure, while they are connected to each other by oxygen atoms (see fig. 5.2).

A few of these layers, glued together by Ca- or Y- atoms, form an active block, which is wrapped

by charge reservoir blocks. Similarly, iron-based high-temperature superconductors have an active

layer of iron-atoms, which are connected by P-, As-, Se- or Te-atoms, which lie above or below the

iron-plane and form a tetrahedrical substructure. The holes left by these substructures can be filled

with alkali-metal atoms or with a combination of them with an oxygen layer.

Planar superconductivity is observed in these compounds which takes place within the active layers

of Cu- or Fe-atoms on a square lattice. The electron hopping between two active layers is small and,

therefore, often neglected, so that it suffices to consider the simpler two-dimensional lattice [36]. In

this section we will, therefore, also consider the two-dimensional Hubbard model on a square lattice,

while the influence of a finite coupling in the perpendicular direction is investigated in section 5.4.

In iron-based superconductors typically three bands originating from Fe-d-orbitals cross the Fermi-

surface [144], so that a corresponding three-band model is required, as supposed by Eschrig [145].

Focusing on patches around the well localized electron- and hole-pockets which are formed by the three

bands, these materials were already treated in the scope of N-patch FRG by Platt [75]. In cuprates,

typically only the dx2−y2 band crosses the Fermi-energy [146], so that the 2D electronic structure can

well be reproduced by a one-band Hubbard model [147, 148]. Therefore, we consider the Hubbard

Hamiltonian on a square lattice, including nearest neighbour and second nearest neighbour hopping

terms as illustrated in figure 5.1. As we assume the lattice to be isotropic, the nearest neighbour

hopping is equivalent in x- and in y-direction, and we define this hopping t := tx = ty as our energy

scale. The second nearest neighbour has the same hopping-distance in every direction, and we denote

it as t′ = txy. Thus, the Hubbard Hamiltonian of the two dimensional square lattice is

H = −t
∑
〈i,j〉,s

ĉ†i,sĉi,s − t′
∑
〈〈i,j〉〉,s

ĉ†i,s ĉi,s + U
∑
i

n̂i↑ n̂i↓. (5.9)
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Figure 5.3.: Density of states (DOS) (left) and Fermi-surface (right) of the 2D-Hubbard model. At the
top for various values of µ at t′ = 0 t. At the centre and bottom for various values of t′ at
µ = 0 and µ = εvH, respectively.
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5.2. The 2D-Hubbard Model

All in all there are, thus, four parameters t, t′, U and µ which can be tuned. However, a simultaneous

rescaling of all of them leaves the system invariant, which justifies our ad hoc choice of t as energy

scale. The non-interacting part of this Hamiltonian can be computed analytically, resulting in the

single-particle dispersion

ε(k) = −2t (cos(kx) + cos(ky))− 4t′ cos(kx) cos(ky)− µ, (5.10)

in which we included the chemical potential µ. This dispersion relation exhibits saddle points at

(0,±π) and (±π, 0) (which are pairwise equivalent due to the 2π-periodicity) leading to logarithmic

van-Hove singularities in the non-interacting density of states at the energy εvH = 4t′−µ as shown in

figure 5.3. This figure 5.3 a;so displays Fermi-surfaces for different parameter sets of µ at t′ = 0 t. In

the half-filled case (i.e. µ = 0t), the Fermi-surface is a perfect square, in which the connection of the

points (π, 0), (0, π), (−π, 0) and (0,−π) leads to a perfect nesting. This means that the same vectors

k = (π, π) and k = (π,−π) correspond to a mapping between large segments of the Fermi-surface.

Moreover, the four segments of the Fermi-surface touch each other at the van-Hove points, which

leads to a large number of free states around these points. When the electron density is reduced,

the Fermi-surface moves away from the van-Hove points towards the Γ-point and becomes a smooth

curve. The straight lines, which lead to the perfect nesting, slowly fade away, and hardly any remaining

contribution can be identified for a filling below one quarter, where the Fermi-surface is almost a circle

around the Γ-point. The Fermi-surface behaves similarly, when the electron density is increased above

half-filling with the difference that it moves towards the (π, π)-point and forms a circle around this.

If t′ is varied and the chemical potential is fixed by µ = 4t′, so that the van-Hove points are always

an element of the Fermi-surface, the Fermi-surface bends towards the Γ-point for t′ < 0 and to the

(π, π)-point for t′ > 0, while it maintains its linear feature close to the van-Hove points (see fig. 5.3).

When the two-particle interaction is perturbatively calculated for the van-Hove filling, the particle-

particle channel diverges as log2 at s = 0 and as log at s = (π, π), while the particle-hole channel

as log diverges at t = 0 and as log at t = (π, π) either for t′ 6= 0 or as log2 for t′ = 0 [61]. As

these multiple divergences indicate a competition between different orders, we investigate the case of

the van-Hove filling in more detail. As a side effect the only free remaining parameter is the second

nearest neighbour hopping t′.

5.2.1. Phase Diagram of the 2D-Hubbard Model

In our calculations we chose U = 3 t, as the calculation of the 2D-Hubbard model aims at comparing

our results with previous ones (see [2, 67]), and we vary t′ in the range of [−0.45 t, 0 t] while maintaining

the van-Hove condition for the chemical potential µ. This means that, in the extreme cases, the system

is almost empty for t′ = −0.45 t or half filled for t′ = 0 t. The calculations were performed for various

values of t′ within this range for static vertices at T = 0 with the full vertex (cf. eq. (3.280)) while

exploiting the C4v-symmetry of the lattice. The initial scale was chosen as Λ0 = 60 t and the flow

continued until the largest vertex entry exceeded a value of V Λc
max = 70 t, which resulted in the critical

scale Λc.

The Λc − t′-phase diagram of the two-dimensional Hubbard model which is calculated on a rather

coarse 12× 12 lattice for the vertex and a 180× 180 lattice for the propagator pair (this kind of setup

is exemplarily shown in figure 4.2). An analysis of the full momentum vertex structure at this critical

scale in the way as described in section 5.1 reveals three different phases: For small values of −t′ (i.e.
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Figure 5.4.: Phase diagram of the 2D-Hubbard model based on the vertex with a full momentum
parametrisation.

−t′ < 0.2 t) the vertex divergence occurs for an ordering vector of Q = k2 − k3 = (π, π) and at the

same time with about half the value for Q = k1 − k3 = (π, π), indicating a divergence in the C- and

the D-channel, respectively. In a drastic simplification this feature can be regarded as a broadening of

a vertex consisting of delta-functions as V (k1,k2;k3) = J/4(2δk2−k3,Q + δk1−k3,Q), which is matched

by an effective antiferromagnetic spin-interaction of the form J
∑
〈i,j〉 e

iQ(Ri−Rj)SiSj with uniform

Heisenberg-interaction J [104]. Thus, we obtain a phase with a long range antiferromagnetic ordering

by a vector Q = (π, π) for small values of −t′. This ordering vector is exactly the perfect-nesting

vector described above, which connects a large number of states at the Fermi-surface with each other.

As the Fermi-surface bends away from the perfect nesting when −t′ is increased, the critical scale

decreases. However, the antiferromagnetic phase remains intact, although a thorough analysis shows

that the ordering vector moves slightly away from the perfect-nesting vector Q. This is due to the

effect of the Fermi-surface bending, which leads to a set of vectors with a similar length and with a

similar direction which map the Fermi-surface to itself.

In an intermediate range of values for −t′, i.e. 0.2 t <−t′ < 0.34 t, the dominating phase changes.

The vertex at the critical scale in this phase has a divergence at k1 +k2 = (0, 0), that is in the pairing

channel with zero-momentum transfer, which indicates a superconducting ground state. When the

incoming wave-vectors and the outgoing ones are close to the same saddle-point (±π, 0) of the Fermi-

surface, the interaction is attractive, while it is repulsive, when the momentum pairs are at different

saddle points. As this change of sign is represented by a dx2−y2 -symmetry, this correspondingly

indicates a dx2−y2 -wave pairing. This can be described by an effective Hamiltonian of the form VdSC =∑
kk′ d(k)d(k′)ĉ†k′↑ĉ

†
−k′↓ĉ−k↓ĉk↑ with d(k) = d0(cos kx − cos ky). When −t′ is increased within this

region, the critical scale indicating the onset of this d-wave superconducting ground state decreases

by at least one order of magnitude to Λx ≈ 10−3 t.

Beyond the range of this region another phase appears at −t′ ≈ 0.34 t. The vertex at this point

turns into a state which diverges at k3−k1 = (0, 0). This corresponds to the vertex in the C-channel

parametrisation, and thus indicates ferromagnetic order. The critical scale exhibits a drastic decrease

between the FM and the dSC phase, which is argued to originate from a competition between these two

158



5.2. The 2D-Hubbard Model

0.5 0.4 0.3 0.2 0.1 0.0
t′/t

10-5

10-4

10-3

10-2

10-1

100

Λ
c
/t

FM dSC AFM

Honerkamp
Husemann 2009
Husemann 2012
Lichtenstein
this work

Figure 5.5.: Phase diagram of the 2D-Hubbard model calculated in this work in comparison to results
obtained by others, i.e. Honerkamp [150], Husemann (’09) [67], Husemann (’12) [114] and
Lichtenstein [2]. The critical temperature obtained by Honerkamp is directly compared to
the critical cut-off scales of the other references, revealing the divergence appearing at similar
scales, such that a comparison of both properties is reasonable. Further, the critical scales
obtained in our calculation are in good agreement with those obtained in the presented
works.
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Figure 5.6.: Convergence of the TUFRG approach for the 2D-Hubbard model with an increasing number
of shells towards the full momentum space result. According to section 4.2 0, 1, 2, 3, 4, 5, 6
shells correspond to 1, 5, 9, 13, 21, 25, 29 form-factors, respectively.

orders which exclude each other. The van-Hove singularities on the one hand lead to a log2 divergence

of the Cooper pair scattering, while, on the other hand, the logarithmic divergence of the density of

states supports ferromagnetic tendencies. As these processes have opposite signs, they suppress each

other [104]. While this point is under the debate of being a quantum-critical point [124, 149], our

results, in agreement with the observation by others [67, 2], do not support this.

We compare the data obtained by our FRG approach in figure 5.5 with those obtained by other FRG

calculations based on the exchange parametrisation [67] or on the N -patch scheme [150], which used

the static approximation, too. One can see that the three different approaches reveal good agreements

among each other. However, the behaviour of our approach differs in the indicated transition value

of t′ from the other ones due to a reduced number of investigated t′ values. We further attribute

differences and especially the discrepancy in the FM region to the coarse momentum resolution.
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5.2.2. Convergence of the TUFRG Approach

The TUFRG approach should result in the same phase diagram as the conventional full FRG case,

when the basis sets have the same size, that is the number of form-factors are equal to the number of

points which discretise the Brillouin zone. As calculations with such a large number of form-factors

are not feasible due to the O(n3
FF)-scaling, we investigated the convergence by increasing the number

of form-factor shells taken into consideration, by starting with the on-site one going up to the sixth

form-factor shell, which are 29 form-factors according to the C4v-symmetry of the lattice. Hence,

the form-factors correspond to those displayed in table 4.2 and to those created for longer ranged

bond-vectors in the same way. These calculations were performed on a coarse lattice of 45× 45 points

for the interactions and a on refined lattice of 1125 × 1125 points for the dual propagators, while the

initial scale and the critical vertex value were chosen as above. In figure 5.6 one can see that the

zeroth shell TUFRG is not capable of reproducing the results of the full vertex calculation in the

d-wave SC-phase. This is due to the missing d-wave form-factors, which only come into place with

the first shell of form-factors. When these first shell form-factors are included, the TUFRG already

reproduces the full vertex result of the previous section very well. If even more form-factor shells are

taken into consideration, there are hardly any changes of the critical scale in the AFM-phase. In the

dSC and FM part of the diagram there are always shell-ranges with almost identical critical scales.

Therefore, we only observe a change in the critical scale in the SC-phase when moving from the third

to the fourth form-factor shell. However, there is already a change from the first to the second shell

in the FM-region and another one from the third to the fourth shell, each of them decreasing the

critical scale. This most significant change which appears at the transition between the SC- and the

FM-region is expected, as an increased number of shells improves the resolution of both competing

orders.
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5.3. The Isotropic 3D-Hubbard Model

In this section we consider the isotropic three-dimensional Hubbard model described by the Hamil-

tonian

H = −t
∑
〈i,j〉,σ

ĉ†i,σ ĉj,σ + U
∑
i

n̂i,↑n̂i,↓ (5.11)

with the corresponding dispersion relation

ε(k) = −2 t
(
cos(kx) + cos(ky) + cos(kz)

)
− µ . (5.12)

The corresponding Fermi-surface at half-filling can be regarded as tubes along the three coordinate

axes, which are smoothly connected by a bending Fermi-surface (see fig. 5.7). The density of states

(fig. 5.7, right) has a plateau for [−2 t, 2 t], while it has a tangent-like increase (decrease) for below

(above) this part, revealing a discontinuity at the connecting point ε = −2 t (ε = 2 t). Due to the

curved character of the Fermi-surface and the absence of singularities in the density of states, there

is no hint towards any perfect nesting. For a TUFRG treatment the form-factors correspond to those

generated by the algorithm presented in section 4.2 and displayed in table 5.2, as the corresponding

simple-cubic lattice belongs to the Oh-point group. We remark that large parts of the TUFRG analysis

of the three-dimensional Hubbard model, which are presented in the following part of this section, are

published in reference [151].

