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Dynamics*

This study demonstrates that nonlinearities, coupled with worker heterogeneity, make 

it possible to reconcile the Diamond–Mortensen–Pissarides model with the labor market 

dynamics observed in the United States. Nonlinearities, induced by firings and downward 

real wage rigidities, magnify adjustments in quantities, whereas heterogeneity concentrates 

them on the low-paid workers’ submarkets. The model fits the job finding, job separation, 

and unemployment rates well. It also explains the Beveridge curve’s dynamics and the 

cyclicality of the involuntary component of separations. The estimated dynamics of the 

aggregate shock that allows generating the US labor market fluctuations has a correlation 

with unemployment that changes of sign during the 80s. We also show that the differences 

in adjustment between submarkets predicted by the model are consistent with the data of 

job flows by educational attainment.
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1 Introduction
This study shows that workers’ heterogeneity and nonlinearities are essential for the search
and matching (SaM) model to explain the dynamics of job finding, job separation, and
unemployment rates in the United States.

In our extension of Diamond (1982)–Mortensen (1982)–Pissarides (1985) model (DMP
hereinafter), the economy is a collection of segmented markets, indexed by worker ability,
which operates independently of each other and shares only a common aggregate shock.
These independent markets are then aggregated to create an economy. To more convincingly
model separations and, particularly, generate their involuntary component, we introduce a
downward real wage rigidity that could be interpreted as a social norm (see Hall (2005))
and flexible firing costs. With worker heterogeneity, the fundamental surplus (Ljungqvist &
Sargent (2017)) that determines the labor market elasticity is specific to each submarket.
Indeed, the gap between current productivity and the maximum between the opportunity
cost of employment and the lower bound of the bargained wages set is specific to each
market. For high-ability workers, this gap is large, allowing for large wage adjustments and,
thus, the low volatility of quantities. Conversely, this gap is small for low-ability workers,
especially as the lower bound of the bargained wages set is higher than the opportunity
cost of employment, leading to large quantity adjustments. Indeed, when the wage is at
its lowest level, firms react only by adjusting quantities. The responses of the aggregates
to macroeconomic shocks depend on the aggregation of these heterogeneous behaviors. We
solve our model by considering the occasionally binding constraints and endogenous switching
between different regimes of decision rules, which are, at each time, specific to each labor
market segment. The four different regimes are as follows: (i) it is sometimes optimal for
firms to post vacancies (the interior solution of the DMP model); however, in recessions, it
may be optimal for them not to post vacancies and (ii) not to fire, (iii) to fire a fraction of
workers, or (iv) to close and thus fire all workers.

As the model can generate a large spectrum of elasticities, each specific to one unobserved
ability, the model’s estimation is a crucial part of the quantitative analysis. Specifically,
this analysis must determine the composition of our artificial population (i.e., the “good”
weight for each ability) to ensure that the model matches the aggregate worker flows and
unemployment. We follow Fernandez-Villaverde et al. (2015) and Herbst & Schorfheide
(2015) by estimating the structural parameters of the model using maximum likelihood (ML).
The likelihood is approximated using particle filtering coupled with projection methods to
solve a model with occasionally binding constraints (Judd (1992) and Christiano & Fischer
(2000)). Hence, our quantitative evaluation of the model takes advantage of the nonlinear
solution of the model and thus uses information on United States data asymmetries.1 The

1The nonlinearities in employment adjustments and asymmetries in the job creation and destruction rates
have been discussed in previous works. See Neftci (1984), Sichel (1993), Burgess (1992), Acemoglu & Scott
(1994), Caballero & Hammour (1994), and Davis et al. (1998). Keynes (1936) and Burns & Mitchell (1946)
discuss the existence of asymmetries in cyclical movements of key macroeconomic aggregates. They point
out that recessions are more severe than expansions. Nevertheless, McKay & Reis (2008) and Ferraro (2017)
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study’s results are based on the most advanced methods in nonlinear estimation to evaluate
a SaM model with heterogeneity.

Conditional on our estimate of worker heterogeneity, we find that the model fits well the
observed aggregate job finding, job separation, and unemployment rates, which are the data
used to estimate the model. This very good fit is obtained by solving the Shimer (2005)’s
puzzle. First, whereas Shimer (2005) shows that the size of productivity shocks is too small
to match the volatility of unemployment, our results show that it is possible to restrict the
model’s parameters to match the persistence and variance of the US labor productivity.
Moreover, we show that our aggregate shock is positively correlated with US labor produc-
tivity before the end of the 1980s and becomes negatively correlated in more recent periods.
This finding echoes Barnichon (2010) empirical evidences. Second, our results are obtained
under the restriction that the opportunity cost of employment must be in the range of the
empirical evidence provided by Hall & Milgrom (2008), and thus significantly lower than
the values used by Hagendorn & Manovskii (2008). We show that these empirical successes
are based on the nonlinear dynamics of the model: the aggregation of nonlinear individual
problems characterized by non-smooth policy functions leads to significant asymmetries in
the impulse response functions of aggregates vis-à-vis macroeconomic shocks. Indeed, sepa-
rations even smoothed by a firing cost function remain a decision not affected by exchange
externalities. This is not the case for hiring, for which the competition between firms during
recovery generates congestion effects that dampen the intensity of the recovery. These asym-
metries allow the model to reproduce the high speed of separations at the beginning of a
recession and thus the low speed of adjustments in recovery. We show that these adjustments
depend on the size of the recession and the speed of recovery.

Additionally, we show that our model can reproduce the adjustments around the Bev-
eridge curve, thus solving the Beveridge curve puzzle (Fujita & Ramey (2012)), that is, the
counterfactual result that the DMP model with an endogenous separation rate generates
a positive slope of the Beveridge curve. Our model can also reproduce the joint dynamics
of unemployment and vacancies before and after an unemployment peak (i.e., a recession).
For each NBER recessions, we show that the slopes up to the unemployment peak are steep
because they result from abrupt layoffs; in contrast, after the unemployment peak (i.e., dur-
ing the recovery), the gradient is low because hiring is a time-consuming process. We show
that the differences between recessions come from (i) the unemployment level before the
recession, (ii) the size and persistence of the exogenous shock. These results are obtained
with a model that can explain a large part of the cyclicality of the involuntary component
in the separations (i.e., the layoffs observed in the data).

All these results are based on the fact that submarkets for low-ability workers are more
sensitive to the business cycle than the other labor market segments in the model where
worker heterogeneity is unobservable. As workers’ heterogeneity is assumed to be invariant,
it can be linked to educational attainment. We show that our model is consistent with the
observed decreasing sensitivity to the business cycle of job finding, separation, and unem-

show that only (un)employment adjustments exhibit asymmetries.
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ployment rates with educational attainment. Therefore, model heterogeneity is consistent
with differences across educational attainment in workers’ flows.

Our study is related to a large body of literature starting with the Shimer (2005)’s
paper. First, we reinforce the view that real wage rigidity is an important ingredient for
improving the DMP model fit, as shown previously in Hall (2005) and Hall & Milgrom
(2008). We emphasize that it is sufficient to introduce a downward real rigidity to improve
the model’s implications significantly. Second, we also promote the idea that considering
worker heterogeneity helps the DMP model to match aggregate dynamics substantially, thus
reinforcing the results of Lise & Robin (2017), Ferraro (2017), and Chassamboulli (2013).
Finally, our results also favor approaches that consider the rich nonlinearities of the DMP
model, as previously discussed in Collard et al. (2002), Hairault et al. (2010), Petrosky-
Nadeau et al. (2018), (2020) , and (2017).

The remainder of this paper is organized as follows. Section 2 presents the model. Section
3 applies the model to the data. Section 4 discusses the additional implications of the
model, such as involuntary separations and the Beveridge curve. Section 5 shows that the
estimated heterogeneity that allows the model to fit the aggregate data also allows it to
explain disaggregate data, such as workers’ flows by diploma. Finally, Section 6 concludes
the paper.

2 Matching model with worker heterogeneity
As in Robin (2011), Lise & Robin (2017), and Ferraro (2017), the labor market is segmented
by worker ability µ 2 [1,M ]. To maintain the tractability of the model, there is no skill
mobility. !µ denotes the mass of the labor force in the µ-type labor market segment, withP

µ !µ = 1. In each labor market segment, the size of the population is normalized to unity.
The output per unit of labor is denoted by atyµ, where yµ 2 {y1, ..., yM} is the skill-specific
productivity for µ-type workers, and at is the common aggregate shock. Here, log(at) follows
an AR(1) process log(at) = ⇢ log(at�1) + (1� ⇢) log(a) + ✏t with |⇢| < 1 and ✏ N (0, �2).

2.1 Matching technology and stock-flow dynamics

To hire workers, firms must open vacancies at a unit cost  > 0. µ-type workers and
the jobs directed to those workers meet pairwise at the Poisson rate M(ut(µ), vt(µ)), where
M(ut(µ), vt(µ)) represents the flows of matches, vt(µ) is the number of vacancies, and ut(µ) is
the number of unemployed µ-type workers. Following Den Haan et al. (2000), the matching
function is M(ut(µ), vt(µ)) = '

vt(µ)ut(µ)

(vt(µ)⌫+ut(µ)⌫)
1/⌫ , with ⌫ > 0, ensuring that the induced

probabilities are always between zero and one. If vt(µ) > 0 in the µ-type market, the
job finding (p(✓t(µ))) and job filling rates (q(✓t(µ))) depend on the ratio of vacancies to
unemployed workers (✓t(µ) = vt(µ)/ut(µ)) and are defined as p(✓t(µ)) = '

✓t(µ)

(✓t(µ)⌫+1)1/⌫
and

q(✓t(µ)) = '
1

(✓t(µ)⌫+1)1/⌫
, respectively. The unemployment dynamics arise from entries to and

exits from employment. The former are determined by job findings p(✓t(µ))ut(µ) when the
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aggregate shock provides a sufficient incentive to post vacancies, whereas the latter are given
by the sum of exogenous separations s(1�ut(µ)) and endogenous separations lt(µ)(1�ut(µ)),
where lt(µ) 2 [0, 1 � s] denotes the endogenous separation rate (see Equation (1)). Hence,
we obtain

ut+1(µ) = (s+ lt(µ))(1� ut(µ)) + (1� p(✓t(µ)))ut(µ), (1)

implying that ut+1(µ) = 1 if vt(µ) = 0 and lt(µ) = 1 � s. In Section 2.4, we discuss why
endogenous separations must be restricted to layoffs.

2.2 Worker’s utility

We define Ut(µ) and Wt(µ) as the state-contingent present values of an unemployed and
employed worker, respectively. z(µ) is the flow value for unemployed workers, who can earn
unemployment benefits and home production, which are partially indexed to worker ability
µ, and wt(µ) is the wage. As discussed below, we assume that the Nash bargaining process is
constrained to ensure that voluntary quits are excluded, leading to Wt(µ) � Ut(µ). The value
functions are (the indexes for individuals are omitted because each of them is representative)

Ut(µ) = z(µ) + �Et[(1� p(✓t(µ)))Ut+1(µ) + p(✓t(µ))Wt+1(µ)]

Wt(µ) = wt(µ) + �Et [(1� s� lt(µ))Wt+1(µ) + (s+ lt(µ))Ut+1(µ)] ,

implying that Wt(µ) = wt(µ) + �Et [Ut+1(µ)] if vt(µ) = 0 and lt(µ) = 1 � s. When the
aggregate shock leads firms to choose vt(µ) = 0, then Ut(µ) = z(µ) + �Et[Ut+1(µ)] because
p(✓t(µ)) = 0. This changes the threat point in the bargaining process because employees’
alternative options do not depend on labor market tightness.

