Zuckerrübenversuchsstelle des Rheinischen Rübenbauer-Verbandes e.V.

Versuche 2011

im Rahmen der Arbeitsgemeinschaft Zuckerrübenanbau und in Zusammenarbeit mit den Dienststellen der Landwirtschaftskammer NRW, den Zuckerfabriken der Bezirksgruppe NRW, den Zuckerrübenzüchtern und dem Institut für Zuckerrübenforschung

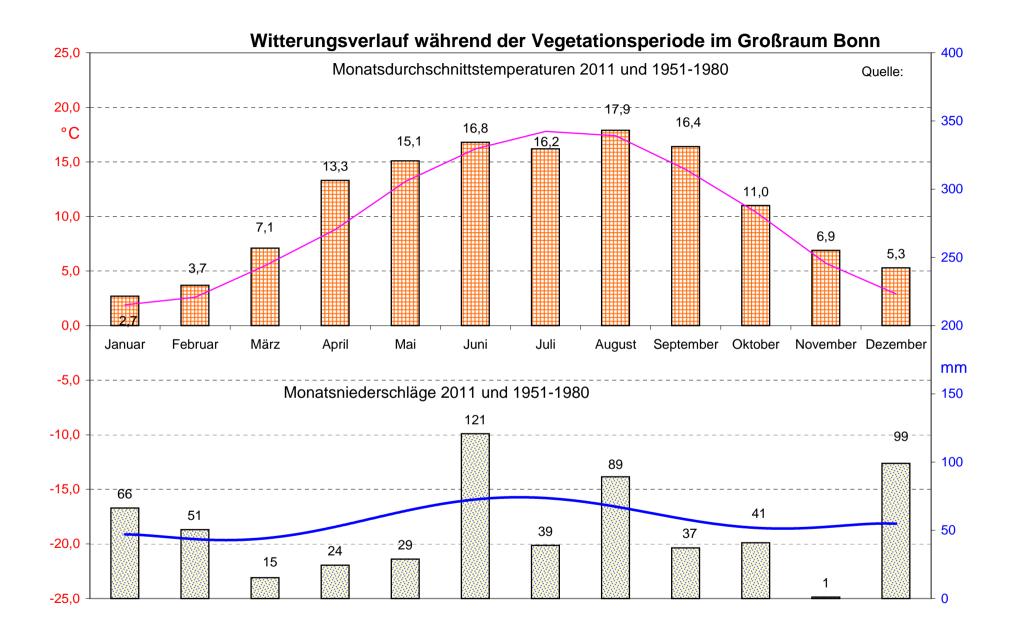
Allgemeines, Witterungs- und Wachstumsverlauf	1
Schosserauszählung	8
Proberodungen in Zusammenarbeit mit den rheinischen Zuckerfabriken	
und der Zuckerfabrik Lage	9
Angaben zu den Versuchsstandorten	16
Sortenprüfungen	
SV/SSV-R Buir	18
SV/SSV-R Erkelenz	20
SV-R Kalrath	22
LNS Buir	25
LNS Erkelenz	26
Zusammenfassung der Sortenergebnisse	27
Biogassortenversuche	33
Nematodenresistente Sorten unter Befall	36
Rhizoctoniatolerante Sorten unter Befall	47
Blattkrankheiten	50
Mehltaubonituren	56
Saatgutbehandlung	58
Düngungsversuche mit Stickstoff	68
Düngungsversuche mit Spurenelementen	77
Ergebnisse zu Pentakeep	82
Herbizidversuche	83
Ditylenchusscreening	100
Mietenversuch	101
Impressum	104

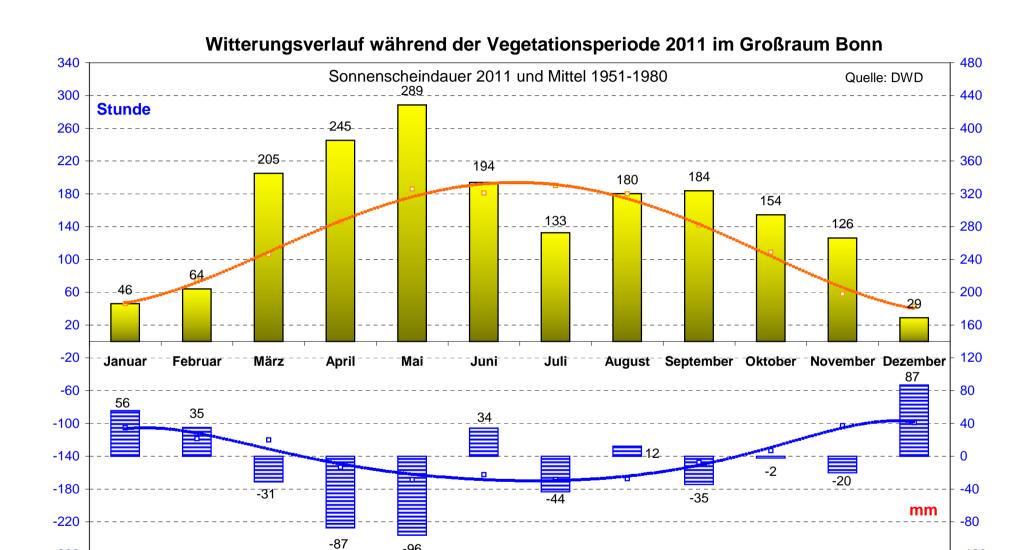
Witterungs- und Wachstumsbericht 2011

2011 ist gekennzeichnet durch einen Traumstart der Rüben in der zweiten Märzhälfte mit hohen Feldaufgängen. Sehr hohe Temperaturen im April und Mai und anhaltende Trockenheit beschleunigten das Jugendwachstum, erschwerten aber sehr die Unkrautbekämpfung. Der milde Sommer förderte Wachstum und Pflanzengesundheit und damit hohe Zuwachsraten bis in den November. Wie der Beginn war auch das Kampagneende traumhaft günstig mit sehr hohen inneren Qualitäten und sehr geringen Erdanteilen. Dazu höchste Erträge an Rüben und Zucker sowie günstige Transport- und Lagerungsbedingungen ohne Frosteinfluss.

Abgesehen vom zu kühlen Juli war das Jahr mit 11,0 °C um 1,3 °C gegenüber dem Mittel 1951-1980 deutli ch zu warm (Messwerte des DWD in Bonn-Roleber). Mit 613 mm (Bonn-Stadt) war es gleichzeitig zu trocken. An den einzelnen Standorten schwankten die Niederschlagsmengen zwischen 477 und 1006 mm erheblich (s. S. 5). Mit 1836 Sonnenstunden war 2011 ausgesprochen sonnenscheinreich (1760-2060 Stunden waren es an den einzelnen Standorten).

Nach dem schneereichen, winterlichen Dezember des Vorjahres blieben Januar und Februar etwa durchschnittlich kühl und feucht. Milde Temperaturen und Trockenheit ermöglichten eine frühe Aussaat in der zweiten Märzhälfte. Wärme und zwischenzeitliche Niederschläge förderten dann einen raschen und sehr guten Aufgang nach 13 Tagen. Vereinzelt beeinträchtigten Tipulalarven den Aufgang. Ausgesprochen schwierig gestaltete sich die Unkrautbekämpfung im viel zu warmen und trockenen April und Mai. Dort wo keine Anpassung mit blattaktiven Wirkstoffen und eine gute Benetzung der Unkräuter erfolgte, blieb Spätverunkrautung unvermeidlich (vgl. Herbizidbericht). Tierische Schädlinge, welche das Wachstum der jungen Pflänzchen während der Jugendentwicklung beeinträchtigten wie Blattläuse, Moosknopfkäfer oder Rübenfliegenfliegen, traten 2011 kaum in Erscheinung und waren auch im Pillierungsversuch in Buir nicht zu bonitieren (vgl. Bericht). Auf vielen Feldern zeigte sich Mitte Juni starker Spätbefall mit Schwarzer Bohnenlaus. Mit den einsetzenden Niederschlägen ab Ende Mai erfuhren die Rüben einen deutlichen Wachstumsschub. Entsprechend früh setzte der Reihenschluss der Rüben ab Monatswende Mai / Juni ein. Die überdurchschnittlichen Niederschläge im Juni begünstigten das Wachstum der Rüben sichtlich, sie reichten aber häufig nicht bis in tiefere, bereits ausgetrocknete Bodenschichten. Anfang Juli nahm die Trockenheit bei fortgeschrittenem Wachstumsstand der Rüben besonders im Regenschattengebiet der Eifel erneut stark zu. Der meist nur mäßig ausgebildete Blattapparat ließ jedoch nur in wenigen Fällen stärkere Blattwelke zu. An solchen Standorten machte die in der Anfangsentwicklung etwas verhaltene Kristallina KWS einen etwas frischeren Eindruck. Deutliche optische Nematodeneffekte blieben bei der anfälligen Vergleichssorte trotz Trockenheit eher selten (vgl. Bericht zu den nematodentoleranten Sorten). Wegen der zu trockenen Vorsommerwitterung waren Schäden durch


Rübenkopfälchen nicht erwartet worden. Auf einigen Feldern gab es bei späteren Ernteterminen dann doch noch stärkere Befallssymptome festzustellen. Insgesamt blieben diese 2011 aber sehr begrenzt. Bedingt durch den zu kühlen Juli blieb auch die Blattfleckenkrankheit Cercospora insgesamt unbedeutend. Dagegen war Ramularia häufiger festzustellen, die Krankheit schädigte aber insgesamt nur gering. Mehltau entwickelte sich schon früh und sehr stark bei den sensiblen Sorten. Er konnte aber durch Fungizidbehandlungen recht gut kontrolliert werden. Auf dem intakten Blattapparat fand sich ab August dann häufig starker Rostbefall, der bei unterlassener Anschlussbehandlung bis in den November sehr stark zunahm (vgl. Bericht zu den Blattkrankheiten). Regional trat die Späte Rübenfaule stärker in Erscheinung, obwohl dies nach dem trockenen Frühsommer nicht zu vermuten war. Die Befallsentwicklung nach versuchsmäßiger, künstlicher Inokulation mit diesem Pilz war in Abhängigkeit von den Sommerniederschlägen unterschiedlich stark aufgetreten. An drei Standorten, an denen beim letzten Rübenanbau starke Blattssymptome durch den Pilz Verticillium dahliae aufgetreten waren, kam die Krankheit auch 2011 im Sommer zum Ausbruch. In den dort angelegten Streifenversuchen war ein sortenunterschiedlicher Befall zu bonitieren. Auch die Rübenmotte war in einer kleinen Region im südlichen Rheinland schädigend aufgetreten. Das Ausmaß der Schäden blieb jedoch witterungsbedingt begrenzt. Die Symptome können leicht mit Bormangel verwechselt werden. Letzterer hatte 2011 ebenfalls erhebliche Bedeutung, besonders im südlichen Rheinland. Manchmal trat Bormangel bereits im Juli trockenheitsbedingt stark auf, manchmal waren die Symptome nur an sensiblen Sorten eindeutig festzustellen (vgl. Bericht hierzu). Die Gammaeule trat nur latent und ohne nennenswerte Schadwirkung auf. Auch Spinnmilben waren wieder in etlichen Parzellen festzustellen. Der Schädling auf den gelblich verfärbten Blättern kann mit bloßem Auge nicht erkannt werden. 2011 war auch ein Mäusejahr. Besonders bei späteren Ernteterminen war ein starker Besatz mit Feld- und Wühlmäusen in den Beständen festzustellen. Die Schäden bei der Ernte waren von Einzelfällen abgesehen aber geringer als 2007. Der Bedarf an Stickstoff war nach der frühen und anhaltenden Trockenheit weit höher als üblich. Bei den guten Wachstumsbedingungen litten die Rüben sichtlich über lange Zeit unter der eingeschränkten Nährstoffverfügbarkeit (vgl. Bericht hierzu). Schosser traten 2011 dank der Wärme während der Jugendentwicklung kaum auf (vgl. Schossertabelle Seite 8).


In den Proberodungen deutete sich Mitte Juli eine deutlich überdurchschnittliche Rübenernte an. Nach dem zu kalten Juli fiel die Zuwachsrate zunächst etwas flacher als 2009 aus. Der warme Spätherbst und der gesunde Blattapparat sorgten aber für eine lange Vegetationszeit mit rekordverdächtigen Ertragsergebnissen. Auch die Zuckergehalte entwickelten sich im Oktober und November noch erfreulich nach oben (vgl. Bericht Proberodungen). Die Ernte verlief problemlos, der Erdanteil blieb sehr gering. Zu erwähnen ist der jahresbedingt auf einzelnen Feldern spät aufgetretene, starke Befall mit Rotfäule. Durch die ungewöhnlich milde Witterung ohne nennenswerten Frost konnte auf einen Aufruf zum Abdecken der Feldrandmieten verzichtet werden.

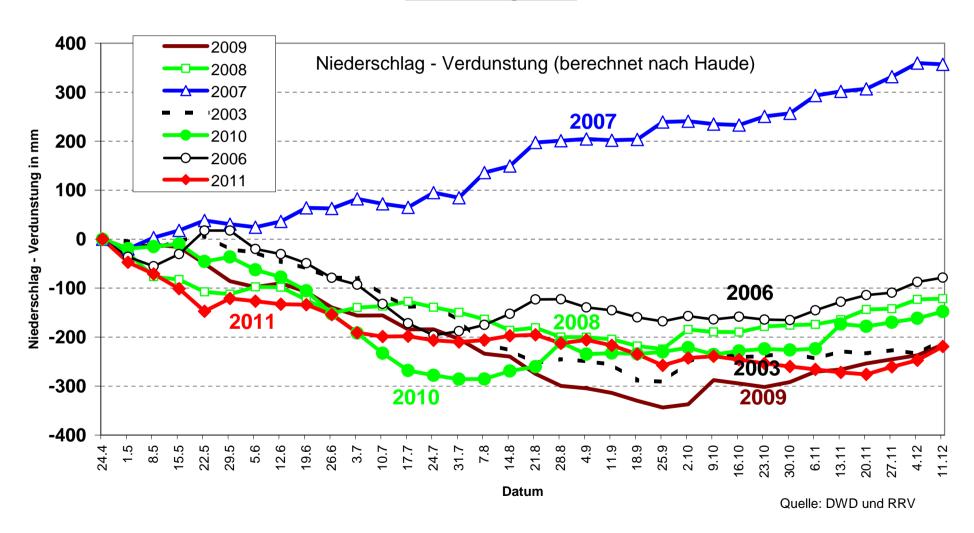
Witterungsverlauf während der Vegetationsperiode 2011 und 2010 im Großraum Bonn Deutscher Wetterdienst, Meßstelle Bonn-Roleber (bis 2/99 Bonn-Friesdorf)

	Nie	ders	chlag	Mon	a t s m i	ittel der	Son	nens	chein-	V e	rdun	stung	Klimat	. Wasse	erbilanz
		in r	m m	Luft	temp	eratur	!	stund	len		in m	n m	i	in mr	n
	2011	2010	2011 Abw.	2011	2010	2011 Abw.	2011	2010	2011 Abw.	2011	2010	2011 Abw.	2011	2010	Mittel
	1)	1)	vom Ø			vom Ø			vom Ø			vom Ø			
Januar	66	55	18	2,7	-1,6	0,8	46	28	0	11	6	-3	56	49	35
Februar	51	47	12	3,7	1,6	1,1	64	32	-11	15	12	-2	35	35	22
März	15	47	-36	7,1	5,9	1,6	205	128	99	47	34	15	-31	12	20
April	24	5	-26	13,3	10,2	4,5	245	213	99	112	89	48	-87	-84	-14
Mai	29	81	-33	15,1	10,9	1,9	289	129	103	125	67	35	-96	14	-29
Juni	121	27	48	16,8	17,1	0,6	194	264	13	87	108	-9	34	-81	-23
Juli	39	55	-35	16,2	20,9	-1,6	133	270	-58	83	158	-20	-44	-102	-28
August	89	132	20	17,9	17,0	0,5	180	153	0	77	68	-19	12	65	-27
September	37	57	-22	16,4	13,3	2,1	184	143	42	72	49	5	-35	8	-8
Oktober	41	41	-6	11,0	9,4	0,6	154	127	45	43	34	3	-2	7	7
November	1	70	-55	6,9	6,0	1,2	126	26	68	21	15	3	-20	56	37
Dezember	99	73	45	5,3	-2,0	2,4	29	18	-14	12	5	-1	87	68	41
Summe / ø	613	689	-70	11,0	9,1	1,3	1849	1531	387	704	644	54	-91	45	33
Abw. %	90	101	-10	113	93	13	126	105	26	108	99	8	-65	32	100

¹⁾ Bonn Stadt (RRV)

-260

-300


Klimatische Wasserbilanz 2011 und im Mittel 1951-1980

-120

-160

-96

Klimatische Wasserbilanz (4 Orte Rhld. ab Anfang Mai)

Witterungsverlauf an verschiedenen rheinischen Standorten 2011

	Nöı	rvenich	1)	Kö	In-Wah	ın 1)	ΕI	s d o r	f 2)		Maifeld	3)		Heinsb	erg 1)		Esser	1)		Rolebe	er 1)	Bonn	Buir	Straßfeld
			Sonne			Sonne		G	Glob.strlg.			Sonne			Sonne			Sonne			Sonne	4)	5)	6)
	mm	°C	h	mm	°C	h	mm	°C	W/qm	mm	°C	h	mm	°C	h	mm	°C	h r	nm	°C	h r	nm r	nm	mm
<u>2010</u>																								
Oktober	38	9,9	125	49	9,7	119	38	10,3	72,3	21	9,0	143	45	10,0	136	45	9,8	109	43	9,4	127	41	42	49
November	58	6,3	29	82	6,4	24	81	6,4	25,6	37	6,3	50	111	6,2	42	145	5,8	28	62	6,0	26	70	63	62
Dezember	60	-1,6	19	76	-1,7	13	59	-1,5	17,7	51	-2,1	55	57	-1,6	24	84	-2,1	23	76	-2,0	18	73	87	83
<u>2011</u>																								
Januar	59	3,0	49	94	2,9	41	28	3,2	25,5	37	2,5	62	76	3,2	51	164	2,7	47	74	2,7	46	66	62	41
Februar	49	4,4	59	67	4,1	59	53	4,6	47,9	17	3,3	83	54	4,7	65	90	3,9	70	61	3,7	64	51	54	37
März	18	6,8	178	16	7,2	204	16	7,4	120,9	12	6,2	235	15	6,7	200	41	7,0	199	15	7,1	205	15	17	16
April	19	13,2	236	18	13,4	229	15	14,2	186,0	15	12,0	263	15	13,0	237	36	13,6	242	23	13,3	245	24	21	30
Mai	30	15,1	266	39	15,4	266	15	16,1	223,0	30	14,2	315	18	15,1	276	30	14,9	269	38	15,1	289	29	23	34
Juni	80	16,8	197	141	17,1	183	78	18,4	200,5	57	16,9	214	72	17,0	187	88	16,5	195	199	16,8	194	121	102	78
Juli	36	16,4	154	65	16,4	120	44	17,0	163,3	45	16,3	170	56	16,2	98	105	16,0	126	46	16,2	133	39	39	35
August	107	18,0	191	120	18,2	165	162	18,7	157,8	85	18,0	217	102	17,8	149	88	17,6	160	93	17,9	180	89	146	90
September	29	16,5	176	45	16,5	169	23	17,2	126,4	28	16,0	205	29	16,2	185	47	16,5	162	53	16,4	184	37	37	29
Oktober	38	11,2	168	40	11,2	143	44	11,5	78,4	28	9,9	175	55	11,0	161	83	11,5	160	38	11,0	154	41	45	45
November	1	7,2	115	4	7,4	115	3	7,5	44,4	2	4,9	79	7	7,0	141	14	8,1	129	2	6,9	126	1	1	0
Dezember	78	5,9	47	100	5,6	23	94	6,0	18,7	120	5,0	42	126	6,0	37	220	5,2	19	102	5,3	29	99	100	78
Jahreswerte	545	11,2	1836	747	11,3	1716	574	11,8	1393	477	10,4	2060	624	11,1	1787	1006	11,1	1776	744	11,0	1849	613	645	513

Quellen: 1) DWD 2) JKI 3) Münstermaifeld-Rosenhof (DLR RLP) 4) RRV 5) landw. Betrieb Brecher, Buir 6) landw. Betrieb Poetes

Gesamtschosser 2011 (Anzahl je ha)

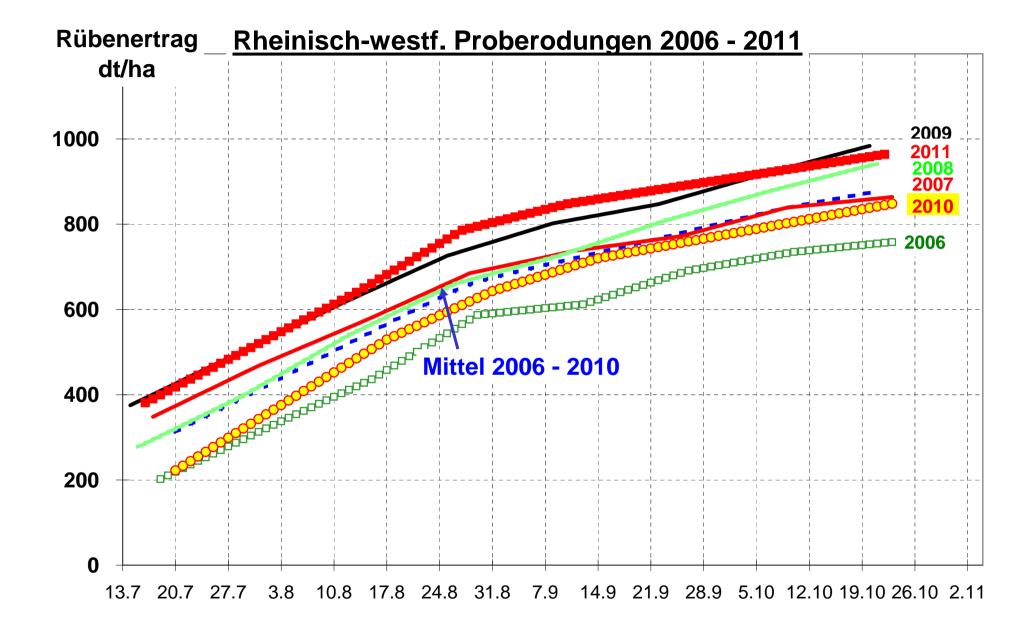
2011 0 32 0 32 0 10 10 0 18 0 24 0 25 0 25 0 29 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 33 22 17 259 16 8 17 30 44		0000000000	1936 Nemata 1981 Kühn 1993 Hella 2079 Kepler 2097 Kristallina KWS 2098 Mattea KWS
201- 0 32 0 10 10 0 18 0 24 0 250 0 29 0 250 0 29 0 250 0 29 0 250 0 29 10 0 33 22 17 259 16 9 10 259 17 17 18 18 18 18 18 18 18 18 18 18		000000000	
2011 0 32 0 32 0 10 10 10 10 10 10 10 22 0 25 0 29 0 25 0 29 0 29 0 29 0 29 0 29 0 29 110 0 29 110 110 110 110 110 110 110 11		000000000	1936 Nemala 1981 Kühn 1993 Hella 2079 Kepler
2011 0 32 0 32 0 10 10 10 0 24 0 25 0 33 0 33 16 17 17		00000000	1936 Neiriala 1981 Kühn 1993 Hella
2011 0 32 0 32 0 10 10 0 24 0 250 0 29 0 250 0 29 0 250 0 29 0 250 0 29 0 250 0 41 0 8 0 33 22 17 259 16 69 10 5 69 10 69 10 10 10 10 10 10 10 10 10 10		0000000	
2011 0 32 0 32 0 10 0 18 0 24 0 250 0 29 0 250 0 29 0 250 0 29 0 250 0 33 22 17 259 16 69 10 5 69 10 5 69 10 69 10 69 10 5 69 10 69 10 69 10 5 69 10 69 10 69 10 69 10 10 10 10 10 10 10 10 10 10		0000000	
250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00000	
2011 0 32 0 32 0 10 10 0 18 0 24 0 25 0 25 0 25 0 29 0 25 0 29 0 20 0 41 0 8 0 33 22 17 259 16 69 10 5 69 10 5 69 10 69 11 11 12 13		0000	_
2011 0 32 0 32 0 10 10 0 18 0 24 0 25 0 25 0 29 0 20 0 20 0 25 0 33 0 36 0 36 0 36 0 36 0 36 0 37 0 38 0		0000	1798 Theresa KWS
2011 2012 0 32 0 10 10 0 18 0 24 0 25 0 25 0 25 0 29 0 20 0 20 0 25 0 33 25 0 33 0 36 0 36 0 37 0 38 0 38		000	1746 Berenika
2011 2009-2011 0 7 0 32 0 10 10 0 18 0 24 0 25 0 29 0 29 0 20 0 20 0 41 0 8 0 33 22 17 259 16		0 0	1717 Santino
2011 2009-2011 0 7 0 32 0 32 0 10 0 18 0 24 0 25 0 5 0 5 0 20 0 20 0 25 0 25 0 33 22 17 259 16		0	1602 Prestige
2011 2009-2011 0 7 0 32 0 32 0 10 0 18 0 24 0 22 0 5 0 5 0 5 0 20 0 20 0 25 0 9 250 0 9 250 0 33 22 17			1555 Nauta
2011 2009-2011 0 32 0 10 10 0 18 0 24 0 27 0 29 0 29 0 29 0 29 0 29 0 29 0 29 0 29 0 41 0 33 222 17		0	1307 Syncro
2011 2009-2011 0 7 0 32 0 10 10 0 18 0 24 0 22 0 5 0 5 0 5 0 20 0 20 0 25 0 9 250 5 0 9 250 6 0 41 0 8	11 22	0	1164 Premiere
2011 2009-2011 0 32 0 32 0 10 10 0 24 0 27 0 27 0 29 0 59 0 29 0 29 0 29 0 29 0 29 0 29 0 41 0 33 0 33	11 22		SSV-R
201- 0 7 0 32 0 10 10 0 18 0 24 0 27 0 27 0 29 0 29 0 29 0 29 0 29 0 29 0 29 0 29 0 41 0 33		0	Mittel Vers.
201- 0 7 0 32 0 10 10 10 10 10 10 22 0 22 0 22 0 29 0 29 0 29 0 29 0 29 0 29 0 29 0 29 0 29 0 20 0 41 0 8	0 0	0	1991 Isabella KWS
2011 2009-2011 0 32 0 10 10 0 18 0 24 0 27 0 29 0 41	0 0	0	1990 Ludwina KWS
201- 0 7 0 32 0 10 10 0 18 0 22 0 22 0 5 0 5 0 29 0 29 0 20 0 25 0 25	0 0	0	1988 SY Belana
2011 2009-2011 0 7 0 32 0 10 0 18 0 22 0 22 0 25 0 5 0 29 0 59 0 20 0 20 0 9	0 0	0	1901 Adrianna KWS
201- 0 7 0 32 0 10 10 0 18 0 24 0 27 0 29 0 59 0 20 0 20 0 9		0	1900 Belladonna KWS
2011 0 7 0 32 0 10 10 0 18 0 24 0 22 0 25 0 29 0 20 0 20 0 25 0 29 0 20 0 25	0 0	0	1883 Schubert
2011 0 7 0 32 0 10 10 0 18 0 22 0 22 0 24 0 5 0 5 0 5 0 29 0 20 0 10	0 0	0	1830 Lukas
2011 2005-2011 0 7 0 32 0 10 0 18 0 22 0 22 0 5 0 5 0 5 0 20 0 20	0 0	0	1824 Dante
2011 2009-2011 0 7 0 32 0 32 0 10 0 18 0 24 0 22 0 5 0 5 0 5 0 5 0 29 0 20	0 0	0	1806 Debora KWS
2003-201- 0 7 0 32 0 10 0 18 0 24 0 22 0 27 0 59	0 0	0	1802 Emilia KWS
2011 2009-2011 0 7 0 32 0 10 0 18 0 24 0 22 0 24 0 5 0 5 0 5	0 0	0	1779 Robinson
201- 0 7 0 32 0 10 0 18 0 24 0 22 0 5 0 5	0 250	0	1748 Sophia
0 7 0 32 0 32 0 10 0 18 0 24 0 22 0 5	0 0	0	1648 Sporta
2009-201- 0 7 0 32 0 10 0 18 0 24 0 22 0 24	0 0	0	1632 Benno
201- 0 7 0 32 0 32 0 10 0 18 0 24 0 22		0	1492 Lucata
0 7 0 32 0 32 0 10 0 18 0 24		0	1973 Arnold
0 7 0 32 0 32 0 10 0 18		0	1910 Sabrina
0 7 0 32 0 32 0 10	0 0	0	1506 Pauletta
0 7 0 32 0 30 0 10	0 0	0	1186 Ricarda
0 32	0 0	0	1718 Rubens
0 7		0	1665 Beretta
0 7	0 0	0	1560 William
2009-2011	250 0	0	1409 Alabama
107			SV-R
2011			
Kalrath			
R/SV SV-R SV-R/SSV-R/SV Sort	SV-R/SV SV-R	SV-R/SSV-R SV	Sorte

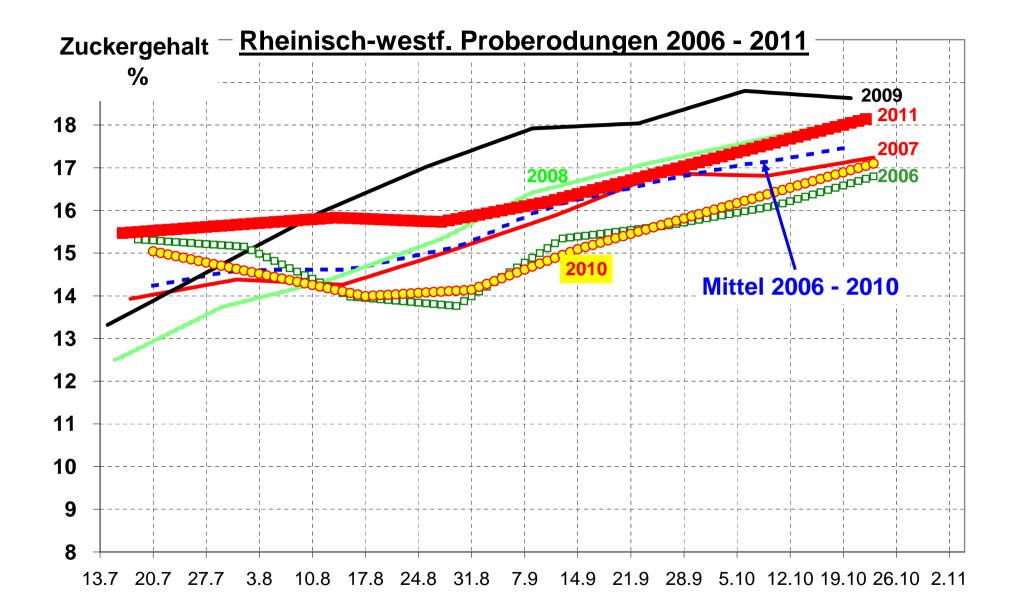
Sorte	SNJ	LNS	LNS
	Erkelenz	Buir	bundesweit
	2011	2011	2009-2011
LNS			
1409 Alabama	0	0	0
1560 William	0	0	55
1665 Beretta	0	0	9
1718 Rubens	0	0	15
1186 Ricarda	0	0	23
2056 Julius	0	0	21
2059 Artus	0	0	0
2060 Haydn	0	0	22
2079 Kepler	0	0	23
2083 SY Securita	0	0	46
2094 Britta	0	0	10
2096 Elaina KWS	0	0	11
2097 Kristallina KWS	0	0	86
2098 Mattea KWS	0	0	4
2102 Sandra KWS	0	0	30
2103 Birtha KWS	0	0	12
2104 Annika KWS	0	0	30
Mittel Vers.	0	0	23

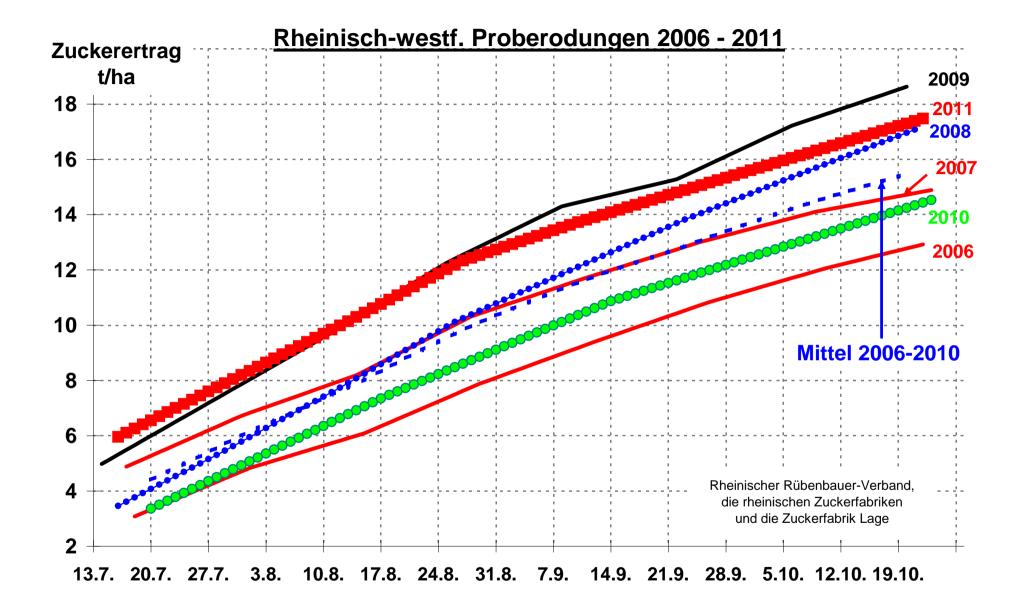
Proberodungen 2011

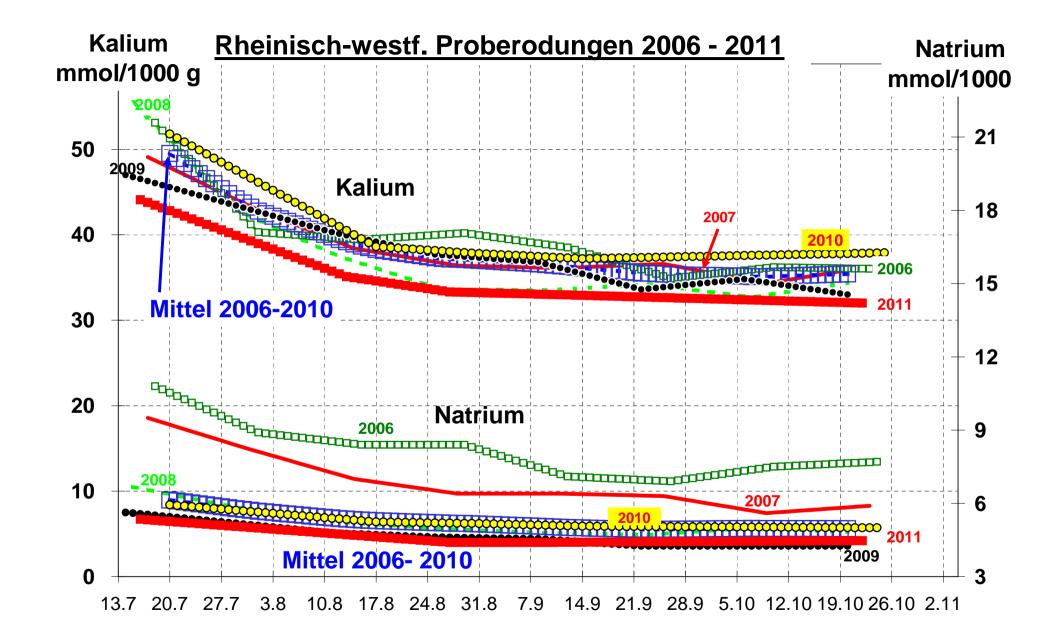
Die Proberodungen erfolgten in Zusammenarbeit mit den 3 rheinischen Zuckerfabriken und der Zuckerfabrik Lage. An den einzelnen Terminen wurden je ZF auf 18-23 Praxisschlägen je 20, zum Teil 25 Rüben in 1 bis 3 Reihen gerodet und auf Ertrag und Qualität untersucht. Zusammen mit einer überregionalen RRV-Serie wurden 4 regionale Serien mit insges. ca. 100 Einzelergebnissen je Termin zusammengefaßt. Zum Vergleich sind die Durchschnittswerte der Vorjahre angegeben. Für den letzten Termin standen nur noch 3 Serien mit weniger Standorten zum Vergleich.

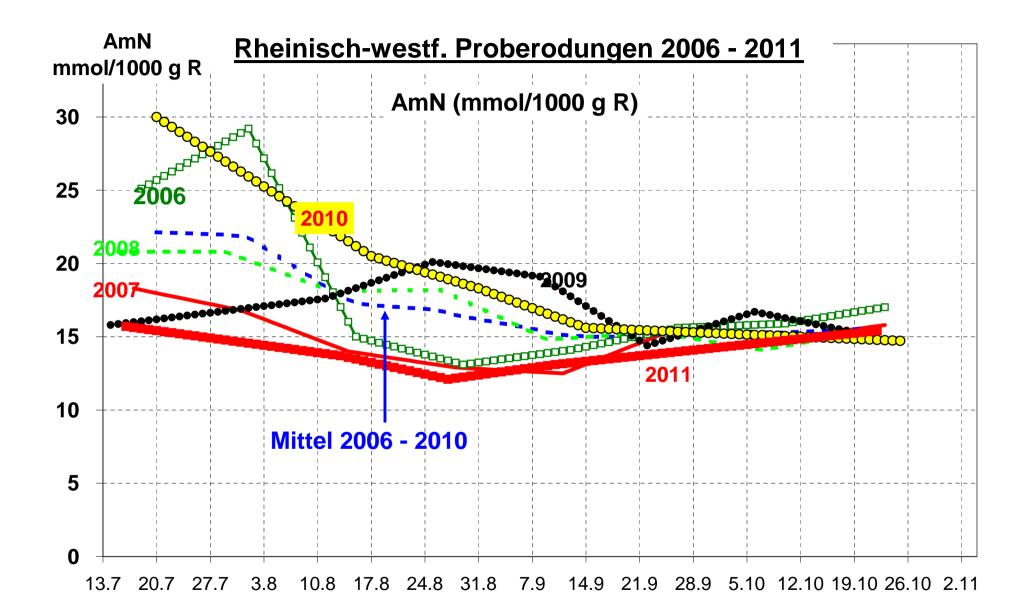
Nach ausgeprägten winterlich-kalten Witterungsabschnitten ab Anfang Dezember 2010 ermöglichten anhaltend trockenes Wetter und ansteigende Temperaturen frühe Saaten bereits in der zweiten Märzhälfte unter günstigen Bedingungen. Wärme und zwischenzeitliche Niederschläge sorgten für einen sehr hohen und zügigen Feldaufgang nach 13 Tagen. Überdurchschnittliche Temperaturen in Verbindung mit ungewöhnlich starker und andauernder Trockenheit bis Ende Mai ließen den Vegetationsvorsprung weiter anwachsen. Lediglich die Herbizidmaßnahmen waren trockenheitsbedingt oft nur gering wirksam, so dass auf manchen Flächen Spätverunkrautung die Entwicklung der Rüben beeinträchtigte. Der Reihenschluss wurde vielfach Ende Mai bis Anfang Juni erreicht. Zwischenzeitlich feuchteres Juniwetter verringerte die angespannte Trockenheit nur vorübergehend. Erst der August förderte dank zahlreicher Niederschläge den Rübenertrag. Zu stärkeren Welkeerscheinungen kam es lediglich in Regenschattengebieten und auf weniger wasserhaltigen Böden. Bedingt durch niedrige Temperaturen im Juni und Juli entwickelte sich Cercospora weniger gut und die häufiger sichtbaren Symptome von Ramularia konnten sich häufig erst sehr spät schädigend auswirken. Auf dem lange Zeit intakten Blattapparat zeigten sich dagegen oft starker Befall mit Mehltau und Rübenrost. Auf manchen Standorten waren Rhizoctonia- Rotfäule- und Ditvlenchusbefall schädigend vorgekommen. Die Rübenmotte trat im südlichen Reinland meist nur schwach ausgeprägt in Erscheinung. In Verbindung mit Trockenheit und hoher Ertragsbildung war aber häufiger Bormangel zu beobachten. Unter diesen Voraussetzungen waren Mitte Juli überdurchschnittliche Erträge und Zuckergehalte festzustellen. Die milde und feuchte Augustwitterung förderte anschließend vor allem den Ertragszuwachs, der Zuckergehalt stagnierte zunächst. Nach erneuter Wärme und Trockenheit ab Mitte September nahm der Rübenertrag im Oktober mit 2,8 dt Rüben je ha und Tag durchschnittlich zu. Dank deutlichem Zuckergehaltsanstieg von 1,95 % über den Zeitraum von 6 Wochen wurde eine überdurchschnittliche Zuwachsrate von 0.89 dt Zucker ie ha und Tag erzielt. Dagegen wiesen die Rübeninhaltsstoffe Kalium, Natrium, Amino-Stickstoff sehr niedrige Werte auf, so dass auch die Standardmelasseverluste erfreulich niedrige Werte erreichten.

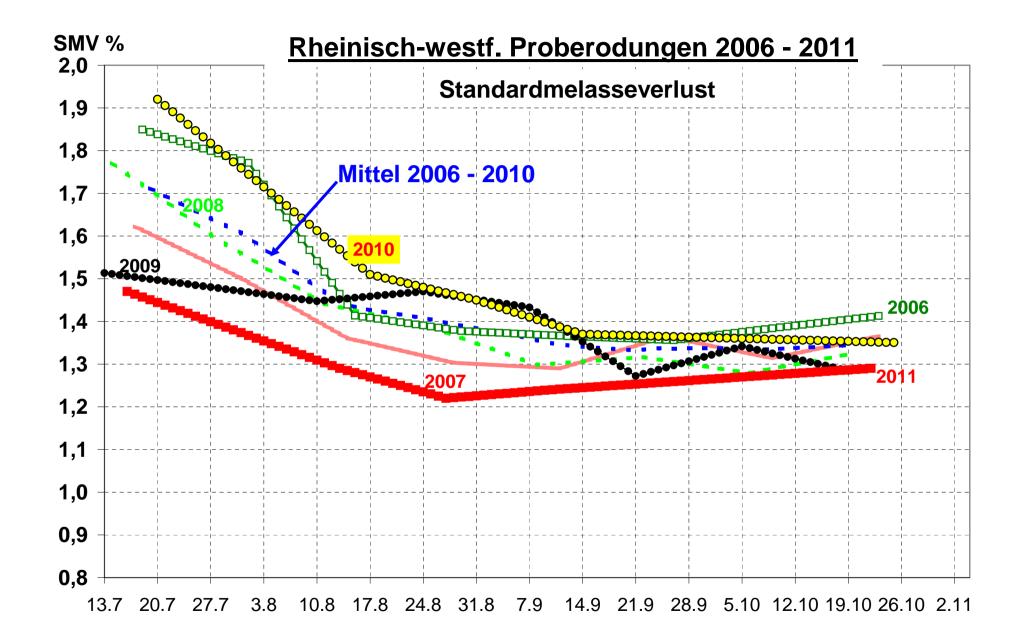

Entwicklungsverlauf von Ertrag und Qualität im Mittel aller Standorte 2011


Datum	Einzel-	Rüben-	Zucker-	berein.	Standard-	theoret.	berein.	K	Na	N	K	Na	N	Pfl/ha
	rüben-	ertrag	gehalt	Zucker-	melasse-	Zucker-	Zucker-	mr	nol/100	g S	mm	ol/1000	g R	
	gewicht			gehalt	verlust	ertrag	ertrag							
	g	t/ha	%	%	%	t/ha	t/ha							
2011: (16.07.)	393	38,1	15,47	13,40	1,47	5,96	5,09	28,5	4,3	10,1	44,1	6,7	15,7	97671
2011: (13.08.)	640	64,0	15,83	13,94	1,29	10,14	8,92	22,2	3,1	8,7	35,1	4,9	13,7	100054
2011: (27.08.)	791	78,6	15,73	13,91	1,22	12,34	10,92	21,1	2,6	7,7	33,3	4,0	12,1	100297
2011: (10.09.)	872	84,8	16,20	14,36	1,24	13,73	12,17	20,3	2,5	8,1	33,0	4,0	13,1	97725
2011: (22.10.) 1)	1002	96,4	18,14	16,26	1,29	17,48	15,65	17,6	2,3	8,5	32,0	4,2	15,4	96883


¹⁾ nur 3 Serien ausgewertet


Mittlere Zuwachsraten im Oktober seit 1999


Entwicklung	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	Mittel
Rübenertrag dt/ha u. Tag	2,51	2,04	2,65	2,40	2,07	3,20	2,83	2,46	3,29	3,37	4,72	3,30	2,75	2,89
Zuckergehalt % gesamt	0,23	0,85	0,85	1,29	0,29	0,54	1,25	1,25	0,37	1,03	1,03	2,17	1,95	1,01
Zuckerertrag dt/ha u. Tag	0,50	0,59	0,65	0,64	0,44	0,69	0,85	0,80	0,67	0,92	1,04	0,94	0,89	0,74



Übersicht über die Versuchsstandorte der Arbeitsgemeinschaft Zuckerrübenanbau 2011

Obersicht über		3				
Versuchsort Feld Betrieb:	Buir 1 Burgacker rechts 2 R. Brecher Erben	Erkelenz 2 S. Grates	Titz-Kalrath 3 Sandweg N. Schnitzler	Muthagen 4 r.d.Allee W. Schulte-Böcker	Sechtem 5 Widdiger Weg P. Zillikens	Sechtem 5 Brücke P. Zillikens
Bodenart/Ackerz.	Lößlehm / 85	Lößlehm / 80	Lößlehm / 88	Lößlehm / 85	Lößlehm / ca. 85	Lößlehm / ca. 90
Boden- untersuchung 2006 0 - 30 cm	pH P2O5 K2O MgO Humus 30.3.11 mg/100 g Boden % 7,4 31 22 8 1,95	pH P2O5 K2O MgO Humus 10.8.11 mg/100 g Boden % 6,5 24 14 6	pH P2O5 K2O MgO Humus 9.3.11 mg/100 g Boden 6,7 27 20 8	pH P2O5 K2O MgO Humus 9.3.11 mg/100 g Boden % 7,0 <u>26</u> <u>29</u> 11	pH P2O5 K2O MgO Humus 1.3.11 mg/100 g Boden % 6,2 21 27 11	pH P2O5 K2O MgO Humus 30.3.11 mg/100 g Boden % 7,1 20 21 7
	Na Cu Bor Mn Zn	Na Cu Bor Mn Zn	Na Cu Bor Mn Zn	Na Cu Bor Mn	Na Cu Bor Mn Zn	Na Cu Bor Mn Zn
0 - 30 cm	mg/kg Boden 3,4 0,48 199 8,5	mg/kg Boden 2,6 0,47 146 11	mg/kg Boden 4,2 0,72 187 15	mg/kg Boden 2,4 0,53 187 12	mg/kg Boden 5,4 0,60 43 13	mg/kg Boden 3,2 0,83 258 6,2
Nmin / Datum NO3 NH4 Summe Vorfrucht:	2.3. 30 60 90 0-90 32,0 7,0 0,0 39,0 0,0 0,0 32,0 7,0 0,0 39,0 32,0 7,0 14,0 12,0 88,0 WG/ÖR pfluglos	30 60 90 0-90 Smin WG / ÖR Pflug	9.3. 30 60 90 0-90 12,0 12,0 17,0 41,0 0,0 0,0 0,0 0,0 12,0 12,0 17,0 41,0 Smin 4,4 53,0 87,0 144,4 WW /- pfluglos	9.3. 30 60 90 0-90 17,0 14,0 12,0 43,0 0,0 0,0 0,0 0,0 0,0 20,7 14,0 12,1 43,0 S 6,7 13 17 36,7 WG/SF	1.3. 30 60 90 0-90 11,0 10,0 13,0 34,0 0,0 0,0 0,0 0,0 30,0 33,0 26,5 34,0 Smin 9,7 30,0 60,0 99,7 WW / Pflug	1.3. 30 60 90 0-90 28,0 26,0 11,0 65,0 0,0 0,0 0,0 0,0 0,0 Smin 7,5 11,0 17,0 35,5 WG / ÖR Pflug
Düngung Rüben: mineralisch organisch	N P2O5 K2O MgO CaO 160 244 172 150 2944 Stroh eingearbeitet CK 10.10.	N P2O5 K2O MgO CaO 147 90 Stroh	N P2O5 K2O MgO CaO 108 Champost	N P2O5 K2O MgO CaO 140 194 240 84 1360 Pf.mist 15 t/ha (2xin 3 J) (CK) Stroh abgefahren	N P2O5 K2O MgO CaO 140 80 Stroh	N P2O5 K2O MgO CaO 140 Stroh
Düngung Vorfrucht: mineralisch	150	150	180	150 0 0 0 0	180	180
organisch Reihenweite	45 cm	45 cm	45 cm	45 cm	45 cm	45 cm
Saat am	26.3./05.10. quer zur Bearbeitung	30.3.	23.3.	15.3. Sabrina	24.3. Adrianna	27.3.
Sorten	WP2/SSV-R/SVB u.a.	WPR1+2 LNS/ SV-R SSV-R	SV-R	Düngung	Düngung	SVN
Versuchsort	Elsdorf-Etzweiler 7	Swisttal-Miel 8	Nemmenich 9	Wanlo (Borschemich) 10	Buschhoven 11	Esch (Köln-Nord) 12
Versuchsort Feld Betrieb:	Elsdorf-Etzweiler 7 Heppendorf 114	Swisttal-Miel 8 Fühling	Nemmenich 9 Herfahrt 1	Wanlo (Borschemich) 10 Zwischen Otzenrath Beeck	Buschhoven 11 Kapellenheide	Esch (Köln-Nord) 12 Dreieck H. Courth
Versuchsort Feld	Elsdorf-Etzweiler 7 Heppendorf 114 Hans Braun	Swisttal-Miel 8 Fühling T. Heimbach	Nemmenich 9 Herfahrt 1 Gebr. Orth	Wanlo (Borschemich) 10 Zwischen Otzenrath	Buschhoven 11 Kapellenheide H. Jüssen	Esch (Köln-Nord) 12 Dreieck
Versuchsort Feld Betrieb: Bodenart/Ackerz. Boden- untersuchung	Elsdorf-Etzweiler 7 Heppendorf 114 Hans Braun Lößlehm / 65 pH P2O5 K2O MgO Humus 24.3.11 mg/100 g Boden %	Swisttal-Miel 8 Fühling T. Heimbach s.L. / 68 pH P205 K2O MgO Humus 22.2.11 mg/100 g Boden %	Nemmenich Herfahrt 1 Gebr. Orth s.L. / 84 pH P2O5 K2O MgO Humus 1.4.11 mg/100 g Boden %	Wanlo (Borschemich) 10 Zwischen Otzenrath Beeck Lößlehm / ca. 80 pH P2O5 K2O MgO Humus 9.3.11 mg/100 g Boden %	Buschhoven 11 Kapellenheide H. Jüssen Lößlehm / 55 pH P2O5 K2O MgO Humus 25.2.11 mg/100 g Boden %	Esch (Köln-Nord) 12 Dreieck H. Courth s.L. / 70 pH P2O5 K2O MgO Humus 10.3.11 mg/100 g Boden %
Versuchsort Feld Betrieb: Bodenart/Ackerz. Boden- untersuchung	Elsdorf-Etzweiler 7 Heppendorf 114 Hans Braun Lößlehm / 65 pH P205 K2O MgO Humus 24.3.11 mg/100 g Boden % 7,2 50 23 5 Na Cu Bor Mn Zn	Swisttal-Miel 8 Fühling T. Heimbach s.L. / 68 pH P2O5 K2O MgO Humus 22.2.11 mg/100 g Boden % 6,9 14 6 9 Na Cu Bor Mn Zn	Nemmenich 9 Herfahrt 1 Gebr. Orth s.L. / 84 pH P2O5 K2O MgO Humus 1.4.11 mg/100 g Boden % 6,6 19 20 13 Na Cu Bor Mn Zn	Wanlo (Borschemich) 10 Zwischen Otzenrath Beeck Lößlehm / ca. 80 pH P2O5 K2O MgO Humus 9.3.11 mg/100 g Boden % 6,6 15 7 6 2,8 Na Cu Bor Mn Zn	Buschhoven 11 Kapellenheide H. Jüssen Lößlehm / 55 pH P2O5 K2O MgO Humus 25.2.11 mg/100 g Boden % 7,0 11 11 6 Na Cu Bor Mn Zn	Esch (Köln-Nord) 12 Dreieck H. Courth s.L. / 70 pH P2O5 K2O MgO Humus 10.3.11 mg/100 g Boden % 6,4 8 13 5 1,4 Na Cu Bor Mn Zn
Versuchsort Feld Betrieb: Bodenart/Ackerz. Boden- untersuchung 0 - 30 cm	Elsdorf-Etzweiler 7 Heppendorf 114 Hans Braun Lößlehm / 65 pH P2O5 K2O MgO Humus 24.3.11 mg/100 g Boden % 7,2 50 23 5 Na Cu Bor Mn Zn mg/kg Boden	Swisttal-Miel 8 Fühling T. Heimbach s.L. / 68 pH P2O5 K2O MgO Humus 22.2.11 mg/100 g Boden % 6,9 14 6 9 Na Cu Bor Mn Zn mg/kg Boden	Nemmenich 9 Herfahrt 1 Gebr. Orth s.L. / 84 pH P2O5 K2O MgO Humus 1.4.11 mg/100 g Boden % 6,6 19 20 13 Na Cu Bor Mn Zn mg/kg Boden	Wanlo (Borschemich) 10 Zwischen Otzenrath Beeck Lößlehm / ca. 80 pH P2O5 K2O MgO Humus 9.3.11 mg/100 g Boden % 6,6 15 7 6 2,8 Na Cu Bor Mn Zn mg/kg Boden	Buschhoven 11 Kapellenheide H. Jüssen Lößlehm / 55 pH P2O5 K2O MgO Humus 25.2.11 mg/100 g Boden % 7,0 11 11 6 Na Cu Bor Mn Zn mg/kg Boden	Esch (Köln-Nord) 12 Dreieck H. Courth s.L. / 70 pH P2O5 K2O MgO Humus 10.3.11 mg/100 g Boden % 6,4 8 13 5 1,4 Na Cu Bor Mn Zn mg/kg Boden
Versuchsort Feld Betrieb: Bodenart/Ackerz. Boden- untersuchung 0 - 30 cm 0 - 30 cm 30 - 60 cn Nmin / Datum NO3	Elsdorf-Etzweiler 7 Heppendorf 114 Hans Braun Lößlehm / 65 pH P205 K20 MgO Humus 24.3.11 mg/100 g Boden % 7,2 50 23 5 Na Cu Bor Mn Zn mg/kg Boden 3,2 0,63 29 12 2.3. 30 60 90 0-90 Nmin 26,0 43,0 88,0 157,0	Swisttal-Miel 8 Fühling T. Heimbach s.L. / 68 pH P2O5 K2O MgO Humus 22.2.11 mg/100 g Boden % 6,9 14 6 9 Na Cu Bor Mn Zn mg/kg Boden 3,6 0,56 169 8,3 22.2. 30 60 90 0-90 Nmin 64,0 32,0 20,0 116,0	Nemmenich Herfahrt 1 Gebr. Orth s.L. / 84 pH P2O5 K2O MgO Humus 1.4.11 mg/100 g Boden % 6,6 19 20 13 Na Cu Bor Mn Zn mg/kg Boden 4,8 1,10 303 11 22.2. 30 60 90 0-90 Nmin 29,0 30,0 62,0 121,0	Wanlo (Borschemich) 10 Zwischen Otzenrath Beeck Lößlehm / ca. 80 pH P2O5 K2O MgO Humus 9.3.11 mg/100 g Boden % 6,6 15 7 6 2,8 Na Cu Bor Mn Zn mg/kg Boden 2,6 0,36 182 8,4 9.3. 30 60 90 0-90 Nmin 16,0 13,0 9,0 42,0	Buschhoven 11 Kapellenheide H. Jüssen Lößlehm / 55 pH P2O5 K2O MgO Humus 25.2.11 mg/100 g Boden % 7,0 11 11 6 Na Cu Bor Mn Zn mg/kg Boden 2,3 0,37 167 3,6 30 60 90 0-90 Nmin	Esch (Köln-Nord) 12 Dreieck H. Courth s.L. / 70 pH P2O5 K2O MgO Humus 10.3.11 mg/100 g Boden % 6,4 8 13 5 1,4 Na Cu Bor Mn Zn mg/kg Boden 3,0 0,39 275 8,2 4.3. 30 60 90 0-90 Nmin 9,0 5,0 5,0 19,0
Versuchsort Feld Betrieb: Bodenart/Ackerz. Boden- untersuchung 0 - 30 cm 0 - 30 cm 30 - 60 cn Nmin / Datum NO3 Smin Vorfrucht: Düngung Rüben: mineralisch organisch	Elsdorf-Etzweiler 7 Heppendorf 114 Hans Braun Lößlehm / 65 pH P205 K20 MgO Humus 24.3.11 mg/100 g Boden % 7,2 50 23 5 Na Cu Bor Mn Zn mg/kg Boden 3,2 0,63 29 12 2.3. 30 60 90 0-90 Nmin 26,0 43,0 88,0 157,0 Smin 8,0 78,0 125,0 211,0	Swisttal-Miel Fühling T. Heimbach s.L. / 68 pH P2O5 K2O MgO Humus 22.2.11 mg/100 g Boden % 6,9 14 6 9 Na Cu Bor Mn Zn mg/kg Boden 3,6 0,56 169 8,3 22.2. 30 60 90 0-90 Nmin 64,0 32,0 20,0 116,0 Smin 17,0 15 18 50,0	Nemmenich Herfahrt 1 Gebr. Orth s.L. / 84 pH P2O5 K2O MgO Humus 1.4.11 mg/100 g Boden % 6,6 19 20 13 Na Cu Bor Mn Zn mg/kg Boden 4,8 1,10 303 11 22.2. 30 60 90 0-90 Nmin 29,0 30,0 62,0 121,0 Smin 5,4 10 23 38,4	Wanlo (Borschemich) Zwischen Otzenrath Beeck Lößlehm / ca. 80 pH P2O5 K2O MgO Humus 9.3.11 mg/100 g Boden % 6,6 15 7 6 2,8 Na Cu Bor Mn Zn mg/kg Boden 2,6 0,36 182 8,4 9.3. 30 60 90 0-90 Nmin 16,0 13,0 9,0 42,0 Smin 2,6 3,4 2,7 8,7	Buschhoven 11 Kapellenheide H. Jüssen Lößlehm / 55 pH P2O5 K2O MgO Humus 25.2.11 mg/100 g Boden % 7,0 11 11 6 Na Cu Bor Mn Zn mg/kg Boden 2,3 0,37 167 3,6 30 60 90 0-90 Nmin Smin	Esch (Köln-Nord) 12 Dreieck H. Courth s.L. / 70 pH P2O5 K2O MgO Humus 10.3.11 mg/100 g Boden % 6,4 8 13 5 1,4 Na Cu Bor Mn Zn mg/kg Boden 3,0 0,39 275 8,2 4.3. 30 60 90 0-90 Nmin 9,0 5,0 5,0 19,0 Smin 9,4 9 19 37,4
Versuchsort Feld Betrieb: Bodenart/Ackerz. Boden- untersuchung 0 - 30 cm 0 - 30 cm 30 - 60 cn Nmin / Datum NO3 Smin Vorfrucht: Düngung Rüben: mineralisch	Elsdorf-Etzweiler 7 Heppendorf 114 Hans Braun Lößlehm / 65 pH P2O5 K2O MgO Humus 24.3.11 mg/100 g Boden % 7,2 50 23 5 Na Cu Bor Mn Zn mg/kg Boden 3,2 0,63 29 12 2.3. 30 60 90 0-90 Nmin 26,0 43,0 88,0 157,0 Smin 8,0 78,0 125,0 211,0 WG / Pflug N P2O5 K2O MgO CaO HTK	Swisttal-Miel Fühling T. Heimbach s.L. / 68 pH P2O5 K2O MgO Humus 22.2.11 mg/100 g Boden % 6,9 14 6 9 Na Cu Bor Mn Zn mg/kg Boden 3,6 0,56 169 8,3 22.2. 30 60 90 0-90 Nmin 64,0 32,0 20,0 116,0 Smin 17,0 15 18 50,0	Nemmenich Sept. Orth Sept. Orth S.L. / 84 PH P2O5 K2O MgO Humus 1.4.11 mg/100 g Boden % 6.6 19 20 13 Na Cu Bor Mn Zn mg/kg Boden 4.8 1,10 303 11 22.2. 30 60 90 0.90 Nmin 29,0 30,0 62,0 121,0 Smin 5,4 10 23 38,4 WW / Stroh Pfluglos N P2O5 K2O MgO CaO	Wanlo (Borschemich)	Buschhoven 11 Kapellenheide H. Jüssen Lößlehm / 55 pH P2O5 K2O MgO Humus 25.2.11 mg/100 g Boden % 7,0 11 11 6 Na Cu Bor Mn Zn mg/kg Boden 2,3 0,37 167 3,6 30 60 90 0-90 Nmin Smin WG / Pflug N P2O5 K2O MgO CaO 120 272 120 107 2240	Esch (Köln-Nord) 12 Dreieck H. Courth s.L. / 70 pH P2O5 K2O MgO Humus 10.3.11 mg/100 g Boden % 6,4 8 13 5 1,4 Na Cu Bor Mn Zn mg/kg Boden 3,0 0,39 275 8,2 4.3. 30 60 90 0-90 Nmin 9,0 5,0 5,0 19,0 Smin 9,4 9 19 37,4 WW / Raps pfluglos N P2O5 K2O MgO CaO 126
Versuchsort Feld Betrieb: Bodenart/Ackerz. Boden- untersuchung 0 - 30 cm 0 - 30 cm 30 - 60 cn Nmin / Datum NO3 Smin Vorfrucht: Düngung Rüben: mineralisch organisch Düngung Vorfr.: mineralisch organisch Reihenweite/Abl	Elsdorf-Etzweiler 7 Heppendorf 114 Hans Braun Lößlehm / 65 pH P205 K20 MgO Humus 24.3.11 mg/100 g Boden % 7,2 50 23 5 Na Cu Bor Mn Zn mg/kg Boden 3,2 0,63 29 12 2.3. 30 60 90 0-90 Nmin 26,0 43,0 88,0 157,0 Smin 8,0 78,0 125,0 211,0 WG / Pflug N P205 K2O MgO CaO HTK Stroh abgefahren 180 45 cm	Swisttal-Miel Fühling T. Heimbach s.L. / 68 pH P2O5 K2O MgO Humus 22.2.11 mg/100 g Boden % 6,9 14 6 9 Na Cu Bor Mn Zn mg/kg Boden 3,6 0,56 169 8,3 22.2. 30 60 90 0-90 Nmin 64,0 32,0 20,0 116,0 Smin 17,0 15 18 50,0 WW / Pflug N P2O5 K2O MgO CaO	Nemmenich 98	Wanlo (Borschemich) Zwischen Otzenrath Beeck Lößlehm / ca. 80 pH P2O5 K2O MgO Humus 9.3.11 mg/100 g Boden % 6,6 15 7 6 2,8 Na Cu Bor Mn Zn mg/kg Boden 2,6 0,36 182 8,4 9.3. 30 60 90 0-90 Nmin 16,0 13,0 9,0 42,0 Smin 2,6 3,4 2,7 8,7 WW /- Pflug N P2O5 K2O MgO CaO 125 Stroh abgef.	Buschhoven 111 Kapellenheide H. Jüssen Lößlehm / 55 pH P2O5 K2O MgO Humus 25.2.11 mg/100 g Boden % 7,0 11 11 6 Na Cu Bor Mn Zn mg/kg Boden 2,3 0,37 167 3,6 30 60 90 0-90 Nmin Smin WG / Pflug N P2O5 K2O MgO CaO 120 272 120 107 2240 Stroh	Esch (Köln-Nord) 12 Dreieck H. Courth s.L. / 70 pH P2O5 K2O MgO Humus 10.3.11 mg/100 g Boden % 6,4 8 13 5 1,4 Na Cu Bor Mn Zn mg/kg Boden 3,0 0,39 275 8,2 4.3. 30 60 90 0-90 Nmin 9,0 5,0 5,0 19,0 Smin 9,4 9 19 37,4 WW / Raps pfluglos N P2O5 K2O MgO CaO 126 Stroh
Versuchsort Feld Betrieb: Bodenart/Ackerz. Boden- untersuchung 0 - 30 cm 0 - 30 cm 30 - 60 cn Nmin / Datum NO3 Smin Vorfrucht: Düngung Rüben: mineralisch organisch Düngung Vorfr.: mineralisch organisch	Elsdorf-Etzweiler 7 Heppendorf 114 Hans Braun Lößlehm / 65 pH P2O5 K2O MgO Humus 24.3.11 mg/100 g Boden % 7,2 50 23 5 Na Cu Bor Mn Zn mg/kg Boden 3,2 0,63 29 12 2.3. 30 60 90 0-90 Nmin 26,0 43,0 88,0 157,0 Smin 8,0 78,0 125,0 211,0 WG / Pflug N P2O5 K2O MgO CaO HTK Stroh abgefahren	Swisttal-Miel Fühling T. Heimbach s.L. / 68 pH P2O5 K2O MgO Humus 22.2.11 mg/100 g Boden % 6,9 14 6 9 Na Cu Bor Mn Zn mg/kg Boden 3,6 0,56 169 8,3 22.2. 30 60 90 0-90 Nmin 64,0 32,0 20,0 116,0 Smin 17,0 15 18 50,0 WW / Pflug N P2O5 K2O MgO CaO	Nemmenich Sept. Orth Sept. Orth S.L. / 84 PH P205 K20 MgO Humus 1.4.11 mg/100 g Boden % 6,6 19 20 13 Na Cu Bor Mn Zn mg/kg Boden 4,8 1,10 303 11 22.2. 30 60 90 0-90 Nmin 29,0 30,0 62,0 121,0 Smin 5,4 10 23 38,4 WW / Stroh Pfluglos N P205 K20 MgO CaO 100 Ngo CaO 100 Ngo CaO Ngo Ngo CaO Ngo Ngo CaO Ngo CaO Ngo CaO Ngo CaO Ngo CaO Ngo Ngo CaO Ngo Ngo CaO Ngo Ngo	Wanlo (Borschemich)	Buschhoven 111 Kapellenheide H. Jüssen Lößlehm / 55 pH P2O5 K2O MgO Humus 25.2.11 mg/100 g Boden % 7,0 11 11 6 Na Cu Bor Mn Zn mg/kg Boden 2,3 0,37 167 3,6 30 60 90 0-90 Nmin Smin WG / Pflug N P2O5 K2O MgO CaO 120 272 120 107 2240 Stroh	Esch (Köln-Nord) 12 Dreieck H. Courth s.L. / 70 pH P2O5 K2O MgO Humus 10.3.11 mg/100 g Boden % 6,4 8 13 5 1,4 Na Cu Bor Mn Zn mg/kg Boden 3,0 0,39 275 8,2 4.3. 30 60 90 0-90 Nmin 9,0 5,0 5,0 19,0 Smin 9,4 9 19 37,4 WW / Raps pfluglos N P2O5 K2O MgO CaO 126 Stroh

Erläuterungen zur Durchführung und Auswertung der Versuche

Die Sortenversuche werden entsprechend der "Richtlinien für die Anlage, Untersuchung und Auswertung von Zuckerrübenfeldversuchen" des Bundessortenamtes und in Abstimmung mit dem Koordinierungsausschuß am Institut für Zuckerrübenforschung (KA), Göttingen durchgeführt.

