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Preface
The combinatorial growth of the Hilbert space makes the many-electron problem one of the
grand challenges of theoretical physics. Progress relies on the development of non-perturbative
methods, based on either wavefunctions or self energies. This made, in recent years, calcu-
lations for strongly correlated materials a reality. These simulations draw their power from
three sources: theoretical advances, algorithmic developments, and the raw power of massively
parallel supercomputers. Turning to quantum hardware could give quantum materials science
the ultimate boost. Before quantum parallelism can be exploited, however, many questions,
algorithmic and engineering, need to be addressed.

This year’s school will provide students with an overview of the state-of-the-art of many-
body simulations and the promises of quantum computers. After introducing the basic modeling
techniques and the concept of entanglement in correlated states, lectures will turn to methods
that do not rely on wavefunctions, comparing density-functional theory, the GW method and
dynamical mean-field approaches. Advanced lectures will broaden the discussion, addressing
topics from the Luttinger-Ward functional to non-equilibrium Green functions. As a glimpse of
future possibilities, the basics of quantum computing and its possible uses in materials simula-
tions will be outlined.

A school of this size and scope requires backing from many sources. This is even more
true during the Corona pandemics, which provided scores of new challenges. We are very
grateful for all the practical and financial support we have received. The Institute for Advanced
Simulation at the Forschungszentrum Jülich and the Jülich Supercomputer Centre provided the
major part of the funding and were vital for the organization of the school as well as for the
production of this book. The Institute for Complex Adaptive Matter (ICAM) supplied additional
funds and ideas for successful online formats.

The nature of a school makes it desirable to have the lecture notes available when the lectures
are given. This way students get the chance to work through the lectures thoroughly while their
memory is still fresh. We are therefore extremely grateful to the lecturers that, despite tight
deadlines, provided their manuscripts in time for the production of this book. We are confident
that the lecture notes collected here will not only serve the participants of the school but will
also be useful for other students entering the exciting field of strongly correlated materials.

We are grateful to Mrs. H. Lexis of the Verlag des Forschungszentrum Jülich and to Mrs.
D. Mans of the Grafische Betriebe for providing their expert support in producing the present
volume on a tight schedule. We heartily thank our students and postdocs who helped with
proofreading the manuscripts, often on quite short notice: Elaheh Adibi, Julian Mußhoff, Neda
Samani, and Xue-Jing Zhang.

Finally, our special thanks go to Dipl.-Ing. R. Hölzle for his invaluable advice on the innu-
merable questions concerning the organization of such an endeavor, and to Mrs. L. Snyders for
expertly handling all practical issues.

Eva Pavarini and Erik Koch

August 2021
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1.2 Erik Koch

1 Many-electron states

One of the great mysteries of quantum mechanics is the existence of indistinguishable objects.
Classically this is not possible: objects can always be distinguished, at least by their position
in space, meaning that indistinguishable objects must be identical. This is Leibniz’ Principle
of the Identity of Indiscernibles [1]. For quantum objects, however, the uncertainty principle
makes the distinction of particles by their position impossible. This allows for the existence
of elementary particles. They form the basic units of all matter. So, quite remarkably, all the
different objects we know are made of indistinguishable building blocks.
In the formalism of quantum mechanics, indistinguishability means that no observable lets us
distinguish one of these particles from the other. Consequently, every observable for, e.g.,
electrons, must treat each electron in the same way. Thus, in principle, observables must act on
all the electrons in the universe. In practice we can, of course, distinguish electrons localized on
the moon from those in our lab to an excellent approximation. Thus, for all practical purposes,
we can restrict ourselves to the electrons in the system under consideration, assuming that the
differential overlap with all other electrons vanishes. Any observable M(x1, . . . , xN) for the N
electrons in our system must then be symmetric under permutations of the coordinates xi.
The consequences are straightforward: An observable M(x) acting on a single-particle degree
of freedom x must act on all indistinguishable particles in the same way, i.e.,

∑
iM(xi). Like-

wise, a two-body observable M(x, x′) must act on all pairs in the same way,
∑

i,jM(xi, xj)

with M(x, x′) = M(x′, x). We can thus write any observable in the form

M(x) = M (0) +
∑
i

M (1)(xi) +
1

2!

∑
i 6=j

M (2)(xi, xj) +
1

3!

∑
i 6=j 6=k

M (3)(xi, xj, xk) + · · · (1)

= M (0) +
∑
i

M (1)(xi) +
∑
i<j

M (2)(xi, xj) +
∑
i<j<k

M (3)(xi, xj, xk) + · · · , (2)

where the summations can be restricted since the operators must be symmetric in their argu-
ments, while for two or more identical coordinates the operator is really one of lower order:
M (2)(xi, xi), e.g., only acts on a single coordinate and should be included in M (1).
For the many-body wave functions Ψ(x1, x2, · · · ) the situation is slightly more complex. Since
the probability density |Ψ(x1, x2, · · · )|2 is an observable, the wave function should transform
as one-dimensional (irreducible) representations of the permutation group. Which irreducible
representation applies to a given type of elementary particle is determined by the spin-statistics
theorem [2, 3]: The wave functions of particles with integer spin are symmetric, those of parti-
cles with half-integer spin change sign when two arguments are exchanged. From an arbitrary
N -particle wave function we thus obtain a many-electron wavefunction by antisymmetrizing

AΨ(x1, . . . , xN) :=
1

N !

∑
P

(−1)PΨ
(
xp(1), . . . , xp(N)

)
, (3)

where (−1)P is the parity of the permutation P that maps n→ p(n). Since there areN ! different
permutations, this can easily become an extremely costly operation. Remarkably, a product of
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N single-electron states ϕα can be antisymmetrized much more efficiently (in O(N3) steps) by
writing it in the form of a determinant

Φα1,...,αN (x1, . . . , xN) :=
1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕα1(x1) ϕα2(x1) · · · ϕαN (x1)

ϕα1(x2) ϕα2(x2) · · · ϕαN (x2)
...

... . . . ...
ϕα1(xN) ϕα2(xN)· · ·ϕαN (xN)

∣∣∣∣∣∣∣∣∣∣
=
√
N !Aϕα1(x1) · · ·ϕαN (xN)

(4)
For N=1 the Slater determinant is simply the one-electron orbital Φα(x) = ϕα(x) while for
N=2 we get the familiar expression Φα,α′(x, x′) =

(
ϕα(x)ϕα′(x

′)−ϕα′(x)ϕα(x′)
)
/
√

2 for the
two-electron Slater determinant.
Slater determinants are important because they can be used to build a basis of the many-electron
Hilbert space. To see how, we consider a complete set of orthonormal single-electron states∑

n

ϕαn(x)ϕαn(x′) = δ(x−x′) (complete)
∫
dxϕαn(x)ϕαm(x) = δn,m (orthonormal) .

(5)
To expand an arbitrary N -particle function a(x1, . . . , xN), we start by considering it as a func-
tion of x1 with the x2, . . . , xN kept fixed. We can then expand it in the complete set {ϕαn} as

a(x1, . . . , xN) =
∑
α1

aα1(x2, . . . , xN)ϕα1(x1)

with expansion coefficients that depend on the remaining coordinates

aα1(x2, . . . , xN) =

∫
dx1 ϕα1(x1) a(x1, x2, . . . , xN) .

These, in turn, can be expanded as a functions of x2

aα1(x2, . . . , xN) =
∑
α2

aα1,α2(x3, . . . , xN)ϕα2(x2) .

Repeating this, we obtain the expansion of a in product states

a(x1, . . . , xN) =
∑

α1,...,αN

aα1,...,αN ϕα1(x1) · · ·ϕαN (xN) .

When theN -particle function is antisymmetric, the expansion coefficients must be antisymmet-
ric under permutation of the indices: aαp(1),...,αp(N)

= (−1)Paα1,...,αN . Fixing some particular
order of the indices, e.g., α1 < α2 < . . . < αN , we thus get an expansion in Slater determinants

Ψ(x1, . . . , xN) =
∑

α1<...<αN

aα1,...,αN

∑
P

(−1)Pϕαp(1)(x1) · · ·ϕαp(N)
(xN)︸ ︷︷ ︸

=
√
N !Φα1,...,αN (x1,...,xN )

.

Since we can write any antisymmetric function as such a configuration-interaction expansion,
the set of Slater determinants{

Φα1,...,αN (x1, . . . , xN)
∣∣∣ α1 < α2 < · · · < αN

}
(6)
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forms a basis of the N -electron Hilbert space. Since the overlap of two Slater determinants∫
dx Φα1,...,αN (x)Φβ1,...,βN (x) =

1

N !

∑
P,P ′

(−1)P+P ′
∏
n

∫
dxn ϕαp(n)(xn)ϕαp′(n)(xn)

=

∣∣∣∣∣∣∣
〈ϕα1|ϕβ1〉 · · · 〈ϕα1|ϕβN 〉

... . . . ...
〈ϕαN |ϕβ1〉 · · · 〈ϕαN |ϕβN 〉

∣∣∣∣∣∣∣ (7)

is the determinant of the overlap of the constituent orbitals, the Slater determinants (6) form
a complete orthonormal basis of the N -electron Hilbert space when the orbitals ϕn(x) are a
complete orthonormal basis of the one-electron Hilbert space.
While we use a set of N one-electron orbitals ϕn(x) to define an N -electron Slater determi-
nant Φα1,...,αN (x), this representation is not unique: Any unitary transformation among the N
occupied orbitals will not change the determinant (up to a phase). It is thus sufficient to give
the N -dimensional subspace spanned by the orbitals ϕ1, . . . , ϕN in the single-electron Hilbert
space. The projector to this space is the one-body density matrix

Γ (1)(x, x′) = N

∫
dx2 · · · dxN Φ(x, x2, . . . , xN)Φ(x′, x2, . . . , xN) . (8)

To see this, we expand the Slater determinant along its first row

Φα1···αN (x1, . . . , xN) =
1√
N

N∑
n=1

(−1)1+n ϕαn(x1)Φαi 6=n(x2, . . . , xN) , (9)

where Φαi 6=n(x2, . . . , xN) is the determinant with the first row and the n-th column removed,
which can be written as N−1-electron Slater determinants with orbital αn removed. Inserting
this into (8) we find

Γ
(1)
Φ (x, x′) =

N∑
n=1

ϕαn(x)ϕαn(x′) , (10)

which is the expansion of the one-body density matrix in eigenfunctions (natural orbitals), with
eigenvalues (natural occupation numbers) either one or zero. Due to the degeneracy of the nat-
ural occupation numbers the natural orbitals are not unique. Any many-electron wave function
Ψ(x) with the same one-body density matrix Γ (1)

Φ equals the Slater determinant Φ(x) up to a
phase, i.e., |〈Ψ |Φ〉| = 1. We can generalize this procedure and calculate higher order density
matrices by introducing the generalized Laplace expansion

Φα1···αN (x) =
1√(
N
p

) ∑
n1<···<np

(−1)1+
∑
i ni Φαn1 ···αnp (x1, . . . , xp)Φαi6∈{n1,...,np}(xp+1, . . . , xN),

which is obtained by writing the permutation of all N indices as a permutation of N−p indices
and the remaining p indices separately summing over all distinct sets of p indices. This allows
us to evaluate arbitrary matrix elements and higher order density matrices [4, 5]. But as can be
seen from the above expansion, the expressions very quickly get quite cumbersome. Fortunately
there is a representation that is much better suited to handling antisymmetric wave functions. It
is called second quantization.
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2 Second quantization

The idea behind the second quantized approach to writing many-body wave functions is remark-
ably simple: When writing Slater determinants in the form (4) we are working in a real-space
basis. It is, however, often simpler to consider abstract states: Instead of a wave function ϕα(x),
we write a Dirac state |α〉. Second quantization allows us to do the same for Slater determinants.
Let us consider a Slater determinant for two electrons, one in state ϕα(x), the other in state
ϕβ(x). It is simply the antisymmetrized product of the two states

Φαβ(x1, x2) =
1√
2

(
ϕα(x1)ϕβ(x2)− ϕβ(x1)ϕα(x2)

)
. (11)

This expression is quite cumbersome because we explicitly specify the coordinates. We can try
to get rid of the coordinates by defining a two-particle Dirac state

|α, β〉 :=
1√
2

(
|α〉|β〉 − |β〉|α〉

)
.

While the expression is already simpler, we still have to keep track of the order of the particles
by specifying the position of the kets. The idea of second quantization is to specify the states
using operators

|α, β〉 = c†βc
†
α|0〉. (12)

Now the order of the particles is specified by the order of the operators. To ensure the antisym-
metry of the wave function the operators have to change sign when they are reordered

|α, β〉 = c†βc
†
α|0〉 = −c†αc

†
β|0〉 = −|β, α〉 . (13)

2.1 Creation and annihilation operators

To arrive at the formalism of second quantization we postulate a set of operators that have
certain reasonable properties. We then verify that we can use these operators to represent Slater
determinants. But first we consider a few simple states to motivate what properties the new
operators ought to have.
To be able to construct many-electron states, we start from the simplest such state: |0〉 the
vacuum state with no electron, which we assume to be normalized 〈0|0〉 = 1. Next we introduce
for each single-electron state |α〉 an operator c†α such that c†α|0〉 = |α〉. We call them creation
operators since they add an electron (in state α) to the state that they act on: in c†α|0〉 the creation
operator adds an electron to the vacuum state (N=0), resulting in a single-electron state (N=1).
Applying another creation operator produces a two-electron state c†βc

†
α|0〉, (N=2). To ensure

the antisymmetry of the two electron state, the product of creation operators has to change sign
when they are reordered: c†αc

†
β = −c†βc†α. This is more conveniently written as {c†α, c

†
β} = 0 by

introducing the anti-commutator

{A, B} := AB +BA . (14)
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As we have seen, the simplest state we can produce with the creation operators is the single-
electron state |α〉 = c†α|0〉. When we want to calculate its norm, we have to consider the adjoint
of c†α|0〉, formally obtaining 〈α|α〉 = 〈0|cαc†α|0〉, or, more generally, 〈α|β〉 = 〈0|cαc

†
β|0〉. This

implies that cα, the adjoint of a creation operator, must remove an electron from the state,
otherwise the overlap of cαc

†
β|0〉 with the vacuum state 〈0| would vanish. We therefore call the

adjoint of the creation operator an annihilation operator. We certainly cannot take an electron
out of the vacuum state, so cα|0〉 = 0. To obtain the overlap of one-electron states we postulate
the anticommutation relation {cα, c

†
β} = 〈α|β〉, giving 〈0|cαc

†
β|0〉 = 〈0|{cα, c†β} − c

†
βcα|0〉 =

〈α|β〉. For completeness, taking the adjoint of the anticommutation relation for the creation
operators, we obtain the corresponding anticommutator of the annihilators: {cα, cβ} = 0.
Thus, we are led to define the vacuum state |0〉 and the set of operators cα related to single-
electron states |α〉 with the properties

cα|0〉 = 0
{
cα, cβ

}
= 0 =

{
c†α, c

†
β

}
〈0|0〉 = 1

{
cα, c

†
β

}
= 〈α|β〉

(15)

As a direct consequence we obtain the Pauli principle in the form cαcα = 0 = c†αc
†
α.

We note that the creators transform in the same way as the single-electron states they represent

|α̃i〉 =
∑
µ

|αµ〉Uµi ; c̃†α̃i |0〉 =
∑
µ

c†αµ |0〉Uµi =

(∑
µ

c†αµUµi

)
|0〉. (16)

The creators and annihilators are clearly not operators in a Hilbert space, but transfer states from
an N -electron to a N±1-electron Hilbert space, i.e., they are operators defined on Fock space.
It is also remarkable that the mixed anti-commutator is the only place where the orbitals that
distinguish different operators enter.
To make contact with the notation of first quantization, we introduce the field operators Ψ̂ †(x),
with x = (r, σ), that create an electron of spin σ at position r, i.e., in state |x〉 = |r, σ〉. Given a
complete, orthonormal set of orbitals {ϕn}, we can expand |x〉

Ψ̂ †(x)|0〉 = |x〉 =
∑
n

|ϕn〉〈ϕn|x〉 =
∑
n

c†ϕn|0〉〈ϕn|x〉 (17)

from which we obtain

Ψ̂ †(x) =
∑
n

〈x|ϕn〉 c†ϕn =
∑
n

ϕn(x) c†ϕn . (18)

The anticommutators then follow from (15) for an orthonormal and complete set, e.g.,{
Ψ̂(x), Ψ̂ †(x′)

}
=
∑
n,m

〈x|ϕn〉
{
cϕn , c

†
ϕm

}︸ ︷︷ ︸
=δn,m

〈ϕm|x′〉 =
∑
n

〈x|ϕn〉〈ϕn|x′〉 = 〈x|x′〉 = δ(x− x′),

resulting in the anticommutation relations for the field operators{
Ψ̂(x), Ψ̂(x′)

}
= 0 =

{
Ψ̂ †(x), Ψ̂ †(x′)

}
and

{
Ψ̂(x), Ψ̂ †(x′)

}
= 〈x|x′〉. (19)
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We can, of course, expand the field operators also in a non-orthogonal set of orbitals {|χi〉}, as
long as it is complete,

∑
i,j |χi〉(S−1)ij〈χj| = 1, where Sij = 〈χi|χj〉 is the overlap matrix

Ψ̂ †(x) =
∑
i,j

c†i (S−1)ij 〈χj|x〉. (20)

Conversely, given any single-electron wave functions in real space ϕ(x), we can express the
corresponding creation operator in terms of the field operators

c†ϕ =

∫
dxϕ(x) Ψ̂ †(x). (21)

Its anticommutator with the field annihilator just gives back the single-electron wave function{
Ψ̂(x), c†ϕ

}
=

∫
dx′ ϕ(x′)

{
Ψ̂(x), Ψ̂ †(x′)

}
= ϕ(x) . (22)

2.2 Representation of Slater determinants

We have now all the tools in place to write the Slater determinant (4) in second quantization,
using the creation operators to specify the occupied orbitals and the field operators to give the
coordinates for the real-space representation:

Φα1α2...αN (x1, x2, . . . , xN) =
1√
N !

〈
0
∣∣ Ψ̂(x1)Ψ̂(x2) . . . Ψ̂(xN) c†αN . . . c

†
α2
c†α1

∣∣0〉. (23)

Note how writing the Slater determinant as an expectation value of annihilation and creation
operators nicely separates the coordinates on the left from the orbitals on the right. This is just
the desired generalization of the Dirac notation ϕ(x) = 〈x|ϕ〉.
Not surprisingly, the proof of (23) is by induction. As a warm-up we consider the case of a
single-electron wave function (N=1). Using the anticommutation relation (22), we see that〈

0
∣∣ Ψ̂(x1) c†α1

∣∣0〉 =
〈
0
∣∣ϕα1(x1)− c†α1

Ψ̂(x1)
∣∣0〉 = ϕα1(x1) . (24)

For the two-electron state N = 2, we anticommute Ψ̂(x2) in two steps to the right〈
0
∣∣ Ψ̂(x1)Ψ̂(x2) c†α2

c†α1

∣∣0〉 =
〈
0
∣∣ Ψ̂(x1)

(
ϕα2(x2)− c†α2

Ψ̂(x2)
)
c†α1

∣∣0〉
=

〈
0
∣∣ Ψ̂(x1)c†α1

∣∣0〉ϕα2(x2)−
〈
0
∣∣ Ψ̂(x1)c†α2

Ψ̂(x2)c†α1

∣∣0〉
= ϕα1(x1)ϕα2(x2)− ϕα2(x1)ϕα1(x2) . (25)

We see how anticommuting automatically produces the appropriate signs for the antisymmetric
wave function. Dividing by

√
2, we obtain the desired two-electron Slater determinant.

The general case of an N -electron state works just the same. Anti-commuting Ψ̂(xN) all the
way to the right produces N terms with alternating sign〈

0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1)Ψ̂(xN) c†αN c

†
αN−1

· · · c†α1

∣∣0〉 =

+
〈
0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1) c†αN−1

· · · c†α1

∣∣0〉 ϕαN (xN)

−
〈
0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1)

∏
n6=N−1 c

†
αn

∣∣0〉 ϕαN−1
(xN)

...
(−1)N−1

〈
0
∣∣ Ψ̂(x1) · · · Ψ̂(xN−1) c†αN · · · c

†
α2

∣∣0〉 ϕα1 (xN) .
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Using (23) for the N−1-electron states, this is nothing but the Laplace expansion of

D =

∣∣∣∣∣∣∣∣∣∣
ϕα1(x1) ϕα2(x1) · · · ϕαN (x1)

ϕα1(x2) ϕα2(x2) · · · ϕαN (x2)
...

... . . . ...
ϕα1(xN) ϕα2(xN) · · · ϕαN (xN)

∣∣∣∣∣∣∣∣∣∣
along the N th row. Dividing by

√
N ! we see that we have shown (23) for N -electron states,

completing the proof by induction.
Given this representation of Slater determinants it is easy to eliminate the coordinates so we can
work with N -electron states rather than N -electron wave functions—just as in Dirac notation.
In particular we can rewrite the basis of Slater determinants (6) into a basis of product states{

c†αN · · · c
†
α1
|0〉
∣∣ α1 < · · · < αN

}
, (26)

which allows us to express any N -electron state as

|Ψ〉 =
∑

α1<···<αN

aα1,...,αN c
†
αN
· · · c†α1

|0〉. (27)

2.3 Representation of n-body operators

To work with N -electron states rather than Slater determinants, we also have to rewrite the
N -electron operators M(x) appropriately. This is easily done by incorporating the coordinates
that we have separated from the Slater determinants into the operators such that the expectation
values remain unchanged. This is, again, analogous to the Dirac formalism:∫

dxϕn(x)M(x)ϕm(x) = 〈ϕn|
∫
dx |x〉M(x)〈x|︸ ︷︷ ︸

=:M̂

ϕm〉 = 〈ϕn|M̂ |ϕm〉. (28)

For N -electron Slater determinants this becomes∫
dx1 · · · dxN Φβ1···βN (x1, · · · , xN)M(x1, . . . , xN)Φα1···αN (x1, · · · , xN)

=

∫
dx1· · · dxN〈0|cβ1· · · cβN Ψ̂

†(xN)· · · Ψ̂ †(x1)|0〉M(x1, . . . , xN)〈0|Ψ̂(x1)· · · Ψ̂(xN)c†αN· · · c
†
α1
|0〉

=
〈
0
∣∣ cβ1 · · · cβN M̂ c†αN · · · c

†
α1

∣∣0〉
with the representation of the n-body operator in terms of field operators

M̂ =
1

N !

∫
dx1 · · ·xN Ψ̂ †(xN) · · · Ψ̂ †(x1)M(x1, · · · , xN) Ψ̂(x1) · · · Ψ̂(xN) . (29)

Note that this particular form of the operator is only valid when applied to N -electron states,
since we have used that the N annihilation operators bring us to the zero-electron space, where
|0〉〈0| = 10. Keeping this in mind, we can work entirely in terms of our algebra (15).
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To see what (29) means we look, in turn, at the different n-body parts of M(x), (2):

M(x) = M (0) +
∑
i

M (1)(xi) +
∑
i<j

M (2)(xi, xj) +
∑
i<j<k

M (3)(xi, xj, xk) + · · · (30)

We start with the simplest case, the zero-body operator, which, up to a trivial prefactor, is
M (0)(x1, · · · , xN) = 1. Operating on an N -electron state, it gives

M̂ (0) =
1

N !

∫
dx1dx2 · · ·xN Ψ̂ †(xN) · · · Ψ̂ †(x2)Ψ̂ †(x1) Ψ̂(x1)Ψ̂(x2) · · · Ψ̂(xN)

=
1

N !

∫
dx2 · · ·xN Ψ̂ †(xN) · · · Ψ̂ †(x2) N̂ Ψ̂(x2) · · · Ψ̂(xN)

=
1

N !

∫
dx2 · · ·xN Ψ̂ †(xN) · · · Ψ̂ †(x2) 1 Ψ̂(x2) · · · Ψ̂(xN)

...

=
1

N !
1 · 2 · · · N = 1 , (31)

where we have used that the operator∫
dx Ψ̂ †(x)Ψ̂(x) = N̂

counts the number of electrons: Applied to the vacuum state it gives N̂ |0〉 = 0, while each
creation operator increases the count by one: N̂c†n = c†n(N̂+1), which follows from

[N̂ , c†n] =

∫
dx [Ψ̂ †(x)Ψ̂(x), c†n] =

∫
dx Ψ̂ †(x) {Ψ̂(x), c†n} =

∫
dx Ψ̂ †(x)ϕn(x) = c†n, (32)

where we have used the simple relation [AB, C] = A{B, C} − {A, C}B. Adjoining this
relation gives a minus sign, i.e., annihilators reduce the count by one: N̂cn = cn(N̂−1). Thus,
commuting N̂ through a general product state, we obtain for each creation operator that we
encounter a copy of the state, while for each annihilator we obtain minus that state, giving in
total the original state times the difference in the number of creation and annihilation operators.

Remarkably, while we started from an operator acting on N -electron states, the resulting opera-
tor in second quantized form is independent of the number of electrons. We will see that this is
an important general feature of operators in second quantization which makes working in Fock
spaces amazingly simple.

We note that (31) just means that the overlap of two Slater determinants (7) is equal to that of
the corresponding product states∫

dx Φα1,...,αN (x)Φβ1,...,βN (x) =
〈
0
∣∣ cα1
· · · cαN c†βN · · · c

†
β1

∣∣0〉. (33)
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2.3.1 One-body operators

Next we consider one-body operators
∑

jM
(1)(xj)

M̂ (1) =
1

N !

∫
dx1 · · · dxN Ψ̂ †(xN) · · · Ψ̂ †(x1)

∑
j

M (1)(xj) Ψ̂(x1) · · · Ψ̂(xN)

=
1

N !

∑
j

∫
dxj Ψ̂

†(xj)M
(1)(xj) (N−1)! Ψ̂(xj)

=
1

N

∑
j

∫
dxj Ψ̂

†(xj)M
(1)(xj) Ψ̂(xj)

=

∫
dx Ψ̂ †(x) M (1)(x) Ψ̂(x) (34)

Here we have first anticommuted Ψ̂ †(xj) all the way to the left and Ψ̂(xj) to the right. Since
these take the same numbers of anticommutations, there is no sign involved. In between these
field operators we are left with a zero-body operator for N−1 electrons, producing, when M̂ (1)

acts on an N -electron state, a factor of (N−1)!. Again we notice that we obtain an operator that
no longer depends on the number of electrons, i.e., that is valid in the entire Fock space.
Expanding the field-operators in a complete orthonormal set Ψ̂(x) =

∑
n ϕn(x) cn gives

M̂ (1) =
∑
n,m

∫
dxϕn(x)M(x)ϕm(x) c†ncm =

∑
n,m

〈ϕn|M (1)|ϕm〉 c†ncm =
∑
n,m

c†nM
(1)
nm cm. (35)

The matrix elementsM (1)
nm = 〈ϕn|M (1)|ϕm〉 transform like a single-electron matrixM (1): From

(16) and writing the annihilation operators as a column vector c we see that

M̂ (1) = c†M (1) c = c†U † UM (1)U † Uc = c̃† M̃ (1) c̃ . (36)

Once we have arrived at the representation in terms of orbitals, we can restrict the orbital basis
to a non-complete set. This simply gives the operator in the variational (Fock) subspace spanned
by the orbitals.
We note that the expression (35) not only works for local operators but also for differential
operators like the momentum or kinetic energy: we have taken care not to exchange the order
of M (1) and one of its field operators. We can write truly non-local operators in a similar way.
As an example, the one-body density operator is given by

Γ̂ (1)(x;x′) = Ψ̂ †(x)Ψ̂(x′) (37)

so that one coordinate is not integrated over, rather setting it to x in the bra and x′ in the ket. In
an orthonormal basis it becomes

Γ̂ (1)(x;x′) =
∑
n,m

ϕn(x)ϕm(x′) c†ncm . (38)



Second quantization 1.11

2.3.2 Two-body operators

For the two-body operators
∑

i<jM
(2)(xi, xj) we proceed in the familiar way, anti-commuting

first the operators with the coordinates involved in M (2) all the way to the left and right, respec-
tively. This time we are left with a zero-body operator for N−2 electrons:

M̂ (2) =
1

N !

∫
dx1 · · · dxN Ψ̂ †(xN) · · · Ψ̂ †(x1)

∑
i<j

M (2)(xi, xj) Ψ̂(x1) · · · Ψ̂(xN)

=
1

N !

∑
i<j

∫
dxidxj Ψ̂

†(xj)Ψ̂
†(xi)M

(2)(xi, xj) (N−2)! Ψ̂(xi)Ψ̂(xj)

=
1

N(N−1)

∑
i<j

∫
dxidxj Ψ̂

†(xj)Ψ̂
†(xi)M

(2)(xi, xj) Ψ̂(xi)Ψ̂(xj)

=
1

2

∫
dx dx′ Ψ̂ †(x′) Ψ̂ †(x) M (2)(x, x′) Ψ̂(x) Ψ̂(x′)

Expanding in an orthonormal basis, we get

M̂ (2) =
1

2

∑
n,n′,m,m′

∫
dxdx′ ϕn′(x′)ϕn(x)M (2)(x, x′)ϕm(x)ϕm′(x

′) c†n′c
†
ncmcm′

=
1

2

∑
n,n′,m,m′

〈ϕnϕn′ |M (2)|ϕmϕm′〉 c†n′c
†
ncmcm′ (39)

where the exchange of the indices in the second line is a consequence of the way the Dirac state
for two electrons is usually written: first index for the first coordinate, second index for the
second. A more natural choice would be to exchange the order in the bra, reflecting that taking
the adjoint of the operators changes their order. Either way, Mnn′,mm′ = 〈ϕnϕn′|M (2)|ϕmϕm′〉
transforms like a fourth-order tensor: Transforming to a different basis (16) gives

M̃
(2)
νν′,µµ′ =

∑
n,n′,m,m′

U †νnU
†
ν′n′Mnn′,mm′UmµUm′µ′ . (40)

Form the symmetry of the two-body operator M (2)(x, x′) = M (2)(x′, x) follows Mnn′,mm′ =

Mn′n,m′m. Moreover, Mnn,mm′ will not contribute to M̂ (2) since c†nc
†
n = {c†n, c†n}/2 = 0, and

likewise for Mnn′,mm.
Note that the representation (39) is not quite as efficient as it could be: The terms with n and n′

and/orm andm′ exchanged connect the same basis states. Collecting these terms by introducing
an ordering of the operators and using the symmetry of the matrix elements we obtain

M̂ (2) =
∑

n′>n, m′>m

c†n′c
†
n

(
M

(2)
nn′,mm′ −M

(2)
n′n,mm′

)
︸ ︷︷ ︸

=:M̆
(2)

nn′,mm′

cmcm′ . (41)

Since the states {c†n′c†n|0〉 |n′ > n} form a basis of the two-electron Hilbert space, considering
nn′ as the index of a basis state, the M̆ (2)

nn′,mm′ form a two-electron matrix M̆ (2).
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The procedure of rewriting operators in second quantization obviously generalizes to observ-
ables acting on more than two electrons in the natural way.
We note that, while we started from a form of the operators (30) that was explicitly formulated
in an N -electron Hilbert space, the results (31), (35), and (39) are of the same form no matter
what value N takes. Thus these operators are valid not just on some N -electron Hilbert space,
but on the entire Fock space. This is a particular strength of the second-quantized formalism.

2.4 Transforming the orbital basis

We noted in (16) that the creators transform in the same way as the orbitals they represent

|βi〉 = U |αi〉 =
∑
j

|βj〉〈αj|αi〉 =
∑
µ

|αµ〉 〈αµ|U |αi〉︸ ︷︷ ︸
=:Uµi

; c†βi =
∑
µ

c†αµ Uµi , (42)

so the “operators” really transform like states. Writing the transformation matrix as U = eM ,
where M is anti-Hermitian, M † = −M , when U is unitary, but can be any matrix when U is
merely invertible, we can write the basis transformation in a form appropriate for operators:

c†βi = ec
†Mc c†αµ e

−c†Mc . (43)

To see this, we use the Baker-Campbell-Hausdorff formula in the form

eλAB e−λA = B + λ [A, B] +
λ2

2!

[
A, [A, B]

]
+
λ3

3!

[
A,
[
A, [A, B]

]]
+ · · · , (44)

where the expansion coefficients follow by taking the derivatives of the left hand side at λ = 0,
together with the commutator [c†αµcαν , c

†
ακ ] = c†αµ δν,κ, from which we obtain for the repeated

commutators[∑
µ,ν

Mµνc
†
αµcαν ,

∑
κ

c†ακ
(
Mn
)
κi

]
=
∑
µνκ

c†αµMµν δν,κ
(
Mn
)
κi

=
∑
µ

c†αµ
(
Mn+1

)
µi
. (45)

To keep the derivation simple, we have chosen to transform an operator from the orthonormal
basis that we also used to write the exponential operator. Being linear, the transform works, of
course, the same for an arbitrary operator.
Using this form of the basis transformation and noticing that e−c†Mc|0〉 = |0〉, we immediately
see that acting with the exponential of a one-body operator on a product state results in another
product state

ec
†Mc

∏
c†αn
∣∣0〉 =

∏
ec
†Mc c†αne

−c†Mc
∣∣0〉 =

∏
c†βn
∣∣0〉 . (46)

This is, e.g., used when working in the interaction picture. Anticommutators with transformed
operators, (42), are simply

{
cαj , e

−c†Mc c†αi e
−c†Mc

}
= 〈αj|eM |αi〉.

Annihilation operators, being the adjoint of the creators, transform in just the expected way

cβi = e−c
†M†c cαµ e

c†M†c , (47)

which means that for unitary transformations, where M is anti-Hermitian, creators and anni-
hilators transform in the same way. Note that in the imaginary-time formalism the annihilators
are, via analytic continuation, chosen to transform in the same way as the creators, making them
different from the adjoint of the creators.
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3 Exact diagonalization

We have worked, so far, with complete, i.e., infinite bases. This is, of course, not possible
in actual computer simulations, where we have to confine ourselves to finite basis sets. Such
calculations on subspaces are based on the variational principle.

3.1 Variational principles

The variational principle and the Schrödinger equation are equivalent. Consider the energy
expectation value as a wave-function functional

E[Ψ ] =
〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

. (48)

Its variation is

E[Ψ+δΨ ] = E[Ψ ] +
〈δΨ |H|Ψ〉+ 〈Ψ |H|δΨ〉

〈Ψ |Ψ〉
− 〈Ψ |H|Ψ〉 〈δΨ |Ψ〉+ 〈Ψ |δΨ〉

〈Ψ |Ψ〉2
+O2. (49)

The first-order term vanishes for H|Ψ〉 = E[Ψ ] |Ψ〉, which is the Schrödinger equation. Since
the eigenfunctions

H|Ψn〉 = En|Ψ〉 , (50)

can be chosen to form an orthonormal basis, we can expand any wavefunction as

|Ψ〉 =
∑
n

|Ψn〉 〈Ψn|Ψ〉 (51)

and determine, as long as 〈Ψ |Ψ〉 6= 0, its energy expectation value

〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

=

∑
m,n〈Ψ |Ψm〉〈Ψm|H|Ψn〉〈Ψn|Ψ〉∑
m,n〈Ψ |Ψm〉〈Ψm|Ψn〉〈Ψn|Ψ〉

=

∑
nEn

∣∣〈Ψn|Ψ〉∣∣2∑
n

∣∣〈Ψn|Ψ〉∣∣2 . (52)

Since by definition no eigenenergy can be lower than the ground state energy E0, we immedi-
ately see that the energy expectation value can never drop below the ground state energy

〈Ψ |H|Ψ〉
〈Ψ |Ψ〉

=

∑
nEn

∣∣〈Ψn|Ψ〉∣∣2∑
n

∣∣〈Ψn|Ψ〉∣∣2 ≥
∑

nE0

∣∣〈Ψn|Ψ〉∣∣2∑
n

∣∣〈Ψn|Ψ〉∣∣2 = E0 . (53)

We can use the same argument to generalize this variational principle: Assume we have ar-
ranged the eigenenergies in ascending order, E0 ≤ E1 ≤ · · · , then the energy expectation value
for a wavefunction that is orthogonal to the n lowest eigenstates, can not drop below En

〈Ψ⊥n|H|Ψ⊥n〉
〈Ψ⊥n|Ψ⊥n〉

≥ En if 〈Ψi|Ψ⊥n〉 = 0 for i = 0, . . . , n−1. (54)

This generalized variational principle is, of course, only of practical use if we know something
about the eigenstates, e.g., when we can use symmetries to ensure orthogonality.
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For an ab-initio Hamiltonian of N electrons in the field of nuclei of charge Zα at positionRα,

H = −1

2

∑
i

∆i −
∑
i,α

Zα
|ri−Rα|

+
∑
i<j

1

|ri−rj|
+
∑
α<β

ZαZβ
|Rα−Rβ|

, (55)

the Schrödinger equation is a partial differential equation. In second quantization it becomes
a linear-algebra problem: We introduce an orbital basis set {ϕk | k}, which for simplicity we
assume here to be orthonormal, from which we construct an orthonormal basis of N -electron
product states, {Φk1,...,kN | k1< · · ·<kN}. To simplify the notation we sort the basis states, e.g.,
lexicographically in the orbital indices k = (k1, . . . , kN) and define the row vector of basis
states |Φ〉 :=

(
|Φ1〉, |Φ2〉, . . .

)
. The expansion of a state |Ψ〉 in this basis can then be written as

|Ψ〉 =
∑

k1<···<kN

ak1,...,kN |Φk1,...,kN 〉 =
∑
i

ai |Φi〉 = |Φ〉a , (56)

where a is the vector of expansion coefficients. Likewise we can write the Schrödinger equation
as a matrix eigenvalue problem

Ha = 〈Φ|Ĥ|Φ〉a =

〈Φ1|Ĥ|Φ1〉 〈Φ1|Ĥ|Φ2〉 · · ·
〈Φ2|Ĥ|Φ1〉 〈Φ2|Ĥ|Φ2〉 · · ·

...
... . . .


a1

a2

...

 = E

a1

a2

...

 = Ea . (57)

From the eigenvectors of the matrixH we easily recover the eigenstates of the Hamiltonian

Han = Enan ; Ĥ|Ψn〉 = En|Ψn〉 with |Ψn〉 = |Φ〉an . (58)

Unfortunately, for an ab-initio Hamiltonian like (55) we need an infinite orbital basis set, so that
the Hamiltonian matrixH is infinite dimensional. A pragmatic approach to allow for computer
simulations is to simply restrict the calculation to a finite basis |Φ̃〉 :=

(
|Φ̃1〉, . . . , |Φ̃L̃〉

)
, i.e.,

work with a finite matrix H̃ := 〈Φ̃|Ĥ|Φ̃〉 of dimension L̃. The crucial question is then how the
eigenvectors

H̃ãn = Ẽnãn ; |Ψ̃n〉 := |Φ̃〉 ãn (59)

are related to those of H . The answer is surprisingly simple [6]: The eigenvalues of H̃ , ordered
as Ẽ0 ≤ Ẽ1 ≤ · · · ≤ ẼL̃−1, are variational with respect to those of H:

En ≤ Ẽn for n ∈ {0, . . . , L̃−1} . (60)

To show this, we construct a state in span
(
|Ψ̃0〉, . . . , |Ψ̃n〉

)
, which by construction has an energy

expectation value ≤ Ẽn, that is orthogonal to the exact eigenstates |Ψ0〉, . . . , |Ψn−1〉, so that by
the generalized variational principle its expectation value is ≥ En. Being the non-zero solution
of n−1 linear equations with n variables, such a state certainly exists, hence En ≤ Ẽn.
To get reliable results, we simply have to systematically increase the basis until the change in
the desired eigenvalues becomes smaller than the accuracy required by the physical problem.
The art is, of course to devise clever basis sets such that this is achieved already for bases of
low dimensions.
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The convergence of the matrix eigenvalues with increasing basis size is surprisingly regular. Let
us extend our original basis of L̃ states by an additional L− L̃ states. Then, repeating the above
argument with the L-dimensional problem taking the role of Ĥ , we obtain (60) with En being
the eigenvalues of the L-dimensional Hamiltonian matrixH . Being finite, we can use the same
argument for −H , obtaining

− EL−i ≤ −ẼL̃−i for i ∈ {1, . . . , L̃}. (61)

Taking the two inequalities together we obtain

En ≤ Ẽn ≤ En+(L−L̃) for n ∈ {0, . . . , L̃−1}. (62)

For the special caseL = L̃+1 of adding a single basis state, this is the Hylleraas-Undheim/Mac-
Donald nesting property for eigenvalues in successive approximations

E1 ≤ Ẽ1 ≤ E2 ≤ Ẽ2 ≤ · · · ≤ ẼL ≤ EL+1 . (63)

3.2 Matrix eigenvalue problem

For practical calculations we have to set up the Hamiltonian matrix H̃ = 〈Φ̃|Ĥ|Φ̃〉 and the
state vectors ã for the chosen basis. This is particularly easy for a basis of Slater determinants
constructed from a basis set of K orbitals

{
ϕk |k = 0, . . . , K−1

}
. The basis states are then the

N -electron product states of |Φk1,...,kN 〉 = c†kN · · · c
†
k1
|0〉 with k1 < · · · kN . We can write this

more computer friendly as

|nK−1, . . . , n0〉 =
K−1∏
k=0

(
c†k
)nk |0〉 (64)

which is the occupation number representation with nk ∈ {0, 1} and
∑
nk = N . It is natural to

interpret the vector of occupation numbers as the binary representation of the integer
∑

k 2nk .
This implies a natural ordering of the basis functions |Φl〉. For the simple case of K=4 orbitals
and N=2 electrons we obtain i (n3, n2, n1, n0) state l

0 0000
1 0001
2 0010
3 0011 c†1c

†
0|0〉 = |Φ1〉 1

4 0100
5 0101 c†2c

†
0|0〉 = |Φ2〉 2

6 0110 c†2c
†
1|0〉 = |Φ3〉 3

7 0111
8 1000
9 1001 c†3c

†
0|0〉 = |Φ4〉 4

10 1010 c†3c
†
1|0〉 = |Φ5〉 5

11 1011
12 1100 c†3c

†
2|0〉 = |Φ6〉 6

13 1101
14 1110
15 1111
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The bit representation of the basis states also simplifies setting up the Hamiltonian matrix.
Given the Hamiltonian in second quantization

Ĥ =
∑
n,m

Tnm c
†
ncm +

∑
n′>n,m′>m

(
Unn′,mm′ − Un′n,mm′

)︸ ︷︷ ︸
=Ŭnn′,mm′

c†n′c
†
ncmcm′ (65)

the matrix element 〈Φl|Ĥ|Φ′l〉, with |Φl′〉 = c†k′N
· · · c†l′1|0〉, is given by∑

n,m

Tnm〈0|cl1 · · · clN c
†
ncm c

†
l′N
· · · c†l′1|0〉+

∑
n′>n
m′>m

Ŭnn′,mm′〈0|cl1 · · · clN c
†
n′c
†
ncmcm′ c

†
l′N
· · · c†l′1|0〉.

Anticommuting the operators coming from the operators, the matrix elements become overlaps
of N+1 and N+2-electron product states, which, by (33) and (7), are just the determinants of
the overlap matrices of the corresponding orbitals. When Ĥ is written in the same orbitals as
the |Φl〉, the overlap matrices simplify to permutation matrices with determinant ±1. In the
occupation number representation, calculating this Fermi sign reduces to counting set bits. As
an example we consider a simple hopping of an electron:

c†6c2|Φl(181)〉 = c†6c2 c
†
7c
†
5c
†
4c
†
2c
†
0|0〉

= (−1)3c†6c
†
7c
†
5c
†
4c2c

†
2c
†
0|0〉

= (−1)3c†6c
†
7c
†
5c
†
4

(
1− c†2c2

)
c†0|0〉

= (−1)3c†6c
†
7c
†
5c
†
4·c
†
0|0〉

= +|Φl(241)〉 = (−1)2c†7c
†
6c
†
5c
†
4·c
†
0|0〉

In the occupation number representation this becomes

?
10110101 = (−1)c 11110001 (66)

where c is the count of set bits between the positions the electron hop. Note that a dedicated
machine instruction, popcnt, for counting set bits is part of the x86 SSE4 instruction set, see
also [7]

3.3 Dimension of the Hilbert space and sparseness

Setting up basis states and Hamiltonian matrix in this way, we can easily solve the many-
body problem on our variational space by using any linear algebra library. This is the ex-
act diagonalization approach. As discussed above, it gives us variational estimates of the
ground and excited states. But there is a serious practical problem: the dimension of the
many-body Hilbert space. For an N -electron problem with a basis set of K orbitals there are
K (K−1) (K−2) · · · (K − (N−1)) ways of picking N indices out of K. Since we only use
one specific ordering of these indices, we have to divide by N ! to obtain the number of such
determinants:

dimH(N)
K =

K!

N !(K−N)!
=

(
K

N

)
. (67)
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Using Stirling’s formula we see that for an N -electron problem this increases faster than ex-
ponentially with the size K of the basis set. This is the problem we face when converging the
basis set for a finite system, e.g., a molecule. For solids we usually keep the number of orbitals
per lattice site fixed, but scale to the thermodynamic limit, increasing the system size M while
keeping the electron densityN/M fixed. Also here the Hilbert space increases faster than expo-
nentially. To give an impression of the problem we note that forN = 25 electrons andK = 100

orbitals the dimension already exceeds 1023.
For exact diagonalization the problem gets even worse. Assuming we have a machine with
1 TeraBytes = 240 Bytes of RAM available. Using single precision (4 bytes) for the matrix
elements, storing a matrix of dimension (240/4)1/2 = 524 288 would already use up all memory.
The dimension problem can be somewhat mitigated by exploiting symmetries: When the Hamil-
tonian commutes with the projection of the total spin, the number of up- and down-spin elec-
trons is conserved separately. The N -electron Hamiltonian is then block diagonal in the sectors
with fixed N↑ and N↓. The dimension of these blocks is significantly smaller than that of the
full N -electron Hilbert space. Using the same orbital basis for each spin

dimH(N↑,N↓)
2K =

(
K

N↑

)
×
(
K

N↓

)
. (68)

The Sz symmetry can be very easily implemented using the same ideas as introduced for the
general case: just carry bit representations for the up- and down-spin electrons separately. In
fact, when the total spin projection is conserved, we can distinguish electrons of different spin!
Still, the Hilbert space of the single-band, half-filled Hubbard model with just 12 sites has
dimension 853 776. Using further symmetries, if they exist, we could bring down the dimension
somewhat further, however at the expense of considerable and problem-specific effort.
The key to going to larger systems is the realization that the vast majority of the elements of the
Hamiltonian matrix is zero. This is quite easy to see. For the ab-initio Hamiltonian (55) with
electron-electron repulsion, matrix elements between configurations that differ in more than
two electron occupations vanish. Thus, for each configuration there may only be the diagonal
element, N × (K−1) hopping terms, and N(N−1)/2 × (K−N)(K−N−1)/2 pair-hopping
terms. Thus the fraction of non-zero matrix elements of H̃ to the total number is(

1 +N

(
1 +

N−1

2

(K−N−1)

2

)
(K−N)

)/(K
N

)
(69)

which, with increasing problem size, rapidly approaches zero. For the example of N = 25

electrons in K = 100 orbitals only 834 376 of the (over 1023) matrix elements per row can be
non-zero. This is the worst case. The sparsity of many-body Hamiltonians is even more pro-
nounced when working in a tight-binding basis with short-ranged hopping and local electron-
electron repulsion. Thus, many-body Hamiltonians are exceedingly sparse and the more so the
larger the problem. They are therefore ideally suited for approaches like the Lanczos method,
that are based on matrix-vector products, which for the sparse matrices scale close to linearly in
the matrix dimension.
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3.4 Non-interacting electrons

Even when considering a system of N non-interacting electrons we have to solve the large
matrix eigenvalue problem (57). Writing the non-interacting Hamiltonian in the basis used for
the CI expansion (56) we obtain

Ĥ =
∑
n,m

Hnm c
†
ncm ,

which, in general, has non-vanishing matrix elements between Slater determinants that differ
in at most one operator. But we can simplify things drastically by realizing that we can choose
any basis for the CI expansion. If we choose the eigenstates of the single-electron matrix Hnm

as basis, the second-quantized Hamiltonian is

Ĥ =
∑
n,m

εnδn,m c
†
ncm =

∑
n

εn c
†
ncn .

In this basis all off-diagonal matrix elements vanish and the CI Hamiltonian (57) is diagonal.
Thus all

(
K
N

)
eigenstates are Slater determinants

|Φn〉 = c†nN · · · c
†
n1
|0〉 with eigenenergy En =

∑
i

εni . (70)

This shows that choosing an appropriate basis for a CI expansion is crucial. A good general
strategy should thus be to solve the matrix problem (57) and at the same time look for the
basis set (of given size) that minimizes the variational energy. The simplest example, where the
many-body basis consists of a single Slater determinant, is the Hartree-Fock method.

4 Jordan-Wigner representation

The breakthrough in the development of quantum mechanics was Heisenberg’s insight that po-
sition and momentum of a particle must be represented by non-commuting matrices [8]. The
canonical commutation relations [r̂i, p̂j] = i~δij are the essence of quantization. In order to de-
velop a quantum theory of radiation, Dirac quantized a plane wave ~E~k(~r, t) = ~E~k ei(~k·~r−ωt) using
the same idea, describing the wave by its energy E and phase θ = −ωt, postulating matrices
with canonical commutation relation [E, t] = i~. In analogy to Heisenberg’s first quantization,
this step is called second quantization. It is quite plausible, considering the time-dependent
Schrödinger equation: i~ d

dt
= E. It follows from the commutation relation [E, e−iωt] =

~ω e−iωt that the operator eiθ adds a photon to the radiation field: Eeiθ = eiθ(E+~ω).
Instead of working with these operators directly, Dirac relates them to the expansion coefficient
bk of a many-photon wave function in the basis of plane waves and requires that |bk|2 = b†kbk
gives the occupation Nk=E/~ωk of mode k. This means that, in second quantization, the
expansion coefficients become operators, e.g.,

bk = e−iθkN
1/2
k and b†k = N

1/2
k eiθk (71)
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with b†kbk = Nk and commutation relation[
bk, b

†
k

]
= e−iθkNke

iθk −Nk = e−iθkeiθk(Nk+1)−Nk = 1 . (72)

Pascual Jordan realized [10] that the central part of Dirac’s argument is the commutation relation
[Nk, eiθk ] = eiθk , showing that eiθ acts as a ladder operator. To derive a similar description for
electrons, he implemented the Pauli principle by restricting occupations to the values 0 and 1.
In its eigenbasis, Nk can then be written as a 2×2 matrix

N =

(
1 0

0 0

)
=

1

2
(σz+1) (73)

so that the ladder operators, fulfilling
[
N, e±iθ

]
= ±e±iθ, take the form

eiθ =

(
0 1

0 0

)
=

1

2
(σx+iσy) and e−iθ =

(
0 0

1 0

)
=

1

2
(σx−iσy) (74)

and, using N2 = N ; N1/2 = N , the creators and annihilators (71) become

d† = N1/2 eiθ =

(
1 0

0 0

)(
0 1

0 0

)
=

(
0 1

0 0

)
=

1

2
(σx+iσy) (75)

d = e−iθN1/2 =

(
0 0

1 0

)(
1 0

0 0

)
=

(
0 0

1 0

)
=

1

2
(σx−iσy). (76)

The resulting Paulions do not fulfill a canonical commutation relation ([d†, d] = σz), instead
their anti-commutator is analogous to (72)

d d† + d†d =
{
d, d†

}
= 1 . (77)

Using S± = Sx± iSy = (σx± iσy)/2 and Sz = σz/2, we see from the simple mapping

paulion | 0 〉 | 1 〉 d† d N

spin-½ |↓ 〉 |↑ 〉 S+ S− Sz+1
2

(78)

that a paulions behaves just like a spin-½. Extending the analogy to more modes/spins, we
obtain the algebra of hard-core bosons [12], where operators involving different spins commute:
[di, dj] = 0 = [d†i , d

†
j], and [di, d

†
j] = 0 for i 6=j, while on the same site they fulfill the canonical

anticommutation relations{
di, d

†
i

}
= 1 and

{
di, di

}
= 0 =

{
d†i , d

†
i

}
. (79)

While hard-core bosons always fulfill the Pauli principle:
(
d†i
)2

= 0, they change character
under basis transformations. This is most easily seen in the case of two sites: Transforming
from d1 and d2 to d± = (d1 ± d2)/

√
2, we see that in the new basis the operators on different

modes need no longer commute[
d+, d

†
−
]

=
1

2

([
d1, d

†
1

]
−
[
d2, d

†
2

])
= N2 −N1 ,
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where we have used [A, B] = {A, B} − 2BA. The problem arises from the on-site anticom-
mutators mixing into the off-site commutators.
This can be fixed by requiring fermionic anticommutation relations for all operators{

ci, c
†
j

}
= δij and

{
ci, cj

}
= 0 =

{
c†i , c

†
j

}
(80)

which, just like the bosonic commutators, remain unchanged under (unitary) basis transforma-
tions c†βi =

∑
µ c
†
αµUµi:

[cβi , c
†
βj

]± =
∑
µ,ν

Uµi Uνj [cαµ , c
†
αν ]±︸ ︷︷ ︸

=δµ,ν

=
∑
µ

(U †)iµUµj = 1 . (81)

This was realized by Jordan and Wigner [11]. To make operators on different sites anticommute,
they introduced operators to keep track of the Fermi sign encountered, e.g., when calculating
hopping terms in the occupation number representation as in (66). The Fermi string operator∏i−1

k=1(−σkz ) collects a factor −1 for every occupied mode (i.e., spin up) below the mode the
ladder operator acts on

c†i = S+
i ⊗ (−2Szi−1)⊗ · · · ⊗ (−2Sz1) and ci = S−i ⊗ (−2Szi−1)⊗ · · · ⊗ (−2Sz1) (82)

Since
(
σz
)2

= 1 this does not change the anticommutation relations between operators on the
same sites, e.g., {

ci, c
†
i

}
=
{
S−i , S

+
i

}
⊗
(
−σi−1

z

)2 ⊗ · · · ⊗
(
−σ1

z

)2
= 1 (83)

while the operators on different sites now anticommute as desired, e.g., for i>j{
ci, c

†
j

}
= S−i ⊗

(
−σi−1

z

)
⊗ · · · ⊗

(
−σj+1

z

)
⊗
{
S+
j ,−σiz

}︸ ︷︷ ︸
=0

⊗
(
−σj−1

z

)2 ⊗ · · ·
(
−σ1

z

)2
= 0 .

(84)

Thus the operators ci and c†j fulfill canonical anticommutation relations, the form of which
remains unchanged under basis transformations, cf. (81). It follows from (83) that also for
paulions the hard-core constraint N2

i = Ni is invariant under basis transformations.
We note in passing that the Pauli principle has interesting consequences for the classical descrip-
tion of electrons first noticed by Rudolf Peierls [6]: Given the particle-wave duality in quantum
mechanics one may wonder why, in the classical limit, electrons behave not like radiation but
as particles. This may be seen as a consequence of the uncertainty relation between particle
number and phase following from [N, θ] = −i, which formed the basis of second quantization.
A classical wave has a well defined phase, which can only be obtained when the uncertainty in
N is large. This condition can be fulfilled for bosons in the limit of large average number of
photons. For fermions, however, the uncertainty in N is severely limited by the Pauli principle,
making it impossible to get a classical wave with well defined phase.
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Such arguments based on a phase operator, as well as the derivation of second quantization
sketched above have, however, to be taken with caution, as working with phase and angle op-
erators is not straightforward [13]. We can see that there is something not quite right with the
phase operator θ already from (74), which shows that eiθ is not unitary, i.e., that θ is not hermi-
tian. The same is true for the corresponding ladder operators in the bosonic case. The reason
is that the number of particles is bounded from below, which means that there is a lowest state
that is annihilated by e−iθ, so that this operator cannot have an inverse.
This problem no longer appears in relativistic quantum mechanics: the second-quantization
commutation relation [E, t] = i~ is related to the first-quantization [ri, pi] = i~δij by Lorentz
invariance. Correspondingly, the relativistic energy spectrum is not bounded from below, but
has hole states of negative energy.
Non-relativistic second quantization, on the other hand, does not need these commutation rela-
tions, since it is nothing but an extremely economical way of representing states. The bosonic
commutation relations are just those for the ladder operators a =

(
x/x0 + ix0px/~

)
/
√

2 of a
harmonic oscillator with x0 =

√
~/mω, for which they are, in fact, just a consequence of the

position-momentum commutator

i~ = [x, px] =
[ x0√

2

(
a+a†

)
, − i~√

2x0

(
a−a†

)]
= − i~

2

[
a+a†, a−a†

]
= +i~

[
a, a†

]
.

For fermions there is a simple relation between anN -electron wave function Ψ(x1, . . . , xN) and
the corresponding N -electron state |Ψ〉:

|Ψ〉 =
1√
N !

∫
dx1 · · · dxN Ψ(x1, . . . , xN) Ψ̂ †(xN) · · · Ψ̂ †(x1)|0〉 (85)

Ψ(x1, . . . , xN) =
1√
N !
〈0|Ψ̂(x1) · · · Ψ̂(xN)|Ψ〉 (86)

with unitarity relations

1

N !

∫
dx1 · · · dxN Ψ̂ †(xN) · · · Ψ̂ †(x1)|0〉〈0|Ψ̂(x1) · · · Ψ̂(xN) = 1N (87)

and

〈0|Ψ̂(x1) · · · Ψ̂(xN) Ψ̂ †(x′N) · · · Ψ̂ †(x′1)|0〉 =

∣∣∣∣∣∣∣
δ(x1−x′1) · · · δ(x1−x′N)

...
...

δ(xN−x′1) · · · δ(xN−x′N)

∣∣∣∣∣∣∣ (88)

so that normalizations are kept∫
dx1 · · · dxN

∣∣Ψ(x1, . . . , xN)
∣∣2 = 1 ⇔ 〈Ψ |Ψ〉 = 1 . (89)

Note that first-quantized wave functions involve factors 1/
√
N !, since the normalization integral

is over all permutations of the coordinates, while integration over a single domain x1< · · ·<xn
(assuming a suitable ordering of the coordinates) already contains all relevant information.
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4.1 Spins, hard-core bosons, and fermions

The equivalence between spin operators and hard-core bosons makes it possible to rewrite
spin-½ Heisenberg models like

J
∑
〈ij〉

~Si · ~Sj (90)

using Sx = (S++S−)/2, Sy = (S+−S−)/2i, and (78) as dictionary, into

J
∑
〈ij〉

1

2

(
d†idj + did

†
j

)
+
(
d†idi−1

2

)(
d†jdj−1

2

)
, (91)

where an (anti)ferromagnetic coupling of the spins corresponds to a (repulsive) attractive inter-
action between the hard-core bosons, while the transverse components of the spin interaction
corresponds to a hopping of paulions. Thus, e.g., the XY -model∑

〈ij〉

Jx S
x
i S

x
j + Jy S

y
i S

y
j (92)

maps to the non-interacting hard-core boson model∑
〈ij〉

Jx+Jy
4

(
d†idj + did

†
j

)
+
Jx−Jy

4

(
d†id
†
j + didj

)
. (93)

For the XX-model, Jx=Jy, there are just hopping terms, for the general XY -model there are
also pairing terms. The opposite limit, Jx=0=Jy, the Ising model, here with transverse field

J
∑
〈ij〉

Szi S
z
j +H

∑
i

Sxi (94)

seems at first to necessarily lead to a model of interacting hard-core bosons. We can, however,
easily rotate the spin-direction so that the external field points in z direction, to obtain a hard-
core boson model with only one-body terms

J

4

∑
〈ij〉

(
d†i+di

)(
d†j+dj

)
+H

∑
i

(
d†idi−1

2

)
. (95)

where the first term is just (93) with Jy = 0.
It is tempting to try to solve these non-interacting hard-core boson Hamiltonians by diagonal-
izing the one-body matrix and using a Bogoliubov transformation. As we have seen, however,
the commutation relations between paulions are not invariant under basis changes, so that the
eigenstates are not simple product states as in (70). This only works for fermions, i.e., when we
multiply the Pauli operators with Fermi strings to obtain fermions c†i = d†i

∏i−1
k=1(−1)nk with

nk = d†kdk or, equivalently, d†i = c†i
∏i−1

k=1(−1)nk with nk = c†kck. Since the sign operators act
on different modes than the creator/annihilator, they commute with the Fermi strings. Rewriting
the paulion models we thus get terms like

d†idj = c†i

i−1∏
k=1

(−1)nk
j−1∏
k=1

(−1)nkcj = c†i

max(i,j)−1∏
k=min(i,j)

(−1)nk cj . (96)
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so that the simple hopping or pairing terms are complicated by the product of spin operators.
Things remain simple, however, for terms involving the same site

d†idi = c†i

i−1∑
k=i

(−1)nkci = c†ici (97)

or adjacent sites (just consider the cases ni=0 or 1 separately)

d†i+1di = c†i+1(−1)nici = c†i+1ci and d†i+1d
†
i = c†i+1(−1)nic†i = −c†i+1c

†
i (98)

and, taking the adjoint

d†idi+1 =
(
d†i+1di

)†
= c†ici+1 and didi+1 =

(
d†i+1d

†
i

)†
= −cici+1 . (99)

For a one-dimensional spin chain, the XY -model or the Ising model with transverse field can
thus be written as a model of non-interacting fermions, e.g., (93) becomes∑

j

Jx+Jy
4

(
c†j+1cj + c†jcj+1

)
+
Jx−Jy

4

(
− c†j+1c

†
j − cjcj+1

)
(100)

and, since now we are dealing with non-interacting fermions, solved in the usual way [14].
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A Appendix

A.1 Atomic units

Practical electronic structure calculations are usually done in atomic units, a.u. for short. While
the idea behind the atomic units is remarkably simple, in practice there is often some confusion
when trying to convert to SI units. We therefore give a brief explanation.
The motivation for introducing atomic units is to simplify the equations. For example, in SI
units the Hamiltonian of a hydrogen atom is

H = − ~2

2me

∇2 − e2

4πε0 r
. (101)

When we implement such an equation in a computer program, we need to enter the numerical
values of all the fundamental constants. We can avoid this by using a system of units in which
the numerical values of the electron mass me, the elementary charge e, the Planck-constant ~,
and the dielectric constant 4πε0 are all equal to one. In these units the above equation can be
programmed as

H = −1

2
∇2 − 1

r
. (102)

This immediately tells us: 1 a.u. mass = me and 1 a.u. charge = e. To complete the set of
basis units we still need the atomic unit of length, which we call a0, and of time, t0. To find the
values of a0 and t0 we write ~ and 4πε0 (using simple dimensional analysis) in atomic units:
~ = 1mea

2
0/t0 and 4πε0 = 1 t20e

2/(mea
3
0). Solving this system of equations, we find

1 a.u. length = a0 = 4πε0~2/mee
2 ≈ 5.2918 · 10−11 m

1 a.u. mass = me = ≈ 9.1095 · 10−31 kg
1 a.u. time = t0 = (4πε0)2~3/mee

4 ≈ 2.4189 · 10−17 s
1 a.u. charge = e = ≈ 1.6022 · 10−19 C

The atomic unit of length, a0, is the Bohr radius. As the dimension of energy is mass times
length squared divided by time squared, its atomic unit ismea

2
0/t

2
0 = mee

4/(4πε0)2~2. Because
of its importance the atomic unit of energy has a name, the Hartree. One Hartree is minus twice
the ground-state energy of the hydrogen atom, 1 Ha ≈ 27.211 eV.
It would be tempting to try to set the numerical value of all fundamental constants to unity.
But this must obviously fail, as the system of equations to solve becomes overdetermined when
we try to prescribe the numerical values of constants that are not linearly independent in the
space of basis units. Thus, we cannot, e.g., choose also the speed of light to have value one, as
would be practical for relativistic calculations. Instead, in atomic units it is given by c t0/a0 =

4πε0~c/e2 = 1/α, where α is the fine structure constant. Thus c = α−1 a.u. ≈ 137 a.u.
The Bohr magneton is µB = 1/2 a.u. The Boltzmann constant kB, on the other hand, is
independent of the previous constants. Setting its value to one fixes the unit of temperature to
1 a.u. temperature = mee

4/(4πε0)2~2kB = Ha/kB ≈ 3.158 · 105 K.
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A.2 Non-orthonormal basis

A general one-electron basis of functions |χn〉 will have an overlap matrix Snm = 〈χn|χm〉 that
is positive definite (and hence invertible) and hermitian. The completeness relation is

1 =
∑

k,l|χk〉(S
−1)kl〈χl| . (103)

With it we can easily write the Schrödinger equation Ĥ|v〉 = ε|v〉 in matrix form∑
k

〈χi|H|χk〉︸ ︷︷ ︸
=:Hik

∑
l

(S−1)kl〈χl|v〉︸ ︷︷ ︸
=:vk

〈χi|Ĥ|v〉 = ε〈χi|v〉 = ε
∑
k

〈χi|χk〉︸ ︷︷ ︸
=Sik

∑
l

(S−1)kl〈χl|v〉︸ ︷︷ ︸
=vk

.

(104)
Collecting all components, this becomes the generalized eigenvalue problemHv = εSv. From
the solution v we can easily construct |v〉 =

∑
vk|χk〉. It is, however, often more convenient

to have an orthonormal basis, so that we do not have to deal with the overlap matrices in the
definition of the second quantized operators or the generalized eigenvalue problem.
To orthonormalize the basis {|χn〉}, we need to find a basis transformation T such that

|ϕn〉 :=
∑

m|χm〉Tmn with 〈ϕn|ϕm〉 = δmn . (105)

This implies that T †ST = 1, or equivalently S−1 = TT †. This condition does not uniquely
determine T . In fact there are many orthonormalization techniques, e.g., Gram-Schmidt or-
thonormalization or Cholesky decomposition.
Usually we will have chosen the basis functions |χn〉 for a physical reason, e.g., atomic orbitals,
so that we would like the orthonormal basis functions to be as close to the original basis as
possible, i.e, we ask for the basis transformation T that minimizes∑

n

∥∥|ϕn〉 − |χn〉∥∥2
=
∑
n

∥∥∥∑
m

|χm〉(Tmn−δmn)
∥∥∥2

= Tr (T †−1)S (T−1) = Tr (T †ST︸ ︷︷ ︸
=1

−T †S − ST + S) . (106)

Given an orthonormalization T , we can obtain any other orthonormalization T̃ by performing
a unitary transformation, i.e., T̃ = TU . Writing U = exp(iλM ) withM a Hermitian matrix,
we obtain the variational condition

0
!

= Tr (+iMT †S − iSTM) = iTr (T †S − ST )M , (107)

which is fulfilled for ST = T †S, i.e., ST 2 = T †ST = 1. The second variation at T = S−1/2

1

2
Tr (M 2S1/2 + S1/2M 2) > 0 (108)

is positive, since S and the square of the hermitian matrix M are both positive definite. Hence
the Löwdin symmetric orthogonalization [15]

TLöwdin = S−1/2 (109)

minimizes the modification of the basis vectors due to orthogonalization.
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A.3 Pauli matrices

The spin matrices were defined by Pauli [16] as

σx =

(
0 1

1 0

)
σy =

(
0 −i

i 0

)
σz =

(
1 0

0 −1

)
They are hermitian and unitary, so that σ2

j = σjσ
†
j = 1. Moreover, detσj = −1 and Tr σj = 0.

By explicit multiplication we find σxσy = iσz, from which we get the more symmetric equation
σxσyσz = i. These relations are cyclic, which is easily seen by repeatedly using σ2

j = 1

σxσy = iσz
·σz
; σxσyσz = i

σx·
; σyσz = iσx

·σx
; σyσzσx = i

σy ·
; σzσx = iσy

·σy
; σzσxσy = i .

Exchanging two adjacent indices changes the sign, e.g., multiplying σxσyσz = i from the left
with σyσx gives σyσx=−iσz, which is again cyclic in the indices. We note that the multiplication
table of the matrices −iσj is the same as the that of the basic quaternions. We can summarize
the products of the Pauli matrices in the form(

~a · ~σ
)(
~b · ~σ

)
=
∑

ajbk σjσk =
(
~a ·~b

)
1+ i

(
~a×~b

)
· ~σ . (110)

From the products follow the familiar commutation relations [σx, σy] = 2iσz (cyclic), while the
anticommutators are {σj, σk} = 2δj,k 1.