Moreover, for each µ-type worker, the participation constraint (Wt(µ) � Ut(µ)) must be
respected 8t. The Nash bargaining process ensures that this constraint is satisfied. However,
this is only the case for µ-type workers with a productivity yµat larger than the opportunity
cost of employment z(µ). When the Nash bargaining process is constrained by the lower limit
of the wage bargaining set, we must check whether the participation constraint is satisfied.
If this is not the case, firms exit the market and lack workers. When Wt(µ) < Ut(µ), the
market is closed; when this occurs, all workers quit their jobs and, thus, all firms close.

2.3 Firm’s behavior

On each submarket, µ, a continuum of firms selling their goods in a perfectly competitive
market exists. On each of these submarkets, firms can find the workforce that corresponds
to their technology.2 To account for the reorganization costs and institutional arrangements,
such as the experience rating system and temporary layoff agreements, each firm supports

2The indexes for individual firms are omitted because each of them is representative. Firms can be
interpreted as positions that use a homogeneous µ-type of labor. They can also be viewed as establishments
where a particular activity of a company is carried out if one activity is associated with one type of labor.
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firing costs, which are an increasing function of the number of fired workers, denoted by
F (lt(µ)nt(µ)), with F

0
> 0 and F

00
> 0. Therefore, the value function is nonlinear in

employment. In this case, the firm knows that the wage can depend on its firing policy
because the marginal profit can depend on the employment level through the endogenous
firing costs. Hence, in the general case, we obtain wt(µ) = wµ(nt(µ), at), as in Stole et al.
(1996) and Cahuc & Wasmer (2001) (see also Bertola & Caballero (1994) and Bertola &
Garibaldi (2001)). We define �t(µ), ⌫t(µ), and �t(µ) as the Lagrange multipliers of each
inequality constraint, and the firm’s program is

Vt(µ) = max
vt(µ),lt(µ),nt+1(µ)

{(yµat � wµ(nt(µ), at))nt(µ)� vt(µ)� F (lt(µ)nt(µ)) + �Et [Vt+1(µ)]}

s.c.

8
>><

>>:

nt+1(µ) = (1� s� lt(µ))nt(µ) + q(✓t(µ))vt(µ)
vt(µ) � 0 (�t(µ))
lt(µ) � 0 (⌫t(µ))
lt(µ)  (1� s) (�t(µ)).

By using the notation Jt(µ) ⌘ @Vt(µ)
@nt(µ)

, we find that the optimal behavior is given by

0 = �+ q(✓t(µ))�Et [Jt+1(µ)] + �t(µ)q(✓t(µ))

0 = �F
0(lt(µ)nt(µ))� �Et [Jt+1(µ)] + ⌫t(µ)� �t(µ)

Jt(µ) = yµat � wt(µ)�
@w(nt(µ), at)

@nt(µ)
� lt(µ)F

0(lt(µ)nt(µ))

+(1� s� lt(µ))�Et [Jt+1(µ)] + lt(µ)⌫t(µ) + (1� s� lt(µ))�t(µ).

Given that vt(µ) � 0 , q(✓t(µ))vt(µ) � 0, the Kuhn–Tucker conditions are

0 = �t(µ)q(✓t(µ))vt(µ) (2)
0 = ⌫t(µ)lt(µ)nt(µ) (3)
0 = �t(µ)((1� s� lt(µ))nt(µ). (4)

When ⌫t(µ) = 0, that is, if there are firings, then �Et [Jt+1(µ)] < 0. In other words, the
expected job surplus of the firm can be negative. This outcome is possible only if Jt+1(µ) < 0
for some realizations of the technological shock.

2.4 Wages

As is typical in the classical DMP model, we assume that the wage is the solution to the
Nash bargaining problem between the firm and its marginal worker at each time point.
Nevertheless, following Hall (2005), we introduce wage rigidity in the form of a social norm.
The originality of our approach is that this rigidity occurs only when real wages decline; thus,
it takes the form of a lower limit of the wage bargaining set, denoted w. This downward
real wage rigidity leads to wt(µ) = max{wNash

t (µ), w}. It also leads us to exclude voluntary
quits; for low-paid workers, the lower limit of the wage bargaining set (w) ensures that
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Wt(µ) � Ut(µ). Hence, in the model, only two types of separations can occur: natural
quits, which occur at an exogenous rate s, and layoffs, which occur at an endogenous rate
lt(µ). Hence, for workers paid at the lower bound of the bargaining set, the firm’s marginal
surplus may be negative and, in this case, firings or firm exits may occur. If firings occur,
that is, if 0 < lt(µ) < 1 � s, implying that �t(µ) = ⌫t(µ) = 0, we obtain F

0(lt(µ)nt(µ)) =
��Et [Jt+1(µ)], leading to

Jt(µ) = yµat � wt(µ)�
@w(nt(µ), at)

@nt(µ)
+ (1� s)�Et [Jt+1(µ)] . (5)

However, when firings occur, it also follows that �Et [Jt+1(µ)] < 0: in recession (low at), the
expectations of recovery are insufficient to retain all the firm’s workers. If, for a given level of
at and some µ, we have a negative expected value (�Et [Jt+1(µ)] < 0), then Jt(µ) < 0. Given
that the Nash solution would lead to voluntary quits because Wt(µ)�Ut(µ) =

�
1��Jt(µ) < 0,

the assumption of downward real wage rigidity implies that the wage is bounded by w.3
If, in the same period and for some µ, we have �Et [Jt+1(µ)] > 0 and Jt(µ) > 0. Then,

lt(µ) = 0 ) F (lt(µ)nt(µ)) = 0, leading to the same marginal value of the job as derived
previously (equation (5)). Nevertheless, in this regime, the firm has constant returns to
scale, leading to @w(nt(µ),at)

@nt(µ)
= 0, as in the classical DMP model. Given the assumption that

Jt(µ) > 0, we deduce that the Nash solution for the bargained wage Wt(µ)�Ut(µ) =
�

1��Jt(µ)
implies that wt(µ) > z(µ) because Wt(µ) > Ut(µ).

Property 1. The presence of a lower limit of the real wage prevents strategic bargaining.

Hence, the equilibrium wage is given by

wt(µ) =

⇢
�(yµat + ✓t(µ)) + (1� �)z(µ) If Jt(µ) > 0
w If Jt(µ)  0.

(6)

When Jt(µ) > 0, two cases are possible. First, in the regime in which �Et [Jt+1(µ)] > ,
we obtain ✓t(µ) > 0, leading to the classical wage equation. Second, in the regime in which
0 < �Et [Jt+1(µ)]  , we obtain ✓t(µ) = 0, implying that labor market tightness is absent
from the wage equation.

2.5 Equilibrium

By using (1), (2), (3), (4), and (6), we can deduce the equilibrium from



q(✓t(µ))
� �t(µ) = �Et

8
><

>:

yµat+1 � wt+1(µ)� lt+1(µ)F 0(lt+1(µ)nt+1(µ))

+(1� s� lt+1(µ))
⇣


q(✓t+1(µ))

� �t+1(µ) + �t+1(µ)
⌘

+⌫t+1(µ)lt+1(µ)

.

9
>=

>;
3Even if �Et [Jt+1(µ)] > 0, we can have Jt(µ) < 0; in this case, the current profit is negative, but

the expectations of recovery imply that firms do not fire workers (lt(µ) = 0 and thus F (lt(µ)nt(µ)) = 0).
However, as previously shown, the solution for the wage is bounded by w.
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Property 2. The dependence of the marginal cost of firings on the number of firings breaks
the block recursivity of this search equilibrium model.

As it is impossible to fire more workers than the firm’s total workforce, the Lagrange
multipliers of each constraint depend on each firm’s state variable (nt(µ)). Given that
firings and firm exits occur only in regimes where Jt(µ)  0, the block recursivity of the
model is preserved for all µ such that Jt(µ) > 0, leading to Property 1. Hence, the level
of employment can matter for the expected marginal value of a job. This result breaks the
block recursivity of the search equilibrium (see Pissarides (1990)).4

Property 3. Each firm can be in one of the four regimes within the equilibrium distribution.
With ⇥µ(at, nt(µ)) =


q(✓t(µ))

� �t(µ), these four regimes are

• Regime 1. When �t(µ) = 0 ) vt(µ) > 0 and lt(µ) = 0 ) �t(µ) = 0, the first-order
condition leads to


⇥µ(at,nt(µ))

= q(✓t(µ))

⌫t(µ) = ⇥µ(at, nt(µ)) � 0

�
because ⇥µ(at, nt(µ)) >  > 0

nt+1(µ) = (1� s)nt(µ) + q(✓t(µ))vt(µ).

The former equation can be an equilibrium restriction if and only if q(✓t(µ)) < 1 because
q(✓t(µ)) is a probability. Otherwise, �t(µ) � 0 ) vt(µ) = 0, whereas q(✓t(µ)) takes its
extreme value, namely q(✓t) = 1. We deduce that the threshold value of ⇥µ(at, nt(µ))
is ⇥µ(eat(µ), nt(µ)) = .

• Regime 2. If 0 < ⇥µ(at, nt(µ)) < , �t(µ) � 0 ) vt(µ) = 0 and ⌫t(µ) � 0 )
lt(µ) = 0, whereas �t(µ) = 0. Hence, we deduce that

�t(µ) = �⇥µ(at, nt(µ)) � 0 because ⇥µ(at, nt(µ)) < 

⌫t(µ) = ⇥µ(at, nt(µ)) � 0 because ⇥µ(at, nt(µ)) > 0

nt+1(µ) = (1� s)nt(µ).

The lower bound of ⇥µ(at, nt(µ)) in this regime is zero.

• Regime 3. If �F ((1 � s)nt(µ)) < ⇥µ(at, nt(µ)) < 0, we still have �t(µ) � 0 )
vt(µ) = 0, but 0 < lt(µ) < (1 � s), implying that ⌫t(µ) = 0 and �t(µ) = 0. Hence, it
follows that

�t(µ) = �⇥µ(at, nt(µ)) � 0
F

0(lt(µ)nt(µ)) = �⇥µ(at, nt(µ)) � 0

�
because ⇥µ(at, nt(µ)) < 0

nt+1(µ) = (1� s� lt(µ))nt(µ).
4If the marginal cost of firings does not depend on the number of firings, then the block recursivity of

this search equilibrium model is preserved. While this case simplifies the computation of the equilibrium,
it reduces the endogenous separations to discrete choices (see Lise & Robin (2017)). It also breaks the
orthogonality between labor market tightness and unemployment implied by the DMP model but is rejected
by empirical evidence provided by Coles & Kelishomi (2018).
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• Regime 4. If ⇥µ(at, nt(µ)) < �F ((1� s)nt(µ)), we still have �t(µ) � 0 ) vt(µ) = 0,
but lt(µ)nt(µ) = (1� s)nt(µ), implying that ⌫t(µ) = 0 and �t(µ) � 0. This result leads
to

�t(µ) = �⇥µ(at, nt(µ)) � 0
�t(µ) = �⇥µ(at, nt(µ)) � 0

�
because ⇥µ(at, nt(µ)) < �F ((1� s)nt(µ))

nt+1(µ) = 0.