2011 wurden die Serien SV-R, SSV-R (Standorte mit und ohne Rizomaniabefall) angelegt. Die Wertprüfungen mit LNS (neu zugelassenen Sorten) werden sowohl unter Befall als auch Nichtbefall gewertet. Sämtliche Versuchsanlagen erfolgten 2-faktoriell (ohne und mit Fungizidbehandlung) mit je 2 Wiederholungen je Fungizidstufe auf ausgesuchten Flächen in praktischen Betrieben.

An den rheinischen Versuchsstandorten kam Rizomania 2011 nicht zur Ausprägung.

Die Aussaat geschah mit Einzelkornsägeräten i.d.R. auf enge Ablageweiten. In den Versuchen wurden für das gesamte Bundesgebiet vergleichbare Saatgutmuster verwendet. Nach der Auszählung des Feldaufgangs und ersten Bonitierungen wurden die verschiedenen Sorten auf einheitliche, hohe Bestandesdichten vereinzelt. Bis zur Ernte wurden die Versuche laufend beobachtet, Fehlstellen, Krankheiten und Schosserbildung registriert. Die Beerntung der Versuche erfolgt jeweils innerhalb von 1 bis 2 Tagen mit einem serienmäßigen einreihigen KRB, zum Teil mit einem dreireihigen KRB oder von Hand. Das Rübengewicht wurde nach dem Waschen der Rüben ermittelt. Die Untersuchung auf Zuckergehalt, Kalium, Natrium und α-Amino-Stickstoff erfolgte in den Labors der rheinischen Zuckerfabriken oder beim IfZ. Die zur Auswertung herangezogenen Werte stellen jeweils das Mittel von mehreren Einzeluntersuchungen dar. Die Auswertungen der Sortenprüfungen erfolgen in Abstimmung mit dem Institut für Zuckerrübenforschung überregional. Als Vergleichsmaßstab (3-jährig) wurde das Mittel der jeweiligen Vergleichssorten zugrunde gelegt. Die Sortenversuche unter Nematodenbefall wurden regional ausgewertet. Die rheinischen Sortenversuche wurden in Zusammenarbeit mit der Landwirtschaftskammer NRW, Zuckerfabriken, Züchtern, dem Institut für Zuckerrübenforschung und verschiedenen Landwirten, denen wir an dieser Stelle für die freundliche Unterstützung danken, durchgeführt:

Sortenversuche	Nematodentolerante Sorten (SVN)	Rhizoctoniatolerante Sorten
Buir (SV-R, SSV, LNS, SVB)	Miel, Nemmenich, Palmersheim, Sechtem (SVN)	Etzweiler, Wanlo (Rhizoctonia-Toleranz mit Inokulation)
Kalrath (SV-R)	Buir, Seelrath (WP NT/SVN)	
Erkelenz (SV-R, SSV-R, LNS)	Linnich, Geretzhoven, Frauw., Sevelen (SVN)	
Gangelt (SVB)		

Die statistische Auswertung erfolgt nach der Varianzanalyse (multipler T-Test). Zum Vergleich der Mittelwerte sind die Grenzdifferenzen (GD 5 %) für die verschiedenen Merkmale angegeben. Die durch den KA koordinierten Versuche wurden durch das IfZ, Göttingen überregional zusammengefasst. In diesen Versuchen wurden z.T. nicht alle Versuchsglieder für die Berechnung der Grenzdifferenzen berücksichtigt, z.B. die anfällige Vergleichssorte im SV-R oder die Indikatorsorte Pauletta.

Die Berechnung des Standardmelasseverlustes (SMV) ¹) berücksichtigt den Gehalt der Rüben an Melassebildnern wie Kalium, Natrium und α-Amino-Stickstoff nach ihrem chemischen Bindungsvermögen in mmol/1000 g Rüben. Der Standardmelasseverlust (SMV) ist gegenüber dem rechnerischen Ausbeuteverlust (erforderlich zur Ermittlung des Bereinigten Zuckergehaltes) konstant um absolut 0,6 % niedriger.

Der Bereinigte Zuckerertrag ergibt sich aus dem Rübenertrag und dem um den Ausbeuteverlust verminderten Zuckergehalt. Er entspricht nicht exakt dem in der Fabrik gewinnbaren Zucker, kommt diesem aber nahe.

) SMV = (K + Na) * 0.012 + AmN * 0.024 + 0.48 [K, Na, AmN bez. auf 1000 g R]

SSV (-R) Buir 2011				;)		į					
VG	Rüber	Rübenertrag	Zucke	Zuckerertrag	.⊐`	Z.ertrag	g Zuckerg	= 0,5 gehalt	S	M < Vilg.	3 7	Na	AmN	Bonitu	Bonituren 30.09.
Stufe 1	a	rei.	Vna	rei.	t/na	rei.	%	rel.		rel.	mmol	000		Cerc/Ka.	Menit. Rosi
	75,4 75,7	94,5	13,86 14,69	93,3	12,56 13,42	93,1 99,5	18,39 19,39	98,6 104,0		101,2 96,8	31,4 28,1	2,0	9,0 8 8,0 8 8 1	3,5	
1718 Rubens	80,3	100,6	15,16	102,1	13,80	102,3	18,89	101,3		98,5	31,5	2,5	8,7	. 3,5 , 5,0	
1186 Ricarda 1506 Pauletta	79,6	99,1	14,41 14,04	97,0 94,5	13,03 12,49	96,6 92,6	18,24 17,64	94,6		103,5	37,8	2,3	10,6 16,3	2,5	
1910 Sabrina KWS 1973 Arnold	84,3 77,1	105,6 96,6	15,67 14,49	105,5 97,5	14,22 13,23	105,4 98,1	18,60 18,80	99,8 100,8		100,9 93,2	30,9 26,7	2,2 2,3	10,1 8,8	3,5 5,0	
1492 Lucata 1632 Benno	80,4 80,5	100,8 100,9	14,50 14,70	97,6 98,9	13,12 13,40	97,2 99,4	18,03 18,26	96,7 97,9	1,11 1,01	99,9	31,1 26,5	2,3	9,1 7,8	3,0 4,0	
1648 Sporta 1748 Sophia	79,9 69,7	100,2 87,4	15,08 12,23	101,5 82,3	13,68	101,4 81,6	52	94,0		103,3	31,9	3,0	10,5	7,5	
Emilia KWS	75,6	94,7	14,12	95,0 95,0	12,81	95,0	88	100,1		101,2	31,4	2,7	1,9,9 2,9,4	3,5 7,0	
1824 Dante	77,0	96,5	14,30	96,2	12,94	96,0	000	99,8		103,7	33,3	3,0	9,9	3,0	
Schubert	74,9	93,9	14,05	94,6	12,79	94,8	76	100,6		96,5	27,9	, 2 , 4 ¢	9,6	2,5 2,5	
1900 Belladonna KWS 1901 Adrianna KWS	77,5	97,1	14,27	100,2	13,50	100,1	20	103,0		106,2	33,5	13 K	11,4	3 J,O C	
1990 Ludwina KWS	87,1	109,2	16,66	112,1	15,06	111,6	13 8	102,6		110,8	36,3	2,3	12,1	2,0	
	83,3	104,4	15,91 12,14	107,1	14,42	106,9	8 1	102,5		106,9	35,0	» ,5	10,9	3,0	
1307 Syncro	60,2	75,4	11,44	77,0	10,28	76,2 23,2	8 8 8	101,9		119,6	37,7	ο το o	14,9	1 N N	
1602 Prestige	65,5	82,1	11,87	79,9	10,73	79,5	0 1 0	97,1		102,5	30,9	υ <u>ω</u> ί	10,5	3,0	
1746 Berenika	81,7	102,5	15,58	104,9	14,12	104,7	07	102,3		107,0	34,9	2,6	10,9	3 <u>1</u> 0	
1826 Taifun	65,5	82,1	12,17	81,9	10,95	81,2	50	99,7		113,3	36,2	140	12,3	2,0	
1896 Jenna KWS 1956 Nemata	65,3 75,8	95,0	13,25	89,2	10,74	79,6 87,2	50	93,9		122,3	39,5	3,3	15,4	2,5	
1981 Kühn 1993 Hella	83,8 76,7	105,1 96,1	14,93 13,88	100,5 93,4	13,41 12,37	99,4 91,7	09	95,5 97,0		108,7 123,3	32,6 37,2	2,3	12,9 17,5	2,0	
2079 Kepler 2097 Kristallina KWS	83,9 77,1	105,1 96,7	15,19 14,84	102,3 99,9	13,68 13,49	101,4 100,0	12 24	97,2 103,2		108,4 102,6	34,7 31,1	2,3	11,8 10,9	4, 6, 10, 10,	
2098 Mattea KWS GD 5 %	69,5 7,1	87,1 8,9	12,70 1,42	9,6	11,44 1,29	84,8 9,5	51	98,1 2,7		108,6 5,8	33,5 2,3	2,8 0,4	12,2 1,7	2,5 2,3	
Stufe 2 1409 Alabama	85,0	105,3	15,49	102,9	14,02	102,3	18,23	97,6		105,5	31,9	2,7	9,9	2,0	
1560 William 1665 Beretta	75,6 82,6	93,7 102,4	14,47 15,00	96,1 99,7	13,26 13,61	96,8 99,3	19,13 18,16	102,5 97,3		92,9 101,7	26,4 31,5	1,9 3,0	7,5 8,3	2,0 1,0	
	79,6 77,3	98,6 95,8	15,24 14,59	101,3 96,9	13,91 13,27	101,5 96,9	19,16 18,87	102,6 101,1		99,8 103,2	29,8 30,8	2,3 2,5	9,6	1,0	
1506 Pauletta 1910 Sabrina KWS	84,6 85,6	104,9 106,1	15,47 15,54	102,8 103,2	13,84 14,12	101,0 103,1	18,27 18,14	97,9 97,2	1,32 1,05	122,7 97,7	38,3 28,8	2,0 2,3	14,8 8,2	1,0 2,5	
1973 Arnold 1492 Lucata	76,1 81,4	94,3 100,9	14,25 14,83	94,7 98,5	13,03 13,45	95,1 98,2	18,74 18,23	100,4 97,6		93,3 101,8	25,9 31,5	2,3 2,8	7,7 8,4	1,5 2,0	
1632 Benno 1648 Sporta	85,8 77,9	106,3 96,5	15,74 14,78	104,6 98,2	14,36 13,48	104,9 98,4	18,35 18,98	98,3 101,7	1,00 1,08	93,1 100,2	26,4 29,7	2,1 2,3	7,5 8,9	1,0	
1748 Sophia 1779 Robinson	77,4 83.8	96,0 103.9	13,72 15.52	91,2 103.1	12,37 14.17	90,3 103.5	17,72 18.52	94,9 99.2		106,4 94.2	30,5 26.4	2,8	11,0 7.9	1 6,5 5	
1802 Emilia KWS 1806 Debora KWS	77,6 74.2	96,2 92.0	14,83 14.17	98,5 94.1	13,51 12.91	98,7 94.2	19,11 19.09	102,4		102,1	31,0	2,4	9,1	1,0	
	77,5 81.0	96,0 100 4	14,57 15,57	96,8 103.4	13,25	96,7 104.0	18,81 19 22	100,7		103,2	32,0 26.9	2,7	8,9 3	2,0	
1883 Schubert	80,3	99,5	15,37	102,1	14,06	102,6	19,13	102,5		95,4 110.2	27,5	2,2	7,8	1,1,	
Adrianna K	81,1 74.9	100,5	15,44	102,6	14,02 12,75	102,3	19,03	101,9		106,9	32,8 30,0	2,0	10,4	1 2 ; 0 0 r	
1990 Ludwina KWS	88,2	109,3	16,54 15,91	109,9 105.7	14,96 14.46	109,2 105,6	18,75	100,4		111,5	35,8	2,21	10,8 8.8	1.5 O	
	69,0 62,4	85,5 77.3	12,97 12.33	86,2 81.9	11,79 11.23	86,1 82.0	18,80 19,75	100,7 105.8		103,9 107.9	30,9	2,6	9,8 10.2	1,0	
1555 Nauta 1602 Prestige	70,6 67,1	87,6 83,1	12,94 12,10	85,9 80,4	11,70 10,96	85,4 80,0	18,31 18,04	98, 1 96,6	1,15	107,5 102,1	33,8 29,5	3,7 3,1	9,4	1,5 3,0	
1717 Santino 1746 Berenika	72,8 76.8	90,2 95.1	13,53 14.56	89,9 96.7	12,31 13.25	89,9 96.7	18,60 18.97	99,6 101.6		100,2 102.9	29,9 32.8	2,9 2.5	8,8 4,4	1,5	
1798 Theresa KWS 1826 Taifun	74,7 69,4	92,5 86,0	14,43 13,23	95,9 87,9	13,11 12,00	95,7 87,6	19,32 19,06	103,5 102,1		108,4 109,0	33,5 34,6	3,6	10,8 9,7	2,5 1,0	
1896 Jenna KWS 1956 Nemata	70,8 77.6	87,7 96.2	13,03 13.86	86,6 92.1	11,79 12.39	86,1 90.5	18,39 17.86	98,5 95.7		107,0	32,4 38.6	2,8	10,3	1,0 2.0	
1981 Kühn 1993 Hella	85,4 82,1	105,8 101,7	15,55 15,13	103,3	14,06 13.62	102,6 99,4	18,22 18,44	97,6 98,8	1,14	106,0 115,8	31,4 36,0	2,1 1,9	10,8 12.9	2,0	
\mathbf{x}	88,6	109,8	16,15 15,75	107,3	14,59 14.34	106,5 104.7	18,24 19,42	97,7 104.0		108,9 106.4	34,5	2,1	10,5	1,0	
8 Mattea K\	73,3	90,8	13,75	91,4	12,48	91,1	18,76	100,5	13	105,5	32,5	2,6	9,7		
GD 5 % Einfluss Fungizidbehan		8,8	1,42	9,5	1,29	9,4	0,51	2,7		6,0	2,3	0,4	1,7	2,3	
Stufe 1 Stufe 2	75,9 78,1	100,0 103,0	14,08 14,61	100,0 103,8	12,74 13,27	100,0 104,1	18,56 18,71	100,0		100,0 95,8	32,3 31,5	2,7 2,5	11,2 9,6	3,5 1,7	
GD 5 %	1,2	1,5	0,23	1,7	0,21	1,7	0,09	0,5	0,01	1,0	0,4	0,1	0,3	0,5	

SSV (-R) Buir 2011

Saat: 26.03.			Ernte: ()5.10.		Parz.: 6	,3 x 1,35	= 8,5 qr	n, 4 V	Vhg.						
VG	Rüben	ertrag	Zuckei	ertrag	Berein.	Z.ertrag	Zuckei	gehalt	S	ΜV	K	Na	AmN		ren 30.09	9.
	t/ha	rel.	t/ha	rel.	t/ha	rel.	%	rel.	%	rel.	mme	ol/1000	g R.	Cerc/Ra.	Mehlt.	Rost
Stufe 1+2																
1409 Alabama	80,2	99,9	14,67	98,1	13,29	97,7	18,31	98,1	1,13	103,3	31,6	2,8	9,9	2,5	3,3	6,3
1560 William	75,6	94,3	14,58	97,5	13,34	98,1	19,26	103,2	1,04	94,9	27,2	2,0	8,6	2,8	6,3	4,0
1665 Beretta	85,2	106,2	15,36	102,7	13,89	102,2	18,03	96,6	1,12	102,6	32,6	3,2	8,9	1,5	1,8	7,5
1718 Rubens	79,9	99,6	15,20	101,7	13,86	101,9	19,02	102,0	1,08	99,2	30,6	2,4	8,7	2,3	5,5	7,5
1186 Ricarda	78,2	97,4	14,50	97,0	13,15	96,7	18,56	99,5	1,13	103,3	31,3	2,7	10,1	2,8	1,8	6,5
1506 Pauletta	82,1	102,4	14,75	98,6	13,17	96,9	17,95	96,2	1,33	121,7	37,8	2,2	15,5	1,8	7,5	4,0
1910 Sabrina KWS	85,0	105,9	15,60	104,3	14,17	104,2	18,37	98,5	1,09	99,3	29,8	2,3	9,2	3,8	2,0	6,0
1973 Arnold	76,6	95,4	14,37	96,1	13,13	96,6	18,77	100,6	1,02	93,3	26,3	2,3	8,2	2,5	6,0	3,0
1492 Lucata	80,9	100,8	14,66	98,0	13,28	97,7	18,13	97,2	1,10	100,9	31,3	3,1	8,8	2,5	3,0	4,3
1632 Benno	83,1	103,6	15,22	101,8	13,88	102,1	18,31	98,1	1,01	92,0	26,4	2,2	7,6	2,5	7,0	5,8
1648 Sporta	78,9	98,3	14,93	99,8	13,58	99,9	18,91	101,4	1,11	101,8	30,8	2,6	9,7	1,8	4,5	4,8
1748 Sophia	73,6	91,7	12,97	86,8	11,69	86,0	17,62	94,4	1,15	105,1	30,7	2,9	11,1	7,0	3,3	6,8
1779 Robinson	81,5	101,5	15,14	101,3	13,83	101,7	18,59	99,7	1,02	93,2	26,6	2,1	8,1	2,5	6,5	3,8
1802 Emilia KWS	76,6	95,5	14,48	96,8	13,16	96,8	18,90	101,3	1,11	101,7	31,2	2,5	9,5	4,0	1,5	5,5
1806 Debora KWS	73,6	91,8	14,05	94,0	12,77	93,9	19,08	102,3	1,14	104,6	31,5	2,8	10,6	3,5	1,8	3,5
1824 Dante	77,2	96,3	14,43	96,5	13,10	96,3	18,70	100,3	1,13	103,5	32,6	2,8	9,4	2,5	2,5	4,8
1830 Lukas	78,0	97,2	14,81	99,1	13,53	99,5	18,98	101,7	1,05	95,6	27,3	2,3	8,8	2,8	4,0	4,3
1883 Schubert	77,6	96,7	14,71	98,3	13,43	98,8	18,94	101,5	1,05	96,0	27,7	2,3	8,8	2,0	4,8	4,8
1900 Belladonna KWS	74,6	92,9	14,58	97,5	13,24	97,4	19,55	104,8	1,19	108,6	33,5	2,1	11,7	1,5	2,8	4,0
1901 Adrianna KWS	79,3	98,8	15,16	101,4	13,76	101,2	19,11	102,5	1,17	106,6	33,1	2,2	10,9	2,5	4,5	5,5
1988 SY Belana	75,4	94,0	14,04	93,9	12,75	93,8	18,59	99,6	1,10	100,8	29,0	2,5	10,2	2,0	4,3	2,3
1990 Ludwina KWS	87,6	109,2	16,60	111,0	15,01	110,4	18,94	101,5	1,22	111,1	36,1	2,3	11,5	2,5	1,0	7,0
1991 Isabella KWS	83,7	104,3	15,91	106,4	14,44	106,2	19,02	101,9	1,16	105,7	34,3	2,4	9,8	2,3	1,3	7,0
1164 Premiere	67,0	83,5	12,56	84,0	11,39	83,8	18,74	100,4	1,14	104,5	31,4	2,7	10,6	1,8	7,8	5,5
1307 Syncro	61,3	76,4	11,88	79,5	10,75	79,1	19,38	103,9	1,25	113,9	35,6	3,1	12,5	1,8	4,8	4,8
1555 Nauta	69,8	86,9	12,70	84,9	11,46	84,3	18,20	97,6	1,17	107,0	33,8	3,7	10,0	1,3	6,5	3,8
1602 Prestige	66,3	82,6	11,99	80,2	10,85	79,8	18,08	96,9	1,12	102,3	30,2	3,1	9,9	3,0	6,8	7,0
1717 Santino	71,6	89,2	13,39	89,6	12,16	89,5	18,72	100,3	1,12	102,2	30,7	2,8	9,8	3,3	7,8	5,0
1746 Berenika	79,3	98,8	15,07	100,8	13,69	100,7	19,02	101,9	1,15	105,0	33,8	2,5	9,7	1,0	2,5	5,8
1798 Theresa KWS	74,0	92,3	14,21	95,0	12,89	94,8	19,19	102,9	1,19	108,6	33,3	2,2	11,8	2,8	2,8	5,0
1826 Taifun	67,4	84,1	12,70	84,9	11,48	84,4	18,83	100,9	1,22	111,2	35,4	4,0	11,0	1,5	1,3	7,0
1896 Jenna KWS	68,0	84,8	12,46	83,3	11,26	82,9	18,31	98,1	1,16	105,7	32,3	2,8	10,6	3,5	3,3	8,0
1956 Nemata	76,7	95,6	13,56	90,7	12,08	88,9	17,68	94,8	1,33	121,3	39,0	3,1	14,3	2,3	4,5	8,5
1981 Kühn	84,6	105,4	15,24	101,9	13,74	101,0	18,01	96,6	1,17	107,4	32,0	2,2	11,8	5,0	8,3	3,0
1993 Hella	79,4	98,9	14,51	97,0	12,99	95,6	18,26	97,9	1,31	119,6	36,6	2,0	15,3	2,0	7,8	3,8
2079 Kepler	86,2	107,4	15,67	104,8	14,13	104,0	18,18	97,4	1,19	108,7	34,6	2,2	11,1	2,8	3,5	5,8
2097 Kristallina KWS	79,1	98,6	15,30	102,3	13,92	102,4	19,33	103,6	1,14	104,4	31,5	2,1	10,8	2,3	4,0	4,5
2098 Mattea KWS	71,4	89,0	13,22	88,4	11,96	88,0	18,52	99,3	1,17	107,0	33,0	2,7	10,9	2,8	4,3	7,0
GD 5 %	4,2	5,2	0,85	5,7	0,78	5,7	0,37	2,0	0,05	4,1	1,5	0,3	1,3	1,8	1,6	1,9

sorten11.xls ssv bu 30.01.2012

Rubbenering Zuckerepthal Section Zuckerepthal Section	Saat: 30.03.	ļ	İ	Ernte:	27.10.	Ī	Parz.: 6	3 x 1,5 =	9,0 qm,	2 Whg.	q.	Ì	1	Ì	1	1
mann mann	VG	Rübe	nertrag	Zucke	rertrag	Berein.			rgehalt	်ပ	<u> </u>	, x		AmN	Cerc.bon.	Stand
man	Stufe 1		<u> </u>	ב ב	2 -	2 2	<u> </u>	ò	2 -		<u> </u>			?	20.10.	20.10.
### Billing HILLS 1669 1677-16 16107 1748 1910.02 1639 682-153 1040 324 42 161. 7.0 a. m.	1560 William	91,5	93,8	17,73		14,71	99,0	17,90	104,4		95,1	29,0	2,1	15,1	4,5	
letin lettins (1934) 1117/20 (1732) 1426 2092 (1709) 907, 143 1116 942 32, 2020 80.5 5 minkows (1945) 1520 1525 1529 1525 1030 1747 907, 1239 1529 94, 13	1665 Beretta 1718 Rubens	103,2 97.4	<u>. </u>	19,15 17.48		14,89 14.97	100,2 100,8	16,36 17.24	95,5 100.6		104,0 98.6	34,4 32.8	4 C 7 D	16,1 14.8	7,0 7.5	
Machan M	1186 Ricarda	98,4		17,40		14,82		17,09	99,7		111,8	34,2		20,9	0 0 j	
bill bill bill bill bill bill bill bill	1506 Pauletta 1910 Sabrina KWS	108,3 99,5		17,90 19,35		15,15 15,50		16,27 17,47	95,0 101,9		131,9 100,7	40,1 32,3		28,7 16,3	5,5 ნ	
The control of the co	1973 Arnold	92,6	" ".~	17,06 17,06	102,2	14,86		17,89	104,4		96,2	28,2		15,9	υ ω Ο 'σι	
his man with 102,5 106,1 17,73 1062, 15,94 107,3 17,45 101,8 12,28 100,2 30,1 3.3 4,15 1,5 5,2 10,3 10,4 10,4 17,73 1062, 17,45 100,8 17,85 10,8 17,85 10,8 17,85 10,8 10,4 17,73 1062, 17,10 100,7 15,85 10,8 17,8 10,8 17,8 10,8 17,3 2,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1	1632 Benno	103,8	106,4	18,36	110,0	16,40	1105,8	16,95	99,0 98,1		95, 1 88,4	30,0 27,8		13,7	ი კ ნ C	
isarionismon 1939 1022 1723 1039 1022 1723 1039 1725 1023 1025 1725 1023 1725 201 1024 125 201 1025 1025 1725 1025 1725 1025 1025 1025 1025 1025 1025 1025 10	1648 Sporta 1748 Sonhia	102,5 98 0	105,1	17,73 17,73		15,94 14 42	107,3 97 1	17,43 16,69	101,8 97.4		100,2 107.4	30,1		16,6 19,5	7 3,5	
Tark Alvays State 1972 1972 1972 1972 1972 1972 1972 1973 1972 1973 1974 1972 1973 1974 1972 1973 1974 1972 1973 1974 1972 1974 1974 1974 1974 1974 1974 1974 1974	1779 Robinson	99,8	102,3	17,30	103,7	15,83	106,6	17,61	102,8		89,9	27,3		13,2	4,0	
Billion Million Millio	Debora KW	90,0	92,2	17,33	103,9	14,28	96,1	17,80	103,9		103,4	32,5		17,2	7,5	
ubethet 1996 102,1 17,24 106,9 16,20 109,1 16,01 105,1 11,4 88,0 27,1 22,1 33,0 and adams AkWS 94,2 95,1 77,28 106,9 10,7 10,7 10,8 10,0 17,2 10,0 10,7 10,8 10,0 17,3	1824 Dante 1830 Lukas	98,3	102,5	18,21	109,1	15,12 15,63	101,8	17,02	103,4		95,5	31,9 27,6		16,1 16,0	დ დ დ	
matrica work (15) 10015 1799 10778 1525 1773 1972 1755 125 125 125 125 125 125 125 125 125 1	Schubert Belladonna	99,6	102,1	17,84 17,68	106,9	16,20 15,76	109,1	18,01	105,1		89,0	27,1 34.1		12,8	3 3 0 0	
Searchina (100.) 101.0 10.0 10.0 10.0 10.0 10.0 10.	Adrianna K	98,1	100,5	17,99	107,8	15,95	107,3	18,12	105,8		98,9	32,3		15,3	4,0	
injule KWNS 100.2 106.2 19.29 11.5 6 16.05 108; 17.52 102.3 1.44 112.4 39.5 2.4 16.7 50.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	1988 SY Belana 1990 Ludwina KWS	105,1 105,3	107,8 108,0	18,00 19,18	107,8 114,9	16,38 16,78	110,3 112,9	17,56 17,98	102,5 104,9		107,8 113,3	31,3 36,9		20,2 20,7	5,5 5	
Box	1991 Isabella KWS	103,6 84 0	106,2 86 1	19,29 16.54	115,6 99.1	16,05 13.34	108,1	17,52 17,78	102,3		112,4	39,5		18,7 16,6	უ ც ე ე	
signe begg 20, 16,526 99,16, 132,77, 89,4, 16,25, 94,9, 16,31, 19,5, 99,0, 61, 22,11 sinke begg 21, 15,552, 93,1, 135,22, 91,0, 17,31,10,0,1,22, 102,2, 123,2, 33, 34, 34, 34, 35, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36		86,8	89,0	16,04	96,1	14,03	94,4	18,25	106,5		116,5	37,3		21,4	2,5	
persis word words and the section of	1555 Nauta 1602 Prestige	94,0 89.9	96,3	15,29 15,55	91,6 93.2	13,27 13.30	89,4 89.5	16,25 16,80	94,9 98.0		119,5 109.9	39,0 33,4	3 6,1 4	21,1	ი ა თ (O	
readkivis	1717 Santino	87,8	90,0	15,88	95,1	13,52	91,0	17,31	101,0		103,2	32,1		17,4	7,0	
Na KWS 82.6 66.6 16.39 96.0 12.36 94.7 17.77 103.7 13.2 103.2 33.5 4.8 16.3 4.0 13.8 14.0 16.5 19.27 103.7 13.2 103.2 31.5 12.7 13.4 13.4 13.8 13.7 13.8 13.7 13.8 10.7 13.8 10.7 13.8 10.7 13.8 13.7 13.8 10.7 13.8 13.8 13.7 13.8 13.7 13.8 13.8 13.8 13.7 13.8 13.8 13.7 13.8 13.8 13.7 13.8 13.8 13.7 13.8 13.8 13.7 13.8 13.8 13.7 13.8 13.8 13.7 13.8 13.8 13.7 13.8 13.8 13.7 13.8 13.8 13.7 13.8 13.8 13.7 13.8 13.8 13.7 13.8 13.8 13.7 13.8 13.8 13.7 13.8 13.8 13.7 13.8 13.8 13.8 13.7 13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8	Theresa	95,8	98,2	18,32	109,8	15,23	102,5	17,94	104,7		112,5	35,2		21,1	5,5	
naina lania 98,1 1005,5 17(21 103,1 13,46 90.7 15,98 93,3 1,45 127) 41,8 4.2 25,1 5.5		90,6 82,6	92,8 84,6	15,99 16,03	96,0	14,36 12,50	96,7 84,1	17,77	99,9		103,2	31,0		16,3 20,5	4,0 7,0	
ladina KWS 94,8 97,2 1835 1193,7 1629 1093,7 170,9 993,7 138, 138 143,7 453, 23 43, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54		98,1 113.6	100,5 116.5	17,21 19.07	103,1 114.3	13,48 16,42	90,7 110.5	15,98 16.50	93,3 96,3		127,9 113.3	41,8 33.0		25,1 22,4	5,5 4.0	
Balina KWS 94, 972 1825 1924 1527 1975 1875 1884 173 88.5 27.8 1,9 12.3 3.5 1884 1884 1885 99,3 1926 1825 190,5 18,7 1975 18,7 18,7 1975 18,9 3,2 18,3 3,3 18,5 27.8 1,9 12.3 3.5 1884 1884 190,5 1926 1925 190,5 18,7 1975 18,06 106,4 1,19 38.2 29,8 1,9 13,8 13 3 1845 1884 190,5 191,5 192,5 190,5 18,7 197,5 18,06 106,4 1,19 38.2 29,8 1,9 13,8 3 3 185 1884 190,5 191,5 192,9 196,5 19,7 197,5 18,06 106,4 1,19 39,2 29,8 1,9 13,8 3,2 18,8 19,9 31,11,1 172,9 98,6 13,5 195,5 196,5 197,5 197,6 192,7 1,24 97,3 32,2 22, 14,3 2,5 18,8 19,3 19,5 196,5 197,5 197,0 98,6 13,6 197,7 191,1 1,2 197,9 19,6 13,3 19,7 191,4 28,3 2,5 19,8 19,9 191,5 192	1993 Hella 2079 Kenler	104,4	107,0	18,85	113,0	14,18	95,4 109.7	16,07	93,8		147,1	45,3 34.7		34,3	4 5 5 5	
### 106.5 107. 109.6 6.5 11.7 109.8 17.7 19.7 19.7 19.7 19.7 19.8 106.3 3.6 0.6 4.2 1.5 18.2 amma #### 106.5 107.7 15.7 15.7 19.7 19.8 10.6 105.4 1.1 10.9 3.2 3.8 1.9 13.8 3 16.5 amma #### 106.5 103.2 19.15 105.5 17.7 15.7 19.7 19.8 10.6 105.4 1.1 19.3 2.2 3.8 1.9 13.8 3 amma #### 106.5 103.2 19.15 105.5 17.7 15.7 19.7 19.8 10.6 105.4 1.1 19.3 2.2 3.8 1.9 13.8 3 amma ### 106.5 103.2 19.15 105.5 17.7 15.7 19.7 19.8 10.6 105.4 1.1 19.3 2.2 3.8 1.9 13.8 3 amma ### 106.5 103.1 17.7 19.0 98.6 15.44 103.9 17.6 102.7 1.2 4 97.3 3.8 2.2 14.3 2.5 11.0 19.5 11.2 19.3 10.6 17.7 19.7 10.7 10.3 10.7 1.2 4 97.3 3.8 2.2 14.3 2.5 11.0 19.5 11.2 19.3 10.6 17.7 10.3 10.7 1.2 4 97.3 3.8 2.2 14.3 2.5 11.0 19.5 11.2 19.3 10.6 17.7 19.7 10.3 10.7 1.7 19.4 28.3 2.2 14.3 2.5 11.0 19.5 11.2 19.3 10.6 17.7 19.7 10.3 10.7 1.7 19.4 28.3 2.2 14.3 2.5 11.0 19.5 11.2 19.5 10.6 17.7 19.7 10.3 10.7 1.7 19.4 28.3 2.2 14.3 2.5 11.0 19.5 10.5 19.5 19.5 19.5 10.2 19.5 10.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19	2097 Kristallina KWS	94,8		18,25	109,4	15,97	107,5	18,57	108,4		88,5	27,8	9 i 10 i	12,3	, ω, ω, ω,	
amma mamma	GD 5 %	6,5	6,7	1,09	6,5	1,15	7,8	0,45	2,6	0,14	10,9	3,6°	0,0	4,2	1,5	
### 10.5 113.2 19.15 105.5 77.7 15.9 107.5 18.05 105.4 17.3 93.2 26. 19. 13.9 3 11.0 113.2 19.15 105.5 77.07 114.5 17.30 10.7. 12.8 99.3 2.6 19. 13.9 3 1.0 11.0 113.2 19.15 105.5 77.07 114.5 17.30 10.7. 12.8 99.3 32.8 2.2 14.3 2.5 11.0 19.3 10.0 17.3 10.1 12.8 99.3 32.8 2.2 14.3 2.5 11.0 19.3 10.0 17.3 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	Stufe 2 1409 Alabama	106.9	109.6	18.25	100.5	16.17	108.9	17.07	99.6	1.35	105.3	35.8			ω	
eris de la color i col	1560 William	98,2		17,73	97,7	15,97	107,5	18,06	105,4	1,19	93,2	29,8			υ m	
leita Hina Hina Hina Hina Hina Hina Hina Hin	1718 Rubens	99,3		17,48	96,3	15,65		17,60	102,7	1,24	97,3	32,8) N (
inmakwws 1945, 1723, 1943, 1046, 1727, 1762, 176, 176, 1776, 1940, 15,38 104,7 1,17 1941, 283, 22, 134, 15, 16, 105, 1082, 1768, 894, 15,88 106,9 16,93 98,8 128, 190,0 31,5,4 28, 22, 16, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10	Pauletta	108,9	111,7	17,90	98,6	15,49		16,43	95,9	1,62	126,5	42,0		24,8	2,0	
Inc. 105,5 108,2 17,86 98,4 15,88 106,9 16,93 98,8 1,28 100,0 31,5 46 15,2 10,0 no no 10,10 103,5 17,73 97,7 15,81 106,4 17,56 102,5 1,30 102,0 31,0 31,1 17,3 10,1 11,0 10,0 103,5 17,73 97,7 15,81 106,4 17,56 102,5 1,30 102,0 31,0 31,1 17,3 10,0 11,0 10,0 103,5 17,73 97,7 15,81 106,4 17,56 102,5 1,30 102,0 31,0 31,1 17,3 10,0 11,0 10,0 10,0 10,0 10,0 10,0 10	Arnold	95,1	97,5	17,06	94,0	15,38		17,93	104,7	1,17	91,4	28,3		13,4	1,5	
hird in the initial in	1492 Lucata 1632 Benno	105,5 107,9	108,2 110,6	17,86 18,36	98,4 101,1	15,88 16,50	106,9 111,0	16,93 17,02	99,3	1,28	100,0 88,2	31,5 28,6		15,2 11,7	3,0	
inson	1648 Sporta	101,0	103,5	17,73 17,73	97,7	15,81 15,73	106,4	17,56 17.28	102,5	1,30	102,0	31,0	ν <u>,</u>	17,3 17.0	л ,0 Г	
In IRKWS 96. 98.6 17.19 94.7 15.41 103.7 17.84 104.2 12.5 97.8 30.5 30. 15.3 35. 10 ora KWS 104.1 106.7 18.21 100.3 16.21 109.1 17.94 104.7 1.28 100.4 32.2 33. 15.7 3.5 10 ora KWS 104.1 106.7 18.21 100.3 16.21 109.1 17.95 102.2 13.2 103.1 34.7 3.9 15.6 1.5 11 oran to be the solution of the solution	1779 Robinson	97,6	100,1	17,30	95,3	15,58	104,9	17,73	103,5	1,16	90,9	27,5		13,6	1,51	
te ble Ho.4, 1 106,7 18.21 100,3 16.21 109,1 17,50 102,2 1,32 103,1 34,7 3,9 15,6 15, 10 ble Hort Horbert Horb	1802 Emilia KWS 1806 Debora KWS	96,3 96,6	0,66	17,19 17,33	94, <i>/</i> 95,5	15,41 15,51	103,7	17,84 17,94	104,2	1,25 1,28	97,8 100,4	30,5		15,3 15,7	ယ ယ ပော ပေ	
übert 99,0 101,5 17,84 98,3 16,01 107,8 18,01 107,5 12,5 20,0 30,7 15,2 2,5 12,5 21,2 20,0 15,2 2,5 1,5 22,5 1,5 1,5 1,5 1,7,5 102,5 1,2,5 3,7 1,4 3,2 20,4 2,0 2,0 2,2 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,1,5	1824 Dante	104,1 101 1	106,7	18,21 18,32	100,3	16,21 16,47	109,1	17,50 18 13	102,2	1,32	103,1	34,7 30.4	3,9	15,6 14.8	1 <u>1</u> 0 5	
adonna KWS 96,0 98,4 17,68 97,4 15,87 106,8 18,42 107,5 1,29 100,6 34,9 22 15,0 2.0 1 anna KWS 102,8 105,4 17,99 99,1 16,01 107,8 17,50 102,1 1,33 104,0 35,2 2,5 16,5 2,5 miler 102,5 105,1 19,18 105,6 16,96 114,2 17,86 104,3 1,47 114,8 39,2 2,3 20,4 2,0 relial kWS 108,4 111,1 19,29 106,3 17,22 115,9 17,68 104,3 1,47 114,8 39,2 2,3 20,4 2,0 relial kWS 108,4 111,1 19,29 106,3 17,22 115,9 17,63 102,9 1,25 97,8 33,5 2,6 14,1 1,5 2 miler 10,9 33, 15,26 84,3 13,44 90,5 16,80 98,0 1,44 112,5 38,1 5,2 18,2 1,0 2 milka 10,0 93,3 15,56 84,5 13,75 92,5 17,63 102,9 1,25 97,8 33,5 2,6 14,1 1,5 2 milka 10,0 99,0 92,3 15,88 87,5 14,19 95,5 17,63 102,9 1,25 97,8 33,5 2,6 14,1 1,5 2 milka 10,0 103,1 18,32 100,9 16,32 109,9 18,21 106,3 1,38 107,7 34,1 2,8 18,9 1,0 13,9 18,1 10,1 13,5 18,8 10,1 14,24 96,8 18,9 10,0 103,1 18,32 100,9 16,32 109,9 18,21 106,3 1,39 108,9 36,3 2,2 18,7 2,5 1 mata 113,5 116,3 19,07 105,1 16,87 113,5 16,35 19,1 118,5 39,8 3,8 21,3 1,0 2 milkina kWS 99,1 101,5 18,25 100,5 16,48 111,0 18,42 107,5 17,5 102,4 13,1 102,3 32,0 2,7 17,1 2,0 2 milkina kWS 99,1 101,5 18,25 100,5 16,48 111,0 18,42 107,5 1,18 92,8 2,8 10,1 17,77 119,6 17,35 101,3 13,2 103,4 30,5 12,2 16,2 2,0 1 18,4 11,5 11,5 11,5 11,5 11,5 11,5 11,5 11	1883 Schubert	99,0	101,5	17,84	98,3	16,01	107,8	18,01	105,1	1,25	97,8	31,6	2,1	15,2	2,5	
Belana 102,5 105,1 18,00 99,1 16,02 107,9 17,55 102,5 13,2 13,3 32,5 3,0 17,5 1,5 2,5 2,2 1,4 2,0 2,0 2,3 2,0 1,4 1,5 2,5 2,5 1,4 1,5 2,5 2,5 1,7 3,3 1,5 2,5 1,5 3,5 1,4 1,5 2,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 2,5 1,5 1,5 1,5 1,5 1,5 2,5 1,5 1,5 1,0 1,1 1,5 <td>1900 Belladonna KWS 1901 Adrianna KWS</td> <td>96,0 102,8</td> <td>98,4 105,4</td> <td>17,68 17,99</td> <td>97,4 99,1</td> <td>15,87 16,01</td> <td>106,8 107,8</td> <td>18,42 17,50</td> <td>107,5 102,1</td> <td>1,29 1,33</td> <td>100,6 104,0</td> <td>34,9 35,2</td> <td></td> <td>15,0 16,5</td> <td>2,0 2,5</td> <td></td>	1900 Belladonna KWS 1901 Adrianna KWS	96,0 102,8	98,4 105,4	17,68 17,99	97,4 99,1	15,87 16,01	106,8 107,8	18,42 17,50	107,5 102,1	1,29 1,33	100,6 104,0	34,9 35,2		15,0 16,5	2,0 2,5	
pielia KWS 108,4 111,1 19,29 1063 17,22 115,9 17,80 103,9 13,1 12,6 37,0 2,6 14,8 2,5 2,6 14,1 11,1 19,29 1063 17,22 115,9 17,63 102,9 1,25 97,8 33,5 2,6 14,1 1,5 2,6 14,1 1,5 2,6 14,1 1,5 2,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1	1988 SY Belana	102,5	105,1	18,00	99,1	16,02	107,9	17,55 17,86	102,5	1,32	103,7	32,5		17,5	3 1 5 5	
Trimble 93,9 90,2 10,34 91,1 14,60 93,1 17,53 102,9 17,53 12,20 94,8 1,1 13,5 14,6 191,1 93,3 15,29 84,3 13,44 90,5 16,80 98,0 1,44 112,5 38,1 5,2 18,2 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	1991 Isabella KWS	108,4	111,1	19,29	106,3	17,22	115,9	17,80	103,9	, <u>, ,</u> , ,	102,6	37,0		14,8	2,51	
tating		93,9 88,1	90,3	16,04	88,3	14,11	95,0	18,20	106,3	1,58	124,0	40,2		24,0	1,0	
tition 90.0 92.3 15.88 87.5 14.19 95.5 17.63 102.9 1.28 99.9 32.4 2.5 15.7 3.0 29.1 18.4 97.2 99.7 16.81 92.6 14.80 99.6 17.28 100.9 1.47 114.9 36.3 3.4 21.4 1.5 2 100.6 103.1 18.32 100.9 16.32 109.9 18.21 106.3 1.39 108.9 36.3 2.2 18.7 2.5 10.0 10.0 10.6 103.1 18.32 100.9 16.32 109.9 18.21 106.3 1.39 108.9 36.3 2.2 18.7 2.5 10.0 10.0 10.0 10.5 1 1.37 107.1 35.3 4.7 17.0 1.0 2 10.0 10.5 10.2 10.0 10.5 1 1.37 107.1 35.3 4.7 17.0 1.0 2 10.0 10.5 11.3 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	1555 Nauta 1602 Prestige	91,1 91.0	9 9 9 9 9 9 9	15,29 15,55	84,3 6	13,44 13,75	90,5 92.5	16,80 17,10	98,0 99,8	1,44 1,38	112,5 107.7	38,1 34.1		18,2 18,9	2,0	
resakWS 100,6 103,1 18,32 100,9 16,32 100,9 11,47 114,9 30,3 3,4 21,4 10,9 10,8 100,6 103,1 18,32 100,9 16,32 100,9 10,51 1,47 114,9 30,3 3,4 21,4 10,9 10,8 100,6 103,1 18,32 100,9 16,32 109,9 18,01 10,9 10,9 10,8 31,3 10,9 10,9 10,9 10,9 10,9 10,9 10,9 10,9	1717 Santino	90,0	92,3	15,88	87,5	14,19	95,5	17,63	102,9	1,28	99,9	32,4		15,7	, 3 j 0 o	
um 88,8 91,0 15,99 88,1 14,24 95,8 18,00 105,1 1,37 107,1 35,3 4,7 17,0 20 na kWS 91,5 93,8 16,03 88,3 14,28 96,1 17,55 102,4 1,31 102,3 32,0 2,7 17,1 2,0 2 nata 104,9 107,5 17,21 94,8 14,99 100,9 16,41 95,8 1,51 118,5 39,8 3,8 2,13 1,0 2 113,5 116,3 19,07 105,1 16,81 19,1 1,35 105,5 16,81 98,1 1,35 105,5 32,8 2,8 18,4 3,0 1 ler 115,4 118,3 19,98 100,1 17,77 119,6 103,5 95,4 1,82 142,8 44,7 3,0 32,1 2,5 1 tallina KWS 99,1 101,5 18,25 100,5 16,48 111,0 18,42 107,5 1,48 92,8 2,0 13,6 1,0 1 tea KWS 89,1 91,3 15,23 83,9 13,44 90,5 17,09 99,7 1,41 110,3 35,7 </td <td>Berenik: Theresa</td> <td>97,2 100,6</td> <td>99,7 103,1</td> <td>16,81 18,32</td> <td>92,6 100,9</td> <td>14,80 16,32</td> <td>99,6 109,9</td> <td>17,28 18,21</td> <td>100,9</td> <td>1,47 1,39</td> <td>114,9 108,9</td> <td>36,3 36,3</td> <td></td> <td>21,4 18,7</td> <td>2,5 5</td> <td></td>	Berenik: Theresa	97,2 100,6	99,7 103,1	16,81 18,32	92,6 100,9	14,80 16,32	99,6 109,9	17,28 18,21	100,9	1,47 1,39	114,9 108,9	36,3 36,3		21,4 18,7	2,5 5	
Tell RKWS 104,9 107,5 17,21 94,8 14,99 100,9 16,41 95,8 1,51 118,5 39,8 3,8 21,3 1,0 2,0 1,3,5 11,5 116,3 19,07 105,1 16,87 113,5 16,81 98,1 1,35 105,5 32,8 2,8 18,4 3,0 1 1,5,4 118,3 18,85 103,9 16,06 108,1 16,35 95,4 1,82 142,8 44,7 3,0 32,1 2,5 1 115,1 118,0 19,98 110,1 17,77 119,6 17,35 101,3 1,32 103,4 35,5 2,2 16,2 2,0 1 115,1 118,0 19,98 110,1 17,77 119,6 17,35 101,3 1,32 103,4 35,5 2,2 16,2 2,0 1 115,1 118,0 19,98 100,5 16,48 111,0 18,42 107,5 1,18 92,8 29,6 2,0 13,6 1,0 1 1 12,1 12,1 12,1 12,1 12,1 12,1 1	Taifun	88,8	91,0	15,99	88,1	14,24	95,8 96.1	18,00	105,1	1,37	107,1	35,3		17,0	3,0	
n 113,5 116,3 19,07 105,1 16,87 113,5 16,81 98,1 1,35 105,5 32,8 2,8 18,4 3,0 1 a 115,4 118,3 18,85 103,9 16,06 108,1 16,35 95,4 1,82 142,8 44,7 3,0 32,1 2,5 1 115,1 118,0 19,98 110,1 17,77 119,6 17,35 101,3 1,32 103,4 35,5 2,2 16,2 2,0 1 141lina KWS 99,1 101,5 18,25 100,5 16,48 111,0 18,42 107,5 1,18 92,8 29,6 2,0 13,6 1,0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1956 Nemata	104,9	107,5	17,21	94,8	14,20	100,9	16,41	95,8	1,51	118,5	39,8		21,3	1,0	
ler 115,1 118,0 19,98 110,1 17,77 119,6 17,35 101,3 1,32 103,4 35,5 2,2 16,2 2,0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1981 Kühn 1993 Hella	113,5 115.4	116,3	19,07 18,85	105,1	16,87 16,06	113,5	16,81 16,35	98,1 95,4	1,35	105,5	32,8 44 7		18,4 32 1	2 3,0 5 0	
Tallina KWS 99,1 101,5 18,25 100,5 16,48 117,0 18,42 107,5 1,18 92,8 29,6 2,0 13,6 1,0 18,42 107,5 18,42 107,5 1,18 92,8 29,6 2,0 13,6 1,0 18,42 107,5 1,18 92,8 29,6 2,0 13,6 1,0 18,62 1,0 18,63 19,2 1,0 18,63 10,0 18,83 19,2 1,0 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	Kepler	115,1	118,0	19,98	110,1	17,77	119,6	17,35	101,3	1,32	103,4	35,5		16,2	2,0	
6,2 6,4 1,28 7,1 0,98 6,6 0,45 2,6 0,14 10,9 3,6 0,6 4,2 1,5 1	8 Mattea	89,1	91,3	15,23	83,9	13,44	90,5	17,09	99,7	1,41	110,3	35,7	3,3	19,2	2,0	
97,6 100,0 16,88 100,0 14,97 100,0 17,32 100,0 1,35 100,0 33,2 3,0 18,3 100,7 103,1 17,61 104,3 15,66 104,6 17,52 101,2 1,34 98,8 34,2 2,9 17,2 1,2 1,2 1,2 0,21 1,3 0,19 1,3 0,09 0,5 0,02 1,6 0,6 0,1 0,7	Fungizidbehar	6,2 dlung	6,4	1,28	-,1	0,98	6,6	0,45	2,6	0,14	10,9	ن 6	0,6	4,2	1,5	
1,2 1,2 0,21 1,3 0,19 1,3 0,09 0,5 0,02 1,6 0,6 0,1 0,7		97,6 100.7	100,0 103.1	16,88 17.61	100,0 104.3	14,97 15.66	100,0 104.6	17,32 17.52	100,0 101.2	1,35 1.34	100,0 98.8	33,2 34,2	3,0 2.9	18,3 17.2	2.1 2.1	
	GD 5 %	1,2	1,2	0,21	1,3	0,19	1,3	0,09	0,5	0,02	1,6	0,6	0,1	0,7	0,4	

SSV-R Erkelenz 2011

Saat: 30.03.			Ernte: 2	27.10.		Parz.: 6	x 1,5 = 9	,0 qm,	4 Whg.						
VG	Rüben	ertrag	Zucker	ertrag	Berein.	Z.ertrag	Zucker	gehalt	SI	ΛV	K	Na	AmN	Cerc.bon.	Stand
	t/ha	rel.	t/ha	rel.	t/ha	rel.	%	rel.	%	rel.	mm	ol/1000	g R.	20.10.	20.10.
Stufe 1+2															
1409 Alabama	102,5	101,9	17,48	100,4	15,51	99,8	17,05	98,4	1,33	104,4	35,1	3,3	16,1	4,3	
1560 William	94,8	94,2	17,05	97,9	15,34	98,8	17,98	103,8	1,20	94,6	29,4	2,0	14,4	3,5	
1665 Beretta	106,8	106,2	18,02	103,4	15,98	102,9	16,85	97,2	1,30	102,5	35,0	3,9	14,9	5,3	
1718 Rubens	98,3	97,7	17,13	98,3	15,31	98,5	17,42	100,6	1,25	98,5	32,8	2,4	14,6	5,0	
1186 Ricarda	98,4	97,8	17,11	98,2	15,13	97,4	17,38	100,3	1,41	111,0	34,9	3,0	19,8	4,3	
1506 Pauletta	108,6	108,0	17,76	102,0	15,32	98,6	16,35	94,4	1,65	129,9	41,0	3,0	26,7	4,0	
1910 Sabrina KWS	104,5	103,8	18,36	105,4	16,38	105,5	17,57	101,4	1,29	101,7	33,1	2,2	16,2	4,3	
1973 Arnold	93,8	93,3	16,81	96,5	15,12	97,3	17,91	103,4	1,20	94,3	28,2	2,3	14,7	2,5	
1492 Lucata	104,7	104,0	17,73	101,8	15,80	101,7	16,94	97,8	1,25	98,1	30,7	4,3	14,4	2,0	
1632 Benno	108,3	107,6	18,32	105,2	16,45	105,9	16,91	97,6	1,13	88,8	28,2	2,2	11,8	4,8	
1648 Sporta	101,8	101,1	17,80	102,2	15,87	102,2	17,50	101,0	1,29	101,6	30,5	3,2	16,9	2,3	
1748 Sophia	100,3	99,6	17,04	97,8	15,08	97,0	16,99	98,0	1,36	106,9	33,4	2,4	18,7	6,0	
1779 Robinson	98,7	98,1	17,44	100,1	15,71	101,1	17,67	102,0	1,15	90,9	27,4	2,0	13,4	2,8	
1802 Emilia KWS	97,6	97,0	17,15	98,4	15,32	98,6	17,57	101,4	1,27	99,9	30,6	3,5	15,8	5,3	
1806 Debora KWS	93,3	92,7	16,67	95,7	14,90	95,9	17,87	103,1	1,30	102,4	32,4	3,2	16,4	5,5	
1824 Dante	102,0	101,4	17,62	101,1	15,67	100,8	17,26	99,6	1,31	103,1	33,3	4,3	15,8	2,5	
1830 Lukas	99,7	99,0	17,87	102,6	16,05	103,3	17,92	103,5	1,22	96,3	29,0	2,1	15,4	2,3	
1883 Schubert	99,3	98,7	17,88	102,7	16,10	103,7	18,01	104,0	1,19	93,9	29,3	2,1	14,0	2,8	
1900 Belladonna KWS	95,1	94,5	17,62	101,1	15,82	101,8	18,53	107,0	1,30	102,0	34,5	2,2	15,7	2,5	
1901 Adrianna KWS	100,5	99,8	17,88	102,7	15,98	102,8	17,81	102,8	1,30	102,0	33,7	2,4	15,9	3,3	
1988 SY Belana	103,8	103,2	18,23	104,6	16,20	104,3	17,55	101,3	1,35	106,3	31,9	3,1	18,8	2,0	
1990 Ludwina KWS	106,3	105,7	19,06	109,4	16,87	108,6	17,92	103,5	1,46	114,6	38,0	2,3	20,6	3,8	
1991 Isabella KWS	106,0	105,3	18,73	107,5	16,64	107,1	17,66	101,9	1,37	108,1	38,3	2,7	16,8	3,0	
1164 Premiere	88,9	88,4	15,74	90,3	14,07	90,6	17,70	102,2	1,28	100,6	33,3	2,5	15,3	3,3	
1307 Syncro	87,5	86,9	15,94	91,5	14,07	90,6	18,23	105,2	1,54	120,9	38,7	3,8	22,7	1,8	
1555 Nauta	92,5	91,9	15,28	87,7	13,36	86,0	16,52	95,4	1,48	116,6	38,5	5,6	19,7	2,0	
1602 Prestige	90,4	89,9	15,32	88,0	13,52	87,0	16,95	97,8	1,39	109,4	33,8	3,1	19,5	4,3	
1717 Santino	88,9	88,4	15,54	89,2	13,85	89,2	17,47	100,8	1,30	102,1	32,3	2,8	16,5	5,0	
1746 Berenika	95,0	94,4	16,54	94,9	14,62	94,1	17,41	100,5	1,42	111,9	34,8	3,2	20,3	1,3	
1798 Theresa KWS	98,2	97,6	17,75	101,9	15,77	101,5	18,08	104,3	1,41	111,3	35,8	2,3	19,9	4,0	
1826 Taifun	89,7	89,1	16,04	92,1	14,30	92,0	17,89	103,3	1,34	105,7	33,8	4,8	16,6	2,5	
1896 Jenna KWS	87,0	86,5	15,08	86,5	13,39	86,2	17,33	100,0	1,34	105,7	31,5	2,7	18,8	4,5	
1956 Nemata	101,5	100,8	16,44	94,4	14,23	91,6	16,20	93,5	1,57	123,9	40,8	4,0	23,2	3,3	
1981 Kühn	113,6	112,8	18,91	108,6	16,64	107,1	16,65	96,1	1,40	110,0	32,9	2,9	20,4	3,5	
1993 Hella	109,9	109,2	17,81	102,2	15,12	97,3	16,21	93,5	1,85	145,7	45,0	2,9	33,2	4,0	
2079 Kepler	111,4	110,7	19,19	110,2	17,03	109,6	17,22	99,4	1,34	105,6	35,1	2,2	17,3	3,0	
2097 Kristallina KWS	96,9	96,3	17,93	102,9	16,22	104,4	18,50	106,8	1,16	91,1	28,7	2,0	12,9	2,3	
2098 Mattea KWS	90,0	89,4	15,21	87,3	13,38	86,1	16,90	97,5	1,44	113,3	35,8	3,3	20,4	4,0	
GD 5 %	4,8	4,8	0,86	5,0	0,79	5,1	0,34	2,0	0,08	6,6	2,2	0,4	2,6	1,4	

sorten11.xls 30.01.2012

VG	Rübei	Rübenertrag	Zucke t/ha	Zuckerertrag t/ha rel.	Berein. t/ha	Z.ertrag rel.	Zucke %	Zuckergehalt %	m	- S M <	Z	K Na Ami		Cerc.BS	Stand
	7								,			5			
Stufe 1										_					
1409 Alabama	99,1	104,2	16,42	102,9	14,60	102,6	16,56	98,7	1,23	102,1	30,2	ο ω ω	13,1	39,0	, <u>,</u>
1665 Beretta	101.0	106.1	16,76	104,7	13,26	103.8	16.40	08.3 2, 101.9	•	96,4 104 o	30,7	4 ¤	1 N 2 V	30,0 47.5	<u>, ,</u>
1718 Rubens	94.0	98,8	15,95	100,0	14,28	100,4	16,97	101,1		97,4	28,5	υ o	12,0	47,5	2,0
1186 Ricarda	92,5	97,2	15,45	96,8	13,73	96,5	16,70	99,5	٠,		30,1	6,7	14,1	20,0	2,0
1506 Pauletta	105,2	110,6	17,01	106,7	14,78	103,9	16,17	96,4			36,7		21,7	28,5	0,0
1970 Sabrina 1973 Arnold	89,8	96,5 5	15,74	96,7	14,09 13 79	0,00 0,00	17,15	102,2	1,20	99,7	29,0	4,9 4,4	13,2	34,0 19,0	1 N
1492 Lucata	95,5	100,3	15,82	99,2	14,02	98,5	16,58	98,8	_		29,4	8,7	14,6	26,5	,51 °
1632 Benno	101,4	106,5	16,81	105,4	15,01	105,5	16,59	98,9	-	97,4	28,1	5,0	12,5	31,5	1,5
1648 Sporta	92,3	97,0	15,76	98,8 8,8	14,05	98,8	17,08	101,8	٠.	103,5	30,1	7,0	13,6	26,0) <u>_</u>
1779 Robinson	100.1	105.2	17.04	106.8	15.27	107.4	17.03	101,5	1.17	96.5	29.1	4 ° 5 °	11.6	12.5	1,0
1802 Emilia KWS	96,3	101,2	16,36	102,6	14,64	102,9	16,99	101,3	•	98,2	27,4	7,0	12,2	65,0	<u>1</u> ,5
1806 Debora KWS	91,8	96,4	15,84	99,3	14,17	99,6	17,26	102,8	. •	100,6	28,9	7,4	12,5	52,5	2,0
1824 Dante	91,0	95,6	15,24	95,6	13,51	94,9	16,75	99,8	•	108,1	30,4	7,6	15,4	17,5) <u>,</u>
1883 Schubert	90,3 97.4	102.4	16,50 16.61	104.1	14.88	9/,/ 104.6	17,16	102,2	1, 17	96.6	27,4 27.6	4,6 4.4	12,6	13.5	1,0
1900 Belladonna KWS	97,2	102,1	17,09	107,1	15,25	107,2	17,59	104,8	_	107,3	31,9	4,9	15,6	17,5	1,0
1901 Adrianna KWS	101,7	106,9	17,43	109,3	15,54	109,2	17,14	102,1	٠,	104,0	30,6	5,4	14,4	24,0	1,0
1988 SY Belana	89,7	94,2	15,28	95,8	13,64	95,9	17,04	101,5	~	101,5	27,9	ν ω ω υ	14,5	18,0	ر 0 0
1991 Isabella KWS	97,7	102,7	16,92	106,1	15,08	106,0	17,33	103,2	1,28	106,1	33,1	ე - ე (14,1	20,0	2,5
GD 5 %	8,0	8,4	1,39	8,7	1,25	8,8	0,23	1,4	٠.	4,5	1,4	0,8	2,0		
Stufe 2															
1409 Alabama	100,6	104,6	16,79	102,8	14,95	102,3	16,69	98,2	1,23	103,2	32,5	6,0	11,9	7,0	, <u>,</u>
1665 Beretta	100.2	104.3	16.81	103.0	14.99	102.6	16.77	98.6	1.21	96,0 102.0	30.4	7.7	<u>.</u>	6,0 0	 O
1718 Rubens	97,0	101,0	16,58	101,6	14,86	101,8	17,08	100,5	1,18	98,8	30,8	5,5	10,8	10,0	2,0
1186 Ricarda	99,7	103,7	16,88	103,4	15,06	103,1	16,92	99,6	1,22	102,5	30,2	6,1	12,6	5,0	2,0
1506 Pauletta	103,8	107,9	16,69	102,2	14,52	99,4	16,08	94,6	. –	125,1	38,1	, 6 1 U	19,7	4,5	1,0
1973 Arnold	89.9	93.5	15,48	94.8	13.93	95,0	17,20	101,		90,3	28,9 3	4, 4 C, 4	10 - 0 0	9 -	7 ,C
1492 Lucata	96,5	100,4	16,09	98,5	14,35	98,3	16,67	98,1	_	100,8	28,8	6,9	12,1	9,5	1,0
1632 Benno	102,3	106,4	17,27	105,8	15,49	106,1	16,89	99,3	•		29,1	4,4	10,8	13,0	2,0
1648 Sporta	95,9	99,7	16,30	99,8	14,57	99,8	17,01	100,0	_		29,4	n 6,0	12,5	0,0	2,0
1779 Robinson	97,2	101,	16,42	101,0	14,60	101.3	16.98	99,4	<u>, , , , , , , , , , , , , , , , , , , </u>	96.8	29,3	υ 1 ε	10,4	ω <u>(</u>	21 C
1802 Emilia KWS	97,6	101,6	16,79	102,8	15,04	103,0	17,19	101,1	_		29,3	6,3	11,8	18,5	1,0
1806 Debora KWS	93,3	97,1	16,36	100,2	14,69	100,6	17,53	103,1			30,9	6,2	11,1	15,0	2,5
1824 Dante	94,0	97,8 100.0	16,07	98,4 103 1	14,32	98,1	17,09 17,35	100,5	1,26	106,0	30,6	6,7 4	13,9	11,0 50	יט ע
1883 Schubert	98.1	102.1	16.77	102,7	15.04	103.0	17.09	100.6	1 ;	97.8	29.4	t 4 5	11.5	5.0 0	
1900 Belladonna KWS	103,0	107,2	18,35	112,4	16,42	112,4	17,81	104,8	•	106,8	33,7	4,9	13,6	4,0	1,0
1901 Adrianna KWS	105,0	109,2	18,06	110,6	16,11	110,3	17,20	101,2	•	105,7	32,5	5,8	13,2	8,5	1,0
1988 SY Belana	93,9	97,7	16,16	99,0	14,47	99,1	17,23	101,4		101,2	28,4	4,8	13,6) () ()	, <u>,</u>
1990 Ludwina KWS 1991 Isabella KWS	99,0	103,0 97.5	16,17	106, 1 99.0	15,46 14.41	98.6	17,50 17.24	102,9	1,28	108,0 107.4	34,9	5, 4 2, 6	13.5 13.5 13.5	ن <u>4</u> 50 ن	2,0
GD 5 %	7.4	7.7	1.17	7.2	1.04	7.1	0.23	1.4	_	4.4		0.9	ω	15.5	0.7
1			;	i i			Ĭ		,		(č	č	j	Ç.
Stufe 1	95,4	100,0	16,16	100,0	14,41	100,0	16,95	100,0		100,0	29,8	5,9	13,8	29,5	<u>,</u> 5
Stufe 2	97,5	102,2	16,65	103,0	14,89	103,3	17,09			97,9	30,8	5,4	12,4	8,0	
GD 5 %	1,9	2,0	0,33	2,0	0,29	2,0	0,06	0,3	0,01	0,8	0,5	0,2	0,4	4,3	0,2