Together with the unit matrix, the Pauli matrices form a basis of the four-dimensional algebra
of complex 2×2 matrices and we can write(

m11 m12

m21 m22

)
= M = m01+ ~m · ~σ =

(
m0+mz mx−imy

mx+imy m0−mz

)
(111)

with 2m0 = m11+m22, 2mz = m11−m22, 2mx = m12+m21, and 2mx = i(m12−m21), which
can be written as 2mj = TrMσj , with σ0 := 1. When the m0 and ~m are real, M is hermitian.
Matrix products are easily evaluated using (110). As a simple example we find

(m01+ ~m · ~σ)(m01− ~m · ~σ) = m2
0 −m2

x −m2
y −m2

z = detM

(remember detα1N = αN ). Thus, when detM 6= 0, the inverse of M is

M = m01+ ~m · ~σ ; M−1=(m01− ~m · ~σ)/ detM. (112)

For a unitary matrix U=u0 +~u·~σ with detU = 1 we then see from U † = u∗0 +~u ∗ ·~σ !
= u0−~u·~σ

that u0 must be real and ~u = i~n imaginary, so that 1 = detU = u2
0 + ‖~n‖2, which allows us

to write u0 = cosα and ~n = sinα n̂ with unit vector n̂ := ~n/‖~n‖ and α ∈ [0, 2π). Thus any
special unitary 2×2 matrix U∈ SU(2) can be written, using (n̂ ·~σ)2=1 from (110) in the power
series,

Un̂,α = cosα1+ i sinα (n̂ · ~σ) = exp
(
iα n̂ · ~σ

)
. (113)

General unitary matrices with detU = eiα0 have the form U = eiα0/2Un̂,α.
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TheU are related to rotations of vectors~a ∈ R3 viaU(~a·~σ)U †. To see this we remember that~a·~σ
is a hermitian 2×2 matrix with zero trace. By the cyclic property of the trace TrU(~a · ~σ)U † =

Tr~a · ~σ, so that there exists a unique ~aU with U(~a · ~σ)U † = ~aU · ~σ. This mapping ~a → ~aU is
linear, U

(
(c~a+~b) · ~σ

)
U † = cU(~a · ~σ)U † + U(~b · ~σ)U †, and preserves the inner product

~a ·~b = 1
2

Tr(~a · ~σ)(~b · ~σ) = 1
2

TrU(~a · ~σ)U † U(~b · ~σ)U † = 1
2

Tr(~aU · ~σ)(~bU · ~σ) = ~aU ·~bU
so that it must be a proper rotation, ~aU = RU ~a with RU ∈ SO(3). To identify which rotation,
we consider the special case ~a‖ = can̂ for which, by (110), ~a‖ · ~σ commutes with n̂ · ~σ so that
U(~a‖ · ~σ)U † = ~a‖ · ~σ, i.e., n̂ is the axis of rotation. To find the rotation angle ϑ, we consider a
unit vector â⊥ perpendicular to n̂, for which, using (â⊥·~σ)(n̂ ·~σ) = i(â⊥× n̂) ·~σ and Tr~v ·~σ = 0,

cosϑ = â⊥ ·RU â⊥ = 1
2

Tr(â⊥ · ~σ)U(â⊥ · ~σ)U †

= 1
2

Tr(â⊥ · ~σ)(cosα + i sinα (n̂ · ~σ)) (â⊥ · ~σ)(cosα− i sinα (n̂ · ~σ))

= 1
2

Tr
(
cosα â⊥− sinα (â⊥×n̂)

)
· ~σ

(
cosα â⊥+ sinα (â⊥×n̂)

)
· ~σ

=
(
cosα â⊥−sinα (â⊥×n̂)

)
·
(
cosα â⊥+sinα (â⊥×n̂)

)
= (cosα)2− (sinα)2 = cos 2α

Hence, Un̂,α∈ SU(2) induces a rotation RU∈ SO(3) about the axis n̂ through the angle ϑ = 2α.
Therefore, matrices in SU(2) are commonly written using the angle of rotation ϑ ∈ [0, 4π)

instead of α ∈ [0, 2π) as U(n̂, ϑ) = exp(iϑ
2
n̂ · ~σ). We see, in particular, that the two matrices

U(n̂, ϑ) and U(n̂, ϑ+2π) = −U(n̂, ϑ) in SU(2) induce the same rotation R−U = RU ∈ SO(3).

Diagonalizing a hermitian 2×2 matrix M = m01+ ~m · ~σ is now simple: just rotate m̂→ ẑ

U
(
m01+ ‖~m‖ (m̂ · ~σ)

)
U † = m01+ ‖~m‖σz

from which we easily read off the eigenvalues

ε± = m0 ± ‖~m‖ =
m11+m22

2
±
√

(m11−m22)2

4
+|m12|2 = 1

2
TrM ±

√(
1
2

TrM
)2− detM,

while the eigenvalues are the columns vectors of U † =
(
v+, v−

)
m01+ ~m · ~σ = U †

(
m01+ ‖~m‖σz

)
U = m01+ ‖~m‖

(
v+,v−

)
σz

(
v†+
v†−

)
We still need to determine a U that rotates m̂ → ẑ. The rotation axis should be orthogonal
to both vectors, i.e., n̂ = ẑ×m̂/‖ẑ×m̂‖ = (mxŷ−myx̂)/

√
m2
x+m

2
y, so that the rotation angle

ϑ ∈ [0, π] is determined by cosϑ = m̂·ẑ = mz/‖~m‖. Using also the other spherical coordinates
mx = ‖~m‖ sinϑ cosϕ and my = ‖~m‖ sinϑ sinϕ, we get n̂ = cosϕ ŷ − sinϕ x̂ so that

U(n̂, ϑ) =

(
cos ϑ

2
+ inz sin ϑ

2
(ny+inx) sin ϑ

2

−(ny−inx) sin ϑ
2

cos ϑ
2
− inz sin ϑ

2

)
=

(
cos ϑ

2
+e−iϕ sin ϑ

2

−e+iϕ sin ϑ
2

cos ϑ
2

)
from which we read off the eigenvectors as the columns of U † (which you may want to check
for simple cases like M =σz, σx or σy)

v+ =

(
cos ϑ

2

+e+iϕ sin ϑ
2

)
and v− =

(
−e−iϕ sin ϑ

2

cos ϑ
2

)
with

ϕ = arg(m21)=− arg(m12)

ϑ = arccos
m11−m22

ε+−ε−

.

(114)
A more symmetric form of the eigenvectors may be obtained by writing e∓iϕ/2v±.
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A.4 Some useful commutation relations

Commuting an operator through a product of operators is straightforward

AB1 · · ·BN = [A, B1]B2 · · ·BN +B1AB2 · · ·BN

= [A, B1]B2 · · ·BN +B1[A, B2] · · ·BN +B1B2A · · ·BN

...

=
N∑
n=1

n−1∏
i=1

Bi [A, Bn]
N∏

i=n+1

Bi +B1 · · ·BNA

while, working analogously, anticommuting introduces alternating signs

AB1 · · ·BN = {A, B1}B2 · · ·BN −B1AB2 · · ·BN

= {A, B1}B2 · · ·BN −B1{A, B2} · · ·BN −B1B2A · · ·BN

...

=
N∑
n=1

(−1)n−1

n−1∏
i=1

Bi {A, Bn}
N∏

i=n+1

Bi + (−1)NB1 · · ·BNA

The following special cases are particularly useful

[A, BC] = [A, B]C + B [A, C]

= {A, B}C −B{A, C}

[AB, C] = A [B, C] + [A, C]B

= A{B, C} − {A, C}B

[AB, CD] = A [B, C]D + AC [B, D] + [A,C] DB + C [A, D]B

= A{B, C}D − AC{B, D}+ {A,C}DB − C{A, D}B

Important examples are
[
c†icj, c

†
γ

]
= 〈j|γ〉 c†i and

[
c†icj, cγ

]
= −〈i |γ〉 cj .

For the commutator of products of creation and annihilation operators appearing in one- and
two-body operators we find[

c†icj, c
†
αcβ
]

=
[
c†icj, c

†
α

]
cβ + c†α

[
c†icj, cβ

]
= 〈j|α〉 c†icβ − 〈β|i〉 c

†
αcj

and [
c†ic
†
jckcl , c

†
αcβ
]

= 〈l|α〉 c†ic
†
jckcβ + 〈k|α〉 c†ic

†
jcβcl − 〈β|j〉 c

†
ic
†
αckcl − 〈β|i〉 c

†
αc
†
jckcl .
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Emergent Phenomena in Correlated Matter,
Modeling and Simulation, Vol. 3 (Forschungszentrum Jülich, 2013)
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1 Introduction

When the Schrödinger equation and quantum mechanics were invented, the hydrogen atom was
the first system targeted. The field of quantum chemistry may be considered to start also at this
point, or alternatively when the first molecule, H2, was addressed.
The research in this field involves enormous calculations, and thus a major advance came with
electronic computers. Programming languages and compilers facilitate code development, and
since a few decades, computer codes for electronic structure calculations have been developed
and continuously grow.
This chapter will deal with quantum chemical methods. They usually start from a Hartree-Fock
calculation, and are followed by a correlation (post-Hartree-Fock) calculation. This way of
including electron correlation is wave function based. As a numerical tool, basis sets (usually
Gaussian basis sets) are introduced. The notion ab initio calculations is used in this context,
with the denotation that there are no parameters fitted to experiment.
Density functional theory is at the border of quantum chemistry, and will be treated in other
chapters of this book. A short section on density functional theory has been included also in
this chapter, to establish the connection between Hartree-Fock and density functional theory.
This chapter aims at introducing basic notions of the field. For further reading, a couple of
textbooks can be recommended, e.g. [1–6].

2 Setting up the Hamiltonian

For the electronic structure problem, we will consider a total energy expression which initially
consists of kinetic energy contributions (electrons, nuclei) and the Coulomb interaction.
In a simple example, we consider two atoms (figure 1).

rij

qj

qi

Fig. 1: A simple example with two atoms, separated by a distance rij .

The Coulomb interaction of the nuclei can be expressed as

V (rij) =
qiqj

4πε0rij
=:

qiqj
rij

, (1)

where atomic units (~ = mel = e = 4πε0 = 1) have been used in the last step.
The kinetic energy consists of contributions due to the nuclei and N electrons

Ekinetic =
1

2
Mi~vi

2 +
1

2
Mj~vj

2 +
N∑
k=1

1

2
mel~vk

2 . (2)
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In general, we obtain

E = Ekinetic + ECoulomb
(
+Eexternal fields + Erelativistic corrections

)
. (3)

In the following, external fields (e.g. electric or magnetic fields) will not be considered, also
relativistic effects are neglected. The classical energy then becomes, for a system of n nuclei of
charges Zj , and N electrons

E =
1

2

n∑
j=1

~p 2
j

Mj

+
1

2

N∑
i=1

~p 2
el,i

mel

+
n∑
j=1

n∑
j′=j+1

ZjZj′

|~Rj−~Rj′ |
+

N∑
i=1

N∑
i′=i+1

1

|~ri−~ri′ |
−

N∑
i=1

n∑
j=1

Zj

|~ri−~Rj|
(4)

As the masses of the nuclei Mj are much larger than the masses of the electrons mel, the kinetic
energy of the nuclei is neglected: the Born-Oppenheimer approximation is made.
After replacing the momentum ~p with the corresponding quantum mechanical operator −i~∇,
we obtain the quantum mechanical Hamiltonian, in atomic units,

H = −1

2

N∑
i=1

∇i
2 +

n∑
j,j′=1
j′>j

ZjZj′

|~Rj−~Rj′ |
+

N∑
i,i′=1
i′>i

1

|~ri−~ri′ |
−

N∑
i=1

n∑
j=1

Zj

|~ri−~Rj|
. (5)

Finally, the Schrödinger equation is obtained

HΨ(~x1, ~x2, ..., ~xN) = EΨ(~x1, ~x2, ..., ~xN) (6)

with the many-body wave function Ψ(~x1, ~x2, ..., ~xN) where ~x represents the spatial coordinate ~r
and the spin s.
An analytical solution is possible only in few exceptional cases, such as the hydrogen atom.
Remember that even the classical 3-body problem can, in general, not be solved exactly. Con-
sequently, from the time quantum mechanics was introduced, also methods to tackle the many-
body problem have been developed.

3 Quantum chemical approach

The target is the description of real materials, without employing parameters from the experi-
ment. Quantum chemistry started with the description of atoms and molecules, and meanwhile
has been extended to systems with periodicity such as 3D (bulk), 2D (surfaces), or 1D (e.g.
nanotubes).
Originally, the notion quantum chemistry was restricted to wave function based methods. The
first step is the description of a system with a single Slater determinant, the Hartree-Fock ap-
proach. In the next step, based on the Hartree-Fock wave function, more than one Slater de-
terminant is considered, by post-Hartree-Fock methods (correlation methods). There has been
an enormous development in this area, and is still ongoing, to perform high-level calculations
for demanding systems. The strength is that these calculations are mathematically well defined,
and can be systematically improved.
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treatment: CI(SD), ...

full CI

Fig. 2: Hierarchies of methods and computational parameters (basis set).

Closely related is density functional theory, which has become the main tool for electronic struc-
ture calculations. It is based on the Hohenberg-Kohn theorem [7] that an (unknown) functional
should describe a system in its ground state. In this book chapter, this method will however be
only marginally described, as there are other contributions in the present autumn school, or also
in last year’s edition [8]. Nevertheless, there are close connections also concerning implemen-
tation issues (Hartree-Fock versus density functional theory in the Kohn-Sham formulation), so
that density functional theory will be addressed in this chapter.

Finally, there are further methods which will not be discussed here, such as quantum Monte
Carlo. Also, semiempirical methods, methods based on force fields, or combinations of quan-
tum mechanical methods with molecular mechanics (QM/MM) will not be included.

A hierarchy of methods can be constructed with increasing accuracy, but usually also increasing
computational demand. Besides the approximation due to the method employed, it is also usu-
ally necessary to make an approximation concerning the computational parameters. In quantum
chemistry, the main parameter set are the basis functions which are used to express the wave
function and the orbitals. This leads to a second hierarchy concerning the choice of the basis
set. The situation is visualized in figure 2: The basic method is Hartree-Fock, followed by
methods such as configuration interaction (CI) with singles and doubles substitution, CI(SD),
up to full configuration interaction as the maximum for a given basis set. On the basis set side,
the smallest possible basis set has one basis function per orbital (minimal basis set), up to high-
level basis sets which have multiple basis functions at least for the valence orbitals, and also
span a large range of angular momenta.

Besides, there are further parameters such as the way integrals are computed, approximated, or
possibly even discarded if they are below a certain threshold. If a numerical integration is done,
then the grid size plays an important role. In calculations for periodic systems, there are further
parameters such as the number of points in the reciprocal lattice.
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4 Hartree-Fock

In the following, we assume, for simplicity, that the Hamiltonian is spin-independent. A single
electron is described by a spin orbital χ(~x) = ψ(~r)α(s), with a spatial part ψ and a spin part α.
The spatial orbitals are assumed to be orthonormal, as well as the spin parts. The integration is
performed over d~x which consists of an integral over space d3r and over spin. The latter gives 1
if both spins are the same (both up, both down), and 0 if the spins are different (one up, the
other down). The wave function is then expressed as a Slater determinant

ΨHF (~x1, ..., ~xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
χ1(~x1) χ2(~x1) · · · χN(~x1)

χ1(~x2) χ2(~x2) · · · χN(~x2)
...

... . . . ...
χ1(~xN) χ2(~xN) · · · χN(~xN)

∣∣∣∣∣∣∣∣∣∣
(7)

This is evaluated as a determinant with the corresponding rules for the sign. Note that electrons
are fermions, and thus the wave function is supposed to change sign when two electrons are
exchanged. This way, the Pauli principle is included: if there were two electrons in the same
spin orbital (e.g. χ1 = χ2), then there would be two identical columns and the wave function
would be identical to zero.
The total energy, on the Hartree-Fock level, is then obtained as the expectation value of the
Hamiltonian

Etotal, HF = 〈ΨHF |H|ΨHF 〉 . (8)

As ΨHF is normalized, this expectation value is an upper bound of the total energy, as guaranteed
by the variational principle.

4.1 Hartree-Fock equations

The Hartree-Fock energy has to be minimized by varying the spin orbitals χi, under the condi-
tion that they must remain orthonormal

〈χi|χj〉 = δij . (9)

This is important to guarantee the normalization of the Slater determinant. We may take this
condition into account with the help of Lagrange multipliers, εba, so that we obtain

L = Etotal, HF −
N∑

a,b=1

εba

(
〈χa|χb〉 − δab

)
. (10)

We will in the following assume the simplest case of closed-shell restricted Hartree-Fock. Re-
stricted means that spatial orbitals for up- and down-spin are the same, reflecting the symmetry
of the spin-independent Hamiltonian. Closed-shell means that each spatial orbital is either oc-
cupied with two electrons of opposing spin, or is empty.
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The Hartree-Fock energy is obtained in terms of the spin orbitals as [1]

Etotal, HF = ENN +
N∑
a=1

∫
χ∗a(~x)

(
Hkin+Hel-nuc

)
χa(~x) d~x

+
1

2

N∑
a,b=1

∫∫
χa
∗(~x1)χa(~x1)χ

∗
b(~x2)χb(~x2)

|~r1−~r2|
d~x1d~x2

−1

2

N∑
a,b=1

∫∫
χa
∗(~x1)χb(~x1)χ

∗
b(~x2)χa(~x2)

|~r1−~r2|
d~x1d~x2 . (11)

Besides the nuclear-nuclear repulsion, kinetic energy and electron-nuclear attraction, we have
the Coulomb repulsion between the electrons. The last term is due to the antisymmetry of the
wave function, and is called the exchange term. The Coulomb term is similar to the Coulomb in-
teraction in classical electrodynamics. There is however no classical analogue for the exchange
term, and it is thus a quantum mechanical effect.
Equation (11) is the energy expression for a single Slater determinant. A better, but also more
demanding approach would be to include more than one Slater determinant, see section 7. They
include effects beyond Hartree-Fock, i.e, correlation effects. These correlations reflect the fact
that the electrons are not independent, but instead the probability to find an electron at a certain
position depends on the positions of the other electrons.
The variation δL of (10) is obtained by varying the spin orbitals

χ→ χ+ δχ . (12)

This results for δEtotal, HF in

(
Hkin+Hel-nuc

)
χa(~x1) +

N∑
b6=a

∫
χ∗b(~x2)χb(~x2)

|~r1−~r2|
d~x2 χa(~x1)−

N∑
b6=a

∫
χ∗b(~x2)χa(~x2)

|~r1−~r2|
d~x2 χb(~x1).

(13)
With the local (i.e. defined at a point ~r1) Coulomb potential

Jb(~x1) =

∫
χ∗b(~x2)χb(~x2)

|~r1−~r2|
d~x2 (14)

and the non-local exchange potential (non-local meaning that it cannot be written as a potential
at some local point ~r1)

Kb(~x1)χa(~x1) =

∫
χ∗b(~x2)χa(~x2)

|~r1−~r2|
d~x2 χb(~x1) (15)

we finally obtain the Hartree-Fock equations

(
Hkin+Hel-nuc

)
χa(x1) +

N∑
b6=a

Jb(~x1)χa(~x1)−
N∑
b 6=a

Kb(~x1)χa(~x1) = εaχa(~x1). (16)
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Note that εab does not appear, but only εa. This is due to a unitary transformation of the orbitals
in such a way that εab becomes diagonal and is replaced by εa. These orbitals are called canon-
ical orbitals. They may be transformed to other orbital sets with the same Hartree-Fock energy.
In fact, any unitary transformation among the occupied orbitals leaves the Slater determinant
unchanged. Such a different choice may be more convenient, for example localized orbitals for
correlation calculations.
A shorthand notation of the Hartree-Fock equations is

f(~x1)χa(~x1) = εa(~x1)χa(~x1). (17)

Here we have introduced the Fock operator f. It acts on a spin orbital, but also depends on
the other spin orbitals. This equation is thus not simply an eigenvalue equation, but an integro-
differential equation. The Hartree-Fock equations can normally only be solved numerically.

4.2 Finite basis set: Hartree-Fock-Roothaan

The Hartree-Fock equations are usually solved by employing a finite basis set. The spatial
orbitals are expressed with the help of a set of K basis functions φν(~r )

ψi(~r ) =
K∑
ν=1

cνi φν(~r ). (18)

After integrating with
∫
d3r φ∗µ(~r ), we obtain the Fock matrix

Fµν =

∫
φ∗µ(~r )f(~r )φν(~r ) d

3r (19)

and the overlap matrix

Sµν =

∫
φ∗µ(~r )φν(~r ) d

3r . (20)

The Hartree-Fock equations (17) with a finite basis set thus may be written in matrix form

K∑
ν=1

Fµνcνi = εi

K∑
ν=1

Sµνcνi (21)

The coefficients cνi and the eigenvalues εi have to be determined by solving this generalized
eigenvalue problem. An analogous procedure may be performed for periodic systems. The
equation then additionally depends on the reciprocal lattice vectors ~k

K∑
ν=1

Fµν(~k)cνi(~k) = εi(~k)
K∑
ν=1

Sµν(~k)cνi(~k) (22)

and the eigenvalues εi(~k) are interpreted as the band structure.
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set up Hartree-Fock-Roothaan equations:

Insert new cμν as guess in Hartree-Fock-Roothaan equations:
                               new Ψguess ( x⃗1 , x⃗2, x⃗3 , ... , x⃗ N )

∑
ν=1

K

Fμ νcν i=ϵi∑
ν=1

K

Sμ νcν i

⇒Ψguess ( x⃗1 , x⃗2 , x⃗3 ,... , x⃗N )

Specify molecule / periodic system => Schrödinger equation

Initial guess for cμν     

solve equations, obtain new  cμν   , compute total energy 

Repeat until   ψ
new guess

=ψ 
previous guess  

or energy difference between iterations below threshold

Converged: self consistent field solution

Fig. 3: The self-consistent field procedure.

4.3 Solution of the Hartree-Fock equations

Even after introducing a finite basis set, the Hartree-Fock equations (21) and (22) cannot be
solved analytically. Instead, an iterative procedure is performed as displayed in figure 3.
After specifying the geometry and setting up the Schrödinger equation, the computational pa-
rameters are defined (basis set and other parameters). It may be advantageous to compute
integrals (matrix elements of the various one and two-electron operators) beforehand and store
them on disk. After this, an initial guess for the unknown coefficients cµν is made. The Fock
matrix is constructed based on the initial guess (remember that the Fock matrix Fµν depends
on the cµν). The Hartree-Fock-Roothaan equations are solved, and new coefficients cµν are
obtained, together with the orbital eigenvalues εi. The new solution is used to set up the Fock
operator once again, and the procedure is repeated. This is iteratively done until the energy
difference between two iterations is below a threshold, or the change of the coefficients cµν is
below a threshold (self-consistency).
The procedure works reasonably well for molecules with large gaps between highest occupied
(HOMO) and lowest unoccupied molecular orbital (LUMO). Near-degeneracies, on the other
hand, usually cause convergence problems. These convergence problems may be addressed by
mixing the previous guess with a certain weight (Fock matrix mixing), or more sophisticated
methods such as the direct inversion in the iterative subspace (DIIS) [9]. Also, level shifting is
often used, e.g., in the case of transition metals. Here, the orbital eigenvalues of the unoccupied
orbitals are shifted by a certain value to help finding the right occupancy; in spin-polarized
systems, a different level shift is chosen for up and down spins.
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5 Density functional theory

Density functional theory was initially mainly applied in solid state physics, but has meanwhile
gained more and more importance in molecular electronic structure theory.
It is based on the Hohenberg-Kohn theorem [7], which shows that the energy can be written as
a functional of the electron density ρ(~r )

Etotal = E[ρ] = Enn + Ekin[ρ] + Eee[ρ] + Ene[ρ] (23)

with contributions from the nuclear-nuclear repulsion Enn, the kinetic energy of the electrons
Ekin, the electron-electron repulsion Eee and the attraction of the electrons by the nuclei, Ene,
as an external potential.
The important finding was that two external potentials which differ by more than a constant
will result in different ground-state densities [7]. There is thus a one-to-one correspondence
between the external potential and the electron density of the corresponding ground state. The
variational principle states that the exact density minimizes Etotal. However, the exact func-
tional is unknown.
Kohn and Sham [10] then suggested to express the exact density as that of non-interacting
electrons

ρ(~r ) =
N∑
i=1

|χi(~r )|2. (24)

This corresponds to the density obtained from a reference system described by a single Slater
determinant constructed from the N orbitals χi. We assume again, for simplicity, the case
without explicit spin-dependence (i.e. closed-shell, restricted DFT), and use the notation χ(~r )
for the spin orbitals.
The kinetic energy is then obtained as

Ekin = −1

2

N∑
i=1

∫
χi(~r )∆χi(~r ) d

3r. (25)

This is the expression for a non-interacting system, and would not be the correct one for an
interacting system which, in general, has to be described by more than one Slater determinant.
However, we have the correct density. As there is a one-to-one correspondence between the
density and the potential, we still have the correct potential, though the kinetic energy expres-
sion alone is incorrect. The error is fixed by adding the difference between the correct kinetic
energy and that of the non-interacting system into the term which describes the electron-electron
interaction.
The nuclear-electron attraction is obtained simply as

Ene[ρ] = −
n∑
j=1

∫
Zj ρ(~r )

|~r−~Rj|
d3r (26)

while the electron-electron interaction is finally expressed as

Eee[ρ] = EH [ρ] + EXC [ρ] (27)
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with the electron-electron Coulomb interaction (Hartree energy)

EH =
1

2

∫∫
ρ(~r )ρ(~r ′)

|~r−~r ′|
d3rd3r′. (28)

The unknown term for the exchange and correlation energy (which, as mentioned above, also
includes the correction for the kinetic energy) is thus EXC [ρ].
As the exact density minimizes the energy, the density is obtained by a variation. Because the
density is expressed with the help of the spin orbitals χ(~r ), the procedure is similar to Hartree-
Fock theory. In the end, the Kohn-Sham equations are obtained(

−1

2
∆+ Veff (~r )

)
χi(~r ) = εi χi(~r ) (29)

with the effective potential

Veff (~r ) = −
n∑
j=1

Zj

|~r−~Rj|
+

∫
ρ(~r ′)

|~r−~r ′|
d3r′ +

δEXC [ρ]

δρ
. (30)

The unknown part is thus the exchange-correlation functionalEXC . Numerous functionals have
been suggested, and the number of functionals is still growing enormously.
Note the similarity between the Kohn-Sham equations in equation (29) and the Hartree-Fock
equations in equation (17). This has also practical implications: a code which solves the
Hartree-Fock equations can usually be modified to perform also density functional calculations.
The reverse, i.e., going from a density functional code to a Hartree-Fock code, is significantly
more difficult, as the exact Fock exchange (15), which is non-local, has to be implemented.
Nowadays, most calculations are performed on the density functional level, and pure Hartree-
Fock is rarely used. Due to the unknown exchange-correlation functional, an error is introduced.
The order of magnitude of this error may be estimated by comparing different functionals and
thus obtaining a band width of results. Particularly sensitive properties are band gaps or exci-
tation energies which are difficult to describe in density functional theory. Functionals such as
the local density approximation or gradient corrected functionals tend to underestimate gaps,
whereas Hartree-Fock tends to overestimate. Though there are hybrid functionals with an ad-
mixture of Fock exchange and which often give surprisingly good values for band gaps, one
still has to keep in mind that these functionals have to be calibrated and are not as systematic as
wave function based correlation.
The major importance of Hartree-Fock theory is nowadays that it serves as a starting point for
correlation calculations which will be discussed in Sec. 7.

6 Basis sets

As the Hartree-Fock (or Kohn-Sham) equations can, in general, not be solved analytically,
the molecular (or crystalline) orbitals are instead expanded in basis functions. For a recent
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overview, see [11]. In molecular quantum chemistry, local basis sets are preferably used. They
can be applied to periodic systems as well – one just has to construct Bloch functions.
Alternatively, plane waves are often used as basis functions in solid state applications. Here,
the crystalline orbitals are expressed as

Φ(~r,~k) =
∑
~K

c~k, ~K exp
(
−i(~k+ ~K)~r

)
(31)

where the sum over reciprocal lattice vectors ~K is truncated according to the condition

~2

2mel

(~k+ ~K)2 ≤ Ecutoff (32)

with a cutoff energy Ecutoff.
In the following, the focus will be on local basis sets. An obvious starting point would be to use
properties of the functions which are solutions of the hydrogen atom. Thus, basis functions of
the following form have been suggested

φ(~r− ~A) = N(x−Ax)a(y−Ay)b(z−Az)c exp
(
−ζ|~r− ~A|

)
, (33)

where ~A is the position of the nucleus, and a, b, c are integers. Exponents are traditionally
labeled with ζ . These functions are called Slater functions or Slater type orbitals. The factor
exp(−ζ|~r− ~A|) has the shape of the exact solution of the hydrogen atom. Most importantly,
when approaching the positions of the nuclei, Slater functions may satisfy the cusp conditions
(see below) which is a major advantage. However, they suffer from the drawback that integrals
are difficult to evaluate.

Gaussian basis functions

Instead, Gaussian basis functions have become very popular, as integrals are easier to be evalu-
ated. Their structure is

φprimitive(~r− ~A) = N(x−Ax)a(y−Ay)b(z−Az)c exp
(
−ζ(~r− ~A)2

)
(34)

They have various shortcomings such as that their derivative exists at the position nucleus,
whereas this is in general not the case for the exact solution: Instead, a cusp condition should
be fulfilled at the nucleus [2]

lim
r→0

(
∂Ψ

∂r

)
ave

= −Z Ψ(r=0) (35)

where ave means the spherical average, and this holds if Ψ(r = 0) 6= 0. Similarly, the electronic
cusp condition

lim
r12→0

(
∂Ψ

∂r12

)
ave

=
1

2
Ψ(r12=0) (36)

with r12 = |~r1−~r2| is not fulfilled.
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Fig. 4: Visualization of Gaussians: tight (blue, mainly relevant for the core region); diffuse
(green, important for the region of the chemical bond).

Despite these formal disadvantages of Gaussians, they have become dominant in the field of
molecular quantum chemistry.
The value of the exponent ζ determines whether the Gaussian function is called tight (roughly
those with ζ � 1) or diffuse (roughly: ζ � 1 in atomic units). Tight functions are more relevant
to describe the core region, whereas diffuse functions are more relevant for the chemical bond
(see figure 4).
For efficiency reasons, several primitive Gaussians may be combined into a contracted Gaussian
with fixed contraction coefficients di

φ(~r− ~A) = N (x−Ax)a(y−Ay)b(z−Az)c
L∑
i=1

di exp
(
−ζi(~r− ~A)2

)
(37)

This is usually done for tight exponents: if the contraction coefficients di were allowed to be
optimized, then they would not change very much from system to system, as the tight functions
mainly describe the core region close to the cusp at the nuclear position. It is thus more efficient
to optimize the contraction coefficients di once for a given atom, and then keep them fixed. The
molecular orbitals are then expanded as shown in equation (18).
In a similar way, crystalline orbitals for periodic systems may be obtained. First, basis functions
are constructed which satisfy the Bloch condition for electrons in a periodic potential

Φµ(~r,~k) =
∑
~g

φµ
(
~r− ~Aµ−~g

)
exp(i~k~g) (38)

where the summation is over the direct lattice vectors ~g, and the basis functions now depend
on the reciprocal lattice vector ~k. Analogous to molecular orbitals, equation (18), crystalline
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orbitals are expressed as

Ψi(~r,~k) =
∑
ν

cνi(~k)Φν(~r,~k). (39)

Angular part

The angular part is obtained by multiplying a spherical harmonic Ylm(ϑ, ϕ) with a factor the rl

which leads to the solid harmonics

rl Ylm(ϑ, ϕ) (40)

which are the solutions of the Laplace equation∇2φ(~r ) = 0 that are regular at the origin, being
(orthogonal) polynomials in the coordinates x, y, and z of degree l..
The solid harmonics are in general complex. However, only in the case of atoms and linear
molecules, Lz is a good quantum number. Therefore, real solid harmonics are usually used [2]
by taking the real or imaginary part of the complex solid harmonics, mixing quantum numbers
m and −m, as this reduces the computational effort.
Examples are (normalization is ignored):

l = 0 : Y00 ⇒ ∼ 1

l = 1 : r(Y11−Y1−1) ⇒ ∼ x

r(Y11+Y1−1) ⇒ ∼ y

rY10 ⇒ ∼ z

l = 2 : r2Y20 ⇒ ∼ 3z2−r2 = 2z2−x2−y2 (41)

r2(Y21−Y2−1) ⇒ ∼ xz

r2(Y21+Y2−1) ⇒ ∼ yz

r2(Y22+Y2−2) ⇒ ∼ x2−y2

r2(Y22−Y2−2) ⇒ ∼ xy

Some codes work with the five d functions as listed in equation (41), whereas others work
with six Cartesian d functions (x2, y2, z2, xy, xz, yz). The latter choice seems at first glance in
contradiction to quantum mechanics as there are only five d functions. This can however be
explained as there is a combination x2+y2+z2 which is s-like and corresponds to a function
r2 exp(−ζr2). The choice of six d functions thus leads to a larger basis set and usually a lower
energy compared to the case of five d function. Some codes offer the option to switch between
five and six d functions (and correspondingly seven or ten f functions).
The order in which the functions are implemented depends on the code. It is important to know
this order for population analyses or projected densities of states; or to understand occupancies
of orbitals, e.g., in the presence of crystal field splitting.
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Choice of basis sets
Even tempered basis sets

A simple yet good choice for the basis set is to use even tempered exponents [12]. A set of
exponents ζ is obtained according to the formula

ζk = αβk (42)

with the parameters α and β to be optimized, k = 1, ...,M . This has been done in [12] for the
atoms in the first three periods. It turned out that β should be in he range from 2 . . . 4.

Databases

For molecular calculations, large databases exist, especially (web addresses last accessed on
June 7, 2021):

• the basis set database of the Environmental Molecular Sciences Laboratory (EMSL)
employing the basis set exchange software [13, 14] at
www.basissetexchange.org

• the basis set library of the Molpro [15] code at
www.molpro.net/info/basis.php?portal=user&choice=Basis+library

• for periodic systems, the basis set library of the CRYSTAL [16] code at
www.crystal.unito.it/basis-sets.php

Some notions: double zeta and similar, polarization functions

The smallest possible choice would be a minimal basis set (see section 3) which is, however,
a poor choice. It lacks flexibility when, e.g., a chemical bond is formed. Such basis sets are
rarely chosen. An exception may be embedding, when some atoms far away from the interesting
region need to be described in a very efficient way.
A better choice would be to have two basis functions per orbitals, which is called a double-zeta
basis set. This may be further extended to triple-, quadruple-, ... zeta basis sets.
As the inner orbitals change less when a molecular bond is formed so that they can be well
described by a contracted Gaussian, a standard choice is to use more basis functions which
mainly describe the valence shell. Normally, at least two basis functions for the valence shells
should be used, which corresponds to a valence double zeta basis set.
When a free atom gets exposed to an electric field, or when a second atom is introduced and a
chemical bond is formed, then the electronic charge distribution will not be radially symmetric
any more. To be able to describe this, polarization functions are necessary. For example, for a
hydrogen atom in its ground state, s-functions would be sufficient. To describe polarization, at
least p-functions are required. This is visualized in figure 5.
A valence double-zeta plus polarization function basis may already be a good starting point
for Hartree-Fock or DFT calculations. For wave function based correlation, it is important

www.basissetexchange.org
www.molpro.net/info/basis.php?portal=user&choice=Basis+library
www.crystal.unito.it/basis-sets.php
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Fig. 5: An s function, which is always spherically symmetric (left); a p function in order to
polarize the charge distribution (middle); and the two function added together, e.g. in response
to an electric field (right).

that excitations to unoccupied orbitals can be described. This requires in general much larger
basis sets, with higher angular momenta and extra diffuse functions. A hierarchy of correlation-
consistent basis sets has been developed and is continuously extended [17].

Recommendations

Various issues have to be considered when choosing the basis set:

• The basis set depends on the charge state of the atom. Negative ions have a larger radius
than positive ions and thus require diffuse exponents (e.g. oxygen usually needs extra
diffuse functions).

• Wave function based correlation calculations need (significantly) larger basis sets com-
pared to Hartree-Fock of DFT calculations.

• Polarisation functions should usually be included.

• Different properties may require enlarged basis sets, e.g., higher angular momenta when
polarizabilities are computed, or extra tight functions for properties near or at the nucleus.

• Diffuse exponents are important for the describing chemical bonds.

• Effective core potentials may be advantageous from the first row of transition metals on.

To test a basis set, one may compare selected properties (total energy, band structure, equilib-
rium geometry) with an enhanced basis set. The Mulliken population is computationally practi-
cally without cost, and may thus always be computed; it gives the occupancies of the individual
basis functions and thus a possibility to judge the importance of the various functions.
An enormous variety of basis sets has been generated, and the names are not systematic. A
way of characterizing the basis set is to count the number of uncontracted and contracted basis
functions, and then label the basis with a name such as

(10s4p)/[3s2p] (43)

While this is not unambiguous, it gives an idea of the size and quality of the basis set.
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7 Beyond Hartree-Fock: electron correlation

Up to now, the wave function based methods were restricted to using a single Slater determinant,
i.e., the Hartree-Fock level. This however lacks electron correlation [18]: on the Hartree-Fock
level, only the averaged position of the other electrons is considered; whereas the electrons
interact with each other according to the actual position of the other electrons.
To describe this, more than one Slater determinant is required. Due to the variational princi-
ple, this will lower the energy: compared to the energy at the Hartree-Fock level, an additional
contribution is obtained, the correlation energy. The correlation energy is only a small fraction
of the total energy, and the computed energy thus changes by only a small amount. Neverthe-
less, the correlation energy is important to obtain correct values for energy differences, which
affects, e.g., the binding energy, electron affinities, ionization potentials. In solids, the band
gap depends strongly on electron correlation: band gaps on the Hartree-Fock level are usu-
ally largely overestimated, because, e.g., screening is not properly taken into account. As the
correlation energy depends on the geometry, it will thus influence the equilibrium geometry.
Another fundamental problem of Hartree-Fock theory is that it gives a vanishing density of
states for metals [19].
Despite these problems of the Hartree-Fock approach, it is nevertheless of enormous impor-
tance, for several reasons: it is a mathematically clear theory, without unknown parameters.
Moreover, it can be systematically improved. Systematic and controlled approaches usually
start from the Hartree-Fock level, and with these post-Hartree-Fock methods, high accuracy is
achieved.

7.1 Second Quantization

To describe excitations from a Slater determinant, it is more convenient to use second quanti-
zation. Here, excitations are described with creation and annihilation operators. Instead of a
Slater determinant

ΨHF (~x1, ..., ~xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
χ1(~x1) · · · χi(~x1) · · · χN(~x1)

χ1(~x2) · · · χi(~x2) · · · χN(~x2)
...

...
...

χ1(~xN) · · · χi(~xN) · · · χN(~xN)

∣∣∣∣∣∣∣∣∣∣
(44)

we write

|ΨHF 〉 = a†1 · · · a
†
i · · · a

†
N |0〉.

a†i and ai are creation and annihilation operators for an electron in a molecular orbital i, with
the anti-commutation relations

{a†i , aj} = a†iaj + aja
†
i = δij and {a†i , a

†
j} = {ai, aj} = 0
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A determinant of an excited state, with electron excited from orbital i into orbital a

Ψai (~x1, ..., ~xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
χ1(~x1) · · · χa(~x1) · · · χN(~x1)

χ1(~x2) · · · χa(~x2) · · · χN(~x2)
...

...
...

χ1(~xN) · · · χa(~xN) · · · χN(~xN)

∣∣∣∣∣∣∣∣∣∣
(45)

can then be conveniently written in second quantization as

|Ψai 〉 = a†aai|ΨHF 〉.

Similarly, a two-fold excited state

Ψabij (~x1, ..., ~xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
χ1(~x1) · · · χa(~x1) · · · χb(~x1) · · · χN(~x1)

χ1(~x2) · · · χa(~x2) · · · χb(~x2) · · · χN(~x2)
...

...
...

...
χ1(~xN) · · · χa(~xN) · · · χb(~xN) · · · χN(~xN)

∣∣∣∣∣∣∣∣∣∣
(46)

becomes
|Ψabij 〉 = a†ba

†
aaiaj|ΨHF 〉.

Operators must have the same matrix elements in first and second quantization. This leads (see,
e.g. [2]) to the mappings

H = H1 +H2 +Hnn

with the one-electron part of the Hamiltonian in second quantization being given by

H1 =
∑
pq

〈χp|h|χq〉 a†paq

and the corresponding expression for the two-electron part

H2 =
1

2

∑
pqrs

〈
χpχq

∣∣∣ 1
r12

∣∣∣χrχs〉 a†pa†qasar
where the sums over p, q, r, s run over all spin orbitals, while the nuclear-nuclear repulsion Hnn

is, of course, just a number, determined by the positions of the nuclei and their charges.

7.2 Wave function based correlation
Full configuration interaction

A wave function based approach to include correlation can now be expressed by adding all
possible excited determinants, which corresponds to full configuration interaction (full CI),

Ψfull CI =

(
1+
∑
a
i

tia a
†
aai+

∑
a<b
i<j

tijab a
†
ba
†
aaiaj +

∑
a<b<c
i<j<k

tijkabc a
†
ca
†
ba
†
aaiajak+ ...

)
|ΨHF 〉 =

∑
I

cI |ΨI〉.
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The energy is obtained as

Efull CI =
〈Ψfull CI|H|Ψfull CI〉
〈Ψfull CI|Ψfull CI〉

.

This is normalized, variational, and size-consistent (see below). However, the computational
effort is enormous, as a huge matrix has to be diagonalized in the end: From

H|Ψfull CI〉 = E|Ψfull CI〉

it follows that for all ΨI , it must hold

〈ΨI |H−Efull CI|Ψfull CI〉 = 0

This is an eigenvalue problem. The lowest eigenvalue corresponds to the ground state energy,
and the higher eigenvalues correspond to energies of excited states. Due to the finite basis set,
the energies are upper bounds of the exact eigen-energies of the corresponding Hamiltonian:
Eexact
n ≤ Efull CI

n .
A general strategy in a CI calculation is to keep the low lying orbitals, the core orbitals, doubly
occupied. This reduces the number of determinants without a great loss in accuracy.

Configuration interaction with single and double substitutions: CI(SD)

As full configuration interaction is usually too demanding, a restriction to wave functions with
single and double substitutions is made instead

|ΨCI(SD)〉 =
(
1 +

∑
a
i

tia a
†
aai +

∑
a<b
i<j

tijab a
†
ba
†
aaiaj

)
|ΨHF 〉

and the energy is obtained as the expectation value

ECI(SD) =
〈ΨCI(SD)|H|ΨCI(SD)〉
〈ΨCI(SD)|ΨCI(SD)〉

.

This is again normalized and variational, but it is not size-consistent, as illustrated in figure 6:
When the energy of two helium atoms at a very large distance is computed, then it should be the
sum of the energy of the individual atoms. In two separate CI(SD) calculations for the atoms, all
excitations are considered. In a single CI(SD) calculation for the supersystem of both atoms, not
all excitations are considered: states where 3 or 4 electrons are excited are not considered. The
sum of the energy of two separate CI(SD) calculations will thus be lower than the energy of a
single CI(SD) calculation for the whole system. Thus, CI(SD) suffers from the size-consistency
problem. The argument obviously holds for any truncated CI method, which only includes a
finite number of excitations.
Besides, there are pathological cases such as H2 described by a restricted closed shell wave
function. When the hydrogen atoms are pulled apart, this wave function does not allow the
molecule to properly dissociate. In this case, Hartree-Fock is not size-consistent. We will,
however, in the following, exclude these cases when discussing size-consistency.
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He

e− e−

He

e− e−

Fig. 6: Two helium atoms at a large distance, to illustrate the size-consistency problem.

Coupled cluster

Because of the size-consistency problem, CI(SD) is not a popular method. Instead, coupled
cluster methods based on an exponential ansatz are nowadays preferred

|ΨCCSD〉 = exp

(∑
a
i

tia a
†
aai +

∑
a<b
i<j

tijab a
†
ba
†
aaiaj

)
|ΨHF 〉 = exp(T )|ΨHF 〉

The above ansatz is labeled CCSD, coupled cluster with single and double substitutions. Since
the exponential ensures that arbitrary powers of single and double substitutions are included,
the approach is size consistent.
In coupled cluster methods, intermediate normalization is used: 〈ΨHF |ΨCCSD〉 = 1. From
H|ΨCCSD〉 = E|ΨCCSD〉, the energy and the coefficients (amplitudes) tia, t

ij
ab are obtained

〈ΨHF |H−E|ΨCCSD〉 = 0

〈Ψai |H−E|ΨCCSD〉 = 0

〈Ψabij |H−E|ΨCCSD〉 = 0 .

The obtained coupled cluster energy is, however, not variational.

Møller-Plesset Perturbation theory, 2nd order: MP2

Perturbation theory is one of the methods frequently used to approximately solve the Schrödinger
equation. It decomposes the full Hamiltonian H into an unperturbed part H0 and the remaining
part H1. Subsequently, the wave function and eigenvalues are expanded in a power series of a
coupling parameter λ.
In MP2, the unperturbed Hamiltonian is chosen to be the Fock operator

H = H0 +H1 =
N∑
i=1

f(i) =
N∑
i=1

(
h(i)+vHF (i)

)
where h(i) is the one-electron part, i.e., kinetic energy and nuclear attraction. The 0th order
wave function is thus the Hartree-Fock Slater determinant, equation (7). The 0th order energy
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is just the sum of the eigenvalues

E0 =
N∑
i=1

εi.

The first order energy is obtained as the expectation value of the perturbation H1

E1 = 〈Ψ0|H1|Ψ0〉 = 〈Ψ0|H−H0|Ψ0〉 = EHF − E0 .

The sum of zeroth and first order energies is thus just the Hartree-Fock energy

E0 + E1 = EHF .

The perturbation can be written as

H1 =
N∑

i,j=1
i<j

1

rij
−

N∑
i=1

vHF (i)

The second order correction is obtained as

EMP2 = −
∑
a<b

∑
k<l

∫∫
d3r1d

3r2

(
χ∗a(~r1)χk(~r1)χ

∗
b (~r2)χl(~r2)−χ∗a(~r1)χl(~r1)χ

∗
b (~r2)χk(~r2)

|~r1−~r2|

)2
εa+εb−εk−εl

where a and b refer to unoccupied orbitals, k and l to occupied ones.
MP2 is size-consistent, but not variational. Compared to CI(SD) or CCSD, MP2 is computa-
tionally cheap.

7.2.1 Multi-configuration SCF (MCSCF)

In the case of (near-)degeneracies or low-lying excited states (usually occurring in strongly cor-
related systems), multi-configuration self-consistent field calculations may be a remedy. Here,
a set of Slater determinants is used instead of just one

|ΨMCSCF 〉 =
∑
I

CI |ΨI〉.

The Slater determinants are from an active space

|ΨI〉 ∈
{
c0|ΨHF 〉 , cka|Ψak 〉 , cklab|Ψabkl 〉 , cklmabc |Ψabcklm〉, ...

}
.

The coefficients c and some of the orbitals are optimized.
The active space and which orbitals are optimized is left to the user of the code, but deter-
mine the computational effort. MCSCF is good to treat static correlation effects, where static
correlation means correlation due to (near-)degeneracies.
Electron correlation due to the Coulomb repulsion is in contrast called dynamical correlation.
To describe dynamical correlation, excitations to many virtual orbitals are necessary, which is
better done with configuration interaction.
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Besides systems with low-lying excited states, MCSCF can also be used in the aforementioned
case of the dissociation of H2. With an MCSCF ansatz, two hydrogen atoms at large distance
can be well described, and size-consistency achieved. Another example is the proper description
of oxygen in its ground state: the p-occupancy is 2p4. A single Slater determinant with, e.g.,
an occupancy of p2x py pz would break the spherical symmetry. Such a wave function is not
an eigenstate of L2. To restore symmetry, a state-averaged calculation with 3 determinants
(p2x py pz, px p

2
y pz, px py p

2
z) is performed in MCSCF.

MCSCF alone does usually not recover a large fraction of the correlation energy, as this would
require an enormous active space. It is, however, able to provide better starting orbitals for a
subsequent CI calculation.

Multi-reference configuration interaction (MRCI)

A powerful tool in these situations is to follow a multi-configuration self-consistent field calcu-
lation with a configuration interaction calculation, which is multi-reference CI

|ΨMRCI (SD)〉 =

(
1 +

∑
ai

tia a
†
aai +

∑
abij

tijab a
†
ba
†
aaiaj

)
|ΨMCSCF 〉

where the coefficients t are optimized.

Explicit correlation: F12

To take the electronic cusp condition (equation (36)) into account, explicit correlation has been
introduced by multiplying the wave function with a factor such as(

1− 1

γ
exp

(
− γ|~r1−~r2|

))
This makes accurate calculations possible which would otherwise require very large basis sets.
This is similar to Jastrow factors in quantum Monte Carlo. Explicit correlation was pioneered
by Hylleraas [20] in his treatment of the He atom, where he introduced an ansatz for the wave-
function depending on the distance |~r1−~r2|.

Local correlation schemes

Local correlation methods have become popular, to reduce the computational effort, and make
schemes such as coupled cluster available for extended systems. One variant is based on pair
natural orbitals [21]. Also, the treatment of correlation in periodic systems has been targeted
with local methods, e.g., the incremental scheme [22, 23].

8 Properties

After computing the total energy, calculating other properties is particularly interesting, as usu-
ally a comparison with the experiment can be made. The global minimum of the total energy as
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a function of geometrical parameters gives the equilibrium geometry. Here, the first derivative
of the energy with respect to nuclear positions is of great use. At the global minimum, sec-
ond derivatives with respect to nuclear positions give the vibrational spectrum. Further deriva-
tives are extremely useful, e.g., infrared intensities may be expressed as second derivatives, one
derivative with respect to nuclear positions and one with respect to an external electric field, or
Raman intensities as third derivatives, one derivative with respect to nuclear positions and two
with respect to an external electric field.
As a whole, measurable properties may be expressed as derivatives with respect to electric
field ~F , magnetic field ~B, nuclear magnetic moment ~I, electron magnetic moment ~s, or nuclear
position ~R, in such a way (see also the overview given in [3])

∂nF+nB+nI+ns+nRE

∂ ~F nF ∂ ~BnB∂~InI∂~sns∂ ~RnR

.

These derivatives may be obtained analytically or numerically. Analytical gradients are often
difficult to implement; however, once they are available, they are advantageous, as they are
faster and have less numerical noise.

9 Examples

Oxygen electron affinity

A challenging example is the calculation of the electron affinity of oxygen shown in table 1.
High-level correlation calculations with extended basis sets are required to achieve good agree-
ment with the experiment. Including triples perturbatively (marked with (T) ) is important to
get close to the experimental value.
Note that on the Hartree-Fock level, even the sign is wrong. Importantly, the orbital eigenvalues
of the occupied orbitals are negative which makes the calculation meaningful. This is in general
not the case for density functional calculations: many functionals suffer from the drawback
that the eigenvalues of occupied orbitals may be positive when an atom is negatively charged
[24, 25]. Negative ions would be instable in such a case of positive orbital eigenvalues.
A similar comparison (various properties such as geometries, atomization energies, reaction
enthalpies) for a set of molecules can be found in [2].

Table 1: Computed (with Molpro [15] and MCHF [26]) electron affinity of oxygen (in eV). The
experimental value is 1.461 eV.

basis set method
HF CI(SD) CCSD CCSD(T) CCSD-F12 CCSD(T)-F12

aug-cc-pvdz –0.493 0.941 1.086 1.188 1.294 1.394
aug-cc-pvtz –0.525 1.016 1.185 1.335 1.299 1.445

aug-cc-pvqz-f12 –0.534 1.068 1.245 1.410 1.303 1.465
aug-cc-pv5z-f12 –0.535 1.084 1.264 1.431 1.298 1.464

numerical (MCHF) –0.535
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Fig. 7: The molecule cytidine monophosphate; 35 atoms, 835 basis functions, PNO-LCCSD(T).

Local correlation calculation

An example of today’s state of the art is shown in figure 7. The molecule cytidine monophos-
phate (35 atoms, 168 electrons in total, 118 electrons correlated) is calculated at the level of
PNO-LCCSD(T), with a cc-pV(T+d)Z basis set (835 contractions). PNO-LCCSD(T) means
that pair natural orbitals are used for the correlation calculation, which is local coupled cluster
(singles, doubles are fully, and triples perturbatively taken into account). The energy calculation
with Molpro [15] takes about 174 minutes on 12 cores. For comparison, a traditional CCSD
calculation would not be feasible, or require enormous CPU time.

Superexchange calculation

In the field of strong correlation, the ab initio calculation of magnetic coupling parameters is
a challenging task. NiO is a prototype example. Here, two next-nearest neighboring Ni atoms
couple antiferromagnetically via an oxygen atom (figure 8).

Fig. 8: NiO: two nickel spins are marked with arrows. They couple antiferromagnetically via
the oxygen atom in between.
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HF

B3LYP

LDA

Fig. 9: NiO: spin densities in the ferromagnetic state, at the level of Hartree-Fock (top), B3LYP
(middle), LDA (bottom). The same values of the contour lines are used in the three plots.

Exchange couplings may be computed by calculating the energies of the ferromagnetic state and
the antiferromagnetic state, and then fitting to a model Hamiltonian such as the Ising or Heisen-
berg model. The energy difference ∆E will then be proportional to the number of neighbors z
(i.e. the number of couplings), the spins on the two sites (S1, S2), and the exchange coupling J,
here ∆E ∼ zJS2 for the Ising model. This can be compared with experimental values for the
Néel temperature.
Spin densities at the level of Hartree-Fock, the local density approximation (LDA), and the
hybrid functional B3LYP are shown in figure 9. To emphasize the differences, the spin densities
are shown for the ferromagnetic state.
Hartree-Fock theory leads to a rather localized spin density which is shown at the top of figure 9.
The computed Ni magnetic moment is about 1.9µB. LDA shows a much more delocalized
spin density, with a Ni magnetic moment of 1.6µB. The hybrid functional B3LYP which has
admixtures of Hartree-Fock and LDA is somewhere in between, with 1.8µB.
Due to the more delocalized spin density in B3LYP, and even more so in LDA, exchange cou-
plings are much larger in magnitude. The computed superexchange value ranges from –5.4 meV
(Hartree-Fock) and –29 meV (B3LYP) to –94 meV (LDA). This is thus an example where
Hartree-Fock severely deviates due to the lack of correlation, and density functional theory
produces results varying over a very wide range.
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Experiment

DFT (B3LYP)

HF

Fig. 10: The infrared spectrum of calcite: experimental (top), DFT with B3LYP (middle),
Hartree-Fock (bottom).

A controlled approach is possible by using a cluster and embedding it, to model the bulk. This
way, calculations with molecular codes become feasible, and wave function based methods
such as CASPT2 may be used. This gives better agreement with experiment (–20 meV), with
CASPT2 values in the range of about from –14 to –17 meV [27, 28].

Vibrational spectroscopy

We finish with another example from the solid state, is displayed in figure 10, computed with
CRYSTAL [16]. The infrared spectrum of calcite (CaCO3) [29] matches the experiment [30]
excellent at the DFT level, with the hybrid functional B3LYP. At the Hartree-Fock level, the
agreement is less good, but still reasonable.

In general, geometries usually agree well with experiment in DFT. Vibrational frequencies devi-
ate a bit more, but are still in good agreement with experiment. Also, IR and Raman intensities
usually agree well. As wave function based correlation is not available for IR or Raman spectra
of solids, it is state of the art to employ DFT. It is recommended to compare various functionals
to have a band width of results. E.g., here and for many other materials, B3LYP works excel-
lent, but there are exceptions such as the narrow band gap insulator FeSi where B3LYP strongly
deviates from experiment, and even a simple LDA calculation performs much better. Calculated
vibrational spectra have become a powerful tool, and computed IR and Raman spectra are now
often used to complement experimental results.
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10 Conclusion

Quantum chemical methods have gained enormously in importance in recent years, and their
use has become more widespread. This is, on the one hand, due to the growth in computa-
tional resources. On the other hand, even traditional methods such as Hartree-Fock have been
made significantly more efficient due to approximations in the integral calculation with density
fitting. Also, new highly efficient methods to treat wave function based correlation have been
introduced.
Programs have become user-friendly so that they may be handled by a broad community. Nu-
merous properties may be computed, which has attracted great interest from experimentalists
also, e.g., for infrared, Raman, and NMR spectroscopy. The codes have also grown enormously
in size and complexity. Still, wave function based correlation, especially for periodic systems,
remains one of the key challenges.
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1 Introduction

Density functional theory (DFT) is an extremely sophisticated approach to many-body prob-
lems [1, 2]. It must be among the most used and least understood of all successful theories in
physics. Currently, about 50,000 papers each year report results of Kohn-Sham (KS) DFT calcu-
lations [3], including room temperature superconductors under high pressure [4], heterogeneous
catalysis at metal surfaces and for nanoparticles [5], understanding the interior of Jupiter and
exoplanets [6], studying how ocean acidification affects the seabream population [7], and even
which water to use when making coffee [8].
But much of modern condensed matter physics involves using model Hamiltonians to study
strongly correlated systems, where understanding new phenomena is considered far more im-
portant than generating accurate materials-specific properties [9, 10]. In fact, our standard dia-
grammatic approach (expansions in the strength of the electron-electron coupling) is hard-wired
into all our descriptions of such many-body phenomena, be it the fractional quantum Hall ef-
fect [11] or the Kondo effect (even when perturbation theory fails, we still think of resummed
diagrams) [12].
Because DFT is logically subtle, without requiring much mathematical gymnastics (although
they are available for those that enjoy them [13]) or skill with summing Feynman diagrams,
and because DFT is entirely different from the standard approach, most of what you may have
learned is hopelessly confused or simply downright untrue. Hence the title of this article, taken
from a popular book on history [14]. For example, any conflation of the KS scheme with
traditional mean-field theory is a dire mistake, and should be avoided at all costs.
This chapter is primarily designed to explain essential concepts of DFT to theorists more fa-
miliar with standard many-body theory and perhaps more experienced in dealing with strongly
correlated systems. It should also prove useful for anyone performing DFT calculations on
weakly correlated systems, who might be wondering where things go wrong as correlations
grow stronger. Additionally, the Hubbard dimer is a wonderful teaching tool for basic concepts,
as so many of its exact results can be derived analytically.
The first use of this material came in a conversation between KB and Duncan Haldane at a meet-
ing sponsored by the US Department of Energy. Duncan asked KB to explain this DFT business,
and he suggested the dimer as the minimal relevant model. After 45 minutes of tough argu-
ment, Haldane said “That’s the first time I’ve ever really understood this Kohn-Sham scheme.
Thanks.” Within 2 years, he was awarded a share in a Nobel Prize in physics [15]. While cor-
relation is not causation, Haldane did not win his share until after he understood KS-DFT with
the aid of this simple model!
However, it is important to note that the benefits of this type of analysis are not solely limited to
those working in theoretical physics. In the fields of theoretical chemistry and material science,
for instance, where ground-state electronic energies are often required to be extremely accurate
[16–18], there has been growing technological interest in the study of both chemically complex
and strongly correlated materials [19, 20]. This chapter was partly designed with these fields in
mind, serving as a resource for any computational scientist who wishes to better comprehend
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the limitations of their computational methods. Throughout this text, there will be various
highlighted sections dedicated to examples, exercises, and key concepts to aid the reader in
applying what is learned in this study to their own endeavors.
There are now a huge number of diverse introductions to DFT, with many different perspectives.
These include a simple tutorial for anyone with knowledge of quantum mechanics [21], a very
long online textbook with lots of nasty problems [22], a many-body introduction [23], and
even video lectures [24]. But this chapter is specifically aimed at explaining the most essential
concepts, and why strongly correlated systems are more challenging in DFT. All the Hubbard
material appears in two long review articles, one on the ground state theory [25] and a second on
linear-response TDDFT [26]. The Hubbard dimer has been recently used to explore effects in
other aspects of DFT, such as magnetic DFT [27], ensemble DFT [28], and thermal DFT [29].

Takeaway: DFT appears deceptively simple to understand. It is much trickier than peo-
ple realize. This chapter provides a unique explanation of basic ideas using a simple
model.

1.1 Background

We work in the non-relativistic non-magnetic Born-Oppenheimer approximation, using Hartree
atomic units (e2 = ~ = me = 1). The Hamiltonian for the electrons is simple and known
exactly

Ĥ = T̂ + V̂ee + V̂, (1)

where T̂ is their kinetic energy, V̂ee is the electron-electron Coulomb repulsion, and V̂ is the
one-body potential, equal to a sum of Coulomb attractions to the ions in an isolated molecule
or solid. We let N be the number of electrons.
A first-principles approach to this problem is to feed a computer a list of nuclear types and
positions and, following a recipe, it spits out various properties of the electronic system. In
quantum chemistry [30], the recipe is called a model chemistry [31, 32] if both the method
(e.g. Hartree-Fock) and the basis set are specified.
We contrast this with traditional approaches in condensed matter [33]. Often a model Hamilto-
nian is written down, hoping that it describes the dominant physical effects. For most interesting
problems, standard approaches to solving this Hamiltonian will fail, i.e., be hopelessly inade-
quate or require near-infinite computer resources. An inspired approximation may be found that
works well enough, and so the underlying physics can be explained. Well enough will usually
mean that with good estimates of the model parameters, qualitative and even semi-quantitative
agreement is found with key properties of interest.
Each of these are excellent approaches, especially for the purposes they were designed for.
Modern DFT calculations of weakly correlated materials (and molecules) are of the first-prin-
ciples type, and often yield atomic positions within 1-2 hundredths of an Ångstrom and phonon
frequencies within 10%, without any materials-specific input, an impossibility with a simple
model Hamiltonian. On the other hand, with standard approximations, DFT calculations always
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fail whenever a bond such as H2 is stretched, and correlations become strong [34]. Even simple
Mott-Hubbard physics is beyond such methods (and we shall see why in this chapter), or Kondo
physics (but see Reference [35]).
But more and more of modern materials research requires the intelligent application of both
approaches, and many methods, such as DFT+U [36] or dynamical mean field theory (DMFT)
[37–40] are being developed to bridge the gap. Many of the materials of greatest practical
interest to energy research (such as for batteries [19] or photovoltaics [20]) include a moderate
level of correlation that require a pure DFT approach to be enhanced, by adding vital missing
ingredients of the physics.
The US and Britain are friends ‘separated by a common language’ [41]. This is essentially true
of the mass of confusion between traditional many-body theory and DFT. In DFT, we use the
same words as in MBT, but giving them different meanings, simply because we enjoy confusing
folks.
Finally, we mention an intermediate Hamiltonian between the dazzling complexity of the real
physical and chemical world and the beautiful simplicity of the Hubbard model. A great chal-
lenge to studying the effects of strong correlation has been the difficulty in producing highly
accurate benchmark data. Molecular electronic structure calculations are much simpler than
materials calculations, and quantum chemistry has long been able to provide highly accurate
answers for many small molecules at or near equilibrium [32], as well as the complete binding
energy curves of others [42]. But this is much harder to do for materials. Recent illustrations
of this difficulty are the careful bench-marking of model Hamiltonians (such as an 8×8 Hub-
bard lattice) using highly accurate many-body solvers [43], the amount of computation needed
to find an accurate cohesive energy of the benzene crystal [44], and the celebration of merely
being able to agree on approximate DFT results with a variety of solid-state codes [45].
To overcome this difficulty, about 10 years ago, a mimic of realistic electronic structure calcu-
lations was established [46]. This mimic uses potentials that are defined continuously in space
(i.e., not a lattice model) but are one-dimensional. In fact, ultimately, a single exponential was
chosen [47], whose details mimic those of the popular soft Coulomb potential. With about
20 grid points per ‘atom’, standard density-matrix renormalization (DMRG) methods [48, 49]
could then rapidly produce extremely accurate ground-state energies and densities for chains of
up to about 100 atoms [46]. By living in 1D, not only is DMRG very efficient, but the thermo-
dynamic limit (of the number of atoms going to infinity with fixed interatomic spacing) is also
reached much more quickly than in 3D. Moreover, the parameters were chosen so that standard
density functional approximations, such as the local density approximation [50], succeeded and
failed in ways that were qualitatively similar to those in the real world [51]. We will refer to this
1D laboratory for further demonstration of some of the simple results shown in this chapter.

Takeaway: DFT is ideally suited to produce useful accuracy for ground-state energetics
of realistic Hamiltonians. Many-body theory is more often used to produce approximate
answers to model Hamiltonians, and often focuses on response properties. Both are
useful in their own fields and, increasingly, interesting problems require input from both.
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Fig. 1: Two distinct regimes of the asymmetric Hubbard dimer. On the left, the charging energy
is much greater than the difference in on-site potentials, and the left- and right-occupation
numbers are similar. On the right, the situation is reversed, and the occupation on the left is
much greater than that of the right.

1.2 Hubbard dimer

The Hubbard model (in 1, 2 or 3D) [52] is the standard model for studying the effects of strong
correlation on electrons. By default, it implies an infinite periodic array of sites. For our demon-
stration, we simply need two sites. We have N = 2 and the ground-state is always a singlet.
The Hamiltonian (in 2nd quantization) is

Ĥ = −t
∑
σ

(
ĉ†1σ ĉ2σ + h.c.

)
+ U

∑
i

n̂i↑ n̂i↓ +
∑
i

vin̂i . (2)

The kinetic term is just hopping between the sites, and is the discretization of the kinetic opera-
tor on the lattice, with the diagonal elements set to 0. The electron-electron repulsion is just an
onsite U, while the one-body operator is just an on-site potential, v1 and v2.
In this chapter, we imagine a world in which Eq. (1) is replaced by Eq. (2), i.e., as if the many-
body problem to be solved is simply that of Eq. (2). So, for us, the Hubbard dimer is not an
approximation to anything. We will choose the values of U, t, and vi as we wish, to explore
various regimes in the model. Any question concerning the origins of these values in terms of
realistic orbitals and matrix elements is irrelevant to our work here.
Since a constant in the potential is just a shift in the energy, we set v2 =−v1 and use the param-
eter ∆v= v2−v1 as the sole determinant of the potential of our system. Similarly, with N = 2,
n2 =N−n1, and we use ∆n=n2−n1 as the single parameter characterizing the ground-state
density. Thus ground-state DFT in this model is simply site-occupation function theory (SOFT)
and density functionals are replaced by simple functions of a single variable, ∆n. Finally, we
choose t= 1/2 and report all variables in units of 2t, as one can scale all energies by a constant.
Different physics appears depending on the ratio of U to ∆v, i.e., on-site repulsion versus
inhomogeneity, see Fig. 1. When U�∆v, the system is strongly correlated, with both site oc-
cupations close to 1, despite any inhomogeneity. For ∆v � U, the system is weakly correlated,
and the on-site U is insufficient to stop one occupation becoming much greater than the other.
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Fig. 2: Exact ground-state energy of the Hubbard dimer as a function of ∆v for several values
of U. The qualitative behavior changes as ∆v passes through U.

For those with a chemical inclination, this is a minimal basis model for a diatomic with 2

electrons (with some matrix elements and orbital overlap ignored). For H2, ∆v = 0, but t
decreases as the separation between the nuclei is increased, so that U (in units of 2t) grows
exponentially. The ground-state is close to a single Slater determinant near equilibrium (U�1),
so that Hartree-Fock (HF) is a reasonable approximation. But U�1 when very stretched, so
that the ground-state is now a Heitler-London wavefunction, and (restricted) HF is very poor.
The highly unsymmetric case corresponds to HeH+, where both electrons reside on the He side,
as long as ∆v remains larger than U as the bond is stretched.
There are well-known analytic solutions for all states of the 2-site Hubbard model and the
behavior of the ground-state energy [25] is shown in Fig. 2. Simple limits include the symmetric
case

E = −
√

1 + (U/2)2 + U/2, ∆n = 0 SYM (3)

An expansion of the square root in the symmetric case in powers of U has a radius of conver-
gence of 2, while the opposite expansion in 1/U has a radius of 1/2. Thus there is a well-defined
critical point at U = 2, below which perturbation in the electron-electron coupling strength con-
verges, i.e., the system is weakly correlated, and above which it is strongly correlated. Another
simple limit is the non-interacting (tight-binding) case (U = 0)

E = −
√

1 + ∆v2, ∆n = −2
∆v√

1 + ∆v2
(U=0) (4)

which is given by the blue curve in the figure. We see from the figure that, on a broad scale,E ≈
−(∆v−U)Θ(∆v−U). Explicit formulas exist for all the excited-state energies, wavefunctions,
and densities also. Approximations in many different limits are given in the many appendices
of Reference [25].
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Fig. 3: Ground-state occupation of the Hubbard dimer as function of ∆v for several values of
U.