Although nonlinearities can be found within each regime, they are also induced by
switches between regimes.5

Regime 1 is the usual case studied in DMP models. In this regime, the congestion
effect already generates some significant nonlinearities, as shown by Hairault et al. (2010),
Jung & Kuester (2011) or Iliopulos et al. (2019). Indeed, the low level of unemployment in
booms slows hiring, whereas its high level in recessions makes it easier to adjust employment
downward. Therefore, this property of the DMP model explains the slow adjustments to
employment during recovery.

In Regime 2, firms are “inactive,” as in Bertola & Garibaldi (2001), Bentolila & Bertola
(1990) and Petrosky-Nadeau & Zhang (2017). Hence, the firm’s optimal strategy is to hoard
its workforce net of exogenous separations (no hiring and no firing). This labor hoarding
regime can exist because market opportunities induce the firm to reduce employment, but
the exogenous separation rate is sufficient to achieve the firm’s objectives. This outcome
can occur in periods of small recessions where rapid recovery is anticipated. Moreover, in
this regime, the unemployment dynamic is linear because it decreases at a constant rate
of exogenous separation. Thus, this regime is on a razor edge, given the low magnitude of
exogenous separations.

The novelty of Regime 3 vis-à-vis the destruction choices described by the model of
Mortensen & Pissarides (1994) is that the intensity of the firing rate depends on the firms’
employment levels. Indeed, from the second equation, we deduce that the layoff rate is
lt(µ) = F

0�1(�⇥µ(at, nt(µ)))/nt(µ). If the recession is anticipated to be short and shallow,
then the decision rules of this regime can be the firm’s best option because the losses will be
offset quickly.

Finally, Regime 4 provides the date at which the firm exits the market. This is close to
the regime described by Robin (2011), and Lise & Robin (2017) when the quit rate equals
one, as the match surplus becomes negative. This regime can occur when a recession is
sufficiently persistent and when jobs are highly fragile.

The occurrence and persistence of Regimes 3 and 4 highly depend on the firm’s employ-
ment history; if employment is low, closing the firm (Regime 4) becomes the best option.
Indeed, �F ((1 � s)nt(µ)) is close to zero when nt(µ) is close to zero. Moreover, the choice

5For each regime, we must also check that the participation constraint is satisfied: (i) when the bargained
wage is not constraint by w, the participation constraint is z(µ) + �

1��
✓t(µ) � (1 � s) 1

1��



q(✓t(µ))
< yµat,

(ii) if the w is binding, the participation constraint is w > z(µ). The figures of the decision rules for each
regime are in Appendix D.

9



to fire some proportion of the workforce implies that �F ((1 � s)nt(µ)) is the closest to
zero; this result then reduces the distance between Regimes 2 and 4, and thus the probabil-
ity that Regime 3 occurs. Regime 3 does not exist without firing costs, and firms control
their workforce via the hiring process, exogenous separation rate, and closure decisions. In
Regimes 3 and 4, the size of the recession (magnitude and persistence) and heterogeneous
structural productivity of jobs implies that workers in more fragile jobs are fired; this result
is the “cleansing effect of recessions” found by Saint-Paul (1993) and Caballero & Hammour
(1994). This instantaneous adjustment of separations can explain the high sensitivity of the
job separation rate at the beginning of a recession (see Figure 14 in Appendix A).

To analyze the “complete” dynamics of the DMP, we solve for the following equilibrium:

nt+1(µ) =

8
>>><

>>>:

(1� s)nt(µ) + p

⇣
q
�1
⇣


⇥t,µ

⌘⌘
(1� nt(µ)) If ⇥t,µ > 

(1� s)nt(µ) If 0 < ⇥t,µ  

(1� s� lt(µ))nt(µ) If �F
0
t,µ < ⇥t,µ  0

0 If ⇥t,µ  �F
0
t,µ,

where we use the compact notations ⇥t,µ = ⇥µ(at, nt(µ)) and F
0
t,µ = F

0((1 � s)nt(µ)). We
compute ⇥t,µ, 8t, µ using a collocation approach with Chebyshev polynomials of order three.
In each market, we have two state variables: the efficiency of the production function and
employment. Hence, we identify the policy rule by setting the Euler equation residuals to
zero on a 2D grid with nine nodes, and we approximate the expectations using the unscented
transform (see Appendix B for details on the numerical solution method).

3 Empirical strategy and results
If nonlinearities matter, the evaluation of our model requires a quantitative method that
accounts for nonlinearities in the data. We develop a method based on the ML.6 We use
a particle filtering algorithm7 coupled with a projection method to solve the model with
occasionally binding constraints to extract information on the nonlinearities induced by our
extension of the DMP model.

The main challenge is to provide an estimation explaining the large increases in the US
unemployment rate and its slow drop during recovery. Only ten recessions have occurred
since the end of WWII. To base our estimate on the largest number of these experiences,
we favor an estimation using the largest possible sample from the beginning of 1951 to the
end of 2018. Given the large turnover in the United States labor market, monthly data

6Using a Real Business Cycle model, Fernandez-Villaverde & Rubio-Ramirez (2005) show that a full
information estimation of the nonlinear model (solved with finite elements) provides a better fit than a
full information estimation of the linearized model. The authors also find that the parameter estimates
are significantly different and translate into noticeable discrepancies between the simulated and estimated
moments.

7These methods were first used by DeJong et al. (2000) and Schorfheide (2000) to estimate DSGE models.
Appendices B and C describe the implemented method.
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are also required. These various constraints prevent us from directly using productivity
data, which are available over a shorter sample, and only at a quarterly frequency, which
would complexify the estimation procedure by mixing data frequencies. These restrictions
on the information set used in the estimation can also be seen as opportunities because our
aggregate shock is not constrained to US productivity only.

Before discussing the estimation results, we first discuss the identification problem that
we must solve. Next, we present the data used for the estimation and our assumptions
regarding the functional forms.

3.1 Shock identification

It is well known since Shimer (2005) that the observed variance of labor productivity is too
small to allow the DMP model to generate the observed unemployment volatility. Moreover,
Barnichon (2010) has shown that the correlation between unemployment and productivity
has changed of sign in the mid-1980s (from significantly negative, the correlation became
significantly positive). These two points suggest that productivity shocks cannot explain all
the labor market dynamics. A solution can be found in Ljungqvist & Sargent (2017) who
show that the “fundamental surplus,” the variable explaining the labor market dynamics, is
driven by productivity shocks, but also by shocks on different costs, such as those linked to
credit (Wasmer & Weil (2004)), to delay in bargaining (Hall & Milgrom (2008)), to hiring
(Pissarides (2009)), to changes in unemployment benefits, to layoff taxes and to opportunity
cost of employment induced by preference shocks (Balleer (2012)). Indeed, with a funda-
mental surplus defined as8 ⌅t(µ) = yµeat � z(µ)�⌥t(µ), it appears that not only the “true”
productivity shocks eat can change the job value but also the exogenous dynamics of ⌥t(µ)
which are linked to the other shocks. However, the “fundamental surplus” does not allow
one to easily identify the structural shocks, particularly the technological shocks. Indeed,
if ⌥t(µ) = yµ�t for simplicity, then we have ⌅t(µ) = yµ(eat � �t) � z(µ). Hence, the shock
identified by our model is at = eat � �t. The crucial point is that this unobservable shock at

is not only linked to changes in labor productivity measured by GDPt
Nt

, as it should be the
case for eat. That is the reason we exclude labor productivity from the information set of
our estimation. To deal with Shimer’s puzzle, understood as the link between the size of
labor market fluctuations and the size of the shocks, we control the size of the shocks (at)
such that the model can generate labor productivity having persistence and variance close
to the ones measured in the historical data. With this method, the history of shocks at is
not restricted to be the same as that of labor productivity. This allows us to reveal the
necessary gaps between the identified shock (at) and historical productivity (eat) that allow
the model to match observed workers’ flows and unemployment.

To implement this estimation strategy, the objective function is thus a penalized log-
8In our model, the employment surplus, defined as St(µ) = Jt(µ) + Wt(µ) � Ut(µ) = yµeat � z(µ) �

max{0, �

1��
✓t(µ)}�lt(µ)F 0(lt(µ)nt(µ))+�(1�s�lt(µ))Et [St+1(µ)] leads to a “fondamental surplus” ⌅t(µ) ⌘

yµeat � z(µ)�max{0, �

1��
✓t(µ)}� lt(µ)F 0(lt(µ)nt(µ)).
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likelihood Lc = L��
h
(b⇢s � b⇢d)2 + (104 ⇥ (b�2

s � b�2
d))

2
i
, where L is the model’s log-likelihood,

{b⇢s, b�s} and {b⇢d, b�d} are the estimated parameters of the AR(1) processes for the quar-
terly labor productivity (in log) for the simulated (s) and observed (d). Using the model,
the simulated quarterly data for “output” and employment are respectively given by Y

s
t =P

µ !µyµ

PS
⌧=1 at,⌧N

s
t,⌧ (µ) and N

s
t = 1

S

P
µ !µ

PS
⌧=1 Nt,⌧ (µ), where t denotes the quarter, ⌧

the weeks in each quarter and S in the number of weeks in a quarter. This leads to simulated
quarterly data for “labor productivity,” defined as Y

s
t /N

s
t that we use to estimate {b⇢s, b�s}.

The parameter � is the arbitrary weight of the penalty in the objective criterion that we
set to 2,000. We multiply the innovation variance by 104 in order that ⇢ and �

2 have the
same relative weight. This approach is close to the one proposed by Acharya et al. (2020),
which employs both aggregate time series in the likelihood calculation of a Bayesian estima-
tion and moment restrictions based on microdata. Here, our approach includes information
on moments (persistence and variance) from the quarterly labor productivity, whereas the
model is estimated on monthly data.

3.2 Data

We extend the unemployment rate (UR), job-finding rate (JFR), and job separation rate
(JSR) data of Lise & Robin (2017) to the current period. To construct these data, we use
seasonally adjusted data from the BLS covering 1951m1 to 2018m12 and measure employ-
ment, unemployment, and the number of individuals unemployed for more than five weeks
for all people aged 16 and over (see Appendix A). To stationarize these data, we choose the
same smoothing parameter as Lise & Robin (2017) (�HP = 92 ⇥ 2.5⇥ 105), which simplifies
the comparisons.9 The simulated data are weekly, and the induced monthly transition rates
are calculated from the historical data provided by the BLS (see Appendix A).