SV-R Kalrath 2011

Saat: 23.03.			Ernte:	17.10.		Parz.: 6,	5 x 1,35	= 8,8 qm	, 4 Wł	ng.					
VG	Rüben	ertrag	Zucke	rertrag	Berein.	Z.ertrag	Zuckei	gehalt	SI	1 V	K	Na	AmN	Cerc. BS%	Stand
	t/ha	rel.	t/ha	rel.	t/ha	rel.	%	rel.	%	rel.	mm	ol/1000	g R.	17.10.	17.10.
Stufe 1+2															
1409 Alabama	99,9	104,4	16,60	102,9	14,77	102,5	16,63	98,4	1,23	102,6	31,3	6,2	12,5		1,3
1560 William	86,6	90,5	14,96	92,7	13,44	93,2	17,28	102,3	1,15	96,2	27,9	3,9	12,2		1,3
1665 Beretta	100,6	105,2	16,73	103,7	14,88	103,2	16,63	98,5	1,24	103,1	30,2	8,2	12,3		1,0
1718 Rubens	95,5	99,9	16,27	100,8	14,57	101,1	17,03	100,8	1,18	98,1	29,7	5,5	11,4		2,0
1186 Ricarda	96,1	100,5	16,16	100,1	14,39	99,9	16,81	99,5	1,24	103,4	30,2	6,4	13,4		2,0
1506 Pauletta	104,5	109,3	16,85	104,4	14,65	101,6	16,13	95,5	1,50	125,5	37,4	6,5	20,7		1,0
1910 Sabrina	96,1	100,4	16,50	102,2	14,78	102,5	17,18	101,7	1,19	99,0	29,5	4,7	12,3		2,0
1973 Arnold	89,9	94,0	15,43	95,6	13,86	96,1	17,16	101,6	1,14	95,2	28,0	4,4	11,3		1,0
1492 Lucata	96,0	100,3	15,95	98,9	14,19	98,4	16,63	98,4	1,24	103,7	29,1	7,8	13,3		1,3
1632 Benno	101,8	106,5	17,04	105,6	15,25	105,8	16,74	99,1	1,16	96,7	28,6	4,7	11,6		1,8
1648 Sporta	94,1	98,4	16,03	99,3	14,31	99,3	17,04	100,9	1,23	102,4	29,7	6,5	13,0		1,5
1748 Sophia	93,8	98,1	15,84	98,1	14,14	98,1	16,87	99,9	1,21	100,9	28,9	5,5	13,2		2,0
1779 Robinson	98,6	103,1	16,77	103,9	15,03	104,3	17,01	100,7	1,16	96,7	29,4	4,4	11,4		1,3
1802 Emilia KWS	97,0	101,4	16,58	102,7	14,84	103,0	17,09	101,2	1,19	99,1	28,3	6,7	12,0		1,3
1806 Debora KWS	92,5	96,8	16,10	99,8	14,43	100,1	17,40	103,0	1,20	100,5	29,9	6,8	11,8		2,3
1824 Dante	92,5	96,7	15,66	97,0	13,92	96,5	16,92	100,2	1,28	107,0	30,5	7,2	14,6		1,5
1830 Lukas	93,7	97,9	16,17	100,2	14,52	100,7	17,26	102,2	1,16	97,1	28,0	4,3	12,3		1,8
1883 Schubert	97,8	102,2	16,69	103,4	14,96	103,8	17,08	101,1	1,17	97,2	28,5	4,4	12,1		1,0
1900 Belladonna KWS	100,1	104,7	17,72	109,8	15,83	109,8	17,70	104,8	1,28	107,0	32,8	4,9	14,6		1,0
1901 Adrianna KWS	103,4	108,1	17,74	109,9	15,83	109,8	17,17	101,6	1,26	104,8	31,5	5,6	13,8		1,0
1988 SY Belana	91,8	96,0	15,72	97,4	14,05	97,5	17,13	101,4	1,22	101,4	28,1	5,0	14,0		1,3
1990 Ludwina KWS	99,9	104,5	17,38	107,7	15,48	107,4	17,39	102,9	1,30	108,2	35,2	4,8	14,1		2,0
1991 Isabella KWS	95,7	100,1	16,54	102,5	14,74	102,3	17,28	102,3	1,28	106,8	34,0	5,3	13,7		2,3
GD 5 %	5,1	5,3	0,87	5,4	0,78	5,4	0,17	1,0	0,03	2,8	1,3	0,6	1,0		0,5

sorten11.xls 30.01.2012

Mittel aus 3 rheinischen Sortenversuchen 2011

VG	Rüben	ertrag	Zucker	ertrag	Berein.	Z.ertrag	Zucker	gehalt	S	ΜV	K	Na	AmN	Stand
	t/ha	rel.	t/ha	rel.	t/ha	rel.	%	rel.	%	rel.	mmo	ol/1000) g R.	Ernte
Stufe 1+2														
1409 Alabama	94,2	102,2	16,26	100,5	14,53	100,1	17,33	98,3	1,23	103,5	32,7	4,1	12,8	1,8
1560 William	85,7	93,0	15,53	96,0	14,04	96,7	18,17	103,1	1,13	95,2	28,2	2,6	11,7	1,6
1665 Beretta	97,5	105,8	16,70	103,3	14,91	102,8	17,17	97,4	1,22	102,7	32,6	5,1	12,0	1,4
1718 Rubens	91,3	99,0	16,20	100,2	14,58	100,4	17,82	101,1	1,17	98,6	31,0	3,4	11,6	2,0
1186 Ricarda	90,9	98,6	15,92	98,5	14,22	98,0	17,58	99,8	1,26	106,1	32,1	4,0	14,4	2,3
1506 Pauletta	99,1	107,5	16,56	102,4	14,47	99,7	16,81	95,4	1,50	125,9	38,7	3,9	21,0	1,5
1910 Sabrina	95,2	103,3	16,82	104,0	15,11	104,1	17,70	100,5	1,19	100,1	30,8	3,1	12,6	1,8
1973 Arnold	86,8	94,1	15,54	96,1	14,04	96,7	17,95	101,8	1,12	94,3	27,5	3,0	11,4	1,3
1492 Lucata	93,8	101,8	16,12	99,7	14,42	99,4	17,23	97,8	1,20	100,8	30,4	5,0	12,2	1,6
1632 Benno	97,8	106,1	16,86	104,3	15,19	104,7	17,32	98,3	1,10	92,4	27,7	3,0	10,4	1,7
1648 Sporta	91,6	99,4	16,25	100,5	14,59	100,5	17,82	101,1	1,21	101,9	30,4	4,1	13,2	1,7
1748 Sophia	89,2	96,8	15,27	94,5	13,62	93,9	17,16	97,4	1,24	104,3	31,0	3,6	14,3	2,1
1779 Robinson	92,9	100,8	16,45	101,8	14,86	102,4	17,76	100,8	1,11	93,5	27,8	2,8	11,0	1,6
1802 Emilia KWS	90,4	98,1	16,07	99,4	14,45	99,5	17,85	101,3	1,19	100,2	30,0	4,2	12,4	1,7
1806 Debora KWS	86,5	93,8	15,61	96,5	14,03	96,7	18,11	102,8	1,22	102,4	31,3	4,3	12,9	2,0
1824 Dante	90,6	98,3	15,91	98,4	14,23	98,0	17,63	100,0	1,24	104,5	32,1	4,8	13,3	1,8
1830 Lukas	90,4	98,1	16,28	100,7	14,69	101,2	18,05	102,4	1,14	96,3	28,1	2,9	12,2	1,8
1883 Schubert	91,6	99,3	16,43	101,6	14,83	102,2	18,01	102,2	1,14	95,6	28,5	3,0	11,6	1,4
1900 Belladonna KWS	89,9	97,6	16,64	102,9	14,96	103,1	18,59	105,5	1,26	105,7	33,6	3,1	14,0	1,4
1901 Adrianna KWS	94,4	102,4	16,93	104,7	15,19	104,7	18,03	102,3	1,24	104,3	32,8	3,4	13,5	1,7
1988 SY Belana	90,3	98,0	15,99	98,9	14,33	98,7	17,76	100,8	1,22	103,0	29,6	3,5	14,4	2,0
1990 Ludwina KWS	98,0	106,3	17,68	109,3	15,79	108,8	18,08	102,6	1,32	111,4	36,4	3,1	15,4	2,1
1991 Isabella KWS	95,1	103,2	17,06	105,5	15,27	105,2	17,99	102,1	1,27	106,9	35,5	3,4	13,4	2,5
GD 5 %	4,5	4,9	0,74	4,6	0,66	4,6	0,29	1,6	0,05	4,5	1,8	0,8	1,8	0,7

at: 26.03.	Diibo	portrag	Zincker	orortrag	Roroin		711040	argehalt	ָ ו	< <	Х	2		Mohlton	D
	t/ha	t/ha rel.	t/ha rel.	rel.	t/ha	t/ha rel.	% %	% rel.	% U	rel.	mmol/	1000	g R.	30.9.	30.9.
Alabama	81,0	101,9	14,99	101,1	13,61	100,7	18,51	99,1	1,10	105,1	34,4	2,0	7,9	3,0	ο (II
	/4,4 84.5	93,6 106,2	14,25 15,29	96,1 103.1	13,08 13,87	96,8 102,7	19,15 18,10	102,6 96.9		93,2 102,2	26,7 34,0	1,4 2,3	ი ი ი დ	2,3 2,3	7,5 7,5
	78,1	98,2	14,78	99,7	13,49	99,9	18,92	101,3		99,4	31,7	20	6,9	5,8	7,8
	79,6 82,7	100,2 104,0	14,83 14,99	100,0 101,1	13,47 13,43	99,6 99,4	18,62 18,12	99,7 97.0		105,9 122,9	33,0 38,9	2,0 1,4	8,9 13,7	2,0 7.3	6, 6, 7,
Budera Sahrina KWS	80,3	101,0	14,44	97,4	13,07	96,7	17,97	96,2 3	1,10	104,7	34,5	1 2 3	2,5	2 ,4 ; 3 ,0	7,5
Arnold	74,5	93,7	14,29	96,3	13,11	97,0	19,16	102,6		92,9	26,9	<u>,</u> ,	6,5	6,3	3,5
Taifun	67,6 02.2	85,1	13,05 15,00	88,0 1073	11,87	87,9	19,30 19,07	103,4		107,9	34,9 37 1	1 2 2 8	n 8,4	2,0	7,0
	83,1	104,5	15,12	102,0	13,85	102,5	18,19	97,4	0,92	87,8	24,4	201	י טי ט י טי ט	4,5	6,0
	87,9	110,5	16,21	109,3	14,66	108,4	18,45	98,8	1,17	111,7	36,5	,5, 1	9,0	ω, 5	6,0
2083 SY Securita	78,0 86,7	98,1 109.1	14,19 16.25	95,7 109.6	12,95 14,78	95,8 109,4	18,19 18,74	97,4 100.4	0,99 1.10	94,0 105.0	29,4 35,3	2,6 1.6	5,2 7.5	6,0 1.5	7.5
5	75,0	94,3	14,20	95,8	12,95	95,8	18,94	101,4	1,07	101,8	31,2	. 1.9	0,8	2,5	7,3
V.	74,3	98,1 93,5	15,21 13,68	102,6 92,3	13,91 12,37	102,9 91,5	19,51 18,42	104,5 98,6	1,07	101,8	31,8 35,2	1,4 2,0	10,1	ე ე ე ე	ນ ຕຸດ ກໍຕຸ
Sandra KWS	86,8	109,1	15,76 15,30	106,3	14,36	106,3	18,17	97,3	1,01	96,6	31,0	1,7	0,0 7,0	2,0 2	ر 3, 3
2104 Annika KWS	85,2	99, 4 107,1	16,10	108,6	14,67	108,6	18,91	101,3	1,08	102,3	34,4	<u>,</u> ,	დ, დ,	1,3	7,3
* %	4,7	5,9	0,91	6,1	0,83	6,1	0,37	2,0	0,04	4,3	1,6	0,3	1,3	1,5	1,7
abama	75,0	98,9	14,01	98,9	12,73	98,6	18,69	99,9	1,11	104,2	34,0	2,0	8,4		
William	70,9	93,4	13,51		12,36	95,8	19,06	101,9	1,01	94,6	27,8	1,5	7,5		
665 Beretta 718 Rubens	82,2 75,3	108,4 99.3	14,92 14,24		13,53 12,99	104,8 100.7	18,15 18.91	97,0 101.1	1,09	102,3 99.0	34,7 31.5	1,6 1.6	7,0 7.5		
	79,2	104,4	14,65	103,4	13,28	102,9	18,49	98,9	1,13	105,9	33,0	2,2	9,6		
	78,3	103,3	13,86		12,52	97,1	17,70	94,6	1,10	103,2	33,9	2,3	7,8		
a KWS	84,8 71.0	93.6 93.6	15,72 13.37		14,27 12,24	110,6 94.9	18,53 18.84	99,1 100.7		103,6 92,6	32,5 27.0	1,7	9,1 7.0		
Taifun	71,0	93,7	13,62		12,36	95,8	19,17	102,5		109,3	35,5	ως	9,3		
	82,4	108,6	15,64 14,85		14,34 13,59	111,1 105,3	19,00 18,20	101,6 97,3	0,95	91,9 88,4	24,9	<u></u>	6,0		
	78,5 86.2	103,5	14,44 15 70	101,9	13,20 14 13	102,3	18,41 18 23	98,4 97 4	0,97	91,1 114 <i>2</i>	27,4	1 ,5 7	11,3		
SY Securita	76,5	100,9	13,76		12,54	97,2	17,99	96,2	1,00	93,2	29,8	2,6	5,3		
2094 Britta	70,6	114,7 93,1	16,18 13,28	114,2 93,7	14,69 12,08	113,9 93,6	18,60 18,82	99,4 100,6	1,10	103,2 102,9	34,6 31,0	2,2	9,3		
Kristallina KWS	76,9	101,4	15,07		13,79	106,8	19,60	104,8	1,07	100,4	31,3	5,51	8,4		
	/5,1 83,4	99,1 109,9	15,08	4	12,29	95,2 106,3	18,24 18,09	96,7 96,7	1,28	119,5 96,8	30,9	1,7	13,4 6,8		
Birtha KWS	79,7	105,1			14,14	109,6	19,45	104,0	1,12	104,9	33,3	л _Ф	9,2		
Č	7,1	9,3		10,3	1,32	10,2	0,60	3,2	0,08	7,2	2,6	0,5	2,2		
N															
Alabama William	87,1 77,9	104,7 93,7	15,97 15,00	103,1 96,9	14,49 13,79	102,6 97,6	18,33 19,25	98,3 103,3	1,09 0,95	106,1 91,9	34,7 25,5	1,3 0,0	7,3 6,1		
	86,7	104,3	15,66	001,1	14,22	100,7	18,05	196,8 101,6	1,05	102,2	33,2	1 ,7 7 ,1	ກຸດ ພັບ		
1186 Ricarda	80,1	96,3	15,01	96,9	13,65	96,7	18,74	100,5		105,8	32,8		8,2		
Pauletta	86,4	103,9	15,69 15,01	101,3	14,09 13.63	99,7 96,4	18,16 18 23	97,4 97.8		122,1	39,4 35,1		12,1 7.3		
910 Sabrina KWS	88,0	105,8	16,34	105,5	14,89	96,4 105,4	18,56	99,6		101,3	31,0		7,3		
Arnold	78,0	93,8	15,20	98,2	13,98	99,0	19,49	104,5		93,1	26,8	1, 4,	5,9		
	84 3,2 3	77,2 101.3	12,48 16 14	80,6 104 2	11,38 14.82	80,6 105.0	19,43 19 15	104,2 102,7	1,10	106,5 93.3	34,2 26,8		6,5 6,0		
	84,6	101,7	15,39	99,4	14,12	100,0	18,18	97,6	0,90	87,2	23,9		4,8		
Haydn	84,7	101,8	15,55	100,4	14,25	100,9	18,37	98,6	0,93	90,6	26,3		5,2		
SY Securita	79,5	95,6		94,4	13,37	94,6	18,39	98,7		94.8	28,9		5,0		
Britta	86,5	104,0		105,5	14,86	105,2	18,89	101,3		106,9	36,1		7,2		
Elaina KWS	79,4	95,4		97,7	13,82	97,9	19,06	102,3		100,7	3 3 3	1,7	6,8		
	73.5 73.5	88,1 4		88,1	14,03 12,45	88 1	19,41 18 59	04,2 00 7		103,2	32,4	יי ב בי ב	n ,- n o		
Sandra KWS	90,1	108,4		106,2	15,01	106,3	18,24	97,9		96,4	31,0	<u>,</u> 6	5,2		
Birtha KWS	78,3	94,1		98,7	13,96	98,8	19,51	104,7		104,8	32,8	, <u>1</u>	7,9		
Annika KWS	84,9	102,1		104,1	14,71	104,1	18,98	101,8		103,3	34,3	, <u>1</u> ,5	6,5		
	5,3	6,4		6,3	0,88	6,3	0,39	2,1		2,9	1,6	0,4	0,8		
Einfluss Fungizidbehar	andlung	9 100.0		100.0	13.46		18.65	100.0		100.0	31.6	2	2 <u>7</u>		
	82,9	104,5	15,54	105,0	14,19	4	18,76	100,6	1,03	94,9	30,8	1,6	6,8		
GD 3 /6				-		,	000	о Л	2	<u>,</u>	2	2	2		

Ribbenetriag Zuckereitrag Berein, Zerriag Zuckereitrag Zuc	LNS Erkelenz 2011 Saat: 30 03				26.10		ກ	Π 22 -7	D O O	ა ≶	<u>p</u> .	O+11fp				
00.3 01.9 17.71 99.8 15.75 99.4 17.14 97.9 1.29 102.2 33 30 15.8 16.66 98.2 17.27 97.4 15.55 99.1 17.39 102.2 11.9 14.1 107.7 106.2 18.64 16.51 6.61 19.8 17.29 91.29 102.2 30.3 30 15.8 8.6 69.7 17.33 97.7 15.49 97.7 17.66 19.0 1.27 10.1 30.0 22.1 15.5 8.2 26.8 16.70 92.4 14.70 92.3 17.0 19.2 1.05 10.1 32.0 22.1 15.5 8.2 26.8 16.70 92.4 14.70 92.3 17.0 19.2 1.05 10.3 12.3 10.1 30.3 2.0 16.7 10.6 10.4 17.0 19.2 19.4 16.5 19.4 14.72 10.1 17.79 10.2 11.3 19.3 22.3 13.3 10.0 17.2 10.4 10.2 19.2 19.4 17.2 10.0 10.5 17.1 19.2 11.3 19.3 22.3 13.3 10.0 17.2 10.4 10.2 19.2 10.6 17.2 10.4 17.20 10.3 11.5 19.7 17.7 21.1 19.3 19.2 21.0 1.1 19.4 17.3 19.3 19.3 21.0 16.7 19.2 11.0 19.1 19.2 11.0 19.1 19.2 11.0 19.1 19.2 11.0 19.1 19.2 11.0 19.1 19.2 11.0 19.1 19.2 11.0 19.1 19.2 11.0 19.1 19.2 11.0 19.1 19.2 11.0 19.1 19.2 11.0 19.1 19.2 11.0 19.1 19.2 11.0 19.1 19.2 11.0 19.1 19.2 11.0 19.1 19.2 11.0 19.1 19.2 11.0 19.1 19.2 11.0 19.1 19.2 11.0 19.1 19.2 11.0 19.2 1		Rüber t∕ha	າertrag rel.	Zucke t/ha	ertrag	Berein t/ha	. Z.ertrag rel.	Zucke	rgehalt rel.	% S	rel.		Na 1000	AmN a R.	Cerc.bon. 20.10.	Stan 20.10
886 85.2 17.27 99.4 15.5 99.4 17.14 97.8 17.2 10.0 35.2 3.3 3.0 15.8 98.6 17.7 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	Stufe 1+2	3	2	1774	3		2	1	3	3		3	5	1 D	!	
987, 982, 986, 173, 987, 154, 987, 175, 989, 179, 179, 989, 179, 179, 989, 179, 179, 989, 179, 179, 989, 179, 179, 989, 179, 179, 989, 179, 179, 989, 179, 179, 989, 179, 179, 989, 179, 179, 989, 179, 179, 989, 179, 179, 989, 179, 179, 179, 179, 179, 179, 179, 17	1409 Alabama 1560 William	96,6	95,2	17,27	99,0 97,4	15,75	99,4 98,1	17,89	97,9 102,2	1,18	93,8	33,3 28,3		14,1		
982 98. 17.33 94.7 13.39 97. 17.69 97. 17.00 107.1 12.7 101.1 32.4 3.1 10.0 4.2 14.75 19.33 17.01 12.7 101.1 32.4 3.1 10.0 13.34 3.1 10.0 10.3 17.1 10.3 13.2 10.5 10.5 10.3 17.1 10.3 13.2 10.5 10.5 10.3 17.1 10.3 13.2 10.5 10.5 10.3 17.1 10.3 13.2 10.5 10.5 10.3 17.1 10.3 13.2 10.5 10.5 10.3 10.2 10.5 10.5 10.3 10.2 10.5 10.5 10.3 10.2 10.5 10.5 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	1665 Beretta	•	106,2	18,64	105,1	16,61	104,8	17,29	98,9	1,29	102,2	33,0	ω 4 c	15,4		
1005 1022 1720 985 1436 927 1616 924 177 1093 147 30 1005 1002 1710 985 1436 970 1655 971 31 1023 103 105 1065 1064 1655 1044 1673 1013 119 947 278 21 143 165 1064 1673 1013 119 947 278 21 143 165 1064 1673 1013 119 947 278 21 143 163 163 163 164 164 164 165 164 164 1673 1013 119 947 278 21 143 163 163 164 165 164 164 165 164 164 165 164 164 165 165 165 165 165 165 165 165 165 165	1718 Rubens 1186 Ricarda		96,7 8	17,33 16.70	97,7 94.2	15,49 14.79	97,7 93.3	17,66 17.01	101,0 97.2	1,27	101,1 107,3	33,0 32.4	3.2 3.1	15,5 18.5		
100.6 100.22 17.28 97.9 15.38 97.0 16.75 95.7 131 104.2 38.9 38.15.9 100.5 100.2 18.26 14.4 16.57 105.4 18.56 18.04 17.3 108.1 17.9 102.8 13.1 20.1 13. 22.4 15.8 16.8 16.9 17.1 14.8 17.5 18.9 15.9 17.1 14.8 17.5 18.9 15.9 17.1 14.8 17.5 18.9 15.9 17.1 15.0 17.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1	1506 Pauletta			17,10	96,4	14,62	92,2	16,16	92,4	1,75	138,9	41,3		30,7		
98.2 94.9 17.36 17.04 17.05 17.04 17.73 17	1812 Budera			17,36	97,9	15,38	97,0	16,75	95,7	, <u>1</u> , <u>3</u>	104,2	33,8		15,9		
1080 886 1615 911 1445 911 1758 1023 131 1043 222 47 163 1045 1827 1046 1722 1046 1723 1074 1722 1046 1723 1074 1723 1074 1725 1046 1724 1724 1725 1046 1725 1047 1725	1910 Sabrina Kvvo 1973 Arnold			18,5z 17,36	104,4 97,9	16,55 15,64	104,4 98.6	18,04	101,3 103,1	1,28	101,8 94,7	27,8		16, <i>r</i> 14,8		
1923 1107 1925 1084 7129 1090 7131 895 270 1.8 12.6 11030 1107 1925 1084 7129 1090 7130 891 7763 1091 1113 895 288 25 120 120 120 1092 1105 1917 1982 1139 1082 1169 1082 1169 1703 1708 115 1917 277 21 132 1094 1095 1105 1917 1982 1139 288 124 71 11.5 1913 1105 1917 1982 1139 1092 1109 1105 1917 1978 11101 1111 352 23 30 1893 11064 11025 1846 1030 1646 1030 1646 1030 1708 1091 1103 1092 1104 146 154 1030 1708 1918 1103 1093 38 31 1944 1111 1111 1111 1111 1111 1111 1	1826 Taifun			16,15	91,1	14,43	91,1	17,98	102,8	1,31	104,3	32,2	4,7	16,3		
97 98.2 17.5 99.0 15.8 99.8 17.5 17.3 89.9 25.8 2.5 13.0 1987 98.2 17.5 99.0 15.8 99.8 17.5 100.8 11.5 17.7 27.7 21.1 32.9 111.2 110.6 19.19 100.2 16.94 100.6 17.70 97.8 1.40 111.1 35.2 2.3 19.5 110.6 10.51 18.16 10.24 16.90 10.28 17.04 97.4 11.5 19.3 281 4.7 11.5 1970 95.6 18.06 101.8 16.34 10.31 17.68 91.01.2 10.20 34.8 2.5 16.4 171.5 16.90 19.21 10.83 17.71 10.83 17.88 91.6 10.24 13.9 10.7 27.7 10.3 36. 2.2 14.1 170.5 16.90 19.21 10.83 17.71 10.83 17.88 91.6 10.3 13.9 11.3 10.5 170.4 10.29 19.2 11.77 17.73 11.19 17.79 10.77 12.77 10.3 36. 2.2 14.1 170.5 16.90 19.21 10.3 15.72 10.27 16.9 91.6 12.1 10.3 32.2 3.7 16.5 171.4 16.98 19.2 11.77 17.73 11.19 17.79 10.77 12.77 10.3 36. 2.2 14.1 170.5 16.90 19.2 11.79 17.73 11.19 17.79 10.77 12.77 10.3 36. 2.2 14.1 170.5 16.90 19.2 11.79 17.73 11.19 17.79 10.73 12.2 13.5 10.1 170.0 10.4 17.6 19.6 16.20 19.3 15.20 10.3 12.2 10.02 4.6 12.5 10.3 19.2 170.3 16.1 16.2 16.2 16.2 16.2 16.2 16.2 16.2	2056 Julius			18,97	106,9	17,13	108,1	17,90	102,3	1,13	89,5	27,0	, 8	12,6		
1722 1106 191, 1082 1634 1639 1770 978 140 1771 322 23 163 100.6 1051; 18.16; 102.4 163.0 102.8 170.4 175 173, 221 147 150.6 1051; 18.16; 102.4 163.0 102.8 170.4 175 173, 221 147 145 173, 221 147 140.5 173, 221 147 140.5 173, 221 147 140.5 173, 221 147 140.5 193, 221 147 177 183, 178 243, 30, 18.9 170, 255 180, 211, 211, 211, 211, 211, 211, 211, 21	2059 Artus			19,22 17 57	108,4 aa n	17,28 15,82	109,0 aa 8	17,11 17 63	97,8 100.8	1,13 15	89,9 01 7	25,8 27 7	2,5 1	13,0		
100.6 105.1 18.16 102.4 16.30 102.8 17.04 97.4 1.15 91.3 28.1 4.7 11.5 104.4 102.8 134.2 103.9 16.4 103.6 17.6 100.8 13.2 104.9 34.8 25. 16.4 40.2 184.4 103.9 164.4 103.6 107.6 102.4 1.30 102.3 3.3 18.9 97.0 95.6 18.0 101.8 16.3 103.1 18.5 105.5 118.3 14.2 15.1 18.3 18.2 18.6 18.3 18.2 18.6 103.8 18.2 107.5 118.3 12.5 10.3 3.3 18.9 18.9 18.0 103.8 18.2 107.8 18.3 102.5 118.3 18.5 105.5 118.3 18.5 118.5	2079 Kepler			19,19	108,2	16,94	106,9	17,10	97,8	1,40	111,1	35,2	2,3	19,5		
97.1 98.7 77.4 98.1 16.50 97.8 17.9 17.9 102.4 13.0 13.2 3.0 16.9 97.0 18.6 18.00 10.1 18.6.3 103.1 18.6.3 106.5 11.8 93.4 12.3 1.8 13.3 4.4 102.5 101.2 18.6 106.3 17.17 108.3 17.39 98.4 1.25 9.15 30.7 2.9 18.4 102.5 101.2 18.6 106.3 17.17 108.3 17.39 98.4 1.25 9.15 30.7 2.9 18.4 10.2 101.2 18.6 106.1 18.6.3 104.9 18.6 103.8 13.8 10.3 33.3 1.19.4 101.5 101.2 19.5 102.1 17.79 101.7 12.7 101.9 36.2 2.1 14.1 14.1 14.1 14.1 14.1 14.1 14.	2083 SY Securita			18,16 18,42	102,4 103,9	16,30 16,42	102,8 103.6	17,04 17,64	97,4 100 8	1,15 33	91,3 104.9	28,1 24,8	4,7 ス	12,5 4 A		
97.0 98.6 18.06 101,8 16,34 103,1 1863 106,5 1,18 93.4 29.5, 18 13.8 4 100,5 100,2 19.6 105,3 11.5 14.5 105,3 11.5 14.5 100,5 101,2 18.6 105,1 18.6 104,3 18.6 103,5 13.8 11.3 14.5 100,5 102,5 18.6 105,1 18.6 104,3 18.6 103,5 13.8 101,3 3.3 1,1 19.5 101,4 10.8 19.8 111,7 17,73 111,9 17,7 101,7 12,1 101,0 35.6 2.2 14.1 14.0 19.8 19.8 111,7 17,73 111,9 17,7 101,7 12,1 101,0 35.6 2.2 14.1 14.0 19.8 19.8 111,7 17,73 111,9 17,7 101,7 12,1 101,0 35.6 2.2 14.1 14.0 19.8 19.8 111,7 17,73 111,9 17,7 101,7 12,1 101,0 35.6 2.2 14.1 14.0 19.8 19.8 11,7 19.0 101,1 19.8 19.8 11.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3	2096 Elaina KWS			17,40	98,1	15,50	97,8	17,91	102,4	1,36	107,8	32,3		18,9		
100.5 100.2 18.6 105.4 15.3 14.3 14.3 14.0 15.0 100.1 15.4 100.5 100.2 18.6 105.4 16.5 104.9 18.16 103.8 1.35 103.1 13.0 3.1 18.6 111.4 109.8 19.8 111.7 17.7 101.3 15.7 111.9 101.7 12.7 111.0 10.3 6.2 2.1 14.1 15.0 1.3 1.9 15.0 15.0 15.0 15.0 10.1 15.0 10.4 15.0 10.3 1.9 10.0 10.1 15.0 10.2 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	2097 Kristallina KWS			18,06	101,8	16,34	103,1	18,63	106,5	1,18	93,4	28,5		13,8		
102.6 101.2 18.64 163.1 163.6 104.9 17.79 101.7 127 101.3 33.6 2.1 16.6 101.4 103.6 19.2 11.7 17.79 111.9 17.79 101.7 127 101.3 36. 2.2 14.1 15.0 36. 2.2 14.1 15.0 36. 2.2 14.1 15.0 36. 2.2 14.1 15.0 36. 2.2 14.1 15.0 36. 2.2 14.1 15.0 36. 2.2 14.1 15.0 36. 2.2 14.1 15.0 36. 2.2 14.1 15.0 36. 2.2 14.1 15.0 36. 2.2 14.1 15.0 36. 2.2 14.1 15.0 36. 2.2 14.1 15.0 36. 2.2 14.1 15.0 36. 2.2 14.1 15.0 36. 2.2 14.1 15.0 36. 2.2 17.7 16.0 36. 2.7 17.1 15.0 15.7 17.1 15.0 15.2 17.2 16.0 9.2 17.2 16.0 13.9 17.2 2.3 2.5 2.7 16.5 6.5 6.5 8.4 49.7 16.6 97.1 14.2 96.8 17.2 16.0 97.0 1.35 16.2 32.6 3.2 14.2 16.6 6.0 10.2 16.5 16.7 97.4 14.2 93.2 16.0 97.0 1.35 16.2 32.6 3.2 14.2 16.6 6.0 10.2 16.5 16.0 16.4 16.7 16.5 16.3 17.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2 16	2098 Mattea KWS			16,23	108.3	14,35 17 17	90,5 108.3	17,16	98,1 99,1	2, 39 3, 30 3, 30	99.5	30,7	ک رد 1- م	19,4 15,4		
111.4 1998 1992 111.7 1773 111.9 177.9 101.7 127 101.0 36.6 2.2 14.1 101.0 101.4 17.08 99.6 15.20 99.3 17.09 98.2 1.71 00.0 31.9 3.0 15.6 4.0 99.9 98.2 17.10 100.3 15.72 100.3 15.7 100.3	2103 Birtha KWS			18,64	105,1	16,63	104,9	18,16	103,8	1,36	108,1	33,0	<u>3</u> Ι	18,6		
5.0 4.9 0.97 5.5 0.88 5.6 0.32 1.8 0.06 4.6 1.5 0.3 1.9 1.00 101.4 17.02 96.5 152.0 93.1 70.04 19.3 96.2 1.71.1 103.1 15.4 10.	2104 Annika KWS			19,82	111,7	17,73	111,9	17,79	101,7	1,27	101,0	35,6	2,2	14,1		
100.0 101.4 17.06 99.6 15.20 99.3 17.08 98.2 1.27 100.1 31.9 30.1 15.6 109.9 99.8 17.16 100.1 15.40 101.1 18.07 103.9 1.17 92.4 27.8 20.1 14.1 10.4 10.4 305.7 17.71 103.3 15.72 102.7 16.59 97.6 131 103.3 22.8 3.7 16.5 6.0 14.1 10.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	GD 5 %	5,0	4,9	0,97	5,5	0,88	5,6	0,32	<u>,</u> 8	0,06	4,6	, 5	0,3	<u>1</u> ,9		
94.9 96.2 17.16 100.1 15.48 101.1 18.07 102.9 17.9 24. 27.8 2.0 14.1 19.43 36.7 17.7 103.3 15.72 102.7 16.99 97.6 13.1 103.3 22.8 3.7 16.5 5.5 5.5 4.9 17.7 103.3 15.72 102.7 16.99 97.6 13.3 103.3 22.8 3.7 16.5 5.5 5.9 101.3 16.87 98.4 14.92 97.5 16.89 97.0 13.5 106.2 23.6 3.2 18.4 65. 103.7 105.1 16.07 97.4 14.27 93.2 16.10 92.5 17.5 137.3 40.4 2.8 31.2 10.2 105.6 106.5 17.54 102.3 15.51 101.4 10.54 17.69 107.1 1.30 102.2 31.6 2.0 17.4 5.0 102.2 103.6 10.00 16.5 17.54 102.3 15.51 101.4 10.54 17.69 107.1 1.30 102.2 31.6 2.0 17.4 5.0 10.2 103.6 10.00 19.07 11.2 17.21 11.25 17.00 10.2 11.4 19.5 20.2 2.3 14.0 10.5 10.00 19.07 11.2 17.21 11.25 17.90 102.3 11.3 10.5 2.5 2.9 2.1 10.3 1.6 9.0 20.7 17.21 11.25 17.90 102.3 11.3 10.5 2.5 2.5 2.9 2.3 14.0 11.3 11.1 16.84 11.0 17.7 17.0 19.2 11.3 10.2 2.3 15.51 12.2 10.3 1.5 2.0 10.5 17.89 10.3 10.4 17.5 10.3 11.2 10.3 16.0 10.3 17.2 10.5 16.3 17.2 10.5 16.3 17.2 10.5 16.3 17.2 10.5 16.3 17.2 10.5 16.3 17.2 10.5 16.3 17.2 10.5 16.3 17.2 10.5 16.3 17.2 10.5 17.2 10.3 17.2 10	1409 Alahama	100 0	101 4	17 08	9 60	15 20	993	17 08	98 2	1 27	100 1	<u>3</u>		1.5 6	4 0	_
104.3 105.7 17.71 103.3 15.72 102.7 16.99 97.6 1.31 103.3 32.8 3.7 16.5 65. 95.1 48.29 98.4 14.92 97.5 16.89 97.0 1.32 106.3 33.6 22 17.3 65. 99.9 101.3 16.87 98.4 14.92 97.5 16.89 97.0 1.32 106.2 33.6 22 17.3 65. 103.7 105.1 16.70 97.4 14.32 93.2 17.36 105.2 31.5 31.2 33.5 105.0 105.5 115.5 103.6 16.6 15. 17.5 103.6 18.0 105.4 16.1 105.4 17.5 100.1 31.0 105.2 31.5 31.2 33.5 105.0 105.2 103.6 18.0 105.4 16.1 105.4 17.5 100.1 31.0 105.2 31.5 20.1 17.4 5.0 102.2 103.6 18.0 19.07 111.2 17.21 17.25 17.0 19.2 17.3 102.2 31.5 20. 4.6 16.5 30. 106.5 108.3 18.27 105.5 16.3 107.8 17.8 10.8 17.8 10.9 17.8 10.8 17.2 10.9 17.8 10.9 17.8 10.9 17.8 10.9 17.8 10.9 17.8 10.9 17.8 10.9 17.8 10.9 17.8 10.9 17.8 10.9 17.8 10.9 17.8 10.9 17.8 10.9 17.2 10.8 17.2 10.	1560 William	94,9	96,2	17,16	100,1	15,48	101,1	18,07	103,9	1,17	92,4	27,8	2,0	14,1	4,0	<u>, , , , , , , , , , , , , , , , , , , </u>
99. 1013 1627 98.4 14.22 97.6 16.89 97.0 13.5 1062. 33.6 3.2 18.4 19.3 103.7 105.1 16.70 97.4 14.27 93.2 16.10 92.5 17.5 197.3 40.4 28 31.2 31.6 105.0 105.5 17.54 102.3 15.5 101.4 16.70 96.0 13.3 104.8 33.8 39 16. 102.2 13.6 18.08 105.4 16.14 105.4 17.68 101.7 1.30 102.2 31.6 2.0 17.4 50.9 95.3 16.00 93.8 14.35 93.8 17.73 101.9 13.2 103.5 32.0 46 16.5 30 98.2 106.9 93.8 14.35 93.8 17.73 101.9 13.2 103.5 32.0 46 16.5 30 99.5 103.3 104.2 31.2 20.4 16.5 30 99.1 100.4 17.45 101.8 15.72 102.7 17.20 102.3 11.5 90.6 27.1 22. 13.4 6.0 106.9 108.3 18.27 106.1 16.20 105.8 17.73 101.9 13.2 103.5 32.0 46 16.5 50.9 97.3 101.4 19.20 103.3 16.10 104.6 16.83 97.1 17.70 98.2 11.6 91.0 20.2 21.4 83.8 27.1 22. 13.4 99.1 100.4 17.45 101.8 15.72 102.7 17.20 97.8 1.44 113.1 35.5 2.5 20.9 3.5 96.7 98.0 17.31 100.9 15.45 100.1 10.20 10.3 17.20 97.8 1.44 113.1 35.5 2.5 20.9 3.5 96.7 17.8 10.3 15.61 104.6 16.83 97.1 17.9 97.8 12.3 104.2 31.2 31.3 13.1 13.9 13.3 111.6 16.84 110.1 17.20 97.8 1.47 113.3 104.5 35.1 2.6 16.5 50.9 17.39 104.3 16.20 105.8 17.59 101.1 1.33 104.5 35.1 2.6 16.5 50.9 17.39 104.3 16.20 105.8 17.59 101.1 1.33 104.5 35.1 2.6 16.5 50.9 17.39 104.3 15.21 102.2 14.03 91.6 17.23 90.0 12.5 93.3 31.75 3.0 18.7 10.2 10.3 15.81 10.2 10.5 17	1665 Beretta			17,71	103,3	15,72	102,7	16,99	97,6	3 3	103,3	32,8	3,7	16,5	ກຸດ ວ່ຽ	2,2
103,7 105,1 16,70 97,4 14,27 93,2 16,10 92,5 1,75 137,3 40,4 2,8 31,2 105,0 106,5 175,4 102,3 15,5 101,4 167,0 96,0 1,33 146,6 33,8 3,9 16,6 10,2 103,6 18,08 105,4 16,14 105,4 17,69 101,7 1,30 102,2 31,6 2,0 17,4 5,0 98,3 96,6 17,04 99,3 15,28 99,9 17,87 102,7 124,9 75, 28,2 2,3 16,4 3,0 90,8 92,0 160,9 93,8 14,35 93,8 17,73 101,9 1,32 103,5 32,0 4,6 16,5 3,0 106,5 108,0 1907 111,2 17,21 112,5 17,90 102,9 1,14 89,8 127,1 2,2 13,4 6,0 106,9 108,1 31,17 11,1 11,1 11,1 11,1 11,1 11,1 1	1186 Ricarda			16,87	98,4	14,92	97,5	16,89	97,0	1,35	106,2	32,6		18,4	6,5 5	2,0
1022 1036 17,34 102,3 10,34 10,44 17,89 10,7 1,30 10,2 31,6 20,0 10,4 98.3 18,28 98.9 17,87 102,7 1,24 97.5 28.2 2.3 16.4 30 98.8 17,00 106.9 108.3 18,27 106.5 108.0 19,07 111,2 17,21 112,5 17,90 102,9 1,14 89.8 27,4 1,8 13.0 106.5 108.3 18,27 106.5 16,39 107,1 17,70 98,2 1,16 91,0 26.0 2,5 13,4 6,5 106.3 107,8 17,89 104,3 16,01 104,6 16,84 110,1 17,02 97,8 1,44 113,1 35.5 2,5 20,9 3,5 102,4 104,8 18,19 106,1 16,20 106,8 17,59 101,1 33 104,5 35,1 2.6 16,5 96,9 17,89 104,3 16,20 105,8 18,77 107,0 17,9 102,8 13,3 104,5 35,1 2.6 16,5 96,9 17,89 104,3 16,20 105,8 18,77 107,0 17,9 102,8 13,3 104,5 35,1 2.5 16,5 96,7 7,7 7,8 10,4 10,8 18,19 106,1 102,5 18,77 107,6 11,719, 28,11 1,9 13,1 19,27 112,3 17,22 112,5 17,29 10,1 1,33 104,5 35,1 2,5 16,5 9,5 91,3 102,7 18,20 106,5 16,31 106,6 180.5 103,7 1,35 108,0 32,6 3,3 15,2 7,0 103,6 111,1 19,27 112,3 17,22 112,5 17,29 10,1 1,27 100,1 35,1 2,3 14,4 6,0 10,6 111,1 19,27 112,3 17,22 112,5 17,29 10,1 1,27 100,1 35,1 2,3 14,4 6,0 10,6 111,1 19,27 112,3 17,22 112,5 17,29 10,1 1,27 100,1 35,1 2,3 14,4 6,0 10,6 111,1 19,27 112,3 17,22 112,5 17,29 10,1 1,27 100,1 35,1 2,3 14,4 6,0 10,6 111,1 19,27 112,3 17,22 112,5 17,29 10,1 1,27 100,1 32,1 33,1 15,2 7,0 10,6 111,1 19,27 112,3 17,22 112,5 17,29 10,1 1,27 100,1 32,1 33,1 14,3 3,0 10,3 94,4 17,19 97,7 1,32 10,5 8,4 7,3 0 16,0 2,5 94,2 17,3 94,8 15,62 95,3 17,70 100,6 1,19 95,3 289,9 19 14,4 2,5 111,2 106,7 19,57 106,8 17,50 10,5 10,5 10,5 10,5 10,5 10,5 10,5 1	1506 Pauletta			16,70	97,4	14,27	93,2	16,10	92,5	1,75	137,3	40,4		31,2	၈ <u>၂</u>	ر در د
95.3 96.6 17,04 99.3 15,28 99.9 17,87 102,7 124 97.5 28.2 2.3 16.4 30, 90.8 92.0 16.09 93.8 14,35 93.8 17,73 107.9 132 103.5 32.0 4,6 16.5 90.9 109,7 111,2 112,5 17,30 107.9 132 103.5 32.0 4,6 16.5 30.0 106.5 108.0 1907 111,2 112,5 17,30 102.9 11,48 98 27.4 18 13.0 5.0 106.9 108.3 18.27 106.5 16.39 107.1 17,10 98.2 116 91.0 260 2.5 13.9 4.5 99.1 100.4 17,45 101,8 15,72 102,7 17,10 98.2 116 91.0 260 2.5 13.9 4.5 102.0 17,8 10.0 11,10 10.5 11.0 10.0 11.0 10.5 11.0 10.0 11.0 10.0 10	Sabrina			18.08	105,3	16.14	105.4	17.69	101.7	1.30	102.2	31.6	2.0	17.4	5 O	ω,
90.8 92.0 16.09 93.8 14.35 93.8 17.73 101.9 132 103.5 20 4.6 16.5 106.0 1907 111.2 72.1 11.25 71.90 102.9 11.18 98.8 27.4 1.8 13.0 106.5 106.9 108.3 18.27 106.5 16.39 107.1 17.10 98.2 1.16 91.0 25.0 2.5 13.9 4.5 99.1 100.4 17.45 101.8 16.39 107.1 17.10 98.2 1.16 91.0 25.0 2.5 13.9 4.5 99.1 100.4 17.45 101.8 15.7 102.7 17.22 101.3 11.5 90.6 27.1 2.2 13.4 6.0 112.4 113.9 191.3 111.6 16.84 110.1 17.02 97.8 144 113.1 35.5 2.5 20.9 93.7 106.3 107.8 17.8 104.3 16.01 104.6 16.83 96.7 11.7 92.3 28.3 5.1 12.2 4.0 103.4 104.8 18.19 106.1 16.20 105.8 17.59 101.1 13.3 104.2 31.2 3.0 18.1 49.2 16.72 109.3 17.29 102.8 13.3 104.2 31.2 3.0 18.1 49.5 95.9 108.8 110.3 18.74 192.2 16.72 109.3 17.29 90.1 22.8 98.5 30.3 3.1 15.5 3.0 103.1 102.7 18.28 106.6 16.3 106.6 18.5 106.6 18.5 107.2 19.5 106.8 10.3 18.7 192.2 112.3 17.22 112.5 17.29 90.1 22.5 98.5 30.3 3.1 15.5 91.0 19.5 106.7 12.3 17.22 112.5 17.25 10.3 17.2 10.5 98.2 39.0 1.2 98.5 30.3 3.1 15.5 91.0 19.5 106.8 17.50 99.4 17.19 97.7 1.32 105.6 34.7 3.0 16.0 2.5 98.2 94.2 17.37 94.8 15.62 95.3 17.70 100.6 11.9 95.3 28.9 1.9 14.1 2.5 100.7 19.5 106.8 17.50 98.2 16.7 98.6 17.5 106.5 17.5 106.5 17.5 106.5 17.5 106.5 17.5 106.5 17.5 106.5 17.5 106.5 17.5 106.5 17.5 106.5 10.7 10.8 16.5 10.2 18.6 10.2 17.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10				17,04	99,3	15,28	99,9	17,87	102,7	1,24	97,5	28,2	2,3	16,4	3,0	<u>,</u>
106.9 106.0 19.07 11.2 17.2 17.2 17.2 17.2 17.2 17.2 17.	1826 Taifun	90,8		16,09	93,8	14,35	93,8	17,73	101,9	1,32		32,0	4,6	16,5	3,0	ည့်င
99.1 100.4 17,45 101.8 15,72 102,7 17,82 101.3 11.5 90.6 27, 2.2 13.4 11.2 11.3 10.5 17.8 17.8 10.4 17.4 11.3 15.5 1.5 20.9 10.3 10.3 107.8 17.8 10.4 10.4 10.3 10.3 97.8 1.17 92.3 28.3 5.1 12.2 4.0 103.4 104.8 18.19 106.1 16.20 105.8 17.59 101.1 13.3 104.2 31.2 3.0 18.1 4.5 96.7 98.0 17.31 100.9 15.45 100.9 17.90 102.8 11.3 104.2 31.2 3.0 18.1 4.5 95.2 19.3 31.5 18.1 92.2 14.0 39.6 17.3 10.2 10.5 18.7 10.2 10.5 10.2 10.3 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.3 10.2 10.3 10.3 10.2 10.3 10.3 10.2 10.3 10.3 10.3 10.2 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	2059 Artus	106,9		18,27	106,5	16,39	107,1	17,10	98,2	1,16	91,0	26,0	2,5	13,9	4,5 5	2,0
112,4 13,5 13,1 1,10 1,10 1,10 1,10 1,10 1,10 1,10	2060 Haydn	99,1		17,45	101,8	15,72	102,7	17,62	101,3	1,15	90,6	27,1), 1 2 7	13,4	ა <u>ი</u> ,0	<u>_</u> _
103,4 104,8 18,19 106,1 16,20 105,8 17,59 101,1 1,33 104,5 35,1 2,6 16,5 96,7 98,0 17,39 100,9 15,45 100,9 17,99 102,8 1,33 104,2 31,2 30 18,1 95,6 96,9 17,89 103,3 16,25 107,6 11,7 91,9 28,1 1,9 13,7 92,1 93,3 15,81 92,2 14,03 91,6 17,18 98,7 1,34 105,6 32,8 3,3 17,9 92,1 193,3 16,81 92,2 14,03 91,6 17,18 98,7 1,34 105,6 32,8 3,3 17,9 103,1 103,1 102,7 112,28 106,6 16,31 106,6 103,1 106,5 103,7 1,35 106,0 32,6 3,3 115,5 3,0 101,3 102,7 18,28 106,6 16,31 106,6 103,7 1,35 106,0 32,6 3,3 115,5 3,0 101,3 102,7 112,28 100,1 15,27 112,5 17,59 101,1 1,27 100,1 35,1 2,3 14,4 6,0 17,7 1,27 100,1 10,1 10,27 112,3 10,22 94,2 17,37 94,8 15,62 95,3 17,70 100,6 1,19 95,3 28,9 1,9 14,1 11,1 106,7 19,57 106,8 17,50 106,7 17,00 100,0 1,26 101,1 33,2 3,1 14,3 3,0 100,8 96,7 18,00 98,2 16,7 98,6 17,70 100,0 1,26 101,1 33,2 3,1 14,3 3,0 102,2 98,1 17,17 93,7 15,24 90,3 14,65 89,4 17,14 97,4 1,35 108,4 32,2 3,0 18,7 3,9 95,5 12,9 103,5 17,50 96,5 14,97 91,3 16,22 92,2 1,75 140,4 42,1 3,2 30,3 102,2 98,1 17,17 93,7 15,24 92,9 16,80 97,5 12,21 13,3 3,3 3,5 14,5 14,5 14,5 14,5 14,5 14,5 14,5 14	2079 Kepier 2083 SY Securita	106.3		17.89	104.3	16.01	104.6	16.83	96.7	1,44	92.3	28.3	5 , 5 , 5 , 5 ,	12.2	ა,ა 4.0	2 -
96,7 98,0 17,31 100,9 15,45 100,9 17,90 102,8 1,33 104,2 31,2 30, 18,1 95,6 96,9 17,89 104,3 16,20 105,8 18,72 107,6 1,77 91,9 28,1 1,9 13,7 92,1 93,3 15,81 92,2 14,03 91,6 17,18 98,7 1,34 105,6 32,8 3,3 17,9 92,1 103,3 18,74 109,2 16,72 109,3 17,23 99,0 1,25 98,5 30,3 3,1 15,5 30,1 10,3 10,7,1 10,27 11,23 17,22 11,25 17,59 101,1 1,27 100,1 35,1 2,3 14,4 6,0 17,7 7,8 1,50 8,7 1,35 8,8 0,41 2,3 0,08 6,4 2,2 0,4 2,8 98,2 14,1 19,27 11,27 10,1 16,30 99,4 17,19 97,7 1,32 105,6 34,7 3,0 16,0 2,5 98,2 10,7,37 94,8 15,62 95,3 17,70 100,6 1,19 95,3 28,9 1,9 14,1 2,5 96,5 92,6 16,54 90,3 14,65 89,4 17,14 97,4 1,35 109,5 12,3 14,4 5,10 10,8 96,7 18,00 98,2 16,17 98,6 17,86 101,6 1,2 98,0 32,3 1,1 1,3 3,0 10,0,8 96,7 18,00 98,2 16,17 98,6 17,86 101,6 1,2 98,0 32,3 2,1 13,7 3,5 96,5 92,6 16,54 90,3 14,65 89,4 17,14 97,4 1,35 109,3 33,3 3,6 15,1 10,2 103,6 17,50 95,5 14,97 91,3 16,22 92,2 1,75 104,4 42,1 3,2 30,1 10,2 98,1 17,17 93,7 15,24 92,9 16,30 95,5 1,29 103,8 33,3 3,6 15,1 2,0 10,5 10,1 13,0 20,18 110,1 18,17 110,1 12,1 12	2094 Britta	103,4		18,19	106,1	16,20	105,8	17,59	101,1	1,33	104,5	35,1	2,6	16,5	5,0	<u>5</u> <u>1</u>
92.1 93.3 15.81 92.2 14.03 91.6 17.18 98.7 1.34 10.6 25. 10.8 110.3 18.74 109.2 16.72 109.3 17.23 99.0 1.25 98.5 30.3 31 15.5 30. 109.6 111.1 19.27 112.3 17.22 112.5 17.59 101.1 12.7 100.1 35.1 23. 14.4 6.0 7.7 7.8 1.50 8.7 1.35 8.8 0.41 2.3 90.0 1.25 98.5 30.3 31 15.5 3.0 109.6 111.1 19.27 112.3 17.22 112.5 17.59 101.1 12.7 100.1 35.1 2.3 14.4 6.0 7.7 7.8 1.50 8.7 1.35 8.8 0.41 2.3 0.08 6.4 2.2 0.4 2.8 106.7 102.4 18.34 100.1 16.30 99.4 17.19 97.7 1.32 10.6 34.7 3.0 16.0 2.5 98.2 16.17 94.8 15.62 95.3 17.70 100.6 1.19 95.3 28.9 1.9 14.1 2.5 96.5 92.6 16.54 90.3 14.65 89.4 17.14 97.4 13.5 10.8 23.2 3.1 14.3 3.0 100.8 96.7 18.00 98.2 16.17 98.6 17.86 101.6 1.22 98.0 32.3 2.1 13.7 36.5 92.6 16.54 90.3 14.65 89.4 17.14 97.4 13.5 10.8 32.3 3.1 14.3 3.0 102.2 98.1 17.17 93.7 15.24 92.9 16.80 95.5 1.29 10.3 3.3 3.6 15.1 2.0 10.5 10.2 18.96 102.5 16.97 103.5 17.77 101.0 1.26 101.3 31.0 20.1 8.1 10.5 10.2 18.86 102.9 17.05 104.0 17.8 101.7 11.1 89.3 26.6 1.8 12.1 12.1 102.5 101.2 18.86 102.9 17.05 104.0 17.8 101.7 1.11 89.3 26.6 1.8 12.1 12.0 107.5 19.24 10.6 10.8 16.59 101.2 17.25 98.1 17.1 19.0 2 27.9 1.3 10.2 2.5 10.2 18.4 10.0 18.6 10.2 17.25 98.1 17.1 19.2 28.4 2.1 13.7 2.5 10.2 18.4 10.5 16.59 10.1 17.1 18.9 2.9 28.4 2.0 13.1 2.5 11.2 10.5 10.2 18.6 10.3 15.5 15.5 15.5 14.7 10.5 10.3 11.5 29.9 28.4 2.0 13.1 2.5 11.2 10.5 10.2 18.6 10.3 15.6 10.2 17.25 98.1 17.2 10.5 10.3 34.5 2.4 16.2 2.5 12.1 2	2096 Elaina KWS	96,7		17,31	100,9	15,45	100,9	17,90	102,8	1,33	104,2	31,2	3,0	18,1	2,5 7,5	<u>, 3</u>
108.8 110.3 18.74 109.2 16.72 109.3 17.23 99.0 1.25 98.5 30.3 3.1 15.5 101.3 102.7 18.28 106.6 16.31 106.6 18.95 103.7 1.35 106.0 32.6 3.3 18.2 7.0 109.6 111.1 19.27 112.3 17.22 112.5 77.59 101.1 1.27 100.1 35.1 2.3 14.4 6.0 17.7 7.8 1.50 8.7 1.35 8.8 0.41 2.3 0.08 6.4 2.2 0.4 2.8 106.7 102.4 18.34 100.1 16.30 99.4 17.19 97.7 1.32 105.6 34.7 3.0 16.0 2.5 98.2 94.2 17.37 94.8 15.62 95.3 17.70 100.6 11.9 95.3 28.9 1.9 14.1 2.5 100.8 96.7 19.57 106.8 17.50 106.7 102.6 101.3 30.2 3.1 14.3 3.0 100.8 96.7 18.00 98.2 16.17 98.6 17.60 100.0 1.26 101.3 30.2 3.1 14.3 3.0 100.8 96.7 102.6 16.54 90.3 14.65 89.4 17.14 97.4 1.35 108.4 32.2 3.0 18.7 3.0 10.7 10.7 103.6 17.50 95.5 14.97 91.3 16.22 92.2 1.75 104.0 42.1 3.2 30.3 30.1 10.2 98.1 17.17 93.7 15.24 92.9 16.2 20.2 17.5 104.0 42.1 3.2 30.3 30.1 10.2 98.1 17.17 93.7 15.24 92.9 16.2 92.2 17.5 104.0 42.1 3.2 30.3 30.1 10.2 98.1 17.17 93.7 15.24 92.9 16.2 95.5 1.29 103.3 30.3 30.5 15.1 2.0 10.5 101.2 18.86 102.9 17.05 104.0 95.5 1.29 103.3 30.3 30.5 15.1 2.0 105.5 101.2 18.86 102.9 17.05 104.0 10.5 11.5 91.9 27.4 1.9 13.1 2.0 10.2 96.2 17.68 96.5 15.92 97.1 17.64 103.3 13.1 10.5 23.3 4.7 16.1 10.2 102.6 18.44 100.6 16.59 101.2 101.1 18.17 100.3 11.6 92.9 28.4 2.0 13.1 2.5 10.5 10.2 10.2 18.6 101.8 16.44 100.5 16.59 101.2 101.1 18.7 10.2 10.2 27.9 4.3 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	2097 Klistallina KWS	90,0		15,09	97,3	14 03	91.6	17 18	98,7	-, <u>-</u>		30 ,- 8 -		17,7	טה ט טה ט	y ,-
101,3 102,7 18,28 106,6 16,31 106,6 18,05 103,7 1,35 106,0 32,6 3,3 18,2 109,6 111,1 19,27 112,3 17,22 112,5 17,59 101,1 1,27 100,1 35,1 2,3 14,4 6,0 7,7 7,8 1,50 8,7 1,35 8,8 0,41 2,3 0,08 6,4 2,2 0,4 2,8 106,7 102,4 18,34 100,1 16,30 99,4 17,19 97,7 1,32 105,6 34,7 3,0 16,0 2,5 96,5 14,2 17,37 94,8 15,62 95,3 17,70 100,6 1,19 95,3 28,9 1,9 14,1 2,5 96,5 92,6 16,54 90,3 14,65 89,4 17,17 93,5 108,4 32,2 3,0 18,7 3,0 16,7 102,4 18,96 103,5 16,97 103,5 17,70 100,6 1,22 98,0 32,3 2,1 13,7 3,5 106,7 102,4 18,96 103,5 16,97 103,5 17,77 101,0 1,26 101,3 31,0 3,0 3,0 16,7 102,4 18,96 103,5 16,97 103,5 17,77 101,0 1,26 101,3 31,0 3,0 3,0 16,5 101,2 18,66 102,9 17,05 104,0 12,26 103,5 11,5 91,9 27,4 1,9 13,1 105,5 101,2 18,86 102,9 17,05 104,0 17,7 11,1 89,3 26,6 18,14 10,1 18,17 110,8 17,14 97,4 1,11 88,7 25,5 2,5 12,1 13,1 10,2 96,2 17,68 96,5 15,99 97,5 18,24 103,5 1,15 91,9 27,4 1,9 13,1 10,2 96,2 17,68 96,5 15,92 97,1 17,44 97,4 1,11 88,7 25,5 2,5 12,1 13,1 10,2 96,2 17,68 96,5 15,92 97,1 17,44 97,4 1,11 88,7 25,5 2,5 12,1 2,5 11,2 11,2 107,5 19,24 105,0 17,05 104,0 17,18 97,7 1,36 109,0 34,9 2,1 18,0 10,2 97,5 93,5 16,47 100,8 16,59 101,2 17,18 97,7 1,36 109,0 34,9 2,1 18,0 2,9 97,5 93,5 16,47 100,8 16,59 101,2 17,18 97,7 1,36 109,0 34,9 2,1 18,0 2,9 97,5 93,5 16,47 100,5 17,65 104,0 17,18 97,7 1,36 109,0 34,9 2,1 18,0 2,0 11,5 17,51 107,4 17,14 97,4 1,31 105,3 34,5 2,4 16,2 2,0 11,2 3 107,7 19,89 107,5 10,40 17,59 100,6 1,31 105,3 34,5 2,4 16,2 2,0 11,3 10,3 10,3 10,3 10,3 10,3 10,3 10	2102 Sandra KWS	108,8		18,74	109,2	16,72	109,3	17,23	99,0	1,25		30,3		15,5	3,0	ί ς
7.7 7,8 1,50 8,7 1,35 8,8 0,41 2,3 0,08 6,4 2,2 0,4 2,8 106,7 102,4 18,34 100,1 16,30 99,4 17,19 97,7 1,32 10,5,6 34,7 3,0 16,0 2,5 98,2 94,2 17,37 94,8 15,62 95,3 17,70 100,6 1,19 95,3 28,9 1,9 14,1 2,5 96,5 92,6 16,54 90,3 14,65 89,4 17,16 97,6 10,16 1,22 98,0 32,3 2,1 13,7 3,0 16,0 100,0 100,8 96,7 18,00 98,2 16,17 98,6 17,86 101,6 1,22 98,0 32,3 2,1 13,7 3,0 16,0 100,8 96,5 92,6 16,54 90,3 14,65 89,4 17,14 97,4 1,35 108,4 32,2 3,0 18,7 102,2 98,1 17,17 93,7 15,24 92,9 16,80 95,5 1,29 103,8 33,9 3,6 15,1 2,0 102,2 98,1 17,17 93,7 15,24 92,9 16,80 95,5 1,29 103,8 33,9 3,6 15,1 2,0 106,5 102,2 88,5 14,97 91,3 16,22 92,2 1,75 140,4 42,1 3,2 30,3 3,0 16,5 102,2 98,2 17,65 10,40 17,05 10,40 17,70 10,10 18,07 10,13 1,15 91,9 27,4 1,3 1,2 2,0 16,1 33,0 20,18 110,1 18,17 110,8 17,71 10,10 17,71 18,3 26,6 1,8 12,1 2,5 11,2 10,2 96,2 17,68 96,5 15,92 97,5 18,21 103,5 1,15 91,9 27,4 1,1 88,7 25,5 2,5 12,1 12,0 107,5 19,24 105,0 17,05 104,0 17,18 97,7 13,6 109,0 34,9 2,1 18,0 10,1 18,17 110,8 17,14 97,4 1,1 88,7 25,5 2,5 12,1 2,5 11,2 10,2 96,2 17,68 96,5 15,92 97,1 17,44 97,4 1,1 88,7 25,5 2,5 12,1 2,5 11,2 10,2 96,2 17,68 96,5 15,92 97,1 17,49 97,4 1,11 88,7 25,5 2,5 12,1 2,5 11,2 10,2 96,2 17,68 96,5 10,9 101,2 17,25 98,1 1,2 90,2 27,9 4,3 10,7 1,5 98,4 94,4 18,23 99,5 14,67 100,5 17,69 100,6 1,31 105,3 34,5 2,4 16,2 2,0 17,6 104,0 18,76 103,4 18,26 103,9 13,7 10,4 33,5 2,9 19,8 11,2 30,2 13,4 13,2 10,6 13,1 10,5 33,5 2,9 19,8 11,2 30,2 13,4 13,2 10,6 13,4 13,2 10,6 13,1 10,5 33,5 2,9 19,8 11,2 30,2 13,4 13,2 10,6 13,4 13,2 13,2 13,4 13,4 13,2 13,2 13,4 13,4 13,4 13,4 13,4 13,4 13,4 13,4	2103 Birtha KWS	101,3		18,28	106,6	16,31	106,6	18,05	103,7	1,35	106,0	32,6	ω ω	18,2	7,0	3,
106,7 102,4 18,34 100,1 16,30 99,4 17,19 97,7 1,32 105,6 34,7 3,0 16,0 2,5 98,2 94,2 17,37 94,8 15,62 95,3 17,70 100,6 1,19 95,3 28,9 1,9 14,1 2,5 100,8 96,7 19,57 10,8 17,50 106,7 17,70 100,6 1,19 95,3 28,9 1,9 14,1 2,5 96,5 92,6 16,54 90,3 14,65 89,4 17,80 100,6 12,2 90,0 12,3 2,1 13,7 3,5 107,9 103,6 17,50 95,5 14,97 91,3 16,22 92,2 1,75 140,4 42,1 3,2 30,3 102,2 98,1 17,17 93,7 15,24 92,9 16,80 95,5 12,9 103,8 33,9 3,6 15,1 2,0 106,7 102,4 18,96 102,9 17,05 103,5 17,77 101,0 1,26 101,3 31,0 2,0 16,1 3,2 20,1 16,7 93,2 17,69 96,5 15,99 97,5 18,21 103,5 1,75 104,4 42,1 3,2 30,3 3,0 105,7 102,4 13,6 102,9 17,05 104,0 17,70 101,0 1,26 101,3 31,0 2,0 16,1 3,2 10,5 101,2 18,86 102,9 17,05 104,0 17,70 101,0 1,26 101,3 31,0 2,0 16,1 10,2 98,5 11,30 20,18 110,1 18,17 110,8 17,14 97,4 1,11 89,3 26,6 1,8 12,1 2,5 101,2 18,66 102,9 17,05 104,0 17,14 97,4 1,11 89,3 26,6 1,8 12,1 2,5 101,2 18,65 101,8 16,64 101,5 17,69 100,3 1,6 92,9 28,4 2,1 18,0 2,0 106,9 102,6 18,44 100,6 16,59 101,2 17,25 98,1 1,12 90,2 27,9 4,3 10,7 1,5 93,5 17,49 94,4 18,25 10,5 16,47 100,5 11,5 10,5 10,4 13,1 105,3 34,5 2,4 16,2 2,0 10,4 99,4 18,25 99,5 16,47 100,5 11,5 10,5 103,4 11,5 33,3 2,9 19,8 2,0 10,7 11,1 18,25 111,3 105,3 13,5 2,9 19,1 1,5 10,4 10,4 10,4 10,4 10,4 10,4 10,4 10,4	2104 Annika KWS	109,6	111,1	19,2/	112,3	17,22	112,5	17,59	101,1	1,2/	100,1	35,1	, N	14,4	6,0	<u>۔</u> د
106,7 102,4 18,34 100,1 16,30 99,4 17,19 97,7 1,32 105,6 34,7 3,0 16,0 98,2 94,2 17,37 94,8 15,62 95,3 17,70 100,6 1,19 95,3 28,9 1,9 14,1 2,5 111,12 106,7 19,57 106,8 17,50 106,7 17,60 100,0 1,26 101,1 33,2 3,1 14,3 3,0 100,8 96,7 18,00 98,2 16,17 98,6 17,86 101,6 1,22 98,0 32,3 2,1 13,7 3,0 102,2 92,6 16,54 90,3 14,65 89,4 17,14 97,4 1,35 108,4 32,2 3,0 18,7 3,0 102,2 98,1 17,17 93,7 15,24 92,9 16,80 95,5 1,29 103,8 13,9 3,6 15,1 2,0 106,7 102,4 18,96 103,5 16,97 103,5 17,77 101,0 1,26 101,3 31,0 2,0 16,1 3,5 97,1 93,2 17,69 96,5 15,99 97,5 18,21 103,5 11,5 91,9 27,4 1,9 13,1 2,0 102,5 101,2 18,86 102,9 17,05 104,0 17,11 18,3,7 26,6 1,8 12,1 2,5 112,0 107,5 19,24 105,0 17,05 104,0 17,14 97,4 1,11 88,7 25,5 25,5 12,1 2,5 112,0 107,5 19,24 105,0 17,05 104,0 17,18 97,7 1,36 109,0 34,9 2,1 18,0 2,0 11,2 18,65 101,8 16,64 101,5 17,25 94,1 11,1 89,3 26,6 1,8 12,1 2,5 11,2 10,5,4 11,2 90,2 23,3 16,65 90,9 14,67 89,5 17,13 97,4 1,43 11,5 13,3 2,9 13,5 17,49 95,5 16,47 100,5 18,25 11,3 17,39 101,5 13,3 2,9 11,5 13,3 2,9 14,67 89,5 11,3 10,3 11,5 13,3 2,9 14,5 2,9 14,5 10,4 11,2 90,2 27,9 4,3 10,7 1,5 104,0 99,8 19,00 103,7 16,95 103,4 17,98 102,3 12,7 104,3 3,5 2,9 19,1 1,5 10,4 10,5 11,3 10,5 3,4 2,9 20,9 1,5 11,3 10,4 10,5 11,3 10,5 3,4 2,9 20,9 1,5 11,3 10,4 10,5 11,3 10,5 3,4 2,9 20,9 1,5 11,3 10,4 10,5 11,3 10,5 3,4 2,9 19,1 2,5 10,4 10,4 10,5 11,3 10,5 3,4 2,9 19,1 2,5 10,4 10,4 10,5 11,3 10,5 3,4 1,2 10,5 11,3 10,5 3,4 1,2 10,5 11,3 10,5 3,4 1,2 10,5 11,3 10,5 3,4 1,2 10,5 11,3 10,5 3,4 1,2 10,5 11,3 10,5 3,4 1,2 10,5 11,3 10,5 3,4 1,2 10,5 11,3 10,5 11,3 10,5 3,4 1,2 10,5 11,3 10,5 11,3 10,5 3,4 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	<u> </u>	1,1	ζ,	1,50	8,7	1,35	, 0	0,41	2,3	0,08	6,4		0,4	,, 2		
98.2 94.2 17.37 94.8 15.62 95.3 17.70 100.6 11.9 95.3 28.9 1.9 14.1 2.5 111.2 106.7 19.57 106.8 17.50 106.7 17.60 100.0 1.26 101.1 33.2 3.1 14.3 3.0 100.8 96.7 18.00 98.2 16.17 98.6 17.80 100.0 1.26 101.1 33.2 3.1 14.3 3.0 100.8 96.7 18.00 98.2 16.17 98.6 17.80 101.6 1.22 98.0 32.3 2.1 13.7 3.5 92.6 16.54 90.3 14.65 89.4 17.14 97.4 1.35 108.4 32.2 3.0 18.7 3.0 102.2 98.1 17.17 93.7 15.24 92.9 16.80 95.5 1.29 103.8 33.9 3.6 15.1 2.0 106.7 102.4 18.96 103.5 16.97 103.5 17.77 101.0 1.26 101.3 31.0 2.0 16.1 3.5 10.2 97.1 93.2 17.69 96.5 15.99 97.5 18.21 103.5 11.5 91.9 27.4 1.9 13.1 2.0 10.5 101.2 18.86 102.9 17.05 104.0 17.8 113.0 20.18 110.1 18.17 110.8 17.14 97.4 1.11 88.7 25.5 25.5 12.1 2.5 101.2 18.26 103.8 10.2 97.1 17.8 113.0 20.18 110.1 18.17 110.8 17.18 97.7 1.36 109.0 34.9 2.1 18.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10	1409 Alahama		4	18.34	100 1	16.30	99 4	17 19	97 7	-		34 7	ص ص	160	יני	_
111,2 106,7 19,57 106,8 17,50 106,7 17,60 100,0 1,26 101,1 33,2 3,1 14,3 3,0 100,8 96,7 18,00 98,2 16,17 98,6 17,86 101,6 1,22 98,0 32,3 2,1 13,7 3,5 100,8 96,7 18,00 98,2 16,17 98,6 17,86 101,6 1,22 98,0 32,3 2,1 13,7 3,5 100,8 96,5 12,9 103,6 17,50 95,5 14,97 91,3 16,22 92,2 17,51 40,4 42,1 3,2 30,3 3,0 102,2 98,1 17,17 93,7 15,24 92,9 16,80 95,5 1,29 103,8 33,9 3,6 15,1 2,0 106,7 102,4 18,96 103,5 16,97 103,5 17,77 101,0 1,26 101,3 31,0 2,0 16,1 3,5 97,1 93,2 17,69 96,5 15,99 97,5 18,21 103,5 1,15 91,9 27,4 1,9 13,1 2,0 105,5 101,2 18,86 102,9 17,05 104,0 17,89 101,7 1,11 89,3 26,6 1,8 12,1 2,5 102,5 103,5 103,2 100,2 96,2 17,68 96,5 15,92 97,1 17,64 100,3 1,16 92,9 28,4 7 16,1 1,0 10,5 103	1560 William			17,37	94,8	15,62	95,3	17,70	100,6		95,3	28,9	1,9	14,1	,5 1,5 1,0	<u>, , , , , , , , , , , , , , , , , , , </u>
100,8 96,7 18,00 98,2 16,17 98,6 17,86 107,6 1,22 98,0 32,3 2,1 13,7 3,5 98,5 92,6 16,54 90,3 14,65 89,4 17,14 97,4 1,35 108,4 32,2 3,0 18,7 3,0 107,9 103,6 17,50 95,5 14,97 91,3 16,22 92,2 1,75 140,4 42,1 3,2 30,3 3,0 102,2 98,1 17,17 93,7 15,24 92,9 16,80 95,5 1,29 103,8 33,9 3,6 15,1 2,0 106,7 102,4 18,96 103,5 16,97 103,5 17,77 101,0 1,26 101,3 31,0 2,0 16,1 3,5 97,1 93,2 17,69 96,5 15,99 97,5 18,21 103,5 1,15 91,9 27,4 1,9 13,1 2,0 106,5 101,2 18,86 102,9 17,05 104,0 17,89 101,7 1,11 89,3 26,6 1,8 12,1 2,5 102,2 96,2 17,68 96,5 15,92 97,1 17,04 97,4 1,11 89,3 26,6 1,8 12,1 2,5 102,0 107,5 19,24 105,0 17,05 104,0 17,14 97,4 1,11 89,7 25,5 12,1 2,5 102,1 106,9 102,6 18,44 100,6 16,59 101,2 17,25 98,1 1,12 90,2 27,9 4,3 10,7 1,5 105,4 101,2 18,65 101,8 16,64 101,5 17,69 100,6 1,31 105,3 34,5 2,4 16,2 2,0 97,5 93,5 17,49 95,5 15,55 94,8 17,93 101,9 1,39 111,5 33,3 2,9 19,8 2,0 112,3 107,7 19,69 107,5 17,61 107,4 17,13 97,4 1,43 115,1 34,8 2,9 20,9 1,67 99,8 19,00 103,7 16,95 103,4 18,26 103,9 1,37 110,4 33,5 2,9 19,1 2,5 12,1 2,5	1665 Beretta			19,57	106,8	17,50	106,7	17,60	100,0		101,1	33,2	, ω	14,3	3,0	<u>-</u>
107.9 103.6 17.50 95.5 14.97 97.9 16.24 17.50 95.5 14.97 97.9 103.6 17.50 95.5 14.97 92.9 16.80 95.5 1.29 103.8 33.9 3.6 15.1 2.0 106.7 102.4 18.96 103.5 16.97 103.5 17.77 101.0 1.26 101.3 31.0 2.0 16.1 3.5 97.1 93.2 17.69 96.5 15.99 97.5 18.21 103.5 1.15 91.9 27.4 1.9 13.1 2.0 105.5 101.2 18.86 102.9 17.05 104.0 17.89 101.7 1.11 89.3 26.6 1.8 12.1 10.5 101.2 18.86 102.9 17.05 104.0 17.89 101.7 1.11 89.3 26.6 1.8 12.1 2.5 100.2 96.2 17.68 96.5 15.92 97.1 17.64 100.3 1.16 92.9 28.4 2.0 13.1 2.5 100.2 96.2 17.68 96.5 15.92 97.1 17.68 97.7 1.36 109.0 34.9 2.1 18.0 10.5 105.4 101.2 18.65 101.8 16.64 101.5 17.69 97.7 13.6 109.0 34.9 2.1 18.0 105.4 101.2 18.65 101.8 16.64 101.5 17.69 100.6 1.31 105.3 34.5 2.4 16.2 2.0 97.5 93.3 16.65 90.9 14.67 89.5 17.33 105.4 118 95.0 290. 1.7 14.0 15.3 103.2 103.5 11.1 18.25 111.3 17.98 102.3 1.27 101.9 33.3 2.9 19.8 2.0 112.3 107.7 19.69 107.5 17.61 107.4 17.54 99.7 1.25 100.6 31.1 2.6 15.4 2.0 15.5 103.4 18.25 111.3 17.98 102.3 1.27 101.9 36.1 2.2 13.8 3.5 10.1 10.1 18.25 111.3 17.98 102.3 1.27 101.9 36.1 2.2 13.8 3.5 10.1 10.7 100.0 17.70 100.0 15.79 100.0 17.43 100.0 1.28 100.0 31.0 2.7 16.4 10.4 10.4 16.45 104.2 17.60 101.0 1.27 99.4 31.5 2.6 15.9 101.7 101.0 16.45 104.2 17.60 101.0 1.27 99.4 31.5 2.6 15.9 101.0 1.3 10.2 1.3 10.3 10.3 10.4 10.5 2.0 10.5 10.3 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	1718 Rubens			18,00	98,2	16,17	98,6	17,86	101,6		98,0	3 3 3 3 3 3 3		13,7	ນ ຜູ້ປ່າ	, N
102,2 98,1 17,17 93,7 15,24 92,9 16,80 95,5 1,29 103,8 33, 36, 15,1 2,0 106,7 102,4 18,96 103,5 16,97 103,5 17,77 101,0 1,26 101,3 31,0 2,0 16,1 3,5 97,1 93,2 17,69 96,5 15,99 97,5 18,21 103,5 1,15 91,9 27,4 1,9 13,1 2,0 105,5 101,2 18,86 102,9 17,05 104,0 17,89 101,7 1,11 89,3 26,6 1,8 12,1 1,0 105,5 101,2 18,86 102,9 17,05 104,0 17,89 101,7 1,11 89,3 26,6 1,8 12,1 2,5 101,2 107,5 19,24 105,0 17,05 104,0 17,89 101,7 1,11 89,3 26,6 1,8 12,1 2,5 102,0 107,5 19,24 105,0 17,05 104,0 17,18 97,7 1,36 109,0 34,9 2,1 18,0 106,9 102,5 18,44 100,6 16,59 101,2 17,25 98,1 1,12 90,2 27,9 4,3 10,7 1,5 105,4 101,2 18,65 101,8 16,64 101,5 17,69 100,6 1,31 105,3 34,5 2,4 16,2 2,0 97,2 93,3 16,65 90,9 14,67 89,5 17,13 97,4 1,43 115,1 33,3 2,9 19,8 2,0 104,0 99,8 19,00 103,7 16,95 103,4 18,26 103,9 1,37 110,4 33,5 2,9 19,1 13,2 108,6 20,36 111,1 18,25 111,3 17,98 102,3 1,27 101,9 36,1 2,2 13,8 3,5 14,7 100,0 17,70 100,0 15,79 100,0 17,43 100,0 1,28 100,0 31,0 2,7 16,4 104,7 103,0 18,41 104,0 16,45 104,2 17,60 101,0 1,27 99,4 31,5 2,6 15,9 104,7 13,3 1,2 0,22 1,2 0,20 1,3 1,3 1,3 1,2 0,66 15,9 104,0 16,45 104,2 17,60 101,0 1,27 99,4 31,5 2,6 15,9 104,0 1,3 1,2 0,22 1,2 0,20 1,3 1,3 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4	1186 Ricarda 1506 Pauletta			16,54 17 50	7, 7, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	14,65 14 97	99,4 91,3	16,14	9/,4 0/,4		108,4 140.4	32,2 42 1) () ()	30,7	သ ယ () ()	7 ,
106,7 102,4 18,96 103,5 16,97 103,5 17,77 101,0 1,26 101,3 31,0 2,0 16,1 97,1 93,2 17,69 96,5 15,99 97,5 18,21 103,5 1,15 91,9 27,4 1,9 13,1 2,0 18,8 98,4 16,22 88,5 14,52 88,5 18,24 103,7 1,31 105,2 32,3 4,7 16,1 1,0 105,5 101,2 18,86 102,9 17,05 104,0 17,89 101,7 1,11 89,3 26,6 1,8 12,1 2,5 100,2 96,2 17,68 96,5 15,92 97,1 17,64 100,3 1,16 92,9 28,4 2,0 13,1 2,5 100,2 96,2 17,68 96,5 15,92 97,1 17,64 100,3 1,16 92,9 28,4 2,0 13,1 2,5 105,4 101,2 18,65 101,8 16,64 101,5 17,25 98,1 1,12 90,2 27,9 4,3 10,7 1,5 105,4 101,2 18,65 101,8 16,64 101,5 17,69 100,6 1,31 105,3 34,5 2,4 16,2 2,0 97,5 93,5 17,49 95,5 15,55 94,8 17,93 101,9 13,9 111,5 33,3 2,9 19,8 2,0 13,1 10,0 99,8 19,00 103,7 16,95 103,4 18,26 103,9 1,37 110,4 33,5 2,9 19,1 13,2 108,6 20,36 111,1 18,25 111,3 17,98 102,3 1,27 101,9 36,1 2,2 13,8 3,5 101,7 100,0 17,70 100,0 15,79 100,0 17,43 100,0 1,28 100,0 31,0 2,7 16,4 104,7 103,0 18,41 104,0 16,45 104,2 17,60 101,0 1,27 99,4 31,5 2,6 15,9 104,0 1,3 1,3 1,2 0,22 1,2 0,20 1,3 1,3 1,3 1,2 0,6 15,9 104,0 1,3 1,3 1,2 0,6 15,9 104,0 1,3 1,2 0,2 1,3 0,3 0,1 0,6 15,9 104,0 1,3 1,3 1,2 0,5 15,9 104,0 1,3 1,2 0,5 15,9 104,0 1,3 1,5 1,3 1,2 0,5 15,9 104,0 1,3 1,3 1,2 0,5 15,9 104,0 1,3 1,3 1,2 0,5 15,9 104,0 1,3 1,3 1,2 0,5 15,9 104,0 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3	1812 Budera			17,17	93,7	15,24	92,9	16,80	95,5		103,8	33,9	3,6	15,1	2,0	<u>, , ;</u>
97,1 93,2 17,69 96,5 15,99 97,5 18,21 103,5 1,15 91,9 27,4 1,9 13,1 8,8 98,4 16,22 88,5 14,52 88,5 18,24 103,7 1,31 105,2 32,3 4,7 16,1 1,0 105,5 101,2 18,86 102,9 17,05 104,0 17,89 101,7 1,11 89,3 26,6 1,8 12,1 2,5 100,2 96,2 17,68 96,5 15,92 97,1 17,4 97,4 1,11 88,7 25,5 12,1 2,5 100,2 96,2 17,68 96,5 15,92 97,1 17,4 97,4 1,11 89,3 26,6 1,8 12,1 2,5 112,0 107,5 19,24 105,0 17,05 104,0 17,18 97,7 1,36 109,0 34,9 2,1 18,0 105,4 101,2 18,65 101,8 16,64 101,5 17,69 100,6 1,31 105,3 34,5 2,4 16,2 2,0 97,5 93,5 17,49 95,5 15,55 94,8 17,93 101,9 13,9 111,5 33,3 2,9 19,8 2,0 97,2 93,3 16,65 90,9 14,67 89,5 17,13 97,4 1,43 115,1 34,8 2,9 20,9 112,3 107,7 19,69 107,5 17,61 107,4 17,54 99,7 1,25 100,6 31,1 2,6 15,4 2,0 1,5 104,0 99,8 19,00 103,7 16,95 103,4 18,26 103,9 1,37 110,4 33,5 2,9 19,1 2,5 111,3 17,98 102,3 1,27 101,9 36,1 2,2 13,8 3,5 113,2 104,7 100,0 17,70 100,0 15,79 100,0 17,43 100,0 1,28 100,0 31,0 2,7 16,4 104,7 103,0 18,41 104,0 16,45 104,2 17,60 101,0 1,27 99,4 31,5 2,6 15,9 10,0 1,3 1,2 0,22 1,2 0,20 1,3 1,3 1,2 0,5 15,9 10,0 1,3 1,2 0,22 1,2 0,20 1,3 1,3 1,2 0,5 15,9 10,0 1,3 1,2 0,2 1,3 0,3 0,1 0,6	1910 Sabrina KWS			18,96	103,5	16,97	103,5	17,77	101,0		101,3	31,0	2,0	16,1	3,5	<u>, _</u>
88,9 89,4 16,22 88,5 14,52 88,5 18,24 103,7 1,31 109,2 32,3 4,7 10,1 110,5 101,2 18,86 102,9 17,08 101,7 110,8 101,7 110,8 101,7 110,8 101,7 110,8 101,7 110,8 101,7 110,8 101,7 100,8 101,2 32,5 2,5 12,1 2,5 100,2 96,2 17,68 96,5 15,92 97,1 17,64 100,3 1,16 92,9 28,4 2,0 13,1 2,5 100,0 107,5 19,24 105,0 17,05 104,0 17,18 97,7 1,36 109,0 34,9 2,1 18,0 2,0 105,4 101,2 18,65 101,8 16,64 101,5 17,69 100,6 1,31 105,3 34,5 2,4 16,2 2,0 97,5 93,5 16,47 100,5 18,53 105,4 1,18 95,0	1973 Arnold			17,69	96,5	15,99	97,5	18,21	103,5		91,9	27,4	, <u>1</u>	3,1	2,0	<u>, </u>
117.8 113.0 20.18 110.1 18,17 110.8 17,14 97,4 1,11 88,7 25,5 2,5 12,1 12,1 100,2 96,2 17,68 96,5 15,92 97,1 17,64 100,3 1,16 92,9 28,4 2,0 13,1 2,5 112,0 107,5 19,24 105,0 17,05 104,0 17,18 97,7 1,36 109,0 34,9 2,1 18,0 2,0 106,9 102,6 18,44 100,6 16,59 101,2 17,25 98,1 1,12 90,2 27,9 4,3 10,7 1,5 105,4 101,2 18,65 101,8 16,64 101,5 17,69 100,6 1,31 105,3 34,5 2,4 16,2 2,0 97,5 93,5 17,49 95,5 15,55 94,8 17,93 101,9 1,39 111,5 33,3 2,9 19,8 2,0 97,2 93,3 16,65 90,9 14,67 89,5 17,13 97,4 1,43 115,1 34,8 2,9 20,9 112,3 107,7 19,69 107,5 17,61 107,4 17,54 99,7 1,25 100,6 31,1 2,6 15,4 2,0 104,0 99,8 19,00 103,7 16,95 103,4 18,26 103,9 1,37 110,4 33,5 2,9 19,1 113,2 108,6 20,36 111,1 18,25 111,3 17,98 102,3 1,27 101,9 36,1 2,2 13,8 3,5 104,7 100,0 17,70 100,0 15,79 100,0 17,43 100,0 1,28 100,0 31,0 2,7 16,4 104,7 103,0 18,41 104,0 16,45 104,2 17,60 101,0 1,27 99,4 31,5 2,6 15,9 1,3 1,3 1,2 0,22 1,2 0,20 1,3 0,3 0,1 0,6	1826 Fairun 2056 Iulius			18.86	100,5	17,52	104.0	17,24	103,7			36,3	4,4	1 j	у <u>-</u> ,	<u> ۲</u> ۲
100,2 96,2 17,68 96,5 15,92 97,1 17,64 100,3 1,16 92,9 28,4 2,0 13,1 2,5 112,0 107,5 19,24 105,0 17,05 104,0 17,18 97,7 1,36 109,0 34,9 2,1 18,0 2,0 106,9 102,6 18,44 100,6 16,59 101,2 17,25 98,1 1,12 90,2 27,9 4,3 10,7 1,5 105,4 101,2 18,65 101,8 16,64 101,5 17,69 100,6 1,31 105,3 34,5 2,4 16,2 2,0 97,5 93,5 17,49 95,5 15,55 94,8 17,93 101,9 1,39 111,5 33,3 2,9 19,8 2,0 97,2 93,3 16,65 90,9 14,67 89,5 17,13 97,4 1,43 115,1 34,8 2,9 20,9 112,3 107,7 19,69 107,5 17,61 107,4 17,54 99,7 1,25 100,6 31,1 2,6 15,4 2,0 11,3 103,2 108,6 20,36 111,1 18,25 111,3 17,98 102,3 1,27 101,9 36,1 2,2 13,8 3,5 11,3 10,7 100,0 15,79 100,0 15,79 100,0 17,43 100,0 1,28 100,0 31,0 2,7 16,4 1,7 104,7 103,0 18,41 104,0 16,45 104,2 17,60 101,0 1,27 99,4 31,5 2,6 15,9 1,3 1,3 1,2 0,22 1,2 0,20 1,3 0,08 0,5 0,02 1,3 0,3 0,1 0,6	2059 Artus			20,18	110.1	18,17	110,8	17,14	97.4	<u></u>	88,7	25,5	, 5 5	12,1	2,5	
112,0 107,5 19,24 105,0 17,05 104,0 17,18 97,7 1,36 109,0 34,9 2,1 18,0 106,9 102,6 18,44 100,6 16,59 101,2 17,25 98,1 1,12 90,2 27,9 4,3 10,7 1,5 105,4 101,2 18,65 101,8 16,64 101,5 17,69 100,6 1,31 105,3 34,5 2,4 16,2 2,0 97,5 93,5 17,49 95,5 15,55 94,8 17,93 101,9 1,39 111,5 33,3 2,9 19,8 2,0 97,2 93,3 16,65 90,9 14,67 89,5 17,13 97,4 1,43 115,1 34,8 2,9 20,9 14,67 89,5 112,3 107,7 19,69 107,5 17,61 107,4 17,54 99,7 125 100,6 31,1 2,6 15,4 2,0 14,2 14,2 14,2 14,2 14,2 14,2 14,2 14,2	2060 Haydn			17,68	96,5	15,92	97,1	17,64	100,3		92,9	28,4	2,0	<u>,</u> 3 ;	2,5	<u>, , , , , , , , , , , , , , , , , , , </u>
106,9 102,6 18,44 100,6 16,59 101,2 17,25 98,1 1,12 90,2 27,9 4,3 10,7 105,4 101,2 18,65 101,8 16,64 101,5 17,69 100,6 13,1 105,3 34,5 2,4 16,2 2,0 97,5 93,5 17,49 95,5 15,55 94,8 17,93 101,9 1,39 111,5 33,3 2,9 19,8 97,5 98,4 94,4 18,23 99,5 16,47 100,5 18,53 105,4 1,18 95,0 29,0 1,7 14,0 1,5 12,3 107,7 19,69 107,5 17,61 107,4 17,54 99,7 1,25 100,6 31,1 2,6 15,4 2,0 104,0 99,8 19,00 103,7 16,95 103,4 18,26 103,9 1,37 110,4 33,5 2,9 19,1 2,5 113,2 108,6 20,36 111,1 18,25 111,3 17,98 102,3 1,27 101,9 36,1 2,2 13,8 3,5 104,7 100,0 17,70 100,0 15,79 100,0 17,43 100,0 1,28 100,0 31,0 2,7 16,4 104,7 103,0 18,41 104,0 16,45 104,2 17,60 101,0 1,27 99,4 31,5 2,6 15,9 104,1 1,3 1,3 1,2 0,22 1,2 0,20 1,3 0,08 0,5 0,02 1,3 0,3 0,1 0,6	2079 Kepler			19,24	105,0	17,05	104,0	17,18	97,7		109,0	34,9	2,1	18,0	2,0	<u>, </u>
105,4 101,2 18,65 101,8 16,64 101,5 17,93 101,9 1,39 111,5 33,3 2,9 19,8 97,5 93,5 17,49 95,5 15,55 94,8 17,93 101,9 1,39 111,5 33,3 2,9 19,8 97,5 98,4 94,4 18,23 99,5 16,47 100,5 18,53 105,4 1,18 95,0 29,0 1,7 14,0 1,5 97,2 93,3 16,65 90,9 14,67 89,5 17,13 97,4 1,43 115,1 34,8 2,9 20,9 112,3 107,7 19,69 107,5 17,61 107,4 17,54 99,7 1,25 100,6 31,1 2,6 15,4 2,0 104,0 99,8 19,00 103,7 16,95 103,4 18,26 103,9 1,37 110,4 33,5 2,9 19,1 2,5 113,2 108,6 20,36 111,1 18,25 111,3 17,98 102,3 1,27 101,9 36,1 2,2 13,8 3,5 6,9 6,6 1,40 7,6 1,29 7,9 0,42 2,4 0,07 5,7 2,2 0,4 2,4 1,7 ehandlung 101,7 100,0 17,70 100,0 15,79 100,0 17,43 100,0 1,28 100,0 31,0 2,7 16,4 104,7 103,0 18,41 104,0 16,45 104,2 17,60 101,0 1,27 99,4 31,5 2,6 15,9 1,3 1,3 1,2 0,22 1,2 0,20 1,3 0,08 0,5 0,02 1,3 0,3 0,1 0,6	2083 SY Securita			18,44	100,6	16,59	101,2	17,25	98,1		90,2	27,9	4,3	10,7) <u>1</u> ,5	<u>, ,</u>
S 98,4 94,4 18,23 99,5 16,47 190,5 17,33 101,3 11,3 33,3 2,9 19,6 2,0 17,7 14,0 1,5 11,3 101,3 101,3 11,3 101,3 11,3 101,3 11,3 1	2094 Britta			18,65	101,8	16,64	101,5	17,69	100,6		105,3	34,5		16,2	2,0	2,2
97.2 93.3 16.65 90.9 14.67 89.5 17.13 97.4 1,43 115.1 34.8 2.9 20.9 1,5 112.3 107.7 19.69 107.5 17.61 107.4 17.54 99.7 1,25 100.6 31.1 2.6 15.4 2,0 104.0 99.8 19.00 103.7 16.95 103.4 18.26 103.9 1,37 110.4 33.5 2.9 19.1 2.5 113.2 108.6 20.36 111.1 18.25 111.3 17.98 102.3 1,27 101.9 36.1 2,2 13.8 3.5 6.9 6.6 1,40 7.6 1,29 7.9 0,42 2.4 0,07 5.7 2.2 0,4 2.4 1,7 ehandlung 104.7 103.0 17.70 100.0 15.79 100.0 17.43 100.0 1,28 100.0 31.0 2,7 16.4 104.7 103.0 18.41 104.0 16.45 104.2 17.60 101.0 1,27 99.4 31.5 2,6 15.9 1.3 1,3 1,2 0,22 1,2 0,20 1,3 0,08 0,5 0,02 1,3 0,3 0,1 0,6	2096 Elaina KWS	97,5		17,49	95,5	15,55	94,8	17,93	101,9		111,5	υ υ, α		19,8	2,0	, ,2
H12,3 107,7 19,69 107,5 17,61 107,4 17,54 99,7 1,25 100,6 31,1 2,6 15,4 2,0 104,0 99,8 19,00 103,7 16,95 103,4 18,26 103,9 1,37 110,4 33,5 2,9 19,1 2,5 113,2 108,6 20,36 111,1 18,25 111,3 17,98 102,3 1,27 101,9 36,1 2,2 13,8 3,5 6,9 6,6 1,40 7,6 1,29 7,9 0,42 2,4 0,07 5,7 2,2 0,4 2,4 1,7 ehandlung 101,7 100,0 17,70 100,0 15,79 100,0 17,43 100,0 1,28 100,0 31,0 2,7 16,4 104,7 103,0 18,41 104,0 16,45 104,2 17,60 101,0 1,27 99,4 31,5 2,6 15,9 1,3 1,3 1,2 0,22 1,2 0,20 1,3 0,08 0,5 0,02 1,3 0,3 0,1 0,6	2097 Kristallina KWS	98,4		16,23	0,09 0,09	10,47	89.5	17 13	97.4		115.1	34,0		20,0	טוע	<u>-</u> _
104,0 99,8 19,00 103,7 16,95 103,4 18,26 103,9 1,37 110,4 33,5 2,9 19,1 2,5 113,2 108,6 20,36 111,1 18,25 111,3 17,98 102,3 1,27 101,9 36,1 2,2 13,8 3,5 6,9 6,6 1,40 7,6 1,29 7,9 0,42 2,4 0,07 5,7 2,2 0,4 2,4 1,7 ehandlung 101,7 100,0 17,70 100,0 15,79 100,0 17,43 100,0 1,28 100,0 31,0 2,7 16,4 104,7 103,0 18,41 104,0 16,45 104,2 17,60 101,0 1,27 99,4 31,5 2,6 15,9 1,3 1,2 0,22 1,2 0,20 1,3 0,08 0,5 0,02 1,3 0,3 0,1 0,6	2096 Maliea KWS	112.3		19,69	107.5	17.61	107.4	17.54	99,4		100.6	31.1		15.4	2,0	2 -
113.2 108.6 20.36 111,1 18.25 111,3 17,98 102,3 1,27 101,9 36,1 2,2 13.8 3,5 6,9 6,6 1,40 7,6 1,29 7,9 0,42 2,4 0,07 5,7 2,2 0,4 2,4 1,7 ehandlung 101,7 100,0 17,70 100,0 15,79 100,0 17,43 100,0 1,28 100,0 31,0 2,7 16,4 104,7 103,0 18,41 104,0 16,45 104,2 17,60 101,0 1,27 99,4 31,5 2,6 15,9 1,3 1,3 1,2 0,22 1,2 0,20 1,3 0,08 0,5 0,02 1,3 0,3 0,1 0,6	2103 Birtha KWS	104,0		19,00	103,7	16,95	103,4	18,26	103,9		110,4	33,5		19,1	2,5	3,
5% 6,9 6,6 1,40 7,6 1,29 7,9 0,42 2,4 0,07 5,7 2,2 0,4 2,4 1,7 fluss Fungizidbehandlung fe1 101,7 100,0 17,70 100,0 15,79 100,0 17,43 100,0 1,28 100,0 31,0 2,7 16,4 fe2 104,7 103,0 18,41 104,0 16,45 104,2 17,60 101,0 1,27 99,4 31,5 2,6 15,9 5% 1,3 1,2 0,22 1,2 0,20 1,3 0,08 0,5 0,02 1,3 0,3 0,1 0,6	2104 Annika KWS	113,2		20,36	111,1	18,25	111,3	17,98	102,3		101,9	36,1		13,8	3,5	·
fluss Fungizidbehandlung ie 1 101,7 100,0 17,70 100,0 15,79 100,0 17,43 100,0 1,28 100,0 2,7 ie 2 104,7 103,0 18,41 104,0 16,45 104,2 17,60 101,0 1,27 99,4 31,5 2,6 5% 1,3 1,2 0,22 1,2 0,20 1,3 0,08 0,5 0,02 1,3 0,3 0,1		6,9		1,40	7,6	1,29	7,9	0,42	2,4	,	5,7		0,4	2,4	1,7	<u>, -</u> ,
61 101,7 100,0 17,70 100,0 15,79 100,0 17,43 100,0 1,28 100,0 31,0 2,7 62 104,7 103,0 18,41 104,0 16,45 104,2 17,60 101,0 1,27 99,4 31,5 2,6 5% 1,3 1,2 0,22 1,2 0,20 1,3 0,08 0,5 0,02 1,3 0,3 0,1	influss Fungizidbel	gunlbu		1 10		10		1					1	2		
5% 1,3 1,2 0,22 1,2 0,20 1,3 0,08 0,5 0,02 1,3 0,3 0,1	tufe 1	101,7	100,0	18.41	100,0	15,79 16,45	100,0	17,43 17,60		1,28	99.4	31,0	0 , 0 , 1	16,4 15,9		
	5%	1.3	1 2	0.22	1.2	0.20	1.3	0.08		0.02	<u>.</u> ω ;	0.3	0 !	0.6		