We can also extract any other property we wish from the analytic solution, such as the one-
electron density (here the occupations). Fig. 3 shows the ground-state density as a function of
∆v for several values of U. For any U, n2 = n1 when ∆v = 0. The blue line is essentially the
tight-binding solution. In that case, as ∆v increases, the occupation difference rapidly increases
towards 2. Then, as we turn on U, this increase becomes less and less rapid. By the time U
reaches 10, the occupations remain close to balanced until ∆v becomes close to 10, when (on
the scale of ∆v), it rapidly flips to close to 2.

Takeaway: We take the 2-site Hubbard model as our Hamiltonian, and apply DFT con-
cepts directly to it. Here, it is not a simple model for a more realistic Hamiltonian.
Analytic solutions are trivial, and we can plot any properties we wish.

2 Density functional theory

We have now defined the machinery required to understand the central theorems of DFT through
the lens of the Hubbard dimer. The theorems discussed in this section, like their real-space coun-
terparts, are exact and apply directly to ground-state calculations (we will cover time-dependent
DFT later). Most DFT calculations are used to determine the ground-state electronic energy of
a system, or more specifically, determine the energy of a system as a function of nuclear co-
ordinates. In this section, we will discuss the underlying principles of these calculations by
examining their role at the most fundamental level, in their simplest form.
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Fig. 4: Ground-state potential difference as a function of ∆n for several values of U .

The Hohenberg-Kohn theorem [53] is actually three theorems in sequence. These were proved
in a simple proof-by-contradiction argument based on the Rayleigh-Ritz variational principle
for the wavefunction. Later, the more direct and more general constrained search approach was
given by Levy [54] and Lieb [13].

2.1 Hohenberg-Kohn I

HKI proves that the (usual) map of ∆v → ∆n is invertible, i.e., ∆n is a single-valued function
of ∆v for a given U. This is obvious from Fig. 3 (and its inversion, Fig. 4), and in the TB case

∆v =
∆n√

4−∆n2
(U = 0). (5)

Fig. 4 is simply Fig. 3 drawn sideways, i.e., with x and y axes reversed. Clearly, for any given
value of U, there is a unique ∆v.

A much-stated (but often out of context) corollary of this is that all properties of the system
are (implicitly) functionals of n1. While this is true, almost all research in DFT focuses on
the ground-state energy functional, because it is so useful, and we have few useful approxima-
tions for others (e.g., for the first excited-state energy, but see discussion in TDDFT section).
Recently, machine learning methods have been trained to find some of these other function-
als [55, 56].
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Fig. 5: Universal part of the energy function(al) of a Hubbard dimer as a function of n1 for
several values of U. As U increases, F tends to U |1−n1|.

2.2 Hohenberg-Kohn II

HKII states that the function below exists and is independent of ∆v:

FU(n1) = min
Ψ→n1

〈Ψ|T̂ + V̂ee|Ψ〉 = max
∆v

{
E(∆v)−∆v∆n/2

}
. (6)

where the minimum is over all antisymmetrized normalized 2-electron wavefunctions whose
occupation of site 1 is n1. The middle expression is the constrained search definition due to
Levy [57]. The rightmost form is due to Lieb [13]. Either definition works here. This FU

functional was termed universal by HK, by which they simply meant that it does not depend on
the ∆v of your given system, i.e., it is a pure density functional. The phrase, often appearing in
the literature, that F is a universal functional, is not meaningful.
Although one can write analytic formulas for the ground-state energy for the dimer, there is no
explicit analytic formula for F. It is trivial to calculate F numerically and F is shown in the
Fig. 5. In the special case of U = 0, it is easy,

FU=0(n1) = TS(n1) = −
√
n1(2− n1). (7)

Here we have attached the subscript S to remind us that U = 0, so this is the kinetic energy
function for a single Slater determinant, and is indistinguishable from the blue line of Fig. 5.
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2.3 Hohenberg-Kohn III

HKIII states that there is a variational principle for the ground-state energy directly in terms of
the density alone:

E(∆v) = min
n1

{
FU(n1) + ∆v∆n/2

}
. (8)

This bypasses all the difficulties of approximating the wavefunction (but of course buries them
in the definition of FU). Usually, the minimum can be found from the Euler equation

dFU(n1)

dn1

− ∆v

2
= 0, (9)

and the unique n1(∆v) is the one that satisfies this equation.
This allows us to find a solution to the many-body problem, without ever calculating the wave-
function. Given an expression for FU(n1), either exact or approximate, for any value of ∆v,
one can solve Eq. (9) above to find the corresponding ∆v (exact or approximate) and insert into
Eq. (8) to find the energy. Any approximation to F (n1) provides approximate solutions to all
many body problems (every value of ∆v).

Takeaway: The HK theorems prove the existence of an exact variational principle for the
ground-state energy based on the density, not the wavefunction, but give no information
on how to approximate it. This is an (almost) useless statement in practice. But to any
unbeliever in DFT, one can always tell them (to go look at) FU.

3 Kohn-Sham DFT

The original DFT, called Thomas-Fermi theory [58, 59], tried to approximate FU(n1) directly,
but such direct approximations have never been accurate enough for most electronic structure
calculations. A tremendous step forward occurred when Kohn and Sham considered a fictitious
system of non-interacting fermions with the same ground-state density as the true many-body
one [60]. In our case, this is just the TB problem, for which we already have explicit solutions.
They wrote the F function in terms of quantities that could easily be calculated in such a system:

FU(n1) = TS(n1) + UH(n1) + EXC(n1). (10)

Here, TS is just the TB hopping energy of Eq. (4), and the Hartree energy is just the mean-field
electron-electron repulsion

UH =
U

2

(
n2

1 + n2
2

)
, (11)

which is an explicit function of the occupations. Then EXC, the exchange-correlation (XC) en-
ergy (about which, much more, later) is simply everything else, i.e., EXC is defined by Eq. (10).
It is then trivial to show, from the Euler equation, that the TB potentials that will reproduce the
exact occupations are

vS,i = vi + Uni +
∂EXC

∂ni
. (12)
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Fig. 6: KS DFT view of an asymmetric half-filled Hubbard dimer as a function of U . The on-site
potential difference ∆v is shown in black and the KS on-site potential difference ∆vS is in red.

The first correction to vi is the Hartree potential, while the second is the XC potential. These
KS TB equations must be solved self-consistently, as the potentials depend on the occupations.
Once converged, the final densities can be used to extract the total energy of the MB system,
via

E = TS + UH + EXC + V = ε− UH + EXC −∆vXC∆n/2 , (13)

where ε is the eigenvalue in the TB KS calculation. Again, just like in the HK case, once
EXC(n1) is given (either approximate or exact), the KS equations can be solved for any elec-
tronic system and a ground-state energy and occupation extracted.
The wondrous improvement due to the KS scheme is that only a small fraction of the total
energy (the XC part) need be approximated. Many of the most important quantum effects, such
as screening, shell structure, binding energies, etc. are mostly accounted for by the quantum
effects of the one-body system. Finally, a very simple, intuitive approximation suggested by
KS themselves (the local density approximation (LDA) [61, 50]) produced far better results
than they expected (but with binding energy errors too large for quantum chemistry taste).
Fig. 6 gives us some sense of how this works, for ∆v = 1. Then, if U = 0, most occupation is
on the left. For U = 2, the repulsion makes the occupations more equal. The KS potential is
simply that TB potential that produces those (many-body) occupations. So it must be a smaller
potential difference than the real potential. One can see that the Hartree potential will typically
overestimate repulsion, while XC corrects that to give the exact answer. Finally, when U is
ramped up to 5, the occupations become very close to equal, and the KS potential difference
becomes very small.
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Traditionally, EXC is separated into an exchange and a correlation contribution. The exchange
contribution is then defined as

EX = 〈ΦS|V̂ee|ΦS〉 − UH, (14)

where ΦS is the KS wavefunction, and EX is always negative. Then one can show correlation is
just

EC = 〈Ψ|Ĥ|Ψ〉 − 〈ΦS|Ĥ|ΦS〉 (15)

and, by the variational principle, is also never positive. These definitions (almost) match those
of quantum chemistry [62], except that in KS-DFT, all orbitals come from a single potential,
while in HF orbitals are freely chosen to minimize the HF energy. But there are some surprises
relative to the traditional many-body expansion. For example, because of the definitions, EX

includes some ‘self-exchange’, i.e., it is non-zero even for a single electron (where EX is −UH

and EC = 0). DFT approximations which do not satisfy these conditions for all one-electron
densities are said to have self-interaction errors [63]. Moreover, ‘higher-order exchange effects’
are all lumped into the correlation energy. In any event, for our 2-electron problem, in a spin
singlet, EX = −UH/2, but no simple relation exists for larger N.
The traditional Hartree-Fock approximation comes from expanding the electron-electron inter-
action to first order, which means neglecting EC, and then minimizing the energy. In full DFT
terms, for our 2-electron system,

FHF = TS +
1

2
UH, (16)

or in KS-DFT terms
EHF

XC = −UH/2 . (17)

Thus, solving the TB equation self-consistently with Eq. (17) produces the minimum for the
total energy using FHF of Eq. (16).
In Fig. 7, we show the contributions to the KS potential for a sequence of different U values, as a
function of the occupation. The effect of repulsion is to always oppose the potential difference,
making the KS potential difference smaller. In the first, U is small, and correlation is of orderU2

(see Reference [25]). Thus the correlation contribution is negligible (red and green overlap) and
HF is an excellent approximation. In the middle, U = 1 is moderate, and now we begin to see
the difference correlation makes in the potential. Moreover, its effect is to make ∆vHXC deviate
from a straight line. Finally, for strong correlation, the HXC potential (almost) exactly is equal
and opposite to the one-body potential. Again, the HX contribution has much curvature, but
now correlation wipes that out (almost) entirely. Clearly, the HF approximation will be terrible
for the potential in this case, and yield entirely incorrect densities. In fact, a lower-energy
solution appears if one allows spin symmetry breaking [64].
It is now relatively routine to calculate accurate KS potentials from highly accurate densities
found, e.g., via quantum chemical methods [65]. In an insanely demanding calculation, it is
even possible to solve the KS equations using the exact XC functional [66]. Convergence
becomes more difficult as correlations grow stronger, but remains possible [67].
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Fig. 7: Plots of ∆vS (blue) and its components, the one-body potential ∆v (black), the Hartree
plus exchange potentials, U∆n/2 (red), and the same with correlation added, U∆n/2 + ∆vC

(green) plotted against n1 for various values of U .

Takeaway: The KS scheme is exact meaning that, if we only knew the exact exchange-
correlation functional, we could determine the ground-state energy exactly, of every elec-
tronic problem. There are many existing calculations of the exact XC potential. In prac-
tice, we must approximate XC, but because XC is a small fraction of the total energy,
standard KS calculations are usefully accurate for ground-state energies and densities.
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3.1 KS spectral function

There is a pernicious superstition [68] that the KS spectrum is related to the physical response
properties of the real system. This false belief has arisen because, for weakly correlated sys-
tems, this is approximately true, apart from the fundamental gap of a semiconductor. From a
practical viewpoint, the KS bands are marvelously useful as a starting point for Green function
calculations of real spectral functions. Moreover, long ago, when the local density approxima-
tion ruled supreme, there was no way to know if differences between the KS and exact response
properties was due to the crudeness of this approximation [69,70]. These days, there are simple
exact answers to such speculations, if we only have the patience to read them.

3.2 The ionization potential theorem

As a simple example of the mysterious workings of the exact functional, we state an important
exact result

I(N) = E(N−1)− E(N) = −εHO(N). (18)

Here E(N) is the ground-state of the N -electron system, and εHO is the energy of the highest-
occupied KS orbital. (For those with some chemistry leaning, Koopmans’ theorem is an ap-
proximate version of this for HF calculations [71]). This illustrates some of the power of KS-
DFT. You might think that, with the exact functional, all one can extract is the ground-state
energy and density of our system. But the above result shows that the HO of the KS scheme
also tells you the ionization energy. One can also extract all static response functions exactly
by turning on weak external perturbations, and applying the exact functional to the perturbed
systems. In practice, standard DFT approximations tend to violate this exact condition very
badly [69, 70, 72]. Nonetheless, they often still yield usefully accurate ground-state energies,
thus performing their primary function. (On the other hand, returning to the discussion of HKI,
knowing the exact XC does not, in general, give you access to, say, the first excited state energy.
It is a functional of n1 alone, but we cannot deduce that functional from EXC(n1).)
Increasing N by 1 in Eq. (18) yields

A(N) = E(N)− E(N+1) = −εHO(N+1) 6= εLU(N), (19)

where A is called the electron affinity of the system in chemistry. The difference between the
KS HO of the N+1 electron system and the lowest unoccupied (LU) level of the N -electron
system is called ∆XC, where the ∆ indicates its origin from the infamous derivative discontinuity
of DFT [69]. This simply means, that at zero temperature, the energy of the system consists of
straight line segments between integer values, as shown below in Fig. 8. The energy itself is
continuous, but its derivative, the chemical potential, is not. For a neutral system, the chemical
potential is −I below the integer and −A above. This discontinuous jump in µ shifts the KS
HO eigenvalue by the same amount, producing the difference with the KS LU of the neutral.
(Realistic electronic systems do not have an upward pointing portion of the curve in Fig. 8. This
occurs for the dimer because electrons cannot escape to outside the system.)
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Fig. 8: Plot of E(N) for U = 1 and ∆v = 0.

3.3 Mind the gap

We are now ready to see the relevance of this to solids. Even for a finite system, we define the
charge (or fundamental) gap as

Eg = I − A . (20)

As the size of the system grows toward a bulk material, this quantity tends to the fundamental
charge (or transport) gap of the system (at least for ordered systems [73]). But, because of
Eqs. (18) and (19) above, we find

Eg = Es,g + ∆XC , (21)

whereEs,g is the KS gap (i.e., the difference between the LU and HO level, or the gap between
the KS valence and conduction bands in a solid). Thus, with the exact XC functional of ground-
state DFT, we do not get the true gap by looking at its KS value for the neutral system.
Fig. 9 shows the spectral function (projected onto the left-hand site) in a weakly correlated
case [26], the symmetric dimer with U = 1. We can see the sense in which the KS spectral
function (red) resembles the blue exact one: the significant KS peaks are of about the same
height and position as their blue counterparts, and the blue peaks without KS counterparts are
relatively small. The KS gap is smaller than the true gap, but not by much. Because both the
KS and the exact spectral functions satisfy the same sum rule (even with an approximate XC),
if the dominant peaks are reproduced (even with the wrong gap), only small peaks are missed
in the KS spectrum.
On the other hand, Fig. 10 shows the same system with a larger U value. Now the strong KS
peaks are not in the right place and are noticeably too large. Moreover, the blue peaks with
no KS analogs are a substantial contribution. Finally, in the inhomogeneous case, the potential
asymmetry overcomes the effects of the Hubbard U. In Fig. 11, we see that for ∆v = 2 and
U = 1, the KS spectral function is almost identical to the true one.
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Fig. 9: Spectral function of the symmetric dimer for U = 1 and ∆v = 0. The physical MB
peaks are plotted in blue, the KS in red. Here I = 0.1, A = −1.1, and εLU = 0.9.

Fig. 10: Same as Fig. 9, but now U = 5. Here I = −0.3, A = −4.7, and εLU = 1.3. Note that
the KS gap remains unchanged by the alteration of U because ∆n = 0 in both cases.

Lastly, we finish this section illustrating the relevance of this discussion to the thermodynamic
limit. The canonical example of the Mott-Hubbard transition is a chain (or lattice) of H atoms.
Each atom has one electron, so the bands of the KS potential are always half-filled, with no gap
at the Fermi energy. Thus the gap is always zero and the KS band structure suggests it’s a metal.
This may be true at moderate separations of the atoms, but as the separation is increased, the
electrons must localize on atoms, and it must become a Mott insulator.
Fig. 12 shows the gap, calculated for chains of well-separated 1D H atoms of increasing length
[46]. By performing the calculation with finite systems, i.e., without periodic boundary condi-
tions, we calculate the gap for each N by adding and removing electrons, as in Eq. (20), and
then take the limit as N → ∞. On the other hand, we extract the exact ground-state density
from our DMRG calculation at each N, and find the corresponding exact KS potential for each
N. We could then as easily extrapolate the KS gap, from the HO and LU, showing that indeed
the KS gap vanishes in the thermodynamic limit – exactly the same as if we had calculated the
KS band structure, in which the Fermi energy would be right in the middle of the band. This
provides a dramatic illustration of the KS underestimate of the true gap, even when using the
exact XC functional.
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Fig. 11: Same as Fig. 9, but now U = 1, ∆v = 2. Here I = 0.27, A = −1.27, and εLU = 1.25.

Fig. 12: Exact gaps for chains of N soft hydrogen atoms with atomic separation b = 4 (error
bars are less than symbol sizes). The upper curve is a quadratic fit of exact gaps of the largest six
systems and extrapolates to a finite value Eg ≈ 0.33. The exact Kohn-Sham gaps, in contrast,
extrapolate to zero showing that for N → ∞ the true KS system is metallic (lower curve is a
linear fit of exact KS gaps of the largest six systems). Taken from Reference [46].

Takeaway: The KS Green function does not match the true Green function. If corre-
lation is weak, it may be a good approximation to it, with its main deficiency being an
underestimate of the gap. For stronger correlations, there can be huge differences, and
there are always more features in the real Green function. In the thermodynamic limit,
the exact KS gap can vanish for a simple Mott insulator.
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3.4 Talking about ground-state DFT

First, we review our crucial formal points.

1. In general, the KS scheme with the exact functional yields ground-state energy and den-
sity, and any other quantities that can be teased from them, such as static response prop-
erties and ionization potentials.

2. There is no formal meaning for most KS eigenvalues in ground-state DFT, despite the fact
that many practitioners treat them as if there were. Of course, they do provide tremen-
dous physical and intuitive insight, especially for weakly correlated systems, where they
are good approximations to the excitations (either quasi-particle or optical). But when
correlations are strong, explicit methods are needed to correct them [74].

3. The strongest manifestation of point 2 above is that the exact KS gap is typically smaller
than the true gap, and can vanish in cases where the true gap is finite (Mott insulator).

4. Moreover, there is an exact formula relating the total energy to the sum of the KS eigen-
values, which contains finite corrections for double counting. There is no ambiguity about
these corrections, they are derived from the formal theory, and yield the exact many-body
energy. But when correlated methods are used for a subset of the orbitals, ambiguities
can arise that affect occupancies [75].

5. Although in principle, all properties are functionals of the ground-state density, knowl-
edge of the exact ground-state energy functional (via EXC) does not provide a way to
calculate these other functionals. As we see later, TDDFT is a way to do precisely this.

Next, we discuss how these points show up in practical DFT calculations of solids, where XC
approximations must be made.

1. The steady progress within quantum chemistry and materials in functional development
is almost entirely focused on improvements in accuracy and reliability of the total energy
for weakly correlated systems [76, 77]. This is by far the most important use of DFT
in modern electronic structure. Such improvements are often not particularly relevant to
the response properties of greatest interest in strongly correlated materials. For example,
the KS eigenvalues are often not improved significantly by functionals yielding better
energies [78, 79]. Although the KS eigenvalues cannot be directly interpreted in general,
they are uniquely defined (up to a constant). Thus the exact KS Hamiltonian is a well-
defined starting point for many-body methods.

2. The KS scheme is not a mean-field scheme in the traditional sense of the word, and it can
be extremely difficult to relate its features to those of traditional many-body theory. The
KS wavefunction is typically a single Slater determinant, but yields the exact many-body
energy via its density.
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3. Standard approximations, such as LDA and generalized gradient approximations (GGA),
by construction produce total energies that are smooth and continuous at integerN , unlike
the exact E(N). Thus their corresponding ∆XC is zero [69]. According to Sec. 3.3, the
KS band gap in such approximations is their prediction for the fundamental gap. In fact,
it has been found that their KS gaps are likely a good approximation to the exact KS
gap [80], but their lack of discontinuous behavior means they miss the correction to turn
it into the true gap.

4. On the other hand, the range-separated hybrid functional HSE06 is well-known to pro-
duce reasonable gaps for moderate gap semiconductors. This is because, instead of per-
forming a true pure KS calculation, most codes (like VASP) perform a generalized KS
calculation [81] when a functional is orbital-dependent [82, 83]. They treat the orbital-
dependent part of the potential as if it were a many-body potential, just as is done in HF.
(A similar but smaller effect occurs in meta-GGA’s that depend on the kinetic energy den-
sity, such as SCAN [84]). And in fact clever tricks may be used to extract the true gap,
even from a periodic code [85].

Takeaway: Even with the exact functional, the KS band gap does not equal the true
transport gap of the system. Likely, semilocal functionals yield accurate KS gaps but,
because they lack a discontinuous behavior at integer particle numbers, cannot yield ac-
curate transport gaps. Modern hybrid functionals that depend explicitly on KS orbitals
yield band gaps closer to fundamental gaps, but only when treated with generalized KS
theory.

4 Time-dependent DFT (TDDFT)

Our last main section is about time-dependent density functional theory (TDDFT) [86–89].
While this uses many of the forms and conventions of ground-state DFT, it is in fact based on a
very different theorem from the HK theorems. When applied to the linear response of a system
to a dynamic electric field, it yields the optical transitions (and oscillator strengths) of that
system. It has become the standard method for extracting low-level excitations in molecules,
where traditional quantum chemical calculations are even more demanding than those for the
ground state.
The Runge-Gross theorem [90] states that, for a given initial wavefunction, statistics, and in-
teraction, the time-dependent density uniquely determines the one-body potential. In principle,
this can be used for any many-electron time-dependent problem, including those in strong laser
fields [86]. In practice, such calculations are limited by the accuracy of the approximations and
whether the observable of interest can be extracted directly from the one-electron density. One
constructs TD KS equations, defined to yield the exact time-dependent one-electron density.
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Because TDDFT applies to the time-dependent Schrödinger equation, the XC functional differs
from that of ground-state DFT in general, and has a time-dependence.
Our interest will be only in the linear-response regime. In that case, one can derive a crucial
result, which we give in operator form, called the Gross-Kohn equation [91]

χ(ω) = χS(ω) + χS(ω) ∗ (fH + fXC(ω)) ∗ χ(ω), (22)

where χ(ω) is the dynamic density-density response function of the system, and χS is its KS
counterpart. The kernel, f, is the functional derivative of the time-dependent potential. Thus,
fH is the Hartree contribution, while fXC(ω) is the XC correction.
Eq. (22) is a Dyson-like equation for the polarization. If we set fXC = 0, it is the standard
random-phase approximation, the Coulomb interaction simply dressing the bare interaction, and
producing all the bubble diagrams. But things get a little weird when we assert that inclusion
of fXC(ω) produces the exact response of the system, for all frequencies. From a many-body
viewpoint, this is suspicious, as these are a closed set of equations without coupling to 4-point
functions. But the logic is sound and exactly analogous to the ground-state: there exists such a
function that could be considered as defined by Eq. (22).
The excitations of a system are given by poles of its response function. Simple analysis (ex-
actly that of RPA) yields a matrix equation that corrects KS transition frequencies to the true
transition frequencies, where the matrix elements involve fH + fXC. With standard ground-state
approximations, folks have merrily calculated mostly low-lying valence transitions from the
ground-state of many molecules [92], finding accuracies a little lower than those of ground-
state DFT [93], and computational costs that are comparable. This has been invaluable for
larger molecules, where many excitations of the same symmetry may overlap, and so TDDFT
yields a semiquantitative signature that can be easily matched with experiment [94].
However, not all is well in paradise. Almost immediately, it was noticed that the use of a
ground-state approximation is simply the static limit of the corresponding kernel, and can be
easily shown to produce only single excitations. While useful workarounds were created for
some cases, it was also found that going to higher-order response does not solve the problem.
And many of the most exciting transitions in biochemistry are double excitations.

Takeaway: Time-dependent DFT applies DFT methods to time-dependent problems.
Within linear response, this yields exact expressions for the dynamic polarization, but
at the cost of introducing a new functional, the frequency-dependent XC kernel. Ignor-
ing its frequency dependence yields useful accuracy for low-lying molecular excitations
with standard functionals. TDDFT is now standard for calculating optical response of
molecules and materials.

4.1 Hubbard dimer

Happily we care only about Hubbard dimers, where everything is much simpler. First, we note
our Hubbard dimer, in the singlet space, has just three states: the ground-state, the first excited
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Fig. 13: Transition frequencies of the first and second excitations as a function of∆v for U = 1.

state, which has a single excitation, and the second excited state, which is a double excitation
out of the ground-state. Since there are no spatial degrees of freedom, our χ(ω) is the Fourier
transform of ∆n(t)/∆v(0), which is just a scalar, with ω-dependence

χn(ω) =
a1

ω2 − ω2
1

+
a2

ω2 − ω2
2

, (23)

where ωi denotes the transition frequency and ai is related to its oscillator strength [26]. Thus
χ has poles at each of the transition frequencies. Fig. 13 shows the value of each of these
transitions as a function of ∆v for U = 1. The double excitation is a little above the single
for the symmetric case, but grows linearly with ∆v. The single remains about the same, and
even dips, until ∆v = U, and then begins to grow itself. Here we can use our model system to
examine one of the key mysteries of practical TDDFT: Where did all the higher excitations go?
First we do an exact ground-state KS calculation, as in the previous sections. Thus the exact
KS system is a tight-binding problem with effective potential, ∆vS, defined to yield the exact
ground state ∆n. This yields two eigenvalues, the lower symmetric combination and the higher
asymmetric combination. The KS ground-state has the lower one doubly occupied. There do
exist KS analogs of the many-body states. The single excitation has one electron excited to the
higher level, the double has both. Fig. 14 adds the KS transitions to Fig. 13, showing that they
loosely follow the accurate transitions, but are significantly different.
In the KS response function, χS, the matrix elements of the density operator between ground
and double excitation are zero, since both KS orbitals are different, so the Slater determinants
are not coupled by a single density operator. Hence, such states have no numerator, eliminating
any poles that might have arisen in the denominator, i.e.,

χS(ω) =
as

ω2 − ω2
s

. (24)

Thus the second KS transition, the double, does not appear at all in the response function! It’s
position is correctly marked in Fig. 14, but cannot be seen in χS.
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Fig. 14: Same as Fig. 13, but with KS transitions (depicted in blue). For ∆v > U, the KS
transition is a very good approximation to the true transition.

Fig. 15: Same as Fig. 13, but with the adiabatically exact approximation (AE, pink dashes).

By requiring the poles occur at the right places, one finds (in general) a matrix equation in the
space of single excitations for the true transitions, whose elements are determined by the kernel.
Here, this is one dimensional, yielding

ω2 = ω2
S + 2ωS fHXC(ω)

2

1 + ∆v2
S

. (25)

The adiabatically exact approximation (AE) is to use the exact ground-state functional here
to calculate fHXC. This corrects the single KS transition and is shown in Fig. 15. This works
extremely well to capture almost all the difference with the KS transition, yielding very accurate
excitations. This becomes even better for ∆v greater than U , where the corrections virtually
vanish (just as in Fig. 11 for the spectral function).
But Eq. (25) just has one solution if the ω-dependence in the kernel is neglected. On the other
hand, if there is strong frequency dependence in the kernel, new transitions, not in the KS
system, may appear. In fact, we know that is precisely what happens, as the physical system
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Fig. 16: Frequency dependence of exact (black) and Kohn-Sham susceptibilities (blue) and
exchange-correlation kernel (red) for U = ∆v = 1. Poles marked by dashed vertical lines, as
a function of frequency ν. The red line shows the exchange-correlation kernel.

does have a double excitation. To understand how standard TDDFT fails, we note that we
can calculate the exact kernel by finding χ(ω) from many-body calculations, χS(ω) by the
techniques of the earlier section, inverting and subtracting

fHXC(ω) = χ−1
S (ω)− χ−1(ω) . (26)

Fig. 16 shows the singular frequency-dependence of the kernel from Eq. (26), which allows
Eq. (25) to have an additional solution.
However, while all this provides insight into how the exact functional performs its magic, it does
not tell us directly how to create a general purpose model, which would build this frequency-
dependence into an explicit density functional sufficiently accurately to capture double excita-
tions [89].

Takeaway: The Hubbard dimer demonstrates the accuracy of the adiabatic approxima-
tion in TDDFT for single excitations, and also the missing frequency dependence needed
to generate the double excitations missing in adiabatic TDDFT.

4.2 Talking about TDDFT

We saw in the earlier sections how the KS eigenvalues did not have a formal meaning in pure
ground-state KS-DFT. We have seen here that, with the advent of TDDFT, they form the starting
point of a scheme which produces the optical excitations. These are not the quasi-particle
excitations associated with the Green function, which involve a change in particle number.
While the primary function of approximate ground-state DFT is to find energies, it usually also
produces reasonably accurate densities, but rather erroneous XC potentials. In fact, this feat is
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achieved by having all the occupied orbitals shifted (higher) than their exact KS counterparts. A
constant shift has no effect on the density. But if the unoccupied levels (at least, the low-lying
valence excitations) suffer the same shift, then KS transition frequencies are unaffected, and
the adiabatic approximation (usually applied to the same XC approximation as the ground-state
calculation) is reasonably accurate for many weakly correlated molecules.
Linear-response TDDFT has been less used in solids, because in the case of insulators, it became
clear early on [95] that there is a long-range contribution to the XC kernel (as long-ranged as
the Hartree contribution is) that is missed when using a semilocal ground-state approximation
adiabatically. There are now many ways around this difficulty [96], some based on modelling
the kernel using many-body techniques.
There have been many other approaches suggested for extracting optical excitations from DFT.
An old simple one is called ∆-SCF [97], which involves simply using excited-state occupation
numbers in a KS calculation, and finding the energy the usual way. Another, which has seen
considerable recent interest [98, 99], is to use ensemble DFT [100].

Takeaway: TDDFT can be considered an algorithm for finding the functional (of the
ground-state density) for optical excitations.

5 Summary

This short review is aimed at broadening understanding of the basic differences between a den-
sity functional viewpoint and that of traditional many-body theory. The emphasis here has been
on the exact theory, which we have illustrated on the 2-site Hubbard model. We have shown
it is confusing to consider KS theory as any kind of traditional mean-field theory, and how the
addition of TDDFT allows one to consider the KS eigenvalues as zero-order approximations to
the optical excitations, not the quasiparticle excitations.
However, the only reason that anyone cares about the exact theory of DFT is because, in prac-
tice, it is extremely useful with relatively unsophisticated approximations. These begin with
the famous local density approximation, in which the XC energy per electron at each point in
a system is approximated by that of a uniform gas matching the density at this point. This was
introduced already in the KS paper (where the statement of exactness appears as a mere foot-
note), thereby totally muddying the waters between exact and approximate statements. Walter
Kohn told KB that he simply noticed the exact nature of the KS scheme after submitting the pa-
per. From about 1990 onwards, many users began using more sophisticated functionals, whose
primary effect was to improve total energies and energy differences.
This article has said little or nothing about how to understand such approximations. This is be-
cause local (and semilocal) approximations capture a universal limit of all electronic systems,
by yielding relatively exact XC energies in this limit [101–104]. Traditional many-body theory
generally considers a power series expansion in the electron-electron interaction. The alterna-
tive limit simultaneously increases the number of particles, in a way that the total electron-
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electron repulsion remains a finite fraction of the total energy even as interactions become
weaker. The simplest example of this is that the LDA for exchange, whose formula can be
derived by hand, has a percentage error that vanishes for atoms as Z = N →∞ [102].
This limit is hard-wired into the last term of the real-space Hamiltonian of Eq. (1), which is
the integral of the density times the one-body potential. This is why the density is the basic
variable in DFT. Even if formal theorems can be proven using other variables, this is why
density functional theory has been so successful. It is also the case that the one-body potentials
to which we apply DFT are diagonal in coordinate space, which is related to why the LDA is a
universal limit.
Thus, key aspects of DFT approximations that are crucial to its success are missing from lattice
models like the Hubbard model. There is no corresponding universal limit in which LDA be-
comes exact, even if one uses an approximation based on the uniform case [105, 106]. Again,
this is why we created our 1D real-space mimic of 3D reality, instead of just solving lattice
models.

Takeaway: This chapter has illustrated a variety of key conceptual points about DFT on
a simple model system. Anyone who can answer the exercises will have absorbed 90% of
the material, and should be well-qualified to understand exactly what a DFT calculation
does, and does not, tell you. In the twenty-first century, with so many DFT calculations
being performed in so many different fields, the phrase “Oh, that’s just mean-field theory”
should no longer have any place in scientific discussions about DFT results.
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A Exercises

If you have followed the logic throughout this tutorial, you will enjoy sorting out these little
questions. If you want solutions, please email either of the authors, with a brief note about your
current status and interests.

1. State which aspect of Fig. 4 illustrates the HKI theorem.

2. What geometrical construction gives you the corresponding ground-state potential for a
given n1 in Fig. 5?

3. Study the extreme edges (n1 = 0 and 2) of Fig. 5. What interesting qualitative feature is
barely visible, and why must it be there?

4. What feature must always be present in Fig. 5 near n1 = 1? Explain.

5. How can you be sure that, no matter how largeU becomes, FU(n1) is never quiteU |1−n1|?

6. Assuming the blue line is essentially that of U = 0, use geometry on Fig. 3 to find ∆vS

for U = 5.

7. What is the relation, if any, between each of the blue plots in the three panels of Fig. 7?
Explain.

8. What is the relation, if any, between each of the red plots in the three panels of Fig. 7?
Explain.

9. Why is the green line almost the mirror image of the black line in the U = 10 panel of
Fig. 7? Could it be the exact mirror image? Explain.

10. From Fig. 8, using E(N) about N = 2, determine the locations of the largest peaks of
Fig. 9 and compute the gap between them.

11. Sketch how Fig. 8 must look if U = 10 and ∆v = 0.

12. What is the relation between the two blue lines in Fig. 14? Explain.

13. Give a rule relating the numbers of vertical lines of different color in Fig. 16.
Explain its significance.

14. Recall the definition of the kernel from section 4. Using this, derive fH and fX, and draw
them on Fig. 16. Explain where double excitations must come from for 2 electrons.

15. Using formulas and figures from both sections, deduce the results of Fig. 15 in the absence
of correlation (Hint: You will need to solve the Hartree-Fock self-consistent equations),
and comment on the relative errors. This is a little more work than the other exercises.
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1 Introduction

Exactly solvable models are of paramount importance to test the quality of approximations
used in various theoretical methods. Having at hand the exact solution of a given problem
can allow one to observe possible problems of a given approximation, to get insights into the
origin of them, and, ideally, to suggest possible solutions. Several models can be used for this
purpose. Here we will concentrate on the Hubbard model. This model is widely used to deal
with the physics of strongly correlated materials. Since the model can be solved exactly for
small cluster sizes, it is very useful for theoretical investigations. Of course care must be taken
when extrapolating conclusions to realistic systems. In this chapter we will use it to scrutinize
approximations used in many-body perturbation theory based on Green functions. We will
concentrate on the one-body Green function (1-GF) at zero temperature and at equilibrium,
which corresponds to the electronic Hamiltonian Ĥ = T̂ + V̂ + Ŵ , with T̂, V̂, and Ŵ the
kinetic-energy operator, the operator corresponding to an external time-independent potential
(for example the external potential of the nuclei), and the electron-electron interaction operator,
respectively. The 1-GF is a powerful quantity since it contains a wealth of information about a
physical system, such as the expectation value of any single-particle operator over the ground
state, the ground-state total energy and the spectral function (which is related to photoemission
spectra). It can be obtained by solving a Dyson equation of the formG = G0+G0ΣG, whereG0

is the non-interacting one-body Green function and the self-energy Σ is an effective potential
which contains all the many-body effects of the system under study. In practice Σ needs to
be approximated and a well-known approximation is the so called GW approximation (GWA)
in which the self-energy reads Σ = vH + iGW , where vH is the classical Hartree potential,
and W the dynamically screened Coulomb potential. The GWA works well for many systems,
but it also suffers from some shortcomings, such as self-screening (i.e. the fact that an electron
screens itself, which is unphysical) and wrong atomic limit (i.e. the fact that the GWA does not
capture the so-called strong correlation). These errors of the GWA and possible solutions will
be illustrated using the Hubbard dimer.

Notation

We will use combined space-spin-time coordinates of the type (1) ≡ (x1, t1) ≡ (r1, s1, t1) and
(1+) = (x1, t

+
1 ) with t+1 = t1 + δ (δ→0+). Moreover, to keep a light notation, integration over

indices not present on the left-hand side of an equation is implied.

2 Theoretical background: the GW approximation & beyond

Much of the success of many-body perturbation theory based on Green functions [1] is due
to the simplicity to access photoemission spectra through the one-body Green function. As
illustrated in Fig. 1 photoemission is about absorption and emission of single electrons and it is
a unique source of information about electronic structure and excitations in materials. We will
focus precisely on this observable in the rest of the chapter.
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Fig. 1: Schematic picture of direct (PES) and inverse photoemission spectroscopies (IPSE).
In PES (IPES) one samples the occupied (unoccupied) energy levels εPESk = EN

0 −EN−1
k

(εIPESk = EN+1
k −EN

0 ) of the system.

Let us consider the following many-body Hamiltonian in second quantization

Ĥ =

∫
dx ψ̂†(x)h(r)ψ̂(x) +

1

2

∫∫
dxdx′ ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x)vc(x,x

′), (1)

where ψ̂ and ψ̂† are field operators, vc is the Coulomb potential, and h(x) = −∇2
r/2 + vext(r)

is the one-body part of the Hamiltonian, which comprises the kinetic term and a local external
potential. At zero temperature the time-ordered equilibrium 1-GF can be written in terms of its
Lehmann representation in frequency space as

G(x,x′;ω) = lim
η→0+

(∑
m

BA
m(x,x′)

ω − (EN+1
m −EN

0 ) + iη
+
∑
n

BR
n (x,x′)

ω − (EN
0 −EN−1

n )− iη

)
, (2)

where BA
m(x,x′) = 〈ΨN0 |ψ̂(x)|ΨN+1

m 〉〈ΨN+1
m |ψ̂†(x′)|ΨN0 〉 and BR

n (x,x′) = 〈ΨN0 |ψ̂†(x′)
∣∣ΨN−1

n 〉
〈ΨN−1

n |ψ̂(x)
∣∣ΨN0 〉, |ΨN0 〉 andE0 are the many-body ground-state wavefunction and energy of the

N -electron system, respectively, and |ΨN±1
m 〉 and EN±1

m are the many-body wavefunctions and
corresponding energies of the (N ±1)-electron system. This definition of the 1-GF makes clear
its connection to the charged excitations of the system, which are measured in photoemission
experiments. It is indeed convenient to define the spectral function in terms of the imaginary
part of the 1-GF according to

A(x,x′;ω) =
1

π
sign(µ−ω) ImG(x,x′;ω)

=
∑
m

BA
m(x,x′)δ

(
ω − (EN+1

m −EN
0 )
)

+
∑
n

BR
m(x,x′)δ

(
ω − (EN

0 −EN−1
n )

)
, (3)

where µ is the chemical potential. Of course the definition (2) is not very useful for determining
the 1-GF, since it relies on the knowledge of many-body wavefunctions, which is precisely what
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one wants to avoid when using theories based on simpler physical quantities, such as the 1-GF.
Therefore the development of approximate methods to calculate the 1-GF has been an active
research topic in many-body physics since the sixties, and many routes have been explored
in order to find increasingly accurate GFs. A very popular class of methods is based on the
solution of an integral equation for the 1-GF, namely,

G(1, 2) = G0(1, 2) +G0(1, 3)Σ(3, 4)G(4, 2) , (4)

where G0 is the noninteracting 1-GF and Σ the self-energy. A good starting point to make
approximations to the self-energy is to use Hedin’s equations, which are often solved within
the so-called GW approximation (GWA) to the self-energy [2], where G is the one-particle
Green function andW the dynamically screened Coulomb potential. Within this approximation
one neglects so-called vertex corrections, which take into account the fermionic nature of the
system, and one treats the system and its response classically (besides exchange). This becomes
clear by starting from the following exact expression for the self-energy [3, 4]

Σ(11′) = vH(1)δ(11′) +Σx(11′) + ivc(1
+2)G(13)Ξ(35; 1′4)L(42; 52+), (5)

with vH(1) = −i
∫
d2 vc(12)G(22+) the Hartree potential, Σx(11′) = ivc(1

+1′)G(11′) the
exchange contribution to the self-energy, Ξ(35; 1′4) = δΣ(31′)

δG(45)
the effective interaction, and

L(42; 52) = δG(45)
δUext (2)

∣∣∣
Uext=0

the time-ordered “response” of the system to an external perturba-

tion Uext . This way to write the self-energy directly displays the physics behind it, i.e., the
description of a particle interacting with the system: the particle can scatter against the density
of the system (Hartree term), it can exchange with another particle of the system (exchange
term), it can do something to the system (last term), i.e., it can have an effective interaction
with the system (Ξ), the system responds (L), and the particle feels this response through the
Coulomb interaction (vc). There are two crucial ingredients in Eq. (5), namely the response of
the system L and the effective interaction Ξ . Combining approximations to these two quanti-
ties, various approximations to the self-energy can be created. In situations where the screening
is important one can treat L accurately and use a rough approximation to the induced potential
Ξ , whereas in situations where the quantum nature of the interaction is important1 one would
concentrate onΞ , although L andΞ are of course in principle linked through the Bethe-Salpeter
equation [5] and one might wish to keep them approximately consistent.

2.1 GW

Neglecting the variation of Σxc = Σ − vH in Ξ , i.e., keeping only the classical interaction vc,
one obtains Σxc(11′) = Σx(11′) + ivc(12)G(11′)vc(1

′4)χ(42), with χ(42) = −iL(42; 42) the
time-ordered response function. Hence one gets a screening contribution with respect to Σx:
this is the GW form, with W = vc + vcχvc, which can also be written as W = vc + vcPW

1The atomic limit of the Hubbard molecule is an example where the correlation part of the interaction is crucial;
see later.



Hubbard Dimer: GW & Beyond 4.5

Fig. 2: Model system for removal and addition energies from Ref. [10]: first an electron is
added to/removed from box 1 occupied by zero/one electron; in a second step an electron is
added to box 2 in presence of the electron in box 1 (see text).

with the polarizability P = χ(1 + vcχ)−1. At this stage it has not been specified yet how
to calculate the screening: different approximations to the screening will give the various GW
flavors, e.g.GWRPA, in which P = −iGG, and beyond.2 If one keeps an approximateΣxc inΞ ,
one goes beyond GW and includes so-called vertex corrections. The GW approximation works
well for systems where the screening is important; instead in systems which show atomic-like
physics, such as transition-metal oxides, the GWA shows difficulties or even failures [3, 7–15].
More accurate approximations are then needed. One way to go beyond the standard methods is
to try to correct some basic shortcomings that plague them. Here we will focus on the following
two errors GW suffers from:

• Self-screening error
This error [16, 10, 17] can be illustrated by considering an empty box with a potential V0,
as depicted in Fig. 2. The problem of adding a particle to the empty box can be solved
exactly by the independent-particle Schrödinger equation(

−∇
2

2
+ V0(x1)

)
φ1(x1) = ε1φ1(x1). (6)

The total energy difference between the system with N = 0 and N+1 = 1 particles
is given by the eigenvalue ε1. This situation is described exactly by the GWA (the same
holds for any other commonly used approach, like DFT or Hartree-Fock, since the density
of the system is zero). Problems arise when looking at the reverse problem, namely to
extract the particle from the box, since now there is a non-vanishing charge density in
the box. Again, Eq. (6) correctly describes the total energy difference between N = 1

and N−1 = 0 particles. Also Hartree-Fock (HF) is exact, as one can easily verify,
since there is the exact cancellation between the Hartree and the Fock terms because
the density is built with just the state φ1 one is looking at. It then becomes clear that
GW does not give the exact result, since the exchange term that in HF cancelled the
Hartree self-interaction is now screened, and the cancellation is no longer perfect. If we

2In this case the nature of the screening is always test-charge-test-charge [6].
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had W = vc (no screening) we would be back to the exact HF result. However, the
screening is in general non-zero, since it depends on the density of the system, which
is non-zero for a particle in a box. Therefore, it becomes clear that GW suffers from a
self-screening problem: the particle that is extracted from the system screens itself, which
makes the approach non-symmetric with respect to the case where the particle is added
to the empty box. In other words, when the quasiparticle eigenvalue is used to represent
a total energy difference, the energy of the system has changed after one has first added
and then extracted one electron.

• Atomic limit:
Another very important diagnostic tool is the study of the atomic limit. This limit corre-
sponds to pulling apart the atoms of a system, so that the overlap between wavefunctions
on different atoms is negligible. In particular H+

2 and H2 dissociations have been ex-
tensively studied in order to trace errors in the approximations used in DFT and MBPT.
The study of the H2 dissociation within GW shows that this approximation is not size-
consistent, i.e., the total energy in the atomic limit is not equal to the sum of the total
energies of the two isolated atoms [8, 9]. Also the description of the spectrum can be ex-
pected to be problematic, and this can be understood as follows: the GW approximation
takes into account only the Hartree, exchange, and induced Hartree potentials to describe
an interacting system and its response to an additional electron or hole, i.e., besides ex-
change it gives a classical description of the system and of its response. This means for
the example H+

2 that an additional electron sees half an electron on each atom at any dis-
tance between the two atoms; this results in only one type of addition energy, as we will
later show using the Hubbard dimer at 1/4 filling. In reality, instead, one has the same
probability of finding the whole electron on one or the other atom, resulting in two types
of addition energies depending if the additional electron is added to an empty or to an
occupied atom.

2.2 Vertex corrections

We can now formulate vertex corrections with the aim to correct the problems of self-screening
and wrong atomic limit that GW suffers from. If one keeps an approximate Σxc in Ξ of Eq. (5)
one goes beyond GW and includes vertex corrections. The question is which approximate Σxc

to consider.

2.2.1 Vertex corrections from DFT

By approximating Σxc by the exchange-correlation potential of DFT, vxc , one gets the expres-
sion Σxc(1, 1

′) = Σx(1, 1
′) + ivc(1, 2)G(1, 1′) [vc(1

′, 4) + fxc(1
′, 4)]χ(4, 2), where fxc = δvxc

δρ
;

this leads toΣxc=iGW̃, with a modified screened Coulomb interaction W̃=vc+(vc+fxc)χvc [6].
This is a test-charge test-electron screened Coulomb interaction (TC-TE) instead of a test-
charge test-charge W , and it expresses the fact that an additional particle in the system can-
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not be described as a classical charge. This approximate xc self-energy can be rewritten as
Σxc = iGWΓ with Γ = 1 + fxcP a two-point vertex and P the irreducible polarizability.3

The fxc that appears makes the one-electron case exact, since for this case fxc = −vc from
which Σxc = iGvc, which exactly cancels the Hartree term for one electron. In the simple
case of one electron, hence, this simple vertex correction removes the self-screening and yields
the exact result for the highest occupied state. It seems reasonable to generalize these intuitive
findings to the case of more bands. In fact, we know that the KS potential yields often a quite
good description for all valence bands, not only the highest occupied one. In these cases one
should expect that the test-charge test-electron approximation for the self-energy derived above
is the method of choice to describe valence bands. Of course, the exact KS potential and kernel
are not known, but one might use LDA as a first approximation. For conduction states that are
spatially distinct from valence states or with different spin, which are modelled by a second
electron added to a second separate box in Fig. 2, one can argue that one should rather use
GW [10]. The effectiveness of this approach has yet to be investigated and it is an interesting
outlook. Preliminary results on silicon indicate that this kind of vertex corrections appear to
affect just the quasiparticle energies [18].

2.2.2 Vertex corrections from the T-matrix approximation

As we will show using the Hubbard dimer, the vertex corrections which cure the self-screening
problem are not sufficient to improve the description of the atomic limit, precisely because
the two problems have a different nature; therefore, a more complex vertex is needed to fix
both. For the spectral function in the atomic limit what matters is that the electron in the
system and the electron added to the system “see” each other. In other words it is the quan-
tum nature of the electron interaction that is important. Starting from the exact expression for
the self-energy, Eq. (5), one could use the rough approximation L(4, 2; 5, 2) ' L0(4, 2; 5, 2)

for the response of the system but concentrate on a clever approximation for Ξ . To this end
one can introduce an effective 4-point interaction T such that, similar to GW, Σ(1, 1′) =

iG(4′, 2′)T (1, 2′; 1′, 4′). T is linked to Ξ through the functional derivative of the self-energy
as Ξ(3, 5; 1′, 4) = iT (3, 5; 1′, 4) + iG(4, 2) δT (3,2;1′,4)

δG(4,5)
. Neglecting δT (3,2;1′,4)

δG(4,5)
, in analogy with

what one usually does in the framework of Bethe-Salpeter calculations based on GW [19–21],
Eq. (5) becomes an integral equation for GT

Σ(1, 1′) = iG(4′, 2′)T (1, 2′; 1′, 4′)

= vH(1) δ(11′) +Σx(11′)− vc(12)G(1, 3)G(42)G(25)T (3, 5; 1′, 4). (7)

Since G(4′, 2′)T (1, 2′; 1′, 4′) cannot be inverted to find T, several choices of T make the correct
Σ. A possible solution is

T pp(1, 2; 1′, 4) =− vc(1, 2) δ(1, 1′) δ(4, 2) + vc(1, 2) δ(2, 1′) δ(4, 1)

+ ivc(1, 2G(1, 3)G(2, 5)T pp(3, 5; 1′, 4), (8)

3This can be obtained by considering that W = vc + vcχvc and χvc = PW .
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Fig. 3: Schematic representation of the physical contents of GW (a), pp T-matrix (b), and eh
T-matrix for particles with collinear spins from Ref. [3].

which defines the particle-particle (because the kernel G(1, 3)G(2, 5) in the correlation part
describe two propagating electrons or holes) T-matrix [22, 23]. One can, moreover, decompose
T pp into a direct term (Hartree-like contribution) T pp1 = −vc + ivcGGT

pp
1 and an exchange

term (exchange-like contribution) T pp2 = vc + ivcGGT
pp
2 . Another possible solution of Eq. (7)

is the electron-hole T-matrix, defined as

T eh(1, 5; 1′, 2) =− vc(1′, 2) δ(1, 1′) δ(5, 2) + vc(1
′, 2) δ(1, 2) δ(1′, 5)

+ ivc(1, 2)G(1, 3)G(4, 2)T eh(3, 5; 1′, 4), (9)

where now the kernel G(1, 3)G(4, 2) in the correlation part describes an electron and a hole.
The structure of the T-matrix self-energy is hence very close to the structure of GW: one has a
“particle-particle-screened” interaction T (or an “electron-hole-screened” interaction T in case
of the electron-hole T-matrix, but where the electron-hole excitations involved are different by
those involved in GW (see Fig. 3)). Based on (5), we can now directly compare the different
approximations. Both GW and T-matrix allow one to describe physical processes involving
three particles: the particle which is added to the system and the electron-hole pair that it cre-
ates. Ideally, one would propagate the three particles together, which can be numerically heavy.
Therefore one chooses to propagate a pair and to treat the third particle in a kind of mean-field
of the other two. This is illustrated in Fig. (3): in GW one propagates together the electron-hole
pair created by the additional particle, whereas in the T-matrix one propagates together the addi-
tional electron (additional hole) and the excited electron (hole left behind) (pp T-matrix) or the
additional electron (additional hole) and the hole left behind in the electron excitation (excited
electron) (eh T-matrix).
As shown in Fig. 3 the additional particle with a given spin couples with a second, excited,
particle (electron or hole) that can have spin up or down. In the GWA, electron and hole have
necessarily the same spin. The T-matrix approximation contains instead also spin-flips.
In general none of the three possibilities (GWA, particle-particle or electron-hole T-matrix) will
give an exhaustive description. This reflects the dilemma of how to decide which two-particle
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Fig. 4: Diagrams corresponding to the self-energy obtained with the first iteration of the
screened T-matrix. The diagrams, from left to right, represent the Hartree, GW, and second-
order screened exchange (SOSEX) terms, respectively.

correlation to privilege in the description of a (at least) three-particle problem. It suggests to
work with combinations.

The success of the GWA is due to the screening of the Coulomb interaction with respect to
Hartree-Fock. In the T-matrix one uses a rough approximation for the screening, i.e. L ≈ L0.
One can go beyond this approximation and include the Hartree potential or even a local part of
the xc self-energy, Σ loc

xc (1) δ(1, 1), in the variation δG−1/δUext contained in L = δG/δUext =

−G (δG−1/δUext)G. This yields L(4, 2; 5, 2) ' G(4, 7) ε−1(7, 2)G(7, 5) where ε−1 is a test-
charge test-charge screening function ε−1 = 1 + vcχ if only the Hartree part is included, oth-
erwise at least a partially test-charge test-electron screening ε−1 = 1 +

(
vc+

δΣloc
xc

δρ

)
χ [6]. This

makes the expression much more, though not fully, consistent: now ε−1 contains a large part
of the derivative of the self-energy, that is also considered in the effective interaction, and L
contains the screening of the formerly independent propagators GG, that is itself based on the
two-particle correlation function. One arrives then at a screened version of the T-matrix (re-
ferred to as Ts in the following), where the bare Coulomb potential in the correlation part of the
(unscreened) T-matrix is replaced by the screened one. The pp screened T-matrix reads

Ts(1, 2; 1′, 4) =− vc(1, 2) δ(1, 1′) δ(4, 2) + vc(1, 2) δ(2, 1′) δ(4, 1)

+ iW (1, 2)G(1, 3)G(2, 5)Ts(3, 5; 1′, 4). (10)

One can write a similar equation also for the eh screened T-matrix. The first iteration of the pp
and eh screened T-matrix equations produces the same self-energy, which contains the Hartree
and GW contributions, and a term corresponding to the second-order screened exchange (SO-
SEX) (see Fig. 4). We hence can conclude that GW is contained in this screened T-matrix
approach, which moreover contains higher-order terms, which can be identified as vertex cor-
rections. For short-range interactions, where screening is not important, the screened T-matrix
reduces to the T-matrix, which is suitable for treating short-range correlation. For long-range
interaction, where, instead, screening is important, we find that the screened T-matrix behaves
more like GW (in its first iteration, indeed, it gives GW and SOSEX, which is actually already
used to improve GW), which is capable of taking into account long-range correlation. Therefore
the screened T-matrix should be able to capture the physics of systems with effective short-range
interactions as well as of systems with effective long-range interactions.
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3 The Hubbard dimer

The Hubbard Hamiltonian can be obtained from the many-body Hamiltonian in (1) in which
the field operators are expressed in the atomic basis (we will consider only one basis function
per atom). Retaining only the diagonal elements of the Coulomb interaction (indicated as U )
and indicating as −t and ε0 the off-diagonal and diagonal elements, respectively, of the kinetic
energy operator, one arrives at

Ĥ = −t
∑
〈i,j〉

∑
σ

ĉ†iσ ĉjσ + U
∑
i

ĉ†i↑ĉi↑ ĉ
†
i↓ĉi↓ + ε0

∑
i

∑
σ

ĉ†iσ ĉiσ + V̂0 . (11)

Here c†iσ and ciσ are the creation and annihilation operators for an electron at site (atomic posi-
tion) i with spin σ, while U is the on-site (spin-independent) interaction, −t is the hopping en-
ergy, and ε0 the orbital energy. The summation

∑
〈i,j〉 is restricted to the nearest-neighbor sites.

The Hamiltonian further contains a potential V0 that can be chosen to fix the zero-energy scale.
The model does not contain a long-range interaction, hence everything linked to non-locality is
not treated, but we can suppose that these kind of issues are well treated by Hartree-Fock, GW,
etc. Moreover, to keep the discussion simple, we will consider only sites that have the same
energy, thus neglecting any inhomogeneity which can mimic the role of the crystal potential
in a solid [24]. The physics of the Hubbard model arises from the competition between the
hopping term, which prefers to delocalize electrons, and the on-site interaction, which favors
localization. The ratio U/t is a measure for the relative contribution of both terms and is the
intrinsic, dimensionless coupling constant of the Hubbard model. Depending on this ratio the
system is a metal or an insulator.
This model can be solved exactly for small clusters. In the following we will consider a
“molecule” made up of two equivalent sites, each with one orbital. We will look at the one-
and two-electron cases (quarter and half filling, respectively) in order to cover a wide physics.

3.1 Exact solution

In order to calculate the exact 1-GF for the Hubbard dimer we start from its Lehmann represen-
tation (2) and we project it onto the (orthonormal) one-electron site basis {ϕi(x)}, such that4

G(x1, x2;ω) =
∑

ij Gij(ω)ϕi(x1)ϕ∗j(x2) and

Gijσ(ω) = lim
η→0+

(∑
m

〈ΨN0 |ĉi|ΨN+1
m 〉〈ΨN+1

m |ĉ†j|ΨN0 〉
ω − (EN+1

m −EN
0 ) + iη

+
∑
n

〈ΨN0 |ĉ
†
j

∣∣ΨN−1
n 〉〈ΨN−1

n |ĉi
∣∣ΨN0 〉

ω − (EN
0 −EN−1

n )− iη

)
, (12)

with the indices i, j running over the sites. The ground-state wavefunction and energy |ΨN0 〉 and
EN

0 of the N -electron system as well as the wavefunctions and energies |ΨN±1
m 〉 and EN±1

m of

4This expression for the 1-GF comes naturally by using the following basis transformation for the field oper-
ators: ψ̂(x) =

∑
i ĉiϕi(x) and ψ̂†(x) =

∑
i ĉ
†
iϕ
∗
i (x), where ĉi and ĉ†i are annihilation and creation operators,

respectively.
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the (N±1)-electron system can be obtained by diagonalizing the Hamiltonian for N−1, N , and
N+1 electrons, separately (as shown in Appendix A).

3.1.1 N = 1

• One site
In the limit t → 0 the two-site Hubbard model should represent two isolated atoms [25,
26]. In order to compare this limiting case with the solution of an isolated atom, we
calculate the exact 1-GF for the case of a one-site Hubbard model with one electron. We
choose as ground state the spin-up configuration | ↑ 〉 which has energy ε0 (equivalently,
the spin-down configuration could be chosen). There is only one state with N−1 = 0

electrons, i.e., the vacuum | 〉 with energy 0, and only one state with N+1 = 2 electrons,
i.e., | ↑↓〉 with energy ε0 + U . Moreover, note that, since we consider a spin-independent
Hamiltonian, the 1-GF in (12) is diagonal in spin. Therefore the exact one-particle Green
function reads

G↑ =
1

ω − ε0 − iη
, G↓ =

1

ω − U − ε0 + iη
. (13)

There is only a removal energy, ω = ε0, and an addition energy, ω = ε0 + U , for this
system. Note that by taking U = 0 in (13) one gets the non-interacting G0.
The exact self-energy can be obtained from the Dyson equation Σ(ω)=G−1

0 (ω)−G−1(ω)

Σ(ω) =

(
0 0

0 U

)
, (14)

which reflects the fact that the electron in the ground-state can interact only with an addi-
tional spin-down electron.

• Two sites
Using the information in Tables 1-2 of the Appendix A we can build the 1-GF at quarter
filling. The 1-GF has the following structure

G(ω) =


G↑11 G↑12 0 0

G↑21↑ G↑22 0 0

0 0 G↓11 G↓12

0 0 G↓21 G↓22

 . (15)

with

G↑ij(ω) =
(−1)i−j

2

(
1

ω − (ε0+t) + iη
+

(−1)i−j

ω − (ε0−t)− iη

)
, (16)

and
G↓ij(ω) =

(−1)i−j

4

(
1

ω − (ε0+t) + iη
+

1

ω − (ε0+t+U) + iη

)

+
1

2

 1
a2

(
1 + 4t

(c−U)

)2

ω −
(
ε0+t− c−U

2

)
+ iη

+

1
b2

(
1− 4t

(c+U)

)2

ω −
(
ε0+t+ c+U

2

)
+ iη

, (17)
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where c =
√

16t2 + U2, a =

√
2
(

16t2

(c−U)2
+ 1
)

, and b =

√
2
(

16t2

(c+U)2
+ 1
)

. The one-

particle Green function is spin-diagonal; the spin-down block has only the electron part,
whereas the spin-up block has both electron and hole parts. This is consistent with the
fact that with a spin-up electron in the ground state one can have only spin-up holes. Note
also that G11↑ = GU=0

11↑ and G12↑ = GU=0
12↑ , whereas

GU=0
ij↓ (ω) =

(−1)i−j

2

(
1

ω − (ε0+t) + iη
+

(−1)i−j

ω − (ε0−t) + iη

)
. (18)

One can interpret the poles of the Green function using a simple molecular picture with
the energies of the bonding and antibonding orbitals at ε0 − t and ε0 + t, respectively,
and with the spin-up electron in the bonding orbital. If U = 0 one can remove (add) a
spin-up (spin-down) electron from (to) the bonding orbital (ω = ε0 − t), and one can add
a spin-up/spin-down electron to the antibonding orbital (ω = ε0 + t). When the on-site
electron-electron interaction U is switched on, the energy for the addition of a spin-down
electron to the bonding state evolves to ω = ε0 + t + (U−c)/2, and the addition energy
to the antibonding state is split into ω = ε0 + t and ω = ε0 + t + U . The addition
of a spin-down electron, furthermore, can excite the system, giving rise to the satellite
ω = ε0 + t+ (U+c)/2.

We now discuss two limiting cases, which are directly related to the importance of corre-
lation: the noninteracting limit and the atomic limit.

– noninteracting limit: U → 0

Of course in this limit one retrieves the noninteracting Green function. The spectral
weight of the pole ω = ε0+t+(c+U)/2, which becomes ω = ε0+3t, is suppressed.
Note that ω = ε0 + 3t deviates from the antibonding peak by an energy ∆ = 2t,
which is a pole of the polarizability P (as shown later in Eq. (22)): this pole of
the Green function involves hence an excitation of the system, which justifies the
identification of the related peak as a satellite.

– atomic limit: t→ 0

We first notice that for t = 0 the ground state energy goes to E0 = ε0 so that it
approaches degeneracy with the other doublet state in the N = 1 spin-up subspace
(see Table 1 in Appendix A). However for any small but finite t this degeneracy
is lifted. In this limit the poles of the Green function reduce to the addition and
removal energies of two isolated atoms, one with one electron and the other one
empty [25, 26]. Indeed the spin-up poles retain the same equal weight (±1/2) and
go towards ω = ε0, which can be interpreted as the removal energy of an atom
with a spin-up electron and the addition energy of an empty atom, respectively. The
spin-down poles ω = ε0 + t and ω = ε0 + t− (c− U)/2, and ω = ε0 + t + U and
ω = ε0 + t+ (c+U)/2 (satellite) merge at ω = ε0 and ω = ε0 +U , respectively, all
with equal weight (±1/4) (see Appendix A). These two energies can be interpreted
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as the energy for the addition of a spin-down electron to an empty atom and to an
atom with a spin-up electron, respectively.

The self-energy Σ(ω) = G−1
0 (ω)−G−1(ω), has the following structure

Σ(ω) =


0 0 0 0

0 0 0 0

0 0 Σ↓11 Σ↓12

0 0 Σ↓12 Σ↓11

. (19)

The self-energy has only a spin-down part, i.e., the electron in the system interacts only
with spin-down electrons. This is in line with the fact that our system consists of one
electron with spin up. When we add a second electron to the system, it can have spin
up or spin down. If the second electron has spin up, the two electrons are locked in a
configuration where two different sites are occupied, and therefore there is no interaction.
If the second electron has spin down, the two electrons can interact.

3.1.2 N = 2

Using the information in Tables 1-3 of the Appendix A we can build the 1-GF at half filling. It
has the structure given in Eq. (15), with the components gives by

Gσ
ij(ω) =

(−1)i−j

2a2

( (
1 + 4t/(c−U)

)2

ω −
(
ε0 − t+ (c+U)/2

)
+ iη

+
(−1)i−j

(
1− 4t/(c−U)

)2

ω −
(
ε0 + t+ (c+U)/2

)
+ iη

)

+
1

2a2

( (
1 + 4t/(c−U)

)2

ω −
(
ε0 + t− (c−U)/2

)
− iη

+
(−1)i−j

(
1− 4t/(c−U)

)2

ω −
(
ε0 − t− (c−U)/2

)
− iη

)
, (20)

which enjoys a nice spin symmetry G↑ij = G↓ij . We can now study the limits U → 0 and t→ 0.

• noninteracting limit: U → 0

In this limit the ground state becomes |Ψ0〉 = 1
2

(
| ↑ , ↓ 〉−| ↓ , ↑ 〉 + | ↑↓ , · 〉+| · , ↑↓ 〉

)
(where |1, 2〉, with occupations of the sites 1, 2 given by · , ↑, ↓ , ↑↓ indicate Slater deter-
minants) with energy E0 = 2(ε0 − t), and the one-particle Green function reduces to the
noninteracting one

GU=0
ijσ (ω) =

(−1)i−j

2

(
1

ω − (ε0+t) + iη
+

(−1)i−j

ω − (ε0−t)− iη

)
. (21)

Note that this is the same as the one for the spin-up block of the one-electron case.

• atomic limit: t→ 0

In the atomic limit there are no double occupancies (Heitler-London limit), therefore the
two electrons, one with spin up and the other with spin down, are localized one on one
site and the other on the other site with equal probability, i.e. the ground state is the singlet
|Ψ0〉 = 1√

2

(
|↑ , ↓ 〉 − |↓ , ↑ 〉

)
. The spectral function thus shows, for each spin, two peaks
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with the same spectral weight (1/2), one for the removal of an electron (peak at ε0), and
one for the addition of a second electron (peak at ε0 + U ), which represents the removal
and addition energies, respectively, of an isolate atom with one electron.

As far as the self-energy is concerned, unlike for the case at half filling, it has a spin-up and
spin-down block, with the two blocks being the same. This again reflects the fact that the system
is symmetric with respect to spin.

3.2 GW

The GW equations, as well as all the other approximations to the self-energy, should, in prin-
ciple, be solved self-consistently, since the self-energy is a functional of the one-body Green
function. In this chapter, however, we will not use self-consistency. In particular for GW we will
use G0 to build W and Σ: Σ = vH + iG0W0, with vH = −ivcG0 and W0 = [1 + ivcG0G0]−1vc.
This approach is called G0W0 or one-shot GW, and it is often used in practice (although one
uses aG0 that already contains part of the interaction through a suitable single-particle Hamilto-
nian, like KS, HF, or quasiparticle self-consistent GW), since a fully self-consistent procedure is
computationally demanding, especially for large systems. Besides this, it is important to stress
that the failures of GW we discuss in this chapter are not solved by self-consistency since they
are rooted in the fundamental structure of the GW approximation.

3.2.1 N = 1

• One site
The RPA polarizability P (ω) = −i

∫
dω′

2π
G(ω+ω′)G(ω′) is zero, consistent with the fact

that the system has only one state (the site orbital) in which it could be excited, which
would however require a spin-flip, which is not allowed. Therefore there is no response
of the system, and thus the screened potential equals the bare Coulomb potential, W = U.
The GW self-energy, therefore, is equal to the exact one, and, consequently, also the
Green function. Therefore, together with the fact that GW is also exact for the empty
atom, for two separate one-site Hubbard models the GWA yields the exact solution, con-
trary to the t → 0 limit of the two sites, as we will show in the following. This shows
again the relation of the GWA to the classical description of the system charge: for the
one-site Hubbard model, where the electron is well confined, the classical description
of the system works well (i.e. one knows where the electron is). For the two-site Hub-
bard model, where, instead, the electron shows its quantum nature, this classical picture
fails. This is in line with the size-consistency problem GW suffers from [8, 9] and it is
analogous to what is observed in DFT [27].