5.3.1. Half-Filled Hubbard Model

Using the nearest neighbour form-factors for TUFRG calculations with SU(2)-symmetry and a

momentum mesh of 163 with a refinement of 353 for the propagators we calculated the phase diagram

of this 3D-Hubbard model at half-filling for the interactions of 0 t < U ≤ 5 t. For the whole range

of parameters we observed a transition to an AFM ground state with the ordering-vector (π, π, π),

as exemplarily shown for U = 1 t by a line-scan in figure 5.8. The critical scale tends to Λc = 0 t

for U ≈ 0 t and increases parabola-like with the interaction strength (see figure 5.9). While other

methods obtain a Néel temperature for the phase transition, we treat the critical scale as an effective

temperature. A comparison of published results in references [150] and [67] shows that the critical

scales have values of the same order of magnitude as the critical temperature, which justifies a direct

−6 0 6

0.1

0.2

ε(t)

n

Figure 5.7.: Fermi-surface of the three-dimensional Hubbard model at half-filling (left) and at µ = −2 t
(centre) and the density of states at half-filling (right).
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Name Shell Momentum Space Representation

s 0 const
ext. s 1 cos(kx) + cos(ky) + cos(kz)
dx2−y2 1 cos(kx)− cos(ky)
dz2 1 − cos(kx)− cos(ky) + 2 cos(kz)
px 1 sin(kx)
py 1 sin(ky)
pz 1 sin(kz)
s3 2 cos(kx) cos(ky) + cos(kx) cos(kz) + cos(ky) cos(kz)
dxy 2 sin(kx) sin(ky)
dxz 2 sin(kx) sin(kz)
dyz 2 sin(ky) sin(kz)

Table 5.2.: List of form-factors fi(k) used for the calculations. For the calculations of the Λc vs. U -phase
diagram at half-filling in section 5.3.1 only the first seven ones were used, which correspond
to the on-site and the nearest neighbour form-factors were used, while for the phase diagram
of the doped system in section 5.3.2 the full list was used, including some second nearest
neighbour form-factors.
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Figure 5.8.: Linescan along the high-symmetry lines connecting Γ = (0, 0, 0), X = (π, 0, 0), M = (π, π, 0)
and R = (π, π, π) for the final vertex projected to the form-factor resolved C-channel (left)
and the P-channel (right) at half-filling for an initial interaction of U = 1 t.
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Figure 5.9.: Phase diagram of the half-filled three-dimensional Hubbard model. The critical scale Λc ob-
tained in this thesis (TUFRG) indicates a transition to an AFM ground state with (π, π, π)
ordering. This result is compared to the Néel temperature indicating a corresponding phase
transition obtained by other methods, i.e. spin-fluctuation corrected Random Phase Approx-
imation (RPA) [34, 152, 153], Dynamical Mean Field Theory (DMFT) [154], Dual Fermion
(DF) [154], Quantum Monte Carlo (QMC) [155], Dynamical Vertex Approximation (DΓA)
[156], Determinantal Diagramatic Monte Carlo (DDMC) [157] and Dynamical Cluster Ap-
proximation (DCA) [158].

comparison. However, this is still a hand waving argument so that we rather focus on the shape of

the transition curves.

The limit of weak interactions of this model is well described by a perturbative treatment of the

relevant charge-pairing channel, which results in a Stoner condition for the corresponding divergence

[152]. Freericks et al. [153] showed that a division of the critical temperature TN by 3 can account for

local contributions of the pairing channel [34]. The corresponding behaviour is well reproduced by our

TUFRG results (see also the inset in fig. 5.9). However, the TUFRG has a slightly larger curvature

leading to a transition at smaller critical scales for semi-weak interactions (1.5 t ≤ U ≤ 4 t), which

is caused by the full inclusion of the other channels. The shape of the TUFRG curve also fits well

to the one of the density functional theory (DMFT) [154] and to the one of the dual fermion (DF)

approach [154] for semi-weak interactions. In the U ≈ 0 t limit the negligence of non-local correlations

in DMFT leads to an overestimation of the critical scale in comparison to RPA. At U = 4 t the

critical scale Λc of our method is in good agreement with the critical temperatures obtained by

quantum Monte Carlo (QMC) [155] and by the dynamical cluster approximation (DCA) [158]. For

stronger interactions U > 4 t the TUFRG method overshoots all the other results similar to RPA. In

order to understand this we first regard the limit of strong interactions, where the three-dimensional

Hubbard model becomes the Heisenberg model with J = t2/U and the Néel temperature approaches the

Heisenberg limit TN = 3.83 t/U [159, 160]. While this magnetic ordering temperature decreases, a metal-

insulator transition can be observed [155] at a higher transition temperature for U ≈ 12 t, leading to

an excitation gap for the magnetically disordered phase. Thus, the Néel temperature increases from

both sides towards intermediate interactions, where a maximum of it is reached going along with a

pseudo-gap like behaviour [161]. These observations reveal that frequencies and especially self-energy

effects play a crucial role in the phase diagram of the three-dimensional Hubbard model beginning at

intermediate interactions U ≈ 4 t. As those effects were neglected by our TUFRG approach and in

the RPA, both methods are expected to fail in the corresponding parameter range. Contrary, they
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Figure 5.10.: Phase-diagram of the three-dimensional Hubbard model upon doping. For µ < 0.8 t the
flow did not converge within the precision range provided by our resolution, indicated by
a horizontal dashed line. An investigation of the resulting vertex at the final scale and of
the increase of the channels during the last steps of the flow lead to the indicated ordering
tendencies in this range of parameters.

are explicitly included in the other methods. In addition, RPA and FRG are known to work well only

for the weak and for the weak to intermediate interacting regimes, respectively.

Summarising these results yields that the TUFRG without self-energy effects provides good results

for a weak interaction strength U ≤ 4 t, and the critical scale corresponds well to the Néel temperature

of the isotropic Hubbard model.

5.3.2. Doped 3D-Hubbard Model

According to the previous results the TUFRG is capable of a rigorous investigation of the effect of

hole-doping on the ground state of the Hubbard model at U = 4 t. Upon corresponding doping the

tubes of the Fermi-surface along the axes become smaller until they completely close at µ = −2 t (see

fig. 5.8). At this value the Fermi-surface has exactly the same square shape in the x=0-plane as in the

half-filled two-dimensional Hubbard model, thus revealing perfect nesting conditions for vectors of the

form (0,±π,±π). The same applies for the other planes orthogonal to the axes with corresponding

alternative nesting vectors. The density of states for µ = −2 t is exactly at the discontinuity which

indicates the beginning of the plateau.

For the calculation of the phase diagram we used two shells of form-factors of the Oh point group

(see table 5.2) and a momentum mesh of 143 points, refined by 353 points for the propagators, which

was limited by the granted computation time. Based on this we estimated the energy resolution to be

of the order of O(10−5) so that the flow is stopped at this scale, if no divergence (i.e. V X
max > 30 t) has

occurred before. Thus we observe a transition for µ > −0.7 t, while the resolution does not allow to

obtain one for smaller values of the chemical potential. Despite the limited resolution we investigated

the two-particle interaction in the different channels at the end of the flow for all calculations and,

thus, observed three different ground state phases (see fig. 5.10).

At half-filling the system is in an AFM state with the ordering vector (π, π, π), as discussed in the

previous section. For a weak hole-doping (−0.5 t / µ / 0.0 t) this AFM order becomes incommensu-

rate, as the main peak moves along the Brillouin-zone surface-planes towards their centre, that is it
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Figure 5.11.: The s-wave form-factor contribution of the full vertex at the final scale Λc projected to the
C-channel is displayed in the z = π-plane for µ = 0.0 t (left) and µ = −0.4 t (right). The
AFM nesting vector (π, π, π) splits up and becomes incommensurate upon doping, and,
thus, moves along the (x, π, π) and along the (π, y, π) lines.
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Figure 5.12.: Linescan along the high-symmetry lines connecting Γ = (0, 0, 0), X = (π, 0, 0), M =
(π, π, 0) and R = (π, π, π) for the final vertex projected to the form-factor resolved C-
channel (left) and to the P-channel (right) with µ = −0.6 t.

moves along the x=y=π-axis from z = π to z = 0, as displayed in figure 5.11, and correspondingly for

the other axes. At half-filling one can always find a vector of the form (π, π, π) mapping one segment of

the Fermi-surface to another one. Upon doping the Fermi-surface changes, so that a mapping is only

possible for the corresponding vectors of the form (π, π, π±ε), with ε being the difference with respect

to the perfect nesting. While this phase transition is observed at critical scales Λc/t ≈ 10−2 − 10−1,

this critical scale drops by three orders of magnitude to 10−5, when the chemical potential is further

decreased.

In the doping range of −0.9 t . µ . −0.5 t we observe the divergence of the flow in the dz2−r2 -

pairing channel for s=0, leading to a corresponding ground state (see fig. 5.12). In the doping range

of −1.3 t . µ . 0.9 t no divergence was reached, but we observed strong pairing fluctuations in the

very same channel. In this region we assume a tendency to this superconducting ground state, as

the increase of this contribution is one order of magnitude larger than the AFM one, although the

largest coupling at the end of the flow was observed in the AFM channel (see fig. 5.13 and 5.14). As

the form-factor of this SC-state belongs to the same irreducible representation as the dx2−y2 one, a

similar behaviour should be observed for the latter one, as their coupling strengths are related by a

constant factor. Correspondingly, in figure 5.12 (right) a peak in this form-factor can be observed

with a significantly weaker strength. As the relation between these two couplings roughly remains

constant throughout the flow, until the divergence is approached, we assume that the numerics can
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Figure 5.15.: The s-wave form-factor contribution of the full vertex at final scale Λc projected to the
C-channel for µ = −1.8 t in the z = π-plane (left) and in the z = 0-plane (right).

not provide this relation close to a phase transition. If we take a look at the channel corresponding to

the AFM instability, the corresponding incommensurate ordering tendency can still be observed (see

fig. 5.13, left), while the tendency towards (π, π, 0) ordering vectors continues. However, the coupling

strength of this ordering is smaller than the superconducting one and has a lower increase during the

last steps, so that it is suppressed compared to the favoured SC state.

However, for an even stronger hole-doping of −2 t < µ . −1.3 t this incommensurate AFM-phase

dominates over the superconducting one with a set of AFM ordering vectors of the type (π, π, ε) in

every direction (see fig. 5.15). As the Fermi-surface at µ = −2 t corresponds to the perfect nesting

two-dimensional one in every plane, the nesting vector becomes (π, π, 0), exactly as expected. The

observed incommensurate AFM order for a filling away from this is, therefore, also in good agreement

with this expectation, as the Fermi-surface bends to the outside and thus requires a corresponding

adaptation of the ordering vectors.

The results are in good agreement with those of Scalapino and co-workers [162] who investigated

the doping of the simple cubic three-dimensional Hubbard model based on the spin-fluctuation theory.

Their results revealed a spin-density wave state for the para-magnon propagator for µ > 0.8 t, which fits

to the AFM state we observed. In the region below they observed a dx2−y2 - or a d3z2−r2 -pairing until

µ ≈ −2 t, where the system changes to a dxy-pairing. While we observed the same d-wave ordering for

−1.3 t . µ . −0.8 t, we observed a (π, π, 0)-AFM state for −2 t < µ . −1.3 t. On the one hand, our

flow did not diverge into a final state in this parameter region. Thus there exists the possibility that we

might have missed the appearance of this phase-transition. On the other hand, in the spin-fluctuation

theory used by Scalapino et al. [162] the interaction is calculated in a diagrammatic RPA-like fashion

which only includes singlet and triplet electron-hole diagrams. Moreover, the coupling constants are

calculated by Fermi-surface integrals. Our TUFRG approach, however, contains all diagrammatic

channels in an unbiased way and their inter-channel couplings. At the same time a fine resolution

of the full Brillouin zone is used for the integration, so that no possible contribution may be missed.

Hence, the results are assumed to be trustworthy. However, an analysis with an improved resolution

would still be of interest to confirm if the phases we extrapolated from the vertex at the end of the

flow form the actual ground state phase.
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5.4. Non-Isotropic 3D-Hubbard Model

As described in section 5.2, the layers of atoms arranged on a square lattice are the active parts lead-

ing to superconductivity in iron- or copper-based SCs. Therefore, approaches considering only these

two-dimensional sheets are quite successful in describing the relevant pairing mechanism. However,

these layers are embedded in a three-dimensional solid, which influences the tendency to superconduc-

tivity. Some previous studies compared the Hubbard model with second nearest neighbour hopping

on a two-dimensional square lattice and one on a three-dimensional simple cubic lattice which were

either based on a phenomenological spin-fluctuation theory [163] or on the fluctuating exchange ap-

proximation [164] or on the mean field theory [165]. In the phenomenological theory it was shown that

the critical temperatures in 2D as well as in 3D are similar, when the parameters are scaled by the

bandwidth. In the other two studies it was observed that the transition temperature to a d-wave SC

state is significantly larger in the two dimensional case than in the three dimensional one. Moreover,

these two studies revealed a tendency to a singlet d-wave superconductivity close to the AFM phase,

which is stronger than a triplet p-wave SC order in the proximity of FM order.

While these results are consistent the studies only consider an isotropic setting. As the inter-

plane-hopping between the active layers of the superconductors will, of course, be smaller than the

intra-plane-hopping the investigation of anisotropic 3D-Hubbard models is of interest. Therefore, we

model the system by the extended anisotropic Hubbard Hamiltonian

H = −
∑

<i,j>,σ

tij(ĉ
†
i,σ ĉj,σ + ĉ†j,σ ĉi,σ)−

∑
�i,j�,σ

t′ij(ĉ
†
i,σ ĉj,σ + ĉ†j,σ ĉi,σ) + U

∑
i

n̂i,↑n̂i,↓, (5.13)

where, again, <> denotes nearest neighbours (NN) and�� denotes next nearest neighbours (NNN).

The hopping parameters are chosen to be

tij =

t for i, j NN in x-y-plane

tz for i, j NN along z-axis
t′ij =

t′ for i, j NNN in x-y-plane

t′z for i, j NNN in x-z- or in y-z-plane,

(5.14)

thus resulting in the dispersion relation

ε(k) = −2 t(cos(kx) + cos(ky))− 2 tz cos(kz)

− 4 t′ cos(kx) cos(ky) − 4 t′z(cos(kx) cos(kz) + cos(ky) cos(kz)) − µ (5.15)

which has a bandwidth of 4t+4t′+2tz +8t′z. This set of parameters enables an activation of the third

dimension by increasing tz and t′z. This means that, on the one hand, the two-dimensional Hubbard

model discussed in section 5.2 is again obtained for the choice of tz = 0 t and t′z = 0 t. On the other

hand, the extended isotropic 3D-Hubbard model is obtained for tz= t and t′z= t′, which becomes the

model discussed in section 5.3 for a vanishing second nearest-neighbour hopping, that is for t′=0 t.