nt ht	(rh) rhizoctoniatolerant(nt) nematodentolerant(nr) nematodenresistent = sehr anfällig+++ = wenig anfällig	(rh) rhizoctoniatolera (nt) nematodentolera (nr) nematodenresis = sehr anfällig +++ = wenig anfällig		- S2	n Alabama, William, Beretta, Rubens 2) 2009 WP S2 und 2010 LNS 4) nur 2010+2011 im SSV-R 2009 WP Ri1 + S1, 2010 WP Ri2 + S2 ankheiten (ohne Behandlung)	am, Ber und 20 11 im S 11, 201 S1, 201	n Alabama, William, Beretta, Rv 2) 2009 WP S2 und 2010 LNS 4) nur 2010+2011 im SSV-R 2009 WP Ri1 + S1, 2010 WP I ankheiten (ohne Behandlung)	Alabar 2) 2009 4) nur 2 2009 W ankheite	sorter	s-Mittel de R ohne Bef daufgang ; si Befall mi	relativ 100 = Verrechnungs-Mittel der Sorten Alabama, William, Beretta, Rubens 1) Daten 2009 aus LNS 2) 2009 WP S2 und 2010 LNS 3) 2009 LNS+2010 SSV-R ohne Befall 4) nur 2010+2011 im SSV-R 5) 2009 WP Ri2 + S2, Feldaufgang 2-j. 2009 WP Ri1 + S1, 2010 WP Ri2 + ** relativer BZE-Verlust bei Befall mit Blattkrankheiten (ohne Behandlung)
4		3,5	3,3	0	-4,2	89,6	105,2	98,5	91,6	KWS	Mattea KWS (rh) 6)
73		2,9	2,7	+	-3,5	100,6	94,2	103,4	96,5	KWS	Kristallina KWS (nt) 6)
25		3,5	3 <u>,</u> 8	0	-4,7	98,9	103,2	97,8	101,5	Strube	Kepler (nt) 6)
30	100,6	5,0	3,6		-5,6	94,2	122,7	97,1	99,2	≝	Hella (nt) 5)
17	102,4	5,1	4,4	1	-7,5	99,1	102,9	95,6	104,3	Strube	
0	97,0	3,7	2,8	+	-3,8	85,8	109,5	95,0	91,5	≝	_
∞	98,2	ယ္ပ	2,9	+	-3,5	87,7	99,7	100,4	87,2	KWS	Jenna KWS (rh) 4)
48	98,9	3,4	ယ (လ	ı	-5,2	97,6	103,4	102,2	95,4	KWS	Theresa KWS (nt)
ΟΊ	100,0	2,2	2,4	‡	-1,7	95,9	109,6	100,2	96,2	KWS	Berenika
10	97,8	4,7	3,6	0	-4,6	92,1	99,1	99,9	92,1	Strube	Santino (rh)
69	99,4	4,0	3,4		-5,4	92,5	102,8	100,0	92,6	Strube	Prestige (rh)
20	98,1	4,8	2,6	‡	-2,6	88,2	113,0	95,9	93,4		Nauta (rh)
24	100,4	4,3	3,7	0	-4,9	90,1	123,1	94,2	98,1	KWS	Pauletta (nt)
16	89,6	4,7	2,2	+	-3,5	82,9	111,6	102,9	80,9		Syncro (rh) 4)
259	97,2	4,3	2,7	0	-3,9	89,9	97,9	99,1	90,5	Strube	Premiere (rh) 4)
			_	nbefall	r Nematodenbefalı	iia- odei	 ohne Rhizoctonia- oder	ohne R		it Rizomanı	34 Versuche ohne und mit Rizomaniabefall
33	99,9	2,2	<u>ယ</u> ယ	+	-2,2	103,9	103,2	100,0	104,2	KWS	Isabella KWS (rh) 2)
∞	99,3	2,2	4,0	0	-3,8	103,8	104,1	100,9	103,1	KWS	Ludwina KWS 2)
41	99,3	3,2	2,5	+	-1,8	97,4	104,2	100,5	97,2		SY Belana 2)
တ	101,7	3,6	<u>ω</u> ω		-4,9	99,6	101,8	100,6	99,0	KWS	Adrianna KWS (nt) 3)
ហ	98,8	3,7	2,9	0	-4,4	98,6	100,1	103,5	94,8	KWS	Belladonna KWS (nt) 3)
9	100,7	3,7	<u>ယ</u> ယ		-4,9	102,1	93,8	101,6	99,7	Strube	Schubert 1)
25	100,3	3,9			-5,3	103,0	95,5	103,8	98,3	Strube	Lukas
10	95,7	2,7	2,8	+	-2,5	96,9	108,9	100,3	97,2	Mar	Dante
Ν	99,0	3,7	3,9		-4,9	100,7	102,3	102,9	97,7	KWS	Debora KWS
20	98,0	ω ω	4,0		-5,2	102,9	97,7	102,7	99,6	KWS	Emilia KWS
59	100,8	4,1	ω ,1	0	-4,3	101,4	96,6	100,5	100,5	Strube	Robinson
29	98,9	<u>ω</u>	4,0	0	-3,9	99,6	101,5	98,9	100,9		Sophia
N	98,1	2,8	2,6	0	-3,8	98,2	107,1	100,5	98,2		Sporta
വ	101,2	4,4	3,7	ı	-5,0	102,5	98,3	99,8	102,6	Strube	Benno
ഗ	94,9	2,6	2,7	0	-3,6	97.7	104,8	98,8	99,3		Lucata
24	102,1	4,1	ω 5	0	-3,9	100,6	94,0	103,0	96,9	Strube	
22	101.1	2,4	3,7	0	-3,6	104,0	99,9	100,2	103,7	XWS	Sabrina KWS 1)
18	98,0	1,9	ယ ယ		,	98,3	99,3	98,8	99,6		anfäll. Sorte
10	100,2	4,2	3,6		-5,9	99,9	100,8	101,5	98,3	Strube	Rubens
ω	100,1	2,4	ယ္ ယ	0	-4,0	102,5	103,4	98,6	104,3	XWS	Beretta
32	99,9	4,5	3,4	ı	-5,1	98,6	95,0	102,8	95,0	Strube	William
7	99,8	2,6	<u>ω</u> ,1	+	-3,2	99,0	100,8	97,0	102,4	KWS	Alabama
					odenbefall)	. Nemat	iia- odei	hizoctor	ohne R	aniabefall,	58 Versuche ohne Rizomaniabefall, ohne Rhizoctonia- oder Nematodenbefall
Anz./ha	relativ	Bonituren	Bon				relativ	<u>rel</u>			
Schosser	Feldaufgg.	Mehlt.	Cerc.	2	Toleranz** Cerc. Mehlt.	عر BZE	SMV	ZG	R F	Züchter	Sorten
		(Blattkr.)	sistenz	ınd Re	Toleranz ı	<u>a</u>	Ertrad und Qualität	นเลด เม	∃		

-27-

Tabelle 4: Leistungsprüfung Neuer Sorten ohne Rizomaniabefall - LNS 2009 bis 2011

		Е	rtrag un	d Qualitä	it	Toleranz u	ınd R	esistenz (Blattkr.)		
Sorten	Züchter	RE	ZG	SMV	BZE	Toleranz**		Cerc.	Mehlt.	Feldaufg.11	Schosser
			rela	ativ				Bon	ituren	relativ	Anz./ha
LNS (34 Versuche ohne	Rizomania-, R	hizoctoni	a- und N	lematode	enbefall)						
Alabama	KWS	102,8	96,8	101,4	99,2	-4,9	0	3,5	2,6	101,4	0
William	Strube	95,6	102,8	95,2	99,1	-5,9	-	3,9	4,8	99,0	55
Beretta	KWS	103,1	99,1	102,9	101,9	-3,3	+	3,6	2,4	100,8	9
Rubens	Strube	98,5	101,2	100,5	99,9	-5,0	0	3,9	4,5	98,7	15
anfäll. Sorte		100,1	98,5	98,8	98,5			3,5	2,0	97,3	23
Julius	Hil	101,2	101,4	94,9	103,2	-5,9	-	3,9	4,0	105,5	21
Artus	Strube	101,8	100,4	94,8	102,7	-4,3	0	3,4	3,4	104,3	0
Haydn	Strube	99,6	102,3	92,6	102,8	-5,4	-	3,7	3,9	103,7	22
Kepler (nt)	Strube	101,4	97,7	103,3	98,5	-5,0	0	3,7	3,8	105,9	23
SY Securita	Hil	96,8	102,7	101,4	99,7	-5,6	-	2,7	4,7	99,0	46
Britta	Hil	104,8	99,2	101,4	103,7	-4,0	+	3,5	2,4	103,9	10
Elaina KWS	KWS	97,9	102,9	102,3	100,9	-5,5	-	2,3	2,7	98,5	11
Kristallina KWS (nt)	KWS	96,6	103,1	93,8	100,3	-4,2	+	2,5	3,2	99,0	86
Mattea KWS (rh)	KWS	90,7	98,8	105,2	89,1	-4,7	0	3,3	4,0	101,1	4
Sandra KWS	KWS	106,8	98,9	100,2	105,5	-4,8	0	3,6	3,2	100,8	30
Birtha KWS	KWS	98,9	103,8	104,6	102,6	-5,2	0	4,2	3,2	95,7	12
Annika KWS	KWS	105,4	100,4	102,3	105,5	-3,3	+	3,5	2,1	101,4	30

relativ 100 = Verrechnungs-Mittel der Sorten Alabama, William, Beretta, Rubens

--- = sehr anfällig

+++ = wenig anfällig

(nt) nematodentolerant

(rh) rhizoctoniatolerant

^{**} relativer BZE-Verlust bei Befall mit Blattkrankheiten (ohne Behandlung)

Die richtige Sorte für das Feld

Sorteneigenschaften gezielt nutzen

Die praktischen Anbauvoraussetzungen können sehr unterschiedlich sein. Das breite Angebot an Sorteneigenschaften kommt dem entgegen. Wichtig ist zunächst die Frage, inwieweit mit der Sortenwahl eine Risikoabsicherung gegenüber Krankheiten und Schädlingen erreicht werden kann. Erst danach kann die Auswahl anhand der Leistungsdaten von Ertrags- und Qualitätsvergleichen getroffen werden.

2011 beschert wie 2009 Rekorderträge mit guten inneren Qualitäten. Nach einem gelungenen frühen Start bei trockenen Bedingungen überraschte der milde Sommer besonders auf besseren Böden mit hohen Zuwachsraten und Spitzenerträgen im Herbst. Da aber von Jahr zu Jahr immer wieder mit einem unterschiedlichen Wachstumsverlauf zu rechnen ist, werden stets mehrjährige Ergebnisse für die Sortenbeurteilung herangezogen. Um auch eine gesicherte Datenbasis über viele Standorte und beim Krankheits- und Schädlingsauftreten zu erhalten, werden die überregionalen Versuche zugrunde gelegt.

Die Tabellen gliedern sich in die Sortimente SV-R (Sortenversuche bei Rizomaniabefall) mit den im Anbau befindlichen Sorten und den SSV-R einschließlich toleranter und resistenter Spezialsorten auf Standorten ohne speziellen Schädlings- oder Krankheitsdruck. Gegenüber 2010 haben im SV-R die Sorten Budera, Eleonora KWS, Felicita, Klarina, Lessing und Ruveta das Sortiment verlassen. Neu hinzugekommen sind die Sorten Arnold, Adrianna KWS, Belladonna KWS, Isabella KWS, Ludwina KWS und SY Belana.

Die dreizehn 2011 zugelassenen Sorten Annika KWS, Artus, Birtha KWS, Britta, Elaina KWS, Haydn, Julius, Kepler und Kristallina KWS (beide nematodentolerant), Mattea KWS und Taifun (beide rhizoctoniatolerant), Sandra KWS und SY Securita werden im Sortiment LNS (Leistungsprüfung Neuer Sorten) an den Wertprüfungs-Standorten ohne speziellen Krankheits- und Schädlingsdruck geprüft. Weitere Sortimente bilden der Sortenversuch mit nematodentoleranten Sorten unter Nematodenbefall (SVN) sowie der Sortenversuch mit rhizoctoniatoleranten Sorten unter Rhizoctoniabefall (SV Rh). Auf Befallsflächen mit Rübenkopfälchen werden neue Sorten hinsichtlich ihrer Toleranzeigenschaften gegenüber diesem Erreger beobachtet.

Gesunde Rüben haben Priorität

Immer wieder bereiten im Herbst verdorbene Rüben Probleme bei der Lagerung und Verarbeitung in der Zuckerfabrik. Die Ursachen können sehr unterschiedlich sein. Vielfach ist die Späte Rübenfäule, hervorgerufen durch den bodenbürtigen Pilz Rhizoctonia solani, ursächlich. Bei entsprechendem Erregerpotential im Boden oder sehr ungünstiger Bodenstruktur verursacht dieser Pilz bei anfälligen Normalsorten tiefreichende Schäden an der Wurzel bis hin zum Totalverlust. Nach der frühen und starken Trockenheit 2011 ist diese Krankheit oftmals erst als Spätbefall oder nur stellenweise in Erscheinung getreten. Dort wo sich befallsbedingt ein Erregerpotential im Boden angesammelt hat, müssen für den kommenden Rübenanbau hoch tolerante Sorten angebaut werden wie zum Beispiel Premiere, Syncro, Nauta, Mattea KWS oder Taifun. Zusätzlich muss besonderer Wert auf eine gute Bodenstruktur gelegt werden. Darüber hinaus ist zu bedenken, dass weitere Wirtspflanzen im Anbau wie Mais und Feldgras das Infektionsrisiko zusätzlich erhöhen können.

2011 mehr Rotfäule

2011 ist auf manchen Feldern Rotfäule (Rhizoctonia violacea) stärker als sonst aufgetreten. Die Außenhaut erkrankter Rüben erscheint rötlichviolett, der Schaden bleibt aber meist oberflächlich und geht nur selten etwas tiefer in den Rübenkörper. Der Pilz kann im Boden mehrere Jahre überdauern und beim nächsten Rübenanbau erneut Infektionen hervorrufen. Bisher trat Rotfäule nur sporadisch oder nur stellenweise auf. Daher hatte der Erreger für den praktischen Anbau nur wenig Bedeutung, so dass keine konkreten Bekämpfungshinweise oder Sortentoleranzen bekannt sind.

Bei Befall lohnen nematodentolerante Sorten

Bereits bei latenter Belastung mit dem Rübenzystennematoden Heterodera schachtii können nematodentolerante Zuckerüben deutliche Ertragsvorteile bringen. Bei stärkerem Nematodenbefall kann auch der Anbau einer nematodenresistenten Zuckerrübensorte sinnvoll sein, da damit gleichzeitig auch der Nematodenbesatz im Boden stärker reduziert wird. Informationen über einen möglichen Befall liefern am ehesten aktuelle Bodenproben oder Schwadproben vom letzten Rübenanbau. Falls keine Bodenuntersuchungen vorliegen, muss anhand von Standort- und Bewirtschaftungsgegebenheiten ein mögliches Schadrisiko abgeschätzt werden (vgl. Tabelle 1). Grundsätzlich ist Nematodenbefall in Rüben kaum sicher zu erkennen. Im Zweifelsfall kann probeweise eine nematodentolerante Sorte streifenweise neben der angebauten Normalsorte ausgesät werden. Zeigt sich im Sommer und Herbst bei der Normalsorte eine geringere Vitalität oder stärkere Spätverunkrautung, ist dies ein zuverlässiger Hinweis auf eine Nematodenbelastung.

Neben dem Ertragsvorteil vermehren nematodentolerante Sorten im Gegenteil zu Normalsorten kaum Nematoden. Über die Fruchtfolge hinweg kommt es sogar zu einer Nematodenreduktion durch den zusätzlichen Anbau von Getreide.

Die Ergebnisse der nematodentoleranten Sorten auf rheinischen Standorten sind in der Tabelle 4 zusammengefasst.

Tabelle:	Schadwirkun	g von Rübennematoden
----------	-------------	----------------------

\mathcal{E}	
Stärkere Schäden möglich bei	Geringere Schäden möglich bei
Befall über 250 E+L/100 ml Boden	Befall unter 250 E+L/100 ml Boden
Enge Rübenfruchtfolgen	Rüben alle 4 Jahre oder weiter
Intensivem Anbau in der Vergangenheit	geringem Anbau bisher
Keine nematodenbekämpfende Zwischenfrucht	intensiver Zwischenfruchtanbau
Warmer, leichter, sandiger Boden	schwerer, feuchter, kalter Boden
Späte Saat, frühe Erwärmung nach der Saat	frühe Saat, kühles, feuchtes Frühjahr
Geringe nutzbare Feldkapazität	hohe Wassernachlieferung
Trockene Lagen	feuchte Lagen

Rübenkopfälchen tritt nur regional auf

Neben dem zystenbildenden Rübennematoden bedroht auch das freilebende Rübenkopfälchen (Ditylenchus dipsaci) regional den Rübenanbau. Nach dem Aufgang der Rüben wandern die kleinen Älchen über die Blattachseln in die Pflanzen ein, wo sie sich bereits bei niedrigen Temperaturen rasch vermehren können. Manchmal kommt es zu Blattverdrehungen oder gar zu Pflanzenausfällen im Mai. Der Schaden wird aber meist ab Spätsommer sichtbar, wo der mittlerweile trocken-faule Rübenkopf leicht von der Wurzel abbricht. Sekundärerreger führen dann rasch zu weiteren Umsetzungsvorgängen, die auch den Verlust der unteren Wurzelhälfte verursachen können. Wird der Befall rechtzeitig erkannt, muss in Absprache mit der Zuckerfabrik eine vorgezogene Lieferung erfolgen, um einem weiteren Verderb der Rüben zuvorzukommen. Leider gibt es bisher keine praktikablen Bekämpfungsmaßnahmen gegen diesen Schädling. Die einzige Möglichkeit zur Schadensbegrenzung besteht in der Auswahl toleranter Sorten wie zum Beispiel Syncro, Premiere und Beretta. Während die ersten beiden rhizoctoniatoleranten Sorten bei gleichzeitigem Rhizoctoniabefall vorzuziehen sind, empfiehlt sich die Hochleistungssorte Beretta für Normalfälle. Kommen gleichzeitig in nennenswertem Umfang Rübenzystennematoden auf der Fläche vor, kann auch die nematodenresistente Sorte Sanetta empfohlen werden.

Rizomaniatolerante Sorten überwiegen

Rizomaniatolerante Hochleistungssorten bilden nach wie vor den Hauptteil des Sortenspektrums. Den größten Anbauumfang nehmen derzeit die Sorten Beretta, Lukas und Sporta in diesem Segment ein. Neuere Sorten sind zum Beispiel Ludwina KWS, Robinson und SY Belana. Ohne besonderen Schädlings- und Krankheitsdruck können die Sorten aus den Tabellen nach ihrer Leistung (Bereinigter Zuckerertrag), Qualität, Blattgesundheit, Feldaufgang und Schossfestigkeit ausgewählt werden. Bei dem heutigen, hohen Ertragsniveau muss immer mehr Augenmerk auf ein ausreichendes Angebot an dem Mikronährstoff Bor gelegt werden. Gerade 2009 und 2011 trat Bormangel nach früher und anhaltender Trockenheit selbst auf tiefgründigen Standorten auf.

Blattgesundheit bleibt wichtig

Cercospora ist die weitaus wichtigste Blattkrankheit bei Zuckerrüben. Sie kann in kurzer Zeit den gesamten Blattapparates zerstören und damit den Zuwachs im Herbst gefährden. Nach der zu kühlen Witterung im Juni und Juli 2011 konnte sich Cercospora aber kaum entwickeln. Auf den noch intakten Blättern fanden sich im Juli bei den empfindlichen Sorten massiver Mehltaubefall und ab August gesellten sich zunehmend Ramularia und Rübenrost hinzu. Letzterer nahm bis zur Ernte im November noch deutlich zu. Die Sorten unterscheiden sich in ihrer Anfälligkeit bei allen Krankheiten mehr oder weniger deutlich voneinander. Da oft jedoch mehrere Krankheiten gleichzeitig auf den Blättern zu finden sind, können die visuellen Bonituren erschwert sein. Deshalb werden die Versuche zweifaktoriell durchgeführt und der Einfluss sämtlicher Blattkrankheiten in der Stufe mit Fungizidbehandlung bewertet. In der Tabelle sind die visuellen Boniturwerte für die verschiedenen Krankheiten angegeben (1 = befallsfrei; 9 = Totalbefall). Zusätzlich werden die Ertragsdifferenzen zwischen Fungizidbehandlung und unbehandelt festgestellt und mit dem Durchschnittsertrag der Verrechnungssorten (mit Fungizidbehandlung) verglichen. Kleine Differenzen bedeuten demnach geringere Ertragsverluste bei Verzicht auf Fungizidbehandlung (hohe Blattgesundheit) und umgekehrt. Für den schnellen Vergleich sind zusätzliche Klassenwerte von --- (sehr anfällig) bis +++ (wenig anfällig) in der Folgespalte angegeben. Die eigentliche Sortenleistung wird jeweils in der Stufe mit

Fungizidbehandlung in den Tabellen angegeben, entsprechend den praktischen Anbaugegebenheiten. Seit den neunziger Jahren haben die Blattkrankheiten weiter an Bedeutung gewonnen und tolerante Sorten können helfen, die Blattgesundheit im Herbst für einen guten Zuwachs zu erhalten.

Sortenwahl – wie vorgehen?

Die erste und wichtigste Frage bei der Sortenwahl ist, ob tolerante oder resistente Sorten infrage kommen. Rhizoctonia- oder Ditylenchusbefall können nur mit Hilfe toleranter Sorten verhindert werden. Andere Bekämpfungsmaßnahmen existieren nicht. Wird hier nicht reagiert, sind Mindererträge und verdorbene Rüben oft nicht zu vermeiden. Schäden durch die zystenbildenden Rübennematoden können am effektivsten durch den Anbau nematodentoleranter bzw. –resistenter Sorten verhindert und damit gleichzeitig der Befall für den nächsten Rübenanbau reduziert werden. Ist die Entscheidung für eine tolerante Sorte gefallen, reduziert sich bereits deutlich das Auswahlspektrum an Sorten. Dort wo kein spezieller Krankheits- oder Schädlingsdruck gegeben ist, können Sorten aus dem Normalsortiment ausgewählt werden. Wichtigstes Merkmal ist der Bereinigte Zuckerertrag (BZE), da er dem Geldrohertrag am nächsten kommt. Die Kombination mit einem hohen Zuckergehalt und guter innerer Qualität zur Erzielung zusätzlicher Qualitätsprämien ist sehr vorteilhaft. Eine gute Blattgesundheit ist ebenfalls wünschenswert, damit der erhoffte Zuwachs im Herbst auch realisiert werden kann. Gute Saatgutqualität und geringe Schossneigung der Sorten werden allgemein vorausgesetzt. Manche bewährte, gute Sorte wird gewiss wieder den Weg in den praktischen Anbau finden. Mit den neu zu wählenden Sorten kann das Leistungspotential noch weiter gesteigert werden. Das nicht vorhersehbare Witterungsrisiko des vor uns liegenden Jahres sollte Anlass sein, auf mehrere gute Sorten zu bauen.

Tabelle Spezialsorten: Schneller Überblick bei Auftreten von

Rhizoctonia	Zysten-Nematoden	Rübenkopfälchen	beiden Nematodenarten
Premiere	Pauletta	Syncro, Premiere	Nemata
Nauta	Adrianna KWS	Beretta	
Mattea KWS	Kristallina KWS		
	Hella		
	Kepler		

Biogas Sortenversuche 2011

Die Bedeutung von Zuckerrüben zur Biogasproduktion hat in den letzten Jahren stark zugenommen. Daher wurden 2011 erstmals bundesweit koordinierte Sortenversuche auch im Rheinland in Buir und Gangelt durchgeführt. An letzterem Standort erfolgte nur eine Teilauswertung mittels Handbeerntung.

Für die Biogasausbeute von Rüben ist hauptsächlich der Gehalt an organischer Trockensubstanz ausschlaggebend, der sehr hoch mit dem Zuckergehalt und dem Zuckerertrag korreliert ist. Futterrüben haben einen niedrigeren Trockensubstanzgehalt als Zuckerrüben und dementsprechend einen niedrigeren Trockensubstanzertrag je ha.

EU-Sorten sind bei Zuckerrüben – wie bei allen anderen Fruchtarten – in Deutschland grundsätzlich vertriebsfähig. Allerdings ist zu beachten, dass für diese Sorten keine Leistungsdaten aus Sortenversuchen vorliegen, da sie in Deutschland nicht zur Wertprüfung angemeldet worden sind oder nach der Wertprüfung mangels Leistung keine Zulassung erhalten haben.

Aus dreijährigen Ergebnissen der Wert- und Sortenprüfungen wurden auf der Basis 700 I Normgas pro kg Trockenmasse und einer Methanausbeute von 51 % für sämtliche getesteten Zuckerrübensorten Schätzwerte berechnet und in der Tabelle angegeben.

Für den praktischen Anbau von Biogasrüben stellen sich zunächst einmal fast die gleichen Fragen wie beim konventionellen Zuckerrübenanbau. Es geht darum, die am besten geeigneten Sorten für den Standort auszuwählen. Vordergründiges Ziel ist ein möglichst hoher Trockenmasseertrag. Es ist aber weiterhin zu klären, ob Sorten, die gegen bestimmte Krankheiten und Schädlinge tolerant oder resistent sind, zum Einsatz kommen sollten. Außerhalb der typischen Rübenanbaugebiete muss geprüft werden, inwieweit z.B. die Späte Rübenfäule (Erreger: Rhizoctonia solani) den Anbau beeinflussen kann. Steht seit längerer Zeit ein hoher Anteil Mais in der Fruchtfolge, dann ist Rhizoctoniabefall nicht ganz auszuschließen. Hier empfiehlt sich der Anbau rhizoctoniatoleranter Sorten.

Auch die Toleranz gegenüber Blattkrankheiten kann für den standörtlichen Biogasrübenanbau Bedeutung erlangen. Toleranz gegenüber Nematoden wird eher in den klassischen Rübenanbaugebieten von Bedeutung sein.

Sind diese ersten Entscheidungen getroffen, geht es bei der Sortenwahl endgültig darum, die leistungsfähigsten Sorten für die Biogasproduktion auszuwählen. Da die innere Qualität hierfür kein relevantes Kriterium darstellt, kann man sich zunächst an der Höhe des Zuckerertrages orientieren, da dieser den Wert für den Trockensubstanzertrag am besten repräsentiert.

Als wichtiges Merkmal für die Biogasrüben erscheint auch der Erdanteil der Sorten. Dieses Merkmal streut leider bei den Untersuchungen sehr stark und ist nur begrenzt reproduzierbar. Gerade die trockene Kampagne 2011 hat gezeigt, dass der Erdanteil viel mehr durch die standörtlichen Gegebenheiten sowie die Witterung bei der Ernte geprägt ist und die heutige Ernte- und Reinigungstechnik bereits eine sehr weitgehende Reduktion der Erde ermöglichen kann.