• Two sites
The RPA polarizability P = −iGG is given by

P ↑ij(ω) =
(−1)i−j

4

(
1

ω − 2t+ iη
− 1

ω + 2t− iη

)
. (22)
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Note that, since we have only one electron with spin up in the ground state the polarizabil-
ity is not zero only for the spin-up block. Moreover the same result is obtained whether
the noninteracting or exactG is used, since they are equal for the spin-up block. The RPA
screened interaction W (ω) =

(
1− UP (ω)

)−1
U becomes

Wij(ω) = Uδij + (−1)i−j
U2t

ω2 − h2
, (23)

with h2 = 4t2 + 2Ut. The self-energy Σ(ω) = vH + i
2π

∫
dω′G(ω+ω′)W (ω′)eiω

′η, has
the following structure,

Σ(ω) =


Σ11↑ Σ12↑ 0 0

Σ12↑ Σ11↑ 0 0

0 0 Σ11↓ Σ12↓

0 0 Σ12↓ Σ22↓

. (24)

A striking difference with respect to the exact self-energy in Eq. (19) is the nonzero
elements of the spin-up block. Moreover, since G↑ = G0↑, G0W0, G0W, GW0, and GW
(with G the exact Green function) give the same expression for the spin-up self-energy.
As we will discuss in the following this is a direct consequence of the self-screening error
in the GWA.
The 1-GF can be obtained from

GGW (ω) =
(
G−1

0 (ω)−Σ(ω)
)−1

. (25)

It reads

GGW
ij↑ (ω) = (−1)i−j

(
1
4

+ 2t+h
4A

ω−ω+
1 +iη

+
1
4
− 2t+h

4A

ω−ω−1 −iη

)
+

1
4
− 2t+h

4A

ω−ω+
2 +iη

+
1
4

+ 2t+h
4A

ω−ω−2 −iη
, (26)

GGW
ij↓ (ω) = (−1)i−j

(
1
4
+2t−h+U/2

4B

ω−ω+
3 +iη

+
1
4
−2t−h+U/2

4B

ω−ω−3 +iη

)
+

1
4
−2t+h−U/2

4C

ω−ω+
4 +iη

+
1
4
+2t+h−U/2

4C

ω−ω−4 +iη
,

(27)

where

A =

√(
h+2t

)2
+

2U2t

h
, B =

√(
h−2t−U

2

)2

+
2U2t

h
, C =

√(
h+2t−U

2

)2

+
2U2t

h

and the poles are at

ω
+/−
1 =

(
2ε0 − h± A

)
/2 , ω

+/−
2 =

(
2ε0 + h± A

)
/2 ,

ω
+/−
3 =

(
2ε0 + h+ U/2±B/2

)
, ω

+/−
4 =

(
2ε0 + h+ U/2± C

)
/2 .

We can now study the noninteracting limit and the atomic limit.
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Fig. 5: Two-site Hubbard model at quarter filling from Ref. [10]: comparison between exact
(solid lines) and GW (dashed lines) renormalized excitation energies ω/t as function of U/t,
with ε0 = t = 1 eV. The thin lines represent weak satellites, which appear with increasing
interaction U . The labels on the left of the figure refer to the exact energies, with ω̃1 = ω̃4 =
ε0 + t, ω̃2 = ε0 − t, ω̃3 = ε0 + t+ U , ω̃5 = ε0 + t+ U/2 + c/2, and ω̃6 = ε0 + t+ U/2− c/2,
whereas the labels on the right refer to the GW energies.

– noninteracting limit: U → 0

In this limit the interacting GW Green function reduces of course to the noninter-
acting one, with the poles ω+

1 , ω−2 , ω+
3 , ω−3 , and ω−4 collapsing to the bonding and

antibonding energies ω = ε0 − t and ω = ε0 + t, respectively. The poles ω−1 , ω+
2 ,

and ω+
4 , instead, collapse to ω = ε0 − 3t and ω = ε0 + 3t with zero intensity. Note

also that the energies ω = ε0 − 3t and ω = ε0 + 3t deviate from the bonding and
antibonding peaks, respectively, by ±2t, which are the poles of the RPA polariz-
ability P . This means that these energies arise from excitations of the system. The
poles ω−1 , ω+

2 , and ω+
4 can be, therefore, identified as satellites.

– atomic limit: t→ 0

In this limit all the spin-up poles acquire an equal weight (±1/4) and go towards
ω = ε0, in agreement with the exact solution. The unphysical poles, and hence the
self-screening problem, cannot be detected in the atomic limit because the excitation
energy 2t→ 0. The spin-down poles ω+

3 and ω+
4 (satellite) go towards ω = ε0 + U

2
,

each with weight (±1/2), whereas ω−3 and ω−4 merge at ω = ε0 with zero weight.
This is in contrast with the exact solution where the four poles go towards ω = ε0

and ω = ε0 + U with equal weight (±1/4). The error stems from the fact that the
GW self-energy is static in this limit (it consists of the Hartree potential U/2 only
for the spin-down block). The exact atomic-limit self-energy, instead, has an extra
term that is frequency-dependent, namely

Σ↓ij(ω) = δij
U

2

(
1 +

U

2(ω−ε0)− U + iη

)
.
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Fig. 6: Two-site Hubbard model at quarter filling: comparison between exact (black continuous
line) and GW (red dashed, green dash-dotted, and black continuous lines for t = 1, 0.1, and 0,
respectively) spectral function (removal part) at U = 4 and ε0 = t.

This self-energy shows, in addition to the Hartree potential, a frequency-dependent
term that creates the extra pole ω = ε0 + U besides the only pole ω = ε0 of the
noninteracting Green function (for t→ 0). The appearance of the peak ω = ε0 + U

is an effect of “strong correlation”. One can understand that the problems of GW
in the atomic limit arise from the interpretation of the charge density: in GW, it is
treated as a classical charge distribution, namely half an electron on each atom in
the limit t → 0, that responds to the additional electron or hole. Instead, it should
rather express the probability for an electron to be on one or the other atom, so that
the additional electron can meet an empty or occupied atom with equal probability,
which leads to the peak splitting.

In Fig. 5 we compare the GW and exact addition/removal energies. The GW approx-
imation yields two satellites more than the exact solution, namely, ω−1 and ω+

2 . These
satellites come from the poles of the spin-up Green function and are produced by the
frequency-dependent spin-up self-energy. This is a consequence of the self-screening
problem the GWA suffers from. The direct consequences of the self-screening error on
photoemission spectra are illustrated in Fig. 6, where we reported the spectral function
A(ω) for the spin-up channel. We see that the exact result shows only one peak, which
corresponds to the site energy ε0, whereas the GW approximation gives in general spuri-
ous peaks at any value of the hopping, except at t = 0. This is due to the fact that one and
the same electron can be used twice; for example, once to be removed, and at the same
time to screen this perturbation. At t = 0, instead, the electron does not hop between the
two sites, therefore there is no screening in the system, W = vc and we retrieve the HF
exact result. The spectral function for the spin-down channel at quarter filling is reported
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Fig. 7: Spectral function at quarter filling: exact (lower panel) vs. GW (middle panel), pp
T-matrix, and screened pp T-matrix (upper panel).

in Fig. 7. The GWA produces a spectral function profile in good agreement with the exact
one at moderately strong interaction U/t (middle left panel). In the atomic limit (middle
right panel), instead, GW produces only one peak.

The inclusion of an explicit vertex in the self-energy, namely a two-point Γ = δ + fxcP

for valence bands and, e.g., Γ = δ for the well separated conduction bands, removes by
construction the self-screening error for the one-electron case. Indeed, using this vertex it
is clear that the self-energy remains unchanged for the spin-down block, whereas for the
spin-up block Σxc = −vH . Therefore, we arrive at

Σ(ω) =


0 0 0 0

0 0 0 0

0 0 Σ↓11 Σ↓12

0 0 Σ↓12 Σ↓22

, (28)

with Σ11↓ and Σ12↓ within the GW approximation. We now get a self-energy with the
same structure as the correct one. It is clear that now the spin-up block of the one-particle
Green function equals the noninteracting Green function, like the exact one. For the spin-
down block we get four poles as in the exact case, although they still differ from the exact
values by the GW error.

We point out that it is essential to use a three-point vertex in order to get the correct
number of poles. Indeed, by using the two-point vertex Γ = δ+fxcP both for valence and
conduction bands, one would get a zero self-energy for the spin-down block. Therefore
the spin-down Green function would equal the noninteracting one, which has only two
poles instead of four as the exact interacting Green function: there would be no satellites
since there would be no screening.
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One can readily understand that these vertex corrections will not correct the wrong atomic
limit of GW, since the two problems have a different nature; therefore a more complex
vertex, able to introduce an additional frequency-dependence in Σ, is needed to fix both.

3.2.2 N = 2

In order to calculate the one-body Green function within the GWA (G0W0), we need the fol-
lowing ingredients,

P σ
ij(ω) =

(−1)i−j

4

(
1

ω − 2t+ iη
− 1

ω + 2t− iη

)
, (29)

Wij(ω) = Uδij + (−1)i−j
2U2t

ω2 − h′ 2
, (30)

Σσ
ij(ω) =

U

2
δij +

U2t

2h′

(
1

ω − (ε0+t+h′) + iη
+

(−1)i−j

ω − (ε0−t−h′)− iη

)
, (31)

with h′2 = 4t2 + 4tU . The one-body Green function hence reads

GGW
ijσ = (−1)i−j

 1
4

+
h′+2t+U

2

4A′

ω−ω+
1 + iη

+
1
4
− h′+2t+U

2

4A′

ω−ω−1 − iη

+
1
4

+
−h′−2t+U

2

4B′

ω−ω+
2 + iη

+
1
4
− −h

′−2t+U
2

4B′

ω−ω−2 − iη
(32)

with

A′ =

√(
2t+ h′ +

U

2

)2

+
4U2t

h′
, B′ =

√(
2t+ h′ − U

2

)2

+
4U2t

h′
,

and

ω
+/−
1 =

1

2

(
2ε0 − h′ +

U

2
± A′

)
, ω

+/−
2 =

1

2

(
2ε0 + h′ +

U

2
±B′

)
.

We can now study the two limits U → 0 and t→ 0.

• noninteracting limit: U → 0

In this limit h′ ≈ 2t, therefore the poles ω+
1 and ω−2 collapse to the poles ofG0, ω = ε0+2t

and ω = ε0 − 2t, whereas ω−1 and ω+
2 collapse to ω = ε0 − 3t and ω = ε0 + 3t. These

last two poles have zero intensity at U = 0 and deviate from the bonding/antibonding
energies by ±2t (poles of P ), which justify their identification as satellites.

• atomic limit: t→ 0

In the limit t→ 0 we have h′ ≈ 0, from where it follows that the poles ω+
1 and ω+

2 merge
at ω = ε0 + U

2
, whereas the poles ω−1 and ω−2 go towards ω = ε0. This is in contrast with

the exact solution where the poles go towards the poles of the isolated atom (ω = ε0 and
ω = ε0 + U ). This can again be understood considering that GW treats the charge/spin
density as a classical charge distribution, namely an half electron with half spin up and
half an electron with half spin down on each atom that respond to the additional electron
or hole in the atomic limit.
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Fig. 8: Spectral function at half filling: exact (lower panel) vs. GW (middle panel) and screened
pp T-matrix (upper panel).

The spectral function at half filling is reported in Fig. 8: for moderately strong interaction (mid-
dle left panel), GW performs quite well (although the position of the satellites is overestimated),
whereas at strong correlation (middle right panel), no gap is observed.5

Finally, we compare the LUMO at quarter filling with the HOMO at half filling. The LUMO in
the N -electron system should be equal to the HOMO in the N+1-electron system. This occurs
for the exact case, and it is the pole at ω = ε0 +t−(c−U)/2. Within the GW approximation the
two energies, namely ω−4 at quarter filling and ω−2 at half filling, are different. The difference
stems from the different polarizability P , which is used to build the screening for the N and
N+1 cases. This simply shows again that the problem arises from the use of a TC-TC screening,
which depends only on the charge density of the system but not on the charge that is to be
screened. Indeed, the removal of an electron from the N+1-electron system should be screened
by N electrons only—which can be expressed through vertex corrections. The source of this
error comes from the fact that direct and exchange interactions are not treated on equal footing
in GW.

3.3 T-matrix

Also for the T-matrix approximation we adopt the same protocol adopted for the GWA, namely
we use G0 to build T and Σ. Projected in the (orthonormal) site-basis of the Hubbard model the

5We note that the Hubbard dimer at half filling enjoys an interesting symmetry (particle-hole symmetry) [28]
by setting ε0 = −U/2 and V0 = U in the Hubbard Hamiltonian. With this choice the exact 1-GF has the same
expression as in (20) but with ε0 = −U/2. For the GW and T-matrix 1-GF one has to set ε0 = 0. For U 6= 0
the particle-hole symmetry is lost in the GW and T-matrix approximations due to the use of G0. We enforce this
symmetry by dropping the terms U/2 in the poles and corresponding weights of the GW and T-matrix 1-GF.
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(unscreened) T-matrix becomes

T σσ
′

ilkj (ω) = −iδilδjk

(
T̄ σσ

′

1,ij (ω)− δσσ′T̄ σσ1,ij(ω)
)
, (33)

with T̄ σσ′
1 (ω) =

(
1 + ULσσ

′
0 (ω)

)−1
U , from which

Σσ
ij(ω) = −i

∫
dν

2π
Gσ̄
ji(ν) T̄ σσ̄ij (ω±ν). (34)

Here σ̄ indicates a spin opposite to σ, the sign ‘+’ refers to the particle-particle contribution for
which Lσσ

′,pp
0,ij (ω) = −i

∫
dω′

2π
Gσ
ij(ω

′)Gσ′
ij (ω−ω′)e−iω′η, and the sign ‘−’ refers to the electron-

hole contribution for which Lσσ
′,eh

0,ij (ω) = −i
∫
dω′

2π
Gσ
ij(ω

′)Gσ′
ij (ω

′−ω)eiω′η. More details on the
spin and time structure of the T-matrix can be found in Refs. [3, 4].
The screened T-matrix approximation is more difficult to handle, because the screened interac-
tion is frequency dependent. However, in the atomic limit t→ 0 there is no screening in the sys-
tem and the screened T-matrix reduces to the unscreened one. For t > 0 we assume that for the
model used here the major contribution to the T-matrix arises from the on-site screened interac-
tion. This is dominated by the bare interaction U, which justifies to take the screened interaction
in its static (ω = 0) limit. In this case the structure of the screened T-matrix is the same as for the
unscreened T-matrix with the onsite screened Coulomb interaction W = U − (1+δN,2)U2t/h2,
with h2 = 4t2 + 2Ut(1+δN,2) and N the total number of electrons in the system, replacing U.
We notice that with this approximation, in particular assuming a staticW, the screened T-matrix
will not reduce anymore to the unscreened T-matrix in the atomic limit.

3.3.1 N = 1

• One site
In this case the particle-particle correlator Lσσ

′,pp
0 (ω) = −i

∫
dω′

2π
Gσ(ω′)Gσ′

(ω−ω′)e−iω′η

is zero and T = U . The self-energy, therefore, is equal to the exact one, and, conse-
quently, also the Green function

• Two sites
In order to calculate the one-body Green function within the pp T-matrix approximation
(G0Tpp0 ), we need the following ingredients,

Lσσ̄,ppij (ω) = −1

4

(
1

ω − 2(ε0+t) + iη
+

(−1)i−j

ω − 2ε0 + iη

)
, (35)

T̄ σσ̄,ppij (ω) = Uδij +
U2

4

(
1

ω − 2ε0 − U
2
− 2t+ iη

+
1

ω − 2ε0 − U
2

+ iη

)
, (36)

from which the self-energy reads

Σ↑ij = 0, (37)

Σ↓ij =
U

2
δij +

U2

8

(
1

ω − ε0 − U
2
− 3t+ iη

+
(−1)i−j

ω − ε0 − U
2
− t+ iη

)
, (38)
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Fig. 9: Two-site Hubbard model at quarter filling from Ref. [3]: comparison between the exact
spin-down renormalized addition energies ωa/t (solid lines) as function of U/t (left panel) and
Log(U/t) (right panel) and the results obtained from GW (dashes), particle-particle (solid lines,
equal to the exact result), electron-hole (crosses), and 1st iteration unscreened T-matrix (cir-
cles). In the atomic limit the spectral function, i.e., the peak positions and weights, is illustrated
on the right-hand side, upon multiplying by t and taking the t→ 0 limit.

which equals the exact self-energy. Of course this self-energy produces the exact 1-GF.
Note that the unscreened T-matrix approximation does not suffer from the self-screening
problem of GW, as one can expect since no screening is involved.

The eh T-matrix gives a self-energy with the same structure as the pp T-matrix (hence
no self-screening), but with poles that are shifted by U from the exact ones, so that one
cannot retrieve the exact result.

Moreover, since the pp T-matrix gives the exact results, it becomes clear that its screened
version worsens the results, except in the atomic limit, where W → vc and one has
to get back the unscreened T-matrix results. As already discussed, this is not the case
within the static approximation to W we are considering here. However, even with an
approximate W the pp screened T-matrix is better than GW as shown in Fig. 9, where
the renormalized addition energies ωa/t for the spin-down channel are reported vs. U/t.
Particularly interesting is the spectral function at U/t → ∞: unlike the GWA, the T-
matrix approximation “sees” where the electron is, although only the pp T-matrix “sees”
well. Indeed, the eh T-matrix yields two peaks with the correct spectral weight, but at the
wrong position, namely ε0 +U/

√
2 and ε0−U/

√
2. Therefore, it is clear that in the case
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of the Hubbard dimer with one electron, the particle-particle contribution to the T-matrix
describes the essential physics.

Also note from Fig. 9 that the eh T-matrix and the pp T-matrix give the same results at the
first iteration, since Σeh,(1) = Σpp,(1). In particular, in the atomic limit their first iteration
shows two peaks in the spin-down spectral function, although they are not correctly lo-
cated and they do not have the same spectral weight. It hence contains the right physics,
although the results are still poor. Finally the spectral function calculated using the pp
screened T-matrix is shown in Fig. 7: although introducing screening in the pp T-matrix
corrupts the exact result, the spectral function profile is in good agreement with the ex-
act one and of similar quality as the GWA at moderately strong interaction U/t (upper
left panel). In the atomic limit (middle right panel), instead, the screened pp T-matrix is
superior to GW.

3.3.2 N = 2

In this case neither the pp nor the eh unscreened T-matrix reproduce the exact result. In partic-
ular, in the case of the pp T-matrix approximation we get

Lσσ̄,ppij = −1

4

(
1

ω − 2(ε0+t) + iη
− 1

ω − 2(ε0−t)− iη

)
, (39)

T σσ̄,ppij (ω) = Uδij +
U2t

2h̄

(
1

ω − 2ε0 − h̄+ iη
− 1

ω − 2ε0 + h̄− iη

)
, (40)

Σσ
ij(ω) =

U

2
δij +

U2t

4h̄

(
1

ω − ε0 − t− h̄+ iη
+

(−1)i−j

ω − ε0 + t+ h̄− iη

)
, (41)

with h̄2 = 4t2 + 2tU . The one-body Green function hence reads

GT pp

ijσ = (−1)i−j

 1
4

+
h̄+2t+U

2

4A′′

ω−ω+
1 + iη

+
1
4
− h̄+2t+U

2

4A′′

ω−ω−1 − iη

+
1
4

+
−h̄−2t+U

2

4B′′

ω−ω+
2 + iη

+
1
4
− −h̄−2t+U

2

4B′′

ω−ω−2 − iη
(42)

with

A′′ =

√(
2t+ h̄+

U

2

)2

+
2U2t

h̄
, B′′ =

√(
2t+ h̄− U

2

)2

+
2U2t

h′
,

and

ω
+/−
1 =

1

2

(
2ε0 − h̄+

U

2
± A′′

)
, ω

+/−
2 =

1

2

(
2ε0 + h̄+

U

2
±B′′

)
.

Similar equations hold for the eh T-matrix approximation and the pp and eh (statically) screened
T-matrix approximation. The pp T-matrix performs rather well over a wide U/t range as one can
see in Fig. 10. In particular the satellite energies are better described than in GW. The energies
calculated using the electron-hole unscreened T-matrix (not shown in the figure), instead, show
divergencies. Finally, the screened pp T-matrix is overall superior to the GW and unscreened
T-matrix in the selected U/t range in the left panel of Fig. 10. In the U/t → ∞ limit, all
approximations studied are rather poor. Interestingly if one looks at the first iteration, both
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Fig. 10: Two-site Hubbard model at half filling from Ref. [3]: comparison between the exact
renormalized addition/removal energies ω/t (solid lines) as function of U/t (left panel) and
Log(U/t) (right panel) and the results obtained from GW (dashes) and particle-particle (dots)
and screened T-matrix (triangles). In the atomic limit the spectral function, i.e., the peak po-
sitions and weights, is illustrated on the right-hand side, upon multiplying by t and taking the
t→ 0 limit.

the particle-particle and electron-hole contributions to the T-matrix give the exact results for
all t. Finally the spectral function calculated using the pp screened T-matrix is shown in Fig. 8
where one can better appreciate the superiority of the pp screened T-matrix approximation (at
least for the description of satellite energies) with respect to the GWA at moderately strong
interaction U/t (upper left panel). In the atomic limit (middle right panel), instead, the screened
pp T-matrix fails just as GW.

Why is the pp T-matrix approximation exact for one electron in the atomic limit, and not for
two electrons? To derive the unscreened T-matrix we used the approximation δG

δUext
≈ GG. In

the case of one electron this is not an approximation, but it is the exact time-ordered response,
and therefore the (pp) unscreened T-matrix yields the exact result for one electron. This is not
the case for two electrons for which δG

δUext
≈ GG is a rough approximation, and one needs to

include some screening. The screened matrix indeed improves over the unscreened T-matrix for
two electrons even with an approximate RPA screening; such approximate screening is instead
dramatic for one electron and a more accurate screening is needed (as pointed out above the
exact screening would yield the unscreened T-matrix and hence an exact result for one electron).
One should hence use a screened T-matrix with a screened interaction adapted to the system.
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4 Conclusions and outlook

In this chapter we discussed the importance of vertex corrections in relation to two major short-
comings of the GW approximation to the self-energy: the self-screening error and the incorrect
atomic limit. Because of the self-screening, the GWA produces extra unphysical removal and
addition energies in the spectrum of the Hubbard dimer with one electron. We showed that this
error can be corrected by a two-point vertex Γ = δ+fxcP , derived from time-dependent density
functional theory, but it should be used only for the valence state, for which it produces exact
results. For the conduction state, instead, this two-point vertex produces fewer poles than the
exact solution. In fact, it seems to be more reasonable to stick to the TC-TC description of the
screening for the conduction state, with Γ = δ, which yields the correct number of energies, al-
though the values are still different from the exact ones. One could extrapolate these findings for
the case of more bands in the situation where the valence bands are similar and the conduction
bands are localized elsewhere or with different spin. The comparison with the exact solution
for the two-site Hubbard model sheds light on another feature of the GW approximation: in the
atomic limit (t → 0) the GW solution for the two-site model does not reduce to the solution
for two isolated sites; this is caused by the description of the electrons as an average charge
distribution, instead of a probability. The approximate three-point vertex, which cures the self-
screening problem and yields the correct number of poles in the one-particle Green function,
is not sufficient to correct the atomic limit. To correct the atomic limit we have derived a ver-
tex function from a screened version of the T-matrix approximation. The screened T-matrix, in
which Hartree and exchange terms are treated on an equal footing, reduces to the T-matrix in the
atomic limit when a dynamically screened interaction is used, which gives the exact result for
the Hubbard dimer at quarter-filling; even with an approximateW it is better than GW at quarter
filling, whereas at half filling it is overall superior to both the pp T-matrix and GW over a wide
U/t range. This means that the vertex corrections derived from this version of the pp screened
T-matrix can improve over GW. In the atomic limit at half-filling, however, the screened T-
matrix performs as badly as GW. It remains hence to understand “Why, in the atomic limit, is
the pp screened T-matrix exact for one electron but not for two electrons? Which approxima-
tions we use in the derivation of the T-matrix self-energy is harmless for the one-electron case,
but dramatic for the two-electron case? And why? Will realistic systems be more forgiving than
the Hubbard dimer when the screened pp T-matrix approximation is used?”
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A Solutions for 2±1 electrons

To treat the case at 1/4 and 1/2 filling we need to diagonalize the two-site Hamiltonian for one,
two, and three electrons. Since the Hamiltonian conserves particle number we can diagonalize
it separately for the various N sectors. The eigenstates of the system will be linear combinations
of Slater determinants, which are denoted by the kets |1 , 2〉, with occupations of the sites 1 and
2 given by ·, ↑, ↓, ↑↓. We choose V0 = 0, so that the vacuum state ζN=0〉 = | · , · 〉 has zero
energy for the dimer. Moreover, the following convention as to fermionic ordering is used

| ↑↓ , ↑↓ 〉 = c†2↓c
†
2↑c
†
1↓c
†
1↑|01 02〉. (43)

A.1 One electron

In the case of one electron, the basis vectors are | ↑ , · 〉, | ↓ , · 〉, | · , ↑ 〉, and | · , ↓ 〉. In this basis
the Hamiltonian matrix reads

H =


ε0 0 −t 0

0 ε0 0 −t
−t 0 ε0 0

0 −t 0 ε0

, (44)

and we get the eigenvalues Ei and corresponding eigenvectors in Table 1.

Ei | ↑ , · 〉 | ↓ , · 〉 | · , ↑ 〉 | · , ↓ 〉
ε0 − t 0 1/

√
2 0 1/

√
2

ε0 − t 1/
√

2 0 1/
√

2 0
ε0 + t 0 1/

√
2 0 −1/

√
2

ε0 + t 1/
√

2 0 −1/
√

2 0

Table 1: Eigenvalues and corresponding eigenvectors for the one-electron sector.

A.2 Two electrons

In the case of two electrons, the basis vectors are | ↑ , ↓ 〉, | ↓ , ↑ 〉, | ↑ , ↑ 〉, | ↓ , ↓ 〉, | ↑↓ , · 〉, and
| · , ↑↓ 〉. In this basis the Hamiltonian matrix reads

H =



2ε0 0 0 0 −t −t
0 2ε0 0 0 t t

0 0 2ε0 0 0 0

0 0 0 2ε0 0 0

−t t 0 0 2ε0+U 0

−t t 0 0 0 2ε0+U


, (45)

which yields the eigenvalues Ei and corresponding eigenvectors in Table 2, where

c =
√

16t2+U2 a =

√
2

(c−U)

√
16t2 + (c−U)2 , b =

√
2

(c+U)

√
16t2 + (c+U)2 .
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Ei | ↑ , ↓ 〉 | ↓ , ↑ 〉 | ↑ , ↑ 〉 | ↓ , ↓ 〉 | ↑↓ , · 〉 | · , ↑↓ 〉
2ε0 + (U−c)/2 4t

a(c−U)
− 4t
a(c−U)

0 0 1/a 1/a

2ε0 + (U+c)/2 − 4t
b(c+U)

4t
b(c+U)

0 0 1/b 1/b

2ε0 + U 0 0 0 0 −1/
√

2 1/
√

2
2ε0 0 0 0 1 0 0
2ε0 0 0 1 0 0 0
2ε0 1/

√
2 1/

√
2 0 0 0 0

Table 2: Eigenvalues and corresponding eigenvectors for the two-electron sector.

The first three solutions are singlets, the last three triplets. The first singlet is the ground state.
It is interesting to consider the limits U → 0 and U → ∞ or t → 0. The expansion of the
coefficients for these limits are:
U → 0:

c ≈ 4t

(
1 +

U2

32t2

)
(46)

so 1
c−U ≈

1
4t(1+U2/32t2−U/4t) ≈

1
4t

(
1 + U

4t
− U2

32t2
+ U2

16t2

)
≈ 1

4t

(
1 + U

4t
+ U2

32t2

)
and

a =
√

2
√

16t2/(c− U)2 + 1 ≈
√

2

√
(1 +

U

4t
+

U2

32t2
)2 + 1 ≈ 2

√
1 + U/4t+ U2/16t2

≈ 2
(
1 + U/8t+ U2/32t2 − U2/128t2

)
(47)

b =
√

2
√

16t2/(c+ U)2 + 1 ≈
√

2

√
(1− U

4t
+

U2

32t2
)2 + 1

≈ 2
√

1− U/4t+ U2/16t2 ≈ 2
(
1− U/8t+ 3U2/128t2

)
(48)

In the non-interacting (U = 0) case, we have hence a weight of 1/2 for double occupation.
For U →∞

c ≈ U

(
1 +

8t2

U2

)
(49)

a ≈
√

2
√
U2/4t2 + 1 ≈ U√

2t

(
1 + 2t2/U2

)
(50)

b ≈ −a (51)

In particular we get a(c−U) ≈ U√
2t

(1 + 2t2/U2) 8t2/U = 8t√
2
(1+2t2/U2) so that the co-

efficients on the single occupations are ±1/
√

2, whereas double occupancies are impossible
(Heitler-London limit).
For t → 0 we have the same expansion as for U → ∞ since the ratio t/U is what matters;
the only peculiarity is the fact that the ground state energy goes to zero, so that it approaches
degeneracy with the threefold degenerate triplet states (case t = 0). (However for any small but
finite t the ground state is the singlet S = 0).
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A.3 Three electrons

The basis vectors for three electrons are | ↑ , ↑↓ 〉, | ↓ , ↑↓ 〉, | ↑↓ , ↑ 〉, and | ↑↓ , ↓ 〉, and the
Hamiltonian matrix, the same as for one electron but with negative (hole) hopping

H =


3ε0+U 0 t 0

0 ε0+U 0 t

t 0 ε0+U 0

0 t 0 ε0+U

. (52)

This yields eigenvalues Ei and corresponding eigenvectors in Table 3.

Ei |↑ , ↑↓ 〉 |↓ , ↑↓ 〉 |↑↓ , ↑ 〉 |↑↓ , ↓ 〉
3ε0−t+ U 0 −1/

√
2 0 1/

√
2

3ε0−t+ U −1/
√

2 0 1/
√

2 0
3ε0+t+ U 0 1/

√
2 0 1/

√
2

3ε0+t+ U 1/
√

2 0 1/
√

2 0

Table 3: Eigenvalues and corresponding eigenvectors for the three-electron sector.
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5.2 Eva Pavarini

1 Introduction

In 1965, when the two founding papers [1] of density-functional theory (DFT) had just been
published in the Physical Review, very few could recognize the revolution in the making. Ef-
ficient techniques for materials science applications were missing and computers were not that
powerful. And yet in 50 years, thanks to remarkable ideas, novel algorithms and steady ad-
vance in computational power, brilliant minds brought DFT to its present splendor, making it
the standard model of condensed matter physics. In 1998, in his Nobel lecture [2], Walter Kohn,
described the most important contributions of DFT to science with these words

The first is in the area of fundamental understanding. Theoretical chemists and
physicists, following the path of the Schrödinger equation, have become accus-
tomed to think in a truncated Hilbert space of single particle orbitals. The spec-
tacular advances achieved in this way attest to the fruitfulness of this perspective.
However, when very high accuracy is required, so many Slater determinants are
required (in some calculations up to∼ 109!) that comprehension becomes difficult.

DFT changed the focus from the N -electron ground-state wavefunction Ψ(r1, . . . , rN) to a
three-dimensional variable, the electronic ground-state density n(r), or other directly measur-
able quantities, such as response functions. These, within a given approximation of the DFT
exchange-correlation functional, could be calculated from first principles, i.e., using as input the
type of atoms involved and, at most, their positions. In practice, n(r) is obtained by mapping the
actual many-body problem onto an auxiliary single-electron Hamiltonian with the same ground-
state electron density, the Kohn-Sham Hamiltonian. The associated Kohn-Sham eigenvalues are
thus in principle merely Lagrange multipliers. Remarkably, however, the big success of DFT
came, in part, from bold applications of the theory beyond its actual realm of validity. To general
surprise, the Kohn-Sham eigenvalues turned out to be in many cases excellent approximations to
the actual elementary excitations of a given material. Early on it became clear, however, that this
Ansatz fails qualitatively for a whole category of systems, those in which local Coulomb repul-
sion effects are large, also known as strongly-correlated materials. Paradoxically, in describing
strong-correlation phenomena, simple models describing generic features of the microscopic
mechanism are much more effective than DFT-based materials-specific calculations. This hap-
pens, e.g., for the Kondo effect, heavy-fermion behavior, or the metal-insulator transition. Thus
criticisms arose. Particularly outspoken in this contest was another Nobel laureate, P.W. An-
derson, who emphasized the emergent nature of a true many-body phenomenon [3]. Emergent
states typically elude a simple mapping to an effective non-interacting system. For a while, two
apparently incompatible philosophies thus coexisted. The first-principles school identified in
the materials dependence the essential ingredient for understanding the real world, and tried to
correct the failures of the practical implementations of DFT by corrections, often ad hoc, of
the exchange-correlation potential. Instead, the many-body models school identified canonical
models which explain specific emergent phenomena, dismissing the materials dependence as
non-relevant, non-generic detail. Only in recent years these two world-views started to merge,
and it became apparent that both sides were right and wrong at the same time. While the local
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Coulomb repulsion is indeed key, materials aspects turn out to be essential for understanding
real correlated materials. In hindsight, we can now put this debate in a different perspective.
The electronic many-body problem, in the non-relativistic limit and in the Born-Oppenheimer
approximation, is described by the Hamiltonian

Ĥe = −1

2

∑

i

∇2
i −

∑

i

∑

α

Zα
|ri−Rα|

+
∑

i>j

1

|ri−rj|
+
∑

α>α′

ZαZα′

|Rα−Rα′ |
, (1)

where {ri} are electron coordinates, {Rα} nuclear coordinates and Zα the nuclear charges.
Using a complete one-electron basis, for example the basis {ϕa(r)}, where {a} are the quantum
numbers, we can write this Hamiltonian in second quantization as

Ĥe = −
∑

ab

tabc
†
acb

︸ ︷︷ ︸
Ĥ0

+
1

2

∑

aa′bb′

Uaa′bb′ c
†
ac
†
a′cb′cb

︸ ︷︷ ︸
ĤU

. (2)

Here the hopping integrals are given by

tab = −
∫
dr ϕa(r)

(
−1

2
∇2−

∑

α

Zα
|r−Rα|

︸ ︷︷ ︸
ven(r)

)
ϕb(r), (3)

while the elements of the Coulomb tensor are

Uaa′bb′ =

∫
dr2

∫
dr2 ϕa(r1)ϕa′(r2)

1

|r1−r2|
ϕb′(r2)ϕb(r1). (4)

In principle, all complete one-electron bases are equivalent. In practice, since, in the general
case, we cannot solve the N -electron problem exactly, some bases are better than others. One
possible choice for the basis are the Kohn-Sham orbitals, {ϕKS

a (r)}, obtained, e.g., in the local
density approximation (LDA) or its simple extensions.1 In this case, it is useful to replace the
electron-nuclei interaction ven(r) with the DFT potential vR(r), which includes in addition the
Hartree term vH(r) and the (approximate) exchange-correlation potential vxc(r)

vR(r) = ven(r) +

∫
dr′

n(r′)

|r−r′|︸ ︷︷ ︸
vH(r)

+ vxc(r) (5)

so that

t̃ab = −
∫
dr ϕKS

a (r)

(
−1

2
∇2 + vR(r)

)
ϕKS
b (r). (6)

To avoid double counting (DC), we have, however, to subtract from ĤU the term ĤDC, which
describes the Coulomb terms already included in the hopping integrals

Ĥe = −
∑

ab

t̃ab c
†
acb

︸ ︷︷ ︸
Ĥ0=ĤLDA

e

+
1

2

∑

aba′b′

Ũaa′bb′ c
†
ac
†
a′cb′cb − ĤDC

︸ ︷︷ ︸
∆ĤU

. (7)

1For the purpose of many-body calculations the differences between LDA, GGA or their simple extensions are
in practice negligible; for simplicity, in the rest of the lecture, we thus adopt LDA as representative functional.



5.4 Eva Pavarini

For weakly-correlated systems, in the Kohn-Sham basis, the effects included in ∆ĤU can, in
first approximation, either be neglected or treated as a perturbation. This implies that ĤLDA

e ∼
Ĥeff , where Ĥeff is the effective model which provides a good description of the system (at least)
at low energy, and which describes emergent effective “elementary particles” and their interac-
tions. Hypothetically, one could imagine that Ĥeff is obtained via a canonical transformation,
so that Ĥeff ∼ Ŝ−1Ĥe Ŝ, although the exact form of the operator Ŝ is unknown.
A defining feature of strong-correlation effects is that they cannot be described via a single-
electron Hamiltonian, however. A model of form ĤLDA

e does not describe correctly the Mott
metal-insulator transition, no matter what the specific values of the parameters t̃ab are.2 Thus
for strongly-correlated systems the low-energy effective model must have a different form. For
Mott systems a canonical Hamiltonian is the Hubbard model

Ĥ = −
∑

σ

∑

ii′

ti,i
′
c†iσci′σ + U

∑

i

n̂i↑n̂i↓, (8)

which includes, in addition to a single-electron term, the on-site Coulomb repulsion. This
Hamiltonian captures the essence of the Mott transition. At half filling, for U= 0 it describes a
paramagnetic metal, and for ti,i′(1−δi,i′)=0 an insulating set of paramagnetic atoms. Unfortu-
nately, differently from Hamiltonians of type ĤLDA

e , Hubbard-like models cannot be solved ex-
actly in the general case. Remarkably, till 30 years ago, no method for describing the complete
phase diagram of (8) in one coherent framework, including the paramagnetic insulating phase,
was actually known. This changed between 1989 and 1992, when the dynamical mean-field
theory (DMFT) was developed [4–7]. The key idea of DMFT consists in mapping the Hubbard
model onto a self-consistent auxiliary quantum-impurity problem, which can be solved exactly.
The mapping is based on the local dynamical self-energy approximation, very good for realistic
three-dimensional lattices—and becoming exact in the infinite coordination limit [4, 5].
DMFT was initially applied to simple cases, due to limitations in model building, computational
power, and numerical methods for solving the auxiliary impurity problem (the quantum impu-
rity solvers). In the last twenty years remarkable progress lifted many of these limitations. First,
reliable schemes to build realistic low-energy materials-specific Hubbard-like models have been
devised, in particular using Kohn-Sham localized Wannier functions. This is remarkable, given
that we do not know the exact operator Ŝ which gives the effective low-energy Hamiltonian,
and thus a truly systematic derivation is not possible. Second, key advances in quantum impu-
rity solvers and increasingly more powerful supercomputers made it possible to study always
more complex many-body Hamiltonians. The approach which emerged, consisting in solving
within DMFT materials-specific many-body Hamiltonian constructed via LDA, is known as the
LDA+DMFT method [8–10]. This technique (and its extensions) is now the state-of-the-art for
describing strongly-correlated materials. In this lecture I will outline the basic ideas on which
the method is based, its successes and its limitations.

2One can obtain an insulator by reducing the symmetry, e.g, by increasing the size of the primitive cell. This
Slater-type insulator has however different properties than a Mott-type insulator.
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2 From DMFT to LDA+DMFT

In this section we introduce the basics of dynamical mean-field theory. We start from a case
for which we can perform analytic calculations, the two-site Hubbard Hamiltonian. This is a
toy model, useful to illustrate how the method works, but for which, as we will see, DMFT is
not a good approximation. Indeed, the Hubbard dimer is the worst case for DMFT, since the
coordination number is the lowest possible. Next we extend the formalism to the one-band and
then to the multi-orbital Hubbard Hamiltonian. For three-dimensional lattices the coordination
number is typically large and thus DMFT is an excellent approximation. In Sec. 3 we describe
modern schemes to construct materials-specific many-body models. They are based on Kohn-
Sham Wannier orbitals, calculated, e.g, using the LDA functional. The solution of such models
via DMFT defines the LDA+DMFT method.

2.1 DMFT for a toy model: The Hubbard dimer

The two-site Hubbard model is given by

Ĥ = εd
∑

iσ

n̂iσ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ U

∑

i

n̂i↑n̂i↓, (9)

with i = 1, 2. The ground state for N = 2 electrons (half filling) is the singlet3

|G〉H =
a2(t, U)√

2

(
c†1↑c

†
2↓ − c†1↓c†2↑

)
|0〉+

a1(t, U)√
2

(
c†1↑c

†
1↓ + c†2↑c

†
2↓

)
|0〉 (10)

with

a2
1(t, U) =

1

∆(t, U)

∆(t, U)− U
2

, a2
2(t, U) =

4t2

∆(t, U)

2

∆(t, U)− U , (11)

and

∆(t, U) =
√
U2 + 16t2. (12)

The energy of this state is

E0(2) = 2εd +
1

2

(
U −∆(t, U)

)
. (13)

In the T → 0 limit, using the Lehmann representation (see Appendix B), one can show that the
local Matsubara Green function for spin σ takes then the form

Gσ
i,i(iνn) =

1

4

(
1 + w(t, U)

iνn −
(
E0(2)− εd+t−µ︸ ︷︷ ︸
E0(2)−E−(1)−µ

) +
1− w(t, U)

iνn −
(
−E0(2) + U+3εd+t−µ︸ ︷︷ ︸

E+(3)−E0(2)−µ

)

+
1− w(t, U)

iνn −
(
E0(2)− εd−t−µ︸ ︷︷ ︸
E0(2)−E+(1)−µ

) +
1 + w(t, U)

iνn −
(
−E0(2) + U+3εd−t−µ︸ ︷︷ ︸

E−(3)−E0(2)−µ

)
)
, (14)

3Eigenstates and eigenvalues of the Hubbard dimer for arbitrary filling can be found in Appendix A.1.
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where νn = π(2n+1)/β are fermionic Matsubara frequencies and µ = εd+U/2 is the chemical
potential. The weights are

w±(t, U) =
1

4

(
1± w(t, U)

)
, (15)

w(t, U) = 2a1(t, U)a2(t, U) =
4t

∆(t, U)
. (16)

The local Green function can be rewritten as the average of the Green function for the bonding
(k = 0) and the anti-bonding state (k = π), i.e.,

Gσ
i,i(iνn) =

1

2

(
1

iνn + µ− εd + t−Σσ(0; iνn)︸ ︷︷ ︸
Gσ(0;iνn)

+
1

iνn + µ− εd − t−Σσ(π; iνn)︸ ︷︷ ︸
Gσ(π;iνn)

)
. (17)

The self-energy is given by

Σσ(k; iνn) =
U

2
+
U2

4

1

iνn + µ− εd − U
2
− eik 3t

. (18)

The self-energies Σσ(0; iνn) and Σσ(π; iνn) differ due to the phase eik = ±1 in their denomi-
nators. The local self-energy is, by definition, the average of the two

Σσ
l (iνn) =

1

2

(
Σσ(π; iνn)+Σσ(0; iνn)

)
=
U

2
+

U2

4

iνn + µ− εd − U
2

(iνn + µ− εd − U
2

)2 − (3t)2

=
U

2
+

U2

4

iνn
(iνn)2 − (3t)2

(19)

The difference

∆Σσ
l (iνn) =

1

2

(
Σσ(π; iνn)−Σσ(0; iνn)

)
=

U2

4

3t

(iνn + µ− εd − U
2

)2 − (3t)2

=
U2

4

3t

(iνn)2 − (3t)2
, (20)

thus measures the importance of non-local effects; it would be zero if the self-energy was inde-
pendent of k. Next we define the hybridization function

F σ(iνn) =

(
t+∆Σσ

l (iνn)
)2

iνn + µ− εd −Σσ
l (iνn)

(21)

which for U = 0 becomes

F σ
0 (iνn) =

t2

iνn
. (22)

By using these definitions, we can rewrite the local Green function as

Gσ
i,i(iνn) =

1

iνn + µ− εd − F σ(iνn)−Σσ
l (iνn)

. (23)
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Fig. 1: Hubbard dimer: Imaginary (left) and real (right) part of the retarded Green function,
obtained setting iνn → ω + iδ (analytic continuation) in Eq. (14). Red lines: k = 0 contri-
bution. Blue lines: k = π contribution. Dashed lines: Poles of the retarded Green function.
Parameters: t = 1, U = 4. The weight of the poles yielding the smaller peaks, w−(t, U), de-
fined in Eq. (15), goes to zero for U → 0. In the atomic limit, instead, all four poles have the
same weight; the energies of the two positive (negative) poles become identical, however.

The associated retarded Green function, obtained via analytic continuation (iνn → ω + iδ),
is shown in Fig. 1. It is important to point out that, as one may see from the formulas just
discussed, the local Green function and the local self-energy satisfy the local Dyson equation

Σσ
l (iνn) =

1

Gσ
i,i(iνn)

− 1

Gσ
i,i(iνn)

, (24)

where Gσ
i,i(iνn) is given by

Gσ
i,i(iνn) =

1

iνn + µ− εd − F σ(iνn)
. (25)

Thus, one could think of mapping the Hubbard dimer into an auxiliary quantum-impurity model,
chosen such that, within certain approximations, the impurity Green function is as close as
possible to the local Green function of the original problem. How can we do this? Let us adopt
as auxiliary model the Anderson molecule

ĤA = εs
∑

σ

n̂sσ − t
∑

σ

(
c†dσcsσ + c†sσcdσ

)
+ εd

∑

σ

n̂dσ + Un̂d↑n̂d↓, (26)

where s labels the uncorrelated bath site and d the correlated quantum-impurity site. The first
constraint would be that Hamiltonian (26) has a ground state with the same occupations of the
2-site Hubbard model, i.e., at half filling, nd = ns = 1. Such a self-consistency condition is
satisfied if εs = µ = εd +U/2. This can be understood by comparing the Hamiltonian matrices
of the two models in the Hilbert space with N = 2 electrons. To this end, we first order the
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two-electron states of the Hubbard dimer as

|1〉 = c†1↑c
†
2↑|0〉, |4〉 = 1√

2
(c†1↑c

†
2↓ − c†1↓c†2↑)|0〉,

|2〉 = c†1↓c
†
2↓|0〉, |5〉 = c†1↑c

†
1↓|0〉,

|3〉 = 1√
2
(c†1↑c

†
2↓ + c†1↓c

†
2↑)|0〉, |6〉 = c†2↑c

†
2↓|0〉.

(27)

In this basis the Hamiltonian of the Hubbard dimer has the matrix form

Ĥ2(εd, U, t) =




2εd 0 0 0 0 0

0 2εd 0 0 0 0

0 0 2εd 0 0 0

0 0 0 2εd −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εd+U




. (28)

The ground state, the singlet given in Eq. (10), can be obtained by diagonalizing the lower
3×3 block. For the Anderson molecule, ordering the basis in the same way (1 → d, 2 → s),
this Hamiltonian becomes

ĤA
2 (εd, U, t; εs) =




εd+εs 0 0 0 0 0

0 εd+εs 0 0 0 0

0 0 εd+εs 0 0 0

0 0 0 εd+εs −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εs




. (29)

Comparing the lower 3×3 block of ĤA
2 (εd, U, t; εs) with the corresponding block of Ĥ2(εd, U, t)

we can see that, unless εs = µ = εd + U/2, the two doubly occupied states |5〉 and |6〉 have
different energies and thus the two sites i = 1, 2 are differently occupied in the ground state.
By setting εs = µ we find that

ĤA
2 (εd, U, t;µ) = Ĥ2(εd+

U
4
, U

2
, t). (30)

TheN = 2 ground state of ĤA
2 (εd, U, t;µ) has thus the form of the ground-state for the Hubbard

dimer

|G〉A =
a2(t, U/2)√

2

(
c†d↑c

†
s↓ − c†d↓c†s↑

)
|0〉+

a1(t, U/2)√
2

(
c†d↑c

†
d↓ + c†s↑c

†
s↓

)
|0〉, (31)

and the condition ns =nd = 1 is satisfied. Since εs 6= εd, however, the eigenstates of ĤA for
one electron (N = 1) or one hole (N = 3) are not the bonding and antibonding states of the
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Hubbard dimer.4 The impurity Green function is then given by

Gσ
d,d(iνn) =

1

4

(
1 + w′(t, U)

iνn − (E0(2)− E−(1)− µ)
+

1− w′(t, U)

iνn − (E+(3)− E0(2)− µ)

1− w′(t, U)

iνn − (E0(2)− E+(1)− µ)
+

1 + w′(t, U)

iνn − (E−(3)− E0(2)− µ)

)
, (32)

where

E0(2)− E±(1)− µ = −
(
E±(3)− E0(2)− µ

)
= −1

4

(
2∆(t, U/2)±∆(t, U)

)
(33)

and

w′(t, U) =
1

2

32t2 − U2

∆(t, U)∆(t, U/2)
. (34)

After some rearrangement we obtain a much simpler expression

Gσ
d,d(iνn) =

1

iνn + µ− εd −Fσ0 (iνn)−Σσ
A(iνn)

. (35)

The impurity self-energy equals the local self-energy of the Hubbard dimer

Σσ
A(iνn) =

U

2
+
U2

4

iνn
(iνn)2 − (3t)2

, (36)

as one may see comparing it to equation (19). The hybridization function is given by

Fσ0 (iνn) =
t2

iνn
, (37)

as for the non-interacting Hubbard dimer, Eq. (22). For U = 0, Gσ
d,d(iνn) equals the non-

interacting impurity Green function

G0σ
d,d(iνn) =

1

iνn + µ− εd −Fσ0 (iνn)
. (38)

The impurity Green function thus satisfies the impurity Dyson equation

Σσ
A(iνn) =

1

G0σ
d,d(iνn)

− 1

Gσ
d,d(iνn)

. (39)

In Fig. 2 we show the retarded impurity Green function of the Anderson molecule (orange,
right panels) and the retarded local Green function of the 2-site Hubbard model, both in the
local self-energy approximation (blue, right panels) and exact (blue, left panels). Comparing
left and right panels we can see that setting ∆Σσ

l (ω) = 0 yields large errors. The right panels
demonstrate, however, that the spectral function of the Anderson molecule is quite similar to the
one of the Hubbard dimer with ∆Σσ

l (ω) = 0. The small remaining deviations come from the

4The complete list of eigenvalues and eigenvectors of the Anderson molecule for εs = εd + U/2 and arbitrary
electron number N can be found in Appendix A.2.
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Fig. 2: Retarded Green function of the Hubbard dimer (t = 1, U = 4) and of the Anderson
molecule (εs = εd + U/2) in the zero temperature limit. Left panels: Hubbard dimer, exact
Green function. Right panels, blue: Hubbard dimer in the local self-energy approximation, i.e.,
with ∆Σσ

l (ω) = 0. Right panels, orange: Anderson molecule. Dashed lines: Poles for the
Hubbard dimer (left) or the Anderson molecule (right).

fact that, for the Hubbard dimer, in the impurity Dyson equation, the non-interacting impurity
Green function is replaced by Gσ

i,i(iνn) in the local self-energy approximation, i.e., by the bath
Green function

Gσi,i(iνn) =
1

iνn + µ− εd −Fσl (iνn)
, (40)

where

Fσl (iνn) =
t2

iνn + µ− εd −Σσ
A(iνn)

. (41)

We are now in the position of explaining how DMFT works for the Hamiltonian of the Hubbard
dimer, choosing the Anderson molecule Hamiltonian (26) as the auxiliary quantum-impurity
model. The procedure can be split in the following steps

1. Build the initial quantum impurity model with G0σ
d,d(iνn) = G0σ

i,i (iνn). The initial bath is
thus defined by energy εs = εd and hopping t.

2. Calculate the local Green function Gσ
d,d(iνn) for the auxiliary model.
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3. Use the local Dyson equation to calculate the impurity self-energy

Σσ
A(iνn) =

1

G0σ
d,d(iνn)

− 1

Gσ
d,d(iνn)

.

4. Calculate the local Green function of the Hubbard dimer setting the self-energy equal to
the one of the quantum-impurity model

Gσ
i,i(iνn) ∼ 1

2

(
1

iνn + µ− εd + t−Σσ
A(iνn)

+
1

iνn + µ− εd − t−Σσ
A(iνn)

)
.

5. Calculate a new bath Green function Gσi,i(iνn) from the local Dyson equation

Gσi,i(iνn) =
1

Σσ
A(iνn) + 1/Gσ

i,i(iνn)
.

6. Build a new G0σ
d,d(iνn) from Gσi,i(iνn).

7. Restart from the second step.

8. Iterate till self-consistency, i.e., here till nσd = nσi and Σσ
A(iνn) does not change any more.

The Anderson molecule satisfies the self-consistency requirements for εs = µ. The remaining
difference between Gσ

d,d(iνn), the impurity Green function, and Gσ
i,i(iνn), the local Green func-

tion of the Hubbard dimer in the local self-energy approximation, arises from the difference in
the associated hybridization functions

∆Fl(iνn) = Fσl (iνn)−Fσ0 (iνn) = t2p2

(
− 2

iνn
+

1

iνn − εa
+

1

iνn + εa

)
(42)

where p2 = U2/8ε2
a and εa =

√
9t2 + U2/4. The error made is small, however, as shown in the

right panels of Fig. 2. To further improve we would have to modify the auxiliary model adding
more bath sites. Staying with the Anderson molecule, in Fig. 3 we compare in more detail its
spectral function with the exact spectral function of the Hubbard dimer. The figure emphasizes
several important conclusions. The top right panel reminds us that DMFT is not a good approx-
imation for molecular complexes with two (or few) correlated sites. This is because in such
systems the coordination number is the lowest possible, the worst case for dynamical mean-
field theory. In three-dimensional crystals, instead, the coordination number is typically large
enough to make dynamical mean-field theory an excellent approximation. The bottom left panel
of Fig. 3 shows that, in the local-self-energy approximation, the agreement between Anderson
and Hubbard Green functions remains very good for any U value. This indicates that when
the local-self-energy approximation works well, as in the case of three-dimensional crystals, it
can be successfully used to study the behavior of a given system as a function of U. Leaving
for a moment DMFT aside, the two bottom panels of Fig. 3 show that the evolution with U is
different for the impurity Green function of the Anderson molecule and the exact local Green
function of the Hubbard dimer. Anticipating the discussion of later sections, if we compare to
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Fig. 3: Imaginary part of the retarded Green function of the Anderson molecule (orange) and
Hubbard dimer (blue) in the zero temperature limit. In the bottom left panel the local self-energy
approximation is adopted for the Hubbard dimer; in all other cases the exact Green function of
the Hubbard dimer is shown. Parameters: t = 1, εs = µ. Top: U = 0 (left) and U = 4t (right).
Bottom: Evolution with increasing U from 0 to 4t in equal steps.

the spectral function of the actual lattice Hubbard model, we could say that the Hubbard dimer
captures well the evolution of the Hubbard bands and the gap in the large-U limit. On the other
hand, the Anderson molecule partially captures the behavior of the central “quasi-particle” or
“Kondo” peak, although the Kondo effect itself is unrealistically described; as a matter of fact,
the Kondo energy gain (the “Kondo temperature”) is perturbative (∝ t2/U ) in the case of the
Anderson molecule, while it is exponentially small for a Kondo impurity in a metallic bath.
Going back to DMFT, this also points to the possible shortcomings of calculations in which
the quantum-impurity model for the lattice Hubbard model is solved via exact diagonalization,
however using a single bath site or very few; this might perhaps be sufficient in the limit of
large gap,5 but is bound to eventually fail approaching the metallic regime. Indeed, this failure
is one of the reasons why the solution of the Kondo problem required the development of—at
the time new—non-perturbative techniques such as the numerical renormalization group.

5For a discussion of bath parametrization in exact diagonalization and the actual convergence with the number
of bath sites for the lattice Hubbard model see Ref. [11].
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2.2 Non-local Coulomb interaction

In Sec. 2.1 we have seen that the local Coulomb interaction gives rise, alone, to non-local self-
energy terms, which can be very important. What is, instead, the effect of the non-local part
of the Coulomb interaction? For a Hubbard dimer, extending the Coulomb interaction to first
neighbors leads to the Hamiltonian

Ĥ =εd
∑

iσ

n̂iσ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ U

∑

i=1,2

n̂i↑n̂i↓

+
∑

σσ′

(
V−2JV−JV δσσ′

)
n̂1σn̂2σ′ − JV

∑

i6=i′

(
c†i↑ci↓c

†
i′↓ci′↑ + c†i′↑c

†
i′↓ci↑ci↓

)
, (43)

where the parameters in the last two terms are the intersite direct (V ) and exchange (JV )
Coulomb interaction. For two electrons the Hamiltonian, in a matrix form, becomes

ĤNL
2 =




2εd+V−3JV 0 0 0 0 0

0 2εd+V−3JV 0 0 0 0

0 0 2εd+V−3JV 0 0 0

0 0 0 2εd+V−JV −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U −JV
0 0 0 −

√
2t −JV 2εd+U




,

where the basis is defined in Eq. (27). In the atomic (t = 0) limit, the triplet states, |1〉, |2〉 and
|3〉, have lower energy than the singlet states, |4〉, |5〉 and |6〉, as one can see by comparing the
diagonal elements of the upper and lower 3×3 block of the matrix ĤNL

2 here above. This is due
to the fact that JV is positive (ferromagnetic) and V < U . The triplet can remain the ground
multiplet even for finite t. If, however, JV is sufficiently small, the ground state is a singlet,
as in the case V=JV =0. Setting for simplicity JV = 0, we notice that ĤNL

2 = Ĥ2(ε′d, U
′, t),

where the right-hand-side term is the N= 2-electron Hamiltonian of the JV =V= 0 Hubbard
dimer, Eq. (28), with parameters ε′d = εd + V/2 and U ′=U−V . The N= 2 ground state is thus
still given by Eq. (10), provided that we replace U with U ′ in the coefficients. Eventually, in the
limiting case U=V , ĤNL

2 equals the corresponding Hamiltonian of an effective non-correlated
dimer, Ĥ2(ε′d, 0, t). What happens away from half filling? For N= 1 electrons, eigenvectors
and eigenvalues are the same as in the V= 0 case; for N= 3 electrons all energies are shifted by
2V . Summarizing, we can obtain the Green function for V 6= 0 from Eq. (14) setting

E±(N=1, U ;V ) = E±(N=1, U ; 0) = εd ± t

E±(N=3, U ;V ) = E±(N=3, U ; 0) + 2V = 3εd ± t+ U + 2V

E0(N=2, U ;V ) = E0(N=2, U−V ; 0) + V = E0(2, U−V ) + V

µ(U ;V ) = µ(U) + V = µ+ V

w±(t, U ;V ) = w±(t, U−V ; 0).



5.14 Eva Pavarini

 0

 10

 20

-5  0  5

exact H

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

exact H

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

exact H

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

exact H

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

exact H

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

exact H

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

exact H

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

exact H

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

exact H

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

exact H

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

exact H

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

exact H

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

exact H

-I
m

 G
(ω

)

ω/t

 0

 10

 20

-5  0  5

exact H

-I
m

 G
(ω

)

ω/t

Fig. 4: Imaginary part of the retarded Green function of the Hubbard dimer in the zero temper-
ature limit (U = 4, t = 1), increasing the intersite Coulomb repulsion V from 0 to V = U = 4
in equal steps; we have set JV = 0. The dark blue line corresponds to V = 0.

Thus we have, recalling that U ′ = U−V ,

Gσ
i,i(iνn) =

w+(t, U ′)

iνn−
(
E ′0(2)−1

2
V−εd+t−µ′

)+
w−(t, U ′)

iνn−
(
−E ′0(2)+U ′+1

2
V+3εd+t−µ′

)

+
w−(t, U ′)

iνn−
(
E ′0(2)−1

2
V−εd−t−µ′

)+
w+(t, U ′)

iνn−
(
−E ′0(2)+U ′+1

2
V+3εd−t−µ′

) , (44)

where we set µ′ = µ−V/2 = 2εd+U
′/2 and E ′0(2) = E0(2, U ′). The associated spectral

function is shown in Fig. 4. The figure illustrates that increasing V from 0 to U makes the
spectra progressively closer to the one of a non-correlated system. Eventually, for U=V , only
two poles contribute, since w−(t, U ′) = 0. In this limit, the spectral function is identical to
the one of the non-interacting Hubbard dimer, however with an enhanced effective hopping,
t −→ t + V/2. We can thus say that, in first approximation, the (positive) intersite coupling V
effectively reduces the strength of correlations in the Hubbard dimer. In conclusion, the case
of the Hubbard dimer explains why strong-correlation effects typically appear when the local
term of the electron-electron repulsion dominates, i.e., when it is much larger than long-range
terms. A hypothetical system in which the Coulomb interaction strength is independent on
the distance between sites (for the dimer, U=V ) is likely to be already well described via
an effective weakly correlated model. Of course, in real materials, the effects of long-range
Coulomb repulsion can be much more complicated than in the two-site model just discussed,
but the general considerations made here remain true even in realistic cases.
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2.3 Quantum-impurity solvers: Continuous-time quantum Monte Carlo

For the case of the Anderson molecule exact diagonalization is the simplest quantum-impurity
solver and the one that provides most insights. Methods based on quantum Monte Carlo (QMC)
sampling are often, however, the only option for realistic multi-orbital and/or multi-site models.
Thus, here we explain how to obtain the impurity Green function of the Anderson molecule via
hybridization-expansion continuous-time QMC [12], a very successful QMC-based quantum-
impurity solver. In this approach, the first step consists in splitting the Hamiltonian into bath
(Ĥbath), hybridization (Ĥhyb), and local (Ĥloc) terms

ĤA = εs
∑

σ

n̂sσ

︸ ︷︷ ︸
Ĥbath

−t
∑

σ

(
c†dσcsσ + c†sσcdσ

)

︸ ︷︷ ︸
Ĥhyb

+ εd
∑

σ

n̂dσ + Un̂d↑n̂d↓

︸ ︷︷ ︸
Ĥloc

. (45)

Next, we write the partition function Z as a perturbation series in the hybridization. To this end,
we define Ĥ0 = Ĥbath + Ĥloc and rewrite the partition function as

Z =Tr
(
e−β(Ĥ0−µN̂)V̂ (β)

)
(46)

where the operator V̂ (β) is given by

V̂ (β) = eβ(Ĥ0−µN̂) e−β(Ĥ0+Ĥhyb−µN̂)=
∑

m

∫ β

0

dτ1 · · ·
∫ β

τm−1

dτm

︸ ︷︷ ︸∫
dτm

(−1)m
∏1

l=m
Ĥhyb(τl)

︸ ︷︷ ︸
Ôm(τ )

, (47)

and

Ĥhyb(τl) = eτl(Ĥ0−µN̂) Ĥhyb e
−τl(Ĥ0−µN̂) = −t

∑

σ

(
c†dσl(τl)csσl(τl) + c†sσl(τl)cdσl(τl)

)
. (48)

In this expansion, the only terms that contribute to the trace are even order ones (m = 2k) and
they are products of impurity (d) and bath (s) creator-annihilator pairs. We can thus rewrite

∫
dτ 2k −→

∫
dτ k

∫
dτ̄ k and Ô2k(τ ) −→

∑

σ,σ̄

Ô2k
σ,σ̄(τ , τ̄ ) (49)

where

Ô2k
σ,σ̄(τ , τ̄ ) = (t)2k

k∏

i=1

(
c†dσ̄i(τ̄i)csσ̄i(τ̄i)c

†
sσi

(τi)cdσi(τi)
)
. (50)

The vector σ = (σ1, σ2, ..., σk) gives the spins {σi} associated with the k impurity annihilators
at imaginary times {τi}, while σ̄ = (σ̄1, σ̄2, ..., σ̄k) gives the spins {σ̄i} associated with the
k impurity creators at imaginary times {τ̄i}. It follows that the local and bath traces can be
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decoupled and the partition function can be rewritten as

Z

Zbath

=
∑

k

∫
dτ k

∫
dτ̄ k

∑

σ,σ̄

dkσ̄,σ(τ , τ̄ ) tkσ,σ̄(τ , τ̄ ) (51)

dkσ̄,σ(τ , τ̄ ) =
t2k

Zbath

Trbath

(
e−β(Ĥbath−µN̂s)T ∏1

i=kc
†
sσi

(τi)csσ̄i(τ̄i)
)

(52)

tkσ,σ̄(τ , τ̄ ) = Trloc

(
e−β(Ĥloc−µN̂d)T ∏1

i=kcdσi(τi)c
†
dσ̄i

(τ̄i)
)
, (53)

where Zbath = 1 + 2e−β(εs−µ) + e−2β(εs−µ) and

cdσ(τ) = eτ(Ĥloc−µN̂d)cdσe
−τ(Ĥloc−µN̂d), csσ(τ) = eτ(Ĥbath−µN̂s)csσe

−τ(Ĥbath−µN̂s).