3.3 Assumptions on the functional forms

The estimation is conducted under several restrictions. We normalize the scale parameter
of the matching function (') and the mean of the aggregate productivity (a) to one. We
calibrate the discount factor � such that the real interest rate is 5% per year. For the es-
timation, we must choose functional forms for the opportunity cost of employment (z(µ))
and firing costs (F (ln)). Following Robin (2011), we set the opportunity cost of employment
z(µ) as a proportion ⇣ of worker ability yµ as follows: z(µ) = z0 + ⇣(yµ � z0). Contrary
to Lise & Robin (2017), we do not assume that the income of unemployed workers fluctu-
ates with the business cycle. To test the ability of the model to solve the Shimer’s puzzle
without extreme values for the opportunity cost of employment, we restrict all solutions to
satisfy E[z(µ)]/E[yµ] = 0.75, value in the range of estimates provided by Hall & Milgrom
(2008). This value is much lower than the calibrations chosen by Robin (2011) (close to

9As we use monthly data, we multiply the smoothing parameter of 2.5⇥ 105, which Lise & Robin (2017)
use for quarterly data, by 92 (see Ravn & Uhlig (2002) for a discussion of adjustments to the HP filter
smoothing parameter).
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0.86), Christiano et al. (2016) (0.88), and the extreme calibration proposed by Hagendorn
& Manovskii (2008) (close to 0.95). Given the assumption of the functional form for z(µ)
and the distribution of yµ, this restriction leads to z0 = 0.75�⇣

1�⇣

�
y1 +

k
k+✓

�
. The firing cost

function is F (ln) = �
1+⌘ (ln)

1+⌘. Finally, as in Robin (2011), the weights of abilities in the
economy are !µ = betapdf(yµ � y1, k, ✓), where y1 is the lowest level of abilities. The beta
distribution is defined over y1 + [0, 1], has a unique mode y1 +

k�1
k+✓�2 and an average equal

to y1 +
k

k+✓ . The vector of the estimated parameters is

# = {⇢, �, ⌫, s,, �,�, ⌘, y1, k, ✓, ⇣, w, �f , �s, �u}.

Our structural approach aims to test the ability of our extended DMP model to fit the
aggregate labor market data, considering the occasionally binding constraints, and given
that these events depend on the non-stochastic component of productivity heterogeneity
and labor market frictions.

3.4 Results

The estimates of the structural parameters in Table 1 provide different values than those
usually obtained in the literature. Our estimation provides values for some of the parameters

Table 1: Parameter estimates

Param. Value Std. Interpretation
⇢ 0.97874 0.00062 Persistence of technology shock
� 0.00292 0.00003 Std. innovations in the technology shock
� 0.64074 0.00266 Bargaining power of workers
⇣ 0.65000 0.04903 Indexation of home production
w 0.92653 0.00040 Lower limit of the bargained wages
s 0.00691 0.00002 Exogenous separation rate
⌫ 0.68425 0.00391 Matching function
 0.43385 0.00401 Cost of a vacancy
k 2.00000 0.00375 Param. 1, Beta dist., abilities
✓ 5.50000 0.02612 Param. 2, Beta dist., abilities
y1 0.89922 0.00044 Lower bound of ability
� 0.55117 0.29744 Scale parameter, firing cost function
⌘ 1.50535 0.13767 Elasticity, firing cost function
�f 0.03329 0.00088 Std. measurement error on JFR
�s 0.00193 0.00005 Std. measurement error on JSR
�u 0.00107 0.00004 Std. measurement error on UR

Log-Lik. 9282.18
Penalty 11.23

CPS monthly data, 1951M1–2018M12, 40,000 particles, 30 abilities. Authors’ calculations.
See Appendix C for the technical details on the estimation procedure and Appendix E to obtain details
about the shape of the likelihood.

that could not be calibrated in previous econometric studies.
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Matching function and search costs. Our estimate shows that the parameter ⌫ is
lower than that of Den Haan et al. (2000) (1.27) based on a calibration method targeting a
selection of second-order moments, whereas it is more in line with Hagendorn & Manovskii
(2008)’s calibration (0.407), which targets the first-order moment of the job-finding rate.
The cost of posting a vacancy  is lower than the values used in the SaM literature (see,
e.g., Petrosky-Nadeau & Zhang (2017)).

Worker ability distribution. Figure 1 shows the estimated distribution of abilities; we
find the same left-skewed distribution as Robin (2011), a characteristic also shared by the
wage distribution. The abilities for which nt(µ) = 0, 8t are µ 2 [1; 2], representing 7⇥10�3%
of workers.

Opportunity cost of employment and bargaining power. Figure 1 shows that z(µ)/yµ
decreases with µ, given that the average value of the opportunity cost of employment is
constrained to be equal to Eµ[z(µ)]/Eµ[yµ] = 0.75. The value for z0 implied by this last
constraint is 0.33311. The workers’ bargaining power is larger than 0.5, the arbitrary value
retained by Den Haan et al. (2000) e.g..

Figure 1: Heterogeneity, opportunity cost of employment, w, and wages
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Lower limit of the bargained wages. The estimation leads to a value of w = 0.92653,
which corresponds to 79% of the average productivity (w/Eµ[yµ] = 0.79). This is the value of
real downward rigidity necessary to allow the model to generate sufficiently large fluctuations,
given the persistence and variance of the exogenous shock. Figure 1 shows the ranking
between the w and opportunity cost of employment and the induced average values of wages
for each µ and shows that w > Etwt(µ) for a small set of workers (1.47% of the distribution).
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Figure 2: Occurrence of regimes over the business cycle
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Firing costs. These costs are convex. The standard errors are larger than those of the
other parameters because Regime 3 occurs infrequently. As shown in Figure 2, the pro-
portions of firms in each regime for each period of the estimation are 97.51% for Regime
1 and 0.94% for Regime 4, thus leaving 1.55% of the firms in Regimes 2 and 3. Neverthe-
less, the rich employment dynamics of the labor markets experiencing Regimes 2 and 3, and
their non-negligible population sizes, allow us to identify the parameters of the firing cost
functions.

The estimation of the parameters of the firing costs function governs the weight of the
endogenous separation in unemployment dynamics, a crucial point discussed by Fujita &
Ramey (2009) and Elsby et al. (2009). In our estimates, the exogenous separation accounts
for 30% of JSR, a lower value than those found by several studies since Den Haan et al.
(2000) (⇡50%). Beyond the level of separations, the endogenous component, which varies
over time, also makes it possible to predict unemployment fluctuations accurately. Without
endogenous job separations, the model underestimates the increases in the unemployment
rate during recessions (See Appendix G), underlining that the relative contribution of the
separation rate to unemployment volatility is higher than that measured by Shimer (2004).

Estimation based on the linearized model The estimation based on the linearized
version of the model (see Appendix I) does not lead to the same estimated parameters.
Particularly, if we impose that the opportunity cost of employment must be equal to 75%
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of the average productivity (in the range of Hall & Milgrom (2008) estimates), the variance
of the aggregate shock (�2

/(1 � ⇢
2)) is 62 times larger than in the estimation based on

the nonlinear model. Therefore, the linearized version of the model cannot solve Shimer’s
puzzle (the possibility of generating the size of the labor market fluctuations with a shock
having a size close to the variance of the US labor productivity) because of a too low wage
rigidity to generate large adjustments in quantities. Moreover, by omitting the occasionally
binding constraints (which are binding in some periods, as shown by the nonlinearized version
of the model), the linearized version of the model generates negative values for vacancies
(between 0.3% and 2.7% of the realizations of long simulated samples for each submarket),
thus cautioning the robustness of these estimates.10

3.5 Model fit

Figure 3 displays the predicted series of JFR, JSR, and UR. The R
2 coefficients are 78%,

65%, and 99%, respectively. Contrary to Robin’s (2011) model, our model captures the

Figure 3: Model fit (blue line = data, red line = model)
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10The occurrence of negative or zero vacant jobs increases to reach between 0.9% and 4.6% of realizations
in each submarket when the calibration of the opportunity cost of employment is Eµ[z(µ)]/Eµ[yµ] = 0.95,
instead of Eµ[z(µ)]/Eµ[yµ] = 0.75, in order to reduce the variance of the aggregate shock.
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Table 2: Implied moments

Levels (deepness) Std.
Mean Variance Skewness Kurtosis Log

JFR simul. 0.41035 5.0878⇥ 10�3 -0.17903 2.5239 0.18269
hist. 0.40889 3.4654⇥ 10�3 -0.06588 2.4716 0.14791

JSR simul. 0.024264 3.3377⇥ 10�6 1.3249 5.8007 0.07237
hist. 0.024182 7.8797⇥ 10�6 0.41964 3.59 0.11549

UR simul. 0.057916 1.7076⇥ 10�4 0.82796 3.1125 0.21580
hist. 0.057972 1.7527⇥ 10�4 0.81194 3.1629 0.21909

Differences (steepness)
mean variance skewness kurtosis

JFR simul. 2.0317⇥ 10�4 4.7890⇥ 10�4 -0.75695 7.99068
hist. 4.141⇥ 10�5 8.9366⇥ 10�4 0.24748 4.5962

JSR simul. �8.4964⇥ 10�7 2.0056⇥ 10�6 0.06678 4.8169
hist. 2.121⇥ 10�6 1.8127⇥ 10�6 0.34898 4.8209

UR simul. �2.1241⇥ 10�5 2.1530⇥ 10�6 1.1186 8.4804
hist. �2.1565⇥ 10�5 3.4597⇥ 10�6 0.67442 5.2748

dynamics of the job separation rate well, which is particularly important for accounting for
nonlinear adjustments in the labor market.

Table 2 shows that the worker flows (separations and hirings) and unemployment rate
simulated by the model match the first-and second-order moments (mean and variances) as
well as the higher-order moments summarizing the nonlinearities detected in the data (i.e.,
deepness and steepness). Particularly, the separation rate is right-skewed, and it exhibits
excess kurtosis (the model reproduces this feature well), which are significant for JFR and
UR (see Appendix A.4). This table also shows that the implied moments of the usual
statistics reflecting labor market volatilities are reproduced using variables in logs.

Explaining the fit. Our model adds several dimensions to the basic DMP model: (i) the
downward rigidity of the real wage, which constrains the labor market segments of individ-
uals with low abilities; (ii) firing costs, which vary according to the number of dismissed
employees; and (iii) the heterogeneity of workers’ productivities. To evaluate the impor-
tance of these three extensions, we re-estimate concurrent models without w (M1), without
firing costs (M2), and with a uniform distribution of abilities (M3). The log-likelihood
(Lc) of the benchmark model is higher than those of models M2 and M3, which also have
an average value of the opportunity cost of employment (Eµ[z(µ)]/Eµ[yµ] equal to 0.75:
Lc

M0 = 9282.18 > Lc
M3 = 9145.41 > Lc

M2 = 9128.36. The model without real wage rigidity
has a higher log-likelihood than the benchmark model, Lc

M1 = 9470.38 > Lc
M0 = 9282.18.11

This unsurprising result comes from the fact that the downward rigidity is not µ-specific and
thus is less flexible than the opportunity cost depending on µ to fit the data. However, to
obtain an estimation of this model M1, the average opportunity cost of employment must
be set to the unrealistic value of 0.9 (given the empirical results of Hall & Milgrom (2008)),

11See Appendix F for the estimated parameters for all the models.
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putting some doubt on the pertinence of this modeling of the labor market.

Figure 4: Gaps between benchmark model and alternative models
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Red line: Model M1 - Model M0. Blue line: Model M2 - Model M0. Magenta line: Model M3 - Model
M0. Blue areas: NBER recession periods.