Biogasrübensaatgut kann über die Zuckerfabriken bestellt werden. Das gilt für Vertragsrübenanbauer der Zuckerindustrie wie für reine Biogasrübenanbauer ohne Liefervertrag zur Zuckerfabrik.

SV-B_Ber2011.doc 30.01.2012

Sortenleistungsvergleich Biomasse 2011, relativ*

Ertrag und Qualität Mittel über Standorte

Methanerträge

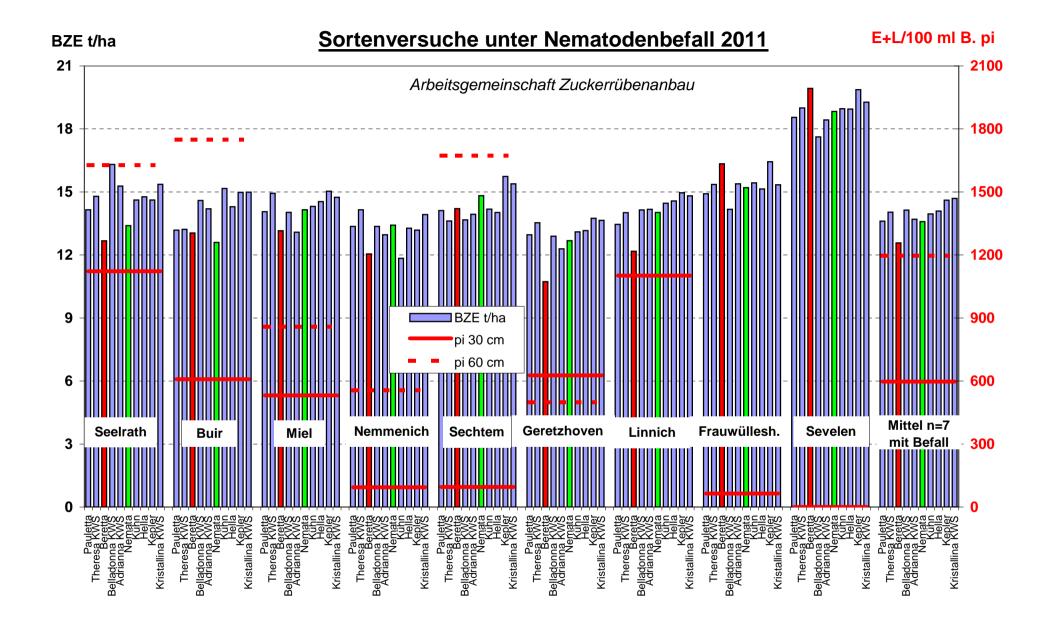
									Methaneritag	<u> </u>	
Sorten	Anzahl Orte	RE	ZE	BZE	ZG	TS	TM	_	ī	+ 10 % Ertrag	Erdanhang
	One							Nm³/ha	Nm ³ /ha	Nm³/ha	
Alabama	5	102,0	99,9	99,6	98,0	98,4	100,2	5064,9	5631,2	6197,5	108,6
William	5	93,7	96,0	96,6	102,3	102,5	96,3	4863,6	5407,4	5951,2	111,7
Beretta	5	104,5	102,3	101,8	97,8	98,9	103,5	5228,3	5812,8	6397,4	94,9
Rubens	5	99,8	101,8	102,0	101,9	100,2	100,0	5055,3	5620,5	6185,8	84,8
Sabrina KWS	5	105,6	105,5	105,5	99,8	99,5	105,2	5313,4	5907,5	6501,6	90,2
Arnold	5	97,2	99,9	100,7	102,8	102,8	100,0	5052,7	5617,6	6182,6	104,1
Benno	5	105,6	105,0	105,3	99,3	98,1	103,7	5238,6	5824,3	6410,1	92,6
Kühn	5	104,1	99,5	98,7	95,6	95,6	99,5	5027,1	5589,3	6151,4	123,5
Wagner	5	108,2	105,1	105,4	97,0	94,5	102,5	5177,7	5756,6	6335,6	82,7
Corvetta KWS	5	92,8	96,6	96,6	104,1	104,9	97,3	4914,3	5463,8	6013,3	120,2
Eleonora KWS	5	103,2	105,1	105,3	101,8	101,5	104,8	5293,1	5885,0	6476,8	91,5
Gerty KWS	5	104,5	98,5	96,4	94,3	95,8	100,0	5054,7	5619,9	6185,1	79,9
Lissy KWS	5	97,2	94,5	92,6	97,1	97,5	94,8	4790,3	5326,0	5861,6	82,2
Sporta	5	98,7	99,7	99,6	100,9	100,6	99,3	5018,2	5579,3	6140,4	79,4
Klaxon	5	102,3	98,5	97,7	96,1	95,3	97,7	4936,2	5488,1	6040,1	84,5
Caribata	5	103,2	100,4	99,5	97,3	95,4	98,5	4976,0	5532,4	6088,8	93,1
Molly	5	98,8	96,2	95,4	97,4	95,5	94,3	4765,3	5298,2	5831,0	100,9
Ribambelle	5	122,9	84,0	75,0	68,8	70,4	86,0	4347,9	4834,1	5320,2	104,1
Zephyr	5	97,4	97,8	97,8	100,2	99,8	97,4	4921,2	5471,5	6021,7	96,8
GD 5%		6,0	4,8	5,0	1,5	1,4	4,8				16,9

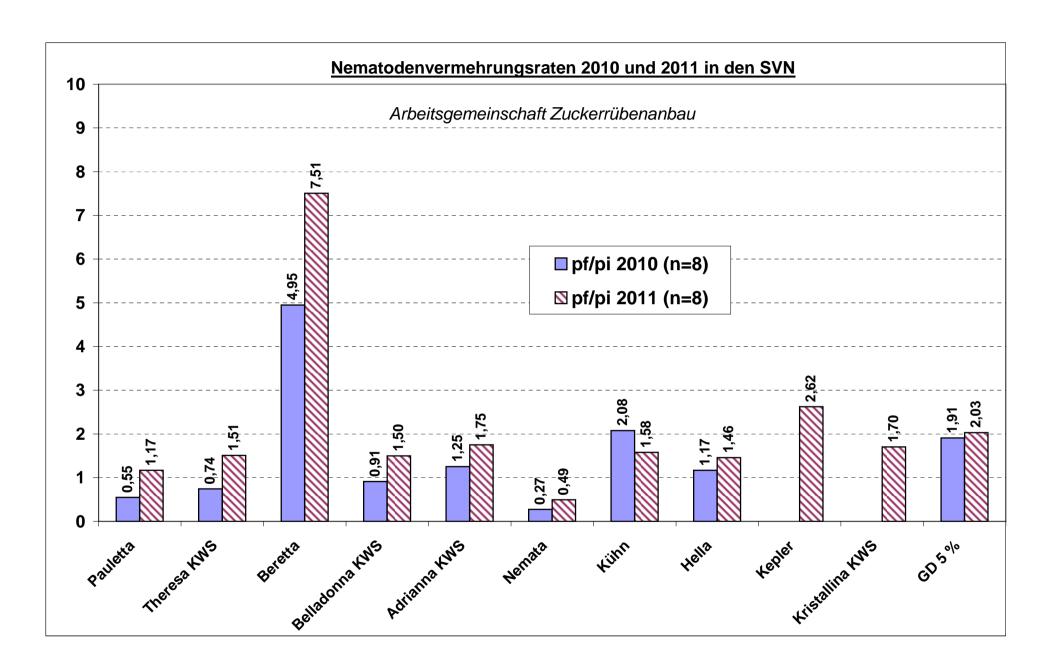
^{* 100 =} Verrechnungsmittel der Sorten Alabama, William, Beretta, Rubens

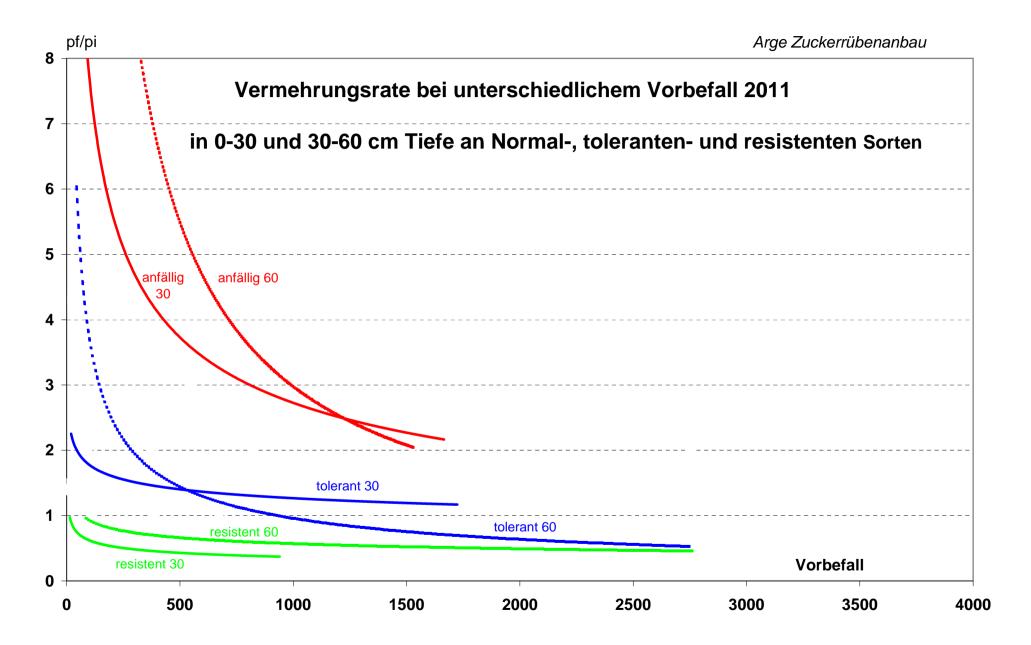
SV-B Buir 2011

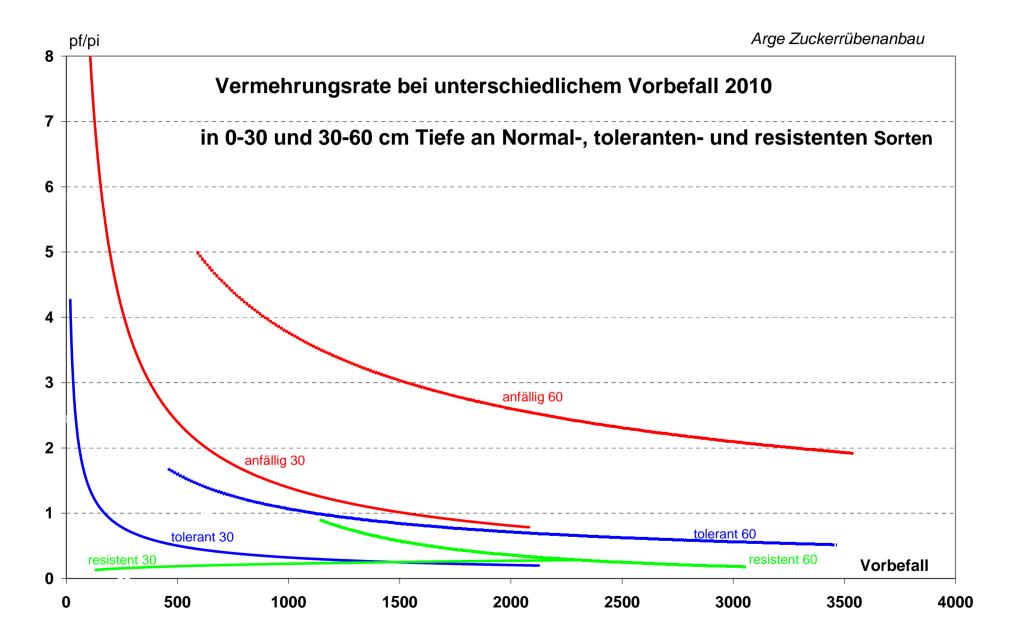
Saat: 26.03.			Ernte: 0	6.10.		Parz.: 6	3 x 1,35	= 8,5 qr	n, 4 V	Vhg.					
VG		ertrag	Zucker		Berein.		Zucker			MV.	K	Na	AmN	Rost Bon.	Mehltau
	t/ha	rel.	t/ha	rel.	t/ha	rel.	%	rel.	%	rel.	mm	ol/1000	g R.	29.9.	29.9.
1409 Alabama	86,6	103,0	15,59	102,1	14,13	101,8	18,00	99,2	1,09	103,7	32,0	2,5	7,9	4,5	3,3
1560 William	79,4	94,4	14,66	96,0	13,41	96,6	18,46	101,7	0,97	92,7	25,8	2,0	6,5	3,8	5,5
1665 Beretta	86,5	102,8	15,20	99,5	13,72	98,9	17,55	96,7	1,10	105,3	32,6	3,2	8,0	7,3	1,5
1718 Rubens	84,0	99,8	15,63	102,4	14,26	102,7	18,60	102,5	1,03	98,3	29,5	2,2	7,0	7,3	5,3
1910 Sabrina KWS	88,4	105,0	15,82	103,6	14,33	103,2	17,90	98,6	1,08	103,7	30,0	2,2	9,1	5,8	2,0
1973 Arnold	80,5	95,6	14,85	97,3	13,60	97,9	18,47	101,7	0,96	91,9	25,2	2,0	6,4	3,0	4,8
1632 Benno	87,6	104,2	15,86	103,9	14,49	104,4	18,08	99,6	0,96	91,6	25,5	1,9	6,3	3,3	6,3
1981 Kühn	92,1	109,5	16,47	107,9	14,90	107,3	17,88	98,5	1,11	105,6	30,6	2,0	9,8	4,3	8,0
6112 Wagner	94,4	112,1	16,25	106,4	14,81	106,7	17,22	94,9	0,93	88,7	24,6	2,0	5,3	7,0	4,0
1903 Corvetta KWS	83,3	99,0	15,80	103,5	14,32	103,1	18,95	104,4	1,18	112,6	35,5	2,0	10,4	3,5	2,3
1908 Eleonora KWS	87,9	104,5	15,98	104,6	14,50	104,5	18,17	100,1	1,07	102,7	30,2	2,1	8,6	6,8	2,3
6113 Gerty KWS	87,2	103,7	14,66	96,0	13,07	94,2	16,81	92,6	1,22	117,0	39,3	4,4	9,1	4,8	2,0
6114 Lissy KWS	75,0	89,1	13,17	86,3	11,86	85,4	17,56	96,7	1,16	110,4	31,8	2,4	11,0	5,0	6,0
1648 Sporta	78,4	93,2	14,27	93,5	12,98	93,5	18,20	100,3	1,05	100,6	29,9	2,6	7,6	4,5	4,8
6115 Klaxon	81,6	97,0	13,94	91,3	12,59	90,7	17,06	94,0	1,04	99,9	29,7	2,4	7,5	5,8	6,8
6116 Caribata	86,6	102,9	15,25	99,9	13,80	99,4	17,59	96,9	1,08	102,8	30,8	3,0	7,9	6,3	5,5
6117 Molly	80,9	96,1	14,22	93,1	12,89	92,9	17,57	96,8	1,04	99,0	29,7	2,9	6,9	7,3	5,3
6118 Rimbabelle	95,5	113,5	12,42	81,3	10,60	76,3	12,98	71,5	1,30	124,5	49,3	5,2	7,0	5,5	6,5
6119 Zephyr	82,7	98,3	15,07	98,7	13,71	98,7	18,23	100,4	1,05	100,5	29,7	2,2	7,9	5,3	8,0
GD 5 %	4,2	4,9	0,77	5,0	0,69	5,0	0,27	1,5	0,04	3,4	1,5	0,3	1,1	1,4	1,0

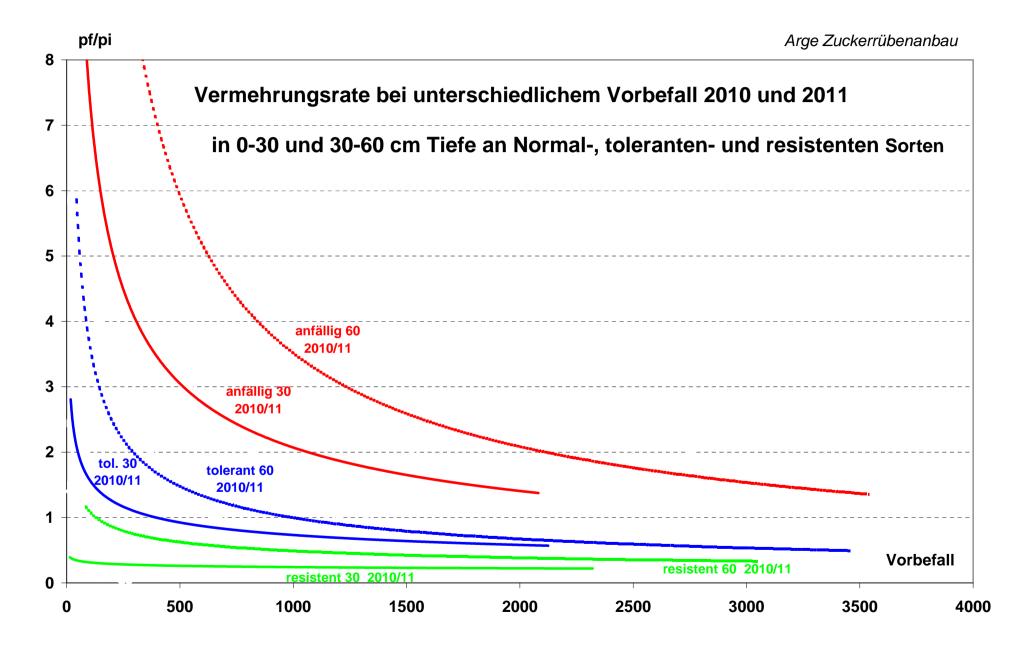
100 = Verrechnungsmittel der Sorten Alabama, William, Beretta, Rubens


SV-B Gangelt 2011


Saat: 24.03. Ernte: 31.10. Parz.: $6 \times 0.9 \times 2 = 5.4 \text{ qm}$, 3 Whg. VG Berein. Z.ertrag Zuckergehalt SMV Κ Na AmN Rübenertrag Zuckerertrag % mmol/1000 g R. t/ha rel. t/ha rel. t/ha rel. rel. rel. Wagner 113,1 99,6 20,13 98,4 17,99 98,8 17,81 98,8 1,28 93,7 36,1 2,2 14,3 Eleonora KWS 111,6 98,3 20,91 102,3 18,74 102,9 18,72 103,9 1,35 98,8 38,7 2,2 15,9 115,9 102,1 20,30 99,3 17,90 98,3 17,52 1,47 107,5 43,5 2,8 Klaxon 97,3 18,2 Rimbambelle 137,8 121,4 17,73 86,7 14,21 78,0 12,86 71,4 1,95 142,4 66,6 5,3 25,3 GD 5 % 16,7 1,12 6,2 0,30 7,0 8,0 14,7 3,54 17,3 3,27 18,0 21,7 9,6 100,0 1,37 Mittel 3 ZR-Sorten 113,5 100,0 20,45 100,0 18,21 100,0 18,02 100,0 39,5 2,4 16,1


Versuche mit nematodenresistenten Sorten


Auf vielen Standorten mit langjährigem und intensivem Zuckerrübenanbau hat sich ein latenter und vereinzelt auch stärkerer Nematodenbefall eingestellt. 2011 wurden auf 8 solcher Praxisstandorte Kleinparzellenversuche mit nematodentoleranten Sorten (SVN) angelegt. Daneben wurden 2 SVN ohne Nematodenbelastung durchgeführt. Teilsortimente wurden auf weiteren Standorten geprüft (vgl. Tabellen und Abb.). Auf den 7 komplett ausgewerteten SVN bewegte sich der Vorbefall zwischen 94 und 1122 E+L je 100 ml Boden im Standortmittel (n=10) in 0-30 cm Tiefe. In der Schicht 31-60 cm schwankte der Befall zwischen 498 und 1749 E+L ebenfalls stark. Auf 5 Feldern gab es im Unterboden stärkeren und in einem Fall schwächeren Befall. Ein schneller Überblick über die Relation des BZE der einzelnen Sorten in Abhängigkeit vom Nematodenbefall lässt sich aus der nachfolgenden Grafik gewinnen. Wie bereits in den Vorjahren erreichten die toleranten Sorten manchmal schon bei sehr geringem Vorbefall Mehrerträge, insbesondere wenn z.B. anhaltende Trockenheit vorherrschte. Das Prinzip einer eindeutigen Bekämpfungsschwelle lässt sich auch 2011 nicht erkennen. Auch der Befall im Unterboden gab keine eindeutigen Hinweise auf das Abschneiden der anfälligen Sorte. Nach den bisherigen Erfahrungen war von diesem Befall allenfalls nur eine geringe Schadvorhersage abzuleiten. Die Leistung der einzelnen toleranten Sorten war von den üblichen Schwankungen abgesehen an den verschiedenen Standorten tendenziell ähnlich. Deutliche Abweichungen zeigte die resistente Sorte Nemata in 2 Versuchen. Die vergleichsweise blattarme Sorte litt offensichtlich stärker im üblichen, dreireihigen Versuchsanbau unter den hoch wachsenden Nachbarsorten. Als Kernbeerntung in der gleichen Sorte erreichte der BZE dagegen das Niveau der übrigen toleranten Sorten. Die neuen Sorten Kepler und Kristallina KWS erzielten 2011 ein leicht besseres Ergebnis. Sie erreichten auch ohne Befall nahezu das Ergebnis der Standardsorte. Kristallina KWS war in der Jugendentwicklung etwas verhalten, machte aber bei Trockenstress den frischesten Eindruck. Obwohl die Wachstumsbedingungen im Frühjahr und Herbst wesentlich durch Trockenheit bestimmt waren, war der Nematodeneffekt keinesfalls größer als in den Vorjahren. Wahrscheinlich hat sich der frühe Saattermin positiv ausgewirkt. Die Rübenwurzeln mussten im trockenen April und Mai sehr schnell in tiefere Schichten vordringen, um das vorhandene Bodenwasser zu nutzen. Beim Vergleich der Vermehrungsraten der einzelnen Sorten zeigte sich im Mittel von jeweils 8 Versuchen in 2 Jahren eine ähnliche Tendenz bei jahresbedingt etwas höherem Niveau 2011 (vgl. Abb.). Mit 5- bis 7,5-facher Vermehrung hob sich die anfällige Normalsorte deutlich ab. Die resistente Sorte verminderte im Mittel deutlich und die toleranten Sorten unterschieden sich in einem mittleren Rahmen zwischen 0,55 und 2,62 nicht signifikant voneinander. Die Vermehrungsraten der drei genannten Gruppen waren vielmehr in Abhängigkeit von der Höhe des Vorbefalls und der Bodentiefe sehr unterschiedlich (vgl. nachf. Grafiken). Bei abnehmendem Vorbefall stiegen die Vermehrungsraten besonders im Unterboden aber auch im Oberboden stark an. Die Unterschiede zwischen anfällig – tolerant – resistent blieben deutlich erkennbar. Zum Vergleich sind auch die Vermehrungsraten aus 2010 graphisch dargestellt. In der Zusammenfassung 2010 und 2011 lassen sich die Zusammenhänge nochmals deutlicher erkennen.


Die auf Seite 45 ergänzenden Sortenversuche verbessern die Datenbasis dieser Untersuchungen. Interessant sind die beiden sehr unterschiedlichen Felder in Weiler in der Ebene, wo entgegen der Erwartung auf dem flachgründigeren Feld kein Nematodenbefall vorhanden war.

SVN 2011 - Zusammenfassung Arbeitsgemeinschaft Zuckerrübenanbau Bonn

Variante		nertrag		U	Berein.	J		0		ΜV	K	Na	AmN	Pfl./ha	Vorbefall	Vorbefall	Nachbefall	Nachbefall	pf / pi	pf / pi
4 10: 1 0 4 04	t/ha	rel.	t/ha	rel.	t/ha	rel.	%	rel.	<u>%</u>	rel.		I/1000	g R.	z. Ernte	E+L/100 n				00	
1. Miel Saat: 24.			<u>: 24.10.</u>		-r. Klein				Whg. a				40.0	407070	30 cm	60 cm	30 cm	60 cm	30 cm	60 cm
Pauletta	89,5	102,1	15,80	97,9	14,06	97,0	17,65	95,8	1,34	105,7	27,1	4,7	19,8	107870	946		1606		1,7	
Theresa KWS	85,8	97,9	16,48	102,1	14,94	103,0	19,21	- ,	1,19	94,3	24,6	3,9	15,4	115278	792	050	1007	7000	1,3	00 7
Beretta	78,5	89,5	14,48	89,7	13,16	90,7	18,43	100,0	1,08	85,8	21,2	6,3	11,5	113426	215	352	1830	7282	8,5	20,7
Belladonna KWS	78,1	89,1	15,37	95,3	14,03	96,7	19,69	106,8	1,12	88,4	24,9	3,7	12,2	111111	525		1320		2,5	
Adrianna KWS	75,6	86,3	14,38	89,1	13,08	90,2	19,01	103,2	1,12	88,4	23,7	4,1	12,6	113889	552	200	798	4.450	1,4	5 0
Nemata Kern	88,2	100,7	15,72	97,4	14,15	97,6	17,82	96,7	1,18	93,5	24,7	6,5	13,6	111111	204	280	288	1452	1,4	5,2
Kühn	87,6	99,9	15,79	97,9	14,31	98,7	18,02	97,8	1,09	86,1	23,0	4,2	11,7	109722	605		670		1,1	
Hella	89,9	102,5	16,31	101,1	14,54	100,3	18,15	98,4	1,37	108,3	27,2	4,2	21,4	110648	375	4.4	786	04.00	2,1	40.0
Kepler	90,5	103,2	16,59	102,8	15,04	103,7	18,33	99,5	1,12	88,4	25,0	4,1	12,0	109259	820	44	1656	2189	2,0	49,8
Kristallina KWS	83,8	95,6	16,13	100,0	14,75	101,7	19,23	104,3	1,05	82,9	21,8	3,4	11,1	107870	280	2750	870	5363	3,1	2,0
Nemata Rand	84,5	96,4	15,15	93,9	13,63	94,0	17,92	97,2	1,19	94,3	24,3	6,7	14,1	113889						
GD 5 %	5,7	6,6	1,06	6,6	0,96	6,7	0,32	1,7	0,06	5,1	0,9	0,6	2,4	6385						
	Saat: 24			: 16.09		r. Klein				4 Whg.	a` 5,4				30 cm	60 cm	30 cm	60 cm	30 cm	60 cm
Pauletta	96,8	103,3	15,46	98,6	13,36	97,1	15,98	95,3	1,56	108,7	32,2	7,8	25,1	108796	88		118		1,3	
Theresa KWS	90,6	96,7	15,89	101,4	14,15	102,9	17,55	104,7	1,31	91,3	28,3	5,2	18,0	111574	20		30		1,5	
Beretta	81,8	87,3	13,51	86,2	12,04	87,6	16,52	98,6	1,20	83,2	25,4	7,6	13,4	112500	15	498	270	2022	18,0	4,1
Belladonna KWS	82,5	88,0	14,86	94,8	13,36	97,1	17,99	107,3	1,22	84,5	29,2	4,5	13,8	104630	110		126		1,1	
Adrianna KWS	85,2	90,9	14,54	92,8	12,97	94,3	17,08	101,9	1,25	86,9	27,7	6,0	15,2	112037	105		168		1,6	
Nemata	92,1	98,3	15,20	97,0	13,42	97,5	16,53	98,6	1,33	92,5	30,7	8,6	15,8	108333	150	605	25	872	0,2	1,4
Kühn	80,2	85,6	13,29	84,8	11,84	86,1	16,59	99,0	1,20	83,7	26,5	5,2	14,4	104630	80		165		2,1	
Hella	92,5	98,7	15,29	97,5	13,28	96,5	16,55	98,8	1,57	109,0	34,3	5,6	25,4	106019	110		99		0,9	
Kepler	88,4	94,3	14,77	94,2	13,19	95,9	16,72	99,7	1,19	82,8	28,0	4,5	13,4	108796	55	512	462	1639	8,4	3,2
Kristallina KWS	86,2	92,0	15,43	98,5	13,92	101,2	17,91	106,8	1,15	80,0	26,1	4,1	12,9	109722	204	612	165	1175	0,8	1,9
GD 5 %	9,8	10,4	1,65	10,5	1,45	10,5	0,31	1,8	0,08	5,4	1,6	0,9	2,6	8087						
3. Sechtem Saa	t: 27.03	.11 E	rnte: 2	2.09.11	3-r. k	(leinpar	z. (Nema			/hg. a`	5,4 qm				30 cm	60 cm	30 cm	60 cm	30 cm	60 cm
Pauletta	97,7	107,1	16,01	102,8	14,12	101,8	16,39	95,7	1,34	105,9	35,7	2,5	16,7	102315	185		175		0,9	
Theresa KWS	84,7	92,9	15,13	97,2	13,62	98,2	17,86	104,3	1,19	94,1	31,7	1,9	12,8	96296	55		75		1,4	
Beretta	93,7	102,7	15,81	101,5	14,20	102,4	16,88	98,5	1,12	88,2	30,5	3,3	9,6	101852	203	1323	275	1281	1,4	1,0
Belladonna KWS	83,2	91,3	15,14	97,2	13,67	98,6	18,18	106,2	1,16	91,6	31,0	1,9	11,9	100463	27		32		1,2	
Adrianna KWS	88,3	96,8	15,48	99,4	13,94	100,5	17,54	102,4	1,15	90,7	30,5	2,0	11,6	102315	65		209		3,2	
Nemata	100,0	109,6	16,66	107,0	14,83	106,9	16,66	97,3	1,23	97,4	34,3	3,6	12,4	100926	180	1965	40	952	0,2	0,5
Kühn	95,2	104,4	15,85	101,8	14,18	102,3	16,65	97,2	1,15	90,6	29,3	2,4	12,0	98148	105		110		1,0	
Hella	94,9	104,1	15,91	102,1	14,02	101,1	16,76	97,9	1,39	109,5	36,7	1,9	18,4	103241	55		60		1,1	
Kepler	103,0	112,9	17,52	112,5	15,74	113,5	17,02	99,4	1,13	89,3	31,0	1,8	10,7	99537	55	1985	85	1128	1,5	0,6
Kristallina KWS	92,9	101,8	16,95	108,9	15,38	111,0	18,25	106,6	1,09	85,9	28,2	1,8	10,3	103704	25	1419	45	1177	1,8	8,0
GD 5 %	4,6	5,0	0,82	5,3	0,76	5,5	0,22	1,3	0,07	5,6	1,9	0,3	2,1	6817						
4. Seelrath Saat	: 23.03.	11 E	rnte: 10).10.11	3-r. K	leinparz	. (Nema	ta 3-r.),	4 W	hg. a` 8	,8 gm	_			30 cm	60 cm	30 cm	60 cm	30 cm	60 cm
Pauletta	94,1	102,3	16,04	98,8	14,15	97,8	17,03	96,5	1,41	107,0	31,2	4,0	21,2	95000	1724		1335		0,8	
Theresa KWS	89,9	97,7	16,44	101,2	14,79	102,2	18,27	103,5	1,23	93,0	28,6	4,3	14,7	95000	900		1095		1,2	
Beretta	80,4	87,3	14,05	86,5	12,67	87,6	17,50	99,1	1,11	84,4	26,5	6,6	9,9	95000	1665	1524	1835	3075	1,1	2,0
Belladonna KWS	95,4	103,7	18,00	110,8	16,31	112,7	18,86	106,8	1,17	88,5	28,0	4,6	12,4	95000	1409		735		0,5	
Adrianna KWS	93,0	101,0	16,94	104,3	15,28	105,6	18,21	103,1	1,18	89,4	27,7	4,4	13,1	95000	1176		985		0,8	
Nemata	89,8	97,6	15,11	93,0	13,40	92,6	16,82	95,3	1,30	98,7	30,8	7,2	15,2	95000	600	2760	385	1298	0,6	0,5
Kühn	96,1	104,4	16,31	100,4	14,62	101,0	16,97	96,1	1,16	88,2	26,5	4,5	12,9	95000	1396		898		0,6	
Hella	95,6	103,9	16,69	102,8	14,77	102,1	17,45	98,8	1,40	106,3	30,8	3,7	21,2	95000	1355		882		0,7	
Kepler	97,0	105,4	16,36	100,7	14,62	101,0	16,85	95,4	1,19	90,4	28,3	4,9	13,1	95000	345	1243	534	2325	1,5	1,9
Kristallina KWS	91,5	99,4	16,89	104,0	15,37	106,2	18,46	104,6	1,06	80,7	25,6	4,0	9,6	95000	653	980	525	1425	0,8	1,5
GD 5 %	6,1	6,6	1,13	6,9	1,04	7,2	0,36	2,0	0,07	5,0	1,3	0,9	2,3							

nemat11.xls 1 30.01.2012

SVN 2011 - Zusammenfassung Arbeitsgemeinschaft Zuckerrübenanbau Bonn

Sult	Variante	Rüber	nertrag	Zucke	rertrag	Berein.	Z.ertrag	Zucker	gehalt	S	ΜV	K	Na	AmN	Pfl./ha	Vorbefall	Vorbefall	Nachbefall	Nachbefall	pf / pi	pf / pi
Pauletta						t/ha						mmo	l/1000	g R.	z. Ernte	E+L/100 m	l Boden				
Theresa KWYS	5. Buir Saat: 24.	03.11	Ernte:	11.10.11	3-r.	Kleinpar	rz. (Nema	ata 3-r.),	4 Who	ı. a` 8,	8 qm					30 cm	60 cm	30 cm	60 cm	30 cm	60 cm
Seretta																		-			
Belledman KWS 8,8 10,3 16,00 10,05 14,59 10,05 10,14 10,05 1,08 9,1 3,25 1,6 8,1 7,7 9,000 690 840 847 1,04 10,04 1,04		,	,	,			,		,	,	,	,		- , -		-		_		,	
Addresing KWS 8 92 102.6 15.57 106.6 14.20 107.5 18.79 103.7 1.06 93.1 31.2 19.7 7, 95000 540 541 200 213 03.0 50.5 0.5		,	,	,		,	,		,	,	,	,	,	,			1469		2000	· ·	1,4
Nemata 81,5 100,9 14,07 98,3 12,66 95,4 17,27 98,3 1,21 10,77 38,8 32, 10,2 95000 90,2 2431 290 1213 0,5 0,5 Helle 90,2 111,6 15,95 109,2 14,30 108,3 17,68 97,6 1,23 10,8 23,8 1,8 16,7 11,9 11,9 11,4		/ -		,	/ -	,	,	- ,	,	,	/	,	,	,				_			
Kinh 98,4 119,3 16,77 11,48 71,61 114,8 71,61 71,62 71,62 71,63		,	,	,			,		,	,	,	,		,						,	
Hella Mode Mode Mode Hella Mode		,	,	,	,	,	,		,	,	,	,	,	,			2431		1213	,	0,5
Kepler Sp. 15,57 16,58 113,1 14,98 113,4 17,68 75,5 1,05 92,3 31,8 1,6 7,1 95,00 395 1554 1129 1233 2,9 0,8 13,00 14,00 17,00			,	,	,		,	'	,		,	,	,	,							
Kristallina KWS 86,5 107,1 16,38 112,1 14,9 113,5 18,02 104,4 1,00 87,7 28,3 1,5 6,8 95000 395 1554 1129 1239 2,9 0,8 CB 5% 7,4 9,1 1,35 9,2 1,22 9,2 9,3 1,36 0,3 1,8 0,3 1,			,	,			,		,			,		,				-			
CD 5 % 7,4	1 .	,		,	,				,		,	,									
Second Salt 25-03 Errite 1-10 Second	Kristallina KWS	86,5	107,1	16,38	112,1	14,99	113,5	18,92	104,4	1,00	87,7	28,3	1,5	6,8	95000	395	1554	1129	1293	2,9	0,8
Pauletta	GD 5 %	7,4	9,1	1,35	9,2	1,22	9,2	0,33	1,8	0,03	3,0	1,2	0,4	1,0							
Pauletta	6. Geretzhoven	Saat: 25	.03.	Ernte:	11.10.		4-r. Klei	nparz	4 Wha	. a` 7.2	am					30 cm	60 cm	30 cm	60 cm	30 cm	60 cm
TheresakWS 93,0 97,0 15,40 100,5 1353 102,2 16,57 103,5 1,41 90,0 20,6 6,8 20,1 101389 430 150 960 105 2,2 0,7 Berestia 79,5 83,0 12,25 79,9 10,73 81,0 15,0 96,2 13,23 81,0 15,0 98,0 14,8 85,9 89,6 14,58 95,1 12,90 97,4 16,98 106,0 13,0 86,8 20,7 6,2 18,3 101389 803 660 935 780 12,2 12,2 12,4 Adrianna KWS 85,9 89,6 10,0 14,70 95,9 12,68 95,7 15,33 95,0 15,1 96,2 32,2 11,3 20,6 98,26 47,7 248 545 334, 0,8 1,4 Nemata 95,8 100,0 14,70 95,9 12,68 95,7 15,33 95,8 1,51 96,2 32,2 11,3 20,6 98,26 47,7 248 545 334, 0,8 1,4 Nemata 95,8 100,0 14,70 95,9 12,68 95,7 15,33 98,9 12,5 18,9 12,9 11,1 0,1 13,1 1,1 13,1 13		1				12,96						34,9	9,1	30,0	104167						
Beretta		,	,	,	,		,		,	,		,	,	,							
Belladonna KWS		,	,	,	,	,	,		,	,	,	,	,	,						,	
Adriama KWS 84,5 88,1 13,91 90,7 12,29 92,8 16,46 10,28 13,20 80,9 13,09 90,7 14,89 97,2 13,10 98,9 15,80 97,9 14,89 97,2 13,10 98,9 15,80 97,9 15,33 98,8 15,10 98,21 13,20 98,21 11,5 20,20	Belladonna KWS	,	,	,			,		,		,			,							
Nemata			,	,			,		,	,	,	,	,	,							
Kühn			,								,			,							
Hella			,	,	,		,		,		,	,	,	,							
Kristallina KWS 88,7 92,6 15,27 99,6 13,65 103,0 17,19 107,4 12,4 78,7 27,3 4,5 15,6 101042 561 1612 505 612 0,9 0,4 GD 5% 67, 7,0 1,18 7,7 1,08 8,1 0,29 1,8 0,09 5,9 1,8 1,3 3,2 4818 561 1612 505 612 0,9 0,4 60 cm 7,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1														27,0				535			
Kristallina KWS 88,7 92,6 15,27 99,6 13,65 103,0 17,19 107,4 1,24 78,7 27,3 4,5 15,6 101042 561 1612 505 612 0,9 0,4 GD 5% 6,7 7,0 1,18 7,7 1,08 8,1 0,29 1,8 0,29 1,8 0,09 5,9 1,8 1,3 3,2 4818 561 1612 505 612 0,9 0,4 GD 5% 6,7 7,0 1,18 7,7 1,08 8,1 0,29 1,8 0,29 1,8 0,29 1,8 1,3 3,2 4818 561 1612 505 612 0,9 0,4 GD 5% 6,7 7,0 1,18 7,7 1,08 8,1 0,29 1,8 0,29 1,8 1,3 0,29 1,8 1,3 3,2 4818 561 1612 505 612 0,9 0,4 60 cm 9,4 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	Kepler	98,2	102,5	15,64	102,0		103,8	15,92	99,5	,	84,7	29,2	,	17,8	103472	369	578	750	336		
GD 5 % 6,7 7,0 1,18 7,7 1,08 8,1 0,29 1,8 0,09 5,9 1,8 1,3 3,2 4818 T. Linnich Saat: 26.03 Ernte: 25.10 4-r. Kleinparz 4 Whg. a' 7,2 gm 1,6 1 06,5 1,6 1 0,5 1,6	Kristallina KWS	88,7	92,6	15,27	99,6		103,0	17,19	107,4	1,24	78,7	27,3	4,5	15,6	101042	561	1612	505	612	0,9	0,4
Pauletta	GD 5 %	6,7	7,0		7,7		8,1	0,29	1,8		5,9	1,8		3,2						,	*
Pauletta	7 Linnich Saat:	26.03	Frnt	e: 25 10)	4-r k	(leinnarz	4 W	ha a` 7	2 am		1				30 cm	60 cm	30 cm	60 cm	30 cm	60 cm
Theresa KWS 87,1 96,4 15,65 100,8 14,01 102,0 17,96 104,4 1,28 93,5 29,7 4,7 16,1 85764 772 1208 1,6 Beretta 80,6 89,2 13,64 87,9 12,18 88,7 16,92 98,4 1,21 88,6 27,8 8,4 12,4 85764 929 54770 5,9 Belladonna KWS 86,2 95,4 15,73 101,4 14,15 103,0 18,25 106,1 1,24 90,9 28,8 5,3 14,8 84375 1720 3040 1,8 Adrianna KWS 89,2 98,7 15,80 101,8 14,18 103,2 17,72 103,0 1,22 89,2 27,6 5,3 14,4 89236 780 1175 1,5 Nemata 92,6 102,5 15,82 101,9 14,02 102,1 17,08 99,3 1,34 97,8 32,7 7,1 15,8 83681 803 496 0,6 Kühn 97,2 107,6 16,21 104,4 14,47 105,3 16,67 96,9 1,19 87,1 26,0 5,4 13,9 89583 992 24332 2,5 Hella 97,6 108,0 16,58 106,8 14,57 106,1 16,99 98,8 1,46 106,4 34,1 5,6 20,8 87847 715 1532 2,1 Kepler 98,6 109,2 16,74 107,9 14,96 108,9 16,97 98,6 1,20 88,0 28,5 34,4 13,7 89583 1430 3776 2,6 Kristallina KWS 88,8 98,3 16,34 105,3 14,82 107,9 18,40 107,0 1,12 81,9 25,3 3,9 12,1 1,6 4275 88,2 9,1 1,50 9,7 1,35 9,8 0,29 1,7 0,05 3,9 1,2 1,1 1,6 4275 91.		1									106.5	31.2	7.7	21.3	85764		00 0111		00 0111		00 0111
Beretta Beretta Beretta Beretta Beretta Belladonna KWS Belladona KWS Belladonna KWS Belladonna KWS Belladonna KWS Bellad		,	,	,		,	,		,	,		,	,	,							
Belladonna KWS 86,2 95,4 15,73 101,4 14,15 103,0 18,25 106,1 1,24 90,9 28,8 5,3 14,8 84375 1720 3040 1,8		,	,	,	,	,	,		,	,	/ -	,	,	,							
Adrianna KWS 89,2 98,7 15,80 101,8 14,18 103,2 17,72 103,0 1,22 89,2 27,6 5,3 14,4 89236 780 1175 1,5 Nemata 92,6 102,5 15,82 101,9 14,02 102,1 17,08 99,3 1,34 97,8 32,7 7,1 15,8 83681 803 496 0,6 Kibhn 97,2 107,6 16,21 104,4 14,47 105,3 16,67 96,9 1,19 87,1 26,0 5,4 13,9 89583 992 24332 2,5 Hella 97,6 108,0 16,58 106,8 14,57 106,1 16,99 98,8 1,46 106,4 34,1 5,6 20,8 87847 715 1532 2,1 Kepler 98,6 109,2 16,74 107,9 14,96 108,9 16,97 98,6 1,20 88,0 28,5 4,4 13,7 89583 1430 3776 2,6 Kristallina KWS 88,8 98,3 16,34 105,3 14,82 107,9 18,40 107,0 1,12 81,9 25,3 3,9 12,1 86806 1342 3600 2,7 GD 5% 8,2 9,1 1,50 9,7 1,35 9,8 0,29 1,7 0,05 3,9 1,2 1,1 1,6 4275 360 MB 2 10,1 1,6 4275 360 MB 2 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1		,	,	,	,	,	,		,		,	,	,	,						,	
Nemata 92,6 102,5 15,82 101,9 14,02 102,1 17,08 99,3 1,34 97,8 32,7 7,1 15,8 83681 803 496 0,6 Kühn 97,2 107,6 16,21 104,4 14,47 105,3 16,67 96,9 1,19 87,1 26,0 5,4 13,9 89583 992 2432 2,5		,	98.7	,	,		,		,	,	89.2	,	,			780					
Kühn 97,2 107,6 16,21 104,4 14,47 105,3 16,67 96,9 1,19 87,1 26,0 5,4 13,9 89583 992 2432 2,5 Hella 97,6 108,0 16,58 106,8 14,57 106,1 16,99 98,8 1,46 106,4 34,1 5,6 20,8 87847 715 1532 2,1 Kepler 98,6 109,2 16,74 107,9 14,96 108,9 16,97 98,6 1,20 88,0 28,5 4,4 13,7 89583 1430 3776 2,6 Kristallina KWS 88,8 98,3 16,34 105,3 107,9 18,40 107,0 1,12 81,9 12,1 1,1 1,6 4275 3600 2,7 B.Frauwüllesheim Saat: 29,3 Ernte: 18.10. 4r. Kleinparz. (Kernberritung 2 R.). 4 Whg. a' 7,2 gm 30 cm 60 cm 30 cm 60 cm Pauletta 100,3 104,1 16,99		,	,	,		,	,		,	,	,	,		,							
Hella				,							,										
Kepler 98,6 109,2 16,74 107,9 14,96 108,9 16,97 98,6 1,20 88,0 28,5 4,4 13,7 89583 1430 3776 3600 2,7		97,6	108,0		106,8			16,99			106,4	34,1	5,6	20,8	87847	715		1532			
Kristallina KWS 88,8 98,3 16,34 105,3 14,82 107,9 18,40 107,0 1,12 81,9 25,3 3,9 12,1 86806 1342 3600 2,7	Kepler	98,6	109,2	16,74	107,9			16,97			88,0	28.5			89583	1430		3776			
8. Frauwüllesheim Saat: 29.3. Ernte: 18.10. 4-r. Kleinparz. (Kernbeerntung 2 R.), 4 Whg. a' 7,2 gm 30 cm 60 cm 30 cm 60 cm Pauletta 100,3 104,1 16,99 99,8 14,91 98,5 17,08 100,2 15,36 101,5 18,49 104,4 1,26 92,1 32,6 3,5 14,4 102778 125 125 5 51 12 5 125 5 <td>Kristallina KWS</td> <td>88,8</td> <td>98,3</td> <td>16,34</td> <td>105,3</td> <td>14,82</td> <td>107,9</td> <td>18,40</td> <td>107,0</td> <td>1,12</td> <td>81,9</td> <td>25,3</td> <td>3,9</td> <td>12,1</td> <td>86806</td> <td>1342</td> <td></td> <td>3600</td> <td></td> <td>2,7</td> <td></td>	Kristallina KWS	88,8	98,3	16,34	105,3	14,82	107,9	18,40	107,0	1,12	81,9	25,3	3,9	12,1	86806	1342		3600		2,7	
Pauletta 100,3 104,1 16,99 99,8 14,91 98,5 16,94 95,6 1,47 107,9 36,2 5,1 20,8 107292 51 Theresa KWS 92,4 95,9 17,08 100,2 15,36 101,5 18,49 104,4 1,26 92,1 32,6 3,5 14,4 102778 125 Beretta 100,8 104,6 18,12 106,4 16,34 107,9 17,98 101,5 1,17 85,5 31,4 4,6 10,7 103472 86 Belladonna KWS 83,6 86,7 15,68 92,0 14,17 93,6 18,76 105,9 1,20 87,8 32,3 3,6 12,0 97917 30 Adrianna KWS 92,0 95,5 17,03 100,0 15,39 101,7 18,52 104,5 1,19 86,9 32,0 3,2 11,8 107292 10 Nemata 95,3 98,9 16,97 99,6 15,21 100,5 17,81 100,5 1,25 91,7 34,7 4,8 12,4 103819 109 Kühn 96,3 99,9 17,13 100,6 15,43 102,0 17,80 100,4 1,16 85,2 30,5 3,5 11,5 104167 24 Hella 98,6 102,3 17,13 100,5 15,14 100,0 17,38 98,1 1,41 103,3 36,2 3,6 18,9 107292 12 Kepler 103,5 107,4 18,29 107,4 16,44 108,6 17,67 99,7 1,19 87,1 33,0 3,5 11,4 104861 11 Kristallina KWS 89,5 92,9 16,90 99,2 15,34 101,4 18,88 106,6 1,14 83,2 28,8 3,1 11,4 103125 178	GD 5 %	8,2	9,1	1,50	9,7	1,35	9,8	0,29	1,7	0,05	3,9	1,2	1,1	1,6	4275						
Theresa KWS	8. Frauwüllesheim	Saat:	29.3.	Ernte	: 18.10.	4-r. k	(leinparz	. (Kernb	eerntun	g 2 R.)	, 4 W	hg. a`	7,2 qm			30 cm	60 cm	30 cm	60 cm	30 cm	60 cm
Beretta 100,8 104,6 18,12 106,4 16,34 107,9 17,98 101,5 1,17 85,5 31,4 4,6 10,7 103472 86 83,6 86,7 15,68 92,0 14,17 93,6 18,76 105,9 1,20 87,8 32,3 3,6 12,0 97917 30 30 Adrianna KWS 92,0 95,5 17,03 100,0 15,39 101,7 105,5 1,19 86,9 32,0 3,2 11,8 107292 10 10 10 10 10 10 10 1	Pauletta	100,3	104,1	16,99	99,8	14,91	98,5	16,94	95,6	1,47	107,9	36,2	5,1	20,8	107292	51					
Belladonna KWS	Theresa KWS	92,4	95,9	17,08	100,2	15,36	101,5	18,49	104,4	1,26	92,1	32,6	3,5	14,4	102778	125					
Adrianna KWS 92,0 95,5 17,03 100,0 15,39 101,7 18,52 104,5 1,19 86,9 32,0 3,2 11,8 107292 10 10 Nemata 95,3 98,9 16,97 99,6 15,21 100,5 17,81 100,5 1,25 91,7 34,7 4,8 12,4 103819 109 Kühn 96,3 99,9 17,13 100,6 15,43 102,0 17,80 100,4 1,16 85,2 30,5 3,5 11,5 104167 24 Hella 98,6 102,3 17,13 100,5 15,14 100,0 17,38 98,1 1,41 103,3 36,2 3,6 18,9 107292 12 Kepler 103,5 107,4 18,29 107,4 16,44 108,6 17,67 99,7 1,19 87,1 33,0 3,5 11,4 104861 11 Kristallina KWS 89,5 92,9 16,90 99,2 15,34 101,4 18,88 106,6 1,14 83,2 28,8 3,1 11,4 103125 178	Beretta	100,8	104,6	18,12	106,4	16,34	107,9	17,98	101,5	1,17	85,5	31,4	4,6	10,7	103472	86					
Nemata 95,3 99,9 16,97 99,6 15,21 100,5 17,81 100,5 1,25 91,7 34,7 4,8 12,4 103819 109 Kühn 96,3 99,9 17,13 100,6 15,43 102,0 17,80 100,4 1,16 85,2 30,5 3,5 11,5 104167 24 Hella 98,6 102,3 17,13 100,5 15,14 100,0 17,38 98,1 1,41 103,3 36,2 3,6 18,9 107292 12 Kepler 103,5 107,4 18,29 107,4 16,44 108,6 17,67 99,7 1,19 87,1 33,0 3,5 11,4 104861 11 Kristallina KWS 89,5 92,9 16,90 99,2 15,34 101,4 18,88 106,6 1,14 83,2 28,8 3,1 11,4 103125 178	Belladonna KWS	83,6	86,7	,		14,17	93,6	18,76	105,9	1,20	87,8	,	3,6	12,0		30					
Kühn 96,3 99,9 17,13 100,6 15,43 102,0 17,80 100,4 1,16 85,2 30,5 3,5 11,5 104167 24 Hella 98,6 102,3 17,13 100,5 15,14 100,0 17,38 98,1 1,41 103,3 36,2 3,6 18,9 107292 12 Kepler 103,5 107,4 18,29 107,4 16,44 108,6 17,67 99,7 1,19 87,1 33,0 3,5 11,4 104861 11 Kristallina KWS 89,5 92,9 16,90 99,2 15,34 101,4 18,88 106,6 1,14 83,2 28,8 3,1 11,4 103125 178	Adrianna KWS	92,0	95,5	,	100,0	15,39	,	18,52	104,5	1,19	86,9	32,0	3,2	11,8		10					
Hella 98,6 102,3 17,13 100,5 15,14 100,0 17,38 98,1 1,41 103,3 36,2 3,6 18,9 107292 12 Kepler 103,5 107,4 18,29 107,4 16,44 108,6 17,67 99,7 1,19 87,1 33,0 3,5 11,4 104861 11 Kristallina KWS 89,5 92,9 16,90 99,2 15,34 101,4 18,88 106,6 1,14 83,2 28,8 3,1 11,4 103125 178			,	,			,			,	,	,	,	,							
Kepler 103,5 107,4 18,29 107,4 16,44 108,6 17,67 99,7 1,19 87,1 33,0 3,5 11,4 104861 11 Kristallina KWS 89,5 92,9 16,90 99,2 15,34 101,4 18,88 106,6 1,14 83,2 28,8 3,1 11,4 103125 178	Kühn	96,3	99,9	17,13	100,6	15,43		17,80	100,4	1,16	85,2			11,5							
Kristallina KWS 89,5 92,9 16,90 99,2 15,34 101,4 18,88 106,6 1,14 83,2 28,8 3,1 11,4 103125 178	Hella		,						,			,		18,9							
	Kepler	103,5	107,4	,	- ,	16,44	,	17,67	99,7	1,19	87,1	33,0	3,5	11,4	104861						
GD 5 % 7,7 8,0 1,34 7,8 1,18 7,8 0,32 1,8 0,04 2,6 1,6 0,8 1,0 4240	Kristallina KWS	89,5	92,9	16,90	99,2	15,34	101,4	18,88	106,6	1,14	83,2	28,8	3,1	11,4	103125	178					
	GD 5 %	7,7	8,0	1,34	7,8	1,18	7,8	0,32	1,8	0,04	2,6	1,6	0,8	1,0	4240						

nemat11.xls 2 30.01.2012

SVN 2011 - Zusammenfassung Arbeitsgemeinschaft Zuckerrübenanbau Bonn

Variante	Rüber	ertrag	Zucker	ertrag	Rerein	Z.ertrag	Zucker	nehalt	S	ΜV	K	Na	AmN	Pfl./ha	Vorbefall	Vorhefall	Nachhefall	Nachbefall	pf / pi	pf / pi
varianto	t/ha	rel.	t/ha	rel.	t/ha	rel.	%	rel.	%	rel.		1/1000		z. Ernte	E+L/100 m		rtaoriborair	racibolan	pi / pi	pi / pi
9. Sevelen Saat:		Ernte			Kleinpar		beerntur			ng. a` 1			J		30 cm	60 cm	30 cm	60 cm	30 cm	60 cm
Pauletta	123,2	103,3	21,19	99,9	18,55	98,8	17,20	96,7	1,54	107,7	43,2	2,6	21,3	95000	0					
Theresa KWS	115,3	96,7	21,21	100,1	19,00	101,2	18,39	103,3	1,32	92,3	36,9	2,4	15,4	95000	0					
Beretta	124,9	104,7	22,33	105,3	19,93	106,2	17,88	100,5	1,32	92,2	39,0	2,8	14,0	95000	0					
Belladonna KWS	102,4	85,9	19,51	92,0	17,62	93,9	19,04	107,0	1,23	86,3	35,0	2,3	12,8	95000	0					
Adrianna KWS	111,2	93,3	20,47	96,6	18,43	98,2	18,41	103,4	1,23	86,1	34,9	2,3	12,7	95000	0					
Nemata	125,0	104,8	21,34	100,7	18,84	100,3	17,09	96,0	1,40	98,1	41,0	3,2	16,4	95000	0					
Kühn	119,7	100,3	21,20	100,0	18,96	101,0	17,71	99,5	1,27	88,6	35,5	2,4	13,9	95000	0					
Hella	122,1	102,4	21,51	101,5	18,95	100,9	17,63	99,1	1,49	104,5	42,5	2,4	19,8	95000	0					
Kepler	124,9	104,8	22,25	105,0	19,87	105,8	17,81	100,1	1,31	91,3	38,0	2,2	14,3	95000	0					
Kristallina KWS	114,2	95,8	21,29	100,4	19,28	102,7	18,63	104,7	1,16	80,8	31,5	2,2	11,3	95000	0					
Lukas	119,4	100,1	22,41	105,7	20,26	107,9	18,78	105,5	1,20	84,1	32,7	2,0	12,7	95000	0					
GD 5 %	5,9	5,0	1,06	5,0	0,95	5,1	0,19	1,0	0,06	3,9	1,3	0,2	1,8							
Mittel aus 7 Versu	chen 20							Stando							30 cm	60 cm	30 cm	60 cm	30 cm	60 cm
Pauletta	93,6	103,8	15,52	99,6	13,61	98,5	16,61	95,8	1,43	107,0	32,6	5,4	20,6	99845	793		839		1,2	
Theresa KWS	86,8	96,2	15,65	100,4	14,04	101,5	18,05	104,2	1,24	93,0	29,3	4,0	15,1	100043	629		963		1,5	
Beretta	82,3	91,3	14,02	90,0	12,58	91,0	17,03	98,3	1,15	86,3	27,2	6,4	11,3	100853	570	935	2554	3254	7,5	5,6
Belladonna KWS	85,0	94,2	15,66	100,5	14,14	102,2	18,44	106,4	1,19	89,2	29,3	4,0	13,1	98853	747		1091		1,5	
Adrianna KWS	85,5	94,8	15,23	97,8	13,71	99,1	17,83	102,9	1,18	88,6	28,2	4,2	13,2	101267	619		895		1,8	
Nemata	91,4	101,3	15,33	98,4	13,59	98,3	16,79	96,9	1,30	97,2	31,9	6,8	14,8	98902	533	1278	235	882	0,5	1,3
Kühn	92,5	102,5	15,59	100,0	13,96	100,9	16,85	97,3	1,16	87,0	26,8	4,3	12,9	99613	679		1007		1,6	
Hella	94,0	104,1	16,01	102,7	14,09	101,9	17,05	98,4	1,44	107,5	33,8	4,2	20,9	99828	544	005	811	4.440	1,5	0.0
Kepler	95,6	106,0	16,31	104,6	14,61	105,7	17,07	98,5	1,17	87,7	28,8	3,9	12,5	100093	542	995	1068	1448	2,6	8,3
Kristallina KWS	88,4	97,9	16,20	103,9	14,69	106,3	18,34	105,8	1,10	82,3	26,1	3,3	11,2	99878	521	1575	914	1808	1,7	1,2
GD 5 %	4,2	4,7	0,75	4,8	0,66	4,8	0,18	1,1	0,04	3,0	1,0	0,7	1,4	2172	279	758	687	1183	2,0	9,2
Mittel aus 7 Versue															30 cm	60 cm	30 cm	60 cm	30 cm	60 cm
Beretta	82,3	100,0	14,02	100,0	12,58	100,0	17,03	100,0	1,15	100,0	27,2	6,4	11,3	100853	570	935	2554	3254	7,5	5,6
Pauletta	93,6	113,7	15,52	110,7	13,61	108,2	16,61	97,5	1,43	124,0	32,6	5,4	20,6	99845	793		839		1,2	
Theresa KWS	86,8	105,5	15,65	111,6	14,04	111,6	18,05	106,0	1,24	107,7	29,3	4,0	15,1	100043	629		963		1,5	
Belladonna KWS	85,0	103,2	15,66	111,7	14,14	112,4	18,44	108,3	1,19	103,3	29,3	4,0	13,1	98853	747		1091		1,5	
Adrianna KWS	85,5	103,9	15,23	108,6	13,71	109,0	17,83	104,7	1,18	102,6	28,2	4,2	13,1	101267	619	4070	895	000	1,8	4.0
Nemata Kühn	91,4 92.5	111,0 112,4	15,33 15,59	109,3 111,2	13,59 13,96	108,0 111.0	16,79 16.85	98,5 98,9	1,30 1,16	112,6 100.8	31,9 26,8	6,8 4,3	14,8 12,9	98902 99613	533 679	1278	235 1007	882	0,5 1,6	1,3
Hella	94.0	114,1	16,01	114,2	14,09	111,0	17,05	100,1	1,44	124.5	33,8	4,3 4,2	20,9	99828	544		811		1,5	
Kepler	94,0 95,6	116,1	16,31	116,3	14,61	116,1	17,03	100,1	1,44	101,6	28,8	3,9	12,5	100093	542	995	1068	1448	2,6	8,3
Kristallina KWS	88,4	107,3	16,20	115,5	14,69	116,2	18,34	100,2	1,10	95,3	26,1	3,3	11,2	99878	521	1575	914	1808	1,7	1,2
GD 5 %	4.2	5,2	0,75	5,3	0.66	5,3	0,18	1,1	0.04	3,5	1,0	0,7	1.4	2172	279	758	687	1183	2,0	9,2
		,	,			,		,				0,1	1,-	2172					,	,
Palmersheim Sa Pauletta	at: 23.0	116,9	Ernte: 2 12,32	114,3	3-r. r 10,77	111.7	Nemata 6 17,20	97,8	1,57	a` 5,4 q 124,8	m 35,5	4,1	25,5	94907	30 cm 308	60 cm	30 cm 624	60 cm	30 cm 2,0	60 cm
Theresa KWS	7 1,0	110,5	12,02	114,0	10,77	, ,	17,20	51,0	1,07	124,0	00,0	7,1	20,0	34301	1388		2660		1,9	
Beretta	61,3	100,0	10,78	100,0	9,64	100,0	17,59	100,0	1,26	100,0	30,1	6,5	14,1	101389	578	941	4719	4945	8,2	5,3
Belladonna KWS	0.,0	.00,0	. 0,. 0	.00,0	0,0 .	.00,0	,00	.00,0	.,_0	.00,0	00,.	0,0	, .		690	0	1692	.0.0	2,5	0,0
Adrianna KWS															1055		1634		1,5	
Nemata	69.7	113,8	12,40	115,0	10,92	113,3	17,78	101.1	1,51	120.5	36.1	8.4	20.9	96759	940	650	196	335	0,2	0.5
Kühn	00,.	, .	,	, .	.0,02	, .	,	, .	.,	.20,0	00,.	σ, .	20,0	00.00	570	000	1416	000	2,5	0,0
Hella															431		490		1,1	
Kepler	70.4	114,9	12,39	115,0	11.07	114.8	17,60	100,1	1,28	101.7	33,3	3,6	14.8	102315	935	1064	583	768	0,6	0,7
Kristallina KWS	71,3	116,3	13,31	123,5	11,98	124,3	18,69	106,3	1,26	100,0	30,1	3,3	15,7	107407	710	2099	475	1608	0,7	0,8
GD 5 %	8.2	13,4	1,46	13,5	1,29	13,3	0,20	1.1	0,10	8,0	1,5	0.9	3,3	11147			_		- ,-	- ,=
00 0 70	0,2	10,7	1,70	10,0	1,20	10,0	0,20	- ', '	5,10	0,0	1,0	0,0	0,0	11171	l					

nemat11.xls 3 30.01.2012

Streifenversuche mit nematodentoleranten Sorten 2011

Arbeitsgemeinschaft Zuckerrübenanbau Bonn

Variante		nertrag		erertrag		Z.ertrag	Zucker	٠.	_	MV.	K	Na	AmN	Pfl./ha	Vorbefall	Vorbefall	Nachbefall	Nachbefall	pf / pi	pf / pi
	t/ha	rel.	t/ha	rel.	t/ha	rel.	%	rel.	%	rel.	mmo	ol/1000	g R.	z. Ernte	E+L/100 ml					
Niederdrees Flugpl				Ernte: 19				rz., 4 W			-				30 cm	60 cm	30 cm	60 cm	30 cm	60 cm
Beretta	82,8	100,0	- /	100,0	11,55	100,0	15,86	100,0	1,31	100,0	34,8	7,6	13,5	100000	295	1090	1565	4290	5,3	3,9
Kristallina KWS	95,4	115,2	16,25	123,7	14,48	125,4	17,04	107,4	1,26	95,8	33,9	4,7	13,2	104630	775	2567	610	752	0,8	0,3
Nemata	98,6	119,0	15,86	120,7	13,81	119,5	16,11	101,5	1,48	112,7	40,2	7,7	17,7	97222	795	85	473	168	0,6	2,0
GD 5 %	10,8	13,0	1,50	11,4	1,24	10,8	0,52	3,2	0,07	5,2	2,3	1,3	1,7	13211						
Weiler i.d.E. Poller	Neg S	aat: 15.	03.11	Ernte:	19.09.11	4-r. St	reifenpa	ırz. 4 V	Vhg. a`	5,4 qm					30 cm	60 cm	30 cm	60 cm	30 cm	60 cm
Beretta	74,4	100,0	11,88	100,0	10,59	100,0	15,94	100,0	1,13	100,0	24,3	7,2	11,4	86111	391	1530	523	3493	1,3	2,3
Kristallina KWS	89,0	119,5	15,10	127,2	13,54	127,9	16,98	106,5	1,15	101,8	25,5	4,7	12,9	94907	593	1404	515	890	0,9	0,6
Nemata	82,4	110,6	13,20	111,1	11,63	109,9	16,03	100,5	1,30	114,9	31,8	7,5	14,6	86111	583	1314	390	540	0,7	0,4
GD 5 %	7,1	9,6	1,25	10,5	1,12	10,5	0,33	2,1	0,05	4,6	2,4	0,8	1,0	7458						
Weiler i.d.E. Röveni	ch Sa	at: 13.0	3.11	Ernte: 1	9.09.11	4-r. Str	eifenpar	z 4 V	/hg. a`	5.4 am					30 cm	60 cm	30 cm	60 cm	30 cm	60 cm
Beretta	75,3	100,0	14,34	100,0	12,77	100,0	19.05	100,0	1.48	100,0	41.9	5,7	18,0	85185	0	0	0	0	0	0
Kristallina KWS	70.5	93.6	14.00	97.7	12,60	98,6	19,88	104,3	1.40	94,3	38,0	4,1	17,2	92130	0	0	0	0	0	0
Nemata	77.5	103,0	14,07	98,1	12,46	97,6	18,14	95,2	1,47	99,0	40,2	6,1	18,0	83796	0	0	0	0	0	0
GD 5 %	2,8	3,7	0,59	4,1	0,50	3,9	0,30	1,6	0,08	5,6	3,5	0,7	1,7	4436						
Buir bar2 Saat: 26	5.03.11	Ernt	e: 05.1	0.11	3-r. Bloc	kvers	4 Who	ı. a` 8,5 (am						30 cm	60 cm	30 cm	60 cm	30 cm	60 cm
Beretta	85.2	100.0	15,36	100.0	13,89	100,0	18.03	100.0	1.12	100.0	32,6	3,2	8,9	95000	11	150	264	392	24,0	2,6
Kristallina KWS	79.1	92,8	15,30	99,6	13,92	100,2	19,33	107,2	1.14	101,8	31,5	2,1	10,8	95000	23	140	99	333	4,3	2,4
Nemata	76.7	90.0	13,56	88,3	12,08	87,0	17,68	98,1	1,33	118,8	39.0	3,1	14,3	93333	14	432	20	81	1.4	0,2
GD 5 %	4,2	4,9	0,85	5,5	0,78	5,6	0,37	2,1	0,05	4,5	1,8	1,6	1,9	00000		.02		0.	.,.	0,2
Ohndorf N.W. Sa	at: 22.0	3 11	Ernte:	30.09.1	1 6-r	. Streifer	narz	4 Wha.	a` 5 4	am					30 cm	60 cm	30 cm	60 cm	30 cm	60 cm
Beretta	99.3	100,0	16.44	100,0	14,61	100,0	16,56	100,0	1,24	100,0	33,2	7,2	11,6	93056	83	158	611	1276	7,4	8,1
Pauletta	109.4	110,3	17,93	109,1	15,66	107,1	16,39	98,9	1,48	119,1	40,9	4,8	18,8	97222	45	335	248	264	5,5	0,8
GD 5 %	7,1	7,2	1,44	8,8	1,26	8,6	0,33	2,0	0,10	7,8	1,8	1,1	2,7	9736	10	000	2.10	201	0,0	0,0
Merzenich Saat: 2	6.03.11	Ern	te: 29.0	9.11	6-r. Stre	eifenparz	4 W	/hg. a` 4	.5 am						30 cm	60 cm	30 cm	60 cm	30 cm	60 cm
Beretta Betr.	88,9	100,0	15,90	100,0	14,25	100,0	17,88	100,0	1,25	100,0	31,3	5,0	14,0	87778	157	17	1381	5394	8,8	317,3
Beretta Pacht	85.2	95.8	14,84	93,3	13,20	92,6	17,42	97,4	1,32	105,8	30.1	7,2	16,5	88333	76	285	775	3746	10.2	13.1
Corvetta Pacht	74.1	83,3	13,66	85,9	12,18	85,5	18,44	103,1	1,40	111,5	32,9	3,5	20,0	93333	, ,	200	,,,	07-10	10,2	10,1
	,	•	-				,		,	,										
GD 5 %	5,8	6,5	1,11	7,0	0,97	6,8	0,15	0,9	0,06	4,6	2,0	0,4	1,6	7165						