The trace involving only bath operators is simple to calculate, since Ĥbath describes an inde-
pendent-electron problem for which Wick’s theorem holds. It is given by the determinant

dkσ̄,σ(τ , τ̄ ) = det
(
Fkσ̄,σ(τ , τ̄ )

)
(54)

of the k×k non-interacting hybridization-function matrix, with elements
(
Fkσ̄,σ(τ , τ̄ )

)
i′,i

= F 0
σ̄i′ ,σi

(τ̄i′−τi) (55)

where

F 0
σ̄,σ(τ) = δσ̄,σ

t2

1 + e−β(εs−µ)
×
{
−e−τ(εs−µ) τ > 0,

+e−(β+τ)(εs−µ) τ < 0.
(56)

This is the imaginary time Fourier transform of the hybridization function introduced previously

F 0
σ̄,σ(iνn) =

t2

iνn − (εs−µ)
δσ̄,σ. (57)

The calculation of the local trace is in general more complicated. In the case discussed here,
the Hamiltonian does not flip spins. Thus only terms with an equal number of creation and
annihilation operators per spin contribute to the local trace, and we can express the partition
function in expansion orders per spin, kσ. This yields [13]

Z

Zbath

=

(∏

σ

∞∑

kσ=0

∫
dτ kσσ

∫
dτ̄ kσσ

)
dkσ̄,σ(τ , τ̄ )tkσ,σ̄(τ , τ̄ ) (58)

where the vectors σ = (σ↑,σ↓) and σ̄ = (σ̄↑, σ̄↓) have (k↑, k↓) components, and for each kσ
component σi = σ̄i = σ. Thus

tkσ,σ̄(τ , τ̄ ) = Trloc

(
e−β(Ĥloc−µN̂d) T

∏
σ

∏1

i=kσ
cdσ(τσi)c

†
dσ(τ̄σ̄i)

)
. (59)

The latter can be calculated analytically. To do this, first we parametrize all configurations for a
given spin via a timeline [0, β) plus a number of creator/annihilator pairs which define segments
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β 0

k=0

!2 !1 !2!1

k=1

!1!2 !2!1

!2 !1
k=2

!1 !2 !2

!2 !1

!1

Fig. 5: Representative configurations contributing to the local trace at zeroth, first and second
order. The timelines for spin up are red and those for spin down are blue. The filled circles
correspond to the insertion of a creator (time τ1), and the empty circles to the insertion of an
annihilator (time τ2). Dotted lines represent the vacuum state for a given spin, full lines the
occupied state. The grey boxes indicate the regions in which l↑,↓ 6= 0.

on the timeline. At zeroth order two possible configurations exist per spin, an empty timeline,
which corresponds to the vacuum state |0〉, and a full timeline, which corresponds to the state
c†dσ|0〉. A given configuration yields, at order k = k↑ + k↓

tkσ,σ̄(τ , τ̄ ) =

(∏

σ

skσσ

)
e−

∑
σσ′ ((εd−µ)δσσ′+

U
2

(1−δσ,σ′ ))lσ,σ′ (60)

where lσ,σ′ is the length of the overlap of the τ segments for spins σ and σ′, respectively, while
sσ = sign(τσ1−τ̄σ1) is the fermionic sign. Possible configurations at order k = 0, 1, 2 are
shown in Fig. 5. At order k = 0, summing up the contribution of the four configurations shown
in Fig. 5 yields the local partition function Zloc = 1 + 2e−β(εd−µ) + e−β(2(εd−µ)+U). Order k = 1

is already more complicated. Setting εs = µ as in the self-consistent solution, the contribution
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to the bath trace in this case is

d1
σ̄σ(τ1, τ2) = F 0

σ̄σ(τ1, τ2) = −t
2

2
δσ,σ̄ sign(τ1−τ2). (61)

The local trace at the same order is instead given by

t1σσ̄(τ2, τ1) = Trloc

(
e−β(Ĥloc−µN̂d)T cdσ(τ2)c†dσ(τ1)

)
. (62)

We can now calculate the contribution at half filling of the four k = 1 configurations shown in
Fig. 5. In the case k↑ = 1 and k↓ = 0 we have, going from left to right in each row

t1↑↑(τ2, τ1) =





+e−(τ2−τ1)(εd−µ) = +e+τ21U/2

−e−(β−(τ1−τ2))(εd−µ) = −e(β+τ21)U/2

−e−β(2(εd−µ)+U)+(τ1−τ2)(εd−µ+U) = −e−τ21U/2

+e−(τ2−τ1)(εd−µ+U)−β(εd−µ) = +e(β−τ21)U/2

(63)

where τ21 = τ2 − τ1 and µ = εd + U/2. Similar results can be obtained for k↑ = 0 and k↓ = 1.
Summing up all terms up to order one we find

Z

Zbath

∼Zloc +
∑

σ

∫ β

0

dτ2

∫ β

0

dτ1 d
1
σσ(τ1, τ2) t1σσ(τ2, τ1)

∼Zloc

(
1− β 1− eβU2

1 + e
βU
2

2t2

U

)
. (64)

The exact formula of the partition function can be obtained from the eigenvalues and eigenvec-
tors in Appendix A.2

Z

Zbath

= Zloc

3(1 + e
βU
2 ) + e

βU
4

(
4e−

β∆(t,U)
4 + 4e+

β∆(t,U)
4 + e+

β∆(t,U/2)
2 + e−

β∆(t,U/2)
2

)

8
(
1 + e

βU
2

) . (65)

Its Taylor expansion in powers of t/U yields, at second order, the expression above. Going
back to Eq. (62), one can observe that, for k = 1, the local trace is proportional to the lo-
cal Green function, Gσ

d,d(τ). Indeed, Gσ
d,d(τ) can be calculated using the configurations just

described—provided that we start from k = 1 and we divide by the hybridization function.
More specifically, for k = 1 and τ > 0 we have

Gσ
d,d(τ) ∼ − 1

β

∫ β

0

∫ β

0

dτ2dτ1 d
1
σσ(τ1, τ2)t1σσ(τ2, τ1)︸ ︷︷ ︸

w1

δ
(
τ − (τ2−τ1)

) 1

F 0
σσ(τ1−τ2)

. (66)

We are now ready to generalize to arbitrary order. Taking all k values into account, the partition
function can be expressed as the sum over all configurations {c}, i.e., in short

Z =
∑

c

wc =
∑

c

|wc| sign wc. (67)
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In a compact form, we can write wc = dτc dc tc where dτc =
∏

σ

∏kσ
i dτσidτ̄σ̄i , and dc and tc

are the bath and local traces for the configuration c. This expression of the partition function
shows that we can interpret |wc| as the sampling weight of configuration c. A generic observable
Ô can then be obtained as the Monte Carlo average on a finite number of configurations Nc

〈Ô〉 =

∑
c〈Ô〉c|wc| sign wc∑
c |wc| sign wc

=

∑
c sign wc〈Ô〉c |wc|/

∑
c |wc|∑

c sign wc |wc|/
∑

c |wc|
≈

1
Nc

∑Nc
c 〈Ô 〉c sign wc

1
Nc

∑
c sign wc

. (68)

The term 1
Nc

∑
c sign wc in the denominator is the average fermionic sign. When this is small,

much longer runs are required to obtain data of the same quality; eventually the computational
time can become so long that the calculation is unfeasible—in these cases we have a sign prob-
lem. In practice, the QMC simulation starts from a random configuration c. Next we propose
an update c→ c′. Within the Metropolis algorithm, the acceptance ratio is

Rc→c′ = min

(
1,
pc′→c
pc→c′

|wc′ |
|wc|

)
(69)

where pc→c′ is the proposal probability for the update c → c′. In the approach described here,
known as segment solver, the basic updates are addition and removal of segments, antisegments
(segments winding over the borders of the timeline, see Fig. 5), or complete lines. As example,
let us consider the insertion of a segment for spin σ. A segment is made by a creator and an
annihilator. The creator is inserted at time τin; the move is rejected if τin is in a region where
a segment exists. If created, the segment can have at most length lmax, given by the distance
between τin and the time at which the next creator is, hence

pc→c′ =
dτ̄

β

dτ

lmax

. (70)

The proposal probability of the reverse move (removing a segment) is instead given by the
inverse of the number of existing segments

pc′→c =
1

kσ + 1
. (71)

The acceptance ratio for the insertion of a segment becomes then

Rc→c′ = min

(
1,
βlmax
kσ+1

∣∣∣∣
dc′

dc

tc′

tc

∣∣∣∣
)
. (72)

For the impurity Green function, here the most important observable, the direct average yields

〈Ô〉c = 〈Gσ
d,d〉c =

∑

σ′

kσ∑

i=1

kσ∑

j=1

∆(τ, τσ′j−τ̄σ′j)
(
Mk′σ

)
σ′j,σ′i

δσ,σσ′jδσ,σ̄σ′i (73)

where Mk =
(
Fk
)−1 is the inverse of the hybridization matrix and

∆(τ, τ ′) = − 1

β

{
δ(τ − τ ′) τ ′ > 0

−δ(τ − (τ ′+β)) τ ′ < 0
. (74)

One can verify that at order k = 1 this indeed returns Eq. (66).
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2.4 Hartree-Fock versus DMFT approximation

Let us now compare the exact solution of the Hubbard dimer with the result of the Hartree-Fock
(HF) approximation, which consists in replacing

ĤU = U
∑

i

n̂i↑n̂i↓ → ĤHF
U = U

∑

i

(
n̂i↑n̄i↓ + n̂i↓n̄i↑ − n̄i↑n̄i↓

)
, (75)

where n̄iσ is the HF expectation value of the operator n̂iσ. It is convenient to define

ni = n̄i↑+n̄i↓ n =
1

2

(
n1+n2

)
δn =

1

2

(
n1−n2

)

mi =
1

2

(
n̄i↑−n̄i↓

)
m+ =

1

2

(
m1+m2

)
m− =

1

2

(
m1−m2

)

Inverting these relations, in the absence of charge disproportionation (δn = 0), we find

n̄i↑ =
(
m+ + (−1)i−1m−

)
+ n/2 n̄i↓ = −

(
m+ + (−1)i−1m−

)
+ n/2 .

The Hartree-Fock version of the Hubbard dimer Hamiltonian equals the non-interacting Hamil-
tonian plus a shift of the on-site level. This shift depends on the site and the spin

ĤHF =
∑

iσ

(
εd +∆iσ

)
n̂iσ − t

∑

σ

(
c†1σc2σ + c†2σc1σ

)
−∆0 (76)

∆0 = 2U

(
n2

4
−m2

+ −m2
−

)
(77)

∆iσ = U

(
1

2
n− σ

(
m+ + (−1)i−1m−

))
, (78)

where σ = +1 for spin up and σ = −1 for spin down. Thus we can write immediately the local
Green function matrix for site i. It is convenient to use the site basis, hence, to calculate the
matrix Gσ

i,i′(iνn). Then we have

Gσ
i,i(iνn) =

(
iνn −

(
εd − µ+Σσ

1,1(iνn)
)

t

t iνn −
(
εd − µ+Σσ

2,2(iνn)
)
)−1

i,i

(79)

where we introduced the diagonal self-energy matrix Σσ
i,i′(iνn) = ∆iσ δi,i′ . This shows that

the Hartree-Fock self-energy is not dependent on the frequency, i.e., Hartree-Fock is a static
mean-field approach. The value of the parameters m+ and m− have to be found solving the
self-consistent equations

n̄iσ = 〈n̂iσ〉 =
1

β

∑

n

e−iνn0−Gσ
i,i(iνn) = Gσ

i,i(0
−). (80)

Since the exact ground state of the Hubbard dimer is a singlet, let us consider first the anti-
ferromagnetic Hartree-Fock solution (m+=0 and m− 6=0). In this case, the Hartree-Fock self-
energy depends on the site and the interaction couples states with different k. This becomes
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clear rewriting the Green-function matrix in the basis of the bonding (k = 0) and anti-bonding
(k = π) creation/annihilation operators

Gσ(iνn) =
1

2

(
iνn−

(
εd−t−µ+1

2

∑
iΣiσ(iνn)

)
1
2

∑
i(−1)i−1Σiσ(iνn)

1
2

∑
i(−1)i−1Σiσ(iνn) iνn−

(
εd+t−µ+1

2

∑
iΣiσ(iνn)

)
)−1

. (81)

The diagonal terms of the matrix Σσ
k,k′(iνn) are thus identical

Σσ
0,0(iνn) = Σσ

π,π(iνn) =
1

2

(
Σσ

1,1(iνn) +Σσ
2,2(iνn)

)
. (82)

The off-diagonal terms Σσ
0,π(iνn) and Σσ

π,0(iνn) are not zero, however. This tells us that, by
introducing the antiferromagnetic HF correction, we lower the symmetry of the system. Let
us now calculate explicitly the eigenstates for different fillings. It is sufficient to diagonalize
Ĥ1, the Hamiltonian in the 1-electron sector; the many-electron states can be obtained by filling
the one-electron states respecting the Pauli principle. The Hamiltonian Ĥ1 can be written as
Ĥ1 = Ĥ ′1 + εdN̂ −∆0, and, in the antiferromagnetic case we then have

Ĥ ′1 =




U
(

1
2
n−m−

)
−t 0 0

−t U
(

1
2
n+m−

)
0 0

0 0 U
(

1
2
n+m−

)
−t

0 0 −t U
(

1
2
n−m−

)



. (83)

This leads to the (normalized) states

|1〉l El(1)

|1〉3 = a2|1, 1/2, ↑〉1 − a1|1, 1/2, ↑〉2 ε0(1) +∆1(t, U)

|1〉2 = a1|1, 1/2, ↓〉1 − a2|1, 1/2, ↓〉2 ε0(1) +∆1(t, U)

|1〉1 = a1|1, 1/2, ↑〉1 + a2|1, 1/2, ↑〉2 ε0(1)−∆1(t, U)

|1〉0 = a2|1, 1/2, ↓〉1 + a1|1, 1/2, ↓〉2 ε0(1)−∆1(t, U)

where ε0(1) = εd + U
(
1/2 + 2m2

− − n2/2
)

and a2
1 = 1

2

(
1 + Um−

∆1(t,U)

)
, while ∆1(t, U) =

√
(m−U)2 + t2. At half filling, if we assume that only the ground doublet is occupied, solving

the self-consistent equations (80) yields

m− = 0 or m− =
1

2

√
1− 4t2

U2
. (84)

As a result, for the non-trivial solution (m− 6=0), the gap at half filling is EHF
g = 2∆1(t, U) = U.

In Fig. 6, Hartree-Fock and exact spectral function are compared for a specific parameter choice.
Looking at the size of the gap only, one could naively infer that, for the case shown, Hartree-
Fock is an excellent approximation, better than DMFT (see Fig. 3, top-right panel). This would
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Fig. 6: Local retarded Green function Gσ(ω) of the Hubbard dimer (t = 1, U = 4) at half
filling and in the zero temperature limit. Left: Antiferromagnetic Hartree-Fock (HF) approxi-
mation; green and violet distinguish G↑(ω) and G↓(ω) at a given site. Right: Exact local Green
function, for which G↑(ω) = G↓(ω). Dashed lines: Poles of the exact local Green function.

be, however, the wrong conclusion. Although, due to the small coordination number, in this spe-
cific case, DMFT indeed sizably underestimates the gap, it nevertheless captures the essential
nature of the ground state. Instead, while HF, in this specific case,6 gives an almost exact gap,
it does it via a qualitatively incorrect description (antiferromagnetic instead of singlet ground
state). Increasing the coordination number, DMFT approaches the exact solution both in the
paramagnetic and magnetic phase, while HF does not. Let us analyze in more detail the dif-
ferences between the HF approximation and the exact solution of the Hubbard dimer. The HF
Hamiltonian for two electrons is given by Ĥ2 = Ĥ ′2 + εdN̂ −∆0, and

Ĥ ′2 =




U 0 0 −2Um− 0 0

0 U(1−2m+) 0 0 0 0

0 0 U(1+2m+) 0 0 0

−2Um− 0 0 U −
√

2t −
√

2t

0 0 0 −
√

2t U 0

0 0 0 −
√

2t 0 U




. (85)

6The Hartree-Fock approximation often overestimates the size of the gap, however.
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For m+=0 and m− 6= 0 (antiferromagnetic solution) the eigenvalues and eigenvectors are

|2〉l El(2)

|2〉5 = 1√
2

(
|2, 0, 0〉0 + a2|2, 1, 0〉 − a1√

2

(
|2, 0, 0〉1 + |2, 0, 0〉2

))
ε0(2) + 2∆1(t, U)

|2〉4 = 1√
2

(
|2, 0, 0〉1 − |2, 0, 0〉2

)
ε0(2)

|2〉3 = |2, 1, 1〉 ε0(2)

|2〉2 = |2, 1,−1〉 ε0(2)

|2〉1 = a1|2, 1, 0〉+ a2
1√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
ε0(2)

|2〉0 = 1√
2

(
|2, 0, 0〉0 − a2|2, 1, 0〉+ a1√

2

(
|2, 0, 0〉1 + |2, 0, 0〉2

))
ε0(2)− 2∆1(t, U)

where ε0(2) = 2εd + U
(
1 + 2m2

− − n2/2
)
, and a2

1 = t2/∆2
1(t, U). The antiferromagnetic

Hartree-Fock ground state has an overlap with the correct ground state, however incorrectly
mixes triplet and singlet states, thus breaking the rotational symmetry of the model. For this
reason, its energy, in the large U limit, is 2εd− 2t2/U and not 2εd− 4t2/U as in the exact case.
For the ferromagnetic solution of the Hartree-Fock equations (m−=0 and m+ 6= 0) the eigen-
values and eigenvectors are instead

|2〉l El(2)

|2〉5 = |2, 1,−1〉 ε+
0 (2) + 2Um+

|2〉4 = 1√
2

(
|2, 0, 0〉0 − 1√

2

(
|2, 0, 0〉1 + |2, 0, 0〉2

))
ε+

0 (2) + 2t

|2〉3 = 1√
2

(
|2, 0, 0〉1 − |2, 0, 0〉2

)
ε+

0 (2)

|2〉2 = |2, 1, 0〉 ε+
0 (2)

|2〉1 = 1√
2

(
|2, 0, 0〉0 + 1√

2

(
|2, 0, 0〉1 + |2, 0, 0〉2

))
ε+

0 (2)− 2t

|2〉0 = |2, 1, 1〉 ε+
0 (2)− 2Um+

where ε+
0 (2) = 2εd + U(1 + 2m2

+ − n2/2). The ferromagnetic Hartree-Fock correction thus
yields an incorrect sequence of levels; the ground state for large U/t, indicated as |2〉0 in the
table, has no overlap with the exact ground state of the Hubbard dimer. It is, instead, one of the
states of the first excited triplet. An important observation is that, despite the errors, the energy
difference between ferro- and antiferro-magnetic ground state is

EF − EAF ∼
2t2

U
, (86)

which is indeed the correct value in the small t/U limit. It does not correspond, however, to the
actual singlet-triplet excitation energy, Γ ∼ 4t2/U .
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We can now directly compare the Hartree-Fock and the dynamical mean-field approximation
for the two-site Hubbard model. Both approaches are based on the solution of self-consistent
mean-field-type equations, and therefore they are both mean-field methods. In Hartree-Fock
the self-energy is frequency-independent (static), while in DMFT depends on the frequency
(dynamical). In Hartree-Fock the self-energy can be site-dependent, as we have seen in the
antiferromagnetic case. In DMFT, allowing for a site-dependent self-energy leads to cluster or
cluster-like extensions of the method. If the same unit cell is used in DMFT and Hartree-Fock,
we can identify another relation between the two methods. In the infinite-frequency limit, the
DMFT self-energy equals the Hartree-Fock self-energy. This can be shown analytically in a
simple way. For the case of the two-site Hubbard model, the expansion of the local lattice
Green function at high frequency in the local-self-energy approximation is

Gσ
i,i(iνn) =

1

iνn
−
(
µ− εd −Σσ

l (∞)
)

(iνn)2
+O

(
1

(iνn)3

)
. (87)

Instead, the expansion of the impurity Green-function can be written as

Gσ
d,d(iνn) =

∫ β

0

dτ eiνnτGσ
d,d(τ)

=
1

iνn

∫ β

0

dτ
deiνnτ

dτ
Gσ
d,d(τ) =

1

iνn

(
−Gσ

d,d(β
−)−Gσ

d,d(0
+)−

∫ β

0

dτ eiνnτ
dGσ

d,d(τ)

dτ

)

=
1

iνn
+

1

(iνn)2

(
dGσ

d,d(τ)

dτ

∣∣∣∣
β−

+
dGσ

d,d(τ)

dτ

∣∣∣∣
0+

+

∫ β

0

dτ eiνnτ
d2Gσ

d,d(τ)

dτ 2

)

=
1

iνn
+

dGσd,d(τ)

dτ

∣∣∣
β−

+
dGσd,d(τ)

dτ

∣∣∣
0+

(iνn)2
+O

(
1

(iνn)3

)
(88)

where

dGσ
d,d(τ)

dτ

∣∣∣∣
β−

+
dGσ

d,d(τ)

dτ

∣∣∣∣
0+

= −
〈{[

ĤA−µN̂, cdσ
]
, c†dσ

}〉
= −µ+ εd + U〈n̂−σ〉. (89)

From this result we can conclude that, assuming self-consistency has been reached,

Σσ
l (∞) = U〈n̂−σ〉. (90)

This is exactly the Hartree-Fock expression of the self-energy that we found earlier, and indeed
equals the infinite-frequency limit of the DMFT self-energy we previously calculated; however,
the occupations 〈n̂−σ〉 in DMFT and Hartree-Fock calculations are typically not the same. In
the case of the dimer, DMFT yields 〈n̂−σ〉 = 1/2; this would correspond in Hartree-Fock to a
trivial solution, in which the self-energy merely shifts all the energy levels by the same amount,
and has therefore no relevant effects.
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2.5 DMFT for the one-band Hubbard model

The Hubbard Hamiltonian (8) is in principle the simplest model for the description of the Mott
metal-insulator transition. In the tight-binding approximation it becomes

Ĥ = εd
∑

σi

n̂iσ − t
∑

σ〈ii′〉

c†iσci′σ + U
∑

i

n̂i↑n̂i↓, (91)

where 〈ii′〉 is a sum over first neighbors. As discussed in the introduction, for U = 0, at
half-filling, this Hamiltonian describes a metallic band. For t = 0 it describes an insulating
collection of disconnected atoms. Somewhere in between, at a critical value of t/U, a metal
to insulator transition must occur. In this section we will discuss the DMFT solution of (91)
and the picture of the metal-insulator transition emerging from it. The first step consists in
mapping the original many-body Hamiltonian into an effective quantum-impurity model, such
as the Anderson Hamiltonian

ĤA =
∑

kσ

εskn̂kσ

︸ ︷︷ ︸
Ĥbath

+
∑

kσ

(
V s
k c
†
kσcdσ + h.c.

)

︸ ︷︷ ︸
Ĥhyb

+ εd
∑

σ

n̂dσ + Un̂d↑n̂d↓

︸ ︷︷ ︸
Ĥimp

. (92)

In this model the on-site Coulomb repulsion U appears only in the impurity Hamiltonian, Ĥimp,
while the terms Ĥbath and Ĥhyb, describe, respectively, the bath and the bath-impurity hybridiza-
tion. In the next step, the quantum-impurity model is solved. Differently from the case of the
Anderson molecule, this cannot be done analytically. It requires non-perturbative numerical
methods, such as exact diagonalization, the numerical renormalization group, density-matrix
renormalization group or QMC. Here we describe the DMFT self-consistency loop for a QMC
quantum-impurity solver. Solving the quantum-impurity model yields the impurity Green func-
tion Gσ

d,d(iνn). From the impurity Dyson equation we can calculate the impurity self-energy

Σσ
A(iνn) =

(
G0σ
d,d(iνn)

)−1 −
(
Gσ
d,d(iνn)

)−1
. (93)

Next, we adopt the local self-energy approximation, i.e., we assume that the self-energy of the
Hubbard model equals the impurity self-energy. Then, the local Green function is given by

Gσ
ic,ic(iνn) =

1

Nk

∑

k

1

iνn + µ− εk −Σσ
A(iνn)

, (94)

where Nk is the number of k points. The local Dyson equation is used once more, this time
to calculate the bath Green function Gσ(iνn), which in turn defines a new quantum-impurity
model. This procedure is repeated until self-consistency is reached, i.e., the number of electrons
is correct and the self-energy does not change anymore (within a given numerical accuracy). In
this situation we have

Gσ
ic,ic(iνn) ∼ Gσ

d,d(iνn). (95)
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Fig. 7: The metal-insulator transition in ferromagnetic Hartree-Fock. The calculation is for a
square lattice tight-binding model with dispersion εk = −2t(cos kx + cos ky).

It is important to underline that self-consistency is key to the success of DMFT in describing the
metal-to-insulator transition. This can, perhaps, be best understood looking once more at the
effects of self-consistency in a simpler approach, the static mean-field Hartree-Fock method.7

If we chose the same primitive cell as in DMFT, the Hartree-Fock self-energy matrix is

Σσ
i,i′(iνn) = U

(
n

2
− σm

)
δi,i′ , (96)

where σ = +1 for spin up and σ = −1 for spin down and m = m+ = (n↑ − n↓)/2, with
nσ = niσ. The approximation is then identical to replacing the Hubbard Hamiltonian with

ĤHF =
∑

kσ

[
εk + U

(
1

2
− σm

)]
n̂kσ. (97)

This shows that heff = 2Um plays the role of an effective magnetic field (Weiss field). The
self-consistency criterion is

n̄σ = n̄iσ = 〈n̂iσ〉HF , (98)

where the expectation value 〈n̂iσ〉HF is calculated using the Hamiltonian ĤHF, which in turn
depends on n̄σ via m. This gives the self-consistency equation

m =
1

2

1

Nk

∑

kσ

σe−β(εk+U( 1
2
−σm)−µ)

1 + e−β(εk+U( 1
2
−σm)−µ)

. (99)

If we set m = 0 the equation is satisfied; for such a trivial solution the static mean-field cor-
rection in Eq. (97) merely redefines the chemical potential and has therefore no effect. For
sufficiently large U, however, a non-trivial solution (m 6= 0) can be found. If m 6= 0 the spin up
and spin down bands split, and eventually a gap can open. This is shown in Fig. 7. The static
mean-field correction in Eq. (97) equals the contribution of the Hartree diagram to the self-
energy, Σσ

H(iνn) = Un̄−σ. In many-body perturbation theory, however, n̄σ = 1/2, i.e., m = 0.
7Keeping in mind that many self-consistent solutions obtained with the Hartree-Fock method are spurious.
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Fig. 8: VOMoO4: LDA+DMFT spectral function at finite temperature for 0 ≤ U ≤ 4. Energies
are in eV and spectral functions in states/spin/eV. The calculations have been done using a
continuous-time hybridization-expansion QMC solver [13]. A detailed LDA+DMFT study of
the electronic and magnetic properties VOMoO4 can be found in Ref. [14].

In the self-consistent static mean-field approximation, instead, m can differ from zero, and a
phenomenon not described by the mere Hartree diagram can be captured, ferromagnetism in a
correlated metal. If mU is larger than the bandwidth, the system can even become an insulator.
In DMFT the role of the Weiss mean field is played by the bath Green function Gσi,i(iνn). The
emerging picture of the Mott transition is described in Fig. 8 for a representative single-band
material. In the U = 0 limit, the spectral function A0(ω) is metallic at half filling (top left
panel). For finite U, if we set Σσ

A(ω) = 0 as initial guess, the DMFT self-consistency loop
starts with A(ω) = A0(ω). For small U/t, the converged spectral function A(ω) is still similar
to A0(ω). This can be seen comparing the U = 0.5 and U = 0 panels in Fig. 8. Further
increasing U/t, sizable spectral weight is transferred from the zero-energy quasi-particle peak
to the lower (LH) and upper (UH) Hubbard bands, centered at ω ∼ ±U/2. This can be observed
in the U = 1 panel of Fig. 8. The system is still metallic, but with strongly renormalized masses
and short lifetimes, reflected in the narrow quasi-particle (QP) peak. Finally, for U larger than
a critical value (U ≥ 1.5 in the figure) a gap opens and the system becomes a Mott insulator.
When this happens the self-energy diverges at low frequency, where

Σσ
A(ω + i0+) ∼ U

2
+
U2

4

a(t, U)

ω + i0+
. (100)

In the large U/t limit the gap increases linearly with the Coulomb repulsion, i.e., Eg(1) ∼
U −W , where W is the bandwidth.
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2.6 DMFT for multi-orbital models

The multi-orbital Hubbard-like Hamiltonian has the form

Ĥ = Ĥ0 + ĤU (101)

Ĥ0 = −
∑

ii′

∑

σσ′

∑

mm′

ti,i
′

mσ,m′σ′ c
†
imσci′m′σ′ (102)

ĤU =
1

2

∑

i

∑

σσ′

∑

mm′

∑

pp′

Umpm′p′ c
†
imσc

†
ipσ′cip′σ′cim′σ, (103)

where m,m′ and p, p′ are different orbitals and the Coulomb tensor is local. The DMFT ap-
proach can be extended to solve models of this form, mapping them to multi-orbital quantum-
impurity models. The main changes with respect to the formalism introduced in the previous
section are then the following

εk → (Hk)mσ,m′σ′ (iνn+µ)→ (iνn+µ) 1̂mσ,m′σ′

ti,i
′ → ti,i

′

mσ,m′σ′ εd → εi,i
′

mσ,m′σ′ = −ti,imσ,m′σ′

where 1̂ is the identity matrix. As a consequence, the local Green function, the bath Green
function, the hybridization function, and the self-energy also become matrices

Gσ(iνn)→ Gσ,σ′m,m′(iνn) Gσ(iνn)→ Gσ,σ′

m,m′(iνn) Σσ(iνn)→ Σσ,σ′

m,m′(iνn).

The corresponding generalization of the self-consistency loop is shown schematically in Fig. 9.
Although the extension of DMFT to Hubbard models with many orbitals might appear straight-
forward, in practice it is not. The bottleneck is the solution of the generalized multi-orbital
quantum-impurity problem. The most flexible solvers available so far are all based on QMC.
Despite being flexible, QMC-based approaches have limitations. These can be classified in
two types. First, with increasing the number of degrees of freedom, calculations become very
quickly computationally too expensive—how quickly depends on the specific QMC algorithm
used and the actual implementation. Thus, going beyond a rather small number of orbitals and
reaching the zero-temperature limit is unfeasible in practice. The second type of limitation is
more severe. Increasing the number of degrees of freedom leads, eventually, to the infamous
sign problem; when this happens, QMC calculations cannot be performed at all. In order to
deal with limitations of the first type, it is crucial to restrict QMC calculations to the essential
degrees of freedom; furthermore, we should exploit symmetries, develop fast algorithms and
use the power of massively parallel supercomputers to reduce the actual computational time.
For the second type of problems not a lot can be done; nevertheless, it has been shown that a
severe sign problem might appear earlier with some basis choices than with others [13]. Al-
though eventually we cannot escape it, this suggests that the model set up can be used as a tool
to expand the moderate sign-problem zone. For what concerns symmetries, in the paramagnetic
case and in absence of spin-orbit interaction or external fields, an obvious symmetry to exploit
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Fig. 9: LDA+DMFT self-consistency loop. The one-electron Hamiltonian is built in the basis
of Bloch states obtained from localized Wannier functions, for example in the local-density
approximation (LDA); this givesHLDA

k . The set {ic} labels the equivalent correlated sites inside
the unit cell. The local Green-function matrix is at first calculated using an initial guess for the
self-energy matrix. The bath Green-function matrix is then obtained via the Dyson equation
and used to construct an effective quantum-impurity model. The latter is solved via a quantum-
impurity solver, here quantum Monte Carlo (QMC). This yields the impurity Green-function
matrix. Through the Dyson equation the self-energy is then obtained, and the procedure is
repeated until self-consistency is reached.

is the rotational invariance of spins, from which follows

Aσ,σ
′

m,m′(iνn) = δσ,σ′ Am,m′(iνn), (104)

where A = G, G,Σ. In addition, if we use a basis of real functions, the local Green-function
matrices are real and symmetric in imaginary time τ , hence

Aσ,σ
′

m,m′(iνn) = δσ,σ′ Am,m′(iνn) = δσ,σ′ Am′,m(iνn). (105)

Finally, often the unit cell contains several equivalent correlated sites, indicated as {ic} in Fig. 9.
In order to avoid expensive cluster calculations, we can use space-group symmetries to construct
the matrices G, G,Σ at a given site i′c from the corresponding matrices at an equivalent site, e.g.,
ic = 1. Space-group symmetries also tell us if some matrix elements are zero. For example, for
a model with only t2g (or only eg) states, in cubic symmetry, in the paramagnetic case and in
absence of spin-orbit interaction or external fields, we have

Aσ,σ
′

m,m′(iνn) = δσ,σ′ Am,m(iνn) δm,m′ . (106)
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3 Building materials-specific many-body models

3.1 Model construction

How do we build realistic Hubbard-like models for correlated materials? The state-of-the art
approach relies on constructing, for a given system, materials-specific Kohn-Sham Wannier
functions ϕKS

imσ(r). These can be obtained via electronic structure calculations based on density-
functional theory [8–10], e.g., in the LDA approximation.8 After we constructed the complete
one-electron basis, the first steps in model-building are those described in the introduction. We
recall here the essential points and then discuss the next stage. The many-body Hamiltonian
can be expressed as Ĥ = Ĥ0 + ĤU − ĤDC, with Ĥ0 = ĤLDA and

Ĥ0 = −
∑

ii′

∑

σσ′

∑

mm′

ti,i
′

mσ,m′σ′c
†
imσci′m′σ′ , (107)

ĤU =
1

2

∑

ii′jj′

∑

σσ′

∑

mm′pp′

U iji′j′

mp m′p′c
†
imσc

†
jpσ′cj′p′σ′ci′m′σ. (108)

The hopping integrals in Ĥ0 are calculated replacing the electron-nuclei interaction, ven(r),
with the self-consistent DFT reference potential, vR(r) = ven(r) + vH(r) + vxc(r), defined in
Eq. (5). The latter includes the long-range Hartree term, vH(r), and the exchange-correlation
contribution, vxc(r); to avoid including the effects of these terms twice, we thus introduce the
double-counting correction, ĤDC, so that

ĤU → ∆ĤU = ĤU − ĤDC.

Unfortunately we do not know which important correlation effects are included in Ĥ0 via vR(r),
and therefore the exact expression of ∆ĤU is also unknown. The remarkable successes of the
LDA suggest, however, that in many materials the LDA is overall a good approximation, and
therefore, in those systems at least, the term ∆ĤU can be completely neglected. What about
strongly-correlated materials? Even in correlated systems, most likely, the LDA works rather
well for the delocalized electrons or in describing the average or the long-range Coulomb ef-
fects. Thus one can think of separating the electrons into uncorrelated and correlated; only
for the latter we do take the correction ∆ĤU into account explicitly, assuming furthermore that
∆ĤU is local or almost local [8], since we know that it is the local term which is responsible
for most non-trivial many-body effects. Typically, correlated electrons are those that partially
retain their atomic character, e.g., those that originate from localized d and f shells; for conve-
nience, here we assume that in a given system they stem from a single atomic shell l (e.g., d for
transition-metal oxides or f for heavy-fermion systems) and label their states with the atomic
quantum numbers l and m = −l, . . . , l of that shell. Thus

U iji′j′

mpm′p′ ∼
{
U l
mpm′p′ iji′j′ = iiii ∧ mp,m′p′ ∈ l

0 iji′j′ 6= iiii ∨ mp,m′p′ /∈ l.
8Using GGA or similar functionals in place of LDA yields minor differences in the many-body Hamiltonian;

on the other hand, using LDA+U or similar approximations yields Hartree-Fock-like effects that would have to be
subtracted via the double-counting correction.
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Within this approximation ∆ĤU is replaced by ∆Ĥ l
U = Ĥ l

U − Ĥ l
DC, where Ĥ l

DC is, e.g.,
given by the static mean-field contribution of Ĥ l

U . There is a drawback in this procedure,
however. By splitting electrons into correlated and uncorrelated we implicitly assume that
the main effect of the latter is the renormalization or screening of parameters for the former,
in particular of the Coulomb interaction. The computation of screening effects remains, un-
fortunately, a challenge. The calculation of exact screening would require the solution of the
original many-body problem, taking all degrees of freedom into account, an impossible task.
Commonly-used approximate schemes are the constrained LDA approximation (cLDA) and
the constrained random-phase approximation (RPA) [8–10]. Both methods give reasonable es-
timates of screened Coulomb parameters for DMFT calculations. Typically cRPA calculations
include more screening channels and are performed for less localized bases than cLDA calcula-
tions; thus cRPA parameters turn out to be often smaller than cLDA ones. To some extent, the
difference can be taken as an estimate of the error bar.
After we have selected the electrons for which we think is necessary to include explicitly the
Hubbard correction, in order to build the final Hamiltonian for DMFT calculations, it is often
convenient to integrate out or downfold, in part or completely, the weakly correlated states.
There are different degrees of downfolding. The two opposite extreme limits are (i) no down-
folding, i.e., keep explicitly in the Hamiltonian all weakly-correlated states (ii) massive down-
folding, i.e., downfold all weakly correlated states. If we perform massive downfolding, e.g.,
downfold to the d (or eg or t2g) bands at the Fermi level, the Hamiltonian relevant for DMFT
takes a simpler form. The LDA part is limited to the selected orbitals or bands, which, in the
ideal case, are decoupled from the rest

ĤLDA = −
∑

ii′

∑

σσ′

∑

mαm
′
α

ti,i
′

mασ,m
′
ασ
′ c
†
imασ

ci′m′ασ′ . (109)

The local screened Coulomb interaction for this set of orbitals is the on-site tensor

Ĥ l
U =

1

2

∑

i

∑

σσ′

∑

mαm′α

∑

mβm
′
β

Umαmβm′αm′β c
†
imασ

c†imβσ′cim′βσ′
cim′ασ. (110)

It is important to point out that the level of downfolding does not modify the hardness of the
quantum-impurity problem. If, for example, in studying a transition-metal oxide, we plan to
treat only 3d bands as correlated, it does not matter if we perform calculations with a Hamilto-
nian containing also, e.g., O p states, or we rather downfold all states but the 3d and work with
a set of Wannier basis spanning the 3d-like bands only. The number of correlated orbitals in the
quantum-impurity problem is the same.9

One advantage of massive downfolding is that the double-counting correction typically becomes
a shift of the chemical potential, and it is therefore not necessary to calculate it explicitly. A
second important advantage is that the interpretation of the final results is simpler. Instead, a
disadvantage is that the basis functions are less localized, and therefore the approximation of
the Coulomb interaction to a local operator might be less justified, and in some cases it might be

9The choice might influence how severe the QMC sign problem is, however.
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Fig. 10: NMTO Wannier-like orbitals for t2g states in LaTiO3 obtained via massive downfolding
to the t2g bands. The t2g-like orbitals have O p tails at the neighboring O sites reflecting the
distortions of the lattice. The figure has been taken from Ref. [15].

necessary to include non-local Coulomb terms. The effect of downfolding on the localization of
Wannier functions is illustrated for example in Fig. 10. Finally, another disadvantage of massive
downfolding is that the energy window in which the model is valid is more narrow.

Considered all advantages and disadvantages, what is then the best way of performing DMFT
calculations? There is no universal answer to this question; it depends on the problem we are
trying to solve and the system we are studying. Independently of the degree of downfolding
we choose, it is important to point out that a clear advantage of Wannier functions in general
is that they carry information about the lattice, bonding, chemistry and distortions. This can be
seen once more in Fig. 10, where orbitals are tilted and deformed by the actual structure and
chemistry of the compound. Indeed, one might naively think of using a “universal” basis, for
example atomic functions, the same for all systems, and thus calculating the hopping integrals
using simply the electron-nuclei interaction ven(r). Besides the complications arising from the
lack of orthogonality, such a basis has no built-in materials-specific information, except lattice
positions. It is therefore a worse starting point to describe the electronic structure, even in the
absence of correlations; larger basis sets are required to reach the same accuracy. From the
point of view of LDA+DMFT, an advantage of a universal basis would be that it is free from
double-counting corrections; on the other hand, however, exactly because we do not use the
LDA potential and LDA orbitals to calculate the hopping integrals, we also cannot count on
the successes of LDA in the description of average and long-range Coulomb effects. For these
reasons ab-initio Wannier functions remain so far the basis of choice. They can be built via the
Nth-Order Muffin-Tin Orbital (NMTO) method [15], the maximal-localization scheme [16], or
projectors. Fig. 10 shows examples of NMTO-based Wannier functions.
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3.2 Localization of the basis and range of the Coulomb interaction

No matter what construction procedure is used, a common characteristic of ab-initio Wannier
functions is that they are site-centered and localized.10 A question naturally arises: How crucial
is it to use localized functions as one-electron basis? This is an important point, since we have
seen that strong-correlation effects arise in systems in which the on-site Coulomb interaction
is much larger than longer-range terms. Let us consider therefore two opposite extreme limits.
The first is the case in which the basis functions are independent of the lattice position (i.e., they
are totally delocalized). For such a basis choice the Coulomb interaction parameters would be
the same for every couple of lattice sites, no matter how distant. Thus a Hubbard-like model
would be hard to justify. In the second extreme case, we adopt a hypothetical basis so localized
that ψimσ(r)ψi′m′σ′(r) ∼ δi,i′δ(r−Ti). Even for such a basis choice, the unscreened Coulomb
interaction is not local. It is given by

U iji′j′

mp m′p′ ∝
δi,i′δj,j′

|Ti−Tj|
, (111)

hence it decays slowly with distance, although the (divergent) on-site term dominates. More
generally, we can conclude that by increasing the localization of the basis we enhance the im-
portance of the on-site Coulomb repulsion with respect to long-range terms; this better justifies
Hubbard-like models—although we have to remember that most of the long-range part of the
Coulomb interaction is in any case subtracted via the double-counting correction ĤDC. The
extreme case of the δ(r−Ti) functions also illustrates, however, how far we can go. A major
problem with the extremely localized basis discussed above is that it would make it impossible
to properly describe bonding, since the hopping integrals would be zero. Although such a basis
is, of course, never used to build many-body models, there is a tempting approximation that
has similar flaws. If one uses DFT-based electronic-structure techniques that tile the space in
interstitial and non-overlapping atomic spheres (e.g., the LAPW method), it is tempting to use
as basis for correlated electrons the atomic functions defined inside the atomic spheres. These
functions are, by construction, much more localized than Wannier orbitals (even when no down-
folding is performed in the Wannier construction). However, they do not form a complete basis
set in the space of square-integrable functions. This is obvious because such a basis does not
even span the LDA bands; to reproduce the bands we need, in addition, functions defined in
the interstitial region. This is illustrated in Fig. 11 for a simple example of two quantum well
potentials.11 We therefore cannot use it to write the many-body Hamiltonian in the usual form
Ĥ0 + ĤU . In conclusion, a basis which, as ab-initio Wannier functions, is complete and indeed
spans the bands, is better justified, although we somewhat lose in localization.

10Differences in localizations between the various construction procedures are actually small for the purpose of
many-body calculations, provided that the same bands are spanned in the same way.

11Another, but less severe, problem of atomic sphere truncations is that the results will depend on the sphere
size, in particular when atomic spheres are small.
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Fig. 11: The problem of two quantum wells. The figure shows (schematically) for each well
the wavefunction of a bound state. If we consider only the part of the wavefunction inside its
own well (red in the figure), the differential overlap (and hence the hopping integral) between
functions centered on different wells would be zero.

3.3 Hubbard Hamiltonians for t2g and eg systems

Several strongly-correlated transition-metal oxides can be described via minimal materials-
specific Hubbard-like models which involve only t2g or only eg bands. A representative system
of this kind is the layered perovskite Sr2RuO4 with the 4d t42g electronic configuration. Its crys-
tal structure is shown in Fig. 12 (left side), together with the associated LDA bands crossing
the Fermi level (top-right panel). Due to the layered structure the xz and yz bands are quasi
one-dimensional and the xy band is quasi two-dimensional. Thus, the t2g bands give rise, in
first approximation, to a Fermi surface made of four crossing lines (from the xz, yz bands) and
a circle (from the xy band), shown schematically in the bottom-right panel of Fig. 12. Exper-
imentally, Sr2RuO4 is a correlated metal down to 1.5 K; below this temperature it becomes an
anomalous superconductor. Other representative cases of t2g systems are the Mott insulating
perovskites LaTiO3 and YTiO3, with the electronic configuration 3d t12g. A paradigmatic eg
system is instead the orbitally ordered insulator KCuF3, with the electronic configuration t62ge

3
g.

For all these materials, if we massively downfold all LDA bands but the t2g (or the eg), the
resulting 3-band (or 2-band) generalized Hubbard model takes the form

Ĥ =
∑

iσ

∑

mm′

εm,m′ c
†
imσcim′σ −

∑

σ

∑

i6=i′

∑

mm′

ti,i
′

m,m′ c
†
imσci′m′σ

+U
∑

i m

n̂im↑n̂im↓ +
1

2

∑

iσσ′

m6=m′

(U − 2J − Jδσ,σ′) n̂imσn̂im′σ′

− J
∑

i m6=m′

(
c†im↑c

†
im↓cim′↑cim′↓ + c†im↑cim↓c

†
im′↓cim′↑

)
, (112)

where m,m′ = xy, yz, xz for t2g and m,m′ = 3z2−r2, x2−y2 for eg. The parameters U and J
are the direct and exchange screened Coulomb integrals. The Coulomb interaction ĤU is here
assumed to have full O(3) rotational symmetry, as in the atomic limit.12 The first two terms of

12A derivation of the Coulomb interaction tensor for the free atom can be found in my chapter in Ref. [8]. There
the difference in the values of U and J for the t2g and eg orbitals is also discussed.
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Fig. 12: Left: Crystal structure of the tetragonal layered perovskite Sr2RuO4. Right: Low-
energy LDA band structure (top) and schematic representation of the associated Fermi surface
(bottom). The band structure was calculated using the Nth-Order Muffin-Tin Orbital (NMTO)
method. The figure is rearranged from Ref. [17].

ĤU are the so-called density-density terms, and the last two are the pair-hopping and spin-flip
interactions. We dropped the double-counting correction ĤDC, which in this case is a mere shift
of the chemical potential. The energies εm,m′ are the elements of the crystal-field matrix. In
the case of cubic symmetry, the crystal-field matrix, the self-energy, the Green function and the
spectral function are all diagonal in orbital space. For low-symmetry systems, however, this is
not true. It can be seen in Fig. 13, which shows the diagonal and off-diagonal elements of the
spectral-function matrix for the orthorhombic Mott insulator YTiO3.

3.4 Spin-orbit interaction and effects of the basis choice

In many interesting systems the spin-orbit interaction ĤSO plays an important role. In the atomic
limit, for the d shells the spin-orbit interaction is

ĤSO =
∑

µ

λµ
∑

mm′

∑

σσ′

εµmσ,m′σ′ c
†
mσcm′σ′ , εµmσ,m′σ′ = 〈mσ|lµsµ|m′σ′〉, (113)

where µ = x, y, z, and λµ are the spin-orbit couplings, with λµ = λ in O(3) symmetry, and

λ ∼ gµ2
B

〈
1

r

d

dr
vR(r)

〉
. (114)
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Fig. 13: The LDA+DMFT spectral function matrix of the orbitally-ordered t12g system YTiO3,
in the (xz, yz, xy) basis (left panels) and in the crystal-field basis (right panels) [15, 22].

For a given material, the on-site one-electron Hamiltonian is thus the matrix ε̂ with elements
ε̂mσ,m′σ′ = εm,m′ +

∑
µ λµε

µ
mσ,m′σ′ , where the terms εm,m′ arise from the crystal field. More

specifically, for a t2g system with tetragonal site symmetry we have

ε̂ =




εxy 0 0 0 λy
2
− iλx

2

0 εyz
iλz
2

−λy
2

0 0

0 − iλz
2

εxz
iλx
2

0 0

0 −λy
2
− iλx

2
εxy 0 0

λy
2

0 0 0 εyz − iλz
2

iλx
2

0 0 0 iλz
2

εxz




. (115)

Although ĤSO looks like an innocent one-body term, it turns out that, for materials, simulations
including this term are more difficult. This has two reasons: (i) QMC calculations involve
Green function matrices of larger size, e.g., 6×6 as in the case just discussed, hence they are
from the start computationally more demanding; (ii) QMC calculations are often hampered by
a much stronger sign problem; even when it can be tamed, this often happens at the price of
further increasing the computational time. Thus, specific basis choices and approximations are
used. A possible approach consists in working in the basis that diagonalizes the non-interacting
local Green function or the non-interacting local Hamiltonian; such a choice is known to reduce
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Fig. 14: Fermi surface of Sr2RuO4 calculated with LDA (a), LDA+SO (b), LDA+DMFT (c) and
LDA+SO+DMFT (d). Figure from [18]. The grey maps are experimental results from Ref. [21].

the sign problem, as was first shown in Ref. [13] for the case without spin-orbit interaction. For
a system with tetragonal symmetry, the states that diagonalize the local Green function belong
either to the Γ6 or to the Γ7 irreducible representations, both 2-dimensional. There are two
(coupled) Γ7 representations, defining the space Γ ′7⊕Γ ′′7 . The analytic expression of these states
can be found in Refs. [17–19]. The transformation to the Γ6 ⊕ Γ ′7 ⊕ Γ ′′7 basis is, of course, in
principle, a mere basis change. Approximations are made, however, if all off-diagonal elements
of the Green function are set to zero or the Coulomb tensor is truncated to further tame the sign
problem or to reduce the computational time.

It has to be noticed that the Coulomb interaction of the t2g Hubbard Hamiltonian is only invari-
ant under orthogonal transformations of the basis. Thus if we change basis to the Γ6-Γ ′7-Γ ′′7
representation, the form of the interaction tensor changes. The exact expression of the Coulomb
tensor in the angular momentum basis (i.e., the one relevant when the t2g crystal-field splitting
is zero) can be found in Ref. [20]. For the Coulomb interaction tensor in the basis of spherical
harmonics you can instead look the derivation in Ref. [8].

In the presence of crystal-field splitting, if the spin-orbit interaction does not dominate, it is
often preferable to perform the calculations in the t2g basis. To this end, it is key to make
QMC codes very efficient in order to reduce as much as possible statistical errors and increase
the average sign. Exact LDA+SO+DMFT calculations in the t2g basis have been successfully
performed, e.g., for Sr2RuO4, using an interaction-expansion continuous-time quantum Monte
Carlo solver, and an orbital-dependent phase which makes the Green function matrix real [18,
19]. This approach allowed us to study, for example, the effects of the spin-orbit interaction on
the Fermi surface without approximations. The results are shown in Fig. 14 in comparison with
experimental data; we will discuss them in the next section.
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3.5 Non-spherical Coulomb terms and double-counting correction

While for a free atom the Coulomb tensor is spherical (symmetry O(3)), in a material the
screened Coulomb tensor has, in general, the symmetry of the lattice. Taking into account non-
spherical Coulomb terms is, in general hard, both because they make QMC calculations more
difficult and can worsen the sign problem, and because in their presence the double-counting
correction has to be explicitly accounted for, even when massive downfolding is used. For these
reasons they are typically neglected. Recently it was shown that they can play, however, a very
important role for the Fermi surface [18]. Let us therefore discuss how the double-counting
correction can be treated with and without such terms, following the approach of Ref. [18].
One of the classical approximations for the double-counting correction is the so called “around
mean-field” approximation. The idea is that LDA describes well the average Coulomb term, in
the absence of orbital polarization. This is equivalent to using as double-counting correction
the Hartree term of the Coulomb interaction tensor, i.e., the operator

ĤDC
U = U

∑

m

(
n̂m↑n̄m↓ + n̄m↑n̂m↓

)
+ (U−2J)

∑

m6=m′

(
n̂m↑n̄m′↓ + n̄m↑n̂m′↓

)

+ (U−3J)
∑

σ

∑

m>m′

(n̂mσn̄m′σ + n̄mσn̂m′σ)− µN̂d (116)

− U
∑

m

n̄m↑n̄m↓ + (U−2J)
∑

m6=m′
n̄m↑n̄m′↓ + (U−3J)

∑

σ

∑

m>m′

n̄mσn̄m′σ

where n̄mσ = n/d, if n is the number of the correlated electrons per site and d the orbital
degeneracy. Within this approximation we have, after collecting all terms,

ĤDC
U =(δµ−µ)N̂d −

n2

d

(
U (2d−1)− 5 (d−1)

)

δµ =
n

d

(
U(2d−1)− 5J(d−1)

)
.

If we perform massive downfolding to the correlated bands, as previously mentioned, this is
merely a shift of the chemical potential and can therefore be neglected. Let us now consider the
case in which the Coulomb interaction has an additional term that does not change the averageU
but has tetragonal symmetry

∆ĤU =
∆U

3

(
2n̂xy↑n̂xy↓ − n̂xz↑n̂xz↓ − n̂yz↑n̂yz↓

)

We can now use the around mean-field approximation for this term as well. We find

∆ĤDC
U =

n

6

∆U

3

∑

σ

(
2n̂xyσ−n̂xzσ−n̂yzσ

)
=
n

6
∆U

∑

σ

n̂xyσ − δµ′N̂

δµ′ =
n

6

∆U

3
.

This term, in addition to a shift of the chemical potential, yields an effective change of the
crystal-field splitting εCF, and has therefore to be accounted for explicitly.
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How does ∆U change the Fermi surface of Sr2RuO4? The Fermi surface is determined by the
poles of the Green function at zero frequency. These depend on the non-interacting Hamilto-
nian and the self-energy matrix at zero frequency. In the Fermi-liquid regime, and within the
DMFT approximation, the effect of the self-energy is merely to modify the on-site part of the
Hamiltonian, i.e., the crystal-field splitting εCF = εxz/yz − εxy and the spin-orbit couplings λµ

εCF →εCF +∆εCF(0),

λµ →λµ +∆λµ(0).

Both ∆εCF(0) and ∆λµ(0) are positive for Sr2RuO4, and lead to an almost doubling of the
LDA parameters. The positive ∆εCF(0) shrinks the β sheet (xz/yz bands) and enlarges the
γ (xy band) sheet. This can be understood from the schematic Fermi surface and the LDA
band structure in Fig. 12. Enhancing the crystal-field splitting corresponds to slightly moving
the xy band downwards and the xz/yz bands upwards with respect to the Fermi level. The
enhancement of the spin-orbit couplings has a large Hartree-Fock component [19], since the
spin-orbit interaction yields a small but finite off-diagonal occupation matrix. For an O(3)-
symmetric Coulomb tensor, the Hartree-Fock enhancement of the spin-orbit coupling is thus

∆λz
2

= i
(
U−3J

)
n↑↑xz,yz

∆λy
2

= −
(
U−3J

)
n↑↓xy,yz,

∆λx
2

= −i
(
U−3J

)
n↑↓xz,xy,

where nσσ′m,m′ are the off-diagonal elements of the density matrix. The Coulomb-enhanced spin-
orbit coupling improves the agreement with the experimental Fermi surface at the degeneracy
points (e.g., along the Γ -X direction). The agreement with ARPES data, however, further
deteriorates for the γ sheet. This can be seen in Fig. 14, in which the LDA and LDA+DMFT
Fermi surface are shown on top of ARPES data from Ref. [21].
Including correlation effects has thus two opposite effects: on the one hand, the agreement with
experiments improves (with respect to LDA) for the β sheet; on the other hand, it deteriorates
for the γ sheet. This can be seen comparing either panels (a) and (c) or panels (b) and (d)
in Fig. 14. Introducing tetragonal Coulomb terms, and in particular the term ∆U, however,
reduces the crystal-field enhancement to

εCF → εCF +∆ε′CF(0),

where ∆ε′CF(0) becomes almost zero for cRPA-based estimates of ∆U . This leads to an almost
perfect Fermi surface, as shown in Fig. 15. Non-spherical Coulomb terms turn out to be more
important for properties that reflect the point symmetry of the lattice, like the Fermi surface,
than for properties that average over orbitals, like the total spectral function [19].
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Fig. 15: The LDA+SO+DMFT Fermi surface of Sr2RuO4 calculated including the effects of the
non-spherical Coulomb term ∆U . Figure from [18].

4 Conclusion

The LDA+DMFT approach and its extension has proved very successful for describing corre-
lated materials. It has shown us that materials details do matter, contrarily to what often was
assumed in the past; for example a crystal field much smaller than the bandwidth can favor the
Mott metal-insulator transition [22]. The method is also becoming very versatile. It is now
possible, e.g., to study multi-orbital models including the full Coulomb vertex and spin-orbit
interaction, and to calculate response functions or bosonic excitations. Still, many challenges
remain. Models with more than a few orbitals or sites and out-of-equilibrium phenomena re-
main, e.g., very hard to study. Furthermore, since the birth of DFT, Moore’s law constantly
helped as much as new algorithms in extending the frontier; that has come now slowly to a halt.
Quantum computers and artificial intelligence, or other new, not yet foreseeable, technological
advances might help us in the future. The present deceleration, however, urges us to think
to what we should strive for. It is perhaps easier to discuss first what we do not need. We
do not need a magical calculating machine that gives us, either via an “exact” first principles
scheme or via artificial intelligence, answers with no explanations. Reproducing the data is,
of course, the aim of theory, but not the only goal. As scientists we need to know why. The
danger of giving this question up is evident if we look back at the historical controversy between
copernican and ptolemaic system [23]. At the time, the ptolemaic system was the one which
agreed better with experiments. Indeed, it had been fine-tuned along the years, via a series of ad
hoc assumptions. The copernican system was initially not performing so well, because it was
based on circular orbits. But, at the end, it is the copernican system that made a contribution to
science, by identifying the correct picture. A theory should reproduce the generic aspects of a
phenomenon, but providing at the same time, as Walter Kohn underlined, understanding, via a
coherent description and the essential details. This should be our aim.
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Appendices

A Eigenstates of two-site models

A.1 Hubbard dimer

The Hamiltonian of the Hubbard dimer is given by

Ĥ = εd
∑

σ

∑

i=1,2

niσ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ U

∑

i=1,2

n̂i↑n̂i↓.

It commutes with the number of electron operator N̂ , with the total spin Ŝ, and with Ŝz. Thus
we can express the many-body states in the atomic limit as

|N,S, Sz〉 N S E(N,S)

|0, 0, 0〉 = |0〉 0 0 0

|1, 1
2
, σ〉1 = c†1σ|0〉 1 1

2
εd

|1, 1
2
, σ〉2 = c†2σ|0〉 1 1

2
εd

|2, 1, 1〉 = c†2↑c
†
1↑|0〉 2 1 2εd

|2, 1,−1〉 = c†2↓c
†
1↓|0〉 2 1 2εd

|2, 1, 0〉 = 1√
2

(
c†1↑c

†
2↓ + c†1↓c

†
2↑

)
|0〉 2 1 2εd

|2, 0, 0〉0 = 1√
2

(
c†1↑c

†
2↓ − c†1↓c†2↑

)
|0〉 2 0 2εd

|2, 0, 0〉1 = c†1↑c
†
1↓|0〉 2 0 2εd + U

|2, 0, 0〉2 = c†2↑c
†
2↓|0〉 2 0 2εd + U

|3, 1
2
, σ〉1 = c†1σc

†
2↑c
†
2↓|0〉 3 1

2
3εd + U

|3, 1
2
, σ〉2 = c†2σc

†
1↑c
†
1↓|0〉 3 1

2
3εd + U

|4, 0, 0〉 = c†1↑c
†
1↓c
†
2↑c
†
2↓|0〉 4 0 4εd + 2U

Let us order the N = 1 states as in the table above, first the spin up and then spin down block.
For finite t the Hamiltonian matrix for N = 1 electrons takes then the form

Ĥ1 =




εd −t 0 0

−t εd 0 0

0 0 εd −t
0 0 −t εd



.
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This matrix can be easily diagonalized and yields the bonding (−) and antibonding (+) states

|1, S, Sz〉α Eα(1, S) dα(1, S)

|1, 1
2
, σ〉+ = 1√

2

(
|1, 1

2
, σ〉1 − |1, 1

2
, σ〉2

)
εd + t 2

|1, 1
2
, σ〉− = 1√

2

(
|1, 1

2
, σ〉1 + |1, 1

2
, σ〉2

)
εd − t 2

where dα(N) is the spin degeneracy of the α manifold.
For N = 2 electrons (half filling), the hopping integrals only couple the three S = 0 states, and
therefore the Hamiltonian matrix is given by

Ĥ2 =




2εd 0 0 0 0 0

0 2εd 0 0 0 0

0 0 2εd 0 0 0

0 0 0 2εd −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εd+U




.

The eigenvalues and the corresponding eigenvectors are

|2, S, Sz〉α Eα(2, S) dα(2, S)

|2, 0, 0〉+ = a1|2, 0, 0〉0 − a2√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + 1

2
(U+∆(t, U)) 1

|2, 0, 0〉o = 1√
2

(
|2, 0, 0〉1 − |2, 0, 0〉2

)
2εd + U 1

|2, 1,m〉o = |2, 1,m〉 2εd 3

|2, 0, 0〉− = a2|2, 0, 0〉0 + a1√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + 1

2
(U−∆(t, U)) 1

where

∆(t, U) =
√
U2 + 16t2,

and

a2
1 = a2

1(t, U) =
1

∆(t, U)

∆(t, U)− U
2

a2
2 = a2

2(t, U) =
4t2

∆(t, U)

2

∆(t, U)− U ,

so that a1a2 = 2t/∆(t, U). For U = 0 we have a1 = a2 = 1/
√

2, and the two states |2, 0, 0〉−
and |2, 0, 0〉+ become, respectively, the state with two electrons in the bonding orbital and the
state with two electrons in the antibonding orbital; they have energy E±(2, 0) = 2εd ± 2t; the
remaining states have energy 2εd and are non-bonding. For t > 0, the ground state is unique
and it is always the singlet |2, 0, 0〉−; in the large U limit its energy is

E−(2, 0) ∼ 2εd − 4t2/U.
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In this limit the energy difference between the first excited state, a triplet state, and the singlet
ground state is thus equal to the Heisenberg antiferromagnetic coupling

Eo(2, 1)− E−(2, 0) ∼ 4t2/U = Γ.

Finally, for N = 3 electrons, eigenstates and eigenvectors are

|3, S, Sz〉α Eα(3) dα(3, S)

|3, 1
2
, σ〉+ = 1√

2

(
|1, 1

2
, σ〉1 + |1, 1

2
, σ〉2

)
3εd+U + t 2

|3, 1
2
, σ〉− = 1√

2

(
|1, 1

2
, σ〉1 − |1, 1

2
, σ〉2

)
3εd+U − t 2

If we exchange holes and electrons, the N = 3 case is identical to the N = 1 electron case.
This is due to the particle-hole symmetry of the model.

A.2 Anderson molecule

The Hamiltonian of the Anderson molecule is given by

Ĥ = εs
∑

σ

n̂2σ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ εd

∑

σ

n̂1σ + Un̂1↑n̂1↓.

In the atomic limit, its eigenstates states can be classified as

|N,S, Sz〉 N S E(N,S)

|0, 0, 0〉 = |0〉 0 0 0

|1, 1
2
, σ〉1 = c†1σ|0〉 1 1

2
εd

|1, 1
2
, σ〉2 = c†2σ|0〉 1 1

2
εs

|2, 1, 1〉 = c†2↑c
†
1↑|0〉 2 1 εd + εs

|2, 1,−1〉 = c†2↓c
†
1↓|0〉 2 1 εd + εs

|2, 1, 0〉 = 1√
2

(
c†1↑c

†
2↓ + c†1↓c

†
2↑

)
|0〉 2 1 εd + εs

|2, 0, 0〉0 = 1√
2

(
c†1↑c

†
2↓ − c†1↓c†2↑

)
|0〉 2 0 εd + εs

|2, 0, 0〉1 = c†1↑c
†
1↓|0〉 2 0 2εd + U

|2, 0, 0〉2 = c†2↑c
†
2↓|0〉 2 0 2εs

|3, 1
2
, σ〉1 = c†1σc

†
2↑c
†
2↓|0〉 3 1

2
εd + 2εs

|3, 1
2
, σ〉2 = c†2σc

†
1↑c
†
1↓|0〉 3 1

2
2εd + εs + U

|4, 0, 0〉 = c†1↑c
†
1↓c
†
2↑c
†
2↓|0〉 4 0 2εd + 2εs + U
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For N = 1 electrons the Hamiltonian can be written in the matrix form

Ĥ1 =




εd −t 0 0
−t εs 0 0
0 0 εd −t
0 0 −t εs


 .

The eigenstates are thus

|1, S, Sz〉α Eα(1, S) dα(1, S)

|1, 1
2
, σ〉+ = α1|1, 1

2
, σ〉1 − α2|1, 1

2
, σ〉2 1

2

(
εd + εs +

√
(εd−εs)2 + 4t2

)
2

|1, 1
2
, σ〉− = α2|1, 1

2
, σ〉1 + α1|1, 1

2
, σ〉2 1

2

(
εd + εs −

√
(εd−εs)2 + 4t2

)
2

where dα(N) is the spin degeneracy of the α manifold. For εs = εd + U/2 the eigenvalues are

E±(1, S) = εd +
1

4

(
U ±∆(U, t)

)
,

while the coefficients are α1 = a1(t, U) and α2 = a2(t, U).

For N=2 electrons, the hopping integrals only couple the S=0 states. The Hamiltonian is

Ĥ2 =




εd+εs 0 0 0 0 0

0 εd+εs 0 0 0 0

0 0 εd+εs 0 0 0

0 0 0 εd+εs −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εs




For εs = εd + U/2 the eigenvalues and the corresponding eigenvectors are

|2, S, Sz〉α Eα(2, S) dα(2, S)

|2, 0, 0〉+ = b1|2, 0, 0〉0 − b2√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + U

2
+ 1

4

(
U+2∆(t, U

2
)
)

1

|2, 0, 0〉o = 1√
2

(
|2, 0, 0〉1 − |2, 0, 0〉2

)
2εd + U 1

|2, 1,m〉o = |2, 1,m〉 2εd + U
2

3

|2, 0, 0〉− = b2|2, 0, 0〉0 + b1√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + U

2
+ 1

4

(
U−2∆(t, U

2
)
)

1

where b1 = a1(t, U/2) and b2 = a2(t, U/2). These states have the same form as in the case
of the Hubbard dimer; the ground state energy and the weight of doubly occupied states in
|2, 0, 0〉− differ, however. Finally, for N = 3 electrons, the eigenstates are

|3, S, Sz〉α Eα(3, S) dα(3, S)

|3, 1
2
, σ〉+ = α2|1, 1

2
, σ〉1 + α1|1, 1

2
, σ〉2 3εd + U + 1

4

(
U+∆(t, U)

)
2

|3, 1
2
, σ〉− = α1|1, 1

2
, σ〉1 − α2|1, 1

2
, σ〉2 3εd + U + 1

4

(
U−∆(t, U)

)
2
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B Lehmann representation of the local Green function

For a single-orbital model, the local Matsubara Green function for a given site i is defined as

Gσ
i,i(iνn) = −

∫ β

0

dτ eiνnτ
〈
T ciσ(τ)c†iσ(0)

〉
, (117)

where T is the time-ordering operator, β = 1/kBT , and νn a fermionic Matsubara frequency.
Let us assume to know all eigenstates |Nl〉 and their energy El(N), for arbitrary number of
electrons N . Thus, formally

Gσ
i,i(iνn) =− 1

Z

∑

Nl

∫ β

0

dτ eiνnτe−∆El(N)β〈Nl|ciσ(τ)c†iσ(0)|Nl〉, (118)

where Z =
∑

Nl e
−∆El(N)β is the partition function, ∆El(N) = El(N) − µN with µ the

chemical potential, and c†iσ(0) = c†iσ. We now insert a complete set of states, obtaining

Gσ
i,i(iνn) =− 1

Z

∑

ll′NN ′

∫ β

0

dτ eiνnτe−∆El(N)β〈Nl|ciσ(τ)|N ′l′〉〈N ′l′ |c†iσ|Nl〉

=− 1

Z

∑

ll′NN ′

∫ β

0

dτ e−∆El(N)βe(iνn+∆El(N)−∆El′ (N ′))τ
∣∣〈N ′l′|c†iσ|Nl〉

∣∣2

=
1

Z

∑

ll′NN ′

e−∆El′ (N
′)β + e−∆El(N)β

iνn +∆El(N)−∆El′(N ′)
∣∣〈N ′l′ |c†iσ|Nl〉

∣∣2. (119)

Due to the weight |〈N ′l′|c†iσ(0)|Nl〉|2 only the terms for whichN ′ = N+1 contribute. Thus, after
exchanging the labels l′N ′ ↔ lN in the first addend, we obtain the Lehmann representation

Gσ
i,i(iνn)=

∑

ll′N

e−β∆El(N)

Z

( ∣∣〈(N−1)l′ |ciσ|Nl〉
∣∣2

iνn −∆El(N)+∆El′(N−1)
+

∣∣〈(N+1)l′ |c†iσ|Nl〉
∣∣2

iνn −∆El′(N+1)+∆El(N)

)
.

Let us consider as example the atomic limit of the Hubbard model at half filling. In this case
all sites are decoupled; there are four eigenstates per site, the vacuum |0〉, with ∆E(0) = 0, the
doublet |1σ〉 = c†iσ|0〉, with ∆Eσ(1) = −U/2, and the doubly-occupied singlet |2〉 = c†i↑c

†
i↓|0〉,

with ∆E(2) = 0. Furthermore, Z = 2
(
1 + eβU/2

)
and

∣∣〈(N−1)l′ |ciσ|Nl〉
∣∣2=

{
1 if |Nl〉=|2〉 ∨ |1σ〉
0 otherwise

∣∣〈(N+1)l′|c†iσ|Nl〉
∣∣2=

{
1 if |Nl〉=|0〉 ∨ |1−σ〉
0 otherwise

Thus, after summing up the four non-zero contributions, we find

Gσ
i,i(νn) =

1

2

(
1

iνn + U/2
+

1

iνn − U/2

)
. (120)
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Forschungszentrum Jülich, 2021, ISBN 978-3-95806-529-1
http://www.cond-mat.de/events/correl21

http://www.cond-mat.de/events/correl21


6.2 Robert Eder

1 Introduction

Green functions are quantities of central importance in the theory of interacting many-particle
systems. In simplest terms they may be viewed as describing the propagation of some kind
of ‘perturbation’ through a system of interacting particles. On one hand, by their very defi-
nition Green functions contain information about the system which can be directly compared
to experiments, on the other hand they are a useful mathematical tool because there is a wide
variety of techniques to calculate them approximately, and thus overcome the, in general, insol-
uble nature of the many-particle problem. Of particular importance is the single-particle Green
function G(k, ω), which describes the propagation of an added particle with wave number k

and energy ~ω through the system and which is directly related to the experimentally mea-
surable photoemission and inverse photoemission spectrum. The famous Dyson equation then
expresses the single-particle Green function in terms of another central quantity in many-body
physics, the self-energy Σ(k, ω). This may be viewed as a k- and ω-dependent potential which
mimics the effect of the other particles on the propagation of the added particle (it is therefore
hardly a surprise that to simplest approximation the self-energy equals the Hartree-Fock poten-
tial). However, the physical significance of the self-energy is considerably wider. Namely, in
1961 Luttinger and Ward (LW) published a seminal paper [1] which became the foundation of
many important developments in the quantum theory of many-particle systems. They showed
that the grand canonical potential Ω of an interacting Fermion system can be expressed as a
functional of the single-particle Green function G(k, ω) and the self-energy Σ(k, ω). A key
step thereby was the construction of the Luttinger-Ward functional Φ[G], a functional of the
Green function which essentially describes the deviation of Ω from a non-interacting system
with the same band structure as the interacting one. Luttinger and Ward gave an explicit ex-
pression for Φ[G] as a sum over infinitely many Feynman diagrams and also showed that Σ
is the functional derivative of Φ[G] with respect to G and that Ω is stationary under variations
of Σ. The expression for Ω and the properties of Φ[G] became the basis for many important
results, such as the Luttinger theorem [2] which states that interactions between electrons do
not change the volume of the Fermi surface, or the construction of conserving approximations
by Baym and Kadanoff [3,4], where Φ[G] is approximated by keeping only a subclass of Feyn-
man diagrams. While the representation of Green functions in terms of Feynman diagrams was
highly successful for systems such as the electron gas, a new challenge arose with increasing
interest in strongly correlated electron systems such as the Hubbard model. Namely any Feyn-
man diagram expansion implicitly treats the interaction between the particles as a perturbation
and assumes a continuous evolution from the noninteracting case, which is highly questionable
for systems such as Mott-insulators. It is the purpose of the present lecture to sketch a further
development of the ideas of Luttinger and Ward which is mainly due to Potthoff, the so-called
self-energy functional theory. We present Potthoff’s non-perturbative re-derivation of the re-
sults of Luttinger and Ward [5, 6] and the application of their theorems to strongly correlated
electron systems by combining them with numerical methods. As an application, we discuss
the metal-insulator transition in the single-band Hubbard model.
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2 Green functions and the self-energy

2.1 The Green function and its analytical properties

We start with a discussion of Green functions and their properties and use. We will not cover
the representation of Green functions in terms of Feynman diagrams, since excellent introduc-
tions to this subject can be found in various textbooks [7–9]. In the present notes we try to be
consistent with Fetter/Walecka (FW) [8].
We consider a system of interacting fermions and assume that there is some complete basis of
single electron states ϕα(x). Here x = (r, σ) is the combined real-space and spin coordinate,
whereas α is shorthand for a set of quantum numbers. For example, in an LCAO-type descrip-
tion of a solid – which is what we mostly have in mind – we would have α = (i, n, ν, σ) where
i ∈ {1, . . . , N} denotes the unit cell, n ∈ {1, . . . , nAtom} the number of the atoms in the basis,
ν ∈ {s, px, py, pz, dxy . . . } the type of orbital on the respective atom, and σ the z-component
of spin. We denote the number of orbitals in a unit cell by norb , the total number of α’s thus is
Nα = 2Nnorb . Upon Fourier transformation one would replace i→ k, the wave vector.
In all that follows we consider a grand canonical ensemble with inverse temperature β = 1/kBT

and chemical potential µ. Introducing fermionic creation/annihilation operators c†α/cα for elec-
trons in the states ϕα(x), the grand canonical Hamiltonian K = H−µN̂ (with N̂ the operator
for the number of electrons) can be written as K = K0 +K1 with [7–9]

K0 =
∑
α,β

(
tα,β−µ δα,β

)
c†αcβ and K1 =

1

2

∑
α,β,γ,δ

Vα,β,δ,γ c
†
αc
†
βcγcδ. (1)

The matrix elements in this Hamiltonian are given by

tα,β =

∫
dx ϕ∗α(x)

(
− ~2

2m
∇2+V (r)

)
ϕβ(x),

Vα,β,δ,γ =

∫
dx

∫
dx′ ϕ∗α(x)ϕ∗β(x′) V (x−x′) ϕγ(x′)ϕδ(x).