Another way to analyze the model fit is to use the filter to find the realization of the
shock at that minimizes the distance between the models and the data each month. Hence,
without re-estimation of the model, it is possible to reveal the time series of the “net” labor
productivity needed for each model to match the time series {JFRt, JSRt, URt}. Figure
4 displays the gaps between our benchmark model and the other three models for these
three-time series. The fit is less good for all models Mi, i = 1, 2, 3 than for benchmark M0.
Particularly, it appears that without downward real wage rigidity, the model cannot reach the
unemployment rate’s peaks and troughs. Moreover, job finding and job separation rates are
overestimated on average. These failures are less important for models without firing costs
or with a uniform distribution of abilities. This shows that the downward real wage rigidity
helps to magnify the impact of the aggregate shock, whereas firing costs and non-uniform
distribution of abilities are crucial assumptions to explain the recession episodes.
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3.6 Model’s shocks

First, Table 3 gives the gaps between the targeted moments on labor productivity and those
based on model simulations. These gaps are small enough to show that the size of the
exogenous shocks introduced in the model is controlled. The persistence and variance of
log(at) are very close to those estimated on the labor productivity series used by Shimer
(2005). However, the most interesting result is presented in Figure 5: conditional on an

Table 3: Productivity processes: data and model

Persistence ⇢p Variance �2
p

Data 0.954945 0.424741⇥ 10�4

Model 0.925191 0.493543⇥ 10�4

Estimation: CPS monthly data, 1951M1–2018M12, 40,000 particles, 30 abilities. Authors’ calculations.
Data: BLS Quarterly data. Model: quarterly data are averages of weekly data. p = s, d

Figure 5: Model’s structural shock and labor productivity
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identical size, the historical chronicle of log(at) is very different from that of observed labor
productivity. While these two series are highly synchronized before the mid-1980s, they
vary in opposite directions thereafter. This result echoes Barnichon (2010), who shows that
the correlation between unemployment and labor productivity has become positive after
the mid-1980s, whereas it was negative before. This result shows as Ljungqvist & Sargent
(2017) suggest that the “fundamental surplus” is hit by other shocks than those that change
labor productivity, these shocks becoming dominant after the mid-1980s.12 Finally, we can

12The explanation of the causes of these changes in the structure of shocks affecting labor market dynamics
is beyond the scope of this article.

19



construct by aggregating all labor market segment indicators of the aggregate “output” (Y s
t )

and employment (N s
t ). However, given that at is not a TFP shock but can also integrate

additional disturbances, this aggregate “output” measure is not a GDP but a resource net
of exogenous firm cost fluctuations. This “net” labor productivity ( Y s

t
Ns

t
) follows closely the

historical chronicle of log(at) (see Figure 5), but at 6= Y s
t

Ns
t

because there exist entries and
exits (the distribution of the active firms changes over time).

Figure 6: Structural shocks for various models
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The lack of model elasticity when downward real wage rigidity is omitted (see above) can
also be detected when comparing the dynamics of the “net” productivity necessary for the
model to match observed data. Figure 6 shows that the magnitude of change in the “net”
labor productivity (log(at)) generated by the model without downward real wage rigidity
(M1) is larger than that of the benchmark model (M0), showing that the elasticity of our
benchmark model for the shock is larger than that of the M1 model. The models without
firing costs (M2) or with a uniform distribution of workers’ abilities (M3) do not require
a larger magnitude of the shocks, but require a different sequence of at, with lower peaks
and deeper troughs, allowing these models to compensate for their lower performance in
explaining recession episodes.

3.7 Aggregate shock and nonlinearities in unemployment

Figure 7 provides illustrations of the model’s nonlinearities by comparing the generalized
impulse responses (GIRF) conditional on the size (one vs. five standard deviations) and a
sign of the shock as well as on the state of the economy at the time of the shock (recession
vs. expansion). The dynamics of the job-finding rate are highly nonlinear, whereas it is not
the case with the job separation rate. Particularly, the response of job openings following
a positive shock has a greater amplitude than after a negative shock, the adjustment being
made in the latter case via an increase in separations. When the shock size is greater, firms
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Figure 7: Generalized Impulse Response Functions (GIRF)
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compete strongly for recruitment, which leads them to largely increase their job openings.
As this competitive effect is less present in a recession because the number of unemployed
is high at the time of the shock, the response of job openings is more moderate at the start,
before this initial condition favorable to hiring disappears. Given the nonlinear link between
the job-finding rate and the unemployment rate, the nonlinear adjustment is stronger for
the unemployment rate than for the job-finding rate.

4 Additional implications for labor market aggregates
This section explores the main implications of our model for the data not used in its estima-
tion because they are only available over a shorter sample (job losers) or are reconstructed
from several sources (vacancy rate). In particular, we test whether the model is in accor-
dance with the job losers data, which are an essential component of total separations, and
the vacancy data, and thus the cyclical adjustments around the Beveridge curve.
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Figure 8: Job losers
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Job losers data (BLS) include both job losers and those who finish temporary jobs. Job losers in the model
correspond to endogenous job separations (i.e., firings in Regime 3 and firm closures in Regime 4).

4.1 Job losers over the business cycle

The model predicts that separations are countercyclical, driven by the layoffs of low-skilled
workers, whereas high-skilled workers become unemployed at a constant exogenous rate.
These layoff inequalities are supported by empirical evidence provided by Davis et al. (1998)
and Elsby et al. (2013). We test the model’s predictions of layoffs by comparing their
implications with the data by decomposing newly unemployed workers into job losers and
job leavers. Our model predicts that a large proportion of the cyclical component of flows
into unemployment is the result of endogenous job separations (i.e., firings in Regime 3 and
firm closures in Regime 4). These separations are involuntary and thus correspond to job
losers.13 The model underestimates the average rate of job losers (0.0145 compared with
0.0308 in the data) because only low-ability workers can become job losers (they frequently
experiment with Regimes 3 and 4). However, the cyclical components of the simulated
and observed data are close, with a correlation of 0.65 (see Figure 8). As in the data, the
model predicts that the most brutal crises, those of 1982 and 2008, are also the two episodes
generating higher peaks in job losers.

13The data on job losers, which include both job losers and those who finish temporary jobs, are provided
by the BLS and available at http://www.bls.gov/cps. Series LNS13023621 (1967M1 to 2018M12) is
seasonally adjusted, stationarized using the HP filter with �HP = 2.5 ⇥ 105 ⇥ 92, and plotted around its
average between 1967M1 and 1974M12 to purge the trend drift.
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4.2 Dynamics of vacancies and the Beveridge curve

Figure 9: Vacancy rates: Model fit
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Although the estimation of the model is based on unemployment, job finding, and job
separation rates, a crucial time series for the matching model is the vacancy rate. Figure 9
shows the dynamics of the simulated and historical time series (see Appendix A for the data
description). The correlation between the two-time series is estimated to be 0.7, underscoring
the good fit of the model vis-à-vis this additional dimension. Figure 9 also allows us to
compare the historical and predicted labor market tightness dynamics; the gaps between
these two-time series are small, with the R

2 coefficient equal to 96%.
The model predicts the Beveridge curve with high precision. The correlation between

log(V ) and log(U) predicted by the model is �0.73, whereas its counterpart in the data
is �0.70. Hence, the model fits the observed dynamics of the job separation rate without
generating a counterfactual positive correlation between vacancies and unemployment, as the
Mortensen & Pissarides (1994) model does (see Fujita & Ramey (2012)). In our model, most
labor market segments have a dynamic identical to that of a DMP model with exogenous
separation. Therefore, most of the fluctuations in job vacancies are strongly procyclical, as in
the data, despite a weaker correlation between vacant jobs and unemployment for low-ability
workers’ segments.
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Figure 10: Beveridge curve
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Another way to evaluate the model’s fit is to compare its predictions before and after
an unemployment peak (i.e., a recession) based on the joint dynamics of the vacancy and
unemployment rates. This business cycle analysis is motivated by the debate on the nature
of unemployment in the United States since the last recession, during which a notable shift
in the Beveridge curve occurred. Indeed, “[a] more in-depth analysis of the evidence suggests
that the apparent shift in the relationship between vacancies and unemployment is neither
unusual for a recession nor likely to be persistent” (Bernanke (2012)). Diamond & Sahin
(2015) provide convincing evidence that outward shifts in the Beveridge curve have been
common during US recoveries since the 1950s. Figure 11 displays the joint movements of the
vacancy and unemployment rates (vt; ut) before and after a recession. We retain the same
nine recession dates as in Diamond & Sahin (2015).14 The model’s predictions are compared
with the (vt; ut)-adjustments observed in the US economy. For example, for the 2009 crisis,
both the model and the data have an unemployment peak at 9.9%. This peak occurs after
the period where unemployment increases in both the model and the data from 5.2% in April
(M4) 2008 (16 months before) to 9.9%, whereas the vacancy rates (observed and simulated)
slightly decline from 2% to 1.8%. This finding suggests a shift of the Beveridge curve. This
view is supported by the slowness of the recovery: after this large shift in 16 months, Figure
11 shows that during the 16 months following the unemployment peak of October (M10)
2009, it reduced only slightly to reach 8.5%, with a small rise in vacancy rates from 1.8% to
2% in the same period.

14These recession dates are those of unemployment peaks: June 1958, March 1961, November 1971, April
1975, June 1980, November 1982, April 1992, March 2002, and October 2009. We use the 16-month periods
before and after these unemployment peaks in our analysis.
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Figure 11: Shifts in the Beveridge curve: Data vs. model
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Data. Time series before (red lines) or after (magenta lines) the unemployment peak (diamond)
Model. Time series before (blue lines) or after (cyan lines) the unemployment peak (square)

By comparing all the recession episodes, Figure 11 shows that the slopes up to the peak
are steep because they are driven by abrupt layoffs; by contrast, after the unemployment
peak (i.e., during the recovery), the gradient is low because hiring is a time-consuming
process. The model can also predict different adjustments after a recession, as is the case in
the data; after the recessions of June 1958, March 1961, and November 1982, the recoveries
were faster than those for the other recessions.

The differences between recessions come from two main factors: first, the unemployment
level before the recession (see Table 4), and second, the size and persistence of the exogenous
shock (see Figure 12). A high unemployment rate before the recession prevents the strong
increase driven by the recession; the most fragile jobs are already absent from the distribu-
tion. Beyond this initial condition, a large and rapid shock leads to a strong unemployment
peak. Moreover, if the shock persists to be at a low level, then it reduces for a long time the
incentive to hire and thus brakes the recovery.

Table 4: Unemployment rates (%) 16 months before the unemployment peaks

Peak M6-1958 M3-1961 M11-1970 M4-1975 M6-1980 M11-1982 M4-1992 M3-2002 M10-2009
UR 4.9870 6.2125 3.8001 4.7635 4.8765 6.2776 6.0166 4.0305 5.2372

25



Figure 12: Exogenous shocks shifting the Beveridge curve
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5 Estimated and observed heterogeneity
The ability of the model to reproduce US labor market dynamics depends on the estimated
heterogeneity among workers. It is therefore important to check whether this heterogeneity
accords with observed measures of worker dispersion, such as labor market fluctuations by
educational attainment, as in Lise & Robin (2017).