Tab. 5: Rheinische Sortenversuche unter Nematodenbefall 2009, 2010 und 2011

	Rübenertrag rel.				BZE rel.		Zucl	kergehal	lt rel.	,	SMV rel	
	2009	2010	2011	2009	2010	2011	2009	2010	2011	2009	2010	2011
anfäll. Sorte	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0
Pauletta	119,1	120,5	113,7	116,6	111,6	108,2	99,3	95,7	97,5	118,3	131,2	124,0
Theresa KWS	110,1	113,2	105,5	112,9	116,2	111,6	102,8	103,3	106,0	109,8	112,3	107,7
Belladonna KWS	104,7	112,5	103,2	111,2	115,9	112,4	105,8	103,5	108,3	103,9	109,2	103,3
Adrianna KWS	109,7	114,5	103,9	111,4	116,1	109,0	101,7	101,8	104,7	105,7	107,6	102,6
Nemata		109,9	111,0		103,4	108,0		96,4	98,5		122,8	112,6
Kühn		121,2	112,4		116,8	111,0		97,8	98,9		111,4	100,8
Hella		119,5	114,1		114,3	112,1		98,8	100,1		136,8	124,5
Kepler			116,1			116,2			100,2			101,6
Kristallina KWS			107,3			116,8			107,7			95,3
GD 5 %	3,7	5,5	5,2	4,1	4,9	5,3	1,3	1,3	1,1	4,3	4,1	3,5

10 Versuche 2009, 8 Versuche 2010 und 7 Versuche 2011

SVN 2011 - Zusammenfassung

Arbeitsgemeinschaft Zuckerrübenanbau Bonn

Überregionale Sortenversuche unter Nematodenbefall 2011 - relativ

Sorten	RE	ZE	BZE	ZG	SMV	K	Na	AmN	FA	Schosser	Mehltau	Cercospora	Rost
Pauletta	103,2	98,5	97,3	95,4	107,8	107,0	119,8	117,5	100,7	11	3,6	3,3	2,6
Theresa KWS	96,8	101,5	102,7	104,6	92,2	93,0	80,2	82,5	99,3	0	1,9	3,5	1,9
Beretta	88,2	87,2	88,1	98,5	87,5	86,5	147,8	63,7	99,3	11	1,5	3,6	2,8
Belladonna KWS	97,4	102,3	103,7	104,8	90,6	94,4	90,8	73,9	99,0	50	1,7	2,6	1,8
Adrianna KWS	98,0	100,5	101,6	102,3	90,9	92,8	93,3	76,4	101,4	11	1,9	3,1	2,0
Nemata	94,5	92,7	92,6	97,8	99,4	101,9	145,2	89,6	97,6	0	2,3	2,2	2,3
Kühn	102,2	98,3	98,7	96,0	90,6	87,4	108,1	79,3	101,6	0	3,2	4,1	2,3
Hella	103,6	101,5	100,4	97,8	109,1	109,3	97,3	122,7	101,4	90	3,3	3,1	1,9
Kepler	105,1	103,5	104,2	98,1	90,4	93,0	85,1	75,4	103,0	53	1,9	2,8	2,5
Kristallina KWS	98,1	103,4	105,4	105,0	84,1	84,2	69,6	64,6	98,4	0	1,8	2,4	1,8
GD 5 %	3,3	3,1	3,2	1,0	3,0	3,0	16,3	8,3					

100 = Pauletta, Theresa KWS

Überregionale Sortenversuche unter Nematodenbefall 2009 - 2011 - relativ

Sorten	RE	ZG	AmN	SMV	BZE	Jahresi	mittelwei	rte BZE	FA	Schosser	Mehltau	Cercospora
						2009	2010	2011				-
Pauletta	103,6	96,4	114,2	106,5	99,0	101,1	98,8	97,3	100,6	4	4,6	2,7
Theresa KWS	96,4	103,6	85,8	93,5	101,0	98,9	101,2	102,7	99,4	0	2,6	2,7
Beretta	83,8	99,1	59,7	86,3	84,2	85,4	79,0	88,1	100,2	35	1,8	2,9
Belladonna KWS	96,9	104,5	74,1	90,8	102,7	101,1	103,4	103,7	99,4	27	2,6	2,4
Adrianna KWS	99,0	101,6	75,6	91,2	101,8	99,8	103,9	101,6	101,7	17	2,5	2,5
Nemata 1)	92,2	97,4	93,0	100,9	89,6	88,7	87,6	92,6	96,4	0	2,8	1,8
Kühn 1)	103,2	96,3	80,8	91,3	100,0	99,0	102,4	98,7	102,2	18	3,8	3,1
Hella 1)	105,7	99,1	124,3	109,5	104,0	108,4	103,2	100,4	100,5	34	3,9	2,4
Kepler 2)	101,4	98,8	73,7	90,2	101,2	99,3	100,0	104,2		31	3,0	2,3
Kristallina KWS 2)	99,0	104,4	69,2	86,2	105,2	105,6	104,5	105,4		80	2,4	1,9
GD 5 %												

100 = Pauletta, Theresa KWS

1) WP NT 2009, FA 2010, 2011

2) WP NT 2009 + 2010, FA nur 2011

Rhizoctonia solani 2011

Rhizoctonia solani als Erreger der späten Rübenfäule ist vor allem in wärmeren Ländern von Bedeutung. Seit Anfang der 90er Jahre tritt diese Pilzkrankheit auch im Rheinland, besonders in Verbindung mit intensiver Viehhaltung und verstärktem Mais- und Grasanbau schädigend auf. Bedeutung hat die Krankheit seither auch in anderen Bundesländern und im westlichen Ausland. Von der Universität Bonn (Institut für Pflanzenkrankheiten, I. Zens 2001) wurde der Erreger als Anastomosegruppe (AG) 2-2 IIIb, mit weiteren Untergruppen erstmals ausführlich beschrieben.

Voraussetzung für das Auftreten der Krankheit sind ausgeprägte Wärme und Feuchtigkeit, verbunden mit ungünstigen Wachstumsbedingungen zum Beispiel durch ungünstige Bodenstruktur sowie ein hohes Schadpotential des Erregers im Boden. Oftmals beginnt der Befall am Vorgewende (ehemaliger Mietenbereich) oder in nassen Senken, wo die Bodenstruktur weniger gut ausgeprägt ist. Auch strukturschwache Sandböden, welche sich im Sommer zudem stark erwärmen, zeigen ein erhöhtes Befallsrisiko. Ein früher und starker Befallsverlauf kann bei den anfälligen Normalsorten den gesamten Bestand zerstören.

Ist einmal Befall aufgetreten und wurde damit das Infektionspotential im Boden erhöht, muss zur Vermeidung von Fäulnis für den kommenden Rübenanbau eine Sorte mit hoher Rhizoctoniatoleranz zum Einsatz kommen und die Fruchtfolgestellung weiterer Wirtspflanzen wie Mais und Gras möglichst vor Rüben vermieden werden. Ölrettich und Senf als Zwischenfrucht sowie ein nicht zu hohes N-Angebot senken das Befallsrisiko deutlich. Wichtig ist, auf eine gute Bodenstruktur zu achten. Dann sollte es gelingen, wieder gesunde Rüben mit guter Ertragsleistung zu produzieren.

Die Vermeidung von Fäulnis ist entscheidend für den praktischen Rübenanbau, denn je nach Ausprägung der Krankheit können befallene Rüben bei der Lieferung zusätzliche, hohe Abzüge verursachen oder die Ladung ist nicht mehr verarbeitbar. Aus diesem Grund sind Ertragserhebungen in Sortenversuchen unter Rhizoctoniabefall nur eingeschränkt zur Beratung geeignet. Wichtiger ist die Bewertung der Wurzeln hinsichtlich Resistenz gegenüber Rhizoctonia solani. Bei stärkerem, fortgeschrittenem Befall ist die Widerstandskraft der Rüben auch am Blatt zu erkennen. Wichtig sind auch homogene Befallsvoraussetzungen, um Sorten sachgerecht beurteilen zu können. Dies gelingt im Allgemeinen mit der künstlichen Inokulation recht gut.

Von der Arbeitsgemeinschaft Zuckerrübenanbau wurden 2011 zwei vom KA koordinierte Sortenversuche mit Inokulation (40 kg/ha) im Abbau-Bereich des Tagebaus unterstützt. Mittels enger Ablageweiten konnte der leichte Rhizoctonia-Frühbefall nach dem Aufgang der Rüben mit der Vereinzelung ausgeglichen werden. Insgesamt gab es bundesweit sechs solcher Sortenversuche (vgl. nachf. Tabellen). Wäh-

rend der Befallsverlauf im Sommer und Herbst am trockeneren Standort Etzweiler nur schwach blieb, gestaltete sich der Befallsfortschritt in Wanlo unter feuchteren Bedingungen sehr viel stärker. Entsprechend deutlicher konnten die Sorten hinsichtlich ihrer Resistenz beurteilt werden. Neben den üblichen Blattbonituren auf Rhizoctoniabefall wurden auch die Rüben auf Befall bewertet (% schwarze Wurzeloberfläche). Anhand beider Merkmale lässt sich die Resistenz der Sorten gut abschätzen.

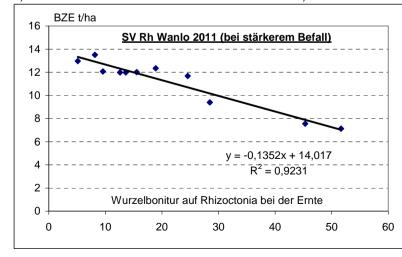
In Etzweiler wurde eine weitere Prüfung mit künstlicher Inokulation von der Arge Bonn betreut.

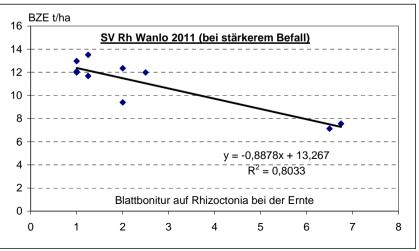
Überraschend trat 2011 auf einzelnen Feldern erstmals sehr starker Befall mit **Rotfäule** (Rhizoctonia solanacea bzw. Helicobasidium purpureum) auf. Die Befallssymptome blieben vorwiegend auf den in der Erde befindlichen Wurzelanteil beschränkt und die Fäulnis ging in der Regel nicht in tiefere Schichten. Die Krankheit konnte meist am Blattapparat nicht sicher erkannt werden, so dass eine vorgezogene Ernte und Lieferung nicht realisiert werden konnten. Abgesehen davon, dass offensichtlich ein Jahreseffekt ursächlich erscheint, gibt es bisher keine weiteren, eindeutigen Ursachen zu erkennen.

Sortenleistungsvergleich (RhSV) bundesweit (n=6) 2011

VG	RE	ZE	BZE	ZG	SMV	K	Na	AmN
						E	Bezug auf Rüb	e
Syncro	91,1	94,5	94,8	103,2	102,5	102,5	78,4	111,7
Nauta	108,9	105,5	105,2	96,8	97,5	97,5	121,6	88,3
anfäll. Sorte 1	72,9	68,4	68,6	93,5	89,9	92,0	75,2	77,8
anfäll. Sorte 1	75,4	70,3	70,8	94,3	84,2	84,5	52,1	71,5
Premiere	102,0	107,6	110,0	104,2	88,3	88,6	63,0	79,0
Prestige	99,1	101,6	103,0	101,1	91,5	90,0	72,7	87,5
Santino	102,5	105,4	107,0	101,9	90,5	90,7	72,5	82,4
Taifun	98,2	100,8	102,0	101,9	93,1	87,8	94,4	91,8
Jenna KWS	95,8	95,8	96,9	99,5	89,7	84,5	57,3	92,5
Isabella KWS	103,1	104,0	105,0	100,0	92,8	98,4	64,5	82,3
Mattea KWS	105,0	107,8	109,1	101,4	93,5	90,6	71,6	94,8
GD 5 %	7,8	9,3	9,9	3,2	3,3	5,0	17,4	6,9

Rhizoc Ber11.doc 30.01.2012


RhSV Sortenversuch Etzweiler 2011 (inokuliert)


Saat: 25.03.		Ernte: 2	7.09.				Parz.: 5	5,4 qm (4	Whg.)							
VG	Rüben	ertrag	Zucker	ertrag	Berein.	Z.ertrag	Zucker	gehalt	SN	1 V	K	Na	AmN	Pfl./ha	Fäulnis 1)	Blattbon. 2)
	t/ha	rel.	t/ha	rel.	t/ha	rel.	%	rel.	%	rel.	mm	ol/1000	g R.	b.Ernte	% Oberfl.	b. Ernte
1164 Premiere	67,6	100,3	11,14	100,1	9,85	101,1	16,48	99,8	1,31	90,8	31,3	8,6	14,7	87500	1,5	1,0
1307 Syncro	67,2	99,7	11,11	99,9	9,64	98,9	16,56	100,2	1,58	109,2	37,0	10,5	22,0	86574	2,6	1,0
1332 Belinda	49,8	73,9	7,97	71,6	7,01	71,9	15,95	96,6	1,32	91,4	32,0	8,0	15,0	62500	5,1	6,0
1560 William	46,6	69,1	7,34	66,0	6,46	66,3	15,64	94,7	1,28	88,9	31,6	7,5	14,0	59722	13,9	5,8
1555 Nauta	73,7	109,3	10,92	98,1	9,38	96,2	14,82	89,7	1,48	102,5	32,8	18,8	16,0	88426	5,9	1,0
1602 Prestige	68,7	101,9	10,89	97,9	9,57	98,1	15,85	96,0	1,34	92,6	32,0	10,3	14,6	82870	6,0	2,5
1717 Santino	70,4	104,4	11,39	102,4	10,01	102,7	16,21	98,1	1,37	94,4	31,9	10,0	15,9	91667	1,4	1,3
1826 Taifun	59,4	88,2	9,66	86,8	8,44	86,6	16,25	98,4	1,44	99,7	31,3	13,0	17,9	93519	3,1	1,0
1896 Jenna KWS	61,7	91,6	9,88	88,8	8,68	89,1	16,01	97,0	1,34	92,7	31,9	7,7	16,1	90278	0,2	1,5
1991 Isabella KWS	71,8	106,5	11,87	106,7	10,48	107,5	16,54	100,1	1,34	92,8	35,4	7,6	14,4	88426	1,8	1,8
2098 Mattea KWS	67,1	99,6	10,48	94,2	9,07	93,1	15,60	94,5	1,49	103,1	35,9	10,3	19,0	84722	2,7	1,3
GD 5 %	8,8	13,0	1,54	13,8	1,36	14,0	0,59	3,6	0,12	8,0	3,1	2,6	2,8	11296	7,0	1,2

RhSV Sortenversuch Wanlo 2011 (inokuliert)

Saat: 25.03.		Ernte: 2	8.09.				Parz.: 5	5,4 qm (4	Whg.)							
1164 Premiere	88,7	107,6	15,00	105,6	13,51	105,9	16,90	97,9	1,08	92,8	27,5	4,7	9,1	98611	8,1	1,3
1307 Syncro	76,1	92,4	13,40	94,4	11,99	94,1	17,61	102,1	1,25	107,2	32,1	5,2	13,5	91204	13,6	1,0
1332 Belinda	50,6	61,5	8,44	59,4	7,56	59,3	16,35	94,8	1,14	97,8	30,7	4,9	9,8	85185	45,3	6,8
1560 William	46,2	56,1	7,90	55,6	7,13	55,9	17,21	99,7	1,06	90,9	27,3	2,9	9,1	85648	51,7	6,5
1555 Nauta	81,9	99,5	13,55	95,4	12,07	94,7	16,54	95,8	1,20	102,6	30,6	7,2	11,0	98148	9,6	1,0
1602 Prestige	81,4	98,8	13,43	94,6	11,98	94,0	16,47	95,4	1,19	101,8	30,3	5,0	11,8	84259	12,6	2,5
1717 Santino	82,5	100,1	13,78	97,0	12,34	96,8	16,62	96,3	1,14	97,4	27,7	5,2	10,9	96759	18,9	2,0
1826 Taifun	83,8	101,7	14,44	101,7	12,97	101,7	17,25	100,0	1,16	99,2	28,5	5,8	11,1	95370	5,1	1,0
1896 Jenna KWS	64,5	78,3	10,51	74,0	9,39	73,7	16,18	93,8	1,13	97,2	28,6	4,7	10,6	88889	28,5	2,0
1991 Isabella KWS	77,1	93,6	13,06	92,0	11,68	91,6	16,92	98,1	1,18	101,1	32,1	4,5	10,8	93056	24,6	1,3
2098 Mattea KWS	81,5	99,0	13,48	94,9	12,01	94,2	16,49	95,6	1,20	102,9	29,0	6,1	12,5	89815	15,5	1,0
GD 5 %	20,5	24,9	3,64	25,7	3,29	25,8	0,61	3,5	0,05	4,4	2,3	0,9	1,5	10917	25,6	1,8

1) Befalls-Anteil in % der Wurzeloberfläche bei der Ernte 2) erkennbarer Rhizoctoniabefall am Blatt bei der Ernte

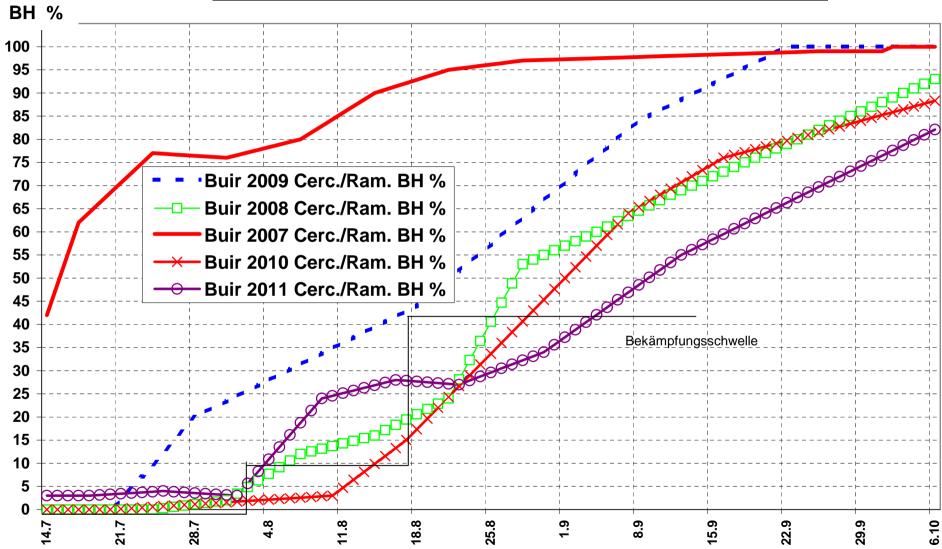
Blattkrankheiten 2011

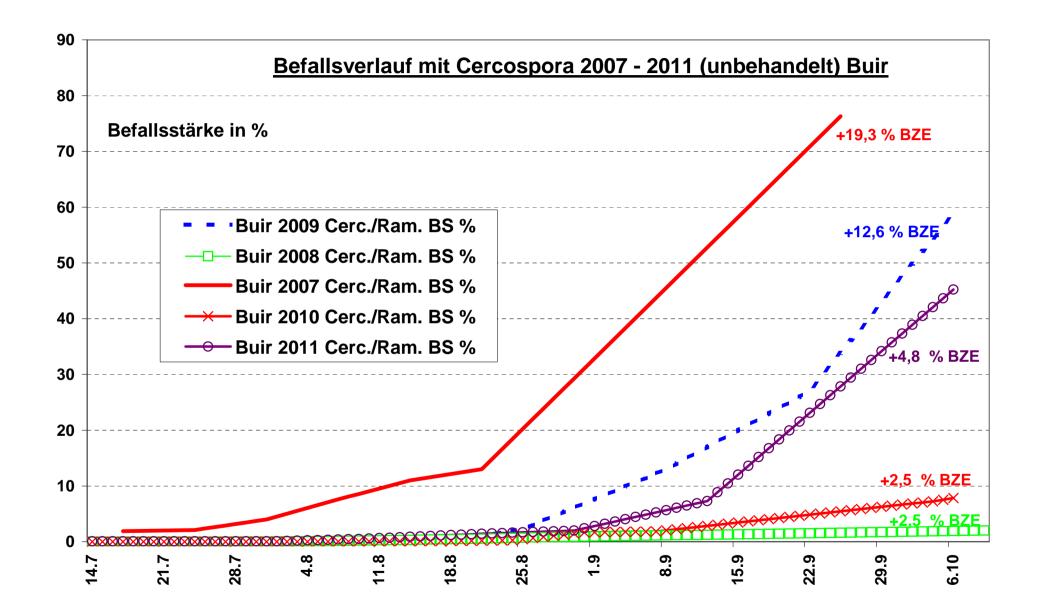
kaum entwickeln. Vereinzelt trat Ramularia stärker in Erscheinung. 2011 ist eher als ein Mehltau- und Rostjahr zu betrachten. Für die bakterielle Blattfleckenkrankheit Pseudomonas springae war es zu trocken. Obwohl erste Cercospora bereits in der 2 Julidekade vorkam, war in Buir erst Ende Juli die Bekämpfungsschwelle wegen dem gleichzeitigen Mehltaubefall erreicht. Der Mehltau entwickelte sich dort anschließend bei der mehltautoleranten Sorte Emilia selbst in den unbehandelten Kontrollen nicht weiter und blieb unbedeutend. An empfindlichen Sorten war Mehltau oft schon Mitte Juli stark aufgetreten. Er hielt sich trotz kühler und feuchter Sommerwitterung hartnäckig und stark ausgeprägt oft bis zur Ernte in den Beständen. Auf den von Blattflecken verschonten Blättern trat ab Anfang August Rübenrost auf. Er nahm bis zu den späten Ernteterminen kontinuierlich zu. Zur Ernte waren meist mehrere, verschiedene Krankheiten gleichzeitig auf den Blättern vergesellschaftet. Alternaria war nur bei empfindlichen Sorten, insgesamt jedoch gering aufgetreten. Witterungsbedingt kam Falscher Mehltau kaum vor. Blatt-Symptome, die durch den Bodenpilz Verticillium dahliae verursacht werden, traten auf Feldern, die in der Vergangenheit starken Befall hatten, erneut auf. Insgesamt wird 2011 als unproblematisches Jahr in Erinnerung bleiben. Im Fungizidversuch Buir wurden Behandlungen mit verschiedenen Präparaten bei der Sorte Emilia KWS und Sy-Belana nach den bewährten Bekämpfungsschwellen nach Befallshäufigkeiten (BH) für Cercospora, Ramularia und Mehltau durchgeführt (5 % bis Ende Juli / 15 % bis 15.8. / 45 % danach (Rost stets 45 %)). Die Behandlung erfolgte bei einer Befallshäufigkeit von 3 % Cercospora + 28 % Mehltau + 1 % Rost (vgl. nachf. Abb.). Die Befallshäufigkeit mit Cercospora entwickelte sich auch im Anschluss nur mäßig und erreichte erst im Oktober 100 %. Die Befallsstärke stieg ab Anfang September kontinuierlich an und erreichte Mitte Oktober über 50 %. Mehltau blieb unbedeutend, jedoch nahm Rost stark zu. Entsprechend diesem Befallsverlauf wurden leichte Mehrerträge durch die Fungizidbehandlungen erreicht, im Mittel + 4,8 % BZE. Die meisten Behandlungen ließen sich bei dieser Größenordnung statistisch nicht absichern. Besonders auffällig waren die Varianten mit Acapela und Sphere, welche einen sehr guten und anhaltenden Schutz gegen Rost erzielten, dementsprechend konnten signifikante Mehrerträge von 7,1 und 10,1 % BZE erreicht werden. Besonders überraschend war 2011 das schwache Abschneiden der Varianten mit Duett Ultra und Juwel. In allen Vorjahren nahmen diese Präparate eine Spitzenstellung bei der Blattkrankheitsbekämpfung ein. Die versuchsmäßig vorgezogenen Behandlungstermine (5.7. bis 12.7.) konnten erwartungsgemäß keine Vorteile bringen. 2009 zeigten dagegen zu frühe Behandlungen vor der Bekämpfungsschwelle deutliche Nachteile bei mäßigem Cercospora- und Mehltaubefall in Kalrath.

Nach frühem Saattermin in der 2. Märzhälfte, zügigem Aufgang und zeitigem Reihenschluss ab Anfang Juni entwickelten sich die Blattkrankheiten entgegen der Erwartung nur verhalten. Im eher kühlen Sommer und insbesondere dem zu kalten Juli konnte sich Cercospora

Die Behandlungen bei der blattgesunden Sorte Sy-Belana zeigten noch geringere Ertragseffekte als bei Emilia KWS. Mit durchschnittlich + 3 % Befallsstärke Cercospora blieben selbst die unbehandelten Kontrollen nahezu gesund.

In den einzelnen Jahren variierte die Befallsstärke bei der Ernte in den Versuchen erheblich. Je nach Höhe der Befallsstärke waren die Ertragsverluste entsprechend unterschiedlich.


2011 verursachte Mehltau bei sensiblen Sorten auf vielen Parzellen wahrscheinlich stärkere Ertragsverluste als Cercospora. Auch der stark ausgeprägte Rostbefall dürfte auf etlichen Feldern Einflüsse hinterlassen haben. Verglichen mit Cercospora sind die Ertragsverluste aber deutlich geringer. Am Standort Buir konnte bei einem breiten Sortiment die Sensibilität der Sorten bei Mehltau und Rost bonitiert werden. Bei einem kleineren Sortiment neu zugelassener Sorten war in Buschhoven am 23.8. eine Befallsbonitur bei sehr starkem Mehltaubefall möglich. Die Ergebnisse sind in den nachfolgenden Abbildungen dargestellt.


Unter den rheinischen Anbaubedingungen waren 2011 Behandlungen bei entsprechendem Anfangsbefall i.d.R. ab Ende Juli/Anfang August für späte Erntetermine sinnvoll. Früher und starker Mehltaubefall erforderte eine zeitnahe Bekämpfung. Bei sehr späten Ernteterminen konnte eine zweite Behandlung vor allem die Entwicklung des Rostbefalls weitgehend verhindern.

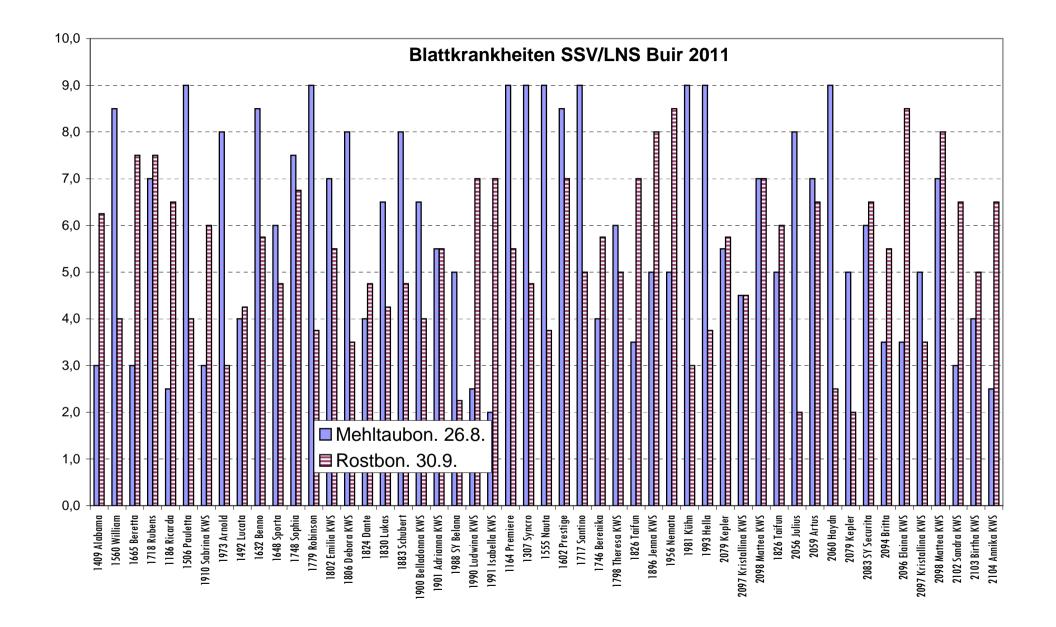
Im Allgemeinen reicht im Rheinland eine Behandlung gegen Cercospora aus. Bei sehr späten Ernten kann eine weitere Behandlung zur Gesunderhaltung des Bestandes sinnvoll sein. Wichtig sind stets frühe, an den Bekämpfungsschwellen ausgerichtete Behandlungstermine. Verspätete Behandlungen führen meist zu schlechteren Pflanzenschutzwirkungen wie Versuche in Befallsjahren zeigen.

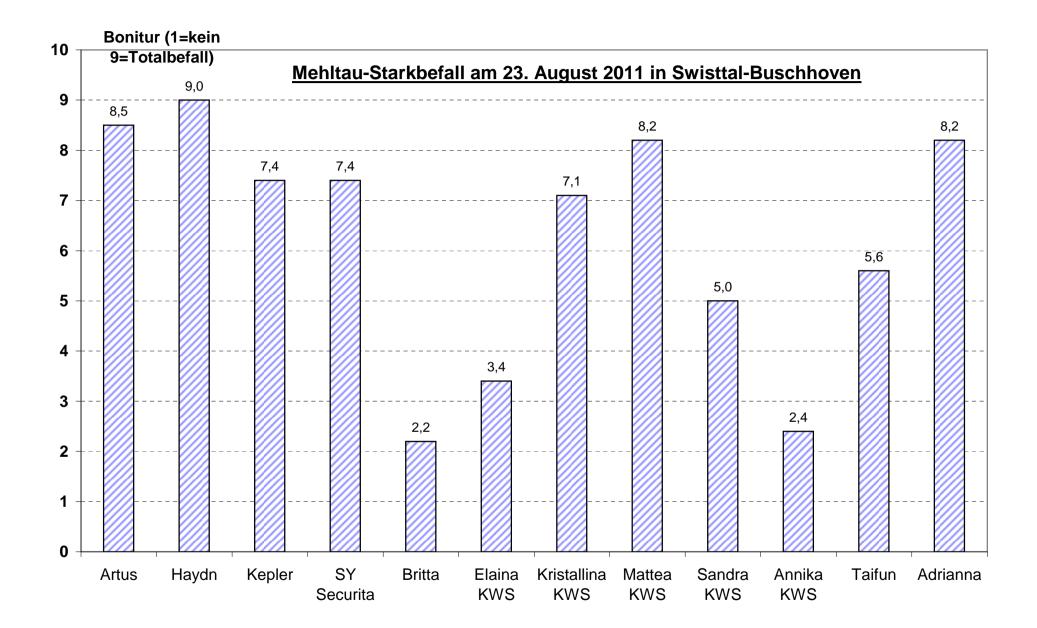
Präparat	Wirkstoffe	Zulassung in Zuckerrüben
Spyrale	Difenokonazol 100 g/l + Fenpropidin 375 g/l	ja
Juwel	Kresoxin-methyl 125 g/l + Epoxiconazol 125 g/l	ja
Harvesan	Flusilazol 250 g/l + Carbendazim 125 g/l	ja
Domark 10EC	Tetraconazol 100 g/l	ja
Sphere	Cyproconazol 160 g/l + Trifoxystrobin 375 g/l	nein
Acapela	Cyproconazol 40 g/l + Picoystrobin 150 g/l	nein
Duett Ultra	Epoxiconazol 187 g/l + Thiophanat-methyl 310 g/l	ja

Befallsverlauf mit Cercospora 2007 - 2011 (unbehandelt) Buir

Fungizidversuche Buir 2011

Arge Zuckerrübenanbau


Emilia Buir 2011	Befallsstärl	ke 12.09.	Bestande	sbonitur 4	.10.	Bon. der Befallsstärke 13.10.			
	(100 Blatt-I	Methode)		(1=befalls	frei)		BS %	BS %	
	Cerc	Rost	Stand	Cerc	Rost	Stand	Cerc	Rost	
Kontrolle	7,3	25,7	2,5	5,0	7,8	3,0	56,3	71,3	
Spyrale 1,0 29.7.	0,2	1,0	2,0	1,5	5,5	1,8	5,0	52,5	
Harvesan 0,6 29.7.	0,4	12,6	2,0	2,0	7,0	2,0	3,8	72,5	
Domark 1,0 29.7.	0,9	25,2	2,0	2,0	7,8	2,3	12,3	73,8	
Duett Ultra 0,6 29.7.	0,0	8,2	2,0	1,3	6,5	2,0	0,9	75,0	
Juwel 1,0 29.7.	0,1	3,8	2,0	1,3	6,3	2,3	0,9	71,3	
Acapela 1,0 29.7.	0,5	0,1	1,8	1,3	1,0	1,8	0,5	2,0	
Sphere 0,35 29.7.	0,0	0,4	1,8	1,0	2,3	1,3	0,6	13,0	
Spy.+Arma 0,6+0,35 29.7.	1,4	5,4	2,0	2,5	6,5	2,0	8,3	67,5	
Spyrale 1,0 29.7.+22.8.			2,0	1,3	2,0	1,5	1,4	8,3	
Spyrale 1,0 12.7. +1.8.+22.8.	0,2	0,1	1,8	1,0	2,3	1,5	0,1	11,3	
Juwel+Harvesan 1+0,6 22.8.	0,0	0,1	2,0	1,5	6,0	2,0	1,3	58,8	
Spyrale 1,0 5.7.	1,3	10,4	2,0	1,0	4,3	2,0	4,0	75,0	
Spyrale 1,0 5.7.+1.8.			1,8	1,0	4,5	2,0	0,4	47,5	
Spyrale 1,0 12.7.			2,0	1,3	6,8	2,0	2,5	65,0	
Spyrale 1,0 12.7.+10.8.			2,0	1,3	4,0	2,0	1,4	41,3	
GD 5 %			0,4	0,8	1,3	0,5	6,0	19,6	
Kontrolle 1	0,7	5,4	2,0	2,0	2,3	2,8	3,0	10,8	
Spyrale 1,0 29.7.	0,1	0,3	2,0	1,3	1,8	2,0	0,2	3,0	
Juwel 1,0 29.7.	0,0	0,2	2,0	1,3	2,0	2,0	0,5	10,0	
Spyrale 1,0 + PK 0,4 29.7.	0,1	0,3	2,0	1,3	1,8	2,0	0,3	7,8	
GD 5 %				0,7	1,0	0,4	1,1	9,0	


Fungizidversuch Buir 2011

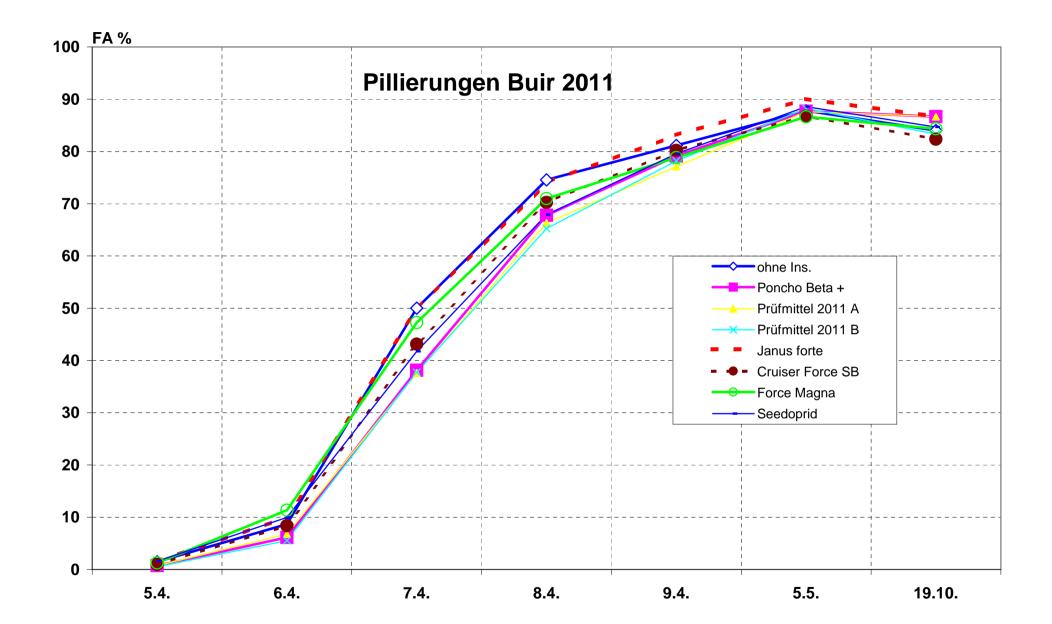
26.03. Ernte: 21./25.10. Parz.: 3 x 0,9 x 2 = 5,4 qm, 4 Whg.

26.03.	Ernte: 21	rnte: 21./25.10. Parz.: $3 \times 0.9 \times 2 = 5.4 \text{ q}$					ım, 4 vvng.						
VG	Rübenertrag		Berein. 2	Z.ertrag	Zuckerg	gehalt	SMV		K	Na	AmN	Ce/Ra.1)	Rost 2)
	t/ha	rel.	t/ha	rel.	%	rel.	%	rel.	mmo	ol/1000	g R.	BS % am	13.10.
Emilia:													
Kontrolle	78,1	100,0	13,34	100,0	18,74	100,0	1,08	100,0	29,6	2,4	8,9	56,3	71,3
Spyrale 1,0 29.7.	80,7	103,3	14,06	105,4	19,08	101,8	1,06	98,3	29,6	2,2	8,3	5,0	52,5
Harvesan 0,6 29.7.	79,7	102,0	13,86	104,0	19,04	101,6	1,05	97,2	29,1	2,2	8,0	3,8	72,5
Domark 1,0 29.7.	80,1	102,5	13,79	103,4	18,87	100,7	1,06	98,7	29,4	2,3	8,5	12,3	73,8
Duett Ultra 0,6 29.7.	78,1	99,9	13,51	101,3	18,95	101,1	1,06	97,9	29,5	2,3	8,1	0,9	75,0
Juwel 1,0 29.7.	79,0	101,1	13,71	102,8	19,01	101,4	1,06	98,6	30,0	2,3	8,2	0,9	71,3
Acapela 1,0 29.7.	81,0	103,7	14,28	107,1	19,29	102,9	1,06	98,2	30,1	2,1	8,0	0,5	2,0
Sphere 0,35 29.7.	82,9	106,1	14,69	110,1	19,36	103,3	1,05	97,3	30,2	2,1	7,6	0,6	13,0
Spy.+Arma 0,6+0,35 29.7.	80,7	103,3	13,89	104,1	18,89	100,8	1,07	99,5	29,7	2,3	8,7	8,3	67,5
Spyrale 1,0 29.7.+22.8.	81,0	103,6	14,06	105,4	19,02	101,5	1,06	98,1	30,5	2,3	7,7	1,4	8,3
Spyrale 1,0 12.7. +1.8.+22.8.	78,7	100,7	13,66	102,4	19,03	101,5	1,07	99,4	30,7	2,3	8,2	0,1	11,3
Juwel+Harvesan 1+0,6 22.8.	80,3	102,8	13,99	104,9	19,09	101,9	1,07	99,5	30,3	2,3	8,4	1,3	58,8
Spyrale 1,0 5.7.+1.8.	81,1	103,7	14,02	105,1	18,95	101,1	1,06	98,2	30,3	2,2	7,9	0,4	47,5
Spyrale 1,0 12.7.	79,4	101,6	13,70	102,8	18,93	101,0	1,07	98,8	29,7	2,2	8,5	2,5	65,0
Spyrale 1,0 12.7.+10.8.	80,9	103,5	13,92	104,4	18,86	100,6	1,05	97,2	29,2	2,3	8,0	1,4	41,3
GD 5 %	4,2	5,3	0,78	5,9	0,19	1,0	0,02	2,2	1,0	0,2	0,8	6,0	19,6
Sy-Belana:													
Kontrolle 1	79,2	100,0	13,61	100,0	18,84	100,0	1,06	100,0	27,5	2,3	9,4	3,0	10,8
Spyrale 1,0 29.7.	81,4	102,8	14,07	103,4	18,92	100,5	1,05	99,0	28,4	2,3	8,5	0,2	3,0
Juwel 1,0 29.7.	78,7	99,3	13,55	99,6	18,87	100,2	1,04	97,9	27,6	2,3	8,4	0,5	10,0
Juwel 1,0 + PK 0,4 29.7.	78,7	99,4	13,67	100,5	18,99	100,8	1,03	96,6	27,4	2,2	8,0	0,3	7,8
GD 5 %	4,8	6,1	0,90	6,6	0,19	1,0	0,04	4,0	1,3	0,3	1,3	1,1	9,0

¹⁾ Befallsstärke Cercospora und Ramularia am 13.10. 2) Befallsstärke Rost am 13.10.

Saatgutbehandlungen 2011

Von der Arbeitsgemeinschaft Zuckerrübenanbau wurden 2011 die mit dem Koordinierungsausschuss am IfZ abgestimmten insektiziden Pillierungs-Varianten am Standort Buir unter üblichen, rheinischen Fruchtfolge- und Anbaubedingungen geprüft.


Nach früher Aussaat in Buir am 26. März entwickelte sich der Feldaufgang bei günstigen Temperaturen und zwischenzeitlichen Niederschlägen zügig (vgl. nachf. Abb.). Der Aufgang begann nach 11 Tagen und erreichte nach 13 Tage ein Niveau von etwa 70 % und nach 14 Tagen von 80 %. Bis zur Abschlusszählung am 5. Mai wurden nahezu 90 % Feldaufgang ermittelt. In der Aufgangsgeschwindigkeit lagen die unbehandelte Kontrollvariante sowie die Behandlungen mit geringen Aufwandmengen wie Janus forte und Force Magna vorn. Bei der Abschlusszählung unterschieden sich die verschiedenen Saatgutbehandlungen nur gering.

2011 traten Schädlinge weder beim Aufgang noch zu einem späteren Zeitpunkt auf. In der Praxis kam es in wenigen Einzelfällen zu Schäden durch Tipulalarven. Der frühe Blattlausdruck blieb allgemein gering. Jedoch entwickelten sich verbreitet Blattlauskolonien nach dem Reihenschluss. Sie hielten sich oft länger in den Beständen als erwartet und führten zu Saugschäden an den Rüben. Zum Herbst hin waren vereinzelt Spinnmilben in den Beständen festzustellen. Im südlichen Rheinland trat auf einigen Feldern wiederum

Im Anschluss sind auch die überregionalen, am IfZ zusammengefassten Ergebnisse 2009 – 2011 aufgeführt.

VG	Variante	Behandlung
1	Kontrolle	
2	Poncho Beta +	Clothianidin 60 + Imidacloprid 30 + beta-Cyfluthrin 8
3	Prüfmittel A	
4	Prüfmittel B	
5	Janus forte	Clothianidin 10 + Imidacloprid 10 + beta-Cyfluthrin 8
6	Cruiser&Force SB	Thiametoxam 60 + Tefluthrin 8
7	Force Magna	Thiametoxam 15 + Tefluthrin 6
8	Seedoprid	Imidacloprid 60

Rübenmotte stärker auf. Vergilbung kam 2011 wie in den Vorjahren nicht vor.

Pillierungsversuch Buir 2011

Ernte: 19.10.

85,5

83,9

82,6

82,4

6,1

107,8

105,8

104,1

103,9

7,6

16.19

15,77

15,36

15,44

1,25

108.9

106,1

103,3

103,9

8,4

14.83

14,45

14,05

14,13

1,15

Saat: 26.03.

Janus forte

Force Magna

Seedoprid

GD 5 %

Cruiser Force SB

Parz.: 5,4 qm / 4 Whg. VG Rübenertrag Zuckerertrag Berein. Z.ertrag Zuckergehalt SMV Κ Na AmN Pfl./ha % % mmol/1000 g R. Endabst. t/ha t/ha rel. t/ha rel. rel. rel. rel. ohne Insektizid 14,87 13,63 0.96 79,4 100,0 100,0 100,0 18,73 100,0 100,0 25,5 1,8 6,4 116667 Poncho Beta + 104,8 0.97 83,2 15,48 104,1 14,17 104,0 18,60 99,3 100,3 25,6 1,9 6,5 120370 Prüfmittel 2011 A 82,0 103,4 15.26 102,6 13,96 102,5 18,59 99,3 0,98 101.8 25,7 1,9 7,0 120370 Prüfmittel 2011 B 104,3 103,8 1,9 115741 82,8 15,47 104,1 14,15 18,67 99,7 1,00 103,6 26,5 7,3

108,9

106,1

103,1

103,7

8,5

18,92

18,80

18,58

18,71

0,19

Parz.: bar2

101.0

100,4

99,2

99,9

1,0

0.99

0,98

0,98

0,99

0,02

102.4

101,3

102,1

102,4

2,5

26,3

25,8

26,0

26,0

1,1

1,8

1,8

2,0

1,9

0,2

7,0

6.8

6,9

7,1

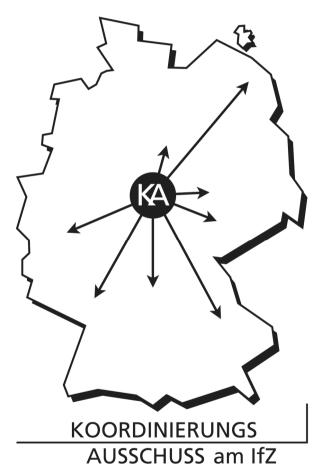
0,5

120370

114352

117130

117593


9159

Internationaler Ringversuch Insektizide in der Pillenhüllmasse (Bayer CropScience, FCS, Syngenta Agro)

Mehrjährige Auswertung 2009 - 2011

C. Buhre

Die im Rahmen des Ringversuchs durchgeführte Wirksamkeitsprüfung von unterschiedlichen insektiziden Wirkstoffen am Saatgut wurde in Zusammenarbeit zwischen dem Koordinierungsausschuss am Institut für Zuckerrübenforschung (IfZ) und den Pflanzenschutzmittelunternehmen Bayer CropScience, FCS und Syngenta Agro erarbeitet. Die Versuche wurden vom IfZ organisiert und von den regionalen Arbeitsgemeinschaften bzw. von Zuckerfabriken an insgesamt 26 Standorten (2009), 24 Standorten (2010) und 16 Standorten (2011) in Deutschland (D), Österreich (A), Polen (PL), der Slowakei (SK), Tschechien (CZ) und Ungarn (H) durchgeführt (Tab. 1). Neben der unbehandelten Kontrolle (ohne Insektizid in der Pillenhüllmasse) wurde in allen drei Jahren die Wirkung folgender fünf Varianten orthogonal getestet: Poncho Beta+ (60 g Clothianidin + 30 g Imidacloprid + 8 g beta-Cyfluthrin), Janus forte (10 g Clothianidin + 10 g Imidacloprid + 8 g beta-Cyfluthrin), Cruiser Force SB (60 g Thiamethoxam + 8 g Tefluthrin), Force Magna (15 g Thiamethoxam + 6 g Tefluthrin) und Seedoprid (60 g Imidacloprid) (Tab. 2).

Im Mittel aller Versuche erreichte bei der frühen Feldaufgangszählung die Variante Force Magna mit 60 % den signifikant höchsten Feldaufgang im Vergleich zu allen in der Serie geprüften Varianten (Tab. 3). Die Varianten Poncho Beta+ und Seedoprid erreichten mit ca. 54 % den niedrigsten Feldaufgang der behandelten Versuchsglieder, unterschieden sich aber auch signifikant von der unbehandelten Kontrolle. Auch bei der Pflanzenzählung zum Abschluss des Feldaufgangs erreichte die Variante Force Magna den höchsten Feldaufgang und ließ sich damit signifikant von den Versuchsgliedern Poncho Beta+ und Seedoprid unterscheiden. Alle insektiziden Ausstattungen erreichten zu diesem Termin einen signifikant höheren Feldaufgang als die unbehandelte Kontrolle. Auch zur Zählung beim Bestandesschluss konnten alle insektiziden Pillierungen einen höheren Feldaufgang als die unbehandelte Kontrolle erzielen. Zwischen den behandelten Versuchsgliedern waren zu diesem Zeitpunkt keine Unterschiede nachweisbar. Den höchsten Feldaufgang erreichte mit über 83 % die Variante Force

Magna.

Auf Grund der Vielzahl der Standorte in der dreijährigen Auswertung war es möglich, die Versuche nach ihrer Befallsstärke in Versuche mit und ohne Befall einzuteilen.

In den Versuchen mit Befall zeigte die Variante Force Magna bei der Zählung des frühen Feldaufgangs ebenfalls den höchsten Wert und signifikant unterschied sich wieder von allen anderen Versuchsgliedern (Tab. 3). Weiterhin wiesen alle insektiziden Ausstattungen bei sämtlichen Zählungen einen signifikant höheren Feldaufgang als die unbehandelte Kontrolle auf. Die insektiziden Versuchsgliedern zeigten zur Zählung zum Abschluss des Feldaufganges signifikanten Unterschiede. keine Alle Versuchsglieder wiesen einen um nahezu 20 % höheren Feldaufgang auf, als die unbehandelte Kontrolle. Zum Zeitpunkt des Bestandesschlusses wurde kein abweichendes Ergebnis zur vorherigen Zählung festgestellt. In den Versuchen ohne Befall zeigte die Variante Force Magna zu allen Zählterminen den höchsten Feldaufgang(Tab. 3). Bei der Zählung des frühen Feldaufgangs erzielten die höher dosierten Versuchsglieder Poncho Beta+, Cruiser Force SB und Seedoprid einen signifikant geringeren Feldaufgang als die unbehandelte Kontrolle. Zur Zählung bei Abschluss des Feldaufganges und zum Bestandesschluss war dieser Sachverhalt nummerisch erkennbar, aber nicht mehr statistisch absicherbar.

In den Jahren 2009 bis 2011 konnten in den Versuchen des Ringversuchs sechs verschiedene Erreger nachgewiesen werden (Tab. 4). Durch das geringe Auftreten einzelner Erreger in Kombination mit der

im Jahr 2011 geringeren Standortzahl sind zum Teil für die einzelnen Erreger deutlich weniger Versuche als in den Vorjahren in der Auswertung zusammengefasst. Die Schwarze Bohnenlaus trat mit 20 Versuchen am häufigsten auf. In 14 Versuchen konnte der Rübenderbrüssler nachgewiesen werden. In 16 Versuchen fand sich der Moosknopfkäfer und in 11 Versuchen der Erdfloh. In geringerem Umfang traten die Rübenfliege in 9 Versuchen und der Drahtwurm in insgesamt 4 Versuchen in den Jahren auf.

Im Mittel aller 20 Versuche mit Befall durch die Schwarze Bohnenlaus konnten alle insektiziden Ausstattungen die Anzahl der befallenen Pflanzen signifikant gegenüber der Kontrolle senken (Abb. 1). Zwischen den verschiedenen Beizen bestanden keine signifikante Unterschiede. Dennoch lag der Befall in den geringen Ausstattungen Janus forte und Force Magna mit ca. 10 % befallener Pflanzen etwa doppelt so hoch wie bei den höher dosierten Varianten Poncho Beta+, Cruiser Force SB und Seedoprid. Auf Grund der Vielzahl an Standorten konnte eine Differenzierung in Versuche mit starkem Befall (mehr als 30 % befallene Pflanzen in der Kontrolle) und Versuche mit geringem Befall (weniger als 30 % befallene Pflanzen in der Kontrolle) vorgenommen werden (Abb. 2). So ist in den Versuchen mit starkem Befall die Differenzierung deutlicher ausgeprägt als in den Versuchen mit geringem Befall. In beiden Fällen sind die Unterschiede zwischen den insektiziden Varianten jedoch nicht signifikant. Weniger deutlich prägen sich die Unterschiede im Befall bei der Ausbildung der Koloniegröße der Blattläuse aus. Selbst in den Versuchen mit starkem Befall ist kaum eine Differenzierung zwischen den insektiziden Ausstattungen zu beobachten (Abb. 3). Allerdings können alle Versuchsglieder die Ausprä-

gung von Kolonien deutlich gegenüber der unbehandelten Kontrolle vermindern. Dies spiegelt sich auch an der daraus errechneten Richtzahl für den Befall wieder. Sowohl im Gesamtmittel als auch getrennt nach der Befallsstärke (Abb. 4) war durch die insektiziden Ausstattungen eine Reduzierung des Befalls gegenüber der Kontrolle nachzuweisen. Eine weitere Differenzierung zwischen den Versuchsgliedern war nicht nachzuweisen.

Der Moosknopfkäfer trat in den Jahren in insgesamt 16 Versuchen auf. Im Gesamtmittel reduzierten alle insektiziden Ausstattungen den Anteil an befallenen Pflanzen deutlich gegenüber der Kontrolle (Abb. 5). Für die geringer dosierten Varianten Janus forte und Force Magna zeichnete sich eine im Vergleich zwischen den insektiziden Ausstattungen geringere Zahl an gesunden und erhöhte Anzahl an deutlich geschädigten Pflanzen an, was sich aber nicht statistisch gegenüber den anderen Ausstattungen absichern ließ. Dies zeigte sich auch bei der Betrachtung der daraus errechneten Richtzahl (Abb. 6). Alle insektiziden Varianten unterschieden sich signifikant von der Kontrolle. Zwischen den insektiziden Versuchsglieder war keine Differenzierung möglich. Auch für den Befall durch den Moosknopfkäfer konnten die Standorte in der dreijährigen Auswertung in Versuche mit starkem Befall (Richtzahl < 0,65) und Versuche mit geringem Befall (Richtzahl > 0,65) eingeteilt werden. In den Versuchen mit geringem Befall unterschieden sich nur die Versuchsglieder, Poncho Beta+, Cruiser Force SB und Force Magna signifikant von der unbehandelten Kontrolle (Abb. 7). In den Versuchen mit starkem Befall waren die Differenzen deutlicher (Abb. 8). So erreichten in diesem Fall die Varianten Poncho Beta+ und

Seedoprid einen signifikant geringeren Befall als die Variante Janus forte. Alle insektiziden Ausstattungen reduzierten den Befall deutlich gegenüber der Kontrolle. In acht Versuchen wurde zudem eine Bonitur des Blattfraßes durch den Moosknopfkäfer vorgenommen (Abb. 9). Im Mittel betrug dieser in der Kontrolle unter 8 %. Alle insektiziden Ausstattungen führten zu geringeren Werten. Zwischen den Beizen zeigten sich keine signifikanten Unterschiede.

In insgesamt 14 Versuchen war der Rübenderbrüssler zu finden. Im Gesamtmittel führten alle insektiziden Varianten zu einer Reduzierung der befallenen Pflanzen durch den Schädling (Abb. 10). Eine Unterscheidung zwischen den insektiziden Ausstattungen war für diesen Erreger nicht möglich. Dies zeigte sich auch bei der Berechnung der Richtzahl. Bei diesem Schädling wurde ebenfalls eine Aufteilung der Standorte in Versuche mit deutlichem Befall (Richtzahl < 0,7) und Versuche mit geringem Befall (Richtzahl > 0,7) vorgenommen. Die Richtzahlen für beide Gruppen sind in Abbildung 11 dargestellt. Für beide Gruppen wurden keine signifikanten Unterschiede zwischen den insektiziden Versuchsgliedern festgestellt, sondern lediglich eine signifikante Befallsreduktion gegenüber der unbehandelten Kontrolle, welche an den Standorten mit starkem Befall sehr viel deutlicher ausgeprägt war.

Der Rübenerdfloh trat in 11 Versuchen in den Jahren 2009 bis 2011 auf. Bestimmt wurden sowohl die Anzahl der befallenen Pflanzen als auch die geschädigte Blattfläche. Für beide Parameter führten die insektiziden Varianten zu einer Reduzierung des Befalls gegenüber der unbehandelten Kontrolle (Abb. 12). Zwischen den Versuchsgliedern

war für diesen Erreger ebenfalls keine Differenzierung möglich. Auch für die Standorte mit Befall durch den Erdfloh wurde eine Gruppierung in Versuche mit starkem Befall (> 30 % befallene Pflanzen in der Kontrolle) und geringem Befall (< 30 % befallene Pflanzen in der Kontrolle) durchgeführt. Für beide Befallsgruppen ergab sich ein ähnliches Bild wie im Gesamtmittel. Eine signifikante Differenzierung zwischen den insektiziden Versuchsgliedern war nicht möglich. Lediglich in den Versuchen mit geringem Befall waren die insektiziden Ausstattungen nicht mehr signifikant von der unbehandelten Kontrolle im Parameter der geschädigten Blattfläche abzusichern.

In neun Versuchen in den drei Jahren trat mit sehr geringem Befallsdruck die Rübenfliege auf. Auch für diesen Schädling wurde die Anzahl der befallenen Pflanzen und die geschädigte Blattfläche bestimmt. Für beide Parameter führten die insektiziden Ausstattungen zu einer Reduzierung des Befalls (Abb. 13). Zwischen den Versuchsgliedern waren keine signifikanten Unterschiede festzustellen. Die deutlichste Befallsreduktion wurde durch die Versuchsglieder Poncho Beta+ und Cruiser Force SB erzielt.

Der Drahtwurm war in jedem Jahr sehr sicher an einem Standort in Deutschland zu finden. Im Jahr 2010 trat er darüber hinaus auch sehr deutlich an einem Standort in Polen auf. Auch für diesen Schädling führten alle insektiziden Ausstattungen zu einer Befallsreduktion und damit zu einem deutlich höheren Feldaufgang als in der unbehandelten Kontrolle (Abb. 14). Zwischen den insektiziden Varianten waren auf Grund der geringen Anzahl an Standorten keine Unterschiede nachzuweisen.

Der höchste Feldaufgang wurde in der Variante Cruiser Force SB erreicht.

Im Mittel aller Versuche (n = 44) hatten alle insektiziden Ausstattungen einen signifikant höheren Bereinigten Zuckerertrag (BZE) als die unbehandelte Kontrolle (Tab. 5). Zwischen den insektiziden Ausstattungen bestanden keine signifikanten Unterschiede.

Wie in den Vorjahren wurden die Versuche nach ihrer Ertragsreaktion und dem Auftreten von Schädlingen in Versuche mit deutlichem Befall und Versuche ohne Befall eingeteilt. In den Versuchen ohne Befall (n=21) hatten die insektiziden Ausstattungen keinen signifikant höheren Ertrag als die unbehandelte Kontrolle. Zwischen den Versuchsgliedern waren keine signifikanten Unterschied festzustellen. In den Versuchen mit deutlichem Befall (n=23) bestand ein stärkerer positiver Ertragseinfluss durch die insektiziden Ausstattungen zur unbehandelten Kontrolle als im Gesamtmittel. Dennoch waren auch in diesem Fall keine signifikanten Unterschiede zwischen den Ausstattungen festzustellen.