For later reference we calculate

[cα, K] =
∑
β

(
tα,β−µδα,β

)
cβ +

∑
β,γ,δ

Vα,β,δ,γ c
†
βcγcδ, (2)

where we have used the identity Vα,β,γ,δ = Vβ,α,δ,γ obtained by exchanging the integration
variables x ↔ x′ in the definition of V . It obviously holds that [H, N̂ ] = 0 so that eigenstates
of H have a fixed particle number. The thermal average of any operator Ô is〈

Ô
〉
th

=
1

Z
Tr
(
e−βKÔ

)
=

1

Z

∑
i

e−βKi 〈i|Ô|i〉. (3)

Here |i〉 are the eigenstates of H , H|i〉 = Ei|i〉, and Ki = Ei−µNi the corresponding eigenval-
ues of K. Also,

Z = Tr
(
e−βK

)
=
∑
i

e−βKi (4)
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is the grand partition function, which is a quantity of interest by itself, because the grand canon-
ical potential of the system is given by Ω = −kBT log(Z).
We proceed to the definition of Green functions which basically describe the following gedanken
experiment: the system is initially in thermal equilibrium, but at a certain time t we do some-
thing to the system by acting with an operator Â. Â could add or remove an electron, flip a
spin or similar. We then let the system evolve for some time and undo the change at a time t′

by acting with an operator B̂, which often is Â†. We then form the overlap with the state we
would have obtained had the system evolved without perturbation. In other words, the Green
function describes how the ‘perturbation’ created by Â propagates in the interval t→ t′ before
it is removed by B̂.
We now formalize this idea, but for reasons which will become clear only later we make a
digression and first introduce imaginary time Green functions. Moreover, we specialize to the
single particle Green function, where the perturbation is removing or adding a particle, i.e.
Â = cα and B̂ = c†β , or vice versa. For any operator Ô the imaginary time Heisenberg operator
is Ô(τ) = eτK/~ Ô e−τK/~ and the imaginary time Green function is

Gα,β(τ, τ ′) = −
〈
T cα(τ)c†β(τ ′)

〉
th

= −Θ(τ−τ ′)
〈
cα(τ)c†β(τ ′)

〉
th

+Θ(τ ′−τ)
〈
c†β(τ ′)cα(τ)

〉
th

(5)

=
1

Z

(
−Θ(τ−τ ′)

∑
i,j

e−βKi e
τ−τ ′

~ (Ki−Kj) 〈i|cα|j〉〈j|c
†
β|i〉

+Θ(τ ′−τ)
∑
i,j

e−βKi e
τ−τ ′

~ (Kj−Ki) 〈i|c†β|j〉〈j|cα|i〉
)
. (6)

T in the first line is the time ordering operator, which reorders the following Heisenberg op-
erators such that their times decrease from left to right and multiplies by (−1) for each ex-
change of two Fermion operators, as can be seen in the second line. In going from the sec-
ond to last line we have used (3), inserted a resolution of unity

∑
j |j〉〈j| = 1, and used

〈i|Ô(τ)|j〉 = e
τ
~ (Ki−Kj) 〈i|Ô|j〉. Eq. (6) shows that Gα,β really is a function of τ−τ ′ only:

Gα,β(τ, τ ′) = Gα,β(τ−τ ′). To simplify the notation we henceforth replace τ−τ ′ → τ , which
is equivalent to choosing τ ′ = 0. The τ -dependence of both terms in (6) is e(−β+

|τ |
~ )Ki e−

|τ |
~ Kj .

Since the Ki are bounded from below, namely by K0 for the ground state with the given µ,
but unbounded from above in the thermodynamical limit, G is therefore well-defined only for
τ ∈ [−β~, β~] [10]. It therefore can be written as a Fourier series with frequencies nπ/~β.
However, it is easy to see from (6) that for τ ∈ [−β~, 0] one has G(τ+β~) = −G(τ), so that
only odd n can contribute. All in all we find the Fourier expansion

G(τ) =
1

β~

∞∑
ν=−∞

e−iωντ G(iων), (7)

G(iων) =

∫ β~

0

dτ eiωντ G(τ), (8)

with ων = (2ν + 1)π/β~ and integer ν. The ων are the Fermionic Matsubara frequencies.
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Performing the integral (8) with (6) forGα,β(τ), thereby using eiωνβ~ = −1 for any ν, we obtain

Gα,β(iων) =
1

Z

∑
i,j

e−βKi + e−βKj

iων − 1
~(Kj−Ki)

〈i|cα|j〉〈j|c
†
β|i〉. (9)

This so-called Lehmann representation of the Green function is exact but not really helpful for
practical computations because it requires knowledge of all eigenstates and energies of H . It
can be used, however, for establishing certain properties of the Green function as will be seen
in the following.
We proceed to the definition of the real-time Green function. Defining the real-time Heisenberg
operator Ô(τ) = eitK/~ Ô e−itK/~ the retarded real-time Green function is

GR
α,β(t, t′) = −iΘ(t−t′)

(〈
cα(t)c†β(t′)

〉
th

+
〈
c†β(t′)cα(t)

〉
th

)
,

= −iΘ(t−t′) 1

Z

(∑
i,j

e−βKi ei
t−t′
~ (Ki−Kj) 〈i|cα|j〉〈j|c

†
β|i〉

+
∑
i,j

e−βKi ei
t−t′
~ (Kj−Ki) 〈i|c†β|j〉〈j|cα|i〉

)
. (10)

Again this is a function of t−t′ only and, using the formula derived in Appendix A,

−iΘ(t) e−iEt = lim
η→0+

1

2π

∫ ∞
−∞

dω
e−iωt

ω−E+iη

we find its Fourier transform

GR
α,β(ω) =

1

Z
lim
η→0+

∑
i,j

e−βKi + e−βKj

ω + iη − 1
~(Kj−Ki)

〈i|cα|j〉 〈j|c
†
β|i〉. (11)

Comparison with Eq. (9) shows that GR
α,β(ω) can be obtained from Gα,β(iων) by replacing

iων → ω+iη. In other words, there is one function Gα,β(z) of the complex variable z, often
called the Green function, which gives Gα,β(iων) when evaluated for the Matsubara frequen-
cies, and GR

α,β(ω) when evaluated on a line infinitesimally above the real axis. The existence of
such a function is the very reason why the imaginary time Green function is introduced in the
first place. In principle, the quantities of interest, of course, are the real-time Green functions.
For example, the single-particle Green function (11) contains information about the photoemis-
sion and inverse photoemission spectrum of the system. On the other hand, the imaginary-time
Green function (9) can be evaluated approximately by using the powerful technique of expan-
sion in Feynman diagrams [7–9], which is not possible for the real-time Green function. The
standard way to obtain the real-time Green functions, which is used again and again in the liter-
ature, is to first obtain an approximate Gα,β(iων) by doing an expansion in Feynman diagrams
and then obtain the real-time Green function by continuing it analytically to a line infinitesi-
mally above the real axis. If one has an analytical expression for Gα,β(iων) this can be done by
simply replacing iων → ω+iη.
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We now discuss some properties of the Green function. In Eq. (11) the product of matrix ele-
ments 〈i|cα|j〉〈j|c

†
β|i〉 can differ from zero only if Nj = Ni+1, whence Kj−Ki = Ej−Ei−µ.

Gα,β(z) therefore has poles on the real axis, which correspond to differences of energies of
states whose electron number differ by one. Next, we rewrite the Green function as

G(z) =

∫ ∞
−∞

dω
ρ(ω)

z−ω
, (12)

where the elements of the spectral density matrix ρ(ω) can be read off from (9)

ρα,β(ω) =
1

Z

∑
i,j

(
e−βKi+e−βKj

)
〈i|cα|j〉〈j|c

†
β|i〉 δ

(
ω − Ki−Kj

~

)
. (13)

Since ω is real we find ρ∗α,β(ω) = ρβ,α(ω), i.e., ρ(ω) is Hermitian for any ω. Next consider any
vector v of length Nα and define the linear combination c†v =

∑
vαc
†
α. Then∑

α,β

v∗α ρα,β(ω) vβ =
1

Z

∑
i,j

(
e−βKi+e−βKj

) ∣∣〈j|c†v|i〉∣∣2 δ(ω − Ki−Kj

~

)
> 0

i.e., ρ(ω) is positive definite for each ω. It then follows from (12) that
(
G(z)

)+
= G(z∗) so

that G(z) is not Hermitian for complex z. Next consider

f(z) =
∑
α,β

v∗α Gα,β(z) vβ =
1

Z

∑
i,j

e−βKi + e−βKj

z − Ki−Kj
~

∣∣〈j|c†v|i〉∣∣2. (14)

We write z = x+iy and find the imaginary part of this to be

=f(z) = − y
Z

∑
i,j

e−βKi + e−βKj(
x− Ki−Kj

~

)2
+ y2

∣∣〈j|c†v|i〉∣∣2. (15)

This expression cannot vanish unless y = 0, so that for z away from the real axis all eigenvalues
of G(z) must have a nonvanishing imaginary part, otherwise we could choose v to be the nor-
malized right-hand eigenvector belonging to a purely real eigenvalue λ and find that f(z)=λ, in
contradiction to (15). This implies in particular that for z away from the real axis all eigenvalues
of G(z) are different from zero so that the determinant of G(z) is different from zero [11] and
its inverse G−1(z) does exist. Using Cramer’s rule we find the elements of the inverse Green
function

G−1α,β(z) =
(−1)α+β det Mα,β(z)

det G(z)

where Mα,β(z) is the respective minor of G(z), i.e. the matrix G(z) with line α and column β
discarded. Since for z away from the real axis all elements of G(z) are finite (see Eq. (9)) and
the determinant of G(z) is different from zero it moreover follows that away from the real axis
all elements of G−1(z) are analytical functions of z.
We proceed to a discussion of the behavior of G(z) for large |z|. We assume that the range of ω
where the elements of ρ(ω) are different from zero is finite, which simply means that the change
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in energy upon adding or removing an electron is bounded. To discuss the limit |z| → ∞ we
rewrite G(z) as

Gα,β(z) =
1

Z

∑
i,j

e−βKi

(
〈i|cα|j〉〈j|c†β|i〉
z − Kj−Ki

~

+
〈i|c†β|j〉〈j|cα|i〉
z +

Kj−Ki
~

)
, (16)

and expand
1

z ± Kj−Ki
~

→ 1

z
∓ Kj−Ki

~z2
+O

(
1

z3

)
.

Next use (Kj−Ki)〈j|cα|i〉 = 〈j|Kcα|i〉 − 〈j|cαK|i〉 = 〈j|[K, cα]|i〉 and find

Gα,β(z)→ δα,β
z

+

〈{
c†β, [cα, K]

}〉
th

~z2
+O

(
1

z3

)
.

Using (2) we obtain〈{
c†β, [cα, K]

}〉
th

= tα,β−µδα,β +
∑
γ,δ

(
Vα,γ,β,δ−Vα,γ,δ,β

) 〈
c†γcδ

〉
th
. (17)

The term involving V looks like the Hartree-Fock potential V (HF )
α,β , however, whereas for the

true Hartree-Fock potential the thermal average has to be taken using the Hartree-Fock wave
functions and energies, the thermal average in (17) has to be taken using the fully interacting
eigenstates and energies. Keeping this subtle difference in mind we still call the third term the
Hartree-Fock potential V (HF )

α,β so that

G(z)→ 1

z
+

t−µ+V(HF )

~z2
+O

(
1

z3

)
. (18)

Eq. (16) also highlights the physical content of the Green function. We consider a single band
of non-interacting electrons where α = (k, σ), and K =

∑
k (εk−µ) c†k,σck,σ. All eigenstates

can then be characterized by the occupation numbers of the states (k, σ) being either 0 or 1. In

Gk,k(z) =
1

Z

∑
i,j

e−βKi

(
〈i|c†k,σ|j〉〈j|ck,σ|i〉

z +
Kj−Ki

~

+
〈i|ck,σ|j〉〈j|c

†
k,σ|i〉

z − Kj−Ki
~

)
the matrix element 〈j|ck,σ|i〉 in the first term is then different from zero only if |i〉 has an electron
in the single-electron state (k, σ), whereas |j〉 has none, while all other momenta have identical
occupation. It follows that Ei = Ej+εk, whence Kj−Ki = −εk+µ. The first term therefore
describes the removal of an electron with momentum k and spin σ. By analogous reasoning, in
the second term Kj−Ki = εk−µ and this term describes addition of an electron. In both terms
Kj−Ki is independent of both, |i〉 and |j〉, so that we can use

∑
j |j〉〈j| = 1 and find

Gk,k(z) =
1

Z

∑
i

e−βKi

(
〈i|c†k,σ ck,σ|i〉
z − εk−µ

~
+
〈i|ck,σ c

†
k,σ|i〉

z − εk−µ
~

)
=
〈nk,σ〉th
z − εk−µ

~
+
〈1−nk,σ〉th
z − εk−µ

~
.

Both terms have poles which trace the electrons’ dispersion relation εk−µ, but the first term
describes only the occupied part of the band, the second term the unoccupied part. The Green
function is the combined photoemission and inverse photoemission spectrum and this holds true
also for the interacting case.
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2.2 The self-energy and its analytical properties

We proceed to the definition of another key quantity, the self-energy, and start by discussing the
equation of motion of the imaginary time Green function Eq. (5). We set Gα,β(τ, 0)→Gα,β(τ).
It follows readily from the definition of the imaginary-time Heisenberg operator Ô(τ) that
−~∂τ Ô(τ) = [Ô(τ), K]. Moreover, using, e.g., the representation Θ(τ) =

∫ τ
−∞dx δ(x) one

finds ∂τΘ(±τ) = ±δ(τ). Combining everything we get the equation of motion of the Green
function

−~∂τGα,β(τ) = ~ δ(τ)
〈{
cα, c

†
β

}〉
th

+
〈
T
[
cα(τ), K

]
c†β(0)

〉
th

= ~ δ(τ) δα,β +
∑
ν

(
tα,ν−µδα,ν

)
Gν,β(τ) + Fα,β(τ), (19)

Fα,β(τ) = −
∑
ν,κ,λ

Vα,ν,κ,λ

〈
T
[
(c†νcλcκ)(τ)c†β(0)

]〉
th
, (20)

where (2) was used. In the noninteracting case, i.e., all Vα,ν,κ,λ=0 we have Fα,β(τ)=0 and the
equation closes. Using the representation of the δ-function in terms of Matsubara-frequencies [8]

δ(τ) =
1

~β

∞∑
ν=−∞

e−iωντ

straightforward Fourier transform gives the noninteracting Green function(
iων −

t−µ
~

)
G0(iων) = 1. (21)

We return to the case V 6= 0. We recall that G(τ) fulfills G(τ+β~) = −G(τ) for τ ∈ [−β~, 0],
which established its Fourier expansion (7). It follows that ∂τG(τ+β~) = −∂τG(τ) whence
F (τ) must obey the same boundary condition: F (τ+β~) = −F (τ). Accordingly, F (τ) has the
same Fourier expansion (7) as G(τ) itself and we find(

iων −
t−µ
~

)
G(iων)−

1

~
F (iων) = 1.

Now we define the self-energyΣ(iων) byF (iων) = ~Σ(iων) G(iων) (recall that G−1(z) exists
for all z away from the real axis so thatΣ(iων) is well defined) whence(

iων −
t−µ
~
−Σ(iων)

)
G(iων) = 1. (22)

By analytical continuation, iων → z, this equation defines Σ(z) for all z away from the real
axis. Next, notice that the brackets on the left-hand side of (21) and (22) are G−10 (z) and
G−1(z), respectively, so that we immediately read off the famous Dyson equation

G−1(z) = G−10 (z)−Σ(z) = z − t−µ
~
−Σ(z). (23)
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2C

C1

z

Fig. 1: Integration contours for the proof of the spectral representation of Σ. The dashed line
is the real z′ axis.

We discuss some properties of Σ(z) which follow from its definition. Since both G−1(z) and
G−10 (z) are analytical in the complex z-plane except for the real axis, the same must hold true
forΣ(z). Next, it follows from (18) that

G−1(z)→ z − t−µ
~
− V(HF )

~
+O

(
1

z

)
⇒ Σ(z)→ V(HF )

~
+O

(
1

z

)
.

The shifted function Σ̄(z) = Σ(z)−V(HF)

~ therefore vanishes as 1/z for large |z|. Now consider
the equation G−1(z) G(z) = 1, take the Hermitian conjugate and use [G(z)]+ = G(z∗). It fol-
lows that [G−1(z)]+ = G−1(z∗). Since trivially [G−10 (z)]+ = G−10 (z∗) and VHF is Hermitian
it follows that Σ̄(z∗) = Σ̄+(z). Next, for real ω, define the real matrices K(ω) and J(ω) by

Σ̄(ω+i0+) = K(ω) + iJ(ω) ⇒ Σ̄(ω−i0+) = KT (ω)− iJT (ω). (24)

We introduce the symmetrized/antisymmetrized linear combinations K(±) = (K±KT )/2 and
J(±) = (J± JT )/2 whence

Σ̄(+)(z) =
1

2

(
Σ̄(z)+Σ̄T (z)

)
, Σ̄(−)(z) =

i

2

(
Σ̄(z)−Σ̄T (z)

)
. (25)

The latter can be expressed in terms of K(±)(z) and J(±)(z) as

Σ̄(+)(ω±i0+) = K(+)(ω)± iJ(+)(ω),

Σ̄(−)(ω±i0+) = −J(−)(ω)± iK(−)(ω). (26)

Now consider the integration contours in figure 1 which consist of lines infinitesimally above
and below the real axis and semicircles at infinity. Since Σ̄(z) is analytic away from the real
axis we have for any z in the upper half-plane∮

C1

dz′
Σ̄(±)(z′)

z′−z
= 0 ⇒

∫ ∞
−∞

dω
Σ̄(±)(ω−i0+)

ω−z
= 0 . (27)

The second equation follows because the integrand is ∝ 1/z′2 for large |z′| so that the contri-
bution from the arc vanishes and only the line infinitesimally below the real axis contributes,
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where z = ω−i0+, and ω− i0+−z = ω−z whenever z has a finite imaginary part. We can now
use (26) and obtain ∫ ∞

−∞
dω

K(±)(ω)

ω−z
= i

∫ ∞
−∞

dω
J(±)(ω)

ω−z
. (28)

Next we apply Cauchy’s theorem to the contour C2 in figure 1 and find

Σ̄(±)(z) =
1

2πi

∮
C2

dz′
Σ̄(±)(z′)

z′−z
.

Again the contribution from the arc vanishes. We use (28) to eliminate the integrals over K(+)

and J(−), revert (25) to obtain Σ̄(z) and arrive at the spectral representation of the self-energy,
as derived by Luttinger [12]

Σ(z) =
V(HF )

~
+

∫ ∞
−∞

dω
σ(ω)

ω−z
. (29)

Here, the Hermitian matrix σ(ω) = J(+)(ω)−iK(−)(ω).
Lastly, we notice a property of the self-energy that will be of some importance later on: we will
often be concerned with systems which contain both, ‘correlated orbitals’ and ‘uncorrelated
orbitals’. A given orbital α is ‘uncorrelated’ if all interaction matrix elements Vκλµν = 0 if at
least one of the four indices equals α. In other words, electrons in an uncorrelated orbital do
not interact with the other electrons. An example is the well-known Anderson model where
one usually has correlated ‘f -orbitals’ hybridizing with uncorrelated ‘conduction electrons’. It
then follows from the definition (20) that Fα,β(z) = 0 whenever α or β are uncorrelated, and the
same holds true for Σα,β(z): matrix elements of the self-energy involving uncorrelated orbitals
are zero!

2.3 Physical significance of the self-energy

We briefly recall the key results of our discussion so far: The Green function and self-energy
are related by the Dyson equation (23), they are analytical functions on the complex frequency
plane except for the real axis, and they have the spectral representations (12) and (29). The
poles of the Green function on real axis give the ionization and affinity energies of the system,
i.e., the energies it takes to remove or add an electron. We now want to discuss the physical
consequences of this formal structure. For the remainder of this subsection we consider the case
of a single band, set ~ = 1 and call tk−V (HF )

k −µ = εk. Moreover, we drop the dependence on
k and replace εk → ε, G(k, ω) → G(ω) and so on. To begin with, we consider a system with
finite N , where the spacing between eigenvalues Ki and hence between the poles of G(ω) is
finite. We have

G(ω) =
1

ω − ε− Σ̄(ω)
=

n+1∑
i=1

Zi
ω − ωi

(30)

Σ̄(ω) =
n∑
i=1

σi
ω − ζi

(31)
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G
(ω
)

ω

Fig. 2: The Green function G(ω) for real ω. The dashed vertical lines give the poles, ωi.

where Zi > 0 and ωi, ζi real. On the real axis, G(ω) crosses zero precisely once in each
interval [ωi, ωi+1] with negative slope, see figure 2. It follows from (30) that G(ζ) = 0 implies
Σ(ζ)→∞ so that the ζi in (31) must be the zeroes of G(ω). Moreover, the ζi are ‘sandwiched’
in between the poles ωi and their number is indeed one less than the ωi, see figure 2. Since
G−1(ωi) = 0 we find for ω close to ωi

G−1(ω) =

(
1− ∂Σ

∂ω

∣∣∣∣
ωi

)
(ω − ωi) ⇒ Zi =

(
1− ∂Σ

∂ω

∣∣∣∣
ωi

)−1
. (32)

The residue Zi, which equals the weight observed in photoemission/inverse photoemission,
therefore is related to the slope of the self-energy, which is a well-known result.
We consider a situation where the self-energy has a single pole, σ(ω) = σ0δ(ω−ζ), and reinsert
the k-dependence

G−1(k, z) = z − εk −
σ0
z − ζ

⇒ G(k, z) =
Z+

z − ω+,k

+
Z−

z − ω−,k
(33)

where we have introduced

ω±,k =
1

2

(
(εk+ζ)±

√
(εk−ζ)2 + 4σ0

)
, Z± = ± ω± − ζ

ω+ − ω−
.

It is easy to see that Z± > 0 and Z++Z− = 1 as it has to be. We can see from this that the
single pole of the noninteracting Green function at ω = εk is split into two poles at ω±,k, i.e., the
single band with dispersion εk becomes two bands with dispersions ω±,k. Note that irrespective
of the value of εk we find ω+,k−ω−,k ≥ 2

√
σ0 so that the two resulting bands are separated

by a gap of width ≥ 2
√
σ0. Thus, a single pole of the self-energy with macroscopic residuum

σ0 ‘pushes open’ a gap in the band structure around its position ζ . In fact, this is exactly the
situation encountered in a Mott insulator, where the self-energy has a single dominant pole of
strength ≈ U2/4 which ‘pushes open’ the Mott gap of width ≈ U.
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3 The Luttinger-Ward functional

3.1 The Green function as a functional integral

We start from the representation of the Green function in terms of a functional integral over
Grassmann variables. An excellent introduction to Grassmann variables and their use in quan-
tum field theory can be found in the textbook by Negele/Orland [9]. We give a brief summary
for readers unfamiliar with Grassmann variables, but it should be noted that this is nowhere
near sufficient to fully understand their use. Grassmann variables are objects (here we write
them as ϕ∗i or ϕj , where i and j distinguish different Grassmann variables) which anticommute:
ϕ∗iϕ

∗
j = −ϕ∗jϕ∗i , ϕiϕ∗j = −ϕ∗jϕi, and ϕiϕj = −ϕjϕi. It follows immediately that the square

of any Grassmann variable is zero. While we will be using Grassmann variables with (ϕ∗i ) and
without (ϕj) an asterisk, it should be noted that there is no such thing as the complex conju-
gate of a Grassmann variable – just as the index, the asterisk is simply a part of the name of
the Grassmann variable. Once we have defined a set of Grassmann variables, the correspond-
ing Grassmann algebra consists of all possible sums of products of Grassmann variables with
complex coefficients. For example, if we have the two Grassmann variables ϕ∗ and ϕ, the cor-
responding algebra consists of all expressions a0+a1ϕ+a2ϕ

∗+a3ϕϕ
∗ with complex a0, a1, a2,

and a3 (note that all higher powers of Grassmann variables vanish). The key property of the
Grassmann variables, which is used in field theory, is the rule for ‘integration’ over Grassmann
variables, which is ∫

dϕϕ = 1,

∫
dϕ 1 = 0 .

In other words, integration over Grassmann variables is the same as differentiation for ordinary
numbers, the only difference being that there are just two ‘functions’ of a Grassmann variable.
When we integrate over several Grassmann variables it has to be kept in mind that the differen-
tials dϕ∗i and dϕj anticommute as well. Transcendental functions of elements of the Grassmann
variables are defined via their power series expansion. To illustrate the above, we evaluate∫

dϕ∗dϕ ea0+a1ϕ+a2ϕ
∗+a3ϕϕ∗

=

∫
dϕ∗dϕ

(
1 +

(
a0 + a1ϕ + a2ϕ

∗ + a3ϕϕ
∗)+

1

2

(
a0a3ϕϕ

∗ + a1a2(ϕϕ
∗+ϕ∗ϕ)

))
= a3

(
1+

a0
2

)
.

Note that the power series expansion of the exponential terminates very quickly due to the
fact that all powers of Grassmann variables higher than the first vanish. Moreover, there is a
nonvanishing contribution to the integral only from those terms in the integrand where each
Grassmann variable to be integrated over appears precisely once.
After these preliminaries, we turn to the representation of the imaginary-time Green function
as functional integral over Grassmann variables. The full derivation is too lengthy to present
here but it is explained in a very understandable way by Negele/Orland [9]. Let the imaginary
time interval [0, ~β] be divided into M intervals of length ε = ~β/M , whereby we assume for
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convenience thatM is even. Define the imaginary time grid points τk = k·ε, k = 1 . . .M . Then
introduce Grassmann variables ϕ∗α,k and ϕα,k where α is the ‘compound index’ that labels the
Fermion operators c†α and cα, whereas k = 1 . . .M denotes the position in the imaginary time
grid. Then, the partition function can be written as Z = limM→∞ ZM , whereby [9]

ZM =
M∏
k=1

∏
γ

∫
dϕ∗γ,kdϕγ,k e

−S(ϕ∗,ϕ)

S = ε
M∑
k=1

(∑
γ

ϕ∗γ,k
ϕγ,k−ϕγ,k−1

ε
+

1

~
K(ϕ∗k, ϕk−1)

)
. (34)

Here the ‘Grassmann Hamiltonian’K(ϕ∗k, ϕk−1) is obtained from the Fermionic Hamiltonian (1)
by replacing c†γ → ϕ∗γ,k and cγ → ϕγ,k−1. The imaginary time Green function (5) reads [9]

Gα,β(τ, τ ′) = − lim
M→∞

1

ZM

M∏
k=1

∏
γ

∫
dϕ∗γ,k dϕγ,k ϕα,k(τ)ϕ

∗
β,k(τ ′) e

−S(ϕ∗,ϕ) . (35)

The symbols k(τ) and k(τ ′) denote those points on the imaginary-time grid which are closest
to τ and τ ′. Note that in the definition of S the term with k = 1 also involves the variable ϕγ,0,
which is not included in the set of integration variables. Rather one has to set ϕγ,0 = −ϕγ,M
to account for Fermi statistics [9]. If we let M → ∞ so that ε → 0, S appears to become an
integral whereas (ϕγ,k−ϕγ,k−1)/ε appears to become a derivative whence, apparently,

S →
∫ ~β

0

dτ

(∑
γ

ϕ∗γ
∂ϕγ
∂τ

+
1

~
K(ϕ∗, ϕ)

)
.

This notation can often be found in the literature but, as stressed by Negele/Orland, this can be
misleading because the ‘trajectories’ ϕ(τ) over which the functional integral is performed may
not at all be expected to be ‘smooth’.
Doing all calculations at finite M and taking the limit M → ∞ in the end is quite unwieldy
but fortunately there is an easy way to circumvent this. Namely we may always switch to the
Fourier transforms ϕ̃γ,ν and ϕ̃∗γ,ν , defined as

ϕ̃∗γ,ν =
1√
M

M∑
k=1

e−iωντk ϕ∗γ,k , ϕ̃γ,ν =
1√
M

M∑
k=1

eiωντk ϕγ,k , (36)

whereby the frequencies ων = (2ν+1)π/~β are the Fermionic Matsubara frequencies defined
above. The second equation looks like the Hermitian conjugate of the first one but recall that
there is no such thing as the Hermitian conjugate of a Grassmann variable, so this is actually
a definition. If we restrict ν to −M/2 + 1 ≤ ν ≤ M/2, so that the number of ων equals
the number of τk, the above transformations are unitary as shown in Appendix B, and can be
reverted to give

ϕ∗γ,k =
1√
M

∑
ν

eiωντk ϕ̃∗γ,ν , ϕγ,k =
1√
M

∑
ν

e−iωντkϕ̃γ,ν . (37)
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Note that eiωντM = ei(2ν+1)π = −1. Accordingly, if we define ϕγ,0 to be (37) evaluated for
k = 0 we automatically have ϕγ,0 = −ϕγ,M which was implicit in the definition of S. Since
the transformation from the ϕγ,k to the ϕ̃γ,ν is unitary the Jacobian is unity and

M∏
k=1

∏
γ

∫
dϕ∗γ,k dϕγ,k →

M
2∏

ν=−M
2
+1

∏
γ

∫
dϕ̃∗γ,ν dϕ̃γ,ν .

We proceed to rewrite S in terms of the ϕ̃∗ and ϕ̃. First, consider the ‘derivative term’

ε

M∑
k=1

ϕ∗γ,k
ϕγ,k−ϕγ,k−1

ε
=
∑
ν,ν′

ε

M

M∑
k=1

ei(ων−ων′ )τk
(

1−eiων′ε

ε

)
ϕ̃∗νϕ̃ν′ = ε

∑
ν

(
1−eiωνε

ε

)
ϕ̃∗νϕ̃ν .

In the limit of small ε (i.e. M →∞) the square bracket can be written as

−eiωνε/2 e
iωνε/2−e−iωνε/2

ε
= −eiωνε/2

(
deiωνx

dx

∣∣∣∣
x=0

+O(ε2)

)
→ −iων eiωνε/2

whence we obtain the final expression

ε
M∑
k=1

ϕ∗γ,k
ϕγ,k−ϕγ,k−1

ε
= −ε

∑
ν

iων e
iωνε/2 ϕ̃∗νϕ̃ν .

A typical term in K0 becomes

ε
M∑
k=1

(
tα,β−µδα,β

)
ϕ∗α,kϕβ,k−1 = ε

∑
ν

eiωνε
(
tα,β−µδα,β

)
ϕ̃∗α,νϕ̃β,ν

whereas the products of 4 Grassmann variables in K1 become

ε

M∑
k=1

ϕ∗α,k ϕ
∗
β,k ϕγ,k−1 ϕδ,k−1 =

ε2

~β
∑

ν1,ν2,ν3,ν4

δν1+ν2, ν3+ν4 e
i(ων3+ων4 )ε ϕ̃∗α,ν1 ϕ̃

∗
β,ν2

ϕ̃γ,ν3 ϕ̃δ,ν4 .

The various powers of ε which show up as prefactors can be eliminated by introducing the
rescaled Fourier transform ϕγ,ν =

√
ε ϕ̃γ,ν . This transformation is no longer unitary, rather the

Jacobian is εM which does not have a well-defined limit asM →∞. However, for any finiteM
the Jacobian is the same in both numerator and denominator in (35) and simply cancels out so
that the limit M → ∞ can be taken without problem. Having rewritten S in terms of the
(rescaled) Fourier amplitudes the limit M → ∞ becomes trivial: since we had −M/2 + 1 ≤
ν ≤M/2, we simply let each ν range over all integers. Our final result then becomes

−S[ϕ∗, ϕ] =
∑
ν

ϕ∗α,ν e
iωνεG−10,α,β(iων)ϕβ,ν

− 1

2~2β
∑
α,β,γ,δ

ν1,ν2,ν3,ν4

Vαβ,δ,γ δν1+ν2, ν3+ν4 e
2i(ων3+ων4 )ε ϕ∗α,ν1 ϕ

∗
β,ν2

ϕγ,ν3 ϕδ,ν4 ,
(38)
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whereby the limit ε→ 0+ has to be taken and the matrix G−10 (iων) = iων − t−µ
~ is the inverse

noninteracting Green function, see (21). Keeping the explicit factors of eiωνε and e2i(ων3+ων4 )ε

while ε → 0 may seem awkward, however, these factors are in fact crucial in some cases to
obtain meaningful results (see Appendix C) whereas they may be safely replaced by unity in
other cases. Next, using Eqs. (7) and (8) it is easy to show that

1

~β

∫ ~β

0

dτ

∫ ~β

0

dτ ′ eiωντ e−iων′τ
′
G(τ, τ ′) = δν,ν′ G(iων) ,

the ‘finite-M -version’ of which is

Gα,β(iων) = lim
M→∞

ε2

~β

M∑
k,k′=1

eiωντk e−iωντk′ Gα,β(τk, τk′)

= −
∏∞

µ=−∞
∏

γ

∫
dϕ∗γ,µ dϕγ,µ ϕα,ν ϕ

∗
β,ν e

−S(ϕ∗,ϕ)∏∞
µ=−∞

∏
γ

∫
dϕ∗γ,µ dϕγ,µ e

−S(ϕ∗,ϕ) , (39)

because ε2

~β =
( √

ε√
M

)2
. This expression readily lends itself to a perturbation expansion in K1

which leads to the known representation of the Green function in terms of Feynman diagrams.
However, we do not pursue this here but switch to our central objective, namely the construction
of the Luttinger-Ward functional, thereby closely following Potthoff [5, 6].

3.2 Construction of the Luttinger-Ward functional

We start by slightly changing our point of view. We note that the various objects that we
are concerned with (the noninteracting Green function G0, the full Green function G and the
self-energy Σ) all are just sets of complex numbers: Fα,β(iων), F ∈ {G0, G,Σ}. Then, we
may consider (39) with (38) as the definition of a functional G[G−10 ], which maps one such
set, G−10 (iων), to another one: G(iων). If the initial set happens to be a noninteracting Green
function of the form G−10 (iων) = iων − (t−µ)/~ with some physical set of single particle ele-
ments t, G[G−10 ] yields the corresponding interacting Green function, with interaction part K1.
Accordingly, K1 in (38) may be viewed as an implicit parameter of the functional and we con-
sider K1 fixed from now on. One may wonder if the functional G[G−10 ] gives a well-defined
result for any choice of G−10 . This is probably not the case, but we simply restrict its domain
those G−10 which give a well-defined result. Next consider the functional

Ω[G−10 ] = − 1

β
ln

(
∞∏

µ=−∞

∏
γ

∫
dϕ∗γ,µ dϕγ,µ e

−S(ϕ∗,ϕ)

)
,

which is the grand canonical potential for a physical G−10 because the bracket is Z in this case,
see (34). Its variation with respect to G−10 is

β
∂ Ω[G−10 ]

∂ G−10,α,β(iων)
= −eiωνε G[G−10 ]β,α(iων) . (40)
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Note the ‘inverted’ order of indices of G on the right hand side, which follows by a comparison
of (38) and (39). Next, for a given ‘self energy’ Σ and a given ‘Green function’ G consider

D[G,Σ] = G[G−1+Σ]−G .

Assume Σ is a true self-energy corresponding to some G−10 (iων) = iων − (t−µ)/~ (and in-
teraction K1) and G the corresponding interacting Green function. By the Dyson equation
G−1+Σ = G−10 , and since G[G−10 ] = G we find D[G,Σ] = 0. Next, for a given ‘Green
function’ G define the functional S[G] to be the ‘self energy’ which minimizes the norm of
D[G,Σ], defined as ∣∣D∣∣ =

1

N

∑
α,β

∑
ν

∣∣Dα,β(iων)
∣∣2.

For a physical Green function G and the corresponding self-energy Σ we found D = 0, which
gives the minimal value of |D|, whence S[G] = Σ and S simply maps the Green function to
the self-energy. If G is not a physical Green function, but sufficiently ‘reasonable’ such that the
above functionals can be defined, we expect

G
[
G−1+S[G]

]
= G + δG (41)

where δG→ 0 whenever G approaches a physical Green function. We are now in the position
to define the Luttinger-Ward functional, which is the following complex valued functional of a
Green function

Φ[G] = Ω
[
G−1+S[G]

]
+

1

β

∑
λ

eiωλε
(
− ln det G(iωλ) + Tr G(iωλ)Σ[G](iωλ)

)
. (42)

The logarithm of the determinant is the sum of the logarithms of the 2Nnorb eigenvalues of
G(iωλ) and the limit ε→ 0+ is understood (to shorten the notation we henceforth omit factors
like eiωλε and reinsert them only in the final result). Consider the variation of this functional
under a change of G: Using (40), (41) and the chain rule we find the variation of the first term

β
∂Ω [G−1+S[G]]

∂Gα,β(iων)
= −

∑
λ

∑
δ,γ

G
[
G−1+S[G]

]
δ,γ

(iωλ)
∂(G−1+S[G])γ,δ(iωλ)

∂Gα,β(iων)

= −
∑
λ

∑
δ,γ

(Gδ,γ+δGδ,γ) (iωλ)
∂(G−1+S[G])γ,δ(iωλ)

∂Gα,β(iων)
(43)

Next, notice that for each λ ∑
γ,δ

Gδ,γ(iωλ)G
−1
γ,δ(iωλ) = 2Nnorb , (44)

and since the Gα,β(iων) for different α, β and ν must be considered as independent variables

∂Gδ,γ(iωλ)

∂Gα,β(iων)
= δν,λ δα,δ δβ,γ .
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Differentiating (44) with respect to Gα,β(iων) we therefore obtain

∑
γ,δ

(
δν,λδα,δ δβ,γ G

−1
γ,δ(iων) +Gδ,γ(iωλ)

∂G−1γ,δ(iωλ)

∂Gα,β(iων)

)
= 0

⇒ −
∑
γ,δ

Gδ,γ(iωλ)
∂G−1γ,δ(iωλ)

∂Gα,β(iων)
= δν,λG

−1
β,α(iων) ,

and inserting this into (43) we find

β
∂Ω [G−1+S[G]]

∂Gα,β(iων)
= G−1β,α(iων)−

∑
λ

∑
δ,γ

Gδ,γ(iωλ)
∂S[G]γ,δ(iωλ)

∂Gα,β(iων)
+O(δG). (45)

Using Appendix D the derivative of the second term on the right hand side of (42) becomes

β
∂

∂Gα,β(iων)

(
− 1

β

∑
λ

ln det G(iωλ)

)
= −G−1β,α(iων) , (46)

whereas the derivative of the third term (multiplied by β) is

S[G]β,α(iων) +
∑
λ

∑
δ,γ

Gδ,γ(iωλ)
∂S[G]γ,δ(iωλ)

∂Gα,β(iων)
. (47)

Adding up (45), (46), and (47) and reinserting the exponential of eiωνε we obtain

β
∂Φ[G]

∂Gα,β(iων)
= eiωνεS[G]β,α(iων) +O(δG). (48)

If we now let G become the physical Green function for some noninteracting Green function
(and the fixed interaction K1) S[G] becomes the physical self-energy and δG vanishes. We
arrive at the key result that the self-energy is the functional derivative of the Luttinger-Ward
functional Φ with respect to the Green function (but note the inverted matrix indices on the right
hand side). For a physical G, Ω [G−1+S[G]] becomes the grand canonical potential and we
arrive at the expression for Ω first derived by Luttinger and Ward

Ω = − lim
ε→0

1

β

∑
λ

eiωλε
(

ln det G−1(iωλ) + Tr G(iωλ) Σ(iωλ)
)

+ Φ[G] . (49)

As it stands this expression is not really helpful for evaluating Ω, because if one wanted to use
the definition (42) to evaluate Φ[G] one would have to know Ω in the first place. However,
Luttinger and Ward have shown that Φ[G] can be represented as a sum over infinitely many
suitably chosen Feynman diagrams [1], so that for example a partial summation over a subset
of diagrams gives an explicit (approximate) expression for Φ[G]. The expression (49) gives Ω
as a functional of G (the self-energy Σ can be eliminated using the Dyson equation) and in the
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next step we want to write Ω as a functional of Σ. Since the self-energy is the derivative of Φ
with respect to G

1

β
eiωνε Σβ,α(iων) =

∂Φ[G]

∂Gα,β(iων)
, (50)

this can be done by Legendre transform. Assuming that the functional S[G] can be inverted to
yield G[Σ], define the Legendre transform

F [Σ] = Φ [G[Σ]]−
∑
λ

∑
γ,δ

G[Σ]δ,γ(iωλ)
∂Φ[G]

∂Gδ,γ(iωλ)

= Φ [G[Σ]]− 1

β

∑
λ

∑
γ,δ

eiωλεG[Σ]δ,γ(iωλ) Σγ,δ(iωλ)

and inserting this into (49) we find

Ω = − lim
ε→0

1

β

∑
λ

eiωλε ln det
(
G−10 (iωλ)−Σ(iωλ)

)
+ F [Σ] . (51)

By virtue of being a Legendre transform this functional obeys

β
∂F [Σ]

∂Σα,β(iων)
= −eiωνεGβ,α(iων), (52)

which is easily verified directly. Using this and again the theorem from Appendix D we arrive
at the key result

∂Ω

∂Σα,β(iων)
= 0 . (53)

Let us summarize what we found. First, there exists a functional Φ[G] such that the grand
potential Ω is given by (49). By itself this is not really spectacular because one could always
define Φ[G] via (49). What is highly nontrivial, however, is the fact that the self-energy can be
obtained as the functional derivative of Φ[G] at the exact G, see (50). Similarly, there exists a
functional F [Σ] such thatΩ is given by (51) and the Green function is obtained as the derivative
of F [Σ], see (52). Moreover, when expressed as a functional of the self-energy, Ω is stationary
with respect to variations of Σ, see (53), at the exact self-energy. Moreover, the functionals
Φ[G] and F [Σ] have an additional important property: they depend only on the interaction
part K1 in the Hamiltonian, but are completely independent of the noninteracting term K0 or,
equivalently, the noninteracting Green function G0. To see this, let us carefully go through
our above construction of the Luttinger-Ward functional. The functionals G[G−10 ] and Ω[G−10 ]

have the noninteracting Green function as their argument while there is no further ‘intrinsic’
dependence on G0 (these functional do depend on K1, however!). It follows that the functional
S[G], which is defined using only the functional G, does not have any implicit dependence on
G0 either, i.e., it can in principle be evaluated without knowledge of G0. Accordingly, Φ[G]

is a functional only of the Gα,β(iωλ) with no implicit dependence on t and µ, so that the same
holds true for its Legendre-transform F [Σ].



Green Functions and Self-Energy Functionals 6.19

4 Self-energy functional theories

4.1 Dynamical mean-field theory

In the preceding section we have seen that the grand potential Ω of an interacting Fermi system
can be represented as a functional of its self-energy, see Eq. (51), and that this functional is
stationary at the true self-energy, see Eq. (53). This is a promising result: Such stationarity
principles are put to use in almost every area of physics. In fact, one might come up with
the following variational determination of the self-energy: choose a trial self-energy of the
form (29), whence Ω ultimately becomes a functional of the spectral density σ(ω) (V(HF ) is
itself a functional of the Green function and hence the self-energy) and then use (53) to derive
an Euler-Lagrange equation for σ(ω). The problem is that the definition of the functional
Φ[G], Eq. (42), allowed to prove some of its properties, such as (50), but that it is completely
impossible to actually evaluate it for a given ‘trial G’ (this would, for example, necessitate
knowledge of Ω). Accordingly, it is equally impossible to give an explicit expression for its
Legendre transform F [Σ] and evaluate this for a given ‘trial Σ’.
However, we can circumvent this problem by making use of the fact that the functional F [Σ]

does not depend on the noninteracting part of the Hamiltonian K0, but only on the interaction
part K1. To illustrate the idea we consider the well-known Hubbard model on a lattice with N
sites and periodic boundary conditions

H =
∑
i,j

∑
σ

ti,j c
†
i,σci,σ + U

∑
i

ni,↑ni↓ =
∑
k,σ

εk c
†
k,σck,σ + U

∑
i

ni,↑ni↓ .

Thereby ni,σ = c†i,σci,σ and εk is the Fourier transform of ti,j . In addition we consider an
artificial system, called the reference system, with Hamiltonian H̃ =

∑
i H̃i, where all Hi have

the identical form of an Anderson impurity model

H̃i =
∑
ν

εν l
†
i,ν,σli,ν,σ +

∑
ν

(
Vν l

†
i,ν,σci,σ +H.c.

)
+ U ni,↑ni↓ (54)

where again ni,σ = c†i,σci,σ. This describes a single ‘Hubbard-site’ (described by c†i,σ and ci,σ)
coupled to a number of ‘ligand’ sites (described by l†i,ν,σ and li,ν,σ). We assume that the impurity
system can be solved, and denote the Green function and self-energy for this system by G̃

and Σ̃. We have seen above that all matrix elements of the self-energy involving uncorrelated
sites vanish. Since the ligands in the Hamiltonian (54) are uncorrelated, the only nonvanishing
element is Σ̃c,c(z).
After these preliminaries we come to the crucial point: since H and H̃ have the same interac-
tion, namely K1 = U

∑
i ni,↑ni,↓, the functional F [Σ̃] is the same for the Hubbard model and

the reference system. We now make use of this fact by taking the self-energy Σ̃ of the impurity
model to be the ‘trial self-energy’ for the lattice system. Since the reference system consists
of disconnected clusters its self-energy is diagonal in real space: Σ̃(i,c),(j,c)(z) = δi,j Σ̃c,c(z),
whence its Fourier transform is k-independent: Σ̃(k, z) = Σ̃c,c(z). The resulting Green func-
tion of the lattice therefore is G−1(k, z) = z − (εk−µ)/~− Σ̃c,c(z). Using (51) we thus obtain
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an approximate Ωlatt for the Hubbard model (the factor of 2 is for spin)

Ωlatt = F [Σ̃]− lim
ε→0

2

β

∑
k

∑
λ

eiωλε ln

(
iωλ −

εk−µ
~
− Σ̃c,c(iωλ)

)
. (55)

Now we know that Ω is stationary under variations of the self-energy, see Eq. (53). We cannot
perform a variation of the self-energy over all possible self-energies but we may restrict the
domain to ‘impurity model representable’ ones, that means those self-energies which can be
obtained by solution of the impurity model for some set of parameters {εν , Vν}. The variation
of Σ̃ then amounts to a variation of the parameters εν and Vν in (54). Let us discuss how the
value of F [Σ̃] changes with the parameters of the impurity model, t ∈ {εν , Vν}. Using the
chain rule and (52) we find

∂F [Σ̃]

∂t
=

∑
α,β

∑
λ

∂F [Σ̃]

∂Σ̃α,β(iωλ)

∂Σ̃α,β(iωλ)

∂t

= − 1

β

∑
α,β

∑
λ

eiωλε G̃β,α(iωλ)
∂Σ̃α,β(iωλ)

∂t

= −2N

β

∑
λ

eiωλε G̃c,c(iωλ)
∂Σ̃c,c(iωλ)

∂t
.

The last equation follows from the fact that there areN lattice sites i and the two spin directions
for each site. It follows that

∂Ωlatt

∂t
= − 2

β

∑
k,λ

eiωλε
[
G̃c,c(iωλ)−G(k, iωλ)

] ∂Σ̃c,c(iωλ)

∂t
= 0 . (56)

We may now perform a limiting procedure by sending the number of ligands→∞ that means
considering a continuum of ligands which hybridize with the correlated c-orbital. Then the
number of parameters t for which (56) must be fulfilled becomes a continuum. The simplest
way to fulfill all of these conditions at once is to set the square bracket equal to zero for each λ,
that means

G̃c,c(iωλ) =
1

N

∑
k

G(k, iωλ) =
1

N

∑
k

1

iωλ − (εk−µ)/~− Σ̃c,c(iωλ)
. (57)

This equation must be solved simultaneously for each ωλ by adjusting the hybridization function
V (E) and the density of states ρ(E) for the ligands in the impurity model, and in fact is nothing
but the well-known self-consistency equation for dynamical mean-field theory (DMFT) [13] .
The derivation above shows that DMFT can be understood as approximate minimization of the
grand potential as functional of the self-energy. The impurity model thereby acts as the ‘self-
energy preparation lab’ to generate trial Green functions and the associated exact self-energy.
So far we have partitioned the lattice into single sites and each site was ‘decorated’ with a ‘bath’
of ligands. However, we also could have partitioned the lattice into small but finite clusters and
decorated each cluster with a bath of noninteracting ligand sites. Going through similar steps
as above one can easily derive the self-consistency equations for various cluster-generalizations
of DMFT [6]. The variational principle for the grand potential as a functional of the self-energy
thus provides a unifying principle to derive all of these theories.
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4.2 Metal-insulator-transition in a dimer

We have seen that DMFT can be derived from the variational principle for the grand potential
by restricting the domain of self-energies to those which are derivable from an impurity model.
However, self-energy functional theory as outlined above allows for even simpler approaches
and as an example we now study Potthoff’s re-derivation of the phase diagram for the metal-
insulator transition in the Hubbard model [14]. We again consider the single-band Hubbard
model on a simple cubic N -site lattice with periodic boundary condition, but focus on the case
of particle-hole symmetry. To develop this idea we first note that the simple cubic lattice can be
divided into two sublattices, A and B, such that all neighbors of a site on the A sublattice are
on the B-sublattice and vice versa. Also, we rewrite the Hubbard model as

K = H−µ =
∑
i,j

∑
σ

ti,j c
†
i,σci,σ +

U

2

N∑
i=1

(
ni−1

)(
ni−1

)
−N U

2

=
∑
k,σ

(
εk −

U

2

)
c†k,σck,σ + U

N∑
i=1

ni,↑ ni,↓ ,

where ni = c†i,↑ci,↑ + c†i,↓ci,↓ and we assume that all ti,j are real so that ti,j = tj,i. Under the
transformation c† ↔ c we have ni−1→ 1−ni so that the interaction part is invariant, whereas
the hopping term changes sign. If the hopping integral ti,j is different from zero only if the
sites i and j belong to different sublattices, which is what we assume, this sign change can be
compensated by the gauge transformation c†i,σ → −c

†
i,σ for all sites i of, say, sublattice B. It is

straightforward to show that this transformation exchanges photoemission and inverse photoe-
mission spectrum and implies µ = U/2. We will now use particle-hole symmetry to construct
a simplified reference system.
Namely for the reference system we follow Potthoff and choose N dimers with one ‘Hubbard-
site’ hybridizing with one bath-site, i.e., the Hamiltonian for one dimer reads

K̃ = H̃−µN = −V
∑
σ

(
c†σlσ + l†σcσ

)
+
(
εl−

U

2

)∑
σ

l†σlσ +
U

2

(
nc−1

)(
nc−1

)
− U

2
. (58)

Here l†σ creates an electron in the ligand site and nc = c†↑c↑ + c†↓c↓. Compared to the reference
system (54) for DMFT that was discussed in the previous section, this amounts to retaining only
a single ligand. We have to write εl−U/2 because µ = U/2. Since we want to generate particle-
hole symmetric self-energies we have to impose particle-hole symmetry also in the reference
system. The transformation c† ↔ c, l† ↔ −l indeed converts the Hamiltonian into itself
except for the second term. Setting εl = U/2, however, eliminates this term and particle-hole
symmetry is restored. The Hamiltonian thus becomes

K̃ = −V
∑
σ

(
c†σlσ + l†σcσ

)
+
U

2

(
nc − 1

)(
nc − 1

)
− U

2
. (59)

and the only remaining parameter to be varied therefore is V , the ligand energy εl having been
eliminated by the requirement of particle-hole symmetry. The Fock space of the dimer has a
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dimension of 24 = 16 so that all eigenstates |i〉 and corresponding eigenenergies Ki can be
obtained by numerical diagonalization of the matrix for K̃. If we construct basis functions with
fixed particle number, spin and z-component of the spin, the problem in fact can be broken down
to diagonalizing 2×2 matrices. We therefore can calculate the grand potential Ω̃ by numerical
evaluation of the grand partition function (4), the Green function G̃α,β(z) by using the Lehmann
representation (9) and the self-energy Σ̃α,β(z) from the Dyson equation (23). Again, only the
entry Σ̃c,c(z) may differ from zero for any z, which is a good check for the computer program.
For concreteness, at T = 0 the self-energy of the dimer becomes [15]

Σ̃(z) =
U

2
+
U2

8

(
1

z+3V
+

1

z−3V

)
. (60)

Note that this has exactly the form (29), in particular the first term is indeed the Hartree-Fock
potential 〈nσ〉U because 〈nσ〉 = 1/2 due to particle-hole symmetry. Reverting Eq. (51) we can
now calculate the numerical value of the functional F [Σ̃]

F [Σ̃] = Ω̃ + lim
ε→0

1

β

∑
λ

eiωλε ln det G̃−1(iωλ).

Notice that this is possible only because we could obtain the numerical value of Ω̃ by full
exact diagonalization of K̃. This procedure gives us a self-energy Σ̃(z) and the corresponding
numerical value of the functional F [Σ̃] and we recall that both of these are functions of the
hybridization matrix element V in (59). Next, we proceed as above: we use the self-energy
Σ̃(z) as a trial self-energy for the lattice model and write

Ωlatt = − 2

β

∑
λ

eiωλε
∫
dε ρ0(ε) ln

(
iωλ − ε+ µ− Σ̃c,c(iωλ)

)
+ F [Σ̃] ,

where ρ0(ε) is the density of states for the conduction band. Following Potthoff [14] we use a
semi-elliptical density of states of width W = 4

ρ0(ε) =
1

2π

√
4−ε2.

In this approximation Ω becomes a function of V and figure 3(a) shows Ω(V ) at T = 0 for
different U. For smaller U there are two stationary points: a maximum at V = 0 and a minimum
at finite V, which is the physical solution. At Uc ≈ 5.82 the two extrema coalesce into a single
minimum at V = 0, which is the only stationary point for larger U. This change from finite V
to V = 0 precisely corresponds to the metal-insulator transition. To see this we recall equation
(60) for Σ̃(z) and insert it into the k-integrated Green function

G(z) = 2

∫ 2

−2
dε

ρ0(ε)

z + U/2− ε− Σ̃(z)
. (61)

This is shown in figure 4 together with =Σ̃(z) for z = ω−iη. The self-energy has two poles at
ζ1 = −3V and ζ2 = 3V which give the two Lorentzian peaks in =Σ̃(z). As discussed above
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Fig. 3: (a): Ω(V ) versus V at T = 0, variation with U , (b): Ω versus V at U = 5.2, variation
with T , (c): the resulting phase diagram.

these two poles ‘push open’ gaps in the density of states around themselves, see the top panel
of Fig. 4. There is still a finite spectral weight at the Fermi level, ω = 0, i.e., the system is a
metal. As V becomes smaller, see the center panel of Fig. 4, the slope of Σ̃(z) in the energy
range between ζ1 and ζ2 (which is ∂Σ

∂ω
= −

(
U
6V

)2 at ω = 0) becomes steeper and steeper so that
according to (32) the spectral weight at the Fermi level becomes smaller and smaller. Finally,
as V → 0 the two poles coalesce, see the bottom panel of Fig. 4, and there remains only a
single pole at ω = 0 which pushes open a gap of order U and the spectral density at ω = 0

vanishes – the system has turned into a Mott-insulator! This is precisely the scenario predicted
by DMFT [13], whereby DMFT calculations find Uc ≈ 5.84 [13] as compared to Uc ≈ 5.82

from the simple dimer calculation.
Next, figure 3(b) shows Ω(V ) for the fixed value of U = 5.2 and different temperatures T.
For most temperatures there are three stationary points whereby the local maximum can be dis-
carded. It follows, that there are actually two possible solutions for each temperature which
cross in between T = 0.10 and T = 0.12. This implies that there is a first order phase tran-
sition between these two temperatures. Repeating the procedure for various U gives the phase
diagram in figure 3(c). There is only a metallic solution for small U, at a first Uc1 a second
insulating solution starts to appear, at Uc there is a first order metal-insulator transition and on
from Uc2 there is only an insulating solution. The results obtained in this way by the solution
of a dimer are qualitatively very similar to those obtained by extensive numerical renormaliza-
tion group [16] and quantum Monte Carlo [17] calculations in the framework of DMFT. The
main deficiency of the dimer calculation is the underestimation of the critical temperature Tc in
figure 3(c) by a factor of ≈ 2.
This application of self-energy functional theory, whereby trial self-energies Σ(z) and the nu-
merical value of Ω and hence F [Σ] are obtained by exact diagonalization of a suitably chosen
reference system is called the Variational Cluster Approximation. This was first proposed by
Potthoff and successfully applied to a large number of problems.
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Fig. 4: Single particle spectral function and imaginary part of the self-energy (calculated with
an imaginary part of 0.05 for the frequency) obtained from the angle integrated Green func-
tion (61) with self-energy (60). Parameter values are U= 5 and V= 0.4 (top), V= 0.2 (center)
and V= 0 (bottom).

5 Summary and conclusion

We have discussed the single-particle Green function G(z) which describes the propagation of
a particle added to a system of interacting fermions. It is a function of the complex frequency
variable z which is analytical throughout the complex z-plane except for the real axis. On the
real axis it has poles which give the energies needed to add or remove a particle. Via the Dyson
equation it can be related to the self-energy Σ(z) which describes the effects of the interaction
with the propagating particle with the other particles in the system. We have derived the spectral
representations Eq. (12) and Eq. (29) for these quantities. We have then given a nonperturbative
derivation of the results of Luttinger and Ward: the grand canonical potential Ω is a functional
of the Green function and self-energy (see Eq. (49), the self-energy is the derivative of the
Luttinger-Ward functional with respect to the Green function (see Eq. (50)) and Ω is stationary
with respect to variations of the self-energy (see Eq. (53)). We have then seen thatΩ can also be
expressed as a functional of the self-energy alone (see Eq. (51)) which is stationary with respect
to variations of the self-energy. This then is the basis of self-energy functional theory which
provides a simple unifying framework for Dynamical Mean-Field Theory and its cluster gen-
eralizations and which also can be applied directly in the framework of the Variational Cluster
Approximation.
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Appendix A

We want to prove the formula

− iΘ(t) e−iEt = lim
η→0+

1

2π

∫ ∞
−∞

dω
e−iωt

ω − E + iη
. (62)

We consider the integral on the right-hand-side as a contour integral in the complex ω-plane
along the real axis. We initially limit the range of integration to be

∫ R
−R dω · · · and take the limit

R → ∞ in the end. We augment this contour by a semicircle of radius R around the origin so
that the resulting contour is closed. For any ω on the semicircle we have

e−iωt = esin(ϕ)Rt e−i cos(ϕ)Rt

where ϕ is the phase of ω. Assume that t sin(ϕ) < 0. Then, for any ε > 0 we can find an R
such that R esin(ϕ)Rt < ε. It follows that the contour integral over the part of the semicircle
where t sin(ϕ) < 0 vanishes in the limit R → 0. For t > 0 this means that the integral over
the semicircle in the lower half-plane π < ϕ < 2π vanishes, whereas it is the semicircle in the
upper half-plane 0 < ϕ < π which gives vanishing contribution for t < 0. We can thus replace
the integral on the right-hand-side by an integral along a closed contour which consists of the
real axis and an infinitely large semicircle in the lower (upper) half-plane for t > 0 (t < 0). But
this means we can invoke the theorem of residues which tells us that the integral is ±2πi times
the sum of residues of all poles within the integration contour. The integrand has one pole at
ω0 = E− iη with residuum e−iω0t. This is in the lower half-plane so that we know immediately
that for t < 0 the integral vanishes i.e., it is ∝ Θ(t). For t > 0 we readily find that the integral
is −2πi e−iω0t and inserting this into (62) and taking the limit η → 0 proves (62), which shows
that the Fourier transform of the left-hand side is (ω − E + iη)−1.

Appendix B

Call λ = ei
2mπ
M where m and M are integers. Then

M∑
k=1

λk = λ
M−1∑
k=0

λk = λ
λM − 1

λ− 1
,

but since λM = (e2πi)
m this is zero. Defining M -component vectors ~ϕ∗ = (ϕ∗1, ϕ

∗
2, . . . , ϕ

∗
M)

and ~vν = 1√
M

(e−iωντ1 , e−iωντ2 , . . . e−iωντM ) the first one of Equations (36) can be written as

ϕ∗γ,ν = ~v∗ν · ~ϕ∗. Introducing λ = e2i
µ−ν
M

π one has, using ων = (2ν+1)π/~β and τk = ~βk/M ,

~v∗ν · ~vµ =
1

M

M∑
k=1

ei(ωµ−ων)τk =
1

M

M∑
k=1

λk =


1 for µ−ν = nM,

λ λM−1
λ−1 = 0 for µ−ν 6= nM.

(63)

with integer n. The M vectors ~vν with −M/2 + 1 ≤ ν ≤M/2 therefore are orthonormal. The
matrix T , which transforms the M variables ϕ∗k into the M variables, ~ϕ∗ν = T ~ϕ∗k, therefore
has the ~vµ as its lines, whence T+ = T−1 and the transformation is unitary. Eq. (37) follows
immediately.



6.26 Robert Eder

(c)(b)(a)

Fig. 5: Integration contours for sums over Matsubara frequencies.

Appendix C

In this Appendix we want to highlight the importance of the factors of eiωλε and discuss the
evaluation of sums of the form

S = − lim
ε→0

1

β

∑
λ

eiωλε g(iωλ) ,

whereby we assume that g(z) is an analytic function except for the real axis. Since i~βωλ =

(2λ+1)iπ the Fermi function f(z) = (eβ~z + 1)−1 has poles at the Matsubara frequencies iωλ.
Straightforward calculation shows that for z = iωλ + ζ we have f(z) = −1/β~ζ so that the
residuum is −1/β~. Invoking the theorem of residues we can rewrite

S = lim
ε→0

~
2πi

∮
C
dz f(z) eεz g(z) ,

where C encircles the imaginary axis in counterclockwise fashion, see figure 5(a). Next we
note that the integrals along the two clover-shaped contours in figure 5(b) are zero, provided
the integrand is analytic in the interior of the two curves. Since the Fermi function has all of
its poles along the imaginary axis, which is outside of the curves in figure 5(b), and since we
assumed that g(z) is analytic except on the real axis this is certainly true. The Fermi function
f(z) guarantees that the contribution from the semicircle with <(z) > 0 vanishes, whereas the
factor ezε does the same for the semicircle with <(z) < 0, see the discussion in Appendix A. It
follows that the integral along the contour C in figure 5(a) is equal to that along the contour C ′ in
figure 5(c) (note the inverted direction of the curves in figure 5(c) as compared to figure 5(b)!).
We could thus convert the sum over Matsubara frequencies to an integral over a contour which
runs counterclockwise around the real axis, which can again be evaluated using the theorem of
residues whereby we pick up contributions from the singularities of g(z). In particular, the limit
T → 0 can be taken without problem for this expression. Notice that the seemingly unimportant
factor of eiωλε was instrumental for this construction because it was only due to this factor that
the arc with <(z) < 0 could be neglected. This is the reason why these factors have to be
followed carefully in all calculations.
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Appendix D

Here we prove the identity
∂ ln detA

∂Aij
= A−1ji

We use Laplace’s formula and expand detA in terms of minors

detA =
∑
l=1,n

(−1)i+l AilMil

Since none of the minors Mil contains the element Aij we find

∂ ln detA

∂Aij
=

(−1)i+jMij

detA

Next, the ith column of A−1 is the solution of the system of equations

Ac = Ei

where Ei is the ith column of the unit matrix. It has all elements equal to zero, except for the ith,
which is one. We use Cramer’s rule and find for the jth element of the ith column

A−1ji =
det Āj
detA

where Āj is the matrix where the jth column has been replaced by Ei. Now we use again
Laplace’s formula for det Āj and obtain

A−1ji =
(−1)i+jMij

detA

which proves the theorem.
As an application we assume that the matrix elements of A are functions of some parameter α.
Then we find

∂ ln detA

∂α
=
∑
i,j

∂ ln detA

∂Aij

∂Aij
∂α

=
∑
i,j

A−1ji
∂Aij
∂α

= TrA−1
∂A

∂α
.
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7.2 Václav Janiš

1 Renormalization of the many-body perturbation theory

The major objective of theoretical physics is to simplify the complexity of Nature in that one
breaks the whole into separate individual phenomena, or situations for which one identifies
the relevant degrees of freedom that decide about the observed specific behavior. At the end,
the theory provides models that should explain, mathematically formalize, and quantify the ob-
served phenomena. The relevance of each model is measured not only by its ability to reproduce
the experimental data. The strength of theoretical models lies in their predictive power of the
behavior in yet unexplored situations. The basic idea behind simplified models with only a few
degrees of freedom is that one will be able to solve them without further approximations. It is,
however, a rare case and mostly only in specific, little realistic limiting situations. That is why
perturbation methods are ubiquitous in theoretical physics.

Quantum dynamics arises from our inability to measure simultaneously the precise values of
the fundamental variables. They are particle coordinate and velocity (momentum) in quantum
mechanics. The observables are then represented by self-adjoint operators in a Hilbert space.
The operators of non-simultaneously measurable quantities do not commute. The lack of exact
solutions of quantum models lies in our inability to find the exact spectrum of the generating
Hamiltonian, being a sum of non-commuting operators. That is why time-dependent perturba-
tion theory was introduced in single-particle quantum mechanics, in particular for the particle
interacting with external fields [1].