Our model predicts that low-ability labor market segments are more sensitive than the
other labor market segments, which explains the model’s success accounting for the aggregate
dynamics of the US labor market. In the model, unobservable worker heterogeneity corre-
sponds to permanent differences between them. Thus, this heterogeneity could be linked to
educational attainment.15

If a correspondence exists between our measure of abilities and educational attainment,
the data should support the view that low-diploma worker flows and stocks are more sensitive
to the business cycle. Figure 13 shows that the sensitivity of UR, JFR, and JSR to the

15The information on educational attainment (observable characteristic) is an imperfect measure of worker
abilities valued by the labor market (unobservable characteristics): for example, in 2018, 1.4% of employees
with a Bachelor’s or a higher degree were paid at the minimum wage or below, suggesting that a high diploma
does not necessarily imply high ability for working.
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Figure 13: Differences in sensitivity to the business cycle across heterogeneous worker groups
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Red lines: observed data. Blue lines: simulated data. Gray areas: confidence interval 68%. Data provided
by Lise & Robin (2017). The model assumes that “high school dropouts” (hsd) correspond to the bottom
25% of the ability distribution, “high school graduates” (hs) to 25–60%, and “college graduates” (c) to the top
40%. These weights correspond to the averages of the observed shares of educational attainment in the US
population between 1970 and 2018. The x-axis reports the gap between the current aggregate unemployment
(UR) and its mean over the sample (UR): this gives us an indicator of the business cycle. The y-axis reports
the gap between the current skill-specific labor market indicators (URs, JFRs, JSRs, for s = hsd, hs, c) and
their means over the sample (URs, JSRs, JSRs): this gives us a skill-specific indicator of fluctuations.
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business cycle declines with workers’ education level. More precisely, a one-point increase in
the unemployment rate vis-à-vis its mean corresponds to an increase of 1.55 points in the
unemployment rate of high school dropouts. These unemployment rate increases are only
1.13 points for high school graduates and 0.47 points for college graduates. These unequal
unemployment risks among workers are largely driven by the larger sensitivity of JSR for
low-diploma workers. The JSR of high school dropouts is three times more sensitive to
aggregate fluctuations (here measured by the gap between unemployment and its average
over the sample) than that of college graduates, whereas the JFR of high school dropouts
is only 1.2 times more sensitive than that of college graduates (see Cairo & Cajner (2016)).
As shown in Figure 13, the low-ability workers in the model have larger JSR sensitivity to
the business cycle of the same order of magnitude as that of high school dropouts in the
data. Moreover, the model slightly overestimates the sensitivity of the JFR of these workers,
leading it to overestimate UR sensitivity. The model sensitivities to the business cycle for
medium- and high-ability workers are not statistically different from those corresponding
to high school and college graduates in the data. However, these encouraging results on
business cycle sensitivity should not overshadow that the model generates too much churning
on average. Indeed, as in Lise & Robin (2017), the averages of JFR and JSR for the three
groups of heterogeneous agents in the model are higher than those measured in the data by
educational attainment. Nevertheless, our model can replicate the average unemployment
rate: for high school dropouts, this is 14.34% in the data and 13.6% in the model, whereas
it is only 3.17% for college graduates (a gap of 11.17 points to high school dropouts) and
2.52% in the model (a gap of 11.08 points to low-ability workers).

6 Conclusion
This study presents an extended version of the DMP model to explain aggregate fluctuations
in the US labor market. Based on an estimation using full information techniques, we
demonstrate that nonlinearities and downward real wage rigidity are crucial for the model
fit (i.e., job flows, unemployment rate, and the Beveridge curve) conditional on estimated
heterogeneity. We then show that this revealed heterogeneity allows the model to reproduce
the observed quantity adjustments conditional on the level of education.

In future work, we aim to plug this partial equilibrium analysis into a DSGE model,
such as that of Kaplan et al. (2018), estimated using the same techniques. This approach
may provide new evaluations of the effects of demand and supply shocks on labor market
aggregates, dynamics of inequalities, and impacts of redistributive policies. We also plan to
introduce job-to-job transitions into an unsegmented market and thus contribute to modeling
the interactions between heterogeneity and aggregate uncertainty in labor markets.
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Appendix: For Online Publication

A Data

A.1 Observed unemployment and worker flows

We extend the data in Lise & Robin (2017) to the current period; the data are from the BLS
and cover 1951m1 to 2018m12.16 These monthly employment and unemployment levels for
all people aged 16 and over are seasonally adjusted. To construct worker flows, we also use
the number of individuals unemployed for more than five weeks.

After dividing the unemployment levels in each month by the sum of unemployment
and employment, we obtain monthly series for Um and U

5
m (m refers to the monthly fre-

quency), which corresponds to the proportion of unemployed individuals and the proportion
of individuals unemployed for more than five weeks. The worker flows are given by:

JSRm =
Um+1 � U

5
m+1

Em
, JFRm =

Um � U
5
m+1

Um
.

Figure 14: Worker flows and the unemployment rate in the United States (HP = 92 ⇥ 2.5⇥
105)
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16We use series LNS12000000, LNS13000000, LNS13008396, LNS13008756, LNS13008516, and
LNS13008636.
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A.2 Simulated data

The model generates weekly data (subscript w denotes weekly data). Thus, we recursively
construct the weekly series of the number of workers unemployed for five weeks as

u
5
w(µ) = uw�5(µ)

4Y

j=0

(1� p(✓w�5+j(µ))), u
5
w =

X

µ

!µu
5
w(µ).

The monthly transition rates are calculated as in the historical data. Specifically, for the
weeks w 2 {2, 7, 11, 15, 19, 24, 28, 33, 37, 42, 46, 50}, we collect information such as that from
the BLS and build 8m 2 [1, 12]:

JSR
THEO
m =

uw+1 � u
5
w+1

ew
JFR

THEO
m =

uw � u
5
w+1

uw
,

with uw =
P

µ !µuw(µ) and ew =
P

µ !µ(1� uw(µ)).

A.3 Vacancy rate

This time series is the help-wanted index constructed by Barnichon (2010). It combines
the help-wanted advertisements in 51 major newspapers measured by the Conference Board
and available over 1951m1–2008m5 and a new measure proposed by the Conference Board
since 2005m5 that integrates online advertisements. To transform this index into a vacancy
rate comparable to ours, we first detrend the raw data using the HP filter and compute the
growth rates for each date. We then apply these growth rates to the initial vacancy rate
levels provided by our estimated model to obtain the cyclical component of the vacancy rate
used in this study.

A.4 Statistical nonlinearities in the data

Table 5 provides statistical evidence suggesting that labor market adjustments are highly
nonlinear. Following Sichel (1993), the first type of asymmetry, “asymmetry in levels” (or
deepness), is based on the fact that cyclical troughs are deeper or shallower than peaks are
high. This type of asymmetry, therefore, characterizes the difference in the amplitudes of
cyclical fluctuations. The second type, described as “asymmetry in slopes” (or steepness),
occurs when the variations in the aggregate variables are different in booms than in recessions.
Therefore, this type of asymmetry characterizes the difference in the speeds of upward or
downward adjustments in a series. To check the robustness of our results, we report the
results of the test proposed by Bai & Ng (2005), in which statistical tests are computed
using two types of optimal weight matrices.

Concerning deepness, the distributions of JSR and UR are right-skewed (with positive
and significant skewness at the 10% level). The masses of these distributions are concentrated
on the left and exhibit a long right tail, suggesting that recessions may greatly impact the
levels of separation and unemployment.
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Table 5: Third-order moments—Data in levels and in differences

JFR JSR UR
Method of computing the optimal weight matrix NW HAC NW HAC NW HAC
Deepness
Skewness (data in levels) -0.367 -0.242 1.474 1.418 1.568 1.830
P-value (Bai & Ng (2005) test) 0.356 0.404 0.070 0.077 0.058 0.033
Steepness
Skewness (data in first differences) 1.570 1.607 1.642 1.588 2.400 2.105
P-value (Bai & Ng (2005) test) 0.058 0.053 0.050 0.056 0.008 0.017

CPS monthly data, 1951M1–2018M12 (�HP = 92 ⇥ 2.5⇥ 105). Authors’ calculations.
Statistics use either Newey & West (1987)’s (NW) or Den Haan & Levin (1996)’s (HAC) method.

Table 5 also shows that these time series in first differences are not normally distributed
(steepness); instead, the large positive variations generate a long right tail and more outliers.
Hence, from the table and a visual inspection of the data (see Figure 14 in Appendix A), it
is clear that nonlinearities and asymmetries are stylized facts of the US labor market.
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B Solution using the projection method
Table 6 reports the four regimes of the model.

Table 6: Regimes as functions of ⇥µ(at, nt(µ))

Regime 4 Regime 3
⇥µ(at, nt(µ))  �F

0((1� s)nt(µ)) �F
0((1� s)nt(µ))  ⇥µ(at, nt(µ))  0

nt+1(µ) = 0 nt+1(µ) = (1� s� lt(µ))nt(µ)
wt(µ) = w wt(µ) = w

Regime 2 Regime 1
0  ⇥µ(at, nt(µ))   ⇥µ(at, nt(µ)) > 

nt+1(µ) = (1� s)nt(µ) nt+1(µ) = (1� s)nt(µ) + q(✓t(µ))vt(µ)
wt(µ) = �yµat + (1� �)z(µ) wt(µ) = �(yµat + ✓t(µ)) + (1� �)z(µ)

Numerical solution. The approximation method is based on Judd (1992). Suppose that
there exists an approximation grid of the states {nt(µ)(i)}n1

i=1 ⇥ {a(j)t }n2
j=1 for a given µ. We

approximate



q(✓t(µ))
� �t(µ) = ⇥µ(nt(µ), at) ⇡

n1X

i=1

n2X

j=1

c(i,j)(µ)�(i�1)('n(nt(µ)))�(j�1)('a(at)),

namely, a linear combination of Chebyshev polynomials
�
�(i�1)(.)

 
i=1:n

of maximal power
n� 1 in nt(µ) or at and 'X(.), a function mapping X 2 [Xmin, Xmax] into [�1, 1].

The set of parameters c(µ) depends on the model’s structural parameters, and these are
defined such that the model equations are verified on each node of the approximation grid
(orthogonal collocation) with high accuracy. The goal is to implement the approximation
function ⇥µ(.) for any values of nt(µ) and at.

To find the set of parameters c(µ), we use a guess-and-verify resolution approach.
Suppose that nt(µ)(i) and a

(j)
t are particular nodes on the approximation grid. We guess

�
(i,j)
t = 0 and calculate the implied q(✓t(µ))(i,j) =



⇥µ(nt(µ)(i),a
(j)
t )

. As this value is a probabil-

ity, finding q(✓t(µ))(i,j) > 1 implies that the guess is wrong. We then correct it by setting
q(✓t(µ))(i,j) = 1 and �

(i,j)
t = �⇥µ(nt(µ)(i), a

(j)
t ). Then, the model equations can be imple-

mented, and we deduce the associated values of the variables and multipliers for the current
date.

We then calculate the states for the next period using the equations from Section 2.5 and
approximating the Gaussian innovation "t with a sparse grid

n
"
(k)
t , wk

o

k=1:n3

. Here, we use
the scaled unscented transform proposed by Jullier and Ulhmann (1997). Hence, n3 = 3 in
this case. We then repeat the previous steps of the guess-and-verify approach at t + 1 and
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the approximate



q(✓t(µ))
� �t(µ)� �Et

8
>>><

>>>:

yµat+1 � wt+1(µ)
�lt+1(µ)F

0
(lt+1(µ)nt+1(µ))

+(1� s� lt+1(µ))
⇣



q(✓t+1(µ))
� �t+1(µ) + �t+1(µ)

⌘

+⌫t+1(µ)lt+1(µ)

9
>>>=

>>>;

with



q(✓t(µ))(i,j)
��t(µ)

(i,j)��
n3X

k=1

wk

8
>>><

>>>:

yµa
(j,k)
t+1 � wt+1(µ)(i,j,k)

�lt+1(µ)(i,j,k)F
0
(lt+1(µ)(i,j,k)n

(i,k)
t+1 (µ))

+(1� s� lt+1(µ)(i,j,k))
⇣



q(✓t+1(µ))(i,j,k) � �t+1(µ)(i,j,k) + �t+1(µ)(i,j,k)
⌘

+⌫t+1(µ)(i,j,k)lt+1(µ)(i,j,k)

9
>>>=

>>>;

The parameters c(µ) of the approximation rule are obtained when this expression is close to
0 with high accuracy for each node (i, j) of the grid. To solve this nonlinear system, we use
Tensolve, a fast and efficient numerical method proposed by Bouaricha and Schnabel (1997).