Internationaler Ringversuch Insektizide in der Pillenhüllmasse 2009 - 2011

Tabelle 1: Anzahl der Standorte

Land / Jahr	2009	2010	2011	Gesamt
Deutschland (D)	14	12	6	32
Österreich (A)	2	2	1	5
Polen (PL)	6	6	5	17
Slowakei (SK)	2	2	2	6
Tschechien (CZ)	1	1	1	3
Ungarn (H)	1	1	1	3
Gesamt	26	24	16	66

Tabelle 2: Variantenplan

VG	Unternehmen	Variante	Wirkstoff 1	Wirkstoff 2	Wirkstoff 3	Menge (g/U)
1	-	ohne Insektizid	-	-	-	-
2	Bayer	Poncho Beta +	Clothianidin	Imidacloprid	beta-Cyfluthrin	60+30+8
4	Bayer	Janus forte	Clothianidin	Imidacloprid	beta-Cyfluthrin	10+10+8
6	Syngenta	Cruiser Force SB	Thiamethoxam	-	Tefluthrin	60+8
7	Syngenta	Force Magna	Thiamethoxam	-	Tefluthrin	15+6
8	FCS	Seedoprid	-	Imidacloprid	-	60

Internationaler Ringversuch Insektizide in der Pillenhüllmasse 2009 - 2011

Tabelle 3: Feldaufgangszahlen

	alle Standorte						Standorte mit Befall						Standorte ohne Befall					
Variante/Zählung	früher FA (n = 50)		Abschluss des FA (n = 56)		Bestandes- schluss (n = 50)		früher FA (n = 24)		Abschluss des FA (n = 25)		Bestandes- schluss (n = 23)		früher FA (n = 26)		Abschluss des FA (n = 31)		Bestandes- schluss (n = 27)	
ohne Insektizid	51,4	е	71,8	С	74,0	b	45,2	С	65,2	b	64,3	b	57,1	b	77,0	bc	82,1	ab
Poncho Beta+	54,3	d	80,0	b	83,0	а	54,9	b	84,2	а	84,6	а	53,8	С	76,6	С	81,6	b
Janus forte	57,1	b	80,9	ab	82,3	а	57,5	b	83,9	а	82,3	а	56,7	b	78,6	ab	82,3	ab
Cruiser Force SB	55,9	bc	80,7	ab	82,9	а	57,2	b	84,5	а	84,6	а	54,7	С	77,7	bc	81,5	b
Force Magna	60,0	а	81,6	а	83,3	а	60,5	а	83,8	а	83,2	а	59,6	а	79,8	а	83,4	а
Seedoprid	54,4	cd	79,7	b	81,9	а	55,2	b	83,0	а	82,2	а	53,6	С	77,0	bc	81,6	b

Verschiedene Buchstaben innerhalb einer Spalte zeigen signifikante Unterschiede an (Tukey, $\alpha = 0.05$)

Internationaler Ringversuch Insektizide in der Pillenhüllmasse 2009 - 2011

Tabelle 4: Schädlingsauftreten in den beteiligten Ländern

Sobädling / Land		Gesamt							
Schädling / Land	Α	A CZ D H PL SK					Gesami		
Drahtwurm			3		1		4		
Moosknopfkäfer	2	2	7		3	2	16		
Rübenderbrüssler	2	1		3	5	3	14		
Rübenerdfloh	1	1		2	5	2	11		
Rübenfliege		1	4		1	3	9		
Schwarze Bohnenlaus		1	9	1	5	4	20		
alle Schädlinge	5	6	20	6	19	14	70		

Dünge-Bedarfsprüfungen 2011

Düngeversuche geben Hinweise über den Düngebedarf der Rüben unter unterschiedlichen Standort-, Bewirtschaftungs- und Witterungsbedingungen. Prognoseverfahren wie zum Beispiel Nmin und N-Bilanzierung können so aktuell und mittelfristig verglichen und ggf. angepasst werden. 2011 konnten Düngevarianten mit Harnstoff mit einbezogen werden.

Die standörtlichen N-Vorräte (Buir 39, Muthagen 43, Sechtem 34 und Esch 19 Nmin) lagen im Rahmen der Bewirtschaftungsgegebenheiten auf einem geringen Niveau. Im Mittel der 16 Versuchsstandorte, wo zum Teil organisch gedüngt worden ist, wurde mit 71 kg NO3-N je ha ein mittleres Niveau erreicht. Die N-Nachlieferung des Bodens in der Vegetationsperiode 2011 war mehr als sonst durch frühe und anhaltende Trockenheit gebremst. Die sommerlichen Niederschläge reichten zumeist nicht in tiefere Bodenschichten, so dass nur die Krume zeitweise zur Mineralisation beitragen konnte. Dementsprechend differenzierten die Düngevarianten im Wuchs erheblich stärker als in Normaljahren. Gleichzeitig führte der anhaltende Nährstoffmangel zu einer stärkeren Ertragsdifferenzierung als sonst und das Düngeoptimum wurde durchweg erst bei höheren N-Gaben erreicht (vgl. nachf. Abb.). Bedingt durch den Nährstoffmangel reagierten die Zuckergehalte nicht negativ auf die gesteigerten N-Gaben und der SMV wies weit unterdurchschnittliche Werte auf. Im langjährigen Mittel wurde der höchste BZE unter den gegebenen Bewirtschaftungsbedingungen und den überwiegend frühen Ernteterminen im September bei N-Gaben von 120 N/ha erzielt. Eine Düngeprognose ist – wie die Ergebnisse aus 2011 zeigen - allein wegen der nicht vorhersehbaren Jahreswitterung nie ganz exakt möglich.

Der Versuch am Standort Esch konnte wegen sehr trockenen Aufgangsbedingungen nicht in die Auswertung einbezogen werden. Die Rest-Stickstoff-Gehalte im September fielen wegen eines Ausreißers am Standort Muthagen für die ungedüngte Kontrolle etwas zu hoch aus. Bei bedarfsgerechtem N-Angebot findet man nur wenig Rest-N nach der Rübenernte.

Interessant war das Ergebnis der beiden Anhangsvarianten mit Harnstoff. Dieser wurde wie der KAS bei den Steigerungsvarianten direkt nach der Saat gedüngt. Am Standort Buir, wo der Boden mit hohem pH-Wert bereits durch den vor der Saat umgebrochenen Ölrettich einen geringeren Wassergehalt aufwies und nach der Saat nur geringe Niederschlagsmengen fielen (14 mm vom 31.3. bis 5.4.), kam es offensichtlich zu einer gewissen Ammoniakbildung, die den Aufgang der Rüben beeinträchtigte. In Muthagen und Sechtem waren keine derartigen Unterschiede beim Feldaufgang zu beobachten. Wegen der niedrigeren Bestandesdichte schnitt der Harnstoff in Buir schwächer ab. In Muthagen zeichneten sich dagegen deutliche Vorteile ab, so dass im Mittel der 3 Versuche der BZE von KAS erreicht worden ist.

N BER11.doc 30.01.2012

ス

Na

AmN

Pfl./ha b.Ernte

102963

mmol/1000

ഗ

80,1 94,5 104,0 104,4 108,8 108,2 103,2 12,97 14,40 10,83

104,1

Ohne N 40 N/ha 80 N/ha

120 N/ha 160 N/ha 200 N/ha 80 N 1) 80 N 2)

14,52 15,21 15,09 14,26 13,83

104,9 109,9 109,0 103,0 100,0

9,87 11,82 13,12 13,21 13,78 13,66 12,98 12,60

78,5 94,0 104,3 105,0 109,6 108,6 103,2 100,2

18,35 18,62 18,79 18,87 18,97 18,97 18,92 18,74

1,18

1,10

93,6 95,4 97,0 99,3 106,5 108,2 97,6

1,8 1,8 1,8 1,8 1,8 1,8 1,8

6,5 7,4 8,0 8,8 11,6 12,5 8,1

95926 98519 97778

97,9 99,3 100,2

,04

31,6 31,4 31,7

100,6 101,2 100,9 99,9 100,0

32,0 32,7 32,3 32,3 31,6

95185 93333 91111 97778

1,20 1,08 1,07

96,3

59,0 69,7 76,7 76,9 80,2 79,7 76,1 73,7

2) 🗅

GD 5 % 1) Harnstoff

2) Harnstoff stabilisiert (Urea stabil)

0,82

6,0

N11.xls

urea stabil 30.01.2012

40 N/ha 80 N/ha 120 N/ha 160 N/ha 200 N/ha 80 N 1) 80 N 2)

66,9 77,7 82,0 84,7 87,4 87,9 82,7

82,4 95,8 101,1 104,5 107,8 108,4 101,9 102,0

13,73 14,58 15,02 15,62 15,62 15,56 14,61 14,52

95,6 101,6 104,6 108,8 108,3 101,8 101,1

10,54 12,44 13,20 13,56 14,06 13,96 13,21 13,21 13,12

81,3 96,0 101,8 104,7 108,5 107,7 102,0 101,3

17,51 17,77 17,86 17,80 17,94 17,78 17,78 17,76

93,8 95,6 97,1 100,2 105,2 108,0 97,6 97,4

30,4 31,2 31,1 31,8 31,8 32,7 32,0 31,3 31,3

0,3

7,8 8,3 9,0 10,1 11,8 11,8 13,4 9,1 9,0

96636 94907

14511

108025 104475 107932 103488 103488 101944

98,5 100,0 100,5 100,1

1,05 1,07 1,09 1,13

100,9 100,0 99,9 99,2

1,18 1,21 1,10 1,09

Ohne N

S

Mittel aus

Versuchen 2011

Rübenertrag

rel

11,64

Zuckerertrag t/ha rel.

Berein.

Ν

.ertrag

Zuckergehalt

ഗ

≤

<

ㅈ

Mmol/1000

R. AmN

Pfl./ha b.Ernte

rel

rel

rel

GD 5 % 1) Harnstoff

Harnstoff

stabilisiert

t (Urea

ı stabil)

6,1

1,3

,03

5

6

0,85

2) 🗅

120 N/ha 160 N/ha 200 N/ha 80 N 1) 80 N 2)

100,9 103,4 103,0 100,7

88,4 98,3 98,7 102,8 104,6 107,2 106,7 104,3

14,28 16,06 16,22 16,89 17,13 17,45 17,47

87,4 98,3 99,3 103,4 104,9 106,8 106,9

12,89 14,49 14,61 15,18 15,32 15,32 15,74 15,33

87,8 98,7 99,5 103,4 104,4 106,1 107,2 104,4

98,9 100,0 100,6 100,6 100,3 99,7 100,3 99,8

16,73 16,91 17,01 17,02

,05 ,08 ,11

92,2 94,8 97,4 100,1

30,0 30,8 31,1 31,8

16,97 16,87 16,97 16,89

1,19 1,21 1,08 1,07

106,9 108,5 97,0 95,7

33,4 32,7 30,9 30,6

6,7 7,5 8,5 9,4 11,7 12,7 12,7 8,4 8,0

104444 104074 108148 102963 103704 107407 104815

Ohne N 40 N/ha 80 N/ha

85,3 94,9 95,3 99,2

S

t/ha Rübenertrag

<u>e</u>

t/ha

Гe

t/ha

<u>e</u>

ē

ē

mmol/1000

,03

Zuckerertrag

Berein.

. Z.ertrag

Zuckergehalt

S

<u>≤</u>

ス

Na

R. AmN

Pfl./ha b.Ernte

Parz.: 5

qm / 5 Whg.

Sabrina

r.d.Allee

-69-

N-Bedarfsprüfung Muthagen 2011
Saat: 15.3. Ernte: 15.9

GD 5 %

1) Harnstoff

2) Harnstoff stabilisiert (Urea stabil)

9

120 N/ha 160 N/ha 200 N/ha 80 N 1) 80 N 2)

106,9 111,1 110,2 94,4 100,8

13,69 14,51 14,13 12,10 12,73

106,1 112,4 109,5 93,8 98,7

12,31 13,07 12,66 10,91 11,45

17,55 17,56 17,28

1,23 1,13 1,15

100,1

99,1 101,2 99,4 99,5 97,9

101,3 102,3 107,3 98,3

76,4 94,6 102,0 105,8 112,4 108,8 93,8 98,4

1,16 1,18

29,7 31,5 30,5 31,5 32,0 32,0 31,0 31,9

10,2 9,8 10,5 12,0 12,2 15,1 10,9 11,3

116667 113426 117130 109722 111574 105093 93981 77315

17,44 17,78 17,77 17,51 17,88

98,8 100,7 100,7

95,6 96,5 97,0

1,10

56,2 68,5 73,9 78,1 81,2 80,5 69,0 73,7

2) 🗅

Ohne N 40 N/ha 80 N/ha

76,9 93,7 101,1

12,17 13,12

94,3 101,7

8,89 11,00 11,86

9,81

76,0

S

Rübenertrag

Zuckerertrag

Berein.

Z.ertrag

Zuckergehalt

ഗ

Na |/1000

R. AmN

Pfl./ha b.Ernte

ē

Parz.: 5

qm / 4 Whg.

Emilia

bar2

t/ha

N-Bedarfsprüfung Buir 2011 Saat: 26.3. Ern

:rnte:

23.9

GD 5 % 1) Harnstoff

Harnstoff stabilisiert (Urea stabil)

1,07

8,4

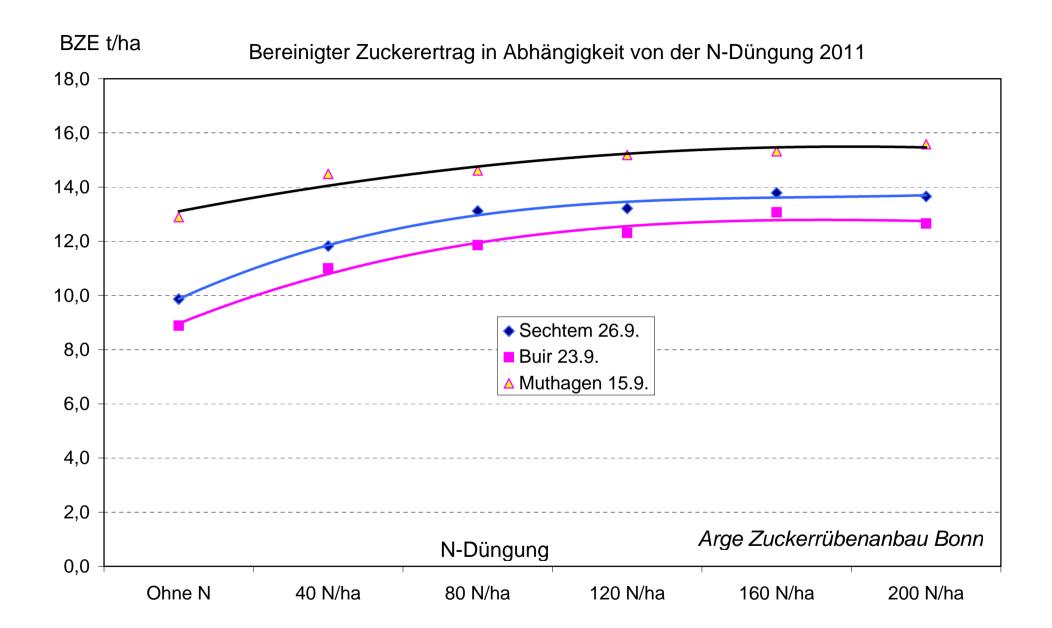
0,70

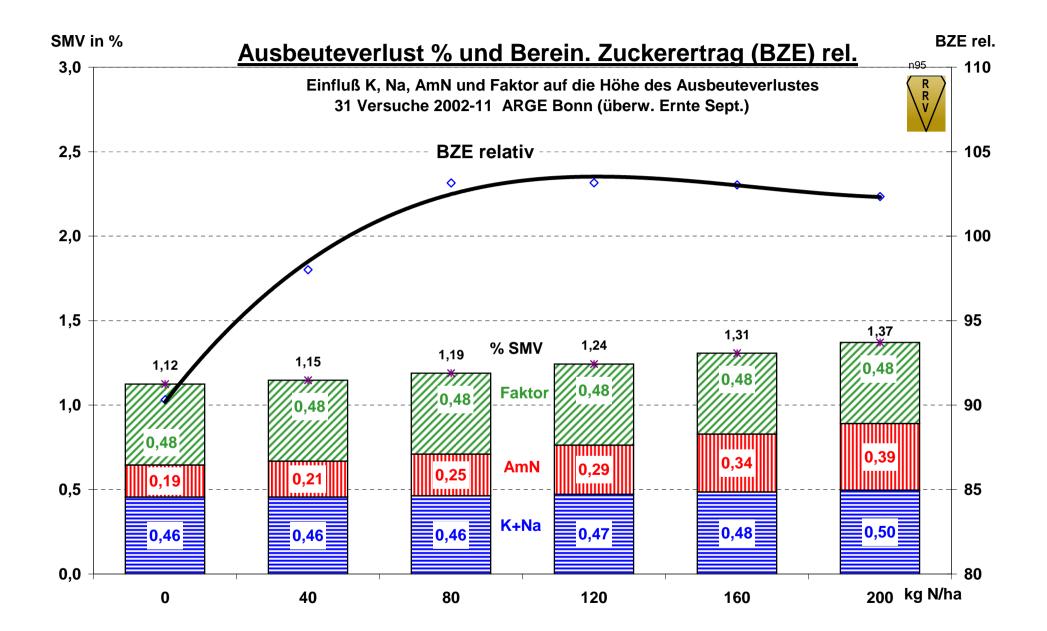
3,9

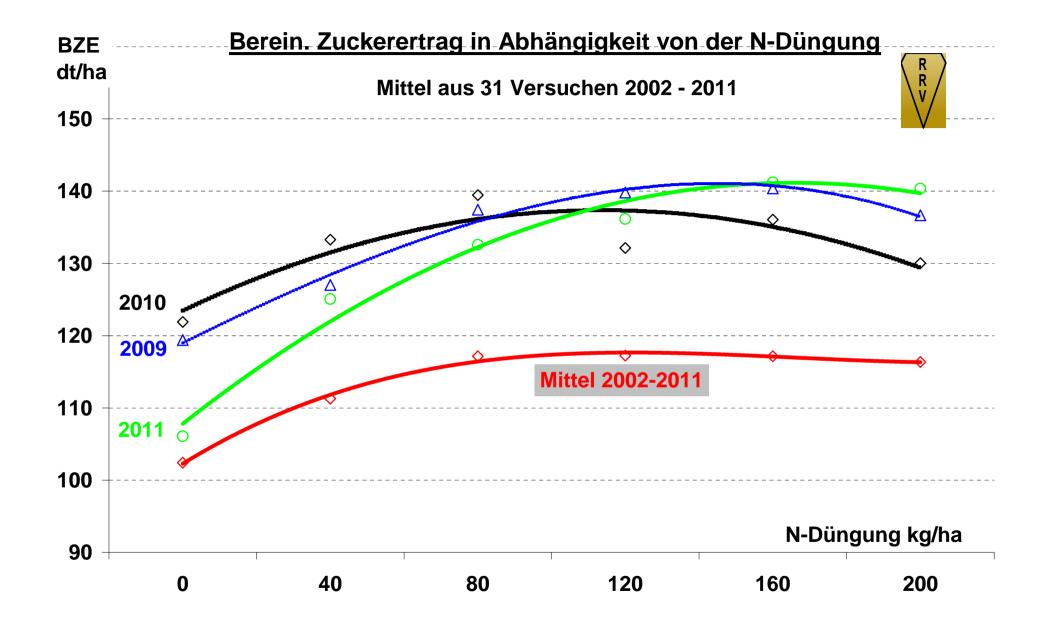
,6

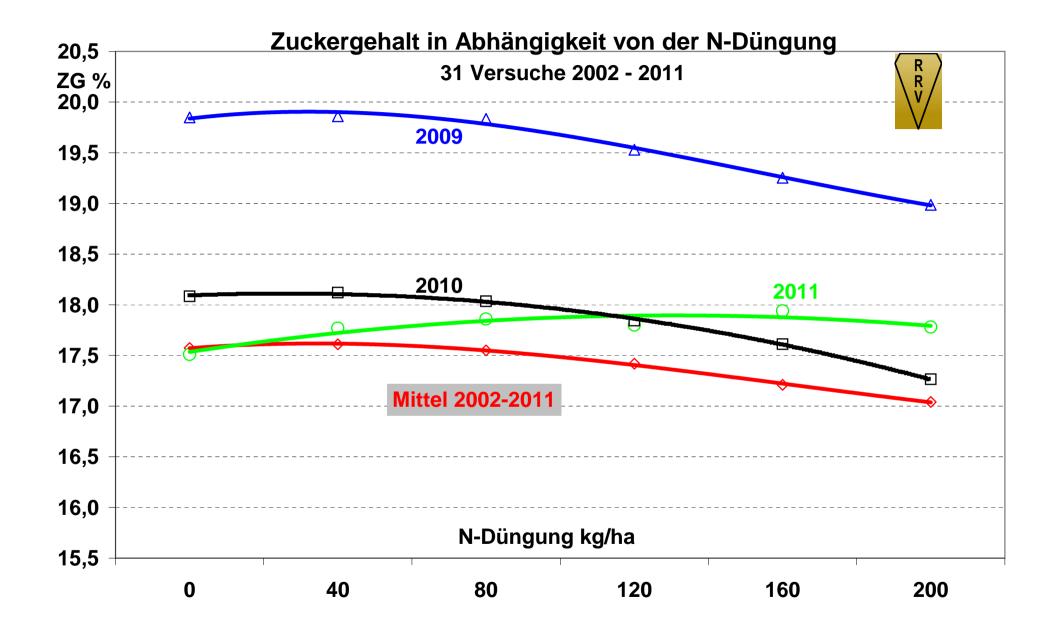
10119

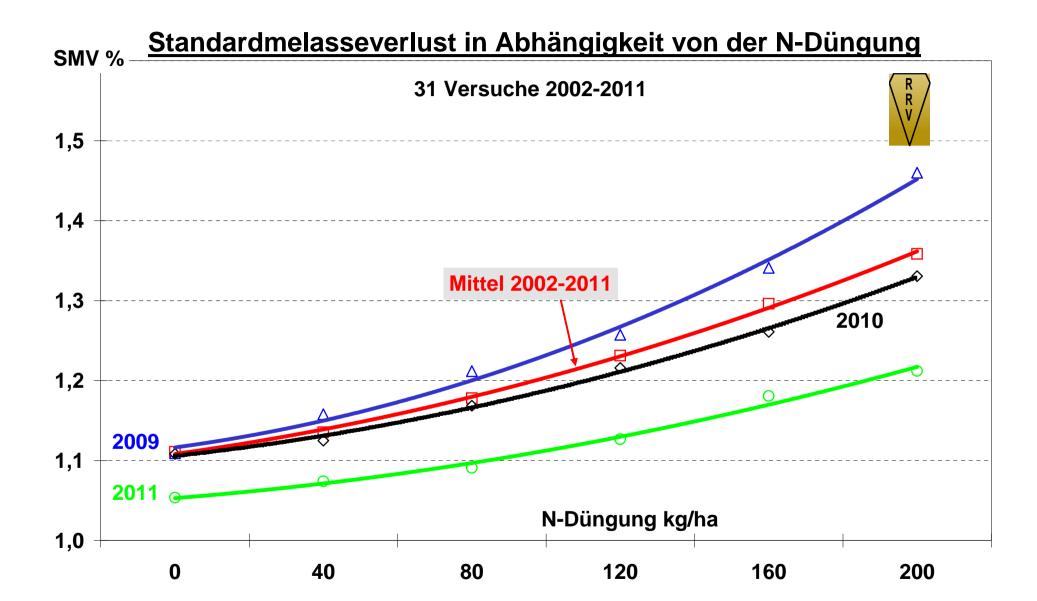
Rübenertrag

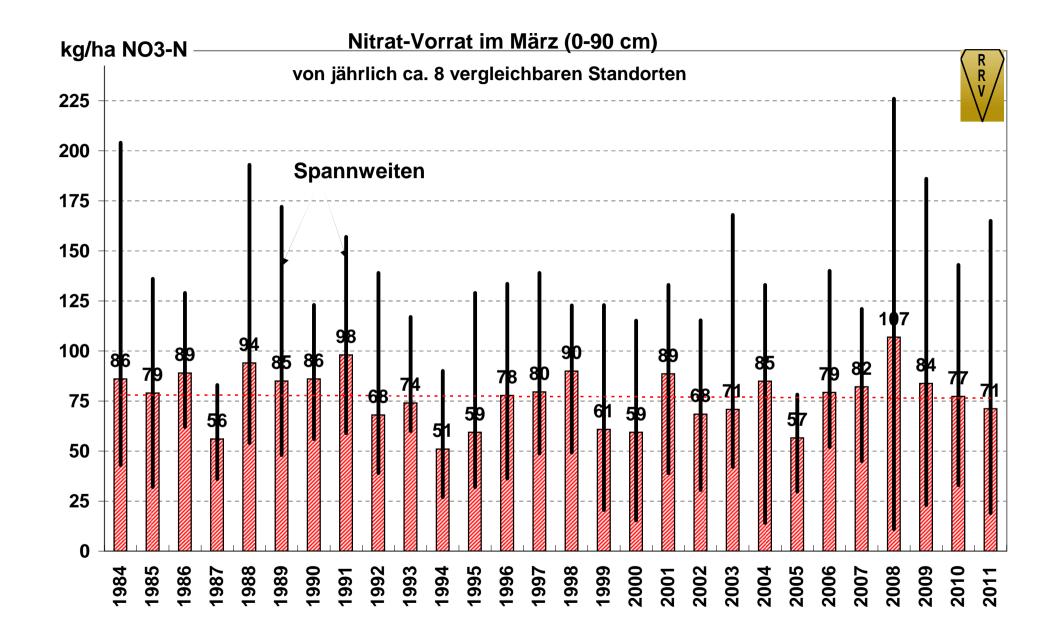

S Saat:


.9


Zuckerertrag 78,3 93,8


ē


Berein. t/ha



Nmin-Proben Frühjahr 2011

76,5	38,6	24,0	13,9	71,1	0,0	71,1	0,0	0,0	0,0	27,9	20,9	24,1			Mittel (n=13)
216,0	125,0	78,0	62,0	165,0	0,0	165,0	0,0	0,0	0,0	88,0	55,0	64,0			max
8,7	2,7	3,4	2,6	19,0	0,0	19,0	0,0	0,0	0,0	0,0	5,0	9,0			min
				48,0	0,0	48,0		0,0	0,0		12,0	36,0	22.3.	Bor	Gangelt
55,3	12,0	6,3	37,0	48,0	0,0	48,0	0,0	0,0	0,0	21,0	14,0	13,0	9.3.	Biogas	Gangelt
211,0	125,0	78,0	8,0	157,0	0,0	157,0	0,0	0,0	0,0	88,0	43,0	26,0	2.3.	RhSV	Etzweiler
8,7	2,7	3,4	2,6	38,0	0,0	38,0	0,0	0,0	0,0	9,0	13,0	16,0	9.3.	Vers.	Borschemich
216,0	123,0	73,0	20,0	38,0	0,0	38,0	0,0	0,0	0,0	13,0	12,0	13,0	9.3.	Röd. Str. hi.	Kalrath
144,4	87,0	53,0	4,4	41,0	0,0	41,0	0,0	0,0	0,0	17,0	12,0	12,0	9.3.	Sandweg	Kalrath
36,7	17,0	13,0	6,7	43,0	0,0	43,0	0,0	0,0	0,0	12,0	14,0	17,0	9.3.	r.d.Allee	Muthagen
37,4	19,0	9,0	9,4	19,0	0,0	19,0	0,0	0,0	0,0	5,0	5,0	9,0	4.3.	Dreieck	Esch
99,7	60,0	30,0	9,7	34,0	0,0	34,0	0,0	0,0	0,0	13,0	10,0	11,0	1.3.	Widdiger Weg	Sechtem
35,5	17,0	11,0	7,5	65,0	0,0	65,0	0,0	0,0	0,0	11,0	26,0	28,0	1.3.	Brücke	Sechtem
51,0	25,0	15,0	11,0	104,0	0,0	104,0	0,0	0,0	0,0	47,0	27,0	30,0	25.2.	Herb.	Nörvenich
38,4	23,0	10,0	5,4	121,0	0,0	121,0	0,0	0,0	0,0	62,0	30,0	29,0	22.2.	Herfahrt 1	Nemmenich
50,0	18,0	15,0	17,0	116,0	0,0	116,0	0,0	0,0	0,0	20,0	32,0	64,0	22.2.	Fühling	Miel
32,2	14,0	13,0	5,2	165,0	0,0	165,0	0,0	0,0	0,0	80,0	55,0	30,0	2.3.	Windrad	Buir
43,8	24,0	17,0	2,8	62,0	0,0	62,0	0,0	0,0	0,0	20,0	22,0	20,0	2.3.	Val.	Buir
88,0	12,0	14,0	62,0	39,0	0,0	39,0	0,0	0,0	0,0	0,0	7,0	32,0	2.3.	bar2	Buir
0-90	90	60	30	0-90	0-90	0-90	90	60	30	90	60	30	nahme		
Smin	Smin	Smin	Smin	Gesamt	NH4	Nitrat	NH4	NH4	NH4	Nitrat	Nitrat	Nitrat	Probe-	Feld	Ort

Nmin-Proben Ernte 2011

Ort	Feld	Probe-	Düngg.	Nitrat	Nitrat	NH4	NH4	Nitrat	NH4	Nmin
		nahme		30	60	30	60	0-60	0-60	0-60
Buir	bal1	23.9.	0	22,0	6,0	0,0	0,0	28,0	0,0	28,0
			120	32,0	6,0	0,0	0,0	38,0	0,0	38,0
			200	25,0	6,0	0,0	0,0	31,0	0,0	31,0
Muthagen	r.d.Allee	15.9.	0	38,0	12,0	0,0	0,0	50,0	0,0	50,0
			80	20,0	8,0	0,0	0,0	28,0	0,0	28,0
			200	32,0	11,0	0	0	43,0	0,0	43,0
Sechtem		26.9.	0	6,0	5,0	0,0	0,0	11,0	0,0	11,0
			120	7,0	5,0	0,0	0,0	12,0	0,0	12,0
			200	9,0	5,0	0	0	14,0	0,0	14,0
Mittel	3 Standorte	21.9.	0	22,0	7,7	0,0	0,0	29,7	0,0	29,7
			107	19,7	6,3	0,0	0,0	26,0	0,0	26,0
			200	22,0	7,3	0,0	0,0	29,3	0,0	29,3

Haupt- und	Haupt- und Spurennährstoff-Untersuchungen 2011	rstoff-	Unter	suchu	ngen 2	011				
Ort	Feld	Probe	Hd	P205	K20	Mg	Cu	В	Mn	Zn
		2011		mg/10	mg/100 g Boden	٠				
Miel		22.2.	6,9	14	6	9	3,6	0,56	169	8,3
Buschh. Betr.		25.2.	6,9	19	1	7	2,6	0,54	172	5,9
Buschh. Vers.		25.2.	7,0	<u> </u>	1	6	2,3	0,37	167	3,6
Busch. 60		25.2.	6,7	2	51	9	1,2	0,15	65	1,1
Gangelt 30	SV-B	9.3.	6,5	31	24	13	2,7	0,38	65	8,9
Muth. 30	r.d.Allee	9.3.	7,0	26	29	1	2,4	0,53	187	12,0
Kalrath	Sandweg 30	9.3.	6,7	27	20	œ	4,2	0,72	187	15,0
Klarath	Röd. Str.	9.3.	6,6	23	23	œ	2,8	0,66	212	12,0
Borschemich 30		9.3.	6,6	15	7	о	2,6	0,36	182	8,4
Esch	Dreieck	10.3.	6,4	8	13	ъ	3,0	0,39	275	8,2
Nemmenich	Herfahrt1	1.4.	6,6	19	20	13	4,8	1,10	303	11,0
Fuss		11.3.	6,6	19	27	1	6,6	1,00	368	9,6
Sechtem	Widd. Weg	1.3.	6,2	21	27	1	5,4	0,60	43	13,0
Ohndorf	NW re.	1.3.	6,5	38	38	9	7,3	0,75	234	17,0
Rheidt	VertSV	21.3.	6,4	24	20	9	4,6	0,67	201	14,0
Etzweiler	SV Rh	24.3.	7,2	50	23	σı	3,2	0,63	29	12,0
Seelrath	NVS	23.3.	6,9	29	12	σı	3,6	0,64	82	10,0
Merzenich	<u>u</u>	1.4.	6,5	19	19	13	4,1	0,67	236	13,0
Merzenich	4.	1.4.	6,6	23	23	10	3,5	0,56	250	11,0
Weiler	Rövenich	1.4.	6,8	27	32	9	3,8	0,44	136	8,0
Weiler	Poller Weg	1.4.	7,0	30	20	11	4,6	1,00	261	8,6
Palmersheim	NVS	1.4.	6,9	20	24	12	4,1	0,50	268	7,7
Gangelt 30	Bor	22.3.	7,2	37	20	бī	3,3	0,32	170	9,1
Gangelt 60	Bor	22.3.	7,1	13	13	7	2,6	0,21	63	4,3
Sechtem	NVS	30.3.	7,1	20	21	7	3,2	0,83	258	6,2
Buir	bar 2	30.3.	7,4	31	22	œ	3,4	0,48	199	8,5
Buir	SVN_He	30.3.	7,5	37	32	9	3,1	0,50	147	21,0
Stahe	SVB	24.3.	6,3	36	21	12	2,8	0,64	76	16,0
Erkelenz	SSV	10.8.	6,5	24	14	6	2,6	0,47	146	11,0
Dirmerzheim	RVH	11.4.	6,5	16	33	9	3,1	0,92	219	10,0
Millendorf	VertSV	11.7.	6,8	19	51	Ŋ	2,2	0,94	172	10,0
Dahmen -		9.5.	6,6	13	12	10	4,5	0,47	161	23,0
Dahmen +		9.5.	7,2	25	25	12	3,9	0,58	126	19,0
Metternich -	PR	15.8.	7,4	21	15	51	1,5	0,36	57	2,4
Metternich +	PR	15.8.	6,4	17	10	9	2,5	0,43	258	3,9
Sevenich	Bormangel	8.9.	7,4	14	14	7	3,1	0,30	148	6,7
Mittel			6,8	22,7	19,2	8,6	3,5	0,57	174,8	10,3
Min.			6,2	2,0	5,0	5,0	1,2	0,15	29,0	1,1
Max.			7,5	50,0	38,0	13,0	7,3	1,10	368,0	23,0

Düngung mit Mikronährstoffen 2011

2011 hat ähnlich wie 2010 durch starke und frühe Trockenheit die Wasserversorgung begrenzt und somit die Borversorgung der Rüben zeitweise begrenzt. Lediglich der kühle und feuchtere Sommer hat zu einer gewissen Entspannung beigetragen. Ab September nahm die Trockenheit verbreitet wieder zu. Bormangel ist unter diesen Gegebenheiten häufiger – vor allem in Regenschattengebieten und bei hohen pH-Werten aufgetreten. Bei stark ausgeprägter Trockenheit und ungünstiger Borverfügbarkeit über den Boden gab es regional Bormangel trotz Borspritzungen im Mai und Juni.

Ursache für Bormangel ist stets eine zu geringe **Borverfügbarkeit** (selbst bei ausreichenden Bodengehalten möglich) aufgrund früher und/oder anhaltender Trockenheit, geringer Wasserhaltefähigkeit des Bodens, zu hoher pH-Werte über pH 7,0 oder sehr niedriger Borgehalte im Boden. Auch die unterschiedliche Sensibilität von Zuckerrübensorten gegenüber Bormangel oder zusätzlicher Wassermangel z.B. durch Nematodenbefall kann eine Rolle spielen. Bor ist wichtig für den Protein- und Kohlehydratstoffwechsel. Bei Mangel wird das Wurzelwachstum gestört und der Assimilatetransport gehemmt. Erkennbar ist Bormangel zunächst an den jüngsten, inneren Blättern. Da Bor in der Pflanze nicht umverlagert werden kann, steht der Nährstoff aus den älteren Blättern den Pflanzen nicht zur Verfügung. Die jüngsten, inneren Blätter bleiben zunächst im Wachstum zurück, werden dann schwarz und sterben schließlich ganz ab. Im Anschluss daran vergilben auch die äußeren Blätter. Bei starkem und anhaltendem Bormangel können auch sie ganz absterben. In anderen Fällen äußert sich der Schaden unscheinbarer in Form rissiger, aufgerauter Blattoberflächen und Blattstiele. Häufig zeigen sich im Bereich ab Wurzelhals abwärts Schäden an der Epidermis, die zunehmend tiefere Gewebschichten erfassen. Die Gefäßbündelringe können stärker verbräunen (im Querschnitt der Wurzel sichtbar). Je nach Witterungs- und Wachstumsbedingungen kann ausgehend vom Wurzelhalsbereich Fäulnis entstehen, welche bis zur Ernte bzw. während der Mietenlagerung fortschreiten und zu zusätzlichen Verlusten führen kann. Sind Mangelsymptome oder gar Schäden einmal aufgetreten, lassen sich diese durch eine späte Bordüngung kaum mehr rückgängig machen.

2011 wurden an den Bormangelstandorten Gangelt und Buschhoven Versuche mit den neu zugelassenen Sorten angelegt. Da an letzterem die Niederschlagsverteilung günstiger war, trat dort kein Bormangel auf. Dagegen wurden in **Gangelt** erwartungsgemäß bei niedrigem Borgehalt im Boden leichte Mangelsymptome und gewisse Ertrags- und Qualitätseinflüsse registriert. Die angebauten Sorten reagierten unterschiedlich deutlich am Blatt aber kaum am Wurzelhals und nur tendenziell beim Bereinigten Zuckerertrag (vgl. Tabellen). Je stärker die optische Symptomausprägung war, desto deutlicher reagierten die Sorten auf die Bordüngung.

Auch in weiteren Versuchen an den Standorten Buschhoven und Etzweiler brachten Bordüngemaßnahmen leichte Vorteile, obwohl keine deutlichen Mangelsymptome erkennbar waren. Im Mittel von 4 Versuchen 2011 ergab sich ein Mehrertrag durch die Bordüngung von 5,1 % BZE.

Eine Prognose über das Auftreten von Bormangel ist grundsätzlich schwierig wie auch die aktuellen Erfahrungen 2011 zeigen. Letztlich spielt die nicht vorhersehbare Witterung eine enorm große Rolle. Dennoch lassen sich aus langjährigen Erfahrungen Prognosen erstellen: Dort wo Bormangel bisher aufgetreten ist oder eine Disposition für Bormangel gegeben ist, empfiehlt sich in jedem Fall eine prophylaktische Bordüngung. Nur so lässt sich das hohe Leistungsniveau moderner Hochleistungssorten absichern. Auf Standorten mit regelmäßiger Sommertrockenheit, hohen pH-Werten, sandigen Böden, Tonköpfen, bei geringen Borgehalten oder Nematodenbefall ist die Gefahr von Bormangel stets gegeben.

Die höchste Effizienz einer Düngungsmaßnahme wird mit einer Blattdüngung erreicht, insbesondere wenn die Verfügbarkeit über den Boden beeinträchtigt ist. Auch eine Bodendüngung (vor der Saat mit Einarbeitung) kann die Nährstoffversorgung deutlich verbessern. Für späte Ernten, kann auch eine weitere Borgabe bei der Fungizidbehandlung sinnvoll sein.

Als Bordünger kann jedes preisgünstige, borhaltige Produkt Verwendung finden. Zusätzlicher Bedarf an weiteren Mikronährstoffen wie zum Beispiel Mangan wurde bei Zuckerrüben bisher nicht beobachtet. In den Versuchen wurden verschiedene Bordünger eingesetzt.

Sortenprüfung Gangelt 2011

Saat: 22.03.	Ernte: 1	4.09.	Parz.: 2	2,7 qm x	4 Whg.		Bordüng	jung am	25.05.	mit 0,6 k	g Rein-E	3or/ha (S	Solubor) l	bei Reihens	schluss	
VG	Rüben	ertrag	Zucker	ertrag	Berein.	Z.ertrag	Zucker	gehalt	S	ΜV	K	Na	AmN	Pfl./ha	Blatt 1)	Blatt 1)
	t/ha	rel.	t/ha	rel.	t/ha	rel.	%	rel.	%	rel.	mm	ol/1000	g R.	b.Ernte	11.8.	14.9.
Kontrolle:																
Artus	80,2	102,9	12,70	99,8	11,51	100,3	15,85	97,0	0,89	87,6	21,0	2,5	5,4	104.630	6,0	3,3
Haydn	79,4	101,8	12,82	100,7	11,57	100,9	16,18	99,1	0,96	94,6	23,6	2,9	6,9	99.074	4,7	2,5
Kepler	89,6	115,0	14,45	113,5	12,94	112,8	16,13	98,8	1,09	106,6	29,9	2,5	9,1	107.407	3,8	1,3
SY Securita	68,6	88,0	10,87	85,4	9,81	85,6	15,82	96,9	0,94	92,3	23,7	4,0	5,4	106.481	2,3	1,5
Britta	77,4	99,3	12,85	100,9	11,55	100,8	16,59	101,6	1,08	105,9	29,5	3,0	8,7	113.889	2,3	1,5
Elaina KWS	68,9	88,4	11,44	89,9	10,33	90,0	16,61	101,7	1,02	100,2	25,6	3,4	8,1	102.778	1,5	2,5
Kristallina KWS	88,8	113,9	15,15	119,0	13,69	119,4	17,05	104,4	1,04	101,7	25,9	2,4	9,0	112.963	1,8	1,3
Mattea KWS	65,6	84,1	10,57	83,0	9,49	82,8	16,12	98,7	1,05	103,3	27,5	3,6	8,3	111.111	1,8	1,3
Sandra KWS	79,1	101,4	12,57	98,8	11,35	98,9	15,91	97,4	0,95	93,3	24,4	2,9	6,0	112.037	1,7	3,8
Annika KWS	79,6	102,2	12,92	101,5	11,62	101,3	16,23	99,4	1,03	101,3	28,1	2,8	7,6	106.481	3,2	3,5
Taifun	68,0	87,2	11,39	89,5	10,27	89,6	16,76	102,7	1,04	102,4	27,2	4,1	7,9	112.963	3,7	2,3
Adrianna	90,3	115,8	15,05	118,2	13,49	117,6	16,68	102,2	1,13	110,9	30,1	2,9	10,6	98.148	2,5	1,0
Bordüngung:																
Artus	87,8	112,6	13,94	109,5	12,61	109,9	15,89	97,3	0,92	89,8	21,5	2,8	6,0	107.407	1,0	1,0
Haydn	83,9	107,6	13,75	108,0	12,47	108,7	16,40	100,4	0,93	91,5	23,0	2,7	6,0	106.481	1,0	1,0
Kepler	96,1	123,3	15,45	121,4	13,82	120,5	16,09	98,5	1,10	108,0	30,1	2,7	9,5	100.000	1,0	1,0
SY Securita	76,7	98,4	12,22	96,0	11,01	96,0	15,95	97,7	0,98	96,6	26,0	3,6	6,2	108.333	1,0	1,0
Britta	76,6	98,2	12,61	99,0	11,31	98,6	16,46	100,8	1,10	107,4	29,9	3,3	9,1	113.889	1,0	1,0
Elaina KWS	74,4	95,5	12,16	95,5	10,95	95,5	16,35	100,1	1,03	100,8	25,8	3,4	8,2	110.185	1,0	1,0
Kristallina KWS	84,0	107,7	14,51	113,9	13,13	114,5	17,28	105,8	1,04	101,9	26,5	2,2	8,9	114.815	1,0	1,0
Mattea KWS	65,5	84,0	10,54	82,8	9,46	82,5	16,11	98,7	1,05	103,4	26,7	3,3	8,9	119.444	1,0	1,0
Sandra KWS	85,2	109,3	13,49	105,9	12,17	106,1	15,84	97,0	0,95	93,2	23,8	3,2	6,1	104.630	1,0	1,0
Annika KWS	85,6	109,8	14,01	110,0	12,61	109,9	16,38	100,3	1,04	102,1	29,3	2,8	7,3	125.926	1,0	1,0
Taifun	69,3	88,9	11,61	91,2	10,45	91,1	16,76	102,6	1,07	105,0	28,0	4,2	8,5	111.111	1,0	1,0
Adrianna	89,0	114,2	14,98	117,7	13,43	117,1	16,85	103,2	1,15	112,9	30,4	2,8	11,3	98.148	1,0	1,0
GD 5 %	8,7	11,1	1,42	11,1	1,27	11,1	0,29	1,8	0,04	4,0	1,6	0,4	1,1	15.845	1,3	1,5
Kontrolle	77,9	100,0	12,73	100,0	11,47	100,0	16,33	100,0	1,02	100,0	26,4	3,1	7,8	107.330	2,9	2,1
Bordüngung	81,2	104,1	13,27	104,2	11,95	104,2	16,36	100,2	1,03	101,1	26,8	3,1	8,0	110.031	1,0	1,0
GD 5 %	2,6	3,3	0,43	3,4	0,39	3,4	0,08	0,5	0,01	1,1	0,5	0,1	0,3	3.955		

Sortenprüfung Buschhoven 2011

Saat: 29.03.	Ernte: 1	3.09.	Parz.: 2	2,7 qm x	4 Whg.		Bordüng	gung 03.	06. mit (0,75 kg F	Rein-Bor/	ha (Solu	lbor)			
VG	Rüben	ertrag	Zucker	ertrag	Berein. Z	.ertrag	Zucker	gehalt	SI	1 V	K	Na	AmN	Pfl./ha	Welke	Mehltau
	t/ha	rel.	t/ha	rel.	t/ha	rel.	%	rel.	%	rel.	mm	ol/1000	g R.	b.Ernte	15.7.	23.8.
Kontrolle:																
Artus	78,2	100,0	12,60	100,0	11,35	100,0	16,03	100,0	1,00	100,0	22,9	2,6	8,8	114.815	2,6	8,4
Haydn	65,3	83,4	10,83	86,0	9,79	86,2	16,59	103,4	1,00	100,6	23,8	2,5	8,6	112.963	3,0	9,0
Kepler	73,5	94,0	11,73	93,1	10,44	92,0	15,95	99,5	1,16	116,0	29,3	2,5	12,3	112.037	3,0	7,2
SY Securita	59,5	76,1	9,64	76,5	8,65	76,2	16,18	100,9	1,06	106,1	26,9	3,5	8,9	106.481	3,2	7,6
Britta	70,1	89,6	11,65	92,5	10,44	92,0	16,59	103,5	1,13	113,0	27,7	2,9	11,6	112.037	3,4	2,2
Elaina KWS	60,7	77,6	10,35	82,1	9,30	81,9	17,04	106,3	1,13	113,7	28,3	3,2	11,5	105.556	3,8	3,4
Kristallina KWS	65,6	83,8	11,16	88,6	10,05	88,6	17,01	106,1	1,09	109,3	25,4	2,5	11,4	117.593	1,4	7,2
Mattea KWS	61,6	78,7	10,01	79,5	8,88	78,3	16,25	101,3	1,23	123,7	28,9	3,7	15,0	113.889	2,6	8,2
Sandra KWS	75,0	95,9	12,43	98,7	11,21	98,8	16,58	103,4	1,03	103,4	24,7	2,7	9,2	111.111	3,8	4,6
Annika KWS	74,3	94,9	12,38	98,3	11,13	98,1	16,69	104,1	1,08	108,6	27,7	2,8	9,8	107.407	2,8	2,2
Taifun	49,6	63,4	8,51	67,5	7,62	67,1	17,11	106,7	1,20	120,7	30,3	3,9	13,0	113.889	1,8	5,8
Adrianna	62,5	79,9	10,61	84,2	9,50	83,7	16,97	105,8	1,18	118,5	28,6	2,5	13,7	112.037	2,0	8,2
Bordüngung:																
Artus	78,1	99,8	12,59	99,9	11,35	100,0	16,09	100,4	0,99	99,2	22,8	2,4	8,6	122.222	2,0	8,6
Haydn	64,5	82,5	10,75	85,3	9,72	85,6	16,64	103,8	0,99	99,8	23,5	2,5	8,4	118.519	2,8	9,0
Kepler	72,6	92,8	11,56	91,7	10,28	90,6	15,93	99,3	1,15	115,7	28,8	2,4	12,4	112.963	2,8	7,6
SY Securita	61,6	78,7	10,01	79,4	8,98	79,1	16,24	101,3	1,07	107,7	27,0	3,3	9,5	106.481	2,4	7,2
Britta	73,2	93,6	12,28	97,5	11,02	97,1	16,76	104,6	1,12	112,4	28,3	3,1	11,0	113.889	3,0	2,2
Elaina KWS	65,2	83,3	11,24	89,2	10,11	89,1	17,23	107,5	1,13	113,5	28,1	2,8	11,6	112.037	3,6	3,4
Kristallina KWS	60,9	77,9	10,52	83,5	9,50	83,7	17,27	107,7	1,07	107,6	25,2	2,3	10,9	109.259	1,4	7,0
Mattea KWS	60,3	77,0	9,89	78,5	8,80	77,5	16,38	102,2	1,21	121,0	28,6	3,5	14,2	116.667	2,8	8,2
Sandra KWS	72,4	92,5	11,99	95,2	10,81	95,3	16,56	103,2	1,03	103,3	25,2	2,7	8,9	111.111	3,8	5,4
Annika KWS	74,8	95,6	12,60	100,0	11,34	99,9	16,84	105,0	1,09	109,2	28,2	2,8	9,9	112.037	2,8	2,6
Taifun	60,2	76,9	10,27	81,5	9,17	80,8	17,07	106,4	1,22	122,6	30,2	3,8	13,9	113.889	2,0	5,4
Adrianna	69,6	89,0	11,84	94,0	10,60	93,4	17,01	106,1	1,18	118,1	28,9	2,6	13,3	114.815	2,2	8,2
GD 5 %	9,6	12,3	1,72	13,6	1,53	13,5	0,40	2,5	0,09	8,7	2,3	0,4	2,6	13.242	0,7	1,1
Kontrolle Bordüngung	66,3 67,8	100,0 102,2	10,99 11,30	100,0 102,7	9,86 10,14	100,0 102,8	16,58 16,67	100,0 100,5	1,11 1,10	100,0 99,7	27,0 27,1	2,9 2,9	11,1 11,0	111.651 113.657	2,8 2,6	6,2 6,2
GD 5 %	2,2	3,3	0,37	3,4	0,33	3,4	0,06	0,4	0,01	0,9	0,2	0,1	0,3	3.514	2,0	0,2

Sortenprüfung Gangelt 2011

Saat: 22.03.	Ernte: 1	4.09.	Parz.:	2,7 qm	x 8 Whg		Bordün	gung an	n 25.05	. mit 0,6	kg Rein	-Bor/ha	a (Solub	or) bei Reih	enschlus	S
VG	Rüber	nertrag	Zucke	erertrag	Berein.	Z.ertrag	Zucke	rgehalt	S	ΜV	K	Na	AmN	Pfl./ha	Blatt 1)	Blatt 1)
	t/ha	rel.	t/ha	rel.	t/ha	rel.	%	rel.	%	rel.	mmo	ol/1000	gR.	b.Ernte	11.8.	14.9.
Ohne/mit Bordür	ngung															
Artus	84,0	105,6	13,32	102,5	12,06	103,0	15,87	97,1	0,90	88,2	21,2	2,7	5,7	106.019	6,0	3,3
Haydn	81,6	102,6	13,28	102,2	12,02	102,6	16,29	99,7	0,95	92,6	23,3	2,8	6,4	102.778	4,7	2,5
Kepler	92,9	116,7	14,95	115,0	13,38	114,3	16,10	98,5	1,09	106,8	30,0	2,6	9,3	103.704	3,8	1,3
SY Securita	72,6	91,3	11,55	88,8	10,41	88,9	15,89	97,2	0,96	93,9	24,9	3,8	5,8	107.407	2,3	1,5
Britta	77,0	96,8	12,73	97,9	11,43	97,6	16,53	101,1	1,09	106,1	29,7	3,1	8,9	113.889	2,3	1,5
Elaina KWS	71,7	90,1	11,80	90,8	10,64	90,9	16,48	100,8	1,02	99,9	25,7	3,4	8,1	106.481	1,5	2,5
Kristallina KWS	86,4	108,6	14,83	114,0	13,41	114,5	17,17	105,0	1,04	101,3	26,2	2,3	9,0	113.889	1,8	1,3
Mattea KWS	65,5	82,3	10,56	81,2	9,47	80,9	16,11	98,6	1,05	102,8	27,1	3,5	8,6	115.278	1,8	1,3
Sandra KWS	82,1	103,2	13,03	100,2	11,76	100,4	15,87	97,1	0,95	92,7	24,1	3,0	6,0	108.333	1,7	3,8
Annika KWS	82,6	103,8	13,46	103,5	12,11	103,4	16,30	99,7	1,04	101,2	28,7	2,8	7,4	116.204	3,2	3,5
Taifun	68,6	86,2	11,50	88,4	10,36	88,5	16,76	102,5	1,06	103,2	27,6	4,1	8,2	112.037	3,7	2,3
Adrianna	89,6	112,7	15,02	115,5	13,46	114,9	16,77	102,6	1,14	111,3	30,3	2,8	11,0	98.148	2,5	1,0
GD 5 %	5,8	7,2	0,93	7,1	0,84	7,1	0,21	1,3	0,03	2,7	1,1	0,3	0,7	11.267	1,3	1,5

¹⁾ Bonitur der Bormangelsymptome am Blatt (Symptomausprägung am Wurzelhals nur vereinzelt, nicht bonitiert)

Sortenprüfung Buschhoven 2011

Saat: 29.03.	Ernte: 1	3.09.	Parz.:	2,7 qm	x 8 Whg		Bordün	gung 03	3.06. m	it 0,75 kg	g Rein-E	Bor/ha (Solubor)		
VG	Rüber	ertrag	Zucke	erertrag	Berein.	Z.ertrag	Zucke	rgehalt	S	ΜV	K	Na	AmN	Pfl./ha	Welke	Mehltau
	t/ha	rel.	t/ha	rel.	t/ha	rel.	%	rel.	%	rel.	mmo	ol/1000	gR.	b.Ernte	15.7.	23.8.
Ohne/mit Bordür	ngung															
Artus	78,1	116,5	12,60	113,0	11,35	113,5	16,07	96,6	0,99	89,8	22,8	2,5	8,7	118.519	2,3	8,6
Haydn	64,9	96,8	10,79	96,8	9,75	97,5	16,61	99,9	1,00	90,3	23,6	2,5	8,5	115.741	3,0	9,0
Kepler	73,1	108,9	11,64	104,5	10,36	103,6	15,94	95,9	1,15	104,4	29,0	2,4	12,4	112.500	2,9	7,4
SY Securita	60,6	90,3	9,83	88,2	8,81	88,1	16,21	97,5	1,06	96,3	26,9	3,4	9,2	106.481	2,9	7,3
Britta	71,7	106,9	11,97	107,4	10,73	107,3	16,68	100,3	1,12	101,6	28,0	3,0	11,3	112.963	3,1	2,3
Elaina KWS	63,0	93,9	10,79	96,9	9,70	97,0	17,14	103,1	1,13	102,3	28,2	3,0	11,5	108.796	3,6	3,5
Kristallina KWS	63,2	94,3	10,84	97,3	9,78	97,7	17,14	103,1	1,08	97,7	25,3	2,5	11,1	113.426	1,5	7,1
Mattea KWS	60,9	90,9	9,95	89,3	8,84	88,4	16,32	98,1	1,22	110,2	28,8	3,6	14,6	115.278	2,8	8,0
Sandra KWS	73,7	109,9	12,21	109,6	11,01	110,1	16,57	99,6	1,03	93,1	24,9	2,7	9,1	111.111	3,9	4,9
Annika KWS	74,5	111,2	12,49	112,1	11,23	112,3	16,76	100,8	1,08	98,1	27,9	2,8	9,8	109.722	3,0	2,4
Taifun	54,9	81,9	9,39	84,3	8,40	83,9	17,09	102,8	1,21	109,6	30,3	3,8	13,4	113.889	2,1	5,8
Adrianna	66,1	98,5	11,22	100,7	10,05	100,5	16,99	102,2	1,18	106,6	28,8	2,6	13,4	113.426	2,1	8,3
GD 5 %	6,7	10,0	1,19	10,7	1,06	10,6	0,27	1,6	0,06	5,3	1,6	0,2	1,8	9.067	0,5	0,9

Bordüngung bei Zuckerrüben 2011

Arbeitsgemeinschaft Zuckerrübenanbau

VG	Rüber	nertrag	Zucker	ertrag	Berein.	Z.ertrag	Zucke	gehalt	SI	١V	K	Na	AmN	Pfl./ha
	t/ha	rel.	t/ha	rel.	t/ha	rel.	%	rel.	%	rel.	mm	ol/1000	g R.	b.Ernte
Etzweiler Saat: 24.03	.11	Ernte:	13.10.11	6-r.	Kleinpa	rz., rando	misiert	4 Whg.	a` 5,4 c	<u>ım</u>				
Kontrolle	83,7	100,0	13,30	100,0	11,72	100,0	15,89	100,0	1,28	100,0	27,8	8,2	15,4	91.667
Wuxal Combi plus 1)	88,1	105,3	14,10	106,0	12,42	106,0	15,99	100,6	1,30	101,0	28,4	7,9	15,9	96.296
GD 5 %	8,0	9,5	1,36	10,2	1,16	9,9	0,28	1,8	0,09	7,1	1,7	1,9	2,8	8.082
1) 2 l/ha Wuxal am 1.6. ι	ınd 29.7													
Buschhoven Saat: 28	3.03.11	Err	nte: 21.09	9.11	6-r. Kleiı	nparz., ra	ı <u>ndomis</u> i	ert 4 W	hg. a` 5	i,4 qm				
Kontrolle	74,1	100,0	12,52	100,0	11,17	100,0	16,90	100,0	1,23	100,0	30,6	2,7	14,4	91.667
Wuxal Combi plus 1)	78,5	105,9	13,41	107,1	11,97	107,2	17,09	101,1	1,23	100,1	30,7	2,6	14,5	90.741
GD 5 %	6,0	8,0	0,89	7,1	0,77	6,9	0,35	2,1	0,05	4,0	2,1	0,3	1,4	8.668
1) 2 l/ha Wuxal am 3.6. ι	ınd 29.7													
Gangelt Saat: 22.03.1	 1	Ernte: 1	4.09.11	3-r. k	(leinparz	., Sorten	nittel 4	Whg. a`	32,4 qr	<u>n_</u>				
Kontrolle	77,9	100,0	12,73	100,0	11,47	100,0	16,33	100,0	1,02	100,0	26,4	3,1	7,8	107.330
Bordüngung 1)	81,2	104,1	13,27	104,2	11,95	104,2	16,36	100,2	1,03	101,1	26,8	3,1	8,0	110.031
GD 5 %	2,6	3,3	0,43	3,4	0,39	3,4	0,08	0,5	0,01	1,1	0,5	0,1	0,3	3.955
1) Bordüngung am 25.05	. mit 0,6	kg Rein	-Bor/ha (S	Solubor) bei Reil	nenschlus	S I							
Buschhoven Saat: 29	0.03.11	Err	nte: 13.09	9.11	3-r. Kleiı	nparz., So	rtenmit	tel 4 Wh	ıg. a` 32	2,4 qm				
Kontrolle	66,3	100,0	10,99	100,0	9,86	100,0	16,58	100,0	1,11	100,0	27,0	2,9	11,1	111.651
Bordüngung	67,8	102,2	11,30	102,7	10,14	102,8	16,67	100,5	1,10	99,7	27,1	2,9	11,0	113.657
GD 5 %	2,2	3,3	0,37	3,4	0,33	3,4	0,06	0,4	0,01	0,9	0,2	0,1	0,3	3.514
1) Bordüngung 03.06. m	it 0,75 k	g Rein-B	or/ha (Sc	lubor)										
Mittel aus 4 Versuchen	mit zu e	erwarten	dem Bor	mange	l 2011									
Kontrolle	75,5	100,0	12,39	100,0	11,06	100,0	16,43	100,0	1,16	100,0	28,0	4,2	12,2	100.579
Bordüngung	78,9	104,4	13,02	105,1	11,62	105,1	16,53	100,6	1,16	100,5	28,2	4,1	12,3	102.681
GD 5 %	2,2	2,9	0,42	3,4	0,37	3,4	0,11	0,7	0,01	1,0	0,4	0,2	0,4	3.666

Feldversuche bei Zuckerrüben mit Pentakeep 2011

Quelle: Arbeitsgemeinschaft Zuckerrübenanbau

Quelle: Arbeitsgeme	<u>einscha</u>	tt Zuck	errüber	anbau										
VG	Rüber	nertrag	Zuckei	ertrag	Berein.	Z.ertrag	Zucker	gehalt	SI	M V	K	Na	AmN	Pfl./ha
	t/ha	rel.	t/ha	rel.	t/ha	rel.	%	rel.	%	rel.	mmo	ol/1000	g R.	b.Ernte
Etzweiler Saat: 24.0	3.11	Ernte:	13.10.1	1 6-r	. Kleinpa	rz., rando	misiert	4 Wha	. a` 5.4	am				
Kontrolle	83,7	100,0	13,30	100,0	11,72	100,0	15,89	100,0	1,28	100,0	27,8	8,2	15,4	91.667
Wuxal Combi plus 1)	88,1	105,3	14.10	106.0	12,42	106,0	15,99	100,6	1,30	101,0	28,4	7,9	15.9	96.296
Pentakeep super 2)	88,9	106,2	14,32	107,6	12,60	107,5	16,11	101,4	1,33	103,4	28,6	8,9	16,6	96.759
Wachstumsregler 3)	81,1	96,8	13,06	98,2	11,52	98,3	16,11	101,4	1,30	101,1	28,1	8,0	16,0	87.500
GD 5 %	8,0	9.5	1,36	10,2	1,16	9.9	0.28	1,8	0,09	7,1	1,7	1,9	2,8	8.082
1) 2 l/ha Wuxal am 1.6.						Pentakee	p 29.7.		0,1 l/ha		•			
Buschhoven Saat: 2	8.03.11	Er	nte: 21.0	9.11	6-r. Klei	nparz., ra	ndomisi	iert 4 V	Vhq. a`	5,4 gm				
Kontrolle	74,1	100,0	12,52	100,0	11,17	100,0	16,90	100,0	1,23	100,0	30,6	2,7	14,4	91.667
Wuxal Combi plus 1)	78,5	105,9	13,41	107,1	11,97	107,2	17,09	101,1	1,23	100,1	30,7	2,6	14,5	90.741
Pentakeep super 2)	75,8	102,2	12,74	101,7	11,36	101,7	16,81	99,5	1,21	98,9	30,0	2,7	14,1	91.204
Wachstumsregler 3)	76,5	103,2	12,97	103,6	11,58	103,6	16,95	100,3	1,22	99,9	30,3	2,8	14,5	91.667
GD 5 %	6.0	8.0	0,89	7,1	0.77	6,9	0.35	2,1	0.05	4.0	2,1	0.3	1,4	8.668
1) 2 l/ha Wuxal am 3.6.	- , -					Pentakee	,		0,1 l/ha		_, .	-,-	.,.	0.000
Durin Control 00 00 44	I CV Dal	1		- 40 44	C ICI	_!	Í 	!-!4 4	\A/I	-` -				
Buir Saat: 26.03.11	SY Bel		Ernte: 2			einparz.,						0.0	0.4	440004
Kontrolle	78,7	100,0	14,84	100,0	13,55	100,0	18,87	100,0	1,04	100,0	27,6	2,3	8,4	118981
Pentakeep 0,4 29.7.	78,7	100,1	14,95	100,7	13,67	100,9	18,99	100,6	1,03	98,7	27,4	2,2	8,0	123148
GD 5 %	4,8	6,1	1,00	6,7	0,90	6,6	0,19	1,0	0,04	4,0	1,3	0,3	1,3	12970
Sechtem Saat: 24.03	3.11	Ernte: 2	5.09.11	6-r. K	leinparz	., random	isiert 5	Whg. a	` 5,4 qr	<u>n_</u>				
Kontrolle	77,6	100,0	14,56	100,0	13,24	100,0	18,76	100,0	1,10	100,0	32,7	2,0	8,3	101111
Pentakeep 1)	74,1	95,5	13,94	95,7	12,69	95,8	18,80	100,2	1,08	98,7	32,2	1,8	8,1	97778
GD 5 %	6,2	8,0	1,23	8,5	1,12	8,4	0,27	1,4	0,02	1,6	0,9	0,1	0,7	11311
1) 0,4 l/ha Pentakeep ar	n 04.08.	11						·						
Miel Saat: 24.03.11	Ernte	e: 07.11.	11 6-	r. Kleing	arz., ran	domisier	t 4 Who	g. a` 5,4	qm					
Kontrolle	78,0	100,0	14,55	100,0	13,26	100,0	18,66	100,0	1,05	100,0	22,1	6,2	9,4	93981
Pentakeep	73,9	94,8	13,75	94,5	12,52	94,4	18,61	99,7	1,06	101,6	22,5	6,3	9,8	94444
GD 5 %	2,5	3,1	0,53	3,7	0,55	4,2	0,83	4,5	0,06	5,5	1,1	3,4	2,8	16207
1) 0,4 l/ha Pentakeep a	n 28.07.	11	_		_					_				
Mittel aus 5 Standorte	n 2011													
1 Kontrolle	78,5	100,0	13,97	100,0	12,60	100,0	17,82	100,0	1,14	100,0	28,2	4,3	11,2	99481
2 Pentakeep 0,4	78,3	99,7	13,94	99,8	12,57	99,7	17,86	100,3	1,14	100,3	28,1	4,4	11,3	100667
GD 5 %	4,7	6,0	0,90	6,5	0,80	6,4	0,16	0,9	0,03	2,8	0,7	0,4	0,8	4293
Mittel aus 9 Standorte	n 2010 -	2011	_		_									
1 Kontrolle	72,9	100,0	12,67	100,0	11,40	100,0	17,35	100,0	1,14	100,0	30,8	4,2	10,2	100528
2 Pentakeep 0,4	73,3	100,6	12,79	100,9	11,52	101,0	17,41	100,3	1,14	99,2	30,5	4,0	10,0	102667
GD 5 %	8,2	11,3	1,56	12,3	1,52	13,3	0,24	1,4	0,16	13,9	2,8	3,3	3,6	12144
2011 1 150	· · · ·													

2011 wurden auf 5 Standorten Behandlungen mit Pentakeep super ausgewertet. Wie bereits 2010 gab es keinerlei optische Effekte durch die Behandlungen. Weder an einem Einzelstandort noch im Mittel der Versuche waren Mehrerträge festzustellen. Über die beiden Jahre 2010 und 2011 lassen sich ebenfalls keine positiven Ertragseffekte feststellen.