This approach of tz and t′z as parameters simulating the three-dimensional character is justified,

as they represent the overlap of Wannier orbitals2 of different layers stacked in the z-direction. As

a rough estimate, the relation between the xy-lattice parameter a and the distance az between two

layers in z-direction correspond to the relation between t and tz. If the planes are close to each other,

2The type and orientation of the orbitals is, in general, of importance. As this can be included in the considerations
by an additional scaling factor we only, for simplicity, discuss the isotropic orbitals, that is s-orbitals.
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that is a > az, then the orbitals have a large overlap, leading to an enhanced electron mobility in the

z-direction t < tz. Therefore, tz � t corresponds to a transition from the three- to the one-dimensional

Hubbard model [166]. If the distance of one atom to its neighbours in x-, y- and z-direction is similar,

that is a ≈ az, then the orbitals have a similar overlap, resulting in the isotropic case t ≈ tz. Finally,

if the two layers are further away from each other, that is a < az, then the orbitals in the z-direction

have a small overlap, resulting in a reduced mobility in the z-direction compared to the one within

the xy-plane, that is t > tz.

In the case of copper-based superconductors the bonds in the square-plane are formed by oxygen p-

orbitals and by copper d-orbitals, which are directed within the planes and therefore only have a small

extent in the z-direction. Hence, these materials are described by a parameter setting corresponding

to t > tz.

Daré et. al. [167] investigated the anisotropic d-dimensional Hubbard model for t′ = t′z = 0 t at

half-filling with a two-particle self-consistent approach based on RPA and derived scaling laws for

the transition to the AFM state with the d-dimensional ordering vector Q = (π)d. The resulting

critical exponents are the same as the n → ∞-limit of the O(n) classical model. However, as the

perfect nesting in two dimensions leads to an exponential increase of the correlation length instead of

a power law in terms of temperature, the transition from 2D to 3D was only considered for a quasi

two-dimensional system with tz � t, i.e. tz < 0.1 t. In this case, the authors observed a regime

in which the phase transition occurs, before the movement of single particles between the planes is

possible due to thermal fluctuations, as tz � TN.

In a FLEX based study, Takimoto and Moriya [18] considered the transition of the extended Hub-

bard model from two dimensions to three dimensions by varying the anisotropic parameter tz, which

is in the range [0.1 t, 0.8 t], for various electron densities below the half-filled one. The next near-

est neighbour hopping in the xy-plane was fixed to t′ = −0.2 t, while the anisotropic next nearest

neighbour hopping was accordingly scaled as t′z = tz · t′. In this setting, in good agreement with

the differences between the pure 2D- and 3D-phases mentioned above, the d-SC-phase is gradually

suppressed, when the hopping in the third direction tz is increased, while the Néel temperature for

the AFM-phase close to half-filling increases. However, the d-SC-phase turns into an incommensurate

SDW-phase, which, for small anisotropies of tz ≈ 0.3 t, coexists with the SC order.

With our calculations we aim at extending the parameter range covered for the transition between

the 2D- and the 3D-Hubbard model, and we investigate the importance of the features of the Fermi-

surface in the xy-plane. For that purpose, we fix the chemical potential to fulfil the two-dimensional

van-Hove condition in the (kz = 0)-plane, that is µ = 4t′ − 2tz. At the same time we vary both, t′

and tz, and consider first a vanishing t′z (cf. sec. 5.4.1), and second a scaled one t′z = tz · t′ (cf. sec.

5.4.2) in the same way as Takimoto and Moriya did [18]. Thus, only t′ and tz remain as independent

parameters which have to be varied, resulting in the the electron densities displayed in table 5.3.

5.4.1. The t′z = 0-Phase Diagram

We investigate the range of t′ ∈ [−0.5 t, 0 t] like in section 5.2 and simulate the increasing influence of

the next plane by varying tz over two orders of magnitude, that is tz/t ∈ {0.01, 0.05, 0.1, 0.5}. For some

parameter combinations the Fermi-surface of the non-interacting system is displayed in figure 5.16.

Upon variation of t′ the Fermi-surface changes for all tz values in the (kz=0)-plane in the same way as

described in section 5.2. For small values of tz this shape of the Fermi-surface is basically maintained

169



5. Application to the Hubbard Model

tz = 0.01 t

−π 0 π

kx

−π

0

π

k
y

0

2

4

6

tz = 0.05 t

−π 0 π

kx

−π

0

π

k
y

0

2

4

6

tz = 0.1 t

−π 0 π

kx

−π

0

π

k
y

0

2

4

6

8

tz = 0.5 t

−π 0 π

kx

−π

0

π

k
y

0

2

4

6

Figure 5.16.: Fermi-surfaces (left and middle column) and energy maps in the (z = π)-plane (right
column) of the non-isotropic Hubbard model. The anisotropy increases from top to bottom
corresponding to tz/t = 0.01, 0.05, 0.1, 0.5. For tz = 0.5, i.e. in the lowest row, the next-
nearest neighbour hopping is tz = 0t (left) and t′ = −0.24t (centre and right) while in
the other three cases it is set to t′ = 0t (left) and t′ = −0.45 t (centre and right). When
t′ = −0.24 t is further increased for tz = 0.5 t, the Fermi-surface does not reach the (z = π)-
plane any more. Similarly, for tz = 0.1 t and t′ = −0.45 t the Fermi-surface only reaches
the point (0, 0, π).
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t′ tz
0.01 t 0.05 t 0.1 t 0.5 t

0.0 t 0.98 0.93 0.90 0.64
0.01 t 0.89 0.86 0.81 0.55
0.015 t 0.85 0.81 0.76 0.49
0.02 t 0.82 0.77 0.71 0.42
0.024 t 0.78 0.72 0.67 0.37
0.026 t 0.76 0.70 0.66 0.34
0.028 t 0.73 0.68 0.62 0.31
0.030 t 0.71 0.66 0.59 0.28
0.032 t 0.68 0.63 0.58 0.26
0.034 t 0.66 0.59 0.53 0.23
0.036 t 0.63 0.56 0.50 0.21
0.040 t 0.56 0.49 0.42 0.16
0.045 t 0.44 0.33 0.23 0.09
0.050 t 0.0

Table 5.3.: Electron densities for t′z = 0 t and the various parameter sets t′ and tz. The electron densities
in the case of t′z 6= 0 are almost identical.
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Figure 5.17.: Density of states (DOS) for tz/t = 0.01, 0.05, 0.1, 0.5 from left to right and for various
values of t′.

along the kz-direction, although the edges originating from the van-Hove condition become rounded

and slightly move inwards. For increasing values of tz, the Fermi-surface moves further inwards along

the kz-direction. Thus, the Fermi-surface has a square-shape in the (kz =π)-plane for tz = 0.1 t over

the whole range of values of t′, while for tz = 0.5 t it is circular for t′ > −0.25 t and closes completely

before reaching this plane for t′ < −0.25 t.

The density of states (DOS) for tz ≤ 0.01 t resembles the two-dimensional one (see fig. 5.3), that is

a diverging DOS at ε = 0 t on top of a small offset resulting from the third dimension. For tz = 0.05 t

the DOS only features a divergence for all t′ =−0.5 t. For small values of −t′ it starts to exhibit a

plateau between ε = 0 t and a small ε > 0 t similar to the DOS of the three-dimensional Hubbard

model (see fig. 5.7). When −t′ is increased, the lowest possible state is moved to higher energies by

which the corresponding shoulder evolves into a peak, so that two peaks close to the Fermi-energy

are present: One originating from the low-energy shoulder and one at ε = 0 t which dominates. For

tz = 0.1 t the main peak remains at the Fermi-energy, while the peak of the left shoulder and the end

of the plateau move to larger energies, so that the left peak and the main peak merge into one for

t′ = −0.45 t. For tz = 0.5 t the onset of the plateau remains at ε = 0 t, but as the peak of the left
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Name Mom. Space Representation
s const
- cos(kx) + cos(ky)

dx2−y2 cos(kx)− cos(ky)
- cos(kz)
px sin(kx)
py sin(ky)
pz sin(kz)

Table 5.4.: On-site and first shell form-factors corresponding to the D4h-symmetry group.
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Figure 5.18.: Flow of the charge chantex in the on-site form-factor (C s-wave) and pairing chantex in
the px (SC p-wave) and the dx2−y2 (SC dx2−y2 -wave) form-factors towards the critical
scales. The sets of parameters correspond, from left to right, to a final antiferromagnetic
(t′ = 0 t), d-wave superconducting (t′ = −0.24 t), ferromagnetic (t′ = −0.4 t) and p-wave
superconducting (t′ = −0.45 t) phase as tz = 0.05 t.

shoulder moves to positive energies, the main peak remains at the Fermi-energy only for t′ > −0.25 t,

while it moves to values of higher energy upon increasing −t′ in the other cases.

As different ordering vectors are favourable due to the Fermi-surfaces and as a divergence of the

DOS indicates a van-Hove singularity, we expect the system to evolve into different ordered states. In

order to detect them and to resolve which is the dominant one, calculations employing the TUFRG

were performed for these parameters.

As the anisotropy in z-direction breaks some symmetries in comparison to the simple-cubic Hubbard

model (see section 5.3), this model has the point group symmetry D4h, which is, as well as the SU(2)-

symmetry, exploited to reduce the numerical costs. The form-factors belonging to this point group are

displayed in table 5.4, where the similarity to those of the V4v group can clearly be seen. Therefore,

we are able to use 21 momenta in each direction for the interactions and resolve the dual propagator

integrals on a mesh of (21 ·11)3 ≈ 12.3 ·106 momenta in a static TUFRG calculation with an Ω-cut-off.

The flow is started with an initial interaction of U = 3 t at Λ0 = 100 t, and it is stopped, when one

vertex entry exceeds the value of Vcrit = 70 t, signalling a divergence.

During the flow to low scales we keep the maximal values of the chantices for all form-factor

combinations under surveillance. As we observed that those with unequal form-factor indices are

significantly smaller than those with equal ones, we focus on the latter ones. In figure 5.18 we display

the corresponding maximal values of the vertex with equal form factors for four different parameter

sets, which represent the four possible orderings we observed in the calculations. During the flow,

the on-site C-channel chantex starts to increase right from the beginning of the flow, but reaches a

plateau at Λ ≈ 1 t with a finite value in the order of 1 t. This behaviour displays the emergence of AFM

fluctuations and is similarly observed for all investigated parameter sets. Contrary, the behaviour at

lower energy scales differs in several ways. In some cases a further increase of the on-site C-channel
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Figure 5.19.: Phase diagram of the anisotropic 3D-Hubbard model with t′z = 0 t in two different repre-
sentations. Due to the limited numerical resolution no divergences for Λc < 10−6 t could be
observed, so that all the corresponding cases are displayed by a critical scale Λc = 9 ·10−7 t
without a favourable ordering in the left plot. In the right plot, u as unidentified refers to
an appearance of features of different ordering tendencies at the same time, such that even
an educated guess is impossible.

chantex is leading to a divergence. In other cases, the P-channel in the dx2−y2 -form-factors or in the px-

and in the py-form-factors rapidly increases, faster than the C-channel, so that its contribution leads

to the divergence. As these divergences occur at parameter specific values of Λ and as the assumption

of a weak interaction which the TUFRG is based on breaks down, the flow is stopped at this scale

which we denote as critical scale Λc, as pointed out in section 5.1. While the form-factor resolved

behaviour of the chantices during the flow already hints to an emerging phase which will probably

occur at the critical scale, an analysis of the vertex at Λc projected to the different channels is required

to verify this phase and to obtain the ordering vector. In the case of p- or d-wave superconductivity

the ordering vector is always s = (0, 0, 0) in our case, while ordering vectors of the vertex in the

C-channel are located at the corner of the Brillouin zone for an AFM ordering (i.e. three-dimensional

at t = (π, π, π) or planar e.g. at t = (π, π, z)) and at t = (0, 0, 0) for an FM ordering. In several

cases the vertex at the critical scale not only exhibits the feature of the dominant, but also those of

suppressed phases.

The resulting phase diagram based on the parameters introduced above is displayed in figure 5.19.

In the figure on the left we observe that the general shape of the Λc − t′-curve is maintained for

tz < 0.5 t at all the investigated values of t′ except for t′ = −0.5 t and that it resembles the one of the

two-dimensional Hubbard model (see fig. 5.4). The difference between the curves is a reduction of the

critical scale with an increasing importance of the z-direction, which is due to the reduced DOS at the

Fermi-energy. Regarding the different phases, we observe a large variety of different AFM orderings

for small values of −t′ due to the different importance of the z-direction.

First, we fix t′ = 0 t and note that the third dimension is less important for small values of tz,

so that an AFM ordering vector (π, π, z) exists for all values of kz, which is denoted as the xyafm-

phase (see fig. 5.20, first row). This results from the Fermi-surface which basically is a tube with

the characteristic square-like shape in the xy-plane enabling perfect nesting. We further note that

the critical scales for the onset of the AFM-phase are significantly larger than tz, as Λc ≈ 0.18 t for

tz = 0.01 t. These observations for weak interactions are in good agreement with the suppressed

hopping in z-direction, as pointed out by Daré [167].
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When the z-direction becomes more important (tz = 0.1 t), the Fermi-surface bends further away

from the perfect nesting condition towards the surface of the Brillouin zone, so that the perfect nesting

is only possible close to the (kz=0)-plane. Therefore, we only observe a divergence in this plane (see

fig. 5.20, first row) and denote this phase as xy0afm-phase.