Many-body quantum systems add to non-commutativity of the particle coordinates and mo-
menta also indistinguishability of identical particles and non-commutativity of the kinetic en-
ergy and the interaction in the Hamilton operator. This forces us to introduce the Fock Hilbert
space and the occupation-number representation with creation and annihilation operators. Find-
ing the exact dynamics of the quantum many-body models is generally beyond our reach. The
only reliable technique to obtain quantitative results then is the perturbation theory with the
many-body Green functions [2].

Green functions were introduced in mathematics as a means to solve differential equations
with boundary conditions [3]. The most attractive feature of Green functions are their analytic
properties. The many-body Green functions are used in a slightly different context than in the
solutions of differential equations. They solve exactly the unperturbed/noninteracting models
with quadratic Hamiltonians, including boundary conditions, and enter as the fundamental in-
gredients in the perturbation expansion in powers of the non-quadratic particle interaction. The
importance of Green functions was emphasized early during the creation of the relativistic quan-
tum field theory [4–7]. The way towards the application of the many-body Green functions also
in non-relativistic theories were set in Refs. [8, 9] and extensively discussed in Ref. [2]. The
important part of the application of perturbation theory is its renormalization, inevitable in rel-
ativistic theories, being the only tool to extend the perturbation expansion from weak to strong
coupling in many-body statistical models. The canonical way of performing renormalizations
of the many-body perturbation theory systematically in terms of the one-particle Green function
was proposed by Baym and Kadanoff [10, 11].
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The Baym-Kadanoff approach addresses explicitly only the renormalization of the one-particle
Green function. Explicit renormalization of the two-particle Green function was introduced in
Refs. [12–15]. The latter approach was later extended to the so-called parquet construction with
an explicit two-particle self-consistency [16–18]. The one- and two-particle Green functions
cannot be renormalized independently. One has to obey two relations between them in order to
keep the approximations conserving. One relation is established by the dynamical Schwinger-
Dyson equation, the other is the Ward identity [11]. The generic problem of renormalized many-
body perturbation theory is the inability to obey simultaneously the two relations between one
and two-particle Green functions in approximate solutions [19].
The first level of the renormalization of many-body perturbation theory are mean-field-like ap-
proximations with a set of static parameters to be determined self-consistently from an approx-
imate thermodynamic potential. Such approximations are semiclassical with classical order-
parameters, and Green functions are mostly not needed. The only way to include the true quan-
tum dynamical effects into the renormalizations is to employ Green functions and to utilize their
analytic properties to keep the approximations consistent and free of spurious and unphysical
behavior. I will review the way renormalizations of the many-body perturbation theory can be
introduced in models of interacting fermions and show how to use the Green functions to derive
consistent approximations, even having a mean-field character, in the strong-coupling regime.

2 Generic models of interacting electrons and
quantum perturbations

There are a few generic models of strongly interacting electrons that offer exact solutions in
specific limits. They may be used for testing the effectiveness and reliability of renormalized
perturbation theory. The paradigm for strongly correlated electrons is the single-band Hubbard
model, the tight-binding Hamiltonian of which can be represented in second quantization as

ĤH =
∑

k,σ

ε(k) c†kσckσ + U
∑

i

n̂i↑n̂i↓ , (1)

where ε(k) is the dispersion relation, n̂iσ is the operator of the density of particles with spin
σ on lattice site Ri, and U is the electron repulsion due to the screened Coulomb potential.
This model can be solved exactly in the extreme limits of one and infinite dimensions. The
exact solution in the former case can be reached at zero temperature via an algebraic Bethe
ansatz [20] while the full solution in the latter limit can be obtained only numerically [21].
There is a simpler version of the Hubbard model that offers an analytic solution in infinite
dimensions. It is the spinless Falicov-Kimball model

ĤFK = −t
∑

〈ij〉
c†icj +

∑

i

εif
†
i fi + U

∑

i

c†icif
†
i fi , (2)

where εi are the atomic levels of the immobile electrons, and 〈ij〉 indicates nearest neighbors.
Unlike the Hubbard model, the Falicov-Kimball model does not describe a Fermi liquid. That is
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why this model is rather limited in its applications and less suitable for testing the renormalized
perturbation theory of correlated electrons [22].
The third generic model of interacting electrons with an exact solution is the single-impurity
Anderson model (SIAM) for the formation of local magnetic moments. Its Hamiltonian reads

ĤSIAM = −t
∑

〈ij〉σ
c†iσcjσ + Ef

∑

σ

f †σfσ + U f †↑f↑f
†
↓f↓ +

∑

i,σ

(
Vi c

†
iσfσ + V ∗i f

†
σciσ

)
, (3)

where Ef is the impurity energy level and Vi is the hybridization between the local impurity f
and the conduction electrons ci. Its solution serves as the input for the self-consistency equation
of the Hubbard model in infinite dimensions. It offers a local model with strong dynamical
quantum fluctuations leading, at half filling, to quantum critical behavior and the strong cou-
pling Kondo effect [23, 24].
All three Hamiltonians represent genuine many-body systems where the operator of the local
particle interaction does not commute with the non-local operator of the kinetic energy, or the
hybridization term of the SIAM. Quantum fluctuations are important and must be appropriately
treated in the perturbation theory. Only sufficient renormalizations can allow to continue reli-
ably the perturbation expansion from weak to strong coupling. Although we are interested in
equilibrium properties of the many-body models we must introduce perturbations driving the
systems out of equilibrium to explore all possible changes of the equilibrium state when cross-
ing from weak to strong coupling. Most interestingly, the models may display quantum critical
behavior at low temperatures driven by cooperative quantum fluctuations. One has to choose
the perturbing forces as general as possible not to miss any, sometimes unexpected, quantum
phase transition.
The fundamental quantity to be determined from the perturbation theory is the grand potentialΩ
of the systems with appropriate external excitations represented by a time-dependent Hamilto-
nian Ĥext. The perturbation theory treats the non-quadratic part of the Hamiltonian ĤI and the
external non-equilibrium term Ĥext as a perturbation of the exactly solved quadratic part Ĥ0, a
set of harmonic oscillators. The generating functional of the perturbation expansion is

Ω[Hext ] = −β−1 log Tr exp

(
−β
(
Ĥ0 − µN̂ + ĤI + Ĥext︸ ︷︷ ︸

perturbation

))
, (4)

where N̂ is the number operator and β= 1/kBT the inverse temperature. The external part
of the total perturbation is quadratic but it generally contains an arbitrary combination of the
creation and annihilation operators. There are four general quadratic terms for spin-½ fermions.
We denote the nonlocal external field perturbing the densities of particles with spin σ by η||σ(1, 2).
We used a short-hand notation for the space-time and spin variables l = (Rl, τl, σl). This field
generates longitudinal spin fluctuations. Analogously we denote η⊥(1, 2) the field that gener-
ates transversal spin fluctuations. We further introduce fields ξ⊥(1, 2) and ξ||σ(1, 2) generating
transversal and longitudinal charge fluctuations, respectively. Fields η⊥, ξ⊥, and ξ||σ are complex
while η||σ is not. The complex character of the excitation field indicates that the perturbation
breaks either conservation of spin, charge or both. Complex fields are not measurable but when
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the linear response to them is broken they generate a quantum long-range order. The most
general quantum perturbation can then be represented as

Ĥext =

∫
d1d2

[∑

σ

η||σ(1, 2)c†σ(1)cσ(2) (conserves charge&spin) (5)

+
[
η⊥(1, 2)c†↑(1)c↓(2) + η̄⊥(1, 2)c†↓(2)c↑(1)

]
(conserves charge)

+
[
ξ̄⊥(1, 2)c↑(1)c↓(2) + ξ⊥(1, 2)c†↓(2)c†↑(1)

]
(conserves spin)

+
∑

σ

[
ξ̄||σ(1, 2)cσ(1)cσ(2) + ξ||σ(1, 2)c†σ(1)c†σ(2)

] ]
(changes charge&spin)

where the bar denotes complex conjugation. The possible long-range orders generated by the
perturbations with fields η||σ, η⊥, are longitudinal and transversal magnetic order, and singlet and
triplet superconductivity for fields ξ⊥, and ξ||σ , respectively [25].

3 Static renormalizations

Exactly solvable statistical models are mostly those with quadratic Hamiltonians. Perturbation
theory uses them as unperturbed models and expands thermodynamic quantities in powers of the
non-quadratic interacting Hamiltonians. The first step to improve upon such a bare perturbation
expansion is to introduce a renormalization of the parameters characterizing the unperturbed
system. This is the idea of mean-field theories. This static renormalization optimizes the initial
state of the perturbation expansion.

3.1 Variational mean-field theories

There are several ways of deriving mean-field approximations. The most advanced construction
of comprehensive mean-field theories is presently the limit to infinite spatial dimensions of a
hypercubic lattice with an appropriate rescaling of the off-diagonal (nonlocal) elements in the
model Hamiltonian [26]. This construction leads to a dynamical mean-field theory (DMFT)
of quantum many-body models [21]. This limit is not analytically solvable for the Hubbard
model and, hence, cannot be used as a renormalized starting point of the perturbation theory.
The original idea behind the classical mean-field approximations is to create optimal upper or
lower bounds on the equilibrium thermodynamic potential by renormalizing the parameters of
the exactly solvable unperturbed Hamiltonian.
We split the total Hamiltonian into an exactly solvable part Ĥ0 and a correction ∆Ĥ

Ĥ = Ĥ0 +∆Ĥ (6)

and use the Gibbs-Bogoliubov inequality for the grand potentials

Ω
[
Ĥ
]
≤ Ω

[
Ĥ0

]
+
〈
∆Ĥ

〉
0
. (7)
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Here 〈∆Ĥ〉0 is the statistical average of the correcting term in the unperturbed system. A mean-
field approximation is obtained by optimizing the upper bound with spin-dependent energiesEσ
renormalizing the chemical potential µ and the external magnetic field h. That is, we choose

Ĥ0 =
∑

k,σ

ε(k)c†kσckσ+
∑

iσ

(Eσ−µ−σh) n̂iσ

and the correction
〈∆Ĥ〉0/N=Un↑n↓−

∑

σ

Eσnσ ,

where nσ = N−1
∑

i〈n̂iσ〉0. The lowest upper bound is then produced by the Hartree mean-field
solution Eσ = Un−σ.
There is also a variational way for constructing a lower bound on the equilibrium grand poten-
tial [27]: We decompose the total Hamiltonian by using positive normalized parameters λα ≥ 0

and
∑

α λα = 1,
Ĥ =

∑

α

λαĤα . (8)

Using the convexity property of the grand potential we obtain an inequality
∑

α

λαΩ
[
Ĥα

]
≤ Ω

[
Ĥ
]
. (9)

The grand potential of the Falicov-Kimball model, Eq. (2), can be expressed via analytic func-
tions exactly in infinite spatial dimensions [28]. We can then use the following decomposition
of the Hubbard Hamiltonian with two parameters λα, where α = 1, 2:

λαĤα =
∑

k

ε(k)c†kαckα + λα
∑

iσ

(
Eσ−µσ

)
n̂iσ + Uλα

∑

i

n̂i↑n̂i↓ ,

where µσ = µ+σh. The grand potential of the component Hamiltonians is known analytically
in the DMFT. We can hence maximize the lower bound on the Hubbard model by finding
the optimal decomposition parameters λα. The derived mean-field approximation of the max-
imal lower bound is a thermodynamically consistent extension of the Hubbard III approxima-
tion [29].

3.2 Fermi liquid

Static mean-field approximations are short of an important feature of correlated electrons in
metals. It is the concept of quasiparticles with a finite lifetime. They are generated by dynamical
correlations of the low-lying excitations of the ground state. Quasiparticles were introduced by
Landau in his theory of a Fermi liquid [30]. The Fermi liquid was initially presented as a
phenomenological theory, but it had a profound impact on all theories of interacting fermions.
It qualitatively correctly describes the behavior of the low-lying fermionic excitations if the
actual interaction can be reached adiabatically from zero (Fermi gas) without passing through
a phase transition or, equivalently, a divergence in the perturbation theory. Consequently, the
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Fermi-liquid theory reduces the impact of particle interactions to only a renormalization of the
parameters of the Fermi gas.
The fundamental assumption of the Landau Fermi-liquid theory is the existence of an energy
functional depending only on squares of the instantaneous densities of the low-lying excitations
δnk,σ(t) caused by a general weak external potential Vkσ. The macroscopic generated averaged
energy functional is

E [δnk,σ] =
∑

k,σ

(
ε(k)+Vkσ

)
δnk,σ(t) +

1

2V

∑

kk′,σσ′

f(k,k′;σ, σ′) δnk,σ(t) δnk′,σ′(t) , (10)

where the bar denotes averaging over the microscopic time scales t. The bare-particle inter-
action of the model Hamiltonian was replaces by the Landau scattering function f(k,k′;σ, σ′)

standing for the screened dynamical interaction of quasiparticle densities of the low-lying exci-
tations. It is assumed as the input of the phenomenological Fermi liquid theory.
Due to the ergodic theorem the time averaging can be replaced by a statistical one. And since
the energy functional should depend at most on squares of the densities of the excited states, the
Hartree decoupling for the product of time-dependent densities of the excitations holds

δnk,σ(t) δnk′,σ′(t) = 〈δnk,σ〉 〈δnk′,σ′〉 . (11)

The elementary excitations correspond to the eigenstates of the Fermi gas and hence the statis-
tical average has the fermionic form

〈δnk,σ〉 =
1

exp
(
−β(εk+Vkσ+Uk,σ)

)
+ 1
−Θ(kF−k) , (12)

with the Fermi momentum kF and an effective potential

Uk,σ =
1

V

∑

k′,σ′

f(k,k′;σ, σ′) 〈δnk′,σ′〉 . (13)

The statistical averaging was chosen such that the density of the particle-like excitations (k>kF )
is positive while the density of the hole-like excitations (k<kF ) is negative. The low-lying exci-
tations are affected only by the Landau scattering function at the Fermi energy EF and |k| ≈ kF .
That is, the only relevant physical scale in this theory is the Fermi energy. The Landau scat-
tering function can either be determined from experimental data or can be calculated from a
microscopic theory. At the end, the Fermi liquid is a Fermi gas with renormalized thermody-
namic quantities [31]. In this sense it is a semi-classical theory with only averaged quantum
dynamical fluctuations.

4 Dynamical corrections and Green functions

So far we introduced only static renormalizations of the equilibrium thermodynamic quanti-
ties. The genuine quantum fluctuations due to the non-commutativity of the kinetic-energy and
particle-interaction operators can be obtained only from a fully dynamical perturbation theory.
The only way to keep all the necessary information from the quantum fluctuations is to use the
Matsubara formalism and many-body Green functions.
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4.1 Green functions, Matsubara formalism, and analytic continuation

The dispersion relation between energy and momentum from the model Hamiltonian is gen-
erally obeyed only at the energy (mass) shell. Since we are unable to find the spectrum of
the full Hamiltonian we have to go off the mass shell and to introduce time-dependent ex-
citations for which the energy is detached from the momentum. We introduce an imaginary
time τ ∈ (0, β) and let the creation and annihilation operators propagate with the unperturbed
free-electron Hamiltonian Ĥ0 =

∑
kσ

(
ε(k)−µ−σh

)
c†kσckσ, where µ is the chemical poten-

tial and h the external magnetic field. We define ckσ(τ) = eτĤ0ckσ e−τĤ0 and analogously the
time-dependent hermitian-conjugate creation operator, c†kσ(τ) = eτĤ0c†kσ e−τĤ0 . Notice that
c†kσ(τ) 6= ckσ(τ)† = c†kσ(−τ). Moving the creation and annihilation operators off the mass
shell we can introduce Green functions as time-ordered moments of the density-matrix operator

G(n)(1, . . ., n, n̄, . . ., 1̄)=
(−1)n

Z ~n

〈
Tr0 T c(1)· · ·c(n) c†(n̄)· · ·c†(1̄) e

−
β∫
0

dτ ĤI(τ)

〉

av

(14)

where we denoted Tr0 X̂ = Tr X̂e−βĤ0 and Z = Tr0 T e−
∫ β
0 dτĤI(τ) is the partition sum.

The Matsubara formalism [32] uses the grand potential with a fixed chemical potential dur-
ing the perturbation expansion of the functional of the partition sum. The propagation in
imaginary time can then be diagonalized by a Fourier series of the periodic extensions of
the interval (−β, β) with imaginary even, bosonic iνm = 2mπikBT , and odd, fermionic
iωn = (2n+1)πikBT , frequencies where n,m are integers.

We can represent the partition function, the generator of the perturbation expansion, via a func-
tional integral over the anticommuting Grassmann variables ψ and ψ∗ replacing the time or-
dering of the operators in the interaction picture by an unperturbed (inverse) Green function
diagonal in momenta and Matsubara frequencies

Z =

∫
DψDψ∗ e

∑
k

∑
nσ
eiωn0+

ψ∗nσ(k)
(
iωn+µ−ε(k)

)
ψnσ(k)−U∑

i

β∫
0

dτ n̂d↑(τ,Ri)n̂
d
↓(τ,Ri)

. (15)

The local interaction term is diagonal in imaginary time and does not commute with the un-
perturbed, kinetic part, which is diagonal in the momenta and Matsubara frequencies. The
expansion of the partition sum in powers of the interaction strength is the gist of many-body
perturbation theory.

The problem of the sums over Matsubara frequencies is that one must sometimes use the nor-
malization factor eiωn0+ defining the proper limit to large frequency values. This can be avoided
by analytic continuation from the discrete set of Matsubara frequencies on the imaginary axis
to continuous real frequencies weighted by the appropriate statistical distribution. The sums
over the fermionic and bosonic frequencies can be analytically continued to spectral integrals
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as follows

1

β

∑

n

F (iωn)eiωn0+ → −
∫ ∞

−∞

dω

π
f(ω)=F (ω+i0) +

∑

i

f(ζi) Res[F, ζi] , (16a)

1

β

∑

m

F (iνm)eiωm0+ → P

∫ ∞

−∞

dω

π
b(ω)=F (ω+i0)−

∑

i

b(ζi) Res[F, ζi] , (16b)

where P stands for the principal value of the integral and we denoted f(x) = 1/(eβx+1) and
b(x) = 1/(eβx−1) the Fermi and Bose distribution functions, respectively. Further on, ζi will
be the poles of the complex function F (z) outside the real axis. One can uniquely analytically
continue from the set of the values at the Matsubara frequencies only if infinity is a point of
analyticity of the continued function.

4.2 One-particle Green function – Schwinger and Dyson equations

The basic ingredient of the perturbation theory is the one-particle Green function. Its operator
definition in the Heisenberg picture without splitting the full Hamiltonian into the unperturbed
part and interaction reads

Ĝ(τ, σ; τ̄ , σ̄) = −1

~
Tr ρ̂H T ψ̂σ(τ) ψ̂†σ̄(τ̄) . (17)

We introduced the full density matrix ρ̂H = e−βĤ/Tr e−βĤ while ψ̂ and ψ̂† are the field
operator and its hermitian conjugate. The time evolution is controlled by the full Hamilto-
nian, that is ψ̂σ(τ) = eτĤψ̂σ e−τĤ . The time-dependent Green function from Eq. (17) is an
operator (matrix) in the spatial coordinates. The number Green function then is G(1, 1̄) =

〈R1|Ĝ(τ1, σ1; τ1̄, σ1̄)|R1̄〉.
We cannot directly evaluate the Green functions in the Heisenberg picture since the full Hamil-
tonian is not diagonalizable. We separate the quadratic part of the total Hamiltonian from the
non-quadratic one to go to Dirac’s interaction picture with the time propagation controlled by
the unperturbed Hamiltonian as in Eq. (14). The impact of the particle interaction U on the
one-particle Green function can be expressed via a Schwinger integral equation [10]

∫
d1̄ G(0)−1

(1, 1̄)G(1̄, 1′) = δ(1−1′)−
∫
d1̄ U(1−1̄)G(2)(11̄−, 1′1̄+) , (18)

where we introduced a two-particle Green function

G(2)(11̄, 33̄) =
1

~2
Tr ρ̂ T ψ̂σ1(R1, τ1)ψ̂σ3(R3, τ3)ψ̂†σ3̄

(R3̄, τ3̄)ψ̂†σ1̄
(R1̄, τ1̄) . (19)

The superscripts ± indicate whether we approach the equal-time limit of two time variables
from above or below. The unperturbed Green function has an explicit algebraic expression in
the Matsubara formalism

G(0)
σ (k, iωn) =

1

iωn + µ+ σh− ε(k)
. (20)
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The Schwinger equation does not determine the one-particle Green function in closed form. One
also must know the impact of the interaction on the two-particle Green function. If we go on
with the two-particle Green function as in the Schwinger equation, we obtain a relation between
the two-particle and a three-particle Green function. This is generally not an effective way to
evaluate Green functions. It is better to formally close the dynamical equations for the Green
functions in the same particle space by introducing irreducible functions. The one-particle
irreducible function is a self-energy Σ(1̄, 2). The self-energy is used to close the equation
for the one-particle Green function within the one-particle representation space via a Dyson
equation

G(1, 1̄) = G(0)(1, 1̄) +
∑

3,3̄

G(0)(1, 3̄)Σ(3̄, 3)G(3, 1̄) . (21)

Since the self-energy has the same dependence on the internal variables as the Green function,
the Dyson equation becomes algebraic in momentum and frequency representation in equilib-
rium. The full equilibrium Green function in the Matsubara formalism then is

Gσ(k, iωn) =
1

iωn + µ+ σh− ε(k)−Σσ(k, iωn)
. (22)

The Dyson equation is only a formal relation determining the Green function from the self-
energy. The latter must be obtained from perturbation theory.

4.3 Two-particle vertex – Bethe-Salpeter equations

Although we formally do not need the two-particle Green function to determine the one-particle
one, the perturbation theory for the self-energy contains contributions from two-particle Green
functions, or better two-particle vertices. The two-particle vertex Γ , that is, a one-particle
irreducible two-particle function, is related to the two-particle Green function via a defining
equation

Gσσ′(k, k
′; q) = Gσ(k)Gσ′(k+q)

(
δ(k−k′) + Γσσ′(k, k

′; q)Gσ(k′)Gσ′(k
′+q)

)
. (23)

We used a simplified, four-vector, notation of the dynamical variables, momenta and frequen-
cies, the fermionic ones k = (k, iωn) and the bosonic ones q = (q, iνm). The two-particle
functions obey conservation of momentum and energy and hence they contain only three in-
dependent dynamical variables. The attachment of the three variables to four corners of the
two-particle vertex is graphically shown in Fig. 1, where we used the definition of the direct
and a transposed two-particle vertices Γσσ′(k, k′; q) and Γ t

σσ′(k, k
′; q), respectively.

The two-particle vertex is only one-particle irreducible. We can introduce a two-particle ir-
reducible vertex Λ in analogy with the self-energy in order to formally close the dynamical
equation for the two-particle vertex. The two-particle analogue of the Dyson equation is a
Bethe-Salpeter equation. It is an integral equation generally of the following form

Γσσ′(k, k
′; q) = Λσσ′(k, k

′; q)− 1

βN

∑

k′′

Λσσ′(k, k
′′; q)Gσ(k′′)Gσ′(k

′′+q)Γσσ′(k
′′, k′; q). (24)
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Γσσ′(k, k′; q) =

k + q

k

k′ + q

k′

σ′

σ

Γ t
σσ′(k, k′; q) =

k + q

k

k′ + q

k′

σ σ′

Fig. 1: Assignment of the dynamical variables to the two-particle vertex as used in the text.
The dashed line expresses the charge and spin conservation of the vertex, which means that the
incoming line goes continuously through the vertex and goes out on the other side. The left
figure stands for the direct propagation (left to right), the right one for the transposed one (up
to down).

σ′

σ

Γ =

σ′

σ

Λeh − Λeh Γ

σ′

σ

Fig. 2: Bethe-Salpeter equation in the horizontal electron-hole channel. The direct and trans-
posed vertices do not mix in this channel.

Unlike the one-particle irreducibility, the two-particle irreducibility is not uniquely defined. The
irreducibility is best demonstrated graphically with the solid oriented line standing for the one-
particle Green function. The Bethe-Salpeter equation (24) is diagrammatically represented in
Fig. 2. This equation is characterized by a simultaneous propagation of an electron of spin σ,
the upper line, and a hole with spin σ′, the lower line. The vertex is electron-hole, two-particle
irreducible when cutting simultaneously electron and hole lines does not break the diagram into
two disconnected parts. In this case they are horizontal electron and hole lines. Vertex Λeh is
the electron-hole irreducible vertex.
There are more than one Bethe-Salpeter equations. Due to the orientation of the lines represent-
ing the charge propagation, cutting simultaneously parallel or antiparallel pairs of fermion lines
is not the same operation and leads to a different result with a different conserving dynamical
variable. Each of the two-particle irreducibilities can actually be characterized by a bosonic
dynamical variable that is conserved, that is, it is the same whenever we perform the cut. It is
q = (q, iνm) in Eq. (24) for vertex Γσσ′(k, k′; q) with the attachment of the variables defined in
Fig. 1.
Another option of the horizontal two-particle propagation is in connecting the vertices by paral-
lel lines. The corresponding Bethe-Salpeter equation is graphically represented in Fig. 3. Unlike
Eq. (24), the direct and transposed vertices are now mixed up. We can see that the transposed
vertices are connected in the same way as the direct ones, only the upper and lower intercon-
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σ′

σ

Γ =

σ′

σ

Λee − Λee Γ

σ′

σ

− Λeet Γt

σ

σ′

Fig. 3: Graphical representation of the Bethe-Salpeter equation with the simultaneous propa-
gation of two electrons. The direct and transposed vertices contribute with the same diagram
with only interchanged spins in the intermediate propagation.

σ′

σ

Γ =

σ′

σ

ΛU +

Γ

ΛU

σ′

σ

σ′′ −

Γ

ΛUt

σ′

σ

σ −

Γt

ΛU

σ′

σ

σ′

Fig. 4: Bethe-Salpeter equation for the vertical (transposed) propagation of the electron and
the hole with the same spin. The double primed variables are dummy integration variables.
Notice, that vertex Γ↑↓ is coupled to Γ↑↑ and Γ↓↓.

necting propagators are interchanged. Checking the conservation laws in the vertices we easily
find that the conserving dynamical variable in this channel is Q = q+k′+k. Vertex Λee is
electron-electron irreducible and differs from vertex Λeh, being irreducible in the electron-hole
channel of Fig. 2.
There is yet another Bethe-Salpeter equation and another two-particle irreducibility. It is an
electron-hole irreducibility propagating vertically (in the transposed sense) an electron and a
hole carrying the same spin. It differs from the horizontal electron-hole propagation in Fig. 2
where the spins of the particle and the hole are independent. The graphical representation of
such a Bethe-Salpeter equation is shown in Fig. 4. The double primed variable indicates that it
is summed over. The direct and transposed vertices are mixed in this channel in a more complex
way than in Fig. 3. The sign at each diagram in the graphical representation accounts for the
anticommuting character of the one-particle operators. The conserving dynamical variable in
this vertical channel is ∆k = k−k′. The irreducible vertex ΛU differs from both preceding
vertices Λeh and Λee.
The full two-particle vertex Γ is the same in all three Bethe-Salpeter equations. We thus have
three inequivalent representations of the two-particle vertex via irreducible ones. Simultane-
ously we could construct three Bethe-Salpeter equations for the transposed vertex Γ t. We ob-
tain for the equal-spin vertex Γ tot

σσ (k, k′; q) = Γσσ(k, k′; q) + Γ t
σσ(k, k′; q) with the symmetry

relation Γ t
σσ(k, k′; q) = −Γσσ(k, k+q; k′−k).
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5 Baym-Kadanoff construction of the
renormalized perturbation theory

Perturbation theory can be constructed independently for Green functions of any order. The one-
particle Green function is an input to the perturbation theory for higher-order Green functions.
It is only expected to obey the desired analytic properties. To keep the whole perturbation theory
for all types of Green functions consistent and conserving we must relate the one-particle Green
function with the higher-order ones. The renormalizations of the one-particle and higher-order
Green functions cannot be done independently. The canonical way to construct renormalized
and conserving approximations was proposed by Baym and Kadanoff [10, 11].

5.1 Generating Luttinger-Ward functional and irreducible functions

The basic element of the perturbation theory is the one-particle Green function. Its behavior
is essential since it enters all physical quantities. It is hence the primary task of the perturba-
tion theory to evaluate the one-particle Green function. It is sufficient to know the self-energy
since the Dyson equation determines the Green function from the self-energy. The fundamental
quantity of the perturbation theory becomes then the self-energy. The principal assumption of
the Baym-Kadanoff approach is that the self-energy Σ can be expressed as a functional of the
renormalized one-particle Green function G and the bare interaction U , Σ[G,U ].
The conserving character of the perturbation theory demands the existence of a generating
functional from which we can determine all physical quantities via functional derivatives. The
Baym-Kadanoff self-energy is obtained from the Luttinger-Ward generating functional Φ[G,U ].
The thermodynamic functional of the Baym-Kadanoff theory is the grand potential in the Mat-
subara formalism

Ω[G,Σ]

N
=
−1

βN

∑

σ

∑

ωn,k

eiωn0+
(
ln
[
G(0)
σ

−1
(k, iωn)−Σσ(k, iωn)

]
+Gσ(k, iωn)Σσ(k, iωn)

)
+Φ[G,U ].

(25)
The equilibrium value of the functional Ω[G,Σ] is stationary with respect to variations of
its functional variables, Σσ(k, iωn), Gσ(k, iωn). Functional derivatives of the Luttinger-Ward
functional with respect to Green function Gσ(k, iωn) lead to the irreducible functions. The first
and second derivatives lead to the self-energy and the two-particle irreducible vertex

Σσ(k) =
δΦ[G,U ]

δGσ(k)
, Λσσ′(k, k

′; q) =
δΣσ(k, k′)

δGσ′(k′+q, k+q)
. (26)

Both, the self-energy and the Green function have two frequency-momentum variables in the
second derivative since the variations drag the system out of equilibrium, where energy and
momentum are not conserved. The Green function in the first derivative of the grand potential
has only one variable since the derivatives determine the equilibrium values.
Stationarity of the grand potential Ω[G,Σ] with respect to variations of Σσ(k, iωn) leads to the
Dyson equation for the one-particle Green function Gσ(k, iωn) renormalized by the self-energy
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σk σk
Σσ =

σk σk

σ̄k′′

−
σk

σk + q′′

σ̄k′′

σ̄k′′ + q′′

σk

Γσσ̄

Fig. 5: Graphical representation of the Schwinger-Dyson equation of the Hubbard model. The
first term on the right-hand-side is the Hartree term and the second is the contribution from the
two-particle vertex Γ . We kept the variables of one-particle propagators. The double-prime
indices are summed (integrated) over. The bar denotes the inverse value.

Σσ(k, iωn) from Eq. (26). Notice that combinations of the independent variables in the second
derivative of Eq. (26) lead to different two-particle irreducible vertices. It holds for all higher-
order irreducible functions that they are not unique and depend on the way we use the internal
variables out of equilibrium in the functional derivatives. The Baym-Kadanoff perturbation the-
ory is hence fully one-particle renormalized. The higher-order Green and irreducible functions
do not enter the generating functional and are not determined self-consistently.
The fundamental quantity of the Baym-Kadanoff construction is the Luttinger-Ward functional.
Its existence is guaranteed by interchangeable second derivatives in Φ-derivable theories. The
Luttinger-Ward functional can be formally obtained from the bare perturbation theory via a Leg-
endre transformation by replacing the inverse of the bare propagator by the fully renormalized
Green function

Φ[G,U ] = −kBT lnZ
[
G(0)−1

, U
]
−
∫
d 1̄
(
G(0)−1

(1, 1̄)−G−1(1, 1̄)
)
G(1̄, 1′). (27)

It is, however, only a formal representation that does not help us find the functional dependence
of the Luttinger-Ward functional on the full Green function. The Luttinger-Ward functional
is not the primary object of interest in the Baym-Kadanoff construction. It is replaced by the
self-energy, the contributions to which from the perturbation expansion are better controlled.

5.2 Schwinger-Dyson equation, Ward identity, and Schwinger field-theory

The contributions from perturbation theory to the self-energy functional can be regrouped so
that one singles out the static Hartree contribution and represent the dynamical part via the two-
particle vertex. Its graphical representation is plotted in Fig. 5. Mathematically it is represented
for Hubbard-like models as

Σσ[G,U ](k) =
U

βN

∑

k′

Gσ̄(k′)

(
1− 1

βN

∑

q

Γσσ̄[G,U ](k, k′; q)Gσ(k+q)Gσ̄(k′+q)

)
. (28)

The two-particle vertex Γ [G,U ] contains the unspecified dependence on the one-particle Green
function that has to be also determined from the perturbation theory. Its form is, however, fully
determined by the Luttinger-Ward functional Φ[G,U ], if known.
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σ′k + q

σk

∆Σ =

k′

k′ + q

Λ

σ′k + q

σk

∆G

Fig. 6: Ward identity matching a difference ∆Σ of the self-energy with the two-particle irre-
ducible vertex Λ.

The two-particle vertex can be represented by the two-particle irreducible vertices in the cor-
responding Bethe-Salpeter equations. The two-particle irreducible functions do not enter the
Luttinger-Ward functional, but they are determined from its functional derivatives. The second
functional derivative in Eq. (26) is a differential form of the Ward identity that is a sufficient
microscopic condition that guarantees validity of the continuity equation of the macroscopic
system. The differential Ward identity can be integrated to [33, 34]

Σσ(k+q)−Σσ(k) =
1

βN

∑

k′

Λehσσ(k, k′; q)
(
Gσ(k′+q)−Gσ(k′)

)
(29)

and is plotted graphically in Fig. 6. If we use one of the Bethe-Salpeter equations to determine
the full two-particle vertex and the differential form of the Ward identity for the two-particle
irreducible vertex in the Schwinger-Dyson equation (28) we end up with an integro-differential
functional equation for the self-energy

Σ = U

〈
G−G

(
1 +

δΣ

δG
GG?

)−1
δΣ

δG
GG

〉
, (30)

where the star denotes the appropriate two-particle convolution from the Bethe-Salpeter equa-
tion and the angular brackets stand for the summation over the one-particle integration vari-
ables. Equation (30) represents the Schwinger field theory for the self-energy [5]. Unlike the
Luttinger-Ward functional, the Schwinger field theory explicitly utilizes the exact properties
of both the one and two-particle Green functions. The solution of Eq. (30) can be reached
only iteratively via an expansion in the interaction strength, which is equivalent to the standard
perturbation theory for the thermodynamic potential.
Although the Luttinger-Ward functional guarantees a conserving theory, none of the self-energy
functionals Σ[G,U ] determined from the perturbation theory is fully conserving. A fully con-
serving theory should also obey conservation of the particle interaction. Namely, the strength
of the particle interaction is fully generated by the electrons present in the system. This conser-
vation is mathematically expressed as a sum rule [35]

∂Ω(U, µiσ)

∂U
=
∑

i

(
δ2Ω

δµi↑δµi↓
+

δΩ

δµi↑

δΩ

δµi↓

)
=
∑

i

(
kBT

4

(
κii−χii

)
+ ni↑ni↓

)
, (31)

where µiσ are the local spin-dependent chemical potentials, modifying the number operator
N̂ =

∑
i,σ µiσc

†
iσciσ, and κii and χii are local compressibility and susceptibility, respectively.
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This identity expresses that the charges behind the Coulomb repulsion are entirely carried by
the present electrons. The meaning of this identity is that mass and charge of the electrons
cannot be separated.
The above sum rule can be extended to a gauge transformation by making interaction and mass
of the electrons dynamical. The corresponding generalized Ward identity then reads

δΦ[U,G]

δU(q, iνm)
︸ ︷︷ ︸
Schwinger-Dyson

= − 1

βN

∑

k,ωn

δGσ(k+q, iωn+iνm)

δµ−σ(k, iωn)
︸ ︷︷ ︸

Ward

, (32)

where U(q, iνm) is a dynamical interaction and µσ(k, iωn) is the spin-dependent local chemi-
cal potential in the frequency-momentum representation. Both sides of this dynamical equation
should lead to the same two-particle correlation function. The left-hand side results in a corre-
lation function obtained from the vertex of the Schwinger-Dyson equation, while the right-hand
side determines a correlation function from the Bethe-Salpeter equation with the irreducible
vertex satisfying the differential Ward identity of Eq. (26). The Ward identity (32) complies
with the Schwinger-Dyson equation only if the irreducible vertex obeys an integro-differential
functional equation [19]

Λehσσ̄ = U − U
(
1 +GσGσ̄Λ

eh
σσ̄?
)−1

Gσ

(
Λehσσ̄ +Gσ̄

δΛehσσ̄
δGσ̄

)(
1 + ?GσGσ̄Λ

eh
σσ̄

)−1 ◦Gσ̄ , (33)

where we denoted σ̄ = −σ. We recall that ? denotes a summation over the intermediate vari-
ables during the simultaneous electron-hole propagation (antiparallel particle lines) and ◦ is
a sum over the variables in the convolution from the propagation of two electrons (parallel
lines). The two propagations differ in attaching the variables of the conected two-particle func-
tions. Finding its solution is equivalent to solving the Schwinger field theory. Consequently,
the Schwinger-Dyson equation (28) and the differential Ward identity from Eq. (26) can never
be fully satisfied in approximate solutions in many-body perturbation theory.

5.3 Simple approximations: Hartree, RPA, FLEX

Having set the general rules for the renormalized perturbation theory, we proceed to use them
to derive approximate solutions. The simplest is the Hartree approximation. It is a static mean-
field theory that can be derived from the grand potential of Eq. (25) by choosing the simplest
Luttinger-Ward functional

ΦHartree [G,U ] =
U

βN

∑

k,ωn

G↑(k, iωn)G↓(k, iωn) .

The resulting Hartree self-energy is

Σσ[G,U ] =
U

βN

∑

k,ωn

eiωn0+

Gσ̄(k, iωn) = Unσ̄ , (34)
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where nσ is the spin density. Consequently, Γσσ′ [G,U ] = 0 in the Schwinger-Dyson equa-
tion (28). The resulting theory is not trivial because the thermodynamic properties are derived
from the Ward identity and the irreducible two-particle vertex from Eq. (26), Λ↑↓[G,U ] = U .
This irreducible vertex leads to a nontrivial full two-particle vertex

Γ↑↓(q, iνm) =
U

1 + Uφ↑↓(q, iνm)
(35)

when we use it in the Bethe-Salpeter equation (24). We introduced a two-particle (electron-hole)
bubble

φ↑↓(q, iνm) =
1

βN

∑

k,ωn

G↑(k+q, iωn+iνm)G↓(k, iωn) (36)

= − 1

N

∑

k

∫ ∞

−∞

dx

π
f(x)

(
G(k+q, x+ω+) +G(k−q, x−ω+)

)
=G(k, x+) .

We denoted ω± = ω± i0+. Vertex Γ↑↓ from Eq. (35) generates the thermodynamic behavior of
the Hartree mean-field approximation. We can further use it in the Schwinger-Dyson equation
to derive a new dynamical, spin-symmetric self-energy

ΣSp(k, ω+) = (37)

U

N

∑

q

P

∫ ∞

−∞

dx

π

(
b(x)G(k+q, ω++x)= 1

1+Uφ(q, x+)
− f(x+ω)

1+Uφ(q, x−)
=G(k+q, x+ω+)

)
,

where the Green functions are renormalized by the Hartree self-energy from Eq. (34). Only the
linear term reproduces the Hartree self-energy. The self-energy ΣSp(k, ω+) from this equation
represents the random-phase approximation (RPA). The RPA is not Φ-derivable, since the Green
functions in the Schwinger-Dyson equation are not one-particle self-consistent. If we replace
the Hartree self-energy with ΣSp(k, ω+) from Eq. (37) and the Hartree propagators in Eqs. (36)
and on the right-hand side of Eq. (37) by the fully renormalized one

G(k, ω+) =
1

ω++µ−ε(k)−ΣSp(k, ω+)
, (38)

the self-energy ΣSp(k, ω+) then generates a fluctuation-exchange approximation (FLEX). This
approximation is fully one-particle self-consistent and its Luttinger-Ward functional reads [35]

ΦFLEX [G,U ] =
1

N

∑

q

P

∫ ∞

−∞

dω

π
b(ω)=

(
Uφ↑↓(q, ω+)− ln

(
1+Uφ↑↓(q, ω+)

))
. (39)

These simple approximations derived within the Baym-Kadanoff construction and the gener-
ating Luttinger-Ward functional demonstrate the inability to obey simultaneously the Ward
identity and the Schwinger-Dyson equation. They also demonstrate that the Ward identity is
important for deriving thermodynamic properties averaged over Matsubara frequencies, while
the Schwinger-Dyson equation is responsible for the dynamics and dynamical effects. The level
of self-consistency in the Schwinger-Dyson equation may significantly determine the quality of
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the approximations. The RPA shares the thermodynamic properties with the Hartree approx-
imation and introduces the corresponding dynamical corrections in the spectral function. The
FLEX theory changes both the thermodynamic and also dynamical properties of the Hartree ap-
proximation but the two are derived from different vertex functions and hence, inconsistent. An
alternative approach should be chosen to reconcile the thermodynamic and spectral properties
of self-consistent theories.

6 Two-particle approach and two-particle renormalizations

The Baym-Kadanoff approach leads directly to the Schwinger-Dyson equation determining the
one-particle self-energy. It contains only one-particle functions and includes only one-particle
renormalizations. The two-particle functions are derived indirectly. There are two vertex func-
tions to a single self-energy. One is the vertex extracted from the Schwinger-Dyson equation and
the other is constructed from a Bethe-Salpeter equation with the two-particle irreducible vertex
related to the self-energy via the Ward identity. The two vertices are different in all approximate
schemes and the critical behavior cannot be determined uniquely in such a construction.
The critical behavior connected with a phase transition is real and unique. That is why it must
also be identified uniquely in theoretical models. It is then of utmost importance to have only
a single two-particle vertex that would lead to the experimentally observed critical behavior.
Moreover, a direct two-particle self-consistency is needed to suppress the unphysical and spu-
rious critical behavior of weak-coupling approximations and to gain full control of the critical
behavior. Since we cannot satisfy simultaneously the Ward identity and the Schwinger-Dyson
equation we should accept the existence of two self-energies to a single two-particle vertex.
The generating functional of such an approach cannot be a thermodynamic potential or the self-
energy but rather the two-particle irreducible vertex from the singular Bethe-Salpeter equation
of the studied critical behavior. It will be determined from the perturbation theory. One self-
energy derived from this vertex will represent a thermodynamic order parameter and will obey
the Ward identity. The other self-energy will be derived from the Schwinger-Dyson equation
without changing the critical behavior of the two-particle vertex and the order parameter.

6.1 Symmetry-breaking field – odd and even functions

The basic characteristic quantity that distinguishes the two self-energies derived from a single
two-particle vertex is the symmetry-breaking field in which the linear-response theory breaks
down at the critical point. It is related to the order parameter in the low-temperature ordered
phase via a Legendre transformation. We separate quantities with even and odd symmetry with
respect to the reversal of this field. The order parameter is a typical quantity with odd symmetry.
Let us assume, e. g., a symmetry-breaking field η⊥ generating spin-flip processes. Its Legendre
conjugate order parameter is

∆↑↓ =
1

N

∑

i

〈
c†↓(Ri)c↑(Ri)

〉
. (40)
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It describes the transverse magnetic order. Both the field and the order parameter are generally
complex. It is sufficient to keep only the leading terms in the symmetry-breaking field to de-
scribe qualitatively correctly the critical behavior. Only the symmetric two-particle functions
remain then relevant in the critical region. We hence define a symmetric two-particle propagator
with a general external field η

[
G(k, iωn)G(k+q, iωn+iνm)

]
η

=
1

2

(
G↑(k, iωn; +η)G↓(k+q, iωn+iνm; +η)

+G↓(k, iωn;−η)G↑(k+q, iωn+iνm;−η)
)
, (41)

where index η denotes the field with respect to which the symmetrization is performed.
The one-particle functions must be considered both with odd and even symmetries. The odd
and even components of the one-particle Green function are

∆ηG(k, iωn) =
1

2

(
Gσ(k, iωn; η)−Gσ̄(k, iωn;−η)

)
, (42a)

Ḡη(k, iωn) =
1

2

(
Gσ(k, iωn; η) +Gσ̄(k, iωn;−η)

)
. (42b)

The odd propagator will determine the thermodynamic order parameter while the even prop-
agator will enter the Schwinger-Dyson equation to complete the description of the dynamical
and spectral behavior of the chosen approximation without affecting its thermodynamic critical
behavior.

6.2 Two-particle self-consistency and charge renormalization

The main qualitative difference between the two-particle approach and the Baym-Kadanoff con-
struction is a two-particle self-consistency introduced via a renormalization of the two-particle
irreducible vertices. We know that there are three two-particle irreducible vertices generating
three independent Bethe-Salpeter equations for a single full two-particle vertex. A two-particle
self-consistency in the perturbation theory for the two-particle irreducible vertices can be ex-
pressed functionally Λαren [G,Γ ]. It means that we replaced the bare interaction U by the full
two-particle vertex Γ . The approximate functional dependence must be, however, chosen care-
fully to avoid multiple summations of diagrams. The two-particle self-consistency is introduced
by an equation eliminating the full vertex in favor of the irreducible ones and the bare interaction

F
(
{Λαren [G,Γ ]}lα=1 , U

)
= 0 . (43)

Replacing the bare interaction of the Baym-Kadanoff perturbation theory with the two-particle
vertex Γ in the two-particle approach, that is a replacement Λα[G,U ] → Λαren [G,Γ ], corre-
sponds to a charge renormalization since the bare interaction is proportional to the square of the
charge of the electrons.
Straightforward two-particle renormalizations are induced by the parquet approach and its sim-
plifying variants introduced in the many-body perturbation theory by De Dominicis and Mar-
tin [14, 15]. A review of the recent developments of the parquet theory can be found in
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Refs. [18, 36]. Its main idea is to use the ambiguity in the definition of the two-particle ir-
reducibility. The reducible vertex in one scattering channel becomes irreducible in the others.
If Λα is the irreducible vertex and Kα its corresponding reducible counterpart in scattering
channel α then the parquet equations can be written as

Γ = Λα +Kα = Il +
l∑

α=1

Kα, (44)

where Il is the fully irreducible vertex in the selected l scattering channels in the parquet theory.
The full vertex Γ can be excluded from Eq. (44) and the parquet equations are closed for either
the irreducible Λα or the reducible Kα vertices. The input to the parquet equations are the one-
particle propagators Gσ and the fully irreducible vertex Il. The latter is usually replaced by
the bare interaction, Il = U . It is important to mention that the parquet decomposition does
not hold always, but only when the overlap of the sets of the reducible diagrams from different
channels is empty [37].

6.3 Order parameter and mass renormalization

The perturbation theory for the two-particle vertex functions is initially independent of the per-
turbation theory for the one-particle Green functions. The one-particle Green functions enter
the perturbation theory for the two-particle functions only as an input with the expected analytic
properties. One needs, however, to match the perturbation theories for the one and two-particle
Green function in order to keep the approximations conserving. We already know that we
cannot simultaneously obey all the exact relations between the one and two-particle functions.
We must hence decide which relation in which situation is relevant and must not be neglected.
Approximate fulfillment of the exact relations need not have a qualitative impact on the pertur-
bative solutions. The critical regions of the phase transitions are, however, different. We must
be very careful in breaking the relations between the one and two-particle functions there.
The first step was already made by separating the one-particle functions with odd and even
symmetry with respect to the symmetry-breaking field of the studied critical behavior. Thermo-
dynamic consistency demands that the one-particle order parameter starts to grow from zero at
the critical point of the two-particle response function. This is achieved only when the Ward
identity is obeyed. Qualitative consistency is reached already when the Ward identity is satis-
fied in the leading linear order in the symmetry-breaking field. The linear dependence of the
self-energy on perturbation η⊥ is plotted in Fig. 7. This is the odd self-energy and it will be
related to the two-particle vertex via the Ward identity.
The Ward identity linearized with respect to the static homogeneous field η⊥ as in Fig. 7 is

∆ηΣ(k, iωn) =
1

βN

∑

k′,ωn′

Λehη (k, iωn,k
′, iωn′ ; 0, 0)∆ηG(k′, iωn′), (45)

where we used the definitions of Eqs. (42).
The Ward identity is a microscopic relation guaranteeing macroscopic conservation laws. It
has no direct relation to the microscopic quantum dynamics. The latter is governed by the



GF & MBPT 7.21

Σ↑↓(η̄
⊥) =̇

η̄⊥
↑

↓

Λeh
↑↓

Fig. 7: The leading linear order of the contribution from the symmetry-breaking field, η⊥ in this
case, to the self-energy.

Schwinger-Dyson equation. The dynamics is not directly connected with the thermodynamic
critical behavior. The only consistency requirement is that the vertex in the Schwinger-Dyson
equation is built from the same irreducible vertex used in the Ward identity via the correspond-
ing Bethe-Salpeter equation. We hence demand that the even self-energy be determined from
the following Schwinger-Dyson dynamical equation

Σ̄η(k, iωn) =
U

2
n− U

N2

∑

k′q

1

β2

∑

ωn′νm

Ḡη(k
′, iωn′) Ḡη(k

′+q, iωn′+iνm) (46)

×Γη(k, iωn,k′, iωn′ ;q, iνm) Ḡη(k+q, iωn+iνm),

where n is the total charge density.
The self-energy is split into odd and even parts. The odd part plays the role of the order param-
eter and is determined from the linearized Ward identity. The even part obeys the symmetrized
Schwinger-Dyson equation and is responsible for the dynamical behavior and the spectral prop-
erties. This general construction of two self-energies is an extension of the Hartree thermo-
dynamics and the RPA dynamics. At the end, however, all the physical quantities must be
determined from the full one-particle Green function with the total self-energy Σ(k, iωn) =

∆Σ(k, iωn) + Σ̄(k, iωn). The way we separate the odd and even self-energy depends on the
critical behavior and the controlling symmetry-breaking field. The construction is fitted just to
the investigated critical behavior. The order parameter can be anomalous with an anomalous
Green function in the ordered phase breaking macroscopic conservation laws.

7 Mean-field theory with a two-particle self-consistency

The main difference between the Baym-Kadanoff construction and the two-particle approach
is the selection of the functional generating the perturbation theory. The former starts with the
Luttinger-Ward functional and takes the self-energy as the fundamental object of the pertur-
bation theory. The latter makes the two-particle irreducible vertices the central objects of the
perturbation theory. The two approaches formally coincide in the high-temperature phase with
no odd self-energy. They differ in the critical regions of the phase transitions where the Ward
identity must be obeyed, at least in the leading order of the symmetry-breaking field. This is
guaranteed only in the direct perturbation theory for the two-particle functions.
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The perturbation theory for the self-energy is much easier to handle than the theory of the two-
particle irreducible vertices. It is evident from the equations in which they enter the one and
the two-particle Green functions. The one-particle Green function is determined from an alge-
braic Dyson equation, while the two-particle vertex from integral Bethe-Salpeter equations. It
means that it is still a cumbersome way to determine the physical response functions from the
generating two-particle irreducible functions. The major problem of the two-particle functions
is their complexity with three independent dynamical variables and an unknown analytic struc-
ture. This is the main hurdle in the application of the two-particle approach. That is why most
two-particle theories are based on heavy numerics [38–40].
The starting point of the perturbation theory is a reliable mean-field approximation with static
renormalizations of the input parameters as discussed in Sec. 3. The Baym-Kadanoff approach
leads only to a weak-coupling mean-field approximation. Moreover, due to the lack of the
two-particle self-consistency, it contains spurious transitions. One expects that this flaw will be
removed by the two-particle approach. The first task of the two-particle perturbation theory is
then to construct a mean-field theory with a two-particle self-consistency.

7.1 Reduced parquet equations

We discussed that the most straightforward way to introduce a two-particle self-consistency
is to use the parquet equations interconnecting the two-particle irreducible/reducible vertices.
The two-particle approach must be able to reach the critical region of the weak-coupling theory
in which the two-particle self-consistency suppresses the spurious crossing of the critical point.
Unfortunately, the full set of parquet equations misses the critical point of the RPA and is unable
to reach the Kondo regime in the SIAM [41]. That is why we developed a simplified analytic
theory with reduced parquet equations that we used to construct a mean-field theory with a
two-particle self-consistency [42, 19, 43].
The first step in the reduction of the parquet equations is to select the Bethe-Salpeter equation
with a critical point of the unrenormalized perturbation theory. It is the equation with multiple
electron-hole scatterings as plotted in Fig. 2 for systems with the repulsive interaction. In order
to keep the analytic control we resort only to two scattering channels for the direct vertex. The
second channel to be selected must be able to suppress the spurious transition and it is the
Bethe-Salpeter equation with multiple electron-electron scatterings of Fig. 3.
In the next step we separate the critical from the non-critical fluctuations. We know that the
irreducible vertex from the electron-hole channel remains finite and only the reducible vertex of
this channel becomes singular. The full parquet equation for the singlet irreducible vertex Λ↑↓
contains a convolution of two singular reducible vertices K↑↓, which is the reason why the full
set of parquet equations misses completely the critical region of the RPA pole and the Kondo
regime in the SIAM. Since we know that the Kondo effect is exact in the SIAM, we assume that
the superdivergent term, the convolution of two divergent terms, is compensated by higher-order
contributions beyond the parquet equations with the bare interaction. With this assumption we
can reduce the parquet equation for the irreducible vertex from the electron-hole channel to
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Fig. 8: The reduced parquet equation for the irreducible vertex from the electron-hole channel
in which the convolution of the divergent vertices K↑↓ is assumed to be compensated by higher
order terms beyond the parquet equations.

" k

# k + q

" k0

# k0 + q

K"# = �

k00

k00 + q

⇤"#

2
666666664

⇤"# + K"#

3
777777775

Fig. 9: Bethe-Salpeter equation for the reducible vertex from the singular, electron-hole, scat-
tering channel. The diagrams within the brackets are attached to the two-particle propagator
in front of the brackets.

Λσσ̄(k, iωn;k′, iωn′) = U − 1

N

∑

Q

1

β

∑

νl

Kσσ̄(k, iωn,k
′+Q, iωn′+iνl;−Q,−iνl)

×Gσ(k′+Q, iωn′+iνl)Gσ̄(k−Q, iωn−iνl)Λσσ̄(k′+Q, iωn′+iνl,k−Q, iωn−iνl), (47)

the diagrammatic representation of which is shown in Fig. 8. The reducible vertex K↑↓ is deter-
mined from the unrestricted Bethe-Salpeter equation in the electron-hole channel. It reads

Kσσ̄(k, iωn,k
′, iωn′ ;q, iνm) = − 1

N

∑

k′′

1

β

∑

ωl

Λσσ̄(k, iωn;q+k′′, iωm+l)Gσ̄(k′′+q, iωm+l)

×Gσ(k′′, iωl)
(
Λσσ̄(k′′, iωl;q+k′, iωm+n′) +Kσσ̄(k′′, iωl,k

′, iωn′ ;q, iνm)
)

(48)

and is shown in Fig. 9.
Equations (47) and (48) are the simplest parquet-like equations introducing a two-particle self-
consistency without missing the weak-coupling critical behavior. They are solvable only nu-
merically in their full generality. We still need a simplification in order not to lose the analytic
control of the approximation. We use the fact that we are essentially interested in the critical
behavior in the proximity of the RPA pole. We hence divide the dynamical fluctuations of the
vertex functions into relevant ones, controlling the critical behavior, and irrelevant ones, that
do not affect the universal critical behavior. We further neglect the irrelevant frequency and
momentum dependence of the noncritical functions. The irrelevant variables are the fermionic
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ones. If we neglect them in the irreducible vertex we reduce it to a static effective interaction Λ.
Using the solution for the reducible vertex K(q, iνm) from Eq. (48) in Eq. (47) we obtain

(
1− Λ2

N

∑

q

1

β

∑

νm

φ(−q,−iνm)
G↑(k+q, iωn+m)G↓(k′−q, iωn′−m)

1 + Λφ(−q,−iνm)

)
Λ = U , (49)

where

φ(q, iνm) =
1

2N

∑

σ

∑

k

1

β

∑

ωn

(
Gσ̄(k+q, iωn+m) +Gσ̄(k−q, iωn−m)

)
Gσ(k, iωn) . (50)

It is evident that this equation cannot hold point-wise for all fermionic momenta and frequen-
cies. It means that we can satisfy Eq. (49) only approximately unless we decorate the effective
interaction Λ with frequencies and momenta. The dynamical vertex Λ would make the resulting
renormalization extremely complicated and would lead to losing analytic control of the critical
behavior, which we do not want. If we cannot obey Eq. (49) fully we resort to an approximate
solution. There are two options how to close the equation for the effective interaction Λ. The
first one is suitable for metallic systems at very low temperatures. It uses analytic continuation
to real frequencies where we put the fermionic frequencies on the Fermi level. This approxima-
tion works well in the strong-coupling limit of the SIAM at zero temperature [44,45]. The other
option is to use the fact that the universal critical behavior is not qualitatively affected by fluc-
tuations in the fermionic variables since they are irrelevant in the critical region of the pole in
the response function. We can then average Eq. (49) over the fermionic momenta and Matsub-
ara frequencies. The selection of the averaging procedure is not, however, unambiguous [46].
One way, particularly suitable for extended lattice systems, is to multiply both sides of Eq. (49)
by the product of the one-particle thermodynamic propagators G↓(−k,−iωn)G↑(−k′,−iωn′)
and sum/integrate over the fermionic variables k, ωn k′, ωn′ . Equation (49) reduces after this
averaging to [47]

Λ =
U (n2−m2)

n2−m2 + 4Λ2X , (51)

where

X = − 1

N

∑

q

ψ(q, iνm)ψ(−q,−iνm)φ(−q,−iνm)

1 + Λφ(−q,−iνm)
, (52a)

ψ(q, ω+) =
1

N

∑

k

1

β

∑

ωn

(
Gσ̄(q+k, iωm+n) +Gσ̄(q−k, iωm−n)

)
Gσ(k, iωn). (52b)

We denoted the charge and spin densities n = (βN)−1
∑

σ

∑
k,ωn

Gσ(k, iωn)eiωn0+ and m =

(βN)−1
∑

σ σ
∑

k,ωn
Gσ(k, iωn)eiωn0+ , respectively. Positivity of integral X leads to a screen-

ing of the bare interaction. Equation (51) self-consistently determines the effective interaction
Λ that controls the critical behavior near the pole, a singularity in the integrand of Eq. (52).
The singularity emerges when a(Q) = 1 + Λφ(Q, 0) = 0. Vector Q is the momentum at
which the static bubble φ(q, 0) has a minimum, maximum of its modulus. It characterizes the
type of the critical behavior we investigate. The critical point can be reached and crossed to
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an ordered phase only if X < ∞. It means that the physical singularity must be integrable.
The self-consistent equation for the effective interaction then suppresses the spurious poles of
the random-phase approximation with the bare interaction U and allows only for integrable
singularities in the response functions.

7.2 Spectral function

Equations (51) and (52) determine fully the effective interaction from which we derive most of
the thermodynamic properties of the model. All calculations can be performed in the Matsubara
formalism without the necessity to use analytic continuation to real frequencies. We showed
that this thermodynamic mean-field approximation suppresses the spurious phase transition of
the Hartree approximation. It is the desired extension of the Hartree weak-coupling mean-field
theory to the strong-coupling regime. This thermodynamic theory remains essentially at the
two-particle level. The one-particle propagators are an input and can be approximated via a
separate scheme, except for the odd self-energy that reduces to a static value ∆Σ = −Λm/2.
The even self-energy is obtained from an approximation to the corresponding Schwinger-Dyson
equation.
The Schwinger-Dyson dynamical equation for the static effective interaction reads

Σ̄(k, ω+) = U
n

2
− UΛ

N

∑

q

P

∫ ∞

−∞

dx

π

(
b(x) Ḡ(k+q, ω++x)= Φ̄(q, x+)

1 + Λφ(q, x+)

− f(x+ω)Φ̄(q, x−)

1 + Λφ(q, x−)
=Ḡ(q+k, x+ω+)

)
, (53a)

where we introduced a two-particle bubble with the renormalized one-particle propagators

Φ̄(q, ω+) = − 1

N

∑

k

∫ ∞

∞

dx

π
f(x)

(
Ḡ(k+q, x+ω+) + Ḡ(k−q, x−ω+)

)
=Ḡ(k, x+) . (53b)

We used new symbols for the one-particle Green function Ḡ and for the two-particle bubble
Φ̄ on the right-hand side of Eq. (53). Independently of which even self-energy we used in the
thermodynamic Green functions Gσ(k, iωn) in Eqs (51) and (52) to determine Λ and φ(q, ω+),
the Green function Ḡ(q, ω+) must be at least partly renormalized by the resulting self-energy
Σ̄(k, ω+) from Eq. (53). The simplest renormalization would be the Hartree self-consistency
where the self-energy in the one-particle propagator Ḡ on the right-hand side of Eq. (53) is
approximated by the linear term in the interaction strength. That is,

Σ̄(k, ω+) = U
n

2
= −U

N

∑

k

∫ ∞

−∞

dx

π
f(x)=Ḡ(k, x+) (54)

is used in the Green function Ḡ in Eq. (53). It is the mean-field selection of the even self-energy
in the two-particle thermodynamic calculations and it closes the static mean-field approximation
with a two-particle self-consistency.
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The importance of the Schwinger-Dyson equation lies in its dynamical structure that is affected
in the critical region by the singular two-particle propagator. If we go beyond the static Hartree
approximation for Σ̄(k, ω+) the full one-particle self-consistency in Eq. (53) demands that we
use the following fully renormalized one-particle Green function in models with a magnetic
critical behavior

Gσ(k, iωn) =
1

iωn + µ− σ∆Σ − ε(k)− Σ̄(k, iωn)
. (55)

The advantage of the two-particle approach is the possibility to separate the one-particle self-
consistency from the two-particle one. It means that the one-particle Green functions Gσ deter-
mining the effective interaction and the two-particle bubble can differ from the Green function
Ḡ in Eq. (55). We demonstrated that the best approximation of the Kondo limit and the three-
peak structure of the spectral function of the SIAM deliver the thermodynamic propagators with
only the static Hartree renormalization [19].
If we renormalize the one-particle Green functions in the parquet equations differently from the
Schwinger-Dyson equation then the thermodynamic propagators in the two-particle approach
play the role of the bare propagators from the unrenormalized perturbation theory. The physical
self-energy and the Green function are those determined from Eqs. (53) and (55). An important
restriction on the even self-energy from the Schwinger-Dyson equation is that it depends only
on even powers of the symmetry-breaking field and hence, does not affect the critical behavior
derived from the two-particle irreducible vertex Λ from the critical Bethe-Salpeter equation.

8 Conclusions

It is generally difficult to calculate thermodynamic properties of interacting many-body sys-
tems even for simplified models. Exact solutions are rare and available only in specific limiting
situations. Understanding the impact of the particle interaction on the collective macroscopic
behavior is of great importance for our ability to control and utilize materials properties for our
convenience. Methods of classical statistical physics are sufficient to reliably describe macro-
scopic phenomena at high, i.e. room, temperatures. Quantum physics comes into play at lower
temperatures where quantum many-body models must be used to explain the long-range effects
in solids.
Microscopic quantum dynamics, non-commutativity of the fundamental operators, and indis-
tinguishability of the identical particles makes it extremely difficult to get quantitative results
when the interaction strength is dominant over the kinetic energy. It is one of the most important
tasks of the condensed-matter theory to develop reliable and generally applicable techniques in
the strong-coupling regime of quantum many-body models. The quantum perturbation theory
with Feynman diagrams and many-body Green functions becomes one of the most powerful
means to reach the goal.
The only way to use perturbation theory in strong coupling is to use renormalizations and self-
consistent summations of classes of Feynman diagrams. This can be done only by using many-
body Green functions and their analytic properties. Renormalizations of the perturbation theory
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must be done carefully and in a controlled way not to lose causality and/or not to break conser-
vation laws. The major problem of quantum interacting models is the two-fold interconnectivity
of one and two-particle functions. The first one is the dynamical equation of motion, being the
Schwinger-Dyson equation for the Green functions. The other is the Ward identity.
The standard way to introduce renormalizations into the many-body perturbation theory is the
Baym-Kadanoff construction with the Luttinger-Ward functional generating the self-energy as
the fundamental object of this approach. It formally guarantees the conserving character of
the theory but no approximate self-energy from the Schwinger-Dyson equation obeys the Ward
identity: There are two two-particle vertices to the approximate self-energy. That is why this
approach cannot be continued beyond the critical points to the ordered phases.
An alternative way to introduce renormalizations into the perturbation theory is to build the
theory from the two-particle vertex. After identifying the critical behavior of the model, one
chooses the irreducible vertex of the singular Bethe-Salpeter equation as the generating func-
tional. One splits the Green functions into either odd or even symmetric parts with respect to
the reflection of the symmetry-breaking field responsible for the critical behavior. Only the two-
particle functions with even symmetry become relevant when we use the Ward identity valid up
to linear order of the symmetry-breaking field. The odd part of the one-particle self-energy is
related with the two-particle irreducible vertex via a linearized Ward identity. The even self-
energy then obeys the symmetrized Schwinger-Dyson equation. The separation of the odd and
even self-energies seems to be the only way to reconcile at least qualitatively the Ward identity
and the Schwinger-Dyson equation in approximate theories.
The two-particle approach is for obvious reasons much more complicated than the one-particle
one of Baym and Kadanoff. We nevertheless succeeded to reduce the complexity of the two-
particle functions by neglecting noncritical fluctuations and keeping only the critical ones. In
this way we were able to construct a mean-field theory with a static effective interaction being
a consistent extension of the RPA to strong coupling. It naturally includes a two-particle self-
consistency in the effective interaction suppressing thereby the spurious pole of the RPA. It
separately allows for various levels of renormalizations of the even dynamical self-energy in
the Schwinger-Dyson equation. Last but not least, the two-particle mean-field approximation
is consistent with the Mermin-Wagner theorem and distinguishes between zero and non-zero
temperatures in low spatial dimensions.
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8 An Essential Introduction to NEGF Methods
for Real-Time Simulations

Gianluca Stefanucci
University of Rome Tor Vergata
via della Ricerca Scientifica 1
00173 Rome, Italy

Contents

1 Introduction 2

2 The contour idea 2

3 Nonequilibrium Green function 6

4 Noninteracting systems 7

5 Dyson equation on the contour 9

6 Simple diagrammatic approximations 11

7 Kadanoff-Baym equations 13

8 The Generalized Kadanoff-Baym Ansatz 14

9 Time-linear scaling and state-of-the-art approximations 18

10 First-principles NEGF+GKBA implementations 23
10.1 Kohn-Sham basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
10.2 Localized basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

E. Pavarini and E. Koch (eds.)
Simulating Correlations with Computers
Modeling and Simulation Vol. 11
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1 Introduction

We often hear about strongly correlated systems as opposed to weakly correlated ones. Strictly
speaking, however, the adjective “correlated” is not a feature of the system, rather of the state of
the system. Consider for instance a Hubbard dimer at half-filling with on-site repulsion U and
hopping integral t. For U/t→∞ the ground state is a singlet with no double occupancy; such
singlet is certainly a strongly correlated state since mean-field treatments predict that the ground
state has a finite and U -independent double occupation. Does this mean that the Hubbard dimer
is a strongly correlated system? Of course not. The same system does indeed admit a triplet
excited state of zero energy which is identical to the triplet excited state of the noninteracting
(U = 0) Hubbard dimer. Another example is provided by organic molecules. The majority of
them have a weakly correlated ground state but highly correlated excited states.
In dealing with out-of-equilibrium problems it is crucial to have some physical intuition about
the amount of correlation carried by all eigenstates involved in the dynamics. Not only that,
different excited states may experience different correlation effects, meaning that several state-
specific correlation mechanisms must be simultaneously taken into account. For these reasons
the development of approximated methods is generally more difficult than for equilibrium prob-
lems.
In this chapter we introduce a versatile formalism to deal with any quantum system in arbi-
trary nonequilibrium situations. The formalism is dubbed Nonequilibrium Green Functions
(NEGF) [1] and it is essentially the extension of many-body diagrammatic theory to systems
driven by external time-dependent fields. We show how to convert a generic nonequilibrium
process into a mathematical expression and hence how to build approximation schemes from
our physical intuition. Finally we present recent advances for efficient real-time NEGF simu-
lations of systems of interacting electrons and bosons, e.g., phonons or photons [2–6]. These
progresses make NEGF competitive with the fastest quantum method today available, i.e., time-
dependent density functional theory. Implementations in high performance computer facilities
will more likely open the door to first-principles investigations of a wide range of nonequilib-
rium correlated phenomena.