In practice, we choose n1 = n2 = 3. The results do not change if we use higher values.
The global method requires us to choose an interval of resolution for each state variable. For
the productivity shock, we choose a grid centered on its ergodic mean ±3 times its ergodic
standard deviation, as is the standard. For employment, we choose the grid [0, 1].

The resolution and estimation are implemented in Julia v1.6.2 (see Bezanson et al.
(2017)).
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C Non-linear filtering and likelihood approximation

C.1 Non-linear state-space model

Once the model is solved using the projection method, it can be written in a nonlinear and
non-Gaussian state-space form as follows:

xt = f(xt�1, ⇠t;#)

yt = g(xt;#) + et,

where yt is the set of observed (measurement) variables; xt is the set of unobserved state vari-
ables; et and ⇠t are the measurement and state innovations, respectively, which are assumed to
be independently and identically Gaussian (with zero mean), and # is a vector of unknown pa-
rameters. Here, xt = (at, nt(1), . . . , nt(µ), . . . , nt(M))0 and yt = (JFRt, JSRt, URt)0; ⇠t = "t

and et = (eft , e
s
t , e

u
t )

0.
From this model and the data, we extract two quantities of interest: the density of the

state variables at time t conditional on the sample up to time t, that is, p(xt|y1:t;#), and the
one-step-ahead predictive density, p(yt|yt�1;#), which is required to evaluate the likelihood.
In principle, this extraction can be performed recursively. Given # and p(xt�1|y1:t�1;#), the
prediction density is

p(xt |y1:t�1;#) =

Z
p(xt |xt�1;#) p(xt�1 |y1:t�1;#) dxt�1,

where the first conditional density within the integral is deduced from the following state
equation. The prediction is then updated using the observation yt and Bayes’ rule:

p(xt |y1:t;#) =
p(yt |xt;#) p(xt |y1:t�1;#)

p(yt |y1:t�1;#)
,

where the evidence is defined as p(yt |y1:t�1;#) =
R
p(yt |xt;#) p(xt |y1:t�1;#) dxt. In nonlinear

models, approximations are required to compute these densities recursively.

C.2 Monte Carlo approximations and sequential importance sam-

pling

We consider a sequential importance-sampling algorithm to recursively approximate the
aforementioned conditional densities. The method consists of choosing an easy-to-sample
proposed distribution q(xt|y1:t;#), which is informative about the target distribution p(xt|y1:t;#)
such that q(xt |y1:t;#) = q(xt|xt�1, yt;#)⇥ q(xt�1 |y1:t�1;#). The approximation can then be
implemented sequentially by randomly drawing the proposed particles in q(xt|xt�1, yt;#)
at each date, given the approximation of the previous state distribution with a swarm of
particles

n
x
(i)
t�1, w

(i)
t�1

o

i=1:N
. A swarm of particles

n
x̃
(i)
t

o

i=1:N
is drawn in the proposed dis-

tribution q(xt|x(i)
t�1, yt;#) to approximate the distribution of the current state variables. Their
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respective (unnormalized) weights are given by

ŵ
(i)
t / w

(i)
t�1

p(yt|x̃(i)
t ;#)p(x̃(i)

t |x(i)
t�1;#)

q(x̃(i)
t |x(i)

t�1, yt;#)
.

The conditional density p (xt |y1:t;#) is then approximated by
n
x̃
(i)
t , w̃

(i)
t = ŵ

(i)
tPN

i=1 ŵ
(i)
t

o

i=1:N
,

where w̃
(i)
t is the normalized weight. Systematic resampling17 is used to avoid the well-

known issue of weight degeneracy. This process consists of randomly drawing particles
from their empirical distribution, approximated by

n
x̃
(i)
t , w̃

(i)
t

o

i=1:N
, with replacement. It

discards particles with low weights and replicates particles with high weights to focus on the
interesting areas of the distribution using a constant number of particles. Consequently, all
new particles have the same weight afterward, that is,

n
x
(i)
t , w

(i)
t = 1

N

o

i=1:N
.

For simplicity, the usual choice for proposal q(.) is q(xt|xt�1, yt;#) = p(xt|xt�1;#). The
weight expression simplifies to ŵ

(i)
t / w

(i)
t�1p(yt|x̃

(i)
t ;#), which is easy to write because

p(yt|x̃(i)
t ;#) = (2⇡)�

dim(yt)
2 |Pe|�

1
2 exp

⇢
�1

2

⇥
yt � g(x̃(i);#)

⇤0
P

�1
e

⇥
yt � g(x̃(i);#)

⇤�
,

where Pe ⌘ V(et) = diag(�2
f , �

2
s , �

2
u) is the covariance matrix of the measurement errors. The

sample likelihood is then obtained as follows.

p(y1:T |#) = p(y1 |x0;#)p(x0 |#)
TY

t=2

p(yt |y1:t�1;#),

where p(yt |y1:t�1;#) ⇡
PN

i=1 ŵ
(i)
t = 1

N

PN
i=1 p(yt|x̃

(i)
t ;#) in the case of systematic resampling.

Here, we choose N = 40, 000 particles.

C.3 Implementation

From weekly to monthly simulated data. As the model generates weekly series and the
measures are taken on a monthly basis (we assume a year is always 52 weeks), the resampling
step only occurs when the simulated monthly series can be constructed and compared with
its counterpart in the data, namely, in weeks w 2 {2, 7, 11, 15, 19, 24, 28, 33, 37, 42, 46, 50}.18

Discretization of the ability distribution. In the estimation step, we do not use a
uniform grid when discretizing the segment [y1, yM ], as doing so would require too many
points and thus too much computational effort. We prefer to focus on the lower part of the

17This method was initially proposed by Gordon et al. (1993) and has been implemented for many algo-
rithms (see Douc et al. (2005) for a comparative study).

18More details on the data are provided in Appendix A.
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distribution (roughly the first decile), in which nonlinearities are important, and firms visit
all or most of the regimes. Heterogeneity matters in this area. For the remaining 90% of the
distribution, firms are always in Regime 1, which means they behave similarly in response
to the aggregate shock. Using a fine grid on this part of the support would be a waste of
computational time. Therefore, we build a uniform grid of 20 nodes on the first decile of the
distribution and ten nodes for the remaining 90%. This approximation has a low cost, as we
do not have to fit the distribution characteristics built from a fine grid of the distribution.
During the simulation steps, and given the estimated parameters for the ability distribution,
we use a uniform grid of 1,000 nodes to compute accurate statistics for all distributions.

Initialization of the filter To avoid the usual adjustment period of the state variables
and a poor fit of the measurement variables at the beginning of the sample owing to the
approximative initial conditions on the states, we elicit an initial distribution of the state
variables consistent with the first measure. We initialize the particle swarm using draws from
the ergodic AR(1) Gaussian distribution for the technological shocks and draws from a uni-
form distribution on [0, 1] for the employment sectors. To avoid a degenerate distribution at
the initial point, we add a “learning period” of three years before the first sample observation
and run the filter on a weekly basis. During this learning period, only the first observation
of the sample is used for the resampling step. In other words, the states have 156 time peri-
ods to determine an initial particle swarm that most closely matches the first measurement
observation before exploring the data. This initialization period is not incorporated in the
likelihood calculation.

Maximization of the likelihood The most important limitation of resampling is that it
complicates the maximum log-likelihood inference using standard (gradient-based) numerical
maximization techniques.19 We then use non-gradient-based methods to maximize the model
likelihood. As of the non-smoothness of the likelihood, the estimation delivers a “plausible”
area for the parameters. After the estimation, polynomials are estimated to smooth the
contour of the log-likelihood function in the neighborhood of each estimated value, keeping
all the other parameters equal (see Figure 15 in Appendix E). Therefore, the standard errors
of the parameters are obtained by taking the second derivatives of the estimated polynomial.
A standard R

2 measure is presented for each parameter to assess the accuracy of the contour
fit. This measure can be viewed as a confidence index for standard error evaluation (and,
consequently, for the parameter per se).

19Even when the seed for the random draws is fixed across simulations, the traditional likelihood estimator
depends on both resampled particles and unknown parameters. A small change in the parameter value
causes a small change in the importance weights, which may generate a different set of resampled particles.
Consequently, the likelihood function is non-differentiable, which explains why the applied approaches depart
from the usual likelihood maximization of standard numerical techniques. For a recent survey of estimations
in state-space models, see Kantas et al. (2015).
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D Decision rules

D.1 Regime (1/4): the “regime of hirings”

�t(µ) = 0 ) vt(µ) > 0 and lt(µ) = 0 ) �t(µ) = 0.
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D.2 Regime (2/4): the “regime of labor hoarding”

If 0 < ⇥µ(at, nt(µ)) < , then
8
<

:

�t(µ) � 0 ) vt(µ) = 0
⌫t(µ) � 0 ) lt(µ) = 0
�t(µ) = 0 ) lt(µ) < 1� s.
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D.3 Regimes (3/4 and 4/4): “the regimes of firings and closures”

There are two cases:

�F ((1� s)nt(µ)) < ⇥µ(at, nt(µ)) < 0 ⇥µ(at, nt(µ)) < 0
�t(µ) � 0 ) vt(µ) = 0

⌫t(µ) = 0
�t(µ) = 0

�
) 0 < lt(µ) < (1� s)

�t(µ) � 0 ) vt(µ) = 0
⌫t(µ) = 0
�t(µ) � 0

�
) lt(µ) = (1� s)
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E Smoothed cross-sections of the log-likelihood function
Figure 15 shows the original log-likelihood function in the neighborhood of each estimated
value keeping constant the other parameters. As this function is not smooth, the variances
cannot be calculated with a numerical evaluation of the Hessian matrix. We, therefore,
replace the original log-likelihood function with its polynomial fit (in red).