Next, we consider small finite values of −t′ and note that the xyafm-order which was observed for

t′ = 0 t is preserved, before the d-wave pairing becomes dominant when tz is small. However, for

tz ≥ 0.05 t between the xyafm or the xy0afm order and the d-wave SC order a three-dimensional

incommensurate AFM order (iafm) becomes dominant (see fig. 5.20, first row). This results from the

fact that, on the one hand, already small finite values of −t′ lead to a bending of the Fermi-surface

within the xy-plane and that, on the other hand, the values of t′ cause an additional bending in the

z-direction. Thus, the perfect nesting is no longer fulfilled for (π, π, z) or (π, π, 0 + ε), but instead

a nesting of (π + ε, π + ε, π) becomes favourable, similar to the doped 3D-Hubbard model (see sec.

5.3.2), which agrees well with the observation of reference [18]. The phase diagram (cf. fig. 5.19)

suggests that, in comparison to the xy(0)afm-phase the critical scale is enhanced for this phase, so

that we assume a three-dimensional AFM ordering with the ordering vector (π, π, π) suppressed by

the dominant two-dimensional density of states with a corresponding perfect nesting.

When −t′ is further increased, a broad range of d-wave SC appears as a divergence of the P-channel

based on dx2−y2 -form-factors (see fig. 5.20, second row), which starts at smaller values of −t′ and at

lower critical scales Λc, when tz is increased. These smaller values of Λc are due to the reduced DOS

with increasing values of tz at the Fermi-surface. As AFM SDW appear at larger scales Λ of the

flow, this SC instability is driven by them. At the final scale features of the incommensurate AFM

order can still be observed, of which the ordering vector moves further away from (π, π, π) towards

(0, 0, π) (see fig. 5.20, second row). This can also indicate a coexistence of AFM order and of d-wave

SC order in this range, as observed by Takimoto et al. [18]. The transition to the d2
x − y2 symmetry

goes along with a reduction of the C4v symmetry in the xy-plane to C2v, as a rotation of π/2 results

in a global minus-sign. In the phase diagram we further observe that the d-wave superconductivity

tends to very small values of Λc for t′ ≈ −0.34 t, which are beyond our momentum space resolution.

At these points we can only take the flow of the chantices in the form-factors in which we expect

the divergence and the interaction at the final scale, and then make an educated guess on the final

dominant phase. This is done for the non-diverged flow in the right plot of figure 5.19. For some

parameter sets the arguments indicating the possible phases are exemplarily shown in table 5.5 and

in more detail, including the corresponding figures, in appendix C. When the indications towards

two different phases are comparable, we denote this as u in figure 5.19. Although we observe an

incommensurate AFM phase in several cases, there might still appear a d-wave SC one, as this phase

rapidly evolves during the flow.

At the critical point t′ ≈ −0.36 t the FM phase sets in for all investigated values of tz, indicated by

a divergence of VC in the on-site form-factor for an ordering vector of (0, 0, 0). If t′ is further reduced,

an FM ordering in the xy-plane is observed for tz = 0.01 t. This results from the Fermi-surface which

hardly changes in the z-direction, so that the FM ordering vector is independent of kz. This xy-plane

FM order is denoted as xyfm ordering. For slightly larger hopping strength in z-direction, that is

tz = 0.05t, we first also observe an FM order when t′ is decreased from the d-wave SC phase, but

at t′ = −0.45 t a p-wave SC order appears. As px and py are equivalent due to the symmetry of

the system, this ordering maintains the symmetries within the xy-plane and can be observed in VP

corresponding to either form-factors. This p-wave pairing is in strong competition with the AFM

ordering which survived throughout the d-wave SC phase and the emerging FM phase (see figure 5.20,
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t′ Possible Phases Observations
tz = 0.05 t

−0.34 t iafm intermediate iafm interaction,
dx2−y2 -SC weaker dx2−y2 -pairing,

dx2−y2 -channel starts to increase

−0.36 t iafm intermediate iafm interaction,
fm slightly weaker fm interaction

tz = 0.1 t

−0.32 t iafm intermediate iafm interaction,
dx2−y2 -SC dx2−y2 -channel starts to increase

−0.34 t iafm intermediate iafm interaction,
fm weaker fm interaction,

p-SC, dxs−y2 -SC C-, p- and dx2−y2 -channel start to increase

−0.36 t fm strong fm interaction,
iafm slightly weaker iafm interaction,
p-SC p-channel starts to increase

Table 5.5.: Exemplary discussion of possible phases for calculations which did not diverge for Λ > 10−7 t.
iafm corresponds to incommensurate anti-ferromagnetic ordering, p- and d-SC refer to su-
perconducting ordering with the corresponding form-factor shape, fm denotes ferromagnetic
ordering.

third row). As we did not trace the ordering vector of the chantices during the flow and as both, the

anisotropic AFM and the FM order are contained in the on-site form-factor C-channel vertex, we can

not distinguish if the p-wave ordering is driven by AFM fluctuations or by FM fluctuations, which is

the case for p-type superconductivity in the isotropic 3D-Hubbard model [164, 165]. For tz = 0.1 t we

observe the same competition between incommensurate AFM, p-wave SC and the FM order which

dominates at this point (see fig. 5.20). In all cases with tz > 0.01 t we observe a significant drop in

the critical scale for t′ = −0.5 t. This corresponds to the fact that the system is empty due to the

applied van-Hove condition on the chemical potential.

Finally, in the case of tz = 0.5 t an AFM ordering in the xy-plane could be resolved for t′ = 0 t at a

significantly lower critical scale than in the other cases. This corresponds to the strong influence of tz

on the number of electrons in the system due to the van-Hove nesting condition in the xy-plane (see

table 5.3), so that the system already is heavily hole-doped. Both tz, and the electron density lead

to a change of the Fermi-surface, which, therefore, has a circular shape in the xy-plane towards the

surface of the Brillouin zone. Thus, it is impossible for the same ordering vector to connect large parts

of two Fermi-surfaces, even with the help of a finite z component. As this nesting condition becomes

destroyed by increasing −t′, the critical scale rapidly drops beyond our resolution. By investigating

the chantex resolved flow to the final scale and the interaction at this end point we estimate which

phases might result if the flow is continued to even lower scales. For most parameters we obtain an

FM phase, but also a d-SC phase for t′ = −0.24 t and a p-wave SC-phase for t′ = −0.28 t. However,

as the SC phases are driven by spin-density fluctuations, the magnetic phases may still change into

a corresponding SC one. For parameters close to t′ = −0.36 t different phases were competing with

each other, so that an educated guess was impossible. Only for t′ = −0.5 t we obtained an FM phase

with a similar critical scale as observed for tz = 0.1 t, which is due to the fact that both show a similar

behaviour in the DOS at this point.
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Figure 5.20.: Cuts through the full vertex projected to one channel at the end of the flow.
First row: Visualisation of the different antiferromagnetic ordering vectors based on cuts
through the s-wave form-factor contribution of the full vertex projected to the C-channel
in the (ky = π)-plane for, from left to right, tz/t = 0.01, 0.05, 0.1 at t′ = 0 t and (right)
tz = 0.1 t at t′ = −0.1t.
Second row: For parameters t′ = −0.2 t and tz = 0.05 t (left pair) and tz = 0.1t (right
pair) the cuts through the on-site form-factor contribution of the full vertex projected to
the C-channel in the (ky = π)-plane (left in each pair) and through the dx2−y2 form-factor
contribution of the full vertex projected to the P-channel in the ky = 0-plane (right in each
pair) show a dominating d-wave superconductivity and a suppressed antiferromagnetic or-
dering.
Third row: For tz = 0.05 t and t′ = −0.45 t a cut through the on-site form-factor contri-
bution of the full vertex projected to the C-channel in the (ky = 0)-plane (left), in the
(ky = π)-plane (centre) and a cut through the px-form-factors contribution of the vertex
projected to the P-channel in the (ky = 0)-plane shows the competition between antiferro-
magnetic, ferromagnetic and the dominating p-wave superconducting order.
Fourth row: same as third row with tz = 0.1 t and dominating ferromagnetic ordering.
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While we only considered a second-nearest neighbour hopping in the xy-plane and neglected the

corresponding one in the z-direction, it is physically reasonable to include it corresponding to the

upcoming section.

5.4.2. The t′z = tz · t′ Phase Diagram

As we initially discussed in this section, the parameter tz can be regarded as a measure of the

proximity of neighbouring layers. As this parameter corresponds to the overlap of orbitals directly

positioned above each other, and as t′ corresponds to the overlap of orbitals of second nearest neigh-

bours within the xy-plane, it makes sense to include the overlap with second nearest neighbours in

the xz- and in the yz-plane by a scaled parameter t′z = tz · t′. In this way tz and t′ remain the two

independent parameters, when we imply the van-Hove condition on the chemical potential, that is

µ = 4t′ − 2tz and investigate the same range of parameters as before, that is t′ ∈ [−0.5 t, 0 t] and

tz/t ∈ {0.01, 0.05, 0.1, 0.5}. As t′z is at least one magnitude smaller than tz in our parameter range,

it has almost no influence on the Fermi-surface for the quasi two-dimensional case tz = 0.01 t. In the

other cases, the influence on the Fermi-surface is small for small values of −t′, that is −t′ < −0.32 t

(see fig. 5.21). When this threshold is reached, the t′z-parameter leads to an increased bending in the

z-direction, resulting in a tube with square shape close to the z=π surface of the Brillouin zone. At

the same time, the inward bend of the Fermi-surface in the (kz =0)-plane is increased, resulting in a

star-like shape, while the opening in the (kz=π)-plane is enhanced. In the case of tz=0.5 t this leads

to the formation of electron-pockets centred at (0, 0, π) (see fig. 5.21). As well as the Fermi-surface,

the DOS hardly changes for −t′ < 0.32 t and over the whole t′ range for the quasi two-dimensional

system. However, in the cases where the Fermi-surface changed, the DOS did so, too. In these cases

the peaks of the left shoulder and at the Fermi-surface become more pronounced when t′z takes larger

values (see fig. 5.22). In the case of tz = 0.1 t and t′ = −0.45 t both peaks are on top of each other, so

that the DOS at the Fermi-surface is significantly increased.

The phase diagram for this set of parameters is obtained in the same way as described in the

preceding subsection by an analysis of the form-factor resolved flow of the chantices and the interaction

at the final scale projected to the different channels. For tz = 0.01 t the phase diagram (see fig. 5.23)

equals the one of the previous case with t′z = 0 t over the whole range of t′-parameters. Therefore

we focus in the following on the cases of tz = 0.05 t and tz = 0.1 t, for which the phase diagram

resembles the one resulting from t′z = 0 t for values of t′ > −0.3 t, both in the critical scale Λc, which

are numerically almost equal, as well as in the resulting phases. For example, a cut through the vertex

at the critical scales results in figures similar to those displayed in figure 5.20, first and second row, for

the corresponding parameter sets. This can be expected, as the Fermi-surface is only slightly changed

compared to the case of t′z = 0 t. Therefore, the same AFM fluctuations arise and drive the system

into an AFM or d-wave SC phase.

In the region of t′ ≈ −0.3 t we observe an increase in the critical scale, at which d-wave pairing

appears. On the one hand, the Fermi-surface in the (ky=0)-plane is linear in the proximity of kz=0

while, on the other hand, it is less dependent on kx and ky close to kz = π compared to the case of

t′z = 0 t, while the Fermi-surfaces in the (kz = 0)- and (kz =π)-planes maintain their quadratic form

(see fig. 5.24). This setting enhances the incommensurate spin-density waves with a transfer of kz=π

which are driving the d-wave pairing. If t′ is further increased, the bending of the Fermi-surface in

the (kz = 0)-plane is increased to a star-like shape, so that even incommensurate nesting vectors can
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tz = 0.01 t

tz = 0.05 t

tz = 0.1 t

tz = 0.5 t

Figure 5.21.: Fermi-surface of the anisotropic Hubbard model with (from top to bottom) tz =
0.01 t, 0.05 t, 0.1 t, 0.5 t and (from left to right) t′ = 0.32 t, −0.4 t, −0.45 t while t′z = tz ·t′.
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Figure 5.22.: Non-isotropic Hubbard model: Comparison of the density of states (DOS) for tz = 0.05 t
(left) and tz = 0.1 t (right) with t′z = 0 t and t′z = tz · t′.
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Figure 5.23.: Phase diagram of the anisotropic 3D-Hubbard model with t′z 6= 0 t in two different repre-
sentations. Due to the limited numerical resolution no divergences for Λc < 10−6 t could
be observed, so that all corresponding cases are displayed as Λc = 9 · 10−7 t without a
favourable ordering in the left plot. In the right plot, u refers to an appearance of fea-
tures of different ordering tendencies at the same time, such that even an educated guess
is impossible.
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Figure 5.24.: Comparison of the Fermi-surface in the (kz = 0)-, (kz = π)- and (ky = 0)-plane (from left
to right) resulting from t′z = 0 t and t′z = tz · t′ for t′ = −0.32 t and t′ = −0.45 t in the top
and bottom row, respectively, at tz = −0.1 t.

not connect two larger parts of the Fermi-surface. This heavy distortion of the Fermi-surface leads to

the suppression of any order within our resolution.

However, at t′ = −0.45 t a single point of FM ordering within our resolution can be observed. For

this parameter the Fermi-surface is a rectangular tube which is only deformed in the (kz = 0)-plane,

to fulfil the van-Hove condition (see fig. 5.21 and 5.24). Therefore, large parts of the Fermi-surface can

be connected by corresponding nesting vectors which drive the formation of ordering at large critical

values. As this setting is easily distorted and we only investigate a coarse set of t′ parameters in this

region, it appears as a single point. We note at this point, that the p-wave pairing observed in the

t′z = 0 t case does not appear any more. However, the final interaction still exhibits a corresponding

feature.

Such features can also be found when we analyse a the final interaction at the end of the flow when

a divergence was not reached. In these cases the p-wave SC order is in a strong competition with

incommensurate AFM and FM orderings, which also cause the low critical scales.