Unkrautbekämpfungsversuche der Arbeitsgemeinschaft Zuckerrübenanbau 2011

Von der Versuchsstelle des Rheinischen Rübenbauer-Verbandes und dem Pflanzenschutzdienst der LWK NRW wurden 2011 Herbizidversuche in Erftstadt-Dirmerzheim, Xanten, Buir und Viersen durchgeführt.

Ringversuch Dirmerzheim (Bingelkraut-Verunkrautung)

Nach der Aussaat der Sorte Pauletta am 29. März waren die Rüben nach 13 Tagen am 9. April zusammen mit Bingelkraut aufgelaufen. Die 1. NAK wurde sehr früh am 11. April in den späten Vormittagsstunden ausgebracht. Die nachfolgenden 2 kalten Tage und ein leichter Schneckenbefall erhöhten den Herbizidstress sichtlich, so dass die 2. NAK erst nach 15 Tagen am 26. April erfolgte, ebenfalls am späten Vormittag. Nach einem ersten kalten Folgetag schloss sich warmes Wetter mit teils kalten Nächten an. Die 3. NAK geschah nach weiteren 14 Tagen am 10. Mai am frühen Nachmittag. Unkraut und Rüben konnten sich in der Zwischenzeit gut entwickeln. Besonders der Weiße Gänsefuß, der bei den ersten Behandlungen trockenheitsbedingt nicht vollständig erfasst wurde, schien von der Wärme zu profitieren.

Bei der Unkrautbonitur am 20. Mai war eine gute Herbizidwirkung zu erkennen. Am häufigsten widerstand Bingelkraut, wenn keine angepassten Behandlungen erfolgt waren. Auch Weißer Gänsefuß leistete wegen der starken Trockenheit manchmal hartnäckig Widerstand. Er wurde aber insgesamt doch noch recht gut, wenn auch selten vollständig, erfasst. Stellenweise zeigte sich die schwer bekämpfbare Hundspetersilie. Wegen der ungleichen Verteilung wurde sie nicht in die Bewertung mit einbezogen. Unabhängig von den Unkrautwirkungsgraden war aufgrund starker Wachsschichten und fehlender Bodenfeuchte eine durchweg gute Kulturpflanzenverträglichkeit zu beobachten. In den unbehandelten Kontrollen betrug der Unkrautdeckungsgrad am 20. Mai 57,5 % und die Rüben bedeckten 35 % der Fläche. Leitunkraut war Weißer Gänsefuß mit 35 % Deckungsgrad, gefolgt Bingelkraut mit 22,5 %. Daneben war stellenweise Hundspetersilie zu beobachten (nicht bewertet).

Unter den sehr trockenen Bedingungen konnte das Versuchsglied 2 (VG) mit 3 x 1 B.-Expert + 1 Goltix Gold gegen Bingelkraut erwartungsgemäß keine ausreichende Wirkung erreichen. Die an die Verunkrautung angepasste Beratervariante erzielte einen guten Bekämpfungserfolg. Hundspetersilie war nicht in die Bekämpfungsstrategie mit einbezogen worden. Nahezu alle Varianten mit Debut (VG 4, 10, 12, 13 und 14) erreichten bei Bingelkraut sehr hohe Wirkungsgrade. Lediglich VG 8 weicht unerklärlicherweise etwas davon ab. Zu schwach gegen Bingelkraut blieb bei der starken Trockenheit VG 5 mit GBR (3 x 0,8) mit zunehmenden Mengen an Spectrum ab der 1. NAK. In VG 9 verbesserte der Zusatz von 0,5 Venzar 500 SC ab der 2. NAK die Herbizidwirkung, sie reichte aber unter diesen Bedingungen nicht ganz aus. VG 11 schnitt dank höherer Aufwandmengen an PMP und Ethofumesat auch ohne Debut noch vergleichsweise gut ab. Die VG 12 und 13 erzielten zusätzlich gegen Hundspetersilie Vorteile. Sehr gut war der Bekämpfungserfolg in VG 15, wo erst ab der 2. NAK 1,5 MaxxPro + 1,5 Goltix Gold + 0,15 l Centium (in ZR nicht zugelassen) eingesetzt worden sind.

Demonstrations- und Informationsversuch (D+I) Dirmerzheim

Der regionale D+I-Versuch in direktem Anschluss wurde unter den gleichen Bedingungen angelegt und an den gleichen Terminen behandelt. Wie schon im Ringversuch konnte VG 2 auch hier unter den trockenen Bedingungen gegen Bingelkraut keine ausreichende Wirkung erreichen. Durch den Zusatz von Oleo FC (VG 3) konnte die Wirkung erkennbar verbessert werden. In VG 5 ließ sich mit Zusatz von Arma (nicht mehr zugelassen) die Herbizidwirkung entgegen der Erwartung nicht steigern. Auch VG 4 mit 0,8 Powertwin plus + 1 l Goltix Gold + 1 Oleo blieb gegen Bingelkraut zu schwach. Letztlich waren auch im D+I-Versuch sämtliche Mischungen mit Debut (8, 10, 13, 14) sehr erfolgreich gegenüber Bingelkraut. Ohne Debut wurde auch in VG 7 mit höheren Herbizidmengen ein gutes Ergebnis erzielt. VG 9 mit 3 mal 1,5 MaxxPro + 1 Goltix Gold schnitt zwar besser als die Standardvariante 2 ab. Die Wirkung gegen Bingelkraut blieb aber unter den trockenen Verhältnissen unzureichend. Eine sichtliche Wirkungsverbesserung erreichte VG 12 mit Zusatz von Oleo FC gegenüber VG 11. Vergleichsweise gut schnitten ohne Debut mit entsprechenden Aufwandmengen auch VG 15 und 16 ab. Die VG 17 und 18 waren durch Zusatz von Centium gegenüber Bingelkraut sehr wirksam und erreichten so einen nahezu vollständigen Bekämpfungserfolg.

Mit den VG 19 – 21 wurde versucht, Weißen Gänsefuß ohne Goltix ausreichend zu bekämpfen. Die Behandlungstermine wichen dabei von den übrigen NAK's ab (vgl. Tabelle) und die sehr hohen Aufwandmengen am 13.5. sind als Verträglichkeitstest zu verstehen. Die Wirkungsgrade gegen Weißen Gänsefuß lagen am 20. Mai über 99 % und erreichten somit das Niveau der Spritzfolgen mit Zusatz von Goltix. Aus der Sicht vom 20.5. bleibt abzuwarten, inwieweit das Unkraut wieder regenerieren kann.

Aus praktischer Sicht kann der erneute Auflauf von Bingelkraut kurz vor dem Reihenschluss noch Probleme bereiten. Inwieweit es aber zu einer Spätverunkrautung kommen kann, hängt letztlich in hohem Maße von der Vitalität der Zuckerrüben im Sommer und Herbst ab. Entscheidend für den Erfolg der Unkrautbekämpfung ist, dass nach der 3. NAK ein hoher Unkrautwirkungsgrad erreicht worden ist.

Am 6.7. konnte die Spätverunkrautung in 2 Wiederholungen bonitiert werden. In den Kontrollen bedeckte das Unkraut ca. 85 % der Fläche, wobei der konkurrenzstarke Weiße Gänsefuß 60 % und Bingelkraut 25 % einnahm. Sämtliche Varianten litten am 6.7. unter Spätverunkrautung. Besonders stark war der Unkrautdurchwuchs in den Parzellen, die bereits am 20.5. unbefriedigende Wirkungsgrade aufwiesen. Die geringste Spätverunkrautung hatten im D+I-Versuch die VG 17 – 22 (Behandlungen mit Centium oder hohe blattaktive Mischungen).

Ergänzend ist die Ergebnistabelle des D+I-Versuches Xanten ohne weitere Kommentierung angehängt.

Darüber hinaus sind die bundesweiten Herbizidergebnisse im Anschluss aufgeführt.

Spezialverunkrautung: Bingelkraut Spätverunkrautung (2 Who
--

		Bingelkraut				•				Spätverun		
VG	Unternehmen	Variante	NAK1 11.4. (kg-l/ha)	NAK2 26.4. (kg-l/ha)	NAK3 10.5. (kg-l/ha)	Schädigg. % 20.5.	WG ges. 20.5.	CHEAL 20.5.	MERAN 20.5.	WG ges. 6.7.	CHEAL 6.7.	MERAN 6.7.
1		unbehandelte Kontrolle	(kg i/ia)	(Kg 1/11a)	(Kg 1/11a)	35,0	57,5	35,0	22,5	82,5	55,0	27,5
		Betanal Expert	1	1	1	1,8	91,3	98,9	91,3	53,3	93,6	0,0
2	Standard	Goltix Gold	1	1	1		, -	,-	- 1,-	,-	,-	-,-
3	Berater	Betanal Expert	0,9	0,7	0,8	5,8	99,3	99,6	99,3	90,9	97,3	78,2
		Goltix Gold	-	0,9	1,0							
		Rebell	0,7	0,5	0,5							
		Ethosat 500	0,2	0,1	0,2							
		Spectrum	-	0,2	0,35							
		Oleo FC	0,7	-	-							
		Debut	-	20 o.FHS	20 o.FHS							
		Betanal maxxpro	0,8	0,8	0,8	5,8	97,5	99,5	97,8	89,7	97,3	74,5
		Goltix Gold	0,8	0,8	0,8							
4	BASF	Zepplin	0,8	0,8	0,8							
		Spectrum		0,3	0,45							
		Debut (ohne FHS)		0,02	0,02							
5	BASF	Goltix Gold	0,8	0,8	0,8	5,0	87,8	99,8	87,8	48,5	86,4	0,0
		Zepplin	0,8	0,8	0,8							
		Betanal maxxpro	0,8	0,8	0,8							
		Spectrum	0,15	0,3	0,45							
_	_	Betanal maxxpro	1,5	1,5	1,5	6,8	99,1	99,9	99,1	95,8	98,2	90,9
6	Bayer	Goltix Gold	1,0	1,0	1,0							
		Debut (+ FHS)		0,015 (+0,2)	0,015 (+0,2)							
7	Bayer	Betanal maxxpro	1,5	1,5	1,5	10,8	95,8	100,0	95,8	90,9	99,1	74,5
	- 7	Goltix Gold	1,0	1,0	1,0							
	5.5 /	Betanal maxxpro	1,0	1,0	1,0	4,3	97,8	99,5	97,3	91,5	97,3	80,0
8	DuPont	Goltix Gold	1,0	1,0	1,0							
		Debut (+ FHS)	0,03 (+ 0,25)	0,03 (+ 0,25)	0,03 (+ 0,25)	4.0	05.0	00.5	05.0	04.0	00.7	00.0
9	DuDant	Betanal Expert	1,0	1,0	1,0	4,0	95,0	99,5	95,0	81,8	92,7	60,0
9	DuPont	Goltix Gold	1,0	1,0	1,0							
		Venzar 500 SC POWERTWIN plus	1.0	0,5	0,5 1,0	6.5	99,6	100,0	99,6	00.0	99,1	06.4
		Goltix Gold	1,0 1,0	1,0 1,5	1,0	6,5	99,6	100,0	99,6	98,2	99,1	96,4
10	FCS	Debut	1,0	0,03 (+ 0,25)	0,03 (+ 0,25)							
		Oleo FC	1,0	0,03 (+ 0,23)	0,03 (+ 0,23)							
		Goltix Super	2,0	2,0	2,0	8,0	95,5	99,6	95,8	94,5	97,3	89,1
11	FCS	Kontakt 320 SC	0,66	0,66	0,66	0,0	90,0	99,0	33,0	34,3	31,3	09,1
	100	Oleo FC	1,0	1,0	1,0							
		Betanal maxxpro	1,25	1,25	1,25	2,5	98,9	99,6	98,9	97,6	99,1	90,9
		Goltix Gold	1,0	1,0	1,0	2,0	30,3	55,0	30,3	57,0	55,1	30,3
12	Dow	Debut (+ FHS)	1,0	0,02 (+0,2)	0,02 (+0,2)							
		Lontrel 100		0,4	0,4							
		Betanal maxxpro	1,25	1.25	1,25	5,3	99,8	99.8	99,8	93,9	96,4	89,1
	_	Goltix Gold	1,0	1,0	1,0	0,0	00,0	00,0	00,0	00,0	00, 1	00,1
13	Dow	Debut (+ FHS)	.,0	0,02 (+0,2)	0,02 (+0,2)							
		Lontrel 72 SG		0,055	0,055							
		Betasana Trio	2	2	2	3,0	99,8	99,8	99,8	95,8	97,3	92,7
		Metafol	1,0	1.0	1,0	5,5	55,0	55,5	55,5	55,5	0.,0	52,1
14	Anhang Arge	Debut (+ FHS)	1,0	0,02 (+0,2)	0,02 (+0,2)							
		Oleo FC	1,0	0,02 (10,2)	0,02 (10,2)							
		Betanal maxxpro	-	1,5	1,5	2,3	99,4	99,7	99,6	99,4	100,0	98,2
15	halbe Kontrolle	Gotix Gold	-	1,5	1,5	_,~	, .	,.	- 5,0	, .	, .	30,2
			i			l						
		Centium	-	0,15	0,1							

herb11.xls RV Di 30.01.2012

D+I Herbizidversuch 2011 Dirmerzheim - Bingelkraut-/Gänsefußverunkrautung-Fragen: VG 2+11 Standard, 3/12 Std+Öl 4, 5, 7 + 8 Vergleich zu VG 3 6, 9 + 10 "neue Mittel" Vergleich zu VG 3 13 - 14 Vergleich zu VG 11 Spätverunkrau

			21		20		19	Kont	22		18		17	16	15	14	13	12	1	10	9	80	7	o o	ڻ ن	4	ω	2	_	Var.
Betanal Maxx Pro **) (FCS (PMP/Etho) **) 1	BExp. 76 PMP + 25 [Spectrum Lontrel 100		Lontrel 100 Debut (+FHS)		Lontrel 100 Debut (+FHS)	Betanal Expert Kontakt 320 Spectrum		Dieo FC Betanal MaxxPro	Gottx Gold Zepplin Centium	Oleo FC Betanal Expert	Zepplin Centium	7 Betanal Expert Goltix Gold			4 Betanal Expert Goltix Gold Debut (ohne FHS) Spectrum Oleo FC					Betanal Maxx Pro **) Goltix Gold		Kontakt 320 SC Goltix super Oleo FC			Powertwin plus Goltix Gold Oleo FC	Betanal Expert Goltix Gold Oleo FC		(kg,l,g/ha) unbehandelt	r. eingesetzte Mittel
50 PMP -	30g DMP + 15	3	1,5	30g	- 2,0	- 30g	1,8	21.4		0,8 0,8 0,05	0,8	0,8	0,8 0,8	0,8 2,0 1,0	2,0 1,0 0,5	1,0 1,0 - 0,8	8,0 8,0 8,0 8,0	0,8 0,8 0,8	0,8 0,8 0,8	1,0 1,0 - - 0,8	1,5 1,0	8,0 1,0	0,66 2,0 1,0	0,8 1,0 1,0	0,8 1 0,2	0,8 1 1,0	1,0 1,0 0,8	1,0 1,0	11.4.	1. NAK
+ 47 DMF + 50 DMI	51 Etho		1,75 1,50	· ' ;	1,30 2,00		1,00 2,00	1,5 0,15	1,5	0,8	0,8	0,8	0,8	0,8 2,0 1,0	2,0 1,0 0,5	0,8 1,0 0,02 0,3	0,8 0,8 0,8 0,02	0,8 0,8	0,8 0,8 0,8	1,0 0,5 0,02 0,4	1,5 1,0	1,0 1,0 0,02	0,66 2,0 1,0	0,8 1,0 1,0	0,8 1 0,2	0,8 1,0	1,0 1,0 0,8	1,0 1,0	26.4.	2. NAK
9 + 75 Eth P + 200 E	20(-FHS)	0,40	1,50 2,50	0,40 0,40 30(-FHS)	1,50 2,50		1,50 2,50 0.40	1,5 0,10	1,5	0,8 0,8 0,10	0,8	0,8 0,10	0,8	0,8 2,0 1,0	2,0 1,0 0,5	0,8 1,0 0,02 0,45	0,8 0,8 0,8 0,02	0,8 0,8 0,8	0,8 0,8 0,8	1,0 0,5 0,02 0,6	1,5 1,0	1,0 1,0	0,66 2,0 1,0	0,8 1,0 1,0			1,0 1,0 0,8	1,0 1,0	10.5.	3. NAK
Betanal Maxx Pro **) 60 PMP + 47 DMP + 75 Etho + 27 Lenacil FCS (PMP/Etho) **) 150 PMP + 50 DMP + 200 Etho Goltix Super 150 Etho + 350 Meta	Gansefuss, Bingelkraut GD 5 %		ohne Golt., Reb., Spec. 1) 21.4. 2) 5.5. 3) 13.5.	Gänsefuss, Bingelkraut	ohne Goltix, Rebell 1) 21.4. 2) 5.5. 3) 13.5.	Gänsefuss, Bingelkraut	ohne Golt., Reb., Lontr. 1) 21.4. 2) 5.5. 3) 13.5.		halbe Kontrollen		Einsatz von Centium		Einsatz von Centium	UP zu VG 7	UP zu VG 3	Einsatz von Spectrum	Einsatz von Debut	Standard 2 mit Öl	Standard 2 ohne Öl	teliw. Austausch von Metamitron / Debut+Venzar	Prüfmittel	Einsatz Debut	Goltix super	Neuformulierung	Vergleich von Wirkung undTox zu Oleo FC	Powertwin plus	Standard 1 IfZ mit Öl	Standard 1 IfZ Vergleichbarkeit ohne Öl		Versuchsfrage
o + 350 Meta	3,8		13,8		16,3		9,5		2,3		2,5		2,8	4,0	3,8	4,5	<u>.</u> 4,	10,5	<u>ω</u> ω	4,0	3,8	4,8	6,8	5,8	0,5	4,3	5,3	2,5	20.5. 37.5	Schädigg. %
Rebell 400	5.8		99,8		99,8		99,5		99,8		99,8		99,8	98,4	97,1	99,5	99,3	94,3	91,5	99,2	94,0	99,6	98,8	93,0	90,0	91,3	95,0	90,8	20.5. 56.3	WG ges.
Chl. +	4,5		99,8		99,8		99,5		99,9		99,8		99,8	99,6	99,5	99,4	99,2	99,3	99,5	99,3	99,8	99,3	99,5	99,0	99,5	99,8	99,8	100,0	20.5. 45.0	CHEAL
	4.1		100,0		100,0		100,0		99,9		99,9		99,9	98,4	96,6	99,9	, 90,	94,3	91,5	99,9	93,3	99,9	98,8	93,5	90,0	91,3	95,0	90,8	20.5.	MERAN
' Zepplin 200 Chl. + 80 Qu			99,4		98,2		97,6		97,1		97,1		96,5	95,9	93,5	96,5	92,9	82,4	82,4	95,9	84,1	95,9	95,9	85,9	79,4	75,9	89,4	78,2	6.7. 85.0	
Chl. + 80 (99,2		97,5		96,7		98,3		95,8		97,5	95,8	93,3	98,3	94,2	95,8	87,5		90,8	96,7	97,5	88,3	87,5	89,2	96,7	90,8		Spätverunkrautung (2 Whg.) WG ges. CHEAL MERAN
ė.			100,0		100,0		100,0		94,0		100,0		94,0	96,0	94,0	92,0	90,0	50,0	70,0	98,0	68,0	94,0	92,0	80,0	60,0	44,0	72,0	48,0	6.7. 25.0	(2 Whg.) MERAN

FCS (PMP/Etho) **) 150 PMP + 50 DMP + 200 Etho Betasana Trio SC 75 PMP + 15 DMP + 115 Etho Compact SC 80 PMP + 80 DMP Goltix Super 150 Etho + 350 Meta

herb11.xls Herbi D+I 30.01.2012

D+I Herbizidversuch 2011 Xanten - Bonituren 27.5. -Fragen: VG 2+11 Standard, 3/12 Std+Öl 4, 5, 7 + 8 Vergl. zu VG 3 6, 9 + 10 "neue Mittel" Vergl. zu VG 3 13 - 14 Vergl. zu VG 11

GD 5 %	17	16			15	14	13	12	1	10	9	∞	7	თ	ζı	4	. ω	2	_	Var.
Dobar (omic i i io)	Centium VA 0,15 28.3. Betanal Expert Goltix Gold Oleo FC Debut (ohne FHS)	Centium Betanal Expert Goltix Gold	Spectrum Oleo FC	Rebell Etho 500 Debut	Betanal Expert Goltix Gold	Betanal Expert Goltix Gold Debut (ohne FHS) Spectrum Oleo FC	Betanal Expert Goltix Gold Zepplin Debut (+FHS) Oleo FC	Betanal Expert Goltix Gold Zepplin Oleo FC	Betanal Expert Goltix Gold Zepplin	Betanal Expert Goltix Gold Debut + FHS Venzar 500 SC **) Oleo FC	Betanal Maxx Pro **) Goltix Gold	Betanal Expert Goltix Gold Debut (+FHS) Oleo FC	Kontakt 320 SC Goltix super Oleo FC	FCS (PMP/Etho) **) Goltix Gold Oleo FC		Powertwin plus Goltix Gold Oleo FC	Betanal Expert Goltix Gold Oleo FC	Betanal Expert Goltix Gold	unbehandelt	eingesetzte Mittel (kg.l.g/ha)
	0,8 1,0 0,8	0,05 1,0 1,0	1,00	0,50 0,20	1,30 1,30	1,0 1,0 - 0,8	0,8 0,8 0,8	0,8 8,0 8,0	0,8 0,8	1,0 1,0 - - 0,8	1,5 1,0	1,0 1,0 0,8	0,66 2,0 1,0	0,8 1,0 1,0	0,8 1 0,2	0,8 1 1,0	1,0 1,0 0,8	1,0	•	1. NAK 2. NAK 11.4. 21.4.
	0,05 0,8 1,0	0,05 1,0 1,0	0,25	0,60 0,20 0,024	0,70	0,8 1,0 0,02 0,3	0,8 0,8 0,8 0,02	0,8 0,8	0,8 0,8	1,0 0,5 0,02 0,4	1,5 1,0	1,0 1,0 0,02	0,66 2,0 1,0	0,8 1,0 1,0	0,8 1 0,2	0,8 1,0	1,0 0,8	1,0		
0,010	0,8 1,0	1,0 1,0	0,31	0,50 0,10 0,016	0,70 1,90	0,8 1,0 0,02 0,45	0,8 0,8 0,8 0,02			1,0 0,5 0,02 0,6	1,5 1,0	1,0 1,0 0,02	0,66 2,0 1,0	0,8 1,0 1,0	0,8 1 0,2	0,8 1,0	1,0 1,0 0,8			3. NAK 5.5.
	ab Centium-VA 28.3. nach Saat 22.3.	Centium mit Versiegelungs- idee			EDV	Einsatz von Spectrum	Einsatz von Debut	Standard 2 mit Öl	Standard 2 ohne Öl	teilw. Austausch von Metamitron / Debut+Venzar	Prüfmittel	Einsatz Debut	Goltix super	Neuformulierung	Vergleich von Wirkung undTox zu Oleo FC	Powertwin plus	Standard 1 lfZ mit Öl	Standard 1 lfZ Vergleichbarkeit ohne Öl		Versuchsfrage
5,9	12,5	8,0			7,0	9,5	<u>ე</u>	6,8	4,8	12,0	10,3	, ο, ω	8,8	6,5		4,5	. <u>၄</u> ၅ . <u>.</u> .	6,0	1,5	Schädigg. %
11,5	97,8	90,5			96,8	95,0	95,3	83,3	76,3	97,8	82,0	96,5	86,3	72,8	58,8	63, 3,	77,5	72,5	98,8	WG ges. 27.5.
6,3	100,0	98,8			98,0	97,0	97,0	99,0	99,0	98,5	97,8	99,5	96,8	86,0	82,0	86,5	97,3	98,3	95,3	CHEAL 27.5.
23,5	96,3	80,5			94,5	92,0	96,3	60,0	30,0	96,3	48,8	95,0	61,3	40,0	40,0	ა ე ა	42,5	32,5	3,5	MERAN 27.5.

Ringversuch Herbizide (BASF, Bayer CropScience, Dow AgroSciences, DuPont, FCS)

Einjährige Auswertung 2011

C. Buhre

Tabelle 1: Standorte und Varianten RV Herbizide 2011

Nr.	ARGE/Inst.	Standort	Variante
1	Anklam	Reutershof	Standard
2	Bonn	Dirmerzheim	Bingelkraut
3	Bonn	Viersen	Standard
4	Franken	Frankenwinheim	Standard
5	Franken	Hilpertshausen	Hunds./Vogelknöt.
6	LIZ Könnern	Merbitz	Standard
7	Nord	Bardenhagen	Hunds./Vogelknöt.
8	Nord	Fümmelse	Bingelkraut
9	SW	Dexheim	Hunds./Vogelknöt.
10	SW	Grünsfeld	Standard
11	SW	Heimerdingen	Hunds./Vogelknöt.
12	SW	Neckarwestheim	Bingelkraut
13	Zeitz	Rehmsdorf	Hunds./Vogelknöt.

Der koordinierte Ringversuch Herbizide 2011 wurde in Zusammenarbeit mit BASF, Bayer CropScience, Dow AgroSciences, DuPont und FCS geplant. Die Versuche wurden von den regionalen Arbeitsgemeinschaften und Pflanzenschutzdienststellen an 13 Versuchsstandorten in Deutschland durchgeführt.

Nach der abgeschlossenen - zweijährigen Prüfung der

vorherigen Variantenpläne wurden im Jahr 2011 neue Pläne für die Verunkrautungen Standard, Bingelkraut und Hundspetersilie/Vogelknöterich entwickelt (Tab. 2 bis Tab. 4), weswegen nur eine einjährige Darstellung der Daten erfolgen kann. Neben der unbehandelten Kontrolle, einer Standardbehandlung und der Beratervariante beinhalteten diese Pläne zehn weitere Herbizidvarianten. Dabei wurde an jeweils fünf Standorten der Standardvariantenplan und der Variantenplan Hundspetersilie/Vogelknöterich durchgeführt und an drei weiteren Standorten die Bingelkrautvarianten. Einen Überblick über die Orte und die durchgeführten Unkrautvarianten gibt Tabelle 1.

Im Jahr 2011 traten die gewünschten Spezialunkräuter Hundspetersilie und Bingelkraut an fast allen der dafür vorgesehenen Versuche auf. Lediglich Vogelknöterich trat nur in sehr geringem Umfang auf. Die Verunkrautung in den Versuchen der Standardverunkrautung war durch Weißen Gänsefuß, Ausfallraps und Windenknöterich geprägt (Tab. 5).

Im Jahr 2011 traten Schäden **durch Phytotoxizität** in sehr geringem Umfang auf. In den Versuchsgliedern des Standardvariantenplans wurde nach der zweiten NAK eine Kulturschädigung bei fast allen Versuchsgliedern von 4 bis 6 % bonitiert (Abb. 1), welche zur dritten NAK abnahm. Die Versuchsglieder 2, 4, 10 und 11 zeigten tendenziell eine geringere Kulturschädigung. Bei den Versuchsgliedern der Bingelkrautvarianten traten die höchsten Schädigungen ebenfalls nach der zweiten NAK mit 6 bis 8 % auf und nahmen danach ebenfalls ab (Abb. 2). Zum Zeitpunkt nach dem Bestandesschluss waren aber noch Schäden im Bereich von ca. 5 % bei den Versuchsgliedern 7 und 11 zu erkennen. Bei der Spezialverunkrautung Hundspetersilie/Vogelknöterich waren die Schäden in der Regel mit 4 bis 5 % nach der ersten und zweiten NAK am höchsten. Zum Zeitpunkt des Bestandesschlusses waren die Schäden kaum noch feststellbar (Abb. 3).

Neben dem geringen Auftreten von Phytotoxizität war das Jahr 2011 durch eine durchschnittliche bis gute herbizide Wirkung der meisten Versuchsglieder gekennzeichnet. Gegenüber den schwer bekämpfbaren Spezialverunkrautungen wurden zum Teil nur geringe Wirkungsgrade erzielt, wobei z.T. deutliche Unterschiede zwischen den Versuchsgliedern auftraten.

In den Versuchen der Standardvarianten lag der Unkrautdeckungsgrad nach der dritten NAK im Mittel bei 42 %, variierte zwischen den Versuchen aber deutlich von 20 bis 70 % (Abb. 4). In vier von fünf Versuchen traten Weißer Gänsefuß und Windenknöterich als Leitunkräuter auf (Tab. 5). In drei Versuchen trat Raps auf, so dass für dieses Unkraut eine separate Auswertung durchgeführt werden konnte. Im Gesamtwirkungsgrad waren deutliche Unterschiede zwischen einzelnen Versuchsgliedern festzustellen (Abb. 4). Die Standardvariante erzielte einen Wirkungsgrad von ca. 93 %. Einen geringeren Wirkungsgrad erreichten VG 4 mit 91 % und VG 10 mit 87 %. Zwischen den anderen Versuchsgliedern waren nur sehr geringe Unterschiede festzustellen. Bei diesen betrug der Wirkungsgrad ca. 95 %. Weißer Gänsefuß trat mit einer Unkrautdichte von 17 % in eher geringem Umfang auf (Abb. 5). Fast alle Versuchsglieder erzielten gegenüber diesem Unkraut höhere Wirkungsgrade. Die geringste

Wirkung zeigten die Versuchsglieder 6 und 10 mit 93,5 %, die höchste Wirkung wurde mit 98,8 % von der Beratervariante erzielt. Auch der Windenknöterich kam ähnlich häufig auf 18 % der Fläche vor (Abb. 6). Während die meisten Versuchsglieder gegenüber dem Windenknöterich Wirkungsgrade zwischen 94 und 97 % erzielen konnten, fiel die Wirkung des VG 4 mit 90 % und dem VG 10 mit 78,5 % deutlich ab, was auch die unterdurchschnittliche Leistung im Gesamtwirkungsgrad erklärt. Eine größere Differenzierung war in den Versuchen mit Raps für die Standardvarianten zu verzeichnen (Abb. 7). Nach der dritten NAK erzielte die Standardvariante einen Wirkungsgrad von 85 %. Alle anderen Versuchsglieder konnten deutlich höhere Wirkungsgrade verzeichnen, wobei insbesondere die Versuchsglieder 7 und 8 mit ca. 99 % die höchsten Wirkungsgrade hatten. Nur in wenigen Versuchen der Standardverunkrautung wurde im Jahr 2011 eine weitere Bonitur nach dem Bestandesschluss durchgeführt. Die Ergebnisse sind deshalb nur tabellarisch dargestellt (Tab. 6).

In allen **Versuchen der Bingelkrautvarianten** trat 2011 Bingelkraut auf, wenn auch nur in eher geringem Umfang (Tab. 5). Der Gesamtunkrautdeckungsgrad dieser Versuche betrug im Mittel nach der dritten NAK 38 % (Abb. 8). Die Standardvariante VG 2 erreichte ei-

nen Gesamtwirkungsgrad von 94 %. Ebenfalls geringere Wirkungsgrade wurden von den Versuchsgliedern 5 und 9 erzielt. Alle übrigen Versuchsglieder erreichten Werte von 97 bis 98 %. Gegenüber dem Problemunkraut Bingelkraut waren 2011 sehr unterschiedliche Wirkungsgrade zwischen den Versuchen festzustellen, was im Mittel zu deutlich geringeren Wirkungsgraden von ca. 70 % führte (Abb. 9). Die Versuchsglieder 6 und 10 erreichten mit 84 % (VG 6) bzw. 80 % (VG 10) deutlich höhere Wirkungen. Gegenüber dem Weißen Gänsefuß konnten in diesen drei Versuchen alle Versuchsglieder Wirkungsgrade von 98 % bis nahezu 100 % erreichen (Abb. 10). In allen drei Versuchen wurden die Bonituren auch nach dem Bestandesschluss durchgeführt (Abb. 11 bis Abb. 13). Die Unkrautdeckungsgrade stiegen zu dieser Bonitur leicht an. Die betrachteten Wirkungsgrade unterschieden sich nur geringfügig zwischen den beiden Boniturterminen.

Das Auftreten von **Hundspetersilie und Vogelknöterich** in den Versuchen dieser Spezialverunkrautungen war 2011 unterschiedlich. Während Hundspetersilie in vier Versuchen auftrat, war Vogelknöterich nur in zwei Versuchen in sehr geringem Umfang zu finden (Tab. 5). In einem der Versuche mit Hundspetersilie wurde der Variantenplan bei den Versuchsgliedern 4 und 5 nicht wie vorgesehen

umgesetzt, weswegen der Versuch aus der grafischen Auswertung ausgeschlossen wurde. In der Tabelle 8 der Einzelstandorte sind die Ergebnisse aber aufgeführt. Der Gesamtunkrautdeckungsgrad lag in den vier Versuchen im Mittel nach der dritten NAK bei 32 % (Abb. 14). Die geringste Wirkung erzielte das VG 2 mit einem Gesamtwirkungsgrad von 87 %. Die Versuchsglieder 3, 8 und 12 erreichten mit nahezu 94 % die höchste Wirkung. Allein gegenüber Hundspetersilie waren deutliche Unterschiede zwischen den einzelnen Versuchsgliedern festzustellen. Hier zeigten sich für die Versuchsglieder 2 und 6 geringere Wirkungsgrade von unter 80 % (Abb. 15). Hohe Wirkungsgrade erreichten die Versuchsglieder 4, 8 und 12. Zum Bestandesschluss hatte sich der Gesamtunkrautdeckungsgrad in diesen Versuchen deutlich auf 53 % erhöht, der Gesamtwirkungsgrad aber nur unwesentlich zur zuvor beschriebenen Bonitur verändert (Abb. 16). Auch der Unkrautdeckungsgrad der Hundspetersilie stieg nach dem Bestandesschluss auf 33 % an (Abb. 17). Zum Teil konnten zu diesem Zeitpunkt einige Versuchsglieder bessere Wirkungsgrade als bei der Bonitur nach der dritten NAK verzeichnen. Die höchsten Bekämpfungserfolge erzielten die Versuchsglieder 3, 4, 12 und 13 mit 94 bis 96 %. Im Gegensatz zu den anderen beiden Verunkrautungsszenarien waren in diesen Versuchen auch deutliche Unterschiede zwischen den Versuchsgliedern in ihrer Wirkung gegenüber dem Weißen Gänsefuß zu beobachten (Abb. 18). So erreichten die Versuchsglieder 2, 10, 11 und 13 nur Wirkungsgrade von unter 90 %. Die sicherste Bekämpfung wurde durch die Versuchsglieder 3 und 6 mit 97.5 % erzielt.

Die Werte für die Gesamtunkrautdeckungsgrade und Gesamtwirkungsgrade der **Einzelorte** der jeweiligen Unkrautvarianten können den Tabellen 6 bis 8 entnommen werden.

Übergreifend über **alle Verunkrautungen** wurden im Jahr 2011 neben der unbehandelten Kontrolle und der Standard- sowie Beratervariante, insgesamt 4 weitere Versuchsglieder einheitlich durchgeführt. Für diese Versuchsglieder konnten die Ergebnisse für die einzelnen Unkrautarten übergreifend berechnet werden. Der Gesamtunkrautdeckungsgrad nach der dritten NAK betrug in den berücksichtigten 12 Versuchen 37,6 % (Abb. 19). Die geringste Wirkung wurde von der Standardvariante mit 91 % erreicht. Alle übrigen Versuchsglieder konnten höhere Wirkungsgrade erzielen, wobei die Unterschiede zwischen den Versuchsgliedern gering waren. In den 10 Versuchen mit Weißem Gänsefuß betrug der Unkrautdeckungsgrad 15 %

(Abb. 20). Alle Versuchsglieder erzielten Wirkungsgrade von über 95 %. Windenknöterich konnte in sechs Versuchen mit einem Deckungsgrad von 16 % bonitiert werden (Abb. 21). Auch hier lagen die erreichten Wirkungsgrade aller Versuchsglieder dicht beieinander auf einem Niveau von ca. 95 %. Raps trat nach der dritten NAK in vier Versuchen auf. Die Standardvariante konnte nur einen Bekämpfungserfolg von 85 % erreichen Die höchsten Wirkungsgrade erzielten die Versuchsglieder 7 und 9 mit über 96 % (Abb. 22).

Die beginnende Spätverunkrautung ließ die Unkrautdeckungsgrade nach dem Bestandesschluss mit Ausnahme des Windenknöterichs deutlich ansteigen. So betrug der Gesamtunkrautdeckungsgrad über 50 % (Abb. 23). Zwischen den Versuchsgliedern waren zu diesem Boniturtermin größere Unterschiede zu beobachten. Den geringsten Wirkungsgrad erzielte die Standardvariante mit 86 %. Wirkungsgrade von über 90 % konnten die Versuchsglieder 3, 9 und 11 erreichen. Weißer Gänsefuß trat nach dem Bestandesschluss in den Versuchen mit 20 % auf (Abb. 24). Den höchsten Wirkungsgrad erzielte die Beratervariante (VG 3) mit nahezu 98 %. Windenknöterich trat nach dem Bestandesschluss nur noch in drei Versuchen mit einem Unkrautdeckungsgrad von 10 % auf (Abb. 25). Die geringste Wirkung wurde von den Versuchsgliedern 2 und 3 mit ca. 90 % erreicht, wäh-

rend das Versuchsglied 9 eine Wirkung von über 95 % erzielte. Raps wurde nach dem Bestandesschluss nur noch in zwei Versuchen bonitiert, trat dort aber im Mittel mit 28 % auf (Abb. 26). Die mit Abstand höchste Wirkung gegenüber diesem Unkraut erzielte das Versuchsglied 9 mit nahezu 97 %, wobei die geringe Versuchszahl einschränkend berücksichtigt werden muss.

Tabelle 2: Variantenplan 2011 für die Standardverunkrautung

VG	Unternehmen	Variante	NAK 1 (kg-l/ha)	NAK 2 (kg-l/ha)	NAK 3 (kg-l/ha)
1		unbehandelte Kontrolle	-	-	-
2	Standard	Betanal Expert	1	1	1
_	Otaridara	Goltix Gold	1	1	1
3		Beratervariante			
		Betanal maxxpro	0,8	0,8	0,8
4	BASF	Goltix Gold	0,8	0,8	0,8
		Zepplin	0,8	0,8	0,8
		Goltix Gold	0,8	0,8	0,8
5	BASF	Zepplin	0,8	0,8	0,8
5	BASE	Betanal maxxpro	0,8	0,8	0,8
		Spectrum	0,15	0,3	0,45
6	Povor	Betanal maxxpro	1,25	1,25	1,25
0	Bayer	Goltix Gold	1,0	1,0	1,0
7	Dover	Betanal maxxpro	1,5	1,5	1,5
,	Bayer	Goltix Gold	1,0	1,0	1,0
		Betanal maxxpro	1,25	1,0	1,0
8	DuPont	Goltix Gold	1,0	1,0	1,0
		Debut (+ FHS)		0,03 (+ 0,25)	0,03 (+ 0,25)
		Betanal Expert	1,0	1,0	1,0
9	DuPont	Goltix Gold	1,0	1,0	1,0
		Venzar 500 SC		0,5	0,5
		POWERTWIN plus	1,0	1,0	1,0
10	FCS	Goltix Gold	1,0	1,0	1,0
		Oleo FC	1,0	1,0	1,0
		Goltix Super	2,0	2,0	2,0
11	FCS	Kontakt 320 SC	0,66	0,66	0,66
		Oleo FC	1,0	1,0	1,0
_		Betanal maxxpro	1,25	1,25	1,25
12	Dow	Goltix Gold	1,0	1,0	1,0
		Lontrel 100		0,6	0,6
		Betanal maxxpro	1,25	1,25	1,25
13	Dow	Goltix Gold	1,0	1,0	1,0
		Lontrel 72 SG	·	0,08	0,08

Tabelle 3: Variantenplan 2011 für die Verunkrautung Bingelkraut

VG	Unternehmen	Variante	NAK 1	NAK 2	NAK 3
			(kg-l/ha)	(kg-l/ha)	(kg-l/ha)
1		unbehandelte Kontrolle	-	-	-
2	Standard	Betanal Expert	1	1	1
2	Standard	Goltix Gold	1	1	1
3		Beratervariante			
		Betanal maxxpro	0,8	0,8	0,8
		Goltix Gold	0,8	0,8	0,8
4	BASF	Zepplin	0,8	0,8	0,8
		Spectrum		0,3	0,45
		Debut (ohne FHS)		0,02	0,02
		Goltix Gold	0,8	0,8	0,8
5	BASF	Zepplin	0,8	0,8	0,8
3	BAGI	Betanal maxxpro	0,8	0,8	0,8
		Spectrum	0,15	0,3	0,45
		Betanal maxxpro	1,5	1,5	1,5
6	Bayer	Goltix Gold	1,0	1,0	1,0
		Debut (+ FHS)		0,015 (+0,2)	0,015 (+0,2)
7	Bayer	Betanal maxxpro	1,5	1,5	1,5
,	Bayer	Goltix Gold	1,0	1,0	1,0
		Betanal maxxpro	1,0	1,0	1,0
8	DuPont	Goltix Gold	1,0	1,0	1,0
		Debut (+ FHS)	0,03 (+ 0,25)	0,03 (+ 0,25)	0,03 (+ 0,25)
		Betanal Expert	1,0	1,0	1,0
9	DuPont	Goltix Gold	1,0	1,0	1,0
		Venzar 500 SC		0,5	0,5
		POWERTWIN plus	1,0	1,0	1,0
10	FCS	Goltix Gold	1,0	1,5	1,5
-		Debut		0,03 (+ 0,25)	0,03 (+ 0,25)
		Oleo FC	1,0	0,5	0,5
		Goltix Super	2,0	2,0	2,0
11	FCS	Kontakt 320 SC	0,66	0,66	0,66
		Oleo FC	1,0	1,0	1,0
		Betanal maxxpro	1,25	1,25	1,25
12	Dow	Goltix Gold	1,0	1,0	1,0
	-	Debut (+ FHS)		0,02 (+0,2)	0,02 (+0,2)
		Lontrel 100		0,4	0,4
		Betanal maxxpro	1,25	1,25	1,25
13	Dow	Goltix Gold	1,0	1,0	1,0
10	20	Debut (+ FHS)		0,02 (+0,2)	0,02 (+0,2)
		Lontrel 72 SG		0,055	0,055

Tabelle 4: Variantenplan 2011 für die Verunkrautung Hundspetersilie/Vogelknöterich

VG	Unternehmen	Variante	NAK 1 (kg-l/ha)	NAK 2 (kg-l/ha)	NAK 3 (kg-l/ha)
1		unbehandelte Kontrolle	-	-	-
2	Ctordond	Betanal Expert	1	1	1
2	Standard	Goltix Gold	1	1	1
3		Beratervariante			
		Betanal maxxpro	0,8	0,8	0,8
		Goltix Gold	0,8	0,8	0,8
4	BASF	Zepplin	0,8	0,8	0,8
		Spectrum	0,15	0,3	0,45
		Debut (ohne FHS)	0,02	0,02	
		Goltix Gold	0,8	0,8	0,8
_	BASF	Zepplin	0,8	0,8	0,8
5	BASE	Betanal maxxpro	0,8	0,8	0,8
		Spectrum	0,15	0,3	0,45
		Betanal maxxpro	1,25	1,25	1,25
6	Bayer	Goltix Gold	1,0	1,0	1,0
	•	Venzar 500 SC		0,4	0,4
7	D	Betanal maxxpro	1,5	1,5	1,5
7	Bayer	Goltix Gold	1,0	1,0	1,0
		Betanal maxxpro	1,0	1,0	1,0
8	DuPont	Goltix Gold	1,0	1,0	1,0
		Debut (+ FHS)	0,03 (+ 0,25)	0,03 (+ 0,25)	0,03 (+ 0,25)
		Betanal Expert	1,0	1,0	1,0
9	DuPont	Goltix Gold	1,0	1,0	1,0
		Venzar 500 SC		0,5	0,5
		POWERTWIN plus	1	1	1
10	FCS	Goltix Gold	1,5	1,5	2
		Debut (+ FHS)	0,02 (+ 0,25)	0,03 (+ 0,35)	0,03 (+ 0,35)
		Goltix Super	2	2	2
11	FCS	Kontakt 320 SC	0,66	0,66	0,66
		Oleo FC	1	1	1
		Betanal maxxpro	1,25	1,25	1,25
12	Dow	Goltix Gold	1	1	1
		Lontrel 100		0,6	0,6
		Betanal maxxpro	1,25	1,25	1,25
13	Dow	Goltix Gold	1	1	1
		Lontrel 72 SG		0,08	0.08

Tabelle 5: Unkrautauftreten zum Zeitpunkt des Bestandesschlusses

Ort / Art		Aethusa cynapium	Brassica napus	Chenopodium album	Mercurialis annua	Matricaria chamomilla	Polygonum aviculare	Polygonum convolvulus	Polygonum persicaria	Sonchus arvensis	Viola arvensis
Dirmerzheim	Bingelkraut			Х	Х						
Fümmelse	Bingelkraut			Х	Х						
Neckarwestheim	Bingelkraut			Х	Х			(x)			
Bardenhagen	Hundsp./Vogelknö	Х									
Dexheim	Hundsp./Vogelknö	(x)		Х	(x)					Х	
Heimerdingen	Hundsp./Vogelknö	Х		Χ							
Hilpertshausen	Hundsp./Vogelknö	Х		Χ			(x)				
Rehmsdorf	Hundsp./Vogelknö		Χ	Χ		(x)	(x)	X			
Frankenwinheim	Standard			Χ				Χ	X		
Grünsfeld	Standard		Χ					X			
Merbitz	Standard		Х	X				(x)			
Reutershof	Standard		X	X							(x)
Viersen	Standard			Х		(x)		Х			(x)
Anzahl der Orte		4	4	11	4	2	2	6	1	1	2

⁽X) = Deckungsgrad lag im Mittel über alle Wiederholungen unter 5 %

Tabelle 6: Gesamtunkrautdeckungsgrad und Gesamtwirkungsgrad der einzelnen Versuche der Standardvarianten 2011

	autdeckungsgrad wirkungsgrad (%)						Vers	uchsgli	eder					
Termin	Ort	1	2	3	4	5	6	7	8	9	10	11	12	13
nach NAK 3	Frankenwinheim	57,5	85,0	97,0	85,8	85,5	84,5	82,5	85,0	87,0	85,0	87,3	87,8	84,8
	Grünsfeld*	28,0	96,0	83,1	71,2	90,1	93,4	97,1	98,1	95,5	81,2	94,7	93,7	95,6
	Merbitz	23,5	95,5	99,0	98,0	98,8	98,8	99,8	99,5	97,8	98,0	98,0	98,0	96,5
	Reutershof	65,5	96,9	98,6	97,6	97,7	98,4	99,4	99,6	98,9	98,7	99,1	98,6	98,8
	Viersen*	32,5	91,8	95,8	96,8	97,8	97,4	98,7	97,5	97,7	68,6	97,9	98,2	97,3
Mittelwerte na	ach NAK 3	42,1	92,9	95,3	90,9	94,2	94,6	95,4	95,8	95,4	86,6	95,4	95,3	94,5
nach BS	nach BS Frankenwinheim		80,8	97,3	83,3	80,3	78,8	78,8	86,3	87,0	83,3	88,3	85,8	79,8
	Grünsfeld*	48,3	87,8	73,2	69,9	87,4	90,3	91,3	95,2	93,9	68,1	82,0	88,0	92,3
Mittelwerte na	Mittelwerte nach BS		83,8	86,9	77,5	83,3	83,7	84,1	90,1	90,0	76,7	85,6	86,7	85,1

^{*} Gesamtwirkungsgrad als gewichtetes Mittel der Einzelwirkungsgrade berechnet

Tabelle 7: Gesamtunkrautdeckungsgrad und Gesamtwirkungsgrad der einzelnen Versuche der Bingelkrautvarianten 2011

	rautdeckungsgrad twirkungsgrad (%)						Vers	uchsgli	eder					
Termin	Ort	1	2	3	4	5	6	7	8	9	10	11	12	13
nach NAK 3	Dirmerzheim	66,3	93,8	98,8	98,5	92,8	99,0	97,9	98,6	97,0	98,9	98,0	99,3	99,4
	Fümmelse	26,7	93,3	99,3	99,3	95,8	99,0	98,5	99,0	96,3	99,5	97,8	99,3	98,8
Neckarwestheim		18,3	95,0	93,0	93,7	88,8	96,5	94,5	95,0	90,0	96,5	95,0	95,0	95,0
Mittelwerte n	ach NAK 3	38,0	93,9	96,8	97,5	92,4	98,2	97,0	97,8	94,8	98,3	97,1	97,9	97,7
nach BS	Dirmerzheim	57,5	91,3	99,3	97,5	87,8	99,1	95,8	97,8	95,0	99,6	95,5	99,0	99,8
	Fümmelse	38,3	79,8	93,7	90,8	84,8	92,0	87,8	91,0	88,3	93,3	90,5	90,5	95,3
	Neckarwestheim			94,3	95,0	90,0	98,0	96,0	97,0	93,3	98,5	97,0	97,0	97,0
Mittelwerte n	littelwerte nach BS		88,1	95,9	94,4	87,5	96,4	93,2	95,1	92,1	97,1	94,1	95,5	97,4

Tabelle 8: Gesamtunkrautdeckungsgrad und Gesamtwirkungsgrad der einzelnen Versuche der Hundspetersilie/Vogelknöterichvarianten 2011

	rautdeckungsgrad twirkungsgrad (%)						Vers	uchsgli	eder					
Termin	Ort	1	2	3	4	5	6	7	8	9	10	11	12	13
nach NAK 3	Bardenhagen	15,3	90,0	98,0	94,7	86,7	81,0	98,5	98,0	98,0	95,7	98,0	99,0	90,0
	Dexheim	7,3	91,8	95,0	96,0	88,0	93,8	89,0	98,8	90,8	98,5	88,0	92,0	86,3
	Heimerdingen*	46,3	97,1	97,0			97,9	97,7	98,1	97,5	96,3	88,9	99,4	98,1
	Hilpertshausen	28,8	80,0	93,0	93,0	92,0	91,5	88,0	89,5	89,5	84,3	82,5	93,5	95,0
	Rehmsdorf	71,3	87,3	89,3	87,1	89,2	89,4	90,3	89,4	89,1	87,0	90,7	91,9	91,2
Mittelwerte na	nch NAK 3	31,7	87,1	93,5	92,5	89,1	89,4	91,4	93,6	91,4	91,1	89,8	93,8	90,6
zum BS	Bardenhagen	29,0	91,3	93,3	94,3	87,3	76,3	94,8	93,3	91,3	92,3	92,8	97,3	92,0
	Dexheim	26,3	93,3	95,8	97,3	90,8	96,5	92,0	98,0	95,8	97,3	95,3	96,8	95,5
	Heimerdingen*	45,0	96,1	98,2			98,0	97,4	98,8	97,9	95,1	86,5	99,3	99,2
	Hilpertshausen	78,8	71,8	96,8	93,3	92,8	89,3	80,0	80,8	84,0	80,5	76,3	89,8	91,0
	Rehmsdorf	73,3	89,3	92,0	89,5	91,2	92,1	93,3	93,9	96,3	91,4	92,6	91,9	92,7
Mittelwerte zu	ım BS	53,3	86,1	94,5	93,5	90,7	89,4	90,0	91,4	91,9	90,2	89,2	93,7	92,9

^{*} Standort wurde nicht in den Mittelwert einbezogen

Sortenvergleich bei Ditylenchusbefall 2011

Variante	Rüben	ertrag	Zuckere	ertrag	Berein. Z	.ertrag	Zucker	gehalt	S	ΜV	K	Na	AmN	Pfl./ha	Sympt. %	Sympt. %
	t/ha	rel.	t/ha	rel.	t/ha	rel.	%	rel.	%	rel.	mm	ol/1000	gR.	z. Ernte	Oberfl. (Hals)	Oberfl. (Hals)
Bonn Saat: 22.3.	Ernte: 2	1.09.	1-r. Stre	ifenanba	au, 2 Wł	ng. a` 2,7	gm (6 m	Reihen)	1						(korrigiert)	(unkorrigiert)
anfäll. Std. links	93,9	100,0	14,51	100,0	12,69	100,0	15,43	100,0	1,33	100,0	29,3	8,6	16,5	64815	6,9	38,6
Annika KWS	94,6	100,8	15,02	103,6	13,27	104,6	15,90	103,0	1,26	94,5	33,7	5,0	13,0	70370	8,3	43,3
Artus	85,4	90,9	13,37	92,2	11,94	94,1	15,66	101,5	1,08	81,2	23,6	4,0	11,2	90741	4,7	22,5
Britta	87,1	92,8	13,94	96,1	12,36	97,4	16,00	103,7	1,21	91,2	32,2	4,4	12,2	96296	7,2	31,4
Haydn	86,3	91,9	13,83	95,3	12,34	97,3	16,02	103,8	1,13	84,7	25,5	3,9	12,2	83333	3,9	15,3
Sandra KWS	100,1	106,6	15,40	106,2	13,60	107,2	15,38	99,7	1,19	89,6	29,2	5,5	12,3	72222	9,3	32,6
Syncro 1)	54,6	58,2	9,59	66,1	8,56	67,5	17,56	113,8	1,28	96,5	30,6	4,6	15,9	88889	0,9	2,9
Kristallina KWS	73,0	77,7	12,51	86,3	11,24	88,6	17,11	110,9	1,14	85,6	27,7	2,5	12,3	92593	4,6	12,3
SY Securita	82,7	88,1	12,84	88,5	11,37	89,6	15,52	100,6	1,19	89,4	27,9	7,8	11,7	72222	8,9	20,1
ST 14009	72,5	77,2	11,90	82,0	10,57	83,3	16,41	106,4	1,23	92,3	27,8	4,0	15,3	66667	4,9	9,0
Mattea KWS	71,9	76,5	11,38	78,5	10,10	79,6	15,84	102,7	1,18	89,2	27,8	4,9	13,1	75926	3,9	5,6
anfäll. Std. rechts	73,0	77,7	11,59	79,9	10,28	81,0	15,88	102,9	1,19	89,8	26,8	6,7	13,0	77778	6,9	6,9
Beretta (Betrieb re.)	88,1	93,8	14,21	97,9	12,56	99,0	16,18	104,9	1,26	94,8	30,5	5,8	14,3	66667	0,6	0,4
GD 5 %	21,6	23,0	3,56	24,6	3,16	24,9	0,73	4,7	0,09	6,6	2,9	1,0	2,3	27601		

¹⁾ niedrigeres Blatt (Nachbarschaftseffekte!)

Der obige Versuch wurde im Rahmen einer überregionalen Screening-Serie angelegt. Die Auswertung war vorgesehen per Bonitur der Köpfschnittfläche. Dies war am Standort Bonn nicht möglich, da der Befall nur schwach und deshalb nicht in am Köpfschnitt bonitierbar war. Allerdings waren die Symptome deutlich am Wurzelkörper ausgeprägt. Bei einzelnen Sorten waren über 40 % der Wurzeloberfläche, im wesentlichen am Wurzelhals, durch Ditylenchusbefall verändert. Dabei waren keinerlei Symptome an der Köpfschnittstelle erkennbar. Aus diesem Grund wurden 2 Wiederholungen des Screenigsversuches beerntet und die Oberflächenveränderung durch den Erreger geschätzt und dokumentiert. Die Proben wurden anschließend im Labor der Zuckerfabrik gewaschen und analysiert (vgl. obige Tabelle). Da es sich um einreihige Parzellen handelt, sind die Ertragsergebnisse nur eingeschränkt zu betrachten. Interessant ist, dass Diylenchus auch auf kleinstem Raum sehr unterschiedlich schädigt. Der Befall war innerhalb von 12 Reihen stark abnehmend. Er konnte aufgrund der Verwendung einer anfälligen Standardsorte (auf beiden Seiten des Sägerätes) für die Prüfsorten korrigiert werden. Parallel zum abnehmenden Befall sank auch der Rüben- und Zuckerertrag in gleichem Maße ab. Offensichtlich war auch die Wasserversorgung für die Pflanzen in diesem Bereich sehr unterschiedlich.

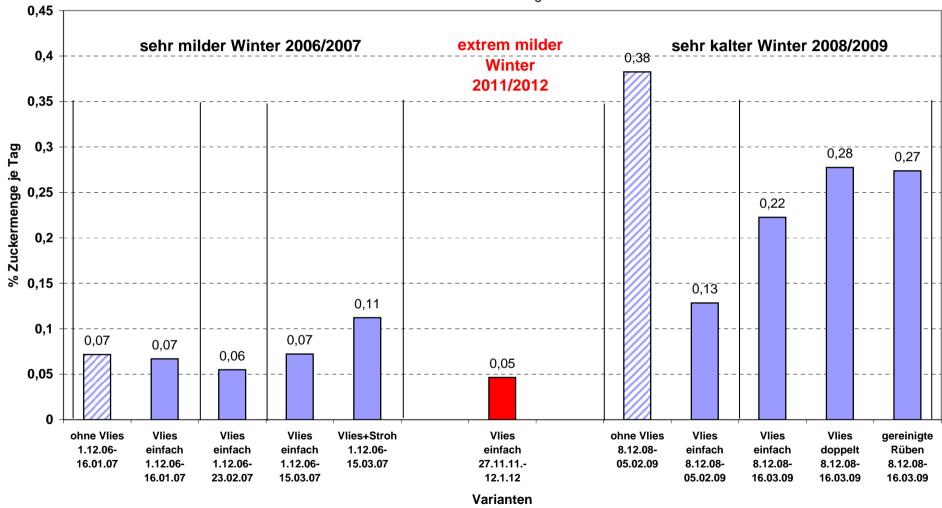
Mietenversuch 2011/12

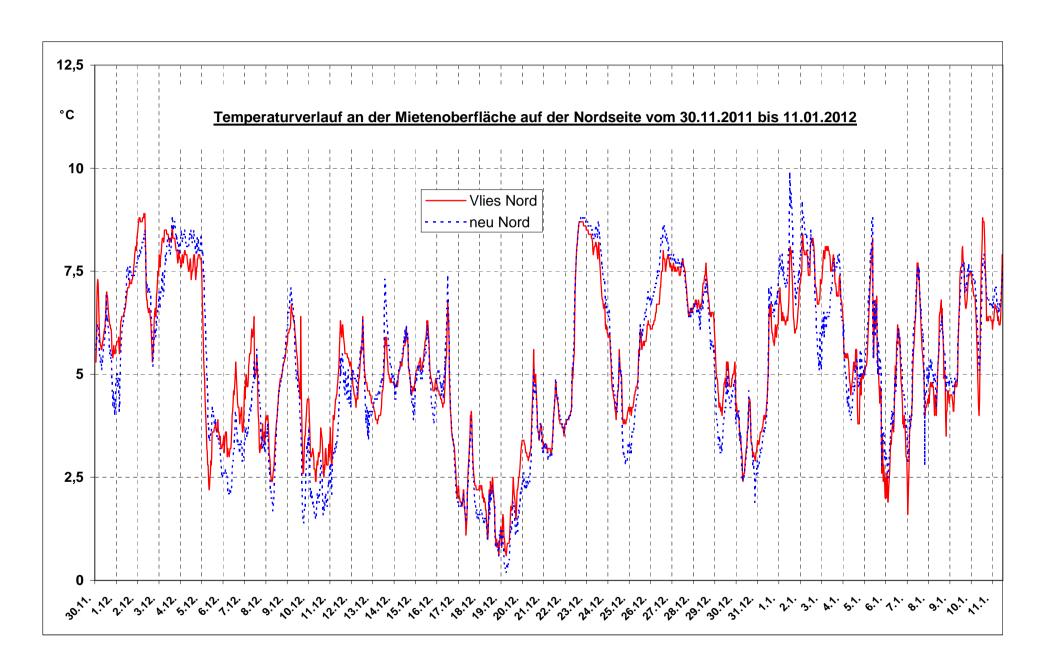
Arbeitsgemeinschaft Zuckerrübenanbau

Varianten	Erdan-	akt. Erd. %	RE		ZE		BZE		ZG		SMV		K	Na	AmN	Z´verlust	BZE-Verl.	Z'verlust	BZE-Verl.
	teil %	+Gew.verl. %	t/ha	rel	t/ha	rel	t/ha	rel	%	rel	%	rel	mmol/10	0 g R		g Z/t R u T	g Z/t R u T	%	%
Müddershein	n (27.11	1.11 - 12.01. [,]	12 = 46	Tage	Lagero	dauer)													
Frische Rüben	2,32	2,02	100,0	100,0	20,62	100,0	18,74	100,0	20,61	100,0	1,28	100,0	32,7	3,3	15,3	0	0	0,00	0,00
Vlies Süd	1,65	13,81	88,0	88,0	19,96	96,8	18,17	97,0	22,68	110,1	1,44	112,5	38,1	4,1	18,9	-142	-124	-0,07	-0,07
Vlies Nord	2,19	6,35	95,6	95,6	19,99	97,0	18,10	96,6	20,91	101,5	1,38	107,7	36,6	4,0	17,1	-135	-138	-0,07	-0,07
innen	1,87	1,87	100,2	100,2	20,23	98,1	18,24	97,3	20,19	97,9	1,38	108,2	36,2	4,5	17,3	-85	-108	-0,04	-0,06
neu Süd	1,91	5,83	96,1	96,1	19,99	97,0	18,08	96,5	20,79	100,9	1,38	108,0	35,7	4,0	17,7	-136	-142	-0,07	-0,08
neu Nord	2,50	1,42	100,7	100,6	20,21	98,0	18,31	97,7	20,08	97,4	1,28	100,4	33,6	3,7	14,9	-89	-92	-0,04	-0,05
innen	1,87	1,87	100,2	100,2	20,23	98,1	18,24	97,3	20,19	97,9	1,38	108,2	36,2	4,5	17,3	-85	-108	-0,04	-0,06
Mittelwerte																			
Vlies	1,88	3,51	98,5	98,5	20,18	97,9	18,22	97,2	20,51	99,5	1,39	108,6	36,5	4,4	17,4	-96	-113	-0,05	-0,06
neu (beige)	1,93	2,22	99,8	99,8	20,20	98,0	18,23	97,3	20,24	98,2	1,37	107,4	35,9	4,4	17,1	-90	-110	-0,04	-0,06

Für den Mietenversuch wurden am 26.11.2011 60 homogene, gesunde Proben (Theresa KWS) in Raschelsäcken eingewogen und 12 Proben am 26.11. frisch untersucht. Bei der Mietenanlage am 27.11. wurden 16 Proben in den Mietenkern (ca. 1 m Höhe) eingebracht. Am 28.11. wurden die äußeren Proben aufgelegt und die Miete abgedeckt. Die Temperaturen während der Lagerdauer wurden halbstündlich jeweils unter Standardvlies und der "Versuchsfolie beige" gemessen. Das Versuchsvlies war allerdings zeitweise durch den Sturm abgeweht. Die Temperaturen schwankten zwischen wenig über null bis knapp 10 °C maximal. Sie lagen im Mittel etwa bei 5-6 °C in einem sehr günstigen Bereich für die Rübenlagerung. Entsprechend waren die Zuckerverluste geringer als üblich ausgefallen.

Ein Vergleich der Abdeckmateralien ist leider nicht möglich, da das Versuchsvlies zeitweise fehlte und die differenzierte Zuordnung der inneren Proben fehlt.


Bei der Abfuhr der Versuchsmiete erfolgten zusätzliche Bonituren zum Zustand der Rüben. Dieser war insgesamt sehr gut. Während die äußeren Rüben einen gesunden, frischen Eindruck machten, waren die inneren Rüben trocken. An den Verletzungsstellen war zunehmend leichterSchimmelbildung zu beobachten.


Die Rüben unter Testvlies waren innen tendenziell feuchter und wiesen deutlicheren aber noch keine problematischen Schimmelbefall auf (fehlender Luftaustausch).

Die äußerst geringe Luftduchlässigkeit und damit hohe Windanfälligkeit des Testvlieses erwiesen sich als sehr nachteilig.

Zuckerverluste bei Langzeitlagerung 2006/07, 2008/09, 2011/12

Impressum

Versuchsstelle des Rheinischen Rübenbauer-Verbandes e.V.

Malteserstraße 3

53115 Bonn

Tel.: 0228/652534 Fax: 0228/652514

e-mail: mail@rrvbonn.de
Internet: www.rrvbonn.de

Versuchstechnik: Manfred Steuerwald und Edmund Strutz

Versuchsbericht: Manfred Steuerwald