Figure 15: Smoothed contour of the log-likelihood function
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Table 7: Estimators and R
2 of the polynomial approximation of the likelihood

Parameter Value Std. R2 Parameter Value Std. R2

⇢ 0.97874 0.00062 0.95519 k 2.00000 0.00375 0.98711
� 0.00292 0.00003 0.97638 ✓ 5.50000 0.02612 0.95961
� 0.64075 0.00266 0.99907 y1 0.89923 0.00044 0.87029
⇣ 0.65000 0.04903 0.91353 � 0.55118 0.29744 0.09394
w 0.92653 0.00040 0.99388 ⌘ 1.50536 0.13767 0.92491
s 0.00691 0.00002 0.98910 �f 0.03330 0.00088 0.99517
⌫ 0.68425 0.00391 0.97874 �s 0.00193 0.00005 0.99424
 0.43385 0.00401 0.99595 �u 0.00107 0.00004 0.98399
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F Estimations of alternative models

F.1 Estimated parameters

Table 8: Parameter estimates

Param. M0 M1 M2 M3 Interpretation
⇢ 0.97874 0.97868 0.98867 0.98100 Persistence of the technology shock
� 0.00292 0.00292 0.00298 0.00281 Std. innovations in the technology shock
� 0.64074 0.64536 0.64075 0.69866 Bargaining power of workers
z0 0.33311 0.78073 0.24832 0.25257 Opportunity cost of employment
⇣ 0.65000 0.68250 0.68250 0.69500 Indexation of home production
w 0.92653 - 0.92521 0.91547 Lower limit of bargained wages
s 0.00691 0.00597 0.00686 0.00691 Exogenous separation rate
⌫ 0.68425 0.83893 0.68913 0.69891 CES matching function
 0.43385 0.43385 0.44088 0.43695 Cost of a vacancy
k 2.00000 2.16154 2.00000 - Param. 1, Beta dist., abilities
✓ 5.50000 5.65763 5.44107 - Param. 2, Beta dist., abilities
y1 0.89922 0.90643 0.89923 0.90060 Lower bound of ability
� 0.55117 - - 1.29503 Scale parameter, firing cost function
⌘ 1.50535 - - 0.99916 Elasticity, firing cost function
�f 0.03329 0.03366 0.03306 0.03330 Std. measurement error on JFR
�s 0.00193 0.00177 0.00216 0.00193 Std. measurement error on JSR
�u 0.00107 0.00095 0.00119 0.00107 Std. measurement error on U

Log-Lik. 9282.18 9470.38 9128.36 9145.41
Penalty 11.23 0.32 22.53 37.26 Losses due to constraint on the Log-Likelihood
Ez/Ey 0.75 0.90 0.76 0.75 Hall & Milgrom (2008)’s constraint

CPS monthly data, 1951M1–2018M12, 40,000 particles, and 30 abilities. Authors’ calculations.
M0: benchmark model; M1: model without downward real wage rigidity; M2: model without firing
costs; M3: model with a uniform distribution of abilities. The solution for the objective function used
for the estimation is the log-likelihood minus the penalty (distances between data and models for the
AR(1) process of the labor productivity).

Table 9: Productivity processes: data and models

Data M0 M1 M2 M3
Persistence ⇢p 0.954945 0.925191 0.947115 0.930345 0.917632
Variance �2

p
0.4247⇥ 10�4 0.4935⇥ 10�4 0.4349⇥ 10�4 0.5279⇥ 10�4 0.5560⇥ 10�4

M0: benchmark model; M1: model without downward real wage rigidity; M2: model without firing
costs; M3: model with a uniform distribution of abilities. p = s, d.
Data: BLS Quarterly data. Model: quarterly data are averages of the monthly data.

For models M0, M2, and M3, the value of z0 is deduced from the constraint E[z(µ)]/E[yµ] =
0.75. In the model without downward real wage rigidity, the constraint E[z(µ)]/E[yµ] = 0.75
is not imposed (with this constraint, the values for log(at) are always negative), We then
relax this restriction and estimate z0. The estimation provides a larger value for z0 and then
E[z(µ)]/E[yµ] = 0.9.
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G Dynamics of separations
Before distinguishing between layoffs and quits, it is necessary to analyze the properties of the
job separation rate generated by the model. Figure 16 shows that the aggregate separation
rate spikes at the onset of economic downturns, which is consistent with the evidence found
by Fujita & Ramey (2009) and Elsby et al. (2009). Figure 16 also provides a measure of the
weight of endogenous separations in aggregate unemployment.

Figure 16: Job separation rate and unemployment
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To this end, we construct the unemployment rate following Shimer (2012). In other words,
its stationary expression uses the dynamics of worker flows (i.e., JFRt and JSRt lead to
URt = JSRt

JSRt+JFRt
). We plot two counterfactual scenarios: (i), where only the estimated

exogenous separation rate is considered (in this case, the unemployment rate is bs
bs+[JFRt

) and
(ii), where the separation rate is constant over the business cycle and equals the mean value
of the model estimate (in this case, the unemployment rate is JSR

JSR+[JFRt
). In case (i), the

greatest proportion of the unemployment gap comes from a level effect. Here, the exogenous
separation estimated by the model is a small proportion of the total separations. Thus,
by omitting the separations driven by the business cycle, we underestimate unemployment
by four percentage points on average. Case (ii) shows that even if we control for the level
effect, we underestimate the increases in the unemployment rate during recessions by setting
a constant separation rate fixed to the average of its estimated levels. Hence, the dynamics
of the separation rate are non-negligible, confirming the results of Fujita & Ramey (2009)
and Elsby et al. (2009).
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H Dynamics of the employment rates by ability
Figure 17 shows the employment rate dynamics in each labor market segment for µ =
35, 40, 45, 50, 55, 70, 150, 300, 500. These employment rates by submarket are given as weekly
time series. These panels provide counterparts in terms of the employment of the above-
mentioned decision rules. Hence, for the lowest-ability workers, the probability of being
employed is very low. By contrast, for abilities higher than µ = 55, events that correspond
to firm closures do not exist. These panels also illustrate the large decrease in the magnitude
of unemployment fluctuations as workers’ abilities increase.

Figure 17: Model implications for the employment rates of µ-type workers
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I Linearized version of the model

I.1 Model

We consider the following simplification of our benchmark model:
For µ 2 [1, ..., S] with !µ ⇠ betapdf(yµ � y1, k, ✓)



q(✓t(µ))
= �E


(1� �)(yµat+1 � z0 � ⇣(yµ � z0))� �✓t+1(µ) + (1� sµ)



q(✓t+1(µ))

�

ut+1(µ) = sµ(1� ut(µ)) + [1� ✓t(µ)q(✓t(µ))]ut(µ)

q(✓t(µ)) = '
1

(✓t(µ)⌫ + 1)1/⌫

Aggregates
log(at+1) = ⇢ log(at) + ✏t with ✏t ⇠ N(0, �2)

URt =
X

µ

!µut(µ)

JFRt =

P
µ !µ✓t(µ)q(✓t(µ))ut(µ)P

µ !µut(µ)

JSRt =
X

µ

!µsµ

where the job separation rates (sµ) are assumed to be constant across abilities because they
would not be identified (we have only one time series for separations, it is possible to identify
only one separation rate s = sµ, 8µ).

Therefore, additional constraints must be introduced. First, we restrict the parameters
to satisfy E[z(µ)]/E[yµ] = 0.75, as in our benchmark model and in the range of empirical
evidences provided by Hall & Milgrom (2008), implying that z0 = 0.75�⇣

1�⇣

�
y1 +

k
k+✓

�
. Second,

given that the linearized version of the model must have an interior solution, we must have
y1 > z0, leading to y1 >

0.75�⇣
1�0.75

k
k+✓ , given the previous expression of z0. Therefore, we

impose y1 = $ + 0.75�⇣
1�0.75

k
k+✓ with $ = 1.075. The value of $ is chosen such that y1 value

is approximately the same in the nonlinear and linear estimations. Finally, we calibrate the
distribution of abilities as in the nonlinear model, setting k = 2 and ✓ = 5.5. The estimated
parameters are

⇥ = {, ⌫, �, ⇣, s, ⇢, �, �u, �f} with dim(⇥) = 9

given that ' = 1 and � = 1/((1 + 0.00415)12) because (1 + 0.00415)12 ⇡ 1.05. For the
nonlinear model, the data are Yt = {URt, JFRt, JSRt}. We use Dynare (see Adjemian et al.
(2011)) to solve (First-order perturbation method) and estimate the model by maximum
likelihood.

I.2 Results

The estimated parameters are shown in the first two columns of Table 10. The likelihood is
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Table 10: Estimated parameters: linearized model

E[z(µ)]/E[yµ] = 0.75 E[z(µ)]/E[yµ] = 0.95
mode s.d. mode s.d.

⇢ 0.9648 0.00523 0.9648 0.00472
� 0.0296 0.00948 0.0069 0.00281
� 0.3408 0.21586 0.4216 0.12469
⇣ 0.9189 0.11036 0.9829 0.03012
s 0.0250 0.00008 0.0250 0.00009
⌫ 0.7462 0.10621 0.6146 0.06826
 0.5648 0.23017 0.0561 0.02633
�u 0.0065 0.00020 0.0065 0.00017
�s 0.0029 0.00008 0.0029 0.00008

Log-Lik 8178.02 8177.99

CPS monthly data, 1951M1–2018M12.
Maximum likelihood estimation with Dynare and 10 abilities

noticeably lower than in the estimation of the nonlinear model, but this was expected as the
linearized model cannot account for the variability of the job separation rate. With respect to
the nonlinear model, the parameters of the matching function (⌫) and the wage bargaining
power (�) are not very different, whereas the vacancy costs () are significantly greater.
Given that it is not possible to introduce a downward real wage rigidity in a linearized
model, the opportunity cost of employment is different because it must encompass all wage
rigidities. However, the important result is that the estimation based on the linearized
version of the model requires an aggregate shock having a variance 62 times larger than
in the estimation based on the nonlinear model (�2

/(1 � ⇢
2)). Therefore, the linearized

version of the model cannot solve Shimer’s puzzle (the possibility of generating the size of
the labor market fluctuations with a shock having a size close to the variance of the US labor
productivity). By imposing an opportunity cost of employment equal to 75% of the average
productivity, wage rigidity is too low to generate large adjustments in quantities.

Table 11: Estimated parameters: linearized model

Linear model Linear model
Moments with heterogeneity with a single market
E[UR] 0.065756 0.065695
E[JFR] 0.354979 0.355330
E[JSR] 0.024985 0.024985
V[UR] 2.636⇥ 10�4 2.663⇥ 10�4

V[JFR] 9.100⇥ 10�3 9.229⇥ 10�3

The hyper-parameters of the distribution of abilities are calibrated using the estimates
from the nonlinear model (M0). The attempts to estimate the distribution of abilities in
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this approximated model all ended up into degenerate distributions (zero variance), suggest-
ing that heterogeneity does not matter significantly (w.r.t. the three observed variables we
consider) if we abstract from the nonlinearities. To illustrate this, Table 11 compares the
theoretical moments of the model with heterogeneity and the corresponding representative
agent model. All first-and second-order moments are very close, suggesting that heterogene-
ity can not be identified without the nonlinearities of the model.

Another important shortcoming of the model evaluation based on its linearized version
comes from the following result: in the absence of a constraint on positive vacancies, the
stochastic simulations of the linearized model for vacancies display negative values with a
probability ranging from 0.3% to 2.7% across sectors (with a median of 1%), the assump-
tion that an interior solution is not necessarily satisfied at each period.20 Given that this
constraint is binding in the nonlinear version of the model, this result is not surprising but
casts some doubt on the robustness of evaluations based on the linearized versions of DMP
model.

Alternative calibration. As is often proposed in the literature on the Shimer’s puzzle, it
is possible to reduce the size of the exogenous shock by calibrating the opportunity cost of
employment to a higher value than that proposed in Hall & Milgrom (2008), which can be
viewed as the Hagendorn & Manovskii (2008)’s solution. The last two columns of Table 10
present the re-estimated values for the parameters when E[z(µ)]/E[yµ] = 0.95. As expected,
the variance of the macro shock decreased sharply because a lower fundamental surplus
implies a higher elasticity of the model. However, the steady-state solution of the model
is also closer to the frontier vt(µ) � 0. Therefore, a simulation over a large number of
periods indicate that the possibility of observing a negative vacancy rate ranges between
0.9% and 4.6% (with a median of 2.05%). This result reinforces the importance of considering
nonlinearities when evaluating the DMP model.

20Simulations are based on a model with a finer grid of abilities, over 100 levels
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