Finally, in the case of tz = 0.5 t the critical scale is, again, for almost all parameters out of scope of

our resolution. Only in the case of t′ = −0.32 t we could resolve a peak, which is due to a favourable

nesting condition as the Fermi-surface in the kz-direction resembles a quadratic tube. In all cases

we analysed the final interactions in different planes as well as the form-factor resolved flow of the

chantices resulting in the phases displayed in the right phase diagram of figure 5.23. That is, we obtain

dominating FM fluctuations for most parameters, only for t′ = −0.2 t a tendency towards d-wave SC

and for t′ = 0.28 t a tendency towards p-wave SC.
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5.4.3. Discussion of the Anisotropic 3D-Hubbard Model

Although the results of the previous sections are based on the abstract Hubbard model, conclusions

for the design of superconductors can be drawn from them. While we treat the system at zero tem-

perature, we assume in our discussion that the critical scale corresponds to a critical temperature at

which the observed phase sets in. In two dimensions, however, no transition which breaks any con-

tinuous symmetries at finite T can occur according to the Mermin-Wagner theorem [168]. Therefore

our results for the two-dimensional Hubbard model in section 5.2 violate the Mermin-Wagner theo-

rem. However, this can be assigned to the approximations in our approach, as Hille et al. [169, 170]

showed that this theorem seems to be fulfilled if frequency dependence, self-energy contributions and

contributions from loops of higher order according to the multiloop FRG scheme are taken into ac-

count. Although we neglected those effects, we could show that the different phases observed in the

two-dimensional case even exist in the case of three dimensions. Therefore, the general assumption

that superconductivity and magnetic order can appear in two-dimensional planes does not violate the

Mermin-Wagner theorem as they are embedded either in a three-dimensional solid or are subject to

the upper planes of a substrate.

Although the three dimensionality is important to allow long-range ordering at all, the highest

critical scales can be reached if the hopping between the superconducting planes is small and the

planes are therefore well isolated. This is the case in copper and iron based superconductors, in which

the electron mobility between the superconducting planes which we model by tz is small. This regime

is in our case observed for tz < 0.1 t where the two-dimensional features dominate the system, as

kz-independent phases appear. This situation of large anisotropy was investigated by Dare et al. [167]

for half filling, leading to the observation that the anisotropy tz is in these cases significantly lower

than the critical scale. Similarly, we observe tz � Λc at t′ = 0 t which is close to half filling in the

case of large anisotropy (cf. table 5.3). This situation is inverted (i.e. Λc < tz) for tz = 0.5 t, while

tz = 0.1 t ≈ Λc holds in the intermediate case. For tz=0.01 t we observe a kz-independent FM phase

at the other end of the t′ scale, for which tz � Λc also holds, while a three-dimensional FM phase is

obtained for t′ = −0.4 t with Λc � tz. In this way we note that the resulting phase is z-independent,

if the for the critical scale Λc & tz holds. To explain this, Λc is associated with a critical temperature,

so that corresponding Matsubara frequencies can be defined of which the first one is even larger than

the bandwidth in the z-direction. The motion of the electrons between the planes is therefore still

quasi-classical when the transition occurs, which explains the observation of planar phases for Λc & tz.

All the observations so far indicate the importance of a good separation between the superconducting

layers in cuprates. Although the structure is much more complex, we note that a slight increase in

Tc was observed for rare-earth 123-HTS materials, when the distance between the CuO layers in the

active block was increased [16], which is in a general good agreement with our observations. However,

the real structure of these materials is much more complex, as the active blocks of a few CuO planes

alternates with charge reservoir blocks, by which we require a different treatment of the hopping

between CuO planes within one active layer and from one active block to the next one is required.

At the same time the additional charge reservoir blocks induce a doping into the active layers. As

this doping can be regulated quite easily, the corresponding dependence was intensively investigated,

for example by Takimoto et al. [18] for the anisotropic three-dimensional Hubbard model. In our

calculations we consider also a substantial hole doping (cf. table 5.3), as we fix the chemical potential

to the van-Hove condition within the (kz=0)-plane.
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Figure 5.25.: Phase diagram Λc versus electron density n for the anisotropic 3D-Hubbard model for
t′z = tz · t′. The symbols are the same as in figures 5.19 and 5.23.

As Takimoto et al. fixed t′ = −0.2 t and considered an electron density in the range of n ∈ [0.75, 1.0]

for tz ≥ 0.1 t the parameters investigated by us were not covered. However, a decrease of the critical

scale with a decreasing electron density was observed. Therefore, the resulting d-wave pairing phase

with Λc = 0.0039 t from our calculations for tz = 0.1 t and n ≈ 0.72 aligns well with their results.

Takimoto et al. further observed a gradual suppression of the d-wave pairing phase in the Tc−n-phase

diagram when tz is increased. To compare our results with this observation, we compare the resulting

phases for different tz and t′ parameters according to the corresponding electron density displayed

in table 5.3 (see fig. 5.25). This reveals a slight reduction of the critical scale for d-wave pairing

regime when tz is increased similar to the observations of Takimoto et al.. Further, the range of

electron densities for which pairing occurs is shifted to larger values for smaller tz values, but has a

similar width. Thus, we assume that the pairing tendency can be stabilised by implying the van-Hove

condition in the (kz=0)-plane or by increasing the anisotropy, that is decreasing tz.

However, as the parameters describing the mobility of electrons within on sheet of active layers of

a HTS (i.e. t and t′ in our case) are quantities depending on the materials in the active layer, they

can not easily be modified. In contrast, the electron density can easily be varied, such that additional

investigations on the doping away from the van-Hove filling are of interest. Moreover, the breakdown

of the two-dimensional phase diagram between tz = 0.1 t and tz = 0.5 t should be in the scope of

further investigations.
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6.1. Conclusion

U nconventional and high-temperature superconductivity as observed in copper- and iron-based

superconductors and, lately, also in nickelates are among the most important topics in current con-

densed matter research. The majority of the materials under study are quasi two-dimensional, and

therefore the investigations regarding the mechanisms of superconductivity in these materials is often

performed in two-dimensional models. As a competition between different spin- and charge-density

phases, magnetic orderings and superconductivity was observed in these materials, all the differ-

ent possible fluctuations have to be treated in an unbiased way. Such an unbiased approach is the

Truncated Unity Functional Renormalisation Group (TUFRG), which has already successfully been

applied to two-dimensional models. Yet, for a more realistic description and for conceivable other

interesting questions, I extended this approach to work in three dimensions. In this way, the influence

of the three-dimensionality on the magnetic and on the superconducting phases which was observed

in the two-dimensional model was considered by including a weak electron hopping in the direction

perpendicular to the two-dimensional planes.

After introducing the required nomenclature and the fundamental theory in chapter 2 and the

many-particle Green’s functions in section 3.1, I proved some elementary properties of these many-

particle Green’s functions, which are exploited to simplify the numerical calculations significantly. In

section 3.2 the perturbation theory for temperature Green’s functions as well as its representation

in terms of universal Feynman diagrams were derived, providing the definition of connected Green’s

functions and of effective actions. Based on the results I provide a short overview on different well

established approaches to correlation effects which are based on the perturbation theory: the set of

Hedin equations with the GW -approximation and the Parquet approach, which allow the calculation

of an effective action. This is the basis for a comparison of perturbation approaches with the functional

renormalisation group (FRG) which is derived in a later section of this thesis.

In section 3.3 fermion bilinears were introduced as generalisations of local density- and spin-

operators which is barely found in literature. The susceptibilities which result from their expectation

values were discussed and related to the Green’s functions, so that a simple form for their calculation

is obtained based on the effective action.

In section 3.4 generating functionals for full and connected Green’s functions were introduced, from

which Green’s functions, effective interactions and susceptibilities can be derived. These functionals

provide an alternative way of deriving perturbation expansions in comparison to section 3.2 for the

corresponding objects. The generating functionals for effective interactions and susceptibilities are

used in section 3.5 to obtain the hierarchy of flow equations for many fermion-interactions as well as

for fermion-boson interactions and susceptibilities (see thm. 3.21) as central result of this section. In

contrast to previous derivations based on Nambu fields, I displayed one based on Grassmann variables

revealing a more intuitive insight into the structure of the field expansions. In subsection 3.5.3 the FRG

equations were compared to the Parquet equations, as the structure of the corresponding equations

is similar. Contrary to this similar structure, this analysis reveals that the Parquet equations already

contain contributions of interactions of higher order which are typically neglected in FRG calculations.

Further, I presented a spin-symmetric version of the flow-equations as well as their Fourier transformed
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form in momentum- and in frequency-space. Based on the characteristic momentum structure of these

equations I introduced a natural parametrisation of the different contributions to the flow equations.

These are the basis of the TUFRG approach introduced in section 3.6, which provides an efficient

approximative parametrisation of the effective fermion interactions. As I proved co-working with

Eckhardt and Schober in [113], this approach can directly be transferred to the Parquet equations,

which therefore and for the sake of brevity is not presented in this thesis.

The central part of this thesis is the development of a high performance implementation of the

(TU)FRG equations as described in chapter 4. Here, I presented considerations concerning the sim-

ulation of multi-orbital systems, which require the representation in a natural basis to exploit point

group symmetries of the system. Using a highly efficient projection routine, I was able to achieve

a scaling with respect to the number of form-factors which outperforms the theoretical expectation.

Further, the scalability of the final implementation, which exploits all the levels of parallelisation

revealed an almost perfect scaling up to 256 nodes. This code was applied to the Hubbard model in

two and three dimensions in chapter 5.

First, the two-dimensional Hubbard model was reinvestigated in section 5.2. On the one hand it

verifies the correctness of the implementation and on the other hand it shows the convergence of the

TUFRG approach to the same results of a calculation treating the full interaction when calculating

the t-t′-phase diagram at van-Hove filling. In section 5.3 I investigated the isotropic three-dimensional

Hubbard model by applying the TUFRG. This revealed a qualitatively good agreement of the critical

scale indicating a phase transition to an antiferromagnetic ground state obtained by our TUFRG

calculation with the corresponding Néel temperature obtained by other approaches. Thus the TUFRG

is a very efficient tool for the investigation of corresponding systems. When I applied it to the three-

dimensional Hubbard model with an increasing hole doping, the antiferromagnetic ground state with

a (π, π, π) ordering vector first becomes incommensurate, then turns into a dx2−y2 -superconducting

phase and finally transits to a planar antiferromagnetic phase with a (π, π, 0)-ordering vector.

The final and central part of the section on results was devoted to the influence of orbital overlap

in the direction perpendicular to the square-plane on the corresponding phase diagram in section 5.4,

which can also be regarded as the transition from two to three dimensions. For a comparison of

the corresponding phase diagram with the two-dimensional one, the chemical potential was chosen

such that the Fermi-surface in the xy-plane resembles the two-dimensional one. For a weak to an

intermediate hopping in the z-direction, the shape of the phase diagram and the appearing phases

resemble the two-dimensional one, while an increase of the mobility in z-direction reduces the critical

scales, in good agreement with the expectations. In addition, strong p-wave pairing fluctuations were

found in the ferromagnetic regime, that is for large −t′-values. A corresponding superconducting

phase may, therefore, be found for a specific choice of parameters.

Although the Hubbard model investigated in this thesis was significantly simplified, it supported

the previous approaches which used a two-dimensional model to describe superconductivity in copper-

and in iron-based superconductors, as the mobility in the z-direction in those materials is known to

be weak. Furthermore, our results support the assumption that the superconducting phase transition

is driven by antiferromagnetic fluctuations, which is in good agreement with reference [150].
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6.2. Outlook

The implementation presented in this thesis provides the basis for a flexible, modular and therefore

easily extendible FRG code which is supposed to be openly accessible and shared by different groups

working on FRG methods. The results presented in this thesis are based on the static two-fermion

interaction obtained by the TUFRG approach at T =0. A natural extension of the code evidently is

the inclusion of the frequency dependence of the interaction and of the self-energy effects. This has

previously been done in the scope of the exchange parametrisation [114], which led to a significant

increase of the critical scale in the two-dimensional Hubbard model. In the same setting, although it is

numerically significantly more demanding, a treatment of the system at finite temperatures is desirable,

as this offers a quantitative comparison to critical temperatures obtained by other approaches for

correlated systems. Such a finite temperature approach with its own frequency parametrisation [115]

has recently been combined with the TUFRG approach and with the multi-loop extension of the FRG

equations [66, 169]. This approach appears to fulfil the Mermin-Wagner theorem in two dimensions,

but at the same time only provides an mediocre scalability, so that an extension of the code, which is

presented within this thesis, to include the mentioned features is of great interest while maintaining

the numerical efficiency. A recently suggested alternative parametrisation in terms of frequencies may

lead to further computational improvements of the calculations [171]. In this way realistic three-

dimensional calculations of correlation effects become possible.

In the approaches mentioned above, the (TU)FRG still comprises the problem, that it runs into

a divergence when the critical scale or the transition temperature is reached. In order to obtain

the correct ground state and reveal a simultaneous existence of different phases it is, therefore, of

interest to overcome this limitation. This can be achieved by including the bosonic terms in the fields

which result from the corresponding Hubbard-Stratonovich transformation [140, 172]. However, these

extensions are computationally demanding and will, in most cases, provide only additional information

on the ground state of the materials.

Besides methodological improvements of the recent code, it provides a powerful tool to be applied

to other models of correlated systems. While the Hubbard model in its spin-symmetric form only

depends on one band, a calculation of multi-band models and of spinful systems is in reach due to

the advantageous scaling, as the truncated unity approach is also applicable in these cases [111].

Therefore, a full TUFRG investigation of the Rashba model with a spin-splitting [173, 174, 175] or a

multi-orbital model of cuprate-, iron- or nickel-based superconductors [145, 176] is possible.

Finally, realistic materials like cuprates (e.g. La2CuO4), iron chalcogenides (e.g. FeSe) or pnictides

and even nickelates (e.g. Nd0.8Sr0.2NiO]2) are in the reach of calculations with the FRG. While the

basic mechanisms of superconductivity and of magnetism can well be studied by treating correspond-

ing models, realistic materials are significantly more complex. As density functional theory (DFT)

calculations are by now a standard approach to study a condensed matter system starting from ab

initio, it provides a reasonable starting point for further calculations. However, as the resulting sys-

tem obtained from DFT is still too large for (TU)FRG calculations, it is reasonable to treat most

degrees of freedom with the random phase approximation and the remaining ones of low energy with

the presented (TU)FRG. This could also be combined with a preceding GW -calculation or a dynamic

mean field theory-calculation [109] which provide a correlated starting point for the FRG approach.

In order to obtain the full description of a condensed matter system the (TU)FRG thus takes the

efficient interaction of all the other bands with the target bands and with a Green’s function which is

close to the actual one as starting parameter.
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A. Details of some Derivations

In this part of the appendix we provide details of some derivations we used in chapter 3.

A.1. Derivation of Propagator Flow Equations

A.1.1. Spinful Case

In the proof of corollary 3.31 only the derivation of the flow equation for the pairing channel in the

spinful case was shown. The derivation of the flow equation for the direct channel is based on the

definition of T Λ
d according to equation (3.28) in theorem 3.28 and on the corresponding projection

operation PD defined in definition 44 and exemplified in equation (3.348). This leads to

Ḋmn(u) = PD[T d]mn(u) =

∫
dk

∫
dku

∫
dk′u

γ(4,0)(ku,k − u;ku − u,k) Lph,Λ(k,k − u) γ(4,0)(k,k′u − u;k − u,k′u)fm(ku)f∗n(k′u) (A.1)

and the insertion of unities leads to the derivation

Ḋmn(u) =

∫
dk

∫
dk′

∫
dk′′

∫
dku

∫
dk′u γ

(4,0)(ku,k − u;ku − u,k)

× δ(k−k′) Lph,Λ(k′,k′−u) δ(k′−k′′) γ(4,0)(k′′,k′u−u;k′′−u,k′u) fm(ku) f∗n(k′u)

=

∫
dk

∫
dk′

∫
dk′′

∫
dku

∫
dk′u

∑
i,j

fm(ku)γ(4,0)(ku,k−u;ku−u,k)f∗i (k)

× fi(k′) Lph,Λ(k′,k′−u) f∗j (k′) fj(k
′′) γ(4,0)(k′′,k′u−u;k′′−u,k′u) f∗n(k′u)

=
∑
i,j

γ
(4,0)D,Λ
mi (u) Lph,Λ

ij (u) γ
(4,0)D,Λ
jn (u),

(A.2)

in which we identified the corresponding projected vertex and the dual propagator. For the crossing

channel we proceed analogously with T Λ
c and PC leading to

Ċmn(t, o1o2, o3o4) = PC[Tc]mn(t, o1o2, o3o4) = −
∫

dk

∫
dkt

∫
dk′t

∑
o′1o
′
2o
′
3o
′
4

fm(kt) (A.3)

×γ(4,0)Λ
o1o′2,o4o′3

(kt,k−t;kt−t,k) Lph,Λ
o′1o
′
3,o
′
2o
′
4
(k,k−t) γ(4,0)Λ

o′4o2,o′1o3
(k,k′t−t;k−t,k′t) f∗n(k′t).
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When we insert the unities of the form-factor basis into this expression as follows, we get

Ċmn(t, o1o2, o3o4) = −
∫

dk

∫
dk′

∫
dk′′

∫
dkt

∫
dk′t

∑
o′1o
′
2o
′
3o
′
4

fm(kt) γ
(4,0)Λ
o1o′4,o4o′1

(kt,k−t;kt−t,k) δ(k−k′) Lph,Λ
o′1o
′
3,o
′
2o
′
4
(k′,k′−t)

× δ(k′−k′′) γ(4,0)Λ
o′2o2,o′3o3

(k′′,k′t−t;k′′−t,k′t) f∗n(k′t)

= −
∫

dk

∫
dk′

∫
dk′′

∫
dkt

∫
dk′t

∑
o′1o
′
2o
′
3o
′
4

∑
i,j

fm(kt) γ
(4,0)Λ
o1o′4,o4o′1

(kt,k−t;kt−t,k) f∗i (k)

× fi(k′) Lph,Λ
o′1o
′
3,o
′
2o
′
4
(k′,k′−t) f∗j (k′)

× fj(k′′) γ(4,0)Λ
o′2o2,o′3o3

(k′′,k′t−t;k′′−t,k′t) f∗n(k′t),

(A.4)

and we observe that this expression does not explicitly fit the definition of the projection of a ver-

tex to the crossing channel. This problem can, however, be overcome by exploiting the symmetry

γ(4,0)(1, 2; 3, 4) = −γ(4,0)(1, 2; 4, 3) (cf. thm. 3.17.1), which changes the order of the orbital indices,

resulting in

Ċmn(t, o1o2, o3o4) = −
∫

dk

∫
dk′

∫
dk′′

∫
dkt

∫
dk′t

∑
o′1o
′
2o
′
3o
′
4

∑
i,j

fm(kt) γ
(4,0)Λ
o1o′4,o

′
1o4

(kt,k−t;k,kt−t) f∗i (k)

× fi(k′) Lph,Λ
o′1o
′
3,o
′
2o
′
4
(k′,k′−t) f∗j (k′)

× fj(k′′) γ(4,0)Λ
o′2o2,o3o′3

(k′′,k′t−t;k′t,k′′−t) f∗n(k′t)

= −
∑
i,j

γ
(4,0)C,Λ
mi (t; o1o

′
4, o4o

′
1) Lph,Λ

ij (t) γ
(4,0)C,Λ
jn (t; o′2o2, o

′
3o3),

(A.5)

which finally equals the corresponding equation in theorem 3.31.

A.1.2. SU(2)-Symmetric Case

For the SU(2)-symmetric case we only showed the derivation of the flow equation for the direct

channel (see thm. 3.31). The projection of T̄ (see eq. (3.330) in theorem 3.29) to the pairing channel

as defined in definition 44 leads to

Ṗmn(s) = P[T̄P]mn(s) =

∫
dk

∫
dks

∫
dk′s

V Λ(ks, s−ks;k, s−k) Lpp,Λ(k, s−k) V Λ(k, s−k;k′s, s−k′s) fm(ks) f
∗
n(k′s). (A.6)
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The insertion of unities then results in

Ṗmn(s) =

∫
dk

∫
dk′

∫
dk′′

∫
dks

∫
dk′s V

Λ(ks, s−ks;k, s−k)

× δ(k−k′) Lpp,Λ(k′, s−k′) δ(k′−k′′) V Λ(k′′, s−k′′;k′s, s−k′s) fm(ks) f
∗
n(k′s)

=

∫
dk

∫
dk′

∫
dk′′

∫
dks

∫
dk′s

∑
i,j

fm(ks) V
Λ(ks, s−ks;k, s−k) f∗i (k)

× fi(k′) Lpp,Λ(k′, s−k′) f∗j (k′) fj(k
′′) V Λ(k′′, s−k′′;k′s, s−k′s) f∗n(k′s)

=
∑
ij

V P,Λ
mi (s)Lpp,Λ

ij (s)V P,Λ
jn (s),

(A.7)

which is the flow equation given in equation (3.369). For the crossing channel we proceed analogously,

so that the projection of T̄ c to the form-factors by the operation of PC results in

Ċmn(t) = PC[T̄ c]mn(t) = −
∫

dk

∫
dkt

∫
dk′t V

Λ(kt,k−t;k,kt−t)

Lph,Λ(k,k−t) V Λ(k,k′t−t;k′t,k−t) fm(kt) f
∗
n(k′t). (A.8)

The insertion of unities turns this expression to

Ċmn(t) = −
∫

dk

∫
dk′

∫
dk′′

∫
dkt

∫
dk′t V

Λ(kt,k−t;k,kt−t) δ(k−k′)

× Lph,Λ(k′,k′−t)δ(k′−k′′) V Λ(k,k′t−t;k′t,k−t) fm(kt) f
∗
n(k′t)

= −
∫

dk

∫
dk′

∫
dk′′

∫
dkt

∫
dk′t

∑
i,j

fm(kt) V
Λ(kt,k−t;k,kt−t) f∗i (k)

× fi(k′) Lph,Λ(k′,k′−t) f∗j (k′) fj(k
′′) V Λ(k,k′t−t;k′t,k−t) f∗n(k′t)

= −
∑
ij

V C,Λ
mi (t) Lph,Λ

ij (t) V C,Λ
jn (t),

(A.9)

which equals the flow equation given in equation (3.371).

A.2. Channel to Channel Projections

In order to complete the proof of corollary 3.32, in which only the projection from channel D to

channel P was explicitly shown, we now consider all the other projections between the channels.

We reconsider that these projections (defined in def. 44) are analogous for the SU(2)-symmetric

propagators P̄ , D̄ and C̄ and for the spinful two-particle propagators P , D and C, as only the

momentum dependencies are affected. In the following we, therefore, only show the projections for

the latter ones and neglect orbital and frequency indices, as they are not affected by the projections.

The definition of the projection of the full vertex to the P -channel and the one of the back-projection

from the C-channel to the full vertex in which the C-channel momenta are expressed by the P -channel

ones lead to

PP[C]mn(s) =

∫
dks

∫
dk′s fm(ks) f

∗
n(k′s)

∑
i,j

f∗i (ks) fj(k
′
s) Cij(ks + k′s − s), (A.10)
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which is the first line of the corresponding expression (cf. eq. (3.376)). The second line of equation

(3.376) is obtained by Fourier transformations of the form-factors into momentum space as

PP[C]mn(s) =

∫
dks

∫
dk′s fm(ks) f

∗
n(k′s)

∑
i,j

∑
R1,R2,R3

eiks·R1 f∗i (R1) e−ik
′
s·R2 fj(R2) e−i(ks+k

′
s−s)·R3 Cij(R3)

=
∑
i,j

∑
R1,R2,R3

∫
dks

∫
dk′s fm(ks) e

iks·(R1−R3) f∗n(k′s) e
−ik′s·(R2+R3)

× f∗i (R1) fj(R2) eis·R3 Cij(R3)

=
∑
i,j

∑
R1,R2,R3

fm(R1 −R3) f∗n(R2 +R3) f∗i (R1) fj(R2) eis·R3 Cij(R3).

(A.11)

For the projection of the P -channel to the D-channel we proceed analogously with the momentum

arguments expressed in the variables of the D-channel. The definitions 44.1 and 44.2 directly lead to

PD[P ]mn(u) =

∫
dku

∫
dk′u fm(ku) f∗n(k′u)

∑
i,j

f∗i (ku) fj(ku − u) Pij(ku + k′u − u), (A.12)

which is the first line in equation (3.377). Again, Fourier transformations lead to

PD[P ]mn(u) =

∫
dku

∫
dk′u fm(ku) f∗n(k′u)

∑
i,j

∑
R1,R2,R3

eiku·R1 f∗i (R1) e−i(ku−u)·R2 fj(R2) e−i(ku+k′u−u)·R3 Pij(R3)

=
∑
i,j

∑
R1,R2,R3

∫
dku

∫
dk′u fm(ku) eiku·(R1−R2−R3) f∗n(k′u) e−ik

′
u·R3

× f∗i (R1) fj(R2) eiu·(R2+R3) Pij(R3)

=
∑
i,j

∑
R1,R2,R3

fm(R1 −R2 −R3) f∗n(R3) f∗i (R1) fj(R2) eiu·(R2+R3) Pij(R3),

(A.13)

which is the second line of equation (3.377).

The projection of the C-channel to the D-channel is treated in the same way, which in the first step

results in

PD[C]mn(u) =

∫
dku

∫
dk′u fm(ku) f∗n(k′u)

∑
i,j

f∗i (ku) fj(ku − u) Cij(ku − k′u), (A.14)

and in the second step, due to Fourier transformations this leads to

PD[C]mn(u) =

∫
dku

∫
dk′u fm(ku) f∗n(k′u)

∑
i,j

∑
R1,R2,R3

eiku·R1 f∗i (R1) e−i(ku−u)·R2 fj(R2) e−i(ku−k
′
u)·R3 Cij(R3)

=
∑
i,j

∑
R1,R2,R3

∫
dku

∫
dk′u fm(ku) eiku·(R1−R2−R3) f∗n(k′u) e−ik

′
u·(−R3)

× f∗i (R1) fj(R2) eiu·R2 Cij(R3)

=
∑
i,j

∑
R1,R2,R3

fm(R1 −R2 −R3) f∗n(−R3) f∗i (R1) fj(R2) eiu·R2 Cij(R3),

(A.15)
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which are the first and the second line of equation (3.378) in theorem 3.32.

The projections to the C-channel are derived by performing the same steps. The momentum

arguments have to be expressed by the arguments of this channel, thus leading to

PC[P ]mn(t) =

∫
dkt

∫
dk′t fm(kt) f

∗
n(k′t)

∑
i,j

f∗i (kt) fj(k
′
t) Pij(kt + k′t − t), (A.16)

which is the first line of equation (3.379). The Fourier transformations then lead to

PC[P ]mn(t) =

∫
dkt

∫
dk′t fm(kt) f

∗
n(k′t)

∑
i,j

∑
R1,R2,R3

eikt·R1 f∗i (R1) e−ik
′
t·R2 fj(R2) e−i(kt+k

′
t−t)·R3 Pij(R3)

=
∑
i,j

∑
R1,R2,R3

∫
dkt

∫
dk′t fm(kt) e

ikt·(R1−R3) f∗n(k′t) e
−ik′t·(R2+R3)

× f∗i (R1) fj(R2) eit·R3 Pij(R3)

=
∑
i,j

∑
R1,R2,R3

fm(R1 −R3) f∗n(R2 +R3) f∗i (R1) fj(R2) eit·R3 Pij(R3),

(A.17)

which is the second line of equation (3.379).

Finally, the projection from channel D to channel C is obtained by performing the same steps as

before, resulting in

PC[D]mn(t) =

∫
dkt

∫
dk′t fm(kt) f

∗
n(k′t)

∑
i,j

f∗i (kt) fj(kt − t)Dij(kt − k′t). (A.18)

This expression is the first line of equation (3.380), while the second one is obtained by its Fourier

transformation according to

PC[D]mn(t) =

∫
dkt

∫
dk′t fm(kt) f

∗
n(k′t)

∑
i,j

∑
R1,R2,R3

eikt·R1 f∗i (R1) e−i(kt−t)·R2 fj(R2) e−i(kt−k
′
t)·R3 Dij(R3)

=
∑
i,j

∑
R1,R2,R3

∫
dkt

∫
dk′t fm(kt) e

ikt·(R1−R2−R3) f∗n(k′t) e
−ik′t·(−R3)

× f∗i (R1) fj(R2) eit·R2 Dij(R3)

=
∑
i,j

∑
R1,R2,R3

fm(R1 −R2 −R3) f∗n(−R3) f∗i (R1) fj(R2) eit·R2 Dij(R3).

(A.19)

These derivations now complete the proof of theorem 3.32.
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B. Evaluation of Matsubara Sums

We consider the Matsubara sum over the free Green’s function with ω-cut-off

d

dΛ
GΛ =

1

β

d

dΛ

∑
ωn

ω2
n

ω2
n + Λ2

1

iωn − ε(k)
. (B.1)

As the Fermi-function nF has poles at exactly these ωn, the sum can be rewritten according to the

residue theorem as

d

dΛ
GΛ =

d

dΛ

1

2πi

∮
dz

−z2

−z2 + Λ2

1

z − ε(k)︸ ︷︷ ︸
:=g(z)

nF(z) (B.2)

with the substitution z := iω. The poles of the Fermi-function are entirely located on the imaginary

frequency axis, so that the contour is along this line in both directions and closes in the negative and

in the positive real part segment. Due to a deformation of the contours, they only enclose the poles

of the original function, which, in this case, are z = ±Λ and z = ε(k). Applying the residue theorem

again we, therefore, can sum over all these residues instead of calculating the contour integral, so that

we get

d

dΛ
GΛ =

d

dΛ

∑
z0 poles of g(z)

Resz0

(
z2

0

z2
0 − Λ2

1

z0 − ε(k)

)
nF(z0)

=
d

dΛ

(
Λ

2(Λ− ε(k))
nF(Λ) +

Λ

2(Λ + ε(k))
nF(−Λ) +

ε(k)

ε2(k)− Λ2
nF(ε(k))

)
=

−ε(k)

2(Λ− ε(k))2
nF(Λ) +

Λ

2(Λ− ε(k))
n′F(Λ)

+
ε(k)

2(Λ + ε(k))2
nF(−Λ) +

Λ

2(Λ + ε(k))
n′F(−Λ) +

2ε2(k)Λ

(ε2(k)− Λ2)2
nF(ε(k)).

(B.3)

This expression is the one given in equation (4.42).

For the electron-hole propagator we proceed with the same steps. In the term

LΛ(kk′) =
1

β

d

dΛ

∑
ωn

ω4
n

(ω2
n + Λ2)2

1

iωn − ε(k)

1

∓iωn − ε(k′)︸ ︷︷ ︸
:=f

(B.4)

the upper sign (“-”) stands for the particle-particle and the lower sign (“+”) for the electron-hole

propagator. This function has poles of second order at z := iωn = ±Λ and poles of first order at

z = ε(k) and z = ∓ε(k′), which become poles of second order if ε(k) = ±ε(k′). Therefore, we treat

these two cases separately. It has to be kept in mind that cases can occur in which one of the energies

also equals Λ, which leads to poles of third order. However, in our approach Λ can be chosen such

that it does not equal one of the energies present at our grid, so that we can avoid those cases. In the
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B. Evaluation of Matsubara Sums

following we replace ε(k) and ε(k′) by ε1 and ε2, respectively, to shorten the notation. In the case of

different energies we then obtain the following residues for the particle-particle channel:

A := Res
z0=Λ

[f(z)nF(z)] =
(3ε1ε2+2ε1Λ−2ε2Λ−Λ2)Λ

4(ε1−Λ)2(ε2+Λ)2
nF(Λ) +

Λ2

4(ε1−Λ)(ε2+Λ)
n′F(Λ) (B.5)

B := Res
z0=−Λ

[f(z)nF(z)] =
(−3ε1ε2+2ε1Λ−2ε2Λ+Λ2)Λ

4(ε1+Λ)2(ε2−Λ)2
nF(−Λ) +

Λ2

4(ε1+Λ)(ε2−Λ)
n′F(−Λ) (B.6)

C := Res
z0=ε1

[f(z)nF(z)] = − ε4
1

(ε1+ε2)(ε2
1−Λ2)2

nF(ε1) (B.7)

D := Res
z0=ε2

[f(z)nF(z)] =
ε4

2

(ε1+ε2)(ε2
2−Λ2)2

nF(−ε2) (B.8)

When we label the first and the second summand of A and B by 1 and 2, respectively, the Λ-derivative

leads to

d

dΛ
A1 =

3ε1ε2+4ε1Λ−4ε2Λ−3Λ2

4(ε1−Λ)2(ε2+Λ)2
nF(Λ) +

(3ε1ε2+2ε1Λ−2ε2Λ−Λ2)(2Λ−ε1+ε2)Λ

2(ε1−Λ)3(ε2+Λ)3
nF(Λ)

+
(3ε1ε2+2ε1Λ−2ε2Λ−Λ2)Λ

4(ε1−Λ)2(ε2−Λ)2
n′F(Λ) (B.9)

d

dΛ
A2 =

2Λ(ε1−Λ)(ε2+Λ)+Λ2(2Λ−ε1+ε2)

4(ε1−Λ)2(ε2+Λ)2
n′F(Λ)− Λ2

4(Λ−ε1)(Λ+ε2)
n′′F(Λ) (B.10)

d

dΛ
B1 =

−3ε1ε2+4ε1Λ−4ε2Λ+3Λ2

4(ε1+Λ)2(ε2−Λ)2
nF(−Λ) +

(−3ε1ε2+2ε1Λ−2ε2Λ+Λ2)(2Λ+ε1−ε2)Λ

2(ε1+Λ)3(ε2−Λ)3
nF(−Λ)

− (−3ε1ε2+2ε1Λ−2ε2Λ+Λ2)Λ

4(ε1+Λ)2(ε2−Λ)2
n′F(−Λ) (B.11)

d

dΛ
B2 = +

2Λ(ε1+Λ)(ε2−Λ)+Λ2(2Λ+ε1−ε2)

4(ε1+Λ)2(ε2−Λ)2
n′F(−Λ) +

Λ2

4(Λ+ε1)(Λ−ε2)
n′′F(−Λ) (B.12)

d

dΛ
C = − 4Λε4

1

(ε1+ε2)(ε2
1−Λ2)3

nF(ε1) (B.13)

d

dΛ
D =

4Λε4
2

(ε1+ε2)(ε2
2−Λ2)3

nF(−ε2). (B.14)

The corresponding results for the electron-hole channel are obtained by replacing ε2 by −ε2.

In the second case mentioned above the energies in equation (B.4) are of equal size, that is ε1 = ∓ε2

(again “−” for the particle-particle and “+” for the electron-hole case). In this case both channels

become equal with the residues

E := Res
z0=Λ

[f(z)nF(z)] =
−3ε1Λ+Λ2

4(ε1−Λ)3
nF(Λ)− Λ2

4(ε1−Λ)2
n′F(Λ) (B.15)

F := Res
z0=−Λ

[f(z)nF(z)] =
3ε1Λ+Λ2

4(ε1+Λ)3
nF(−Λ)− Λ2

4(ε1+Λ)2
n′F(−Λ) (B.16)

G := Res
z0=ε1

[f(z)nF(z)] =
4Λ2ε3

1

(ε2
1−Λ2)3

nF(ε1)− ε4
1

(ε2
1−Λ2)2

n′F(ε1). (B.17)
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Taking their derivatives with respect to Λ results in

d

dΛ
E =

−3ε2
1−4ε1Λ+Λ2

4(ε1−Λ)4
nF(Λ)− 5ε1Λ−Λ2

4(ε1−Λ)3
n′F(Λ)− Λ2

4(ε1−Λ)2
n′′F(Λ) (B.18)

d

dΛ
F = −−3ε2

1+4ε1Λ+Λ2

4(ε1+Λ)4
nF(−Λ) +

5ε1Λ+Λ2

4(ε1+Λ)3
n′F(−Λ) +

Λ2

4(ε1+Λ)2
n′′F(−Λ) (B.19)

d

dΛ
G =

8Λε3
1(2Λ2+ε2

1)

(ε2
1−Λ2)4

nF(ε1)− 4ε4
1Λ

(ε2
1−Λ2)3

n′F(ε1) (B.20)

For the full dual propagator we, therefore, have to differentiate between both cases and add all the

corresponding contributions, that is those in equations (B.9)-(B.14) in the case of ε1 6= ε2 and those

in equations (B.18)-(B.20) in the case of equal energies.

Finally, we proceed to the limit T = 0 or β = ∞. In this limit the Fermi-function nF becomes a

Heaviside function, its first derivative becomes a delta-distribution and the second derivative equals

zero. This allows us to simplify the above expression a lot. First, as Λ ↘ 0 the terms of n′F(±Λ) only

contribute at the very end of the flow. The terms of nF(−Λ) always contribute, while those of nF(Λ)

never contribute, as Λ ≥ 0. For the Heaviside functions of the energies we now have to distinguish

between different cases, as the energies ε1 and ε2 can be positive or negative. These observations

result in the particle-particle propagator of the form

LΛ
pp =



ε21ε2(3ε2−Λ)+(3ε2−Λ)Λ3+ε1Λ(ε22+6ε2Λ−3Λ2)
4(ε1+Λ)3(ε2−Λ)3 for ε1 > 0 and ε2 < 0,

1
4(ε1+ε2)

(
ε1(3ε1+Λ)
(ε1+Λ)3 + ε2(3ε2+Λ)

(ε2+Λ)3

)
for ε1 > 0 and ε2 > 0,

ε21ε2(3ε2+Λ)−(3ε2+Λ)Λ3+ε1Λ(−ε22+6ε2Λ+3Λ2)
4(ε1−Λ)3(ε2+Λ)3 for ε1 < 0 and ε2 > 0,

1
4(ε1+ε2)

(
ε1(3ε1−Λ)
(ε1−Λ)3 + ε2(3ε2−Λ)

(ε2−Λ)3

)
for ε1 < 0 and ε2 < 0.

. (B.21)

An expansion of the first and the third case by ε1 + ε2 and the introduction of absolute values allows

us to combine all expressions into the simple form

LΛ
pp =

1

4(ε1 + ε2)

(
ε1(3|ε1|+ Λ)

(|ε1|+ Λ)3
+
ε2(3|ε2|+ Λ)

(|ε2|+ Λ)3

)
. (B.22)

In the case of equal energies ε1 = −ε2 the zero-temperature limit is obtained analogously, resulting in

LΛ
pp =

3ε2
1 − 4|ε1|Λ− Λ2

4(|ε1|+ Λ)4
. (B.23)

As mentioned beforehand, the electron-hole propagator is obtained by changing the sign of ε2 and the

global sign. Thus the electron-hole term in the zero-temperature limit becomes

LΛ
ph =

−
1

4(ε1−ε2)

(
ε1(3|ε1|+Λ)
(|ε1|+Λ)3 − ε2(3|ε2|+Λ)

(|ε2|+Λ)3

)
for ε1 6= ε2,

3ε21+4|ε1|Λ−Λ2

4(|ε1|−Λ)4 for ε1 = ε2.
(B.24)

This equals the equations presented in equation (4.43) and (4.44).
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C. Discussion of undiverged flow of the

anisotropic 3D-Hubbard model
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Figure C.1.: From left to right: Cut through the interaction in the C-channel on-site form-factor in the
y = π-plane, in the P-channel d-wave form-factor in the y = 0-plane, flow of the largest
values of the three main channels and their derivatives for t′ = −0.34 t.
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Figure C.2.: From left to right: Cut through the interaction in the C-channel on-site form-factor in the
y = 0-plane, in the y = π-plane, flow of the largest values of the three main channels and
their derivatives for t′ = −0.36 t.
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Figure C.3.: From left to right: Cut through the interaction in the C-channel on-site form-factor in the
y = π-plane, in the P-channel d-wave form-factor in the y = 0-plane, flow of the largest
values of the three main channels and their derivatives for t′ = −0.32 t.
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Figure C.4.: From left to right: Cut through the interaction in the C-channel on-site form-factor in the
y = 0-plane, in the y = π-plane, flow of the largest values of the three main channels and
their derivatives for t′ = −0.34 t.
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Figure C.5.: From left to right: Cut through the interaction in the C-channel on-site form-factor in the
y = 0-plane, in the P-channel p-wave form-factor in the y = 0-plane, flow of the largest
values of the three main channels and their derivatives for t′ = −0.36 t.
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Figure C.6.: From left to right: Cut through the interaction in the C-channel on-site form-factor in the
y = 0-plane, in the y = π-plane, flow of the largest values of the three main channels and
their derivatives for t′ = −0.1 t.
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C. Discussion of undiverged flow of the anisotropic 3D-Hubbard model
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Figure C.7.: From left to right: Cut through the interaction in the C-channel on-site form-factor in the
y = 0-plane, in the y = π-plane, flow of the largest values of the three main channels and
their derivatives for t′ = −0.15 t.
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Figure C.8.: From left to right: Cut through the interaction in the C-channel on-site form-factor in the
y = 0-plane, in the y = π-plane, flow of the largest values of the three main channels and
their derivatives for t′ = −0.2 t.
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Figure C.9.: From left to right: Cut through the interaction in the C-channel on-site form-factor in the
y = 0-plane, in the y = π-plane, flow of the largest values of the three main channels and
their derivatives for t′ = −0.24 t.
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Figure C.10.: From left to right: Cut through the interaction in the C-channel on-site form-factor in the
y = 0-plane, in the y = π-plane, flow of the largest values of the three main channels and
their derivatives for t′ = −0.26 t.

−π 0 π
tx

−π

0

π

t z

VCs (ky =0)

2.10
2.25
2.40
2.55

−π 0 π
tx

−π

0

π

t z

VCs (ky =π)

1.5
1.8
2.1
2.4

10-7 10-2

Λ

10-10

10-4

102

V
ff

SC dx2 −y2 -wave SC p-wave C s-wave

10-6 10-2 102

Λ

10-10

10-4

102

d
V
ff

Figure C.11.: From left to right: Cut through the interaction in the C-channel on-site form-factor in the
y = 0-plane, in the y = π-plane, flow of the largest values of the three main channels and
their derivatives for t′ = −0.28 t.
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Figure C.12.: From left to right: Cut through the interaction in the C-channel on-site form-factor in the
y = 0-plane, in the y = π-plane, flow of the largest values of the three main channels and
their derivatives for t′ = −0.32 t.
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Figure C.13.: From left to right: Cut through the interaction in the C-channel on-site form-factor in the
y = 0-plane, in the y = π-plane, flow of the largest values of the three main channels and
their derivatives for t′ = −0.34 t.
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Figure C.14.: From left to right: Cut through the interaction in the C-channel on-site form-factor in the
y = 0-plane, in the y = π-plane, flow of the largest values of the three main channels and
their derivatives for t′ = −0.36 t.
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Figure C.15.: From left to right: Cut through the interaction in the C-channel on-site form-factor in the
y = 0-plane, in the y = π-plane, flow of the largest values of the three main channels and
their derivatives for t′ = −0.4 t.

−π 0 π
tx

−π

0

π

t z

VCs (ky =0)

15

30

45

−π 0 π
tx

−π

0

π

t z

VCs (ky =π)

1.4
1.6
1.8
2.0

10-7 10-2

Λ

10-10

10-4

102

V
ff

SC dx2 −y2 -wave SC p-wave C s-wave

10-6 10-2 102

Λ

10-10

10-4

102

d
V
ff

Figure C.16.: From left to right: Cut through the interaction in the C-channel on-site form-factor in the
y = 0-plane, in the y = π-plane, flow of the largest values of the three main channels and
their derivatives for t′ = −0.45 t.
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[18] Tetsuya Takimoto and Tôru Moriya. Superconductivity and antiferromagnetism in the three-

dimensional hubbard model. Phys. Rev. B, 66:134516, Oct 2002.

[19] Andrey V. Chubukov, M. Khodas, and Rafael M. Fernandes. Magnetism, superconductivity, and

spontaneous orbital order in iron-based superconductors: Which comes first and why? Phys.

Rev. X, 6:041045, Dec 2016.

[20] J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, J. Larsen, J. Mesot, Ruixing Liang,

D. A. Bonn, W. N. Hardy, A. Watenphul, M. v. Zimmermann, E. M. Forgan, and S. M. Hayden.

Direct observation of competition between superconductivity and charge density wave order in

yba2cu3o6.67. Nature Physics, 8(12):871–876, Dec 2012.

[21] M. Bendele, A. Ichsanow, Yu. Pashkevich, L. Keller, Th. Strässle, A. Gusev, E. Pomjakushina,
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[167] Anne-Marie Daré, Y. M. Vilk, and A. M. S. Tremblay. Crossover from two- to three-dimensional

critical behavior for nearly antiferromagnetic itinerant electrons. Phys. Rev. B, 53:14236–14251,

Jun 1996.

[168] N. D. Mermin and H. Wagner. Absence of ferromagnetism or antiferromagnetism in one- or

two-dimensional isotropic heisenberg models. Phys. Rev. Lett., 17:1133–1136, Nov 1966.

[169] Cornelia Hille, Daniel Rohe, Carsten Honerkamp, and Sabine Andergassen. Pseudogap opening

in the two-dimensional hubbard model: A functional renormalization group analysis. Phys. Rev.

Research, 2:033068, Jul 2020.

[170] Cornelia Hille, Fabian B. Kugler, Christian J. Eckhardt, Yuan-Yao He, Anna Kauch, Carsten

Honerkamp, Alessandro Toschi, and Sabine Andergassen. Quantitative functional renormaliza-

tion group description of the two-dimensional hubbard model. Phys. Rev. Research, 2:033372,

Sep 2020.

210



Bibliography

[171] Nahom K. Yirga and David K. Campbell. Frequency dependent functional renormalization

group for interacting fermionic systems, 2020.

[172] P. Strack, R. Gersch, and W. Metzner. Renormalization group flow for fermionic superfluids at

zero temperature. Phys. Rev. B, 78:014522, Jul 2008.

[173] Jay D. Sau, Roman M. Lutchyn, Sumanta Tewari, and S. Das Sarma. Generic new platform

for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett.,

104:040502, Jan 2010.

[174] Florian Loder, Arno P Kampf, and Thilo Kopp. Superconductivity with rashba spin–orbit

coupling and magnetic field. Journal of Physics: Condensed Matter, 25(36):362201, Aug 2013.

[175] Henning G. Hugdal and Asle Sudbø. p-wave superconductivity in weakly repulsive 2d hubbard

model with zeeman splitting and weak rashba spin-orbit coupling. Phys. Rev. B, 97:024515, Jan

2018.

[176] Takashi Miyake, Kazuma Nakamura, Ryotaro Arita, and Masatoshi Imada. Comparison of ab

initio low-energy models for lafepo, lafeaso, bafe2as2, lifeas, fese, and fete: Electron correlation

and covalency. Journal of the Physical Society of Japan, 79(4):044705, 2010.

211





List of Publications

Hereby I declare that this thesis was compiled solely by myself. However, parts of it have already

been published in previous articles in collaboration with the authors listed below, which I am sincerely

grateful for. Especially parts of chapters 3.5 and 5.3 are contained in these publications, which are

indicated in the abstracts at the beginning of each of these chapters. Following are the corresponding

publications:

• J. Ehrlich and C. Honerkamp. Functional renormalization group for fermion lattice models

in three dimensions: Application to the hubbard model on the cubic lattice. Phys. Rev. B,

102:195108, Nov 2020

• Giulio A. H. Schober, Jannis Ehrlich, Timo Reckling, and Carsten Honerkamp. Truncated-unity

functional renormalization group for multiband systems with spin-orbit coupling. Frontiers in

Physics, 6:32, May 2018

• C. J. Eckhardt, G. A. H. Schober, J. Ehrlich, and C. Honerkamp. Truncated-unity parquet

equations: Application to the repulsive hubbard model. Phys. Rev. B, 98:075143, Aug 2018

213





Schriften des Forschungszentrums Jülich 
Reihe Schlüsseltechnologien / Key Technologies 

 
Band / Volume 234 
Towards Magneto-Elastomeric Nanocomposites with Supramolecular 
Activity 
L. S. Fruhner (2021), XVI, 213 pp 
ISBN: 978-3-95806-538-3 
 
Band / Volume 235 
Geometric and Electronic Properties of Heteromolecular Organic 
Monolayers on Noble Metal Substrates Studied by Photoemission 
Spectroscopy and X-ray Standing Waves 
G. van Straaten (2021), vii, 115 pp 
ISBN: 978-3-95806-539-0 
 
Band / Volume 236 
Nanoparticle assemblies: Order by self-organization and collective 
magnetism 
A. Qdemat (2021), xix, 282 pp 
ISBN: 978-3-95806-542-0 
 
Band / Volume 237 
γ-Aminobutyrate as carbon and nitrogen source for Corynebacterium 
glutamicum and regulation of the catabolic genes by GabR 
L. Zhu (2021), 111 pp 
ISBN: 978-3-95806-543-7 
 
Band / Volume 238 
Single-Trap Phenomena in Nanowire Biosensors 
Y. Kutovyi (2021), 171 pp 
ISBN: 978-3-95806-544-4 
 
Band / Volume 239 
Single crystal growth and neutron scattering studies  
of novel quantum materials 
X. Wang (2021), VI, 145 pp 
ISBN: 978-3-95806-546-8 
 
Band / Volume 240 
Structure and Dynamics of Magnetocaloric Materials 
N. A. Maraytta (2021), vii, 146 pp 
ISBN: 978-3-95806-557-4 
 
Band / Volume 241 
Novel insights into the transcriptional regulation of cell division 
in Corynebacterium glutamicum 
K. J. Kraxner (2021), V, 83 pp 
ISBN: 978-3-95806-560-4 
 



Schriften des Forschungszentrums Jülich 
Reihe Schlüsseltechnologien / Key Technologies 

 
Band / Volume 242 
Interplay of proximity effects in superconductor/ferromagnet 
heterostructures 
A. Stellhorn (2021), ix, 219 pp 
ISBN: 978-3-95806-562-8 
 
Band / Volume 243 
Silencing and counter-silencing of the Lsr2-like protein CgpS in 
Corynebacterium glutamicum 
J. Wiechert (2021), IV, 265 pp 
ISBN: 978-3-95806-569-7 
 
Band / Volume 244 
Molecular Layer Functionalized Neuroelectronic Interfaces: 
From Sub-Nanometer Molecular Surface Functionalization to  
Improved Mechanical and Electronic Cell-Chip Coupling 
N. R. Wolf (2021), IV, 101, xx pp 
ISBN: 978-3-95806-570-3 
 
Band / Volume 245 
Surface Acoustic Waves in Strain-Engineered Thin (K,Na)NbO3 Films:  
From Basic Research to Application in Molecular Sensing 
S. Liang (2021), VI, 125 pp 
ISBN: 978-3-95806-571-0 
 
Band / Volume 246 
Tailoring neuroelectronic interfaces via combinations  
of oxides and molecular layers 
X. Yuan (2021), 113 pp 
ISBN: 978-3-95806-572-7 
 
Band / Volume 247 
Stoichiometric control and magnetoelectric coupling in artificial 
multiferroic heterostructures 
P. Schöffmann (2021), vii, 176 pp 
ISBN: 978-3-95806-575-8 
 
Band / Volume 248 
A Unified Framework for Functional Renormalisation Group Calculations 
and its Application to Three Dimensional Hubbard Models 
J. Ehrlich (2021), xvi, 213 pp 
ISBN: 978-3-95806-582-6 
 
 

Weitere Schriften des Verlags im Forschungszentrum Jülich unter 
http://wwwzb1.fz-juelich.de/verlagextern1/index.asp 





Schlüsseltechnologien / Key Technologies
Band / Volume 248
ISBN 978-3-95806-582-6

Schlüsseltechnologien / Key Technologies
Band / Volume 248
ISBN 978-3-95806-582-6

A Unified Framework for Functional Renormalisation  
Group Calculations and its Application to Three Dimensional 
Hubbard Models
Jannis Ehrlich

248

Sc
hl

üs
se

lte
ch

no
lo

gi
en

  
Ke

y 
Te

ch
no

lo
gi

es
A

 U
ni

fie
d 

Fr
am

ew
or

k 
fo

r F
un

ct
io

na
l R

en
or

m
al

is
at

io
n 

G
ro

up
 C

al
cu

la
tio

ns
 

an
d 

its
 A

pp
lic

at
io

n 
to

 T
hr

ee
 D

im
en

si
on

al
 H

ub
ba

rd
 M

od
el

s
Ja

nn
is

 E
hr

lic
h


	List of Definitions
	List of Theorems and Corollaries
	List of Figures
	Introduction
	Preliminaries
	Quantum Mechanical Notations
	The Fock Space
	Grassmann Fields and Path Integral
	Group Theory

	Theory
	Green's Functions
	Properties of the n-particle Green's Function
	Behaviour of Green's Functions under Symmetries
	Momentum and Frequency Green's Functions
	Time Evolution of Green's Functions

	Perturbation Theory
	Perturbation Expansion
	Diagrams
	Diagrammatic Groups

	Fermionic Bilinears and Susceptibilities
	Generating Functionals
	Functional Renormalisation Group
	Functional Flow Equations
	Vertex Flow Equations
	Comparison of the Perturbation Theory and the Functional Renormalisation Group
	SU(2)-Symmetric Flow Equations
	Flow Equations in Frequency and in Momentum Space

	Truncated Unity Functional Renormalisation Group
	Form-Factors, Projections and Chantices
	Chantex Flow Equations
	Similar Form-Factor Approaches to the Functional Renormalisation Group


	Numerical Implementation
	Numerical Setup
	Momentum Mesh
	Frequency Mesh
	Model and Basis

	Form-Factors
	Implementation of Green's Functions
	The Sharp Frequency Cut-Off
	The Omega-Frequency Cut-Off
	The Interaction Cut-Off
	Further Cut-Off Schemes

	Symmetries
	Performance and Parallelisation
	Single-Instruction Multiple-Data and Memory Access
	Shared Memory Parallelisation
	Distributed Memory Parallelisation


	Application to the Hubbard Model
	Computational Details and Analysis
	The 2D-Hubbard Model
	Phase Diagram of the 2D-Hubbard Model
	Convergence of the TUFRG Approach

	The Isotropic 3D-Hubbard Model
	Half-Filled Hubbard Model
	Doped 3D-Hubbard Model

	Non-Isotropic 3D-Hubbard Model
	The tz'=0-Phase Diagram
	The tz'=tz*t' Phase Diagram
	Discussion of the Anisotropic 3D-Hubbard Model


	Conclusion and Outlook
	Conclusion
	Outlook

	Appendix
	Appendix Details of some Derivations
	Derivation of Propagator Flow Equations
	Spinful Case
	SU(2)-Symmetric Case

	Channel to Channel Projections

	Appendix Evaluation of Matsubara Sums
	Appendix Discussion of undiverged flow of the anisotropic 3D-Hubbard model
	tz=0.05t
	tz=0.1t
	tz=0.5t

	Bibliography
	List of Publications
	Leere Seite
	Leere Seite
	Leere Seite