2 The contour idea

In almost all approaches to quantum matter the very first approximation is the truncation of the
one-particle Hilbert space. For solids this is usually done by ignoring planewaves with momen-
tum higher than a certain cutoff and by choosing a certain discretization of momenta in the first
Brillouin zone. In finite systems like atoms and molecules the truncation consists in considering
only a certain number of localized orbitals, e.g., Slater type orbitals or Gaussian type orbitals
or splines etc. Many kinds of one-particle bases are of course available in the market, their
suitability depending on the system under investigation and on the external perturbing fields. In
this chapter we do not specify the basis set and let the reader choose his/her favorite one. Only
in the last section we shall introduce two different kind of bases for the discussion of recent
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implementation strategies of the NEGF equations. We assume, however, that the chosen basis
is orthonormal and we denote by d̂i and d̂†i the fermionic operators annihilating and creating an
electron in the i-th basis function: hence the anticommutation rules read

{
d̂i, d̂

†
j

}
= δij . Notice

that the label i includes, in general, both orbital and spin degrees of freedom.
In second quantization the fermionic operators are used to construct operators associated to ob-
servable quantities, hence the Hamiltonian too. For a self-contained presentation we consider a
system of interacting electrons subject to external classical fields. However, we mention that the
NEGF formalism can deal with more realistic situations where an interaction between electrons
and quantized phonons and photons is present [7–9]. The purely electronic Hamiltonian reads

Ĥ(t) = Ĥ0(t) + Ĥint =
∑

ij

hij(t) d̂
†
i d̂j +

1

2

∑

ijmn

vijmn d̂
†
i d̂
†
j d̂md̂n . (1)

Henceforth we shall use the hat symbol “ˆ” for all operators written in second quantization. The
noninteracting part Ĥ0(t) is a quadratic form of fermionic operators and it contains information
on how electrons are coupled to external static potentials, e.g., the nuclear potential, and time-
dependent fields, e.g., laser pulses. The interacting part Ĥint is a two-body operator describing,
e.g., the Coulomb interaction between electrons. We specialize the discussion to an initial state
which is the ground state |Ψg〉 of Ĥ0 + Ĥint and, without any loss of generality, we take t = 0 as
the initial time. The average of any operator Ô at times t > 0 is given by

O(t) = 〈Ψg|Û(0, t) Ô Û(t, 0)|Ψg〉, (2)

where Û(t, t′) is the evolution operator from time t′ to time t. Let us manipulate Eq. (2).
Although the assumption of the adiabatic connection is not necessary to develop the NEGF for-
malism we here assume that it is fulfilled as it shortens the derivations. What is this assumption
about? Let us first define it mathematically and then explore its physical content. The adiabatic
Hamiltonian

Ĥη(t) = Ĥ0 + e−η|t|Ĥint (3)

coincides with the noninteracting part Ĥ0 in the remote past (t → −∞) and, for an infinitesi-
mal energy η, it approaches (adiabatically) the full interacting Hamiltonian at time t = 0. Let
|Φg〉 be the (noninteracting) ground state of Ĥ0 and let Ûη(t, t′) be the evolution operator from
time t′ to time t associated to the Hamiltonian Ĥη(t). According to the Gell-Mann-Low the-
orem [10–12] the state |Ψ〉 = Ûη(0,−∞)|Φg〉 is an eigenstate of Ĥ0 + Ĥint. The adiabatic
connection is fulfilled if |Ψ〉 = |Ψg〉, i.e., if the interacting ground state can be obtained from
the noninteracting one by an adiabatic switch-on of the interaction. The adiabatic connection
allows for rewriting Eq. (2) in terms of the non-interacting state |Φg〉, the price to pay being that
the evolution starts at t = −∞ instead of t = 0:

O(t) = 〈Φg|Ûη(−∞, 0) Û(0, t) Ô Û(t, 0) Ûη(0,−∞)|Φg〉. (4)

We could compress this result if we extend the definition of the time-dependent Hamiltonian in
Eq. (1) to negative times: Ĥ(t < 0) = Ĥη(t). Then the group property of the evolution operator
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0) Ĥ(t̄0)
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Fig. 1: The contour γ, starting at t = −∞, going all the way to t = +∞ and then back to
t = −∞. By definition, any point lying on the forward branch is earlier than a point lying on
the backward branch.

implies Û(t, 0)Ûη(0,−∞) = Û(t,−∞) and Eq. (4) becomes

O(t) = 〈Φg|Û(−∞, t) Ô Û(t,−∞)|Φg〉. (5)

The forward evolution operator has a simple mathematical form in terms of the time-ordering
operator T . For any t > t′ (forward evolution)

Û(t, t′) = T
{
e−i

∫ t
t′ dt̄ Ĥ(t̄)

}
. (6)

In fact, T is not at all an operator, rather it is a rule according to which the operators in the curly
bracket must be ordered with later times to the left (or equivalently earlier times to the right).
We can better visualize the action of T if we write the integral in Eq. (6) as a Riemann sum
over the discrete times tn = t′+nδ, where n varies from zero to N = Int[(t−t′)/δ] and δ → 0.
Then tn is later than tm if n > m and

T
{
e−i

∫ t
t′ dt̄ Ĥ(t̄)

}
= lim

δ→0
T
{
e−iδ

∑N
n=0 Ĥ(tn)

}
= lim

δ→0
e−iδĤ(tN )e−iδĤ(tN−1) · · · e−iδĤ(t1)e−iδĤ(t0).

(7)
From this “unzipped” expression of the forward operator Û(t, t′) we can immediately find an
expression for the backward evolution operator Û(t′, t). Taking into account the group property
Û(t, t′)Û(t′, t) = 1̂ we have

Û(t′, t) = lim
δ→0

eiδĤ(t0)eiδĤ(t1) . . . eiδĤ(tN−1)eiδĤ(tN ) = T̄
{
ei

∫ t
t′ dt̄ Ĥ(t̄)

}
= T̄

{
e−i

∫ t′
t dt̄ Ĥ(t̄)

}
, (8)

where T̄ is the so called anti-time-ordering operator, i.e., a rule according to which the operators
in the curly bracket must be ordered with later times to the right. Inserting these results into
Eq. (5) we get

O(t) = 〈Φg|T̄
{
e−i

∫−∞
t dt̄′ Ĥ(t̄′)

}
Ô T

{
e−i

∫ t
−∞ dt̄ Ĥ(t̄)

}
|Φg〉. (9)

Pay now attention to the ordering of times. If we define the oriented contour γ = (−∞,+∞)∪
(+∞,−∞), see Fig. 1, and we place the times t̄ on the upper, or forward, branch and the times
t̄′ on the lower, or backward, branch then the string of operators in Eq. (9) appears ordered on
the contour γ. This observation is at the basis of the contour idea developed independently
by Keldysh [13], Schwinger [14], and Konstantinov and Perel’ [15], see also Refs. [16, 17]
for a more recent discussion. Let us introduce the contour-variable, or better the contour-time
z ∈ γ; z can lie either on the forward branch or on the backward branch and once the branch is
specified it can assume any value between −∞ and +∞. To specify the branch we add a “+”
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or “−” subscript to the times; thus z = t− is a time t on the forward branch and z = t+ is a
time t on the backward branch, see again Fig. 1. We also define operators with argument on the
contour like Ô(t−) = Ô(t+) ≡ Ô(t) ⇒ Ô(z) = Ô(t). (10)

In Fig. 1 we show how the Hamiltonian Ĥ(z) varies along the contour. Equation (9) can then
be rewritten as O(t) = 〈Φg|T γ

{
e−i

∫
γ dz̄ Ĥ(z̄)Ô(z)

}
|Φg〉, (11)

where T γ is the contour-ordering operator, i.e., a rule according to which the operators in the
curly bracket must be ordered with later contour-times to the left. A contour-time is earlier
than another if it is closer to the starting point, which in our notation is limt→−∞ t−. Therefore,
T γ acts like the time-ordering operator T for arguments on the forward branch and like the
anti-time-ordering operator T̄ for arguments on the backward branch. Let us verify Eq. (11).
Suppose that z = t−. Then Eq. (11) implies

O(t) = 〈Φg| T̄
{
e−i

∫−∞
∞ dt̄′ Ĥ(t̄′)

}

︸ ︷︷ ︸
Û(−∞,∞)

T
{
e−i

∫∞
t dt̄ Ĥ(t̄)

}

︸ ︷︷ ︸
Û(∞,t)

Ô T
{
e−i

∫ t
−∞ dt̄ Ĥ(t̄)

}

︸ ︷︷ ︸
Û(t,−∞)

|Φg〉

= 〈Φg|Û(−∞, t) Ô Û(t,−∞)|Φg〉, (12)

which is the same as Eq. (5). Similarly the reader can verify that choosing z = t+ the result
does not change.
A remark about Eq. (11) is important at this point. If the operator Ô does not depend explicitly
on time, like it is our operator, then we can safely write Ô(t) = Ô in Eq. (12). However, if
we do so in Eq. (11) then it is not possible to establish where to place the operator Ô when
acted upon by T γ . The reason to give a contour argument even to operators that do not have
an explicit time dependence (like the fermionic operators d̂i and d̂†i ) stems from the need of
specifying their position along the contour, thus rendering unambiguous the action of T γ . Once
the operators are ordered we can omit the time arguments if there is no time dependence.
We conclude this section with a brief comment on the necessity of introducing a contour for
nonequilibrium situations. In the absence of external fields the Hamiltonian at positive times
is constant and given by Ĥ = Ĥ0 + Ĥint. For any finite t > 0 we can choose the infinites-
imal energy η such that the equality Ĥ = Ĥη(t) is fulfilled with arbitrary precision. Hence
we can calculate time-dependent averages using the Hamiltonian Ĥ(t) = Ĥη(t) for negative
and positive times. For a nondegenerate ground state the Gell-Mann-Low theorem implies
that 〈Φg|Û(∞,−∞) = 〈Φg|eiαg where eiαg is a phase factor. Physically this means that by
switching on and then off the interaction we end up in the same state up to a phase factor
eiαg = 〈Φg|Û(∞,−∞)|Φg〉. Substituting this result into Eq. (5) and using the group property
of the evolution operator we get

O(t) =
〈Φg|Û(∞, t)ÔÛ(t,−∞)|Φg〉
〈Φg|Û(∞,−∞)|Φg〉

. (13)

Reading the time arguments from right to left we see that they are ordered on the real axis. In
equilibrium there is no need of introducing a contour. A more detailed discussion can be found
in Ref. [1].
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3 Nonequilibrium Green function

The NEGF formalism is a nonperturbative approach to calculate averages like in Eq. (11). Its
power and versatility stems from the possibility of including only a (well thought) selection of
scattering channels in the time-evolution. The fundamental bit in NEGF is the contour Green
function

Gij(z, z
′) ≡ 1

i
〈Φg|T γ

{
e−i

∫
γ dz̄ Ĥ(z̄) d̂i(z) d̂†j(z

′)
}
|Φg〉, (14)

where T γ is the contour-ordering operator with an extra rule: after the reordering the sign
changes if z′ is later than z. This extra rule can be shown to simplify the math enormously [1].
Equation (14) is a two-point correlator on the contour. For both z and z′ on the forward branch
the contour Green function coincides with the more familiar time-ordered Green function. How-
ever other choices of contour-times are possible. Let us get acquainted with Eq. (14).
If z is earlier than z′ we have (notice the sign change due to the extra rule)

Gij(z, z
′) = −1

i
〈Φg|Û(−∞, t′) d̂†j Û(t′, t) d̂i Û(t,−∞)|Φg〉 ≡ G<

ij(t, t
′). (15)

The last equality defines the lesser Green function. Notice that G< is a function of the physical
times t and t′. One way to get this function for all times t and t′ consists in evaluating the
contour Green function for z = t− (forward branch) and z′ = t′+ (backward branch); in this
case z would indeed be always earlier than z′. However, if t < t′ then we can get G< also
choosing z = t− and z′ = t′− whereas if t > t′ then we can get G< also choosing z = t+
and z′ = t′+. The lesser Green function is proportional to the probability amplitude that a hole
created at time t in the basis function i is found at time t′ in the basis function j. In other words
G< describes how an added hole (or a removed electron) propagates in the system.
The greater Green function is defined as the contour Green function evaluated at the contour-
time z later than z′

Gij(z, z
′) =

1

i
〈Φg|Û(−∞, t) d̂i Û(t, t′) d̂†j Û(t′,−∞)|Φg〉 ≡ G>

ij(t, t
′). (16)

Again this is a function of the physical times t and t′ and it is proportional to the probability
amplitude that an electron created at time t′ in the basis function j is found at time t in the basis
function i. Hence G> describes how an added electron propagates in the system. The lesser and
greater Green functions can be used to rewrite the contour Green function as

Gij(z, z
′) ≡ Θ(z, z′)G>

ij(t, t
′) +Θ(z′, z)G<

ij(t, t
′), (17)

where the Heaviside function on the contour Θ(z, z′) has value 1 if z is later than z′ and zero
otherwise. In Eq. (17) the contour time z can be either t− or t+ and similarly the contour time
z′ can be either t′− or t′+.
From the equal-time lesser Green function we can calculate the time-dependent average of any
one-body operator Ô =

∑
ij Oij d̂

†
i d̂j . To show it we observe that Eq. (15) for t = t′ yields

G<
ij(t, t) = −1

i
〈Φg|Û(−∞, t) d̂†j d̂i Û(t,−∞)|Φg〉 = iρij(t), (18)
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where ρ(t) is the one-particle density matrix. Taking into account Eq. (5)

O(t) =
∑

ij

Oij〈Φg|Û(−∞, t) d̂†i d̂jÛ(t,−∞)|Φg〉 = −i
∑

ij

OijG
<
ji(t, t) =

∑

ij

Oijρji(t). (19)

Examples of one-body operators are the noninteracting part of the Hamiltonian, the particle
density, the particle current, the local magnetic moment, the dipole moment, etc. From the time
off-diagonal values of G< it is also possible to calculate the average of the interaction part of
the Hamiltonian. This non trivial result is known as the Galitskii-Migdal formula

Hint(t) = 〈Φg|Û(−∞, t)ĤintÛ(t,−∞)|Φg〉 =
1

4i

∑

ij

[
i

(
d

dt
− d

dt′

)
δij − 2hij(t)

]
G<
ji(t, t

′)

∣∣∣∣
t=t′

.

(20)
The lesser and greater Green functions contain also information on the spectral properties, such
as those probed in photoemission or inverse photoemission experiments. Let Dki(t) be the
matrix element of the light-matter interaction operator between the i-th state of our basis set
and a photoelectron state of momentum k and energy εk. The current of photoelectrons of
momentum k measured at time t is then given by [18]

Ik(t) = 2
∑

ij

∫
dt̄ Re

(
Σij,k(t, t̄)G<

ji(t̄, t)
)

(21)

where Σij,k(t, t̄) = −iΘ(t−t̄)Dik(t)D∗jk(t)e−iεk(t−t̄).
In the next sections we lay down the basis for the calculation of the lesser and greater Green
function.

4 Noninteracting systems

A noninteracting system is described by a Hamiltonian with Ĥint = 0. In this case the calcula-
tion of the Green function is elementary. The evolution operator in Eqs. (6) and (8) satisfies for
all t and t′

i
d

dt
Û(t, t′) = Ĥ(t)Û(t, t′), −i

d

dt′
Û(t, t′) = Û(t, t′)Ĥ(t′). (22)

We then see that the derivative of Eq. (15) with respect to, e.g., t generates a commutator
between Ĥ(t) and d̂i. For noninteracting Hamiltonians this commutator is simply given by
[Ĥ0(t), d̂i] = −∑m him(t) d̂m. Similarly, the derivative with respect to t′ generates the com-

mutator between Ĥ(t′) and d̂†j which for noninteracting Hamiltonians is simply [Ĥ0(t′),
ˆ
d†j] =∑

m hmj(t
′) d̂†m. Therefore

i
d

dt
G<
ij(t, t

′) =
∑

m

him(t)G<
mj(t, t

′), −i
d

dt′
G<
ij(t, t

′) =
∑

m

G<
im(t, t′)hmj(t

′). (23)

An analogous derivation forG> leads to the same equations of motion (23). Let us rewrite them
in matrix form

i
d

dt
G≶(t, t′) = h(t)G≶(t, t′), −i

d

dt′
G≶(t, t′) = G≶(t, t′)h(t′). (24)
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The most general solution of these equations is G≶(t, t′) = u(t)Q≶ u†(t′) where Q< and Q>

are arbitrary matrices whereas u is the unitary time-evolution matrix in the one-particle Hilbert
space

u(t) ≡ T
{
e−i

∫ t
−∞ dt̄ h(t̄)

}
⇒ i

d

dt
u(t) = h(t)u(t). (25)

To find the matrices Q≶ we need an initial condition. We observe that limt→−∞ u(t) = 1 and
therefore Q≶ = limt→−∞G

≶(t, t). From Eq. (15) this limit is given by

Q<
ij = lim

t→−∞
G<
ij(t, t) = i〈Φg|d̂†j d̂i|Φg〉 ≡ iρgij, (26)

Q>
ij = lim

t→−∞
G>
ij(t, t) = −i〈Φg|d̂id̂†j|Φg〉 = −i

(
δij−ρgij

)
, (27)

where ρgij is the one-particle density matrix in the remote past, which is also the one-particle
density matrix associated to the noninteracting ground state |Φg〉. The noninteracting Green
function is therefore known once we know ρg.
The ρg can easily be calculated from the eigenvectors of the (equilibrium) one-particle hamilto-
nian: h ~ϕ (λ) = ελ~ϕ

(λ). Let us see how. We construct the fermionic operators ĉ†λ ≡
∑

m ϕ
(λ)
m d̂†m

that create an electron in the basis vector ~ϕ (λ). Using the orthonormality of the eigenvectors the
inverse relation reads d̂†m =

∑
λ ϕ

(λ)∗
m ĉ†λ and the noninteracting Hamiltonian can be rewritten as

Ĥ0 =
∑

λλ′

∑

ij

ĉ†λϕ
(λ)∗
i hijϕ

(λ′)
j ĉλ′ =

∑

λλ′

∑

i

ĉ†λϕ
(λ)∗
i ελ′ϕ

(λ′)
i ĉλ′ =

∑

λλ′

ĉ†λελδλλ′ ĉλ′ =
∑

λ

ελĉ
†
λĉλ.

(28)
According to the aufbau principle the noninteracting ground-state |Φg〉 of the system with N
particles is constructed by filling the first N levels of h, i.e., |Φg〉 = ĉ†1 . . . ĉ

†
N |0〉 where |0〉 is the

empty state. We then have

ρgij = 〈0|ĉN . . . ĉ1 d̂
†
j d̂i ĉ

†
1 . . . ĉ

†
N |0〉 =

N∑

λ=1

ϕ
(λ)∗
j ϕ

(λ)
i . (29)

To summarize the noninteracting lesser and greater Green functions have the following analytic
expression (in matrix form)

G<(t, t′) = iu(t) ρg u†(t′), G>(t, t′) = −iu(t)
(
1−ρg

)
u†(t′). (30)

We can use the property of the evolution operator u†(τ)u(τ) = 1 for any time τ to rewrite
Eq. (30) in terms of the equal-time lesser and greater Green functions G≶(t, t)

G≶(t, t′) =
(
Θ(t−t′) +Θ(t′−t)

)
G≶(t, t′)

= Θ(t−t′)u(t)u†(t′)G≶(t′, t′) +Θ(t′−t)G≶(t, t)u(t)u†(t′). (31)

This rewriting brings out two functions, i.e., the retarded and advanced Green functions

GR(t, t′) = −iΘ(t−t′)u(t)u†(t′) = −iΘ(t−t′) T
{
e−i

∫ t
t′ dt̄ h(t̄)

}
, (32)

GA(t, t′) = iΘ(t′−t)u(t)u†(t′) = iΘ(t′−t) T̄
{
e−i

∫ t
t′ dt̄ h(t̄)

}
=
(
GR(t′, t)

)†
. (33)
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The retarded and advanced Green functions carry no information on how the noninteracting
levels are initially populated. They only contain information on how to propagate one-particle
states – sometimes we shall refer to GR and GA as propagators. Using the propagators we can
rewrite Eq. (31) as

G≶(t, t′) = iGR(t, t′)G≶(t′, t′)− iG≶(t, t)GA(t, t′). (34)

This result has inspired an important ansatz in NEGF; we come back to it in section 8.

5 Dyson equation on the contour

The analytic calculation of the interacting Green function defined in Eq. (14) is possible only
in special cases like, e.g., integrable models or systems with only a few particles. In most cases
the interacting Green function must be approximated. In this section we discuss a scheme to
evaluate G(z, z′) using an arbitrary subset of scattering processes. Accurate approximations
can then be generated by selecting those processes that dominate over the others.
The starting point is the observation that inside the contour ordering the operators can be treated
as commuting operators. Consider for instance the contour ordered product of Ĥ0(z) (noninter-
acting part of the Hamiltonian) and Ĥint(z

′) (interaction Hamiltonian). Then

T γ
{
Ĥ0(z)Ĥint(z

′)
}

= T γ
{
Ĥint(z

′)Ĥ0(z)
}
. (35)

Indeed for, e.g., z later than z′ Eq. (35) yields Ĥ0(t)Ĥint(t
′) no matter if we use the expression

in the left hand side or in the right hand side – remember the rule: operators with later contour-
times must be placed to the left. We can then manipulate the interacting Green function in
Eq. (14) as follows

Gij(z, z
′) =

1

i
〈Φg|T γ

{
e−i

∫
γ dz̄ Ĥ0(z̄)e−i

∫
γ dz̄ Ĥint(z̄)d̂i(z)d̂†j(z

′)
}
|Φg〉,

=
1

i

∞∑

n=0

(−i)n

n!

∫

γ

dz1· · · dzn〈Φg|T γ
{
e−i

∫
γ dz̄ Ĥ0(z̄)Ĥint(z1) · · · Ĥint(zn)d̂i(z)d̂†j(z

′)
}
|Φg〉. (36)

In the first equality we used that for two commuting operators Â and B̂ we have eÂ+B̂ = eÂeB̂.
In the second equality we expanded the exponent containing the interaction Hamiltonian in a
Taylor series. Comparing Eq. (36) with the expansion of the more familiar time-ordered Green
function we notice that the only difference is in the domain of integration: in Eq. (36) all
integrals are over the contour while in the time-ordered Green function all integrals are between
−∞ and +∞ (real axis). We can then recycle all results of the time-ordered formalism; it
will be enough to change the time domain from the real axis to the contour. In particular the
integrand in Eq. (36) is the noninteracting average of a string of fermionic operators, which
can be broken into products of Green functions using the Wick theorem [19]. This innocent-
looking observation implies that we can represent the expansion of Eq. (36) in terms of the same
Feynman diagrams as the time-ordered Green function! The only difference in NEGF is that the
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oriented lines are contour Green functions and the times of each internal vertex are integrated
over the contour. A few diagrammatic examples are given in the next section.
It is textbook knowledge that the diagrammatic expansion of G highlights the occurrence of
an important mathematical unit repeated to infinite order, i.e., the self-energy Σ. In NEGF the
self-energy, like the Green function, depends on two contour-times and the relation between G
and Σ is given by the Dyson equation (in matrix form)

G(z, z′) = G0(z, z′) +

∫

γ

dz1dz2G0(z, z1)Σ(z1, z2)G(z2, z
′)

= G0(z, z′) +

∫

γ

dz1dz2G(z, z1)Σ(z1, z2)G0(z2, z
′), (37)

where the Green function G0 is the noninteracting Green function discussed in section 4. We
can transform the Dyson equation into two integro-differential equations that, as we shall see,
are easier to handle. For this purpose we derive below the equation of motion of G0(z, z′) on
the contour. Using the decomposition in Eq. (17) we have

i
d

dz
G0(z, z′) = iδ(z, z′)

[
G>

0 (t, t)−G<
0 (t, t)

]
+Θ(z, z′)

d

dt
G>

0 (t, t′)+Θ(z′, z)
d

dt
G<

0 (t, t′), (38)

where
δ(z, z′) =

d

dz
Θ(z, z′) = − d

dz
Θ(z′, z) (39)

is the Dirac delta on the contour. From Eq. (30) the term in the square bracket is simply

G>
0 (t, t)−G<

0 (t, t) = −iu(t)
(

1− ρg + ρg
)
u†(t) = −i. (40)

Taking into account Eq. (24), i.e., the time derivative of G≶
0 , we can then rewrite Eq. (38) as

i
d

dz
G0(z, z′) = δ(z, z′) + h(t)G0(z, z′). (41)

With similar steps we can calculate the derivative with respect to z′ and find

− i
d

dz′
G0(z, z′) = δ(z, z′) +G0(z, z′)h(t′). (42)

These last two equations are the equations of motion (on the contour) for the noninteracting
Green function. As anticipated, they are useful to transform the Dyson equation into two
integro-differential equations for G. Deriving the first line of Eq. (37) with respect to z and
the second line of the same equation with respect to z′ we find

(
i
d

dz
− h(t)

)
G(z, z′) = δ(z, z′) +

∫

γ

dz̄ Σ(z, z̄)G(z̄, z′), (43)

G(z, z′)

(
−i

←−
d

dz′
− h(t′)

)
= δ(z, z′) +

∫

γ

dz̄ G(z, z̄)Σ(z̄, z′). (44)

Before discussing the numerical strategies to solve the equations of motion (43) and (44) let us
have a closer look at the self-energy and its lesser and greater components.
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Fig. 2: Diagrams for the Hartree-Fock self-energy (top) and for the correlation self-energy in
the 2nd Born approximation (bottom).

6 Simple diagrammatic approximations

In Fig. 2 we show a couple of diagrammatic approximations to Σ. To first order in the electron-
electron interaction v only two diagrams contribute, see Fig. 2 (top). The resulting Σ is the so
called Hartree-Fock (HF) self-energy

ΣHF,ij(z, z
′) = −i δ(z, z′)

∑

mn

vimnj Gnm(z, z+)

︸ ︷︷ ︸
Hartree

+ iδ(z, z′)
∑

mn

vimjnGnm(z, z+)

︸ ︷︷ ︸
Fock

≡ δ(z, z′)VHF,ij(t), (45)

where we have denoted by z+ a contour-time infinitesimally later than z and we have defined the
HF potential in the second line of Eq. (45). From Eq. (17) we see that G(z, z+) = G<(t, t) =

iρ(t). The HF potential is therefore a linear function of the one-particle density matrix; explic-
itly we have

VHF,ij(t) =
∑

mn

(
vimnj−vimjn

)
ρnm(t). (46)

The HF self-energy diagrams are the only self-energy diagrams proportional to the Dirac delta
on the contour. This time-locality of ΣHF prevents the description of, e.g., quasi-particle life-
times (which are always infinite in HF) and quasi-particle satellites like those emerging from
the dressing of electrons with plasmons. The Green function in the HF approximation is the so-
lution of the equations of motion (43) and (44) when Σ is approximated with ΣHF. The contour
integral is in this case trivial and the equations of motion reduce to

(
i
d

dz
− h(t)− VHF(t)

)
G(z, z′) = δ(z, z′), (47)
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G(z, z′)

(
−i

←−
d

dz′
− h(t′)− VHF(t′)

)
= δ(z, z′). (48)

These equations have the same mathematical structure as those of the noninteracting Green
function, see Eqs. (41) and (42). The only difference is that the one-particle Hamiltonian h(t)

is replaced by the HF Hamiltonian

hHF(t) ≡ h(t) + VHF(t). (49)

In essence the HF world is a world where an electron does not collide with other electrons
but it rather moves in the mean-field potential VHF generated by all other electrons. The
lesser and greater components are therefore given by Eq. (30) with evolution operator u(t) =

T {e−i
∫ t
−∞ dt̄ hHF(t̄)}. This implies that the HF retarded and advanced Green functions read

GR(t, t′) = iΘ(t−t′)T {e−i
∫ t
t′ dt̄ hHF(t̄)}, GA(t, t′) =

(
GR(t′, t)

)†
, (50)

and that Eq. (34) for G≶ is valid in the HF approximation too.
Higher-order self-energy diagrams are nonlocal in time and contribute to the so called correla-
tion self-energy Σc. The splitting of the full self-energy Σ = ΣHF + Σc into a HF part and a
correlation part is extremely convenient for computational purposes, see section 10. In Fig. 2 we
show the second-order (in the interaction) diagrams for the correlated self-energy, also known
as the 2nd Born (2B) approximation. In the 2B world an electron can collide only once with an-
other electron; this is however enough to change its quantum number like, e.g., the momentum,
and hence to generate a finite life-time.
Converting the diagrams of Fig. 2 into a mathematical expression we get

Σc,ij(z, z
′) =

= i2
∑

rpn

∑

mqs

virpnvmqsj
[
−Gnm(z, z′)Gsr(z

′, z)Gpq(z, z
′) +Gnq(z, z

′)Gsr(z
′, z)Gpm(z, z′)

]

= i2
∑

rpn

∑

mqs

virpn
(
vqmsj−vmqsj

)
Gnm(z, z′)Gsr(z

′, z)Gpq(z, z
′), (51)

where in the last step we renamed m ↔ q in the second term of the square bracket. As antici-
pated this self-energy is nonlocal in time, i.e., it is not proportional to δ(z, z′), and the equations
of motion for G remain integro-differential equations. The corresponding greater and lesser
Green functions cannot be written as in Eq. (30) and, consequently, Eq. (34) is no longer valid.
The lesser and greater components of the self-energy are defined similarly to the lesser and
greater components of the Green function

Σ<
c (t, t′) ≡ Σc(t−, t

′
+), Σ>

c (t, t′) ≡ Σc(t+, t
′
−). (52)

Both Σ< and Σ> are functions of the real times t and t′. From their definition we see that these
functions are simply obtained from Eq. (51) with the replacement

Gnm(z, z′)Gsr(z
′, z)Gpq(z, z

′) → G≶
nm(t, t′)G≷

sr(t
′, t)≶G≶

pq(t, t
′). (53)
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Like the Green function, see discussion below Eq. (15), if t< t′ then the lesser self-energy is also
given by Σ<

c (t, t′) = Σ<
c (t−, t

′
−) whereas if t> t′ then we have Σ<

c (t, t′) = Σ<
c (t+, t

′
+). Anal-

ogous considerations apply to the greater self-energy. Choosing z and z′ on different branches,
like we have done in Eq. (52), returns the lesser and greater self-energy for all times t and t′.
In the next section we describe how to calculate the Green function with a nonvanishing corre-
lation self-energy.

7 Kadanoff-Baym equations

Let us start by rewriting the equations of motion (43), (44) with the self-energy Σ = ΣHF+Σc

(
i
d

dz
− hHF(t)

)
G(z, z′) = δ(z, z′) +

∫

γ

dz̄ Σc(z, z̄)G(z̄, z′), (54)

G(z, z′)

(
−i

←−
d

dz′
− hHF(t′)

)
= δ(z, z′) +

∫

γ

dz̄ G(z, z̄)Σc(z̄, z
′). (55)

As pointed out in section 3, see discussion below Eq. (15), the lesser Green function G<(t, t′) is
equal (for all t and t′) to the contour Green function G(z, z′) when z = t− and z′ = t′+. Making
this choice of contour-times in, e.g., Eq. (54) we find

(
i
d

dt
− hHF(t)

)
G<(t, t′) =

∫

γ

dz̄ Σc(t−, z̄)G(z̄, t′+). (56)

The Dirac delta vanishes since z lies on the forward branch and z′ lies on the backward branch
(hence they can never coincide). To work out the integral over the contour we break it up into
four different pieces, two per branch. The integral over the forward branch is performed from
−∞ to t and then from t to +∞ whereas the integral over the backward branch is performed
from +∞ to t′ and then from t′ to −∞
∫

γ

dz̄ Σc(t−, z̄)G(z̄, t′+) =

∫ t

−∞
dt̄ Σc(t−, t̄−)G(t̄−, t

′
+)︸ ︷︷ ︸

Σ>c (t,t̄)G<(t̄,t′)

+

∫ ∞

t

dt̄ Σc(t−, t̄−)G(t̄−, t
′
+)︸ ︷︷ ︸

Σ<c (t,t̄)G<(t̄,t′)

+

∫ t′

∞
dt̄ Σc(t−, t̄+)G(t̄+, t

′
+)︸ ︷︷ ︸

Σ<c (t,t̄)G<(t̄,t′)

+

∫ −∞

t′
dt̄ Σc(t−, t̄+)G(t̄+, t

′
+)︸ ︷︷ ︸

Σ<c (t,t̄)G>(t̄,t′)

. (57)

In this equation the integrand of the second and third terms is the same. We can then use∫∞
t

+
∫ t′
∞ =

∫ t′
t

=
∫ t′
−∞−

∫ t
−∞ and rewrite the contour integral as

∫

γ

dz̄ Σc(t−, z̄)G(z̄, t′+) =

∫ t

−∞
dt̄
(
Σ>

c (t, t̄)−Σ<
c (t, t̄)

)
G<(t̄, t′)

−
∫ t′

−∞
dt̄ Σ<

c (t, t̄)
(
G>(t̄, t′)−G<(t̄, t′)

)
. (58)
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For any two-times correlator C(z, z′) we define the retarded and advanced components as

CR(t, t′) = Θ(t−t′)
(
C>(t̄, t′)− C<(t̄, t′)

)
, (59)

CA(t, t′) = −Θ(t′−t)
(
C>(t̄, t′)− C<(t̄, t′)

)
. (60)

One important property following from these definitions is that

CR − CA = C> − C<. (61)

Using the retarded and advanced functions we can transform the equation of motion (56) in a
form containing only integrals and functions on the real axis

(
i
d

dt
− hHF(t)

)
G<(t, t′) =

∫ ∞

−∞
dt̄
(
ΣR

c (t, t̄)G<(t̄, t′) +Σ<
c (t, t̄)GA(t̄, t′)

)
. (62)

With similar manipulations we obtain the equation of motion for the greater Green function.
We choose z = t+ and z′ = t′−, use Eq. (55), and find

G>(t, t′)

(
− i

←−
d

dt′
− hHF(t′)

)
=

∫ ∞

−∞
dt̄
(
GR(t, t̄)Σ>

c (t̄, t′) +G>(t, t̄)ΣA
c (t̄, t′)

)
. (63)

Equations (62) and (63) are known as the Kadanoff-Baym equations (KBE) [20]. They form a
closed system of integro-differential equations since (i) the lesser and greater self-energies are
functions (or better functionals) of G< and G>, see for instance the 2B self-energy in Eq. (51),
and (ii) the lesser and greater Green functions are anti-hermitian, see the definitions in Eqs. (15)
and (16), i.e.,

G≶(t′, t) = −
(
G≶(t, t′)

)†
. (64)

Due to the cubic scaling with the maximum propagation time, the KBE are rather burdensome
to solve numerically. Their use has been so far restricted to atoms, diatomic molecules, or model
systems [21–24]. Details on available implementations strategies can be found in [1, 25, 26].
Before concluding this section we would like to observe that the retarded and advanced corre-
lators defined in Eqs. (59) and (60) agree with the previous definition of GR and GA in nonin-
teracting systems. The noninteracting lesser and greater Green functions are given in Eq. (30)
and therefore the noninteracting retarded Green function calculated according to Eq. (59) is

GR(t, t′) = −iΘ(t−t′)u(t)
(
1− ρg + ρg

)
u†(t′) = −iΘ(t−t′)u(t)u†(t′), (65)

which is the same as Eq. (32). Similarly one can show that the advanced noninteracting Green
functions defined as in Eq. (60) agrees with Eq. (33).

8 The Generalized Kadanoff-Baym Ansatz

In the mid-1980s Lipavsky et al. [27] proposed the so called Generalized Kadanoff-Baym
Ansatz (GKBA) to collapse the KBE for the two-times Green functions into a single equa-
tion for the one-particle density matrix ρ(t), reducing the computational cost drastically. The
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NEGF+GKBA approach has been successfully applied to the nonequilibrium dynamics [28,29]
and many-body localization [30] of Hubbard clusters, time-dependent quantum transport [31,
32] equilibrium absorption of sodium clusters [33], real-time dynamics of the Auger decay [34],
transient absorption [35–38] and carrier dynamics [18, 39] of semiconductors, excitonic insu-
lators out of equilibrium [40] as well as charge transfer [41] and charge migration [42–44] in
molecular systems.
The basic idea of the GKBA is to approximate the lesser and greater Green functions inside the
collision integral with the expression in Eq. (34), which we have demonstrated to be valid only
for noninteracting systems or in the HF approximation. In terms of the one-particle density
matrix ρ(t) = −iG<(t, t) = 1− iG>(t, t) defined in Eq. (18) we can write the GKBA as

G<(t, t′) = −GR(t, t′) ρ(t′) + ρ(t) GA(t, t′), (66)

G>(t, t′) = −GR(t, t′)(ρ(t′)−1) + (ρ(t)−1)GA(t, t′). (67)

Through the GKBA the time off-diagonal lesser and greater Green functions are expressed
in terms of ρ and the propagators. Assuming that the average time between two consecutive
collisions of an electron in the medium is longer than the quasiparticle life-time we can further
approximate the propagators with their HF expression, see Eq. (50). In this way the fullG≶(t, t′)

depends only on the density matrix since hHF is a functional of ρ through the HF potential,
see again Eq. (46). We mention here that other approximations to the propagators have been
proposed in the literature with the aim of accounting for finite quasi-particle life-times [31, 45–
47]. In all cases, however, the approximated propagators are functionals of ρ only.
Let us see how to reduce the KBE to a single equation for ρ(t) using the GKBA. Consider
Eq. (62) and the adjoint equation where the lesser Green function G<(t, t′) is derived with
respect to t′. The adjoint equation is the same as Eq. (63) with > → <. Subtracting the two
equations and setting t = t′ we get

i

(
d

dt
+

d

dt′

)
G<(t, t′)

∣∣
t=t′
−
[
hHF(t), G<(t, t)

]
= I(t) + I†(t), (68)

where I(t) is the collision integral on the right hand side of Eq. (62) calculated at t = t′. To show
that the collision integral of the adjoint equation is the hermitian conjugate of I(t) one can use
the anti-hermiticity of the Green function, i.e., Eq. (64), and of the self-energy. In this chapter
there is not enough space for the general proof of the property Σ<(t, t′) = −

(
Σ<(t′, t)

)†;
however, the reader can verify that this property is fulfilled by the 2B self-energy in Eq. (51);
see Ref. [1] for the general proof. The crucial observation is now that the first term in Eq. (68)
is nothing but the time derivative of the one-particle density matrix ρ, whereas the second term
is the commutator between the HF Hamiltonian and ρ. Hence

d

dt
ρ(t) + i

[
hHF[ρ](t), ρ(t)

]
= −I[ρ](t)− I†[ρ](t). (69)

We have highlighted that hHF is a functional of ρ through the HF potential in Eq. (46) and that
the collision integral I is a functional of ρ through the GKBA. Therefore Eq. (69) is a closed
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equation for the one-particle density matrix! The numerical solution scales quadratically with
the maximum propagation time since ρ depends on one time only. To better appreciate the
computational gain let us work out the collision integral I(t) for the 2B self-energy.
We begin by observing that for t = t′ the right hand side of Eq. (62) can be written as

I(t) =

∫ t

−∞
dt̄

((
Σ>

c (t, t̄)−Σ<
c (t, t̄)

)
G<(t̄, t)−Σ<

c (t, t̄)
(
G>(t̄, t)−G<(t̄, t)

))

=

∫ t

−∞
dt̄
(
Σ>

c (t, t̄)G<(t̄, t)−Σ<
c (t, t̄)G>(t̄, t)

)
. (70)

Using Eq. (51) a matrix element of the product Σ>
c (t, t̄)G<(t̄, t) reads

(
Σ>

c (t, t̄)G<(t̄, t)
)
il

=
∑

j

Σ>
c,ij(t, t̄)G

<
jl(t̄, t)

= i2
∑

rpn

virpn
∑

jmqs

(
vqmsj−vmqsj

)
G>
nm(t, t̄)G<

sr(t̄, t)G
>
pq(t, t̄)G

<
jl(t̄, t). (71)

Similarly, the matrix element of the product Σ<
c (t, t̄)G>(t̄, t) is obtained from Eq. (71) by in-

terchanging >↔ <. The mathematical structure underlying these expressions emerges clearly
if we introduce the Coulomb tensor

w qj
sm
≡ vmqsj−vqmsj = w∗jq

ms
(72)

and the response function

χ0,≷
pq
rs

(t, t′) ≡ −iG≷
pq(t, t

′)G≶
sr(t

′, t). (73)

We then see that Eq. (70) becomes [2–4]

Iil(t) = i2
∑

rpn

virpn

∫ t

−∞
dt̄
∑

jmqs

[
χ0,>
pq
rs

(t, t̄)w qj
sm
χ0,<
jl
mn

(t̄, t)− χ0,<
pq
rs

(t, t̄)w qj
sm
χ0,>
jl
mn

(t̄, t)
]

≡ −i
∑

rpn

virpn G pl
rn

(t). (74)

The square bracket is the sum of simple products between matrices in the two-particle space.
Using greek letters for superindices composed by pairs of one-particle indices, e.g., α = (p, r),
β = (l, n), etc., the matrix elements of G can also be written as [4]

Gαβ(t) = −i

∫ t

−∞
dt̄
∑

µν

[
χ0,>
αµ (t, t̄)wµνχ

0,<
νβ (t̄, t)− χ0,<

αµ (t, t̄)wµνχ
0,>
νβ (t̄, t)

]
. (75)

We point out that up to this point we have not yet used the GKBA to transform the collision in-
tegral, or equivalently G, into a functional of the density matrix. Evaluating the greater response
function for t > t′ using the GKBA we get

χ0,>
pq
rs

(t, t′) = i
∑

a

GR
pa(t, t

′)
(
ρaq(t

′)−δaq
)

︸ ︷︷ ︸
−G>pq(t,t′)

∑

b

ρsb(t
′)GA

br(t
′, t)

︸ ︷︷ ︸
G<sr(t′,t)

=
∑

ab

PR
pa
rb

(t, t′)ρ
(2)>
aq
bs

(t′), (76)



Nonequilibrium Green functions 8.17

where we have defined

PR
pa
rb

(t, t′) ≡ iGR
pa(t, t

′)GA
br(t

′, t), ρ
(2)>
aq
bs

(t′) ≡
(
ρaq(t

′)−δaq
)
ρsb(t

′). (77)

The two-time function PR can be interpreted as the propagator of an electron-hole pair. Notice
that GR(t+, t) = −i and GA(t, t+) = i, and hence

PR
pa
rb

(t+, t) = iδpaδrb (78)

or equivalently

PR
αβ(t+, t) = iδαβ. (79)

For t < t′ the GKBA implies

χ0,>
pq
rs

(t, t′) = i
∑

a

(
ρpa(t)−δpa

)
GA
aq(t, t

′)

︸ ︷︷ ︸
G>pq(t,t′)

∑

b

GR
sb(t
′, t)ρbr(t)

︸ ︷︷ ︸
−G<sr(t′,t)

= −
∑

ab

ρ
(2)>
pa
rb

(t)PA
aq
bs

(t, t′), (80)

where

PA
aq
bs

(t, t′) ≡ −iGA
aq(t, t

′)GR
sb(t
′, t) =

(
PR
qa
sb

(t′, t)
)∗
. (81)

Using the superindex convention, the greater response function in GKBA for any t and t′ then
reads

χ0,>
αβ (t, t′) =

∑

µ

(
PR
αµ(t, t′)ρ

(2)>
µβ (t′)− ρ(2)>

αµ (t)PA
µβ(t, t′)

)
. (82)

An analogous derivation can be carried out for the lesser response function. The final result is
identical to Eq. (82) but the matrix ρ(2)> is replaced by the matrix

ρ
(2)<
aq
bs

(t) ≡ ρaq(t)
(
ρsb(t)−δsb

)
. (83)

Hence

χ0,<
αβ (t, t′) =

∑

µ

(
PR
αµ(t, t′)ρ

(2)<
µβ (t′)− ρ(2)<

αµ (t)PA
µβ(t, t′)

)
. (84)

We are now ready to transform G into an explicit functional of the one-particle density matrix.
Taking into account that t̄ < t in Eq. (75), we obtain (in matrix form) [2–4]

G(t) = i

∫ t

−∞
dt̄P R(t, t̄)

(
ρ(2)>(t̄)wρ(2)<(t̄)− ρ(2)<(t̄)wρ(2)>(t̄)

)
P A(t̄, t), (85)

where boldface letters are used to distinguish matrices in the two-particle space from matrices
like G, h or Σ in the one-particle space. The quadratic scaling of the NEGF+GKBA approach
is evident from Eq. (85): a time step from t to t + δt necessitates the calculation of G(t), and
G(t) contains an integral whose upper limit grows like t.
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d

dt
⇢ + i

h
hHF, ⇢

i
= �(I + I†)

Iil = �i
X

rpn

virpn G pl
rn

 ⌘ ⇢(2)>w⇢(2)< � ⇢(2)<w⇢(2)>

⇢
(2)<
aq
bs
⌘ ⇢aq(⇢sb � �sb)

⇢
(2)>
aq
bs
⌘ (⇢aq � �aq)⇢sb

h
(2)

HF,
pc
rd

= hHF,pc�rd � �pchHF,dr

n
d

dt
G + i

h
h

(2)
HF, G

i
= i 

Fig. 3: Summary of the fundamental equations and definitions for NEGF+GKBA simulations
in the 2B approximation.

9 Time-linear scaling and state-of-the-art approximations

Important progress has been recently achieved in reducing the computational scaling of the
NEGF+GKBA equations to the ideal linear law [2], and in establishing that the time-linear
scaling holds for the 2B approximation as well as for state-of-the-art diagrammatic methods like
GW and T-matrix (both in the particle-hole and particle-particle channels) [3]. In Ref. [4] the
time-linear scaling formulation has been further extended to GW plus exchange, T-matrix plus
exchange and self-energies with three-particle correlations. Furthermore, in Ref. [5] a GKBA
has been introduced also for bosonic Green functions, and a time-linear scaling formulation
for real-time simulations of nonequilibrium systems of interacting electrons and bosons, e.g.,
phonons or photons, has been established here too.
The fundamental observation is that the two-particle propagator P R satisfies an elementary
equation of motion. Taking into account that GR and GA are approximated at the HF level, see
Eq. (50), we get for any t > t̄

i
d

dt
PR
pa
rb

(t, t̄) =
∑

c

hHF,pc(t)P
R
ca
rb

(t, t̄)−
∑

d

hHF,dr(t)P
R
ca
db

(t, t̄). (86)

Introducing the HF Hamiltonian in the two-particle space

h
(2)

HF,
pc
rd

(t) = hHF,pc(t)δrd − δpchHF,dr(t), (87)

we can rewrite the equation of motion for P R in matrix form as follows

i
d

dt
P R(t, t̄) = h

(2)
HF(t)P R(t, t̄), t > t̄. (88)

Let us now come to P A. In matrix form Eq. (81) reads P A(t̄, t) =
(
P R(t, t̄)

)†. Taking the
hermitian conjugate of Eq. (88) we then get

− i
d

dt
P A(t̄, t) = P A(t̄, t)h

(2)
HF(t), t > t̄, (89)
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⌃c,ij =

i j

1

2
3 n� 2

n� 1

n
1X

n=2

= +
w

Fig. 4: Diagrams for the GW+X self-energy.

where we have observed that the matrixh(2)
HF is hermitian in the two-particle space, i.e., h(2)

HF,αβ =

h
(2)∗
HF,βα. The equations of motion for P R and P A can be used to construct an equation of motion

for G. Recalling the rule

d

dt

∫ t

dt̄ f(t, t̄) = f(t+, t) +

∫ t

dt̄
d

dt
f(t, t̄), (90)

where f is an arbitrary function of two times, we find from Eq. (85)

i
d

dt
G(t) = −Ψ (t) + h

(2)
HF(t)G(t)− G(t)h

(2)
HF(t), (91)

with
Ψ (t) ≡ ρ(2)>(t)wρ(2)<(t)− ρ(2)<(t)wρ(2)>(t). (92)

Equation (91) together with the equation of motion for ρ, see Eq. (69), form a closed system
of ordinary differential equations [2, 3]. Thus the numerical solution of the time-dependent
2B approximation in NEGF+GKBA scales linearly with the maximum propagation time, which
was to be demonstrated. For the benefit of the reader we summarize in Fig. 3 the main equations
and definitions.
We have already mentioned that the linear scaling of the NEGF+GKBA equations is not limited
to the 2B approximation. In what follows we derive the NEGF+GKBA equations for the GW
plus exchange (GW+X) approximation. As we shall see the difference with the 2B approxima-
tion, Eq. (91), is only minor. Readers who wish to immediately compare 2B with GW+X or
who prefer to go through the derivation in a second reading can jump directly to Eq. (110).
The GW+X self-energy is displayed in Fig. 4 where the double wiggly lines represent the tensor
w defined in Eq. (72), see also the diagrammatic representation of w in the grey box of Fig. 4.
The well known GW self-energy is recovered by neglecting the exchange contribution in w,
i.e., by setting w qj

sm
= vmqsj (first term on the right hand side of the diagrammatic equation in

the grey box). The figure shows the diagrams of order n in the interaction strength. The first
term of the sum has n = 2 and it coincides with the 2B self-energy of Fig. 2. Thus, the GW+X
self-energy is obtained from the 2B self-energy of Eq. (51) upon replacing the bare response
function χ0

pq
rs

(z, z′) ≡ −iGpq(z, z
′)Gsr(z

′, z), cf. Eq. (73), with the RPA response function (in
matrix form)

χ(z, z′) = χ0(z, z′) +

∫

γ

dz̄χ0(z, z̄)wχ(z̄, z′). (93)



8.20 Gianluca Stefanucci

This implies that the collision integral can again be written as in Eq. (74), but the function G
changes into

G(t) = −i

∫ t

−∞
dt̄
(
χ>(t, t̄)wχ0,<(t̄, t)− χ<(t, t̄)wχ0,>(t̄, t)

)
. (94)

We point out that at this point we have not yet used the GKBA to transform G into a functional
of the density matrix.
Before using the GKBA we extract the lesser and greater components of the RPA response
function. They follows from Eq. (93) when setting z = t−/+ and z′ = t+/−. Manipulating the
contour integral as we did in Eq. (57) until Eq. (62) we get

χ≶(t, t′) = χ0,≶(t, t′) +

∫
dt̄
(
χ0,R(t, t̄)wχ≶(t̄, t′) + χ0,≶(t, t̄)wχA(t̄, t′)

)
. (95)

Unless otherwise stated undefined integrals are over the entire real axis, i.e.,
∫
≡
∫∞
−∞. We can

use Eq. (95) to calculate the retarded and advanced components which, we recall, are defined
for any two-times correlator in Eqs. (59) and (60). For the retarded response function we find

χR(t, t′) = χ0,R(t, t′) +Θ(t−t′)
∫
dt̄ χ0,R(t, t̄)w

[
χ>(t̄, t′)−χ<(t̄, t′)

]

+Θ(t−t′)
∫
dt̄
[
χ0,>(t, t̄)−χ0,<(t, t̄)

]
wχA(t̄, t′). (96)

Consider the last term in this expression. It vanishes unless t > t′, due to the theta function
Θ(t−t′), and t′ > t̄, due to the theta function hidden in χA. We can then multiply the integrand
by Θ(t−t̄) and hence replace the square bracket with χ0,R(t, t̄). Taking into account Eq. (61)
to rewrite the square bracket in the second term we then see that the products χ0,RwχA cancel
off and we remain with

χR(t, t′) = χ0,R(t, t′) +

∫
dt̄ χ0,R(t, t̄)wχR(t̄, t′). (97)

The advanced response function can be worked out similarly; the result is the same as Eq. (97)
with R→ A.
The equations for χR/A are useful to isolate χ≶ in Eq. (95). To lighten the notation let us
denote with a dot the convolution between two functions. Thus Eq. (95) can be shorten into
χ≶ = χ0,≶+χ0,Rw·χ≶+χ0,≶w·χA and similarly Eq. (97) becomesχR = χ0,R+χ0,Rw·χR.
The dot can of course go to the left ofw as well. Notice that the retarded equation can be solved
iteratively to give

χR = χ0,R + χ0,Rw · χ0,R + χ0,Rw · χ0,Rw · χ0,R + . . .

= χ0,R +
(
χ0,R + χ0,Rw · χ0,R + . . .

)
w · χ0,R

= χ0,R + χRw · χ0,R. (98)

In other words χRw · χ0,R = χ0,Rw · χR. Let us go back to Eq. (95). Isolating χ≶ we get
(
δ − χ0,Rw

)
· χ≶ = χ0,≶ ·

(
δ +wχA

)
, (99)
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where δ stands for the Dirac delta, hence for any two-times correlator C we have [δ ·C](t, t′) =∫
dt̄ δ(t−t̄)C(t̄, t′) = C(t, t′) . Next we observe that

(
δ + χRw

)
·
(
δ − χ0,Rw

)
= δ +

(
χR − χ0,R − χRw · χ0,R

)
w = δ, (100)

since the term in parenthesis vanish, see Eq. (98). Convoluting Eq. (99) with
(
δ + χRw

)
on

the right we then find

χ≶ =
(
δ + χRw

)
· χ0,≶ ·

(
δ +wχA

)
. (101)

At this point we have all ingredients to evaluate G using the GKBA. From Eqs. (82) and (84)
we first obtain the GKBA expression of the retarded/advanced bare response functions

χ0,R(t, t′) = P R(t, t′)ρ(2),∆(t′), χ0,A(t, t′) = ρ(2),∆(t)P A(t, t′), (102)

where we have defined

ρ(2),∆(t) ≡ ρ(2),>(t)− ρ(2),<(t). (103)

Inserting Eq. (102) into Eq. (97) and in the analogous equation for χA we obtain the GKBA
expression for the retarded/advanced RPA response functions

χR(t, t′) = ΠR(t, t′)ρ(2),∆(t′), χA(t, t′) = ρ(2),∆(t)ΠA(t, t′), (104)

where the dressed electron-hole propagators satisfy the integral equation

ΠR = P R + P R · ρ(2),∆wΠR = P R +ΠR · ρ(2),∆wP R, (105a)

ΠA = P A + P A ·wρ(2),∆ΠA = P A +ΠA ·wρ(2),∆P A. (105b)

Here and below the product of a one-time function A and a two-times function B is intended as
[AB](t, t′) ≡ A(t)B(t, t′) and [BA](t, t′) = B(t, t′)A(t′). Thus in Eqs. (105) the convolution
dot could actually be placed anywhere between P R/A andΠR/A. Using the GKBA expression
for χ0,≶ in Eqs. (82) and (84) as well as the GKBA expression for χR/A in Eq. (104) the
lesser/greater RPA response function in Eq. (101) becomes

χ≶ =
(
δ +ΠRρ(2),∆w

)
·
(
P Rρ(2),≶ − ρ(2),≶P A

)
·
(
δ +wρ(2),∆ΠA

)

= ΠRρ(2),≶ ·
(
δ +wρ(2),∆ΠA

)
−
(
δ +ΠRρ(2),∆w

)
· ρ(2),≶ΠA. (106)

This result allows for rewriting G in Eq. (94) in a very elegant form. Taking into account that
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for any t̄ < t Eqs. (82) and (84) imply χ0,≶(t̄, t) = −[ρ(2),≶P A](t̄, t) we find

G(t) = i
[(
ΠRρ(2),> ·

(
δ+wρ(2),∆ΠA

)
−
(
δ+ΠRρ(2),∆w

)
·ρ(2),>ΠA

︸ ︷︷ ︸
χ>

)
·wρ(2),<P A

︸ ︷︷ ︸
−χ0,<

]
(t, t)

−
[
>↔ <

]

= i
[
ΠRρ(2),>wρ(2),< ·P A +ΠR

(
ρ(2),>wρ(2),∆−ρ(2),∆wρ(2),>

︸ ︷︷ ︸
−Ψ

)
·ΠA ·wρ(2),<P A

]
(t, t)

− i
[
ΠRρ(2),<wρ(2),> ·P A +ΠR

(
ρ(2),<wρ(2),∆−ρ(2),∆wρ(2),<

︸ ︷︷ ︸
−Ψ

)
·ΠA ·wρ(2),>P A

]
(t, t)

= i
[
ΠRΨ · P A +ΠRΨ ·ΠA ·wρ(2),∆P A

]
(t, t)

= i
[
ΠRΨ ·ΠA

]
(t, t), (107)

where in the second equality we have observed that [ρ(2),≷ΠA ·wρ(2),≶P A](t, t) = 0 sinceΠA

contains a Θ(t̄−t) and P A contains a Θ(t−t̄). We have also recognized the quantity Ψ defined
in Eq. (92). Making explicit the time integration, the function G in the GW+X approximation
has the following compact and elegant form

G(t) = i

∫ t

−∞
dt̄ΠR(t, t̄)Ψ (t)ΠA(t̄, t). (108)

It is now easy to prove that also the GW+X method scales linearly in time. Taking into account
the equation of motion (88) for P R and the rule in Eq. (90) we find from Eq. (105a)

i
d

dt
ΠR(t, t′) = h

(2)
HF(t)P R(t, t′) + i

d

dt

∫ t

−∞
dt̄P R(t, t̄)ρ(2),∆(t)wΠR(t̄, t′)

=
(
h

(2)
HF(t)− ρ(2),∆(t)w

)
ΠR(t, t′). (109)

Equation (105a) also implies thatΠR(t+, t) = i and thatΠA(t′, t) = [ΠR(t, t′)]†. Thus, using
again the rule in Eq. (90)

i
d

dt
G(t) = −Ψ (t) + h

(2)
eff (t)G(t)− G(t)h

(2)†
eff (t), (110)

where
h

(2)
eff (t) ≡ h(2)

HF(t)− ρ(2),∆(t)w. (111)

Comparing this result with the 2B equation of motion (91) we conclude that the only change
brought about by the GW+X approximation is the replacement of h(2)

HF with the effective Hamil-
tonian h(2)

eff . The effective Hamiltonian is not hermitian and therefore the last two terms in
Eq. (110) cannot be grouped to form a commutator.
Similar derivations can be carried out for the T-matrix approximation in the particle-particle and
particle-hole channels (with and without exchange diagrams), see Refs. [2–4]. In Ref. [4] an
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extension of the GKBA to higher order Green functions has been put forward to include three-
particle correlations while preserving the linear time-scaling. Another promising extension is
the GKBA for bosonic Green functions to deal with systems of electrons interacting with quan-
tized photons or phonons [5]. In this case too it is possible to build propagation algorithms that
scale linearly in time [5]. Importantly, these methodological advances can be merged to treat the
electron-electron, electron-phonon and electron-photon interactions on equal footing [6], thus
opening the door for the investigation of a broad range of nonequilibrium correlated phenom-
ena. Implementations of the NEGF+GKBA equations in high performance computer facilities
are therefore foreseeable in the next few years.

10 First-principles NEGF+GKBA implementations

The NEGF+GKBA equations can be applied to finite systems like atoms and molecules as
well as to extended systems like solids and interfaces. Of course, the most suitable basis to
describe a certain phenomenon depends on the system and on the external driving. For the
sake of definiteness we consider a finite system subject to an external time-dependent electric
field E(t). Treating the light-matter interaction in the dipole approximation the one-particle
Hamiltonian reads

hij(t) = heq
ij + E(t) ·Dij, (112)

where Dij = (Dx
ij, D

y
ij, D

z
ij) is a matrix element of the dipole vector.

In general a finite system is described by a one-particle basis made of active states and core
states. The population of the active states is different from 0 or 1 because of dynamical cor-
relations or thermal fluctuations or external fields whereas the population of the core states is
frozen to unity. We can work in the truncated space spanned by the active states provided that
the HF potential of the core electrons is added to heq. Henceforth we use the letter c for indices
running in the space of core states and the letters i, j,m, n for indices running in the active
space. We split the Hartree and exchange potentials into a core-electrons (ce) contribution and
an active-electrons (ae) contribution

(
VH,ce[ρ]

)
ij

=
∑

cc′

vicc′jρc′c,
(
VH,ae[ρ]

)
ij

=
∑

mn

vimnjρnm, (113)

(
Vx,ce[ρ]

)
ij

= −
∑

cc′

vicjc′ρc′c,
(
Vx,ae[ρ]

)
ij

= −
∑

mn

vimjnρnm. (114)

The full HF potential with indices in the active space is simply given by VHF = VH,ce + VH,ae +

Vx,ce + Vx,ae, see Eq. (46). Taking into account that ρcc′ = δcc′ , the equilibrium HF Hamiltonian
in Eq. (49) can be rewritten as

hHF[ρ] = heq+ce + VH,ae[ρ] + Vx,ae[ρ], (115)

where
heq+ce = heq + VH,ce + Vx,ce (116)
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is the one-particle Hamiltonian plus the HF potential generated by the frozen core-electrons.
Thus, replacing heq with heq+ce in Eq. (112) we can solve the NEGF+GKBA equations directly
in the active space.
In the next sections we shall describe how to perform first-principles NEGF+GKBA simulations
using two different types of basis. More details can be found in Ref. [48].

10.1 Kohn-Sham basis

We here consider the case of a Kohn-Sham (KS) basis [49–51] and assume that electrons in the
KS core orbitals remain frozen and do not participate to the dynamics. The equilibrium KS one-
particle density matrix in the KS basis reads ρKS,nm = δnm. The equilibrium KS Hamiltonian
in the same basis is diagonal and reads

hKS = heq + VH,ce + VH,ae[ρKS] + Vxc, (117)

where Vxc is the exchange-correlation (xc) potential of Density Functional Theory (DFT). In
general, VH,ce + Vxc is given by the sum of the pseudopotential and the xc potential generated
by the active electrons. A comparison with Eq. (115) allows us to express heq+ce in terms of the
KS Hamiltonian according to

heq+ce = hKS − Vxc − VH,ae[ρKS] + Vx,ce. (118)

Thus a first-principles NEGF+GKBA simulation needs as input the KS eigenvalues εKS
i (needed

to construct the KS Hamiltonian hKS,ij = δijε
KS
i ), the matrix elements Vxc,ij , Dij and the

Coulomb integrals vijmn for the evaluation of the Hartree potential VH,ae[ρKS] generated by
the active KS electrons, see Eq. (118), as well as for the evaluation of the functionals VH,ae[ρ]

and Vx,ae[ρ], see Eq. (115), and for the quantities Ψ , see Eq. (92), and h(2)
eff , see Eq. (111). In

this way the only remaining unknown is Vx,ce which, however, is usually small and can be ne-
glected. One could estimate this quantity by performing an all-electron KS calculation without
pseudopotentials.

10.2 Localized basis

For a description in terms of N one-particle localized states {|i〉} like, e.g., the Slater type
orbitals (STO) [52, 53] or the Gaussian type orbitals (GTO) [54], we need the matrix elements
of the equilibrium Hamiltonian heq

ij = 〈i| p̂2
2m

+ V̂n|j〉 (Vn being the nuclear potential), dipole
vector Dij = 〈i|r̂|j〉, overlap matrix Sij = 〈i|j〉 and Coulomb integrals vijmn = 〈ij|v̂|mn〉. As
our equations have been formulated in an orthonormal basis the very first step consists in the
orthonormalization of the localized (STO or GTO) basis

|i〉 →
∑

m

|m〉S−1/2
mi , (119)

and in expressing the matrices heq, D and the Coulomb tensor v in the new orthonormal basis.
To reduce the dimensionality of the one-particle Hilbert space we must perform a preliminary
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self-consistent HF calculation in the orthonormal basis of Eq. (119), and then construct the
orthonormal HF vectors |iHF〉 =

∑
m ϕ

(i)
m |m〉 with HF energies εHF

i . The HF states |iHF〉 =

|cHF〉 of energy εHF
c < Λ are considered as core states. Setting the vacuum energy at zero

the energy cut-off Λ is typically of the order of −102 eV. The best way to exploit the fixed
occupation of the core states is then to work in the HF basis since in this basis ρcc′ = δcc′ . This
means that we must calculate the matrix elements heq

ij , Dij and the Coulomb tensor vijmn in the
HF basis. To determine heq+ce we use its definition in Eq. (116) which in the HF basis yields

heq+ce
ij = heq

ij +
∑

cc′

(
vicc′j−vicjc′

)
ρc′c = heq

ij +
∑

c

(
viccj−vicjc

)
. (120)

This equation tells us that in addition to vijmn with all indices in the active space we also need
to calculate viccj and vicjc for all core indices c and for all active indices i, j.
The main limitation of the STO or GTO basis is that the continuum part of the one-particle
spectrum is, in general, poorly described and hence phenomena like photo-induced ionization
and Auger decay cannot be simulated. In phenomena like electron transport or photoabsorption
the electrons do instead remain bound to the system and a description in terms of localized
orbitals can be made accurate at will.
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1 Introduction

The development of quantum many-body physics has been strongly influenced in recent years
by quantum information theory with a particular emphasis on the concept of entanglement.
From a general point of view, entanglement is one of the most fascinating concepts of physics
and there are at least three distinctive reasons for its significance in various fields of the quantum
sciences:

(i) It provides important insights into the properties and behavior of quantum systems such
as quantum phase transitions [1–3] and the formation/breaking of chemical bonds [4].

(ii) It serves as a diagnostic tool for the description of quantum many-body states. Hence,
its rigorous quantification facilitates the development of more efficient descriptions of
strongly interacting systems [5, 6]

(iii) It is an important resource used in the quantum information sciences for realizing, e.g.,
quantum cryptography [7, 8], superdense coding [9] and possibly even quantum comput-
ing [10].

In the more traditional fields such as condensed matter physics and quantum chemistry, how-
ever, point (iii) is not sufficiently well acknowledged. In particular, the quantification of entan-
glement and correlation is often flawed or at least operationally meaningless and the significance
of the respective numbers for quantum information processing tasks is therefore unclear. This
is due to the fact that the fundamental superselection rule (“nature does not allow one to su-
perpose even and odd fermion number states”) is erroneously ignored. In quantum information
theory, however, entanglement is often studied in an abstract mathematical context, often de-
coupled from concrete physical systems. It is not unlikely that this huge separation between the
worlds of quantum many-body physicists and quantum information theorists will have rather
unpleasant consequences for the interface between those two fields. As a matter of fact, this
interface is gaining a lot of relevance in recent years due to the ongoing second quantum revo-
lution which may shape the 21st century as much as the first quantum revolution has shaped the
20th century: Individual quantum systems, such as atoms and molecules shall be controlled to a
much greater extent than before to enable more powerful applications of quantum information.
This apparently would necessitate a thorough understanding of entanglement and various other
correlations types in the context of fermionic quantum systems both on a fundamental and an
applied level. Due to the expected transformative impact of this second quantum revolution this
challenging task can even be seen as a key strategic goal for the near-term future (see also the
illustration in figure 1).
Accordingly, the main motivation of these lecture notes is to provide an introduction into the
concept of entanglement and correlation in the context of fermionic quantum systems taking
into account the needs of both quantum information scientists and quantum many-body physi-
cists. For this, we recall and discuss on a more elementary level concepts that were already
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Fig. 1: Strategic ambition for the quantum sciences: The connection between the worlds of
quantum information (QI) and quantum many body physics (QMB) needs to be strengthened
with a particular focus on entanglement as the unifying concept.

presented in our recent articles [11, 12]. In section 2, we first recall the definition of entangle-
ment and correlation in systems of distinguishable particles and then explain how those key
concepts can be applied in the context of identical particles (mainly electrons). In particular,
we explain the superselection rule and demonstrate that ignoring it would mean to violate fun-
damental laws of physics. Then, in section 3 we illustrate those concepts by applying them
to smaller model systems which facilitate a fully analytical treatment. In section 4 we finally
study more realistic systems (water, naphthalene and dichromium molecules) by exact numer-
ical means and quantify the orbital correlation and its separation into quantum and classical
parts.

2 Concept of correlation and entanglement

2.1 The quantum information theoretical formalism

The notion of correlation and entanglement plays a central role in quantum physics. In this
section, we review those concepts and their quantification in the context of distinguishable
subsystems as commonly studied in quantum information theory. We restrict ourselves to the
most important case of bipartite settings and refer the reader to Refs. [13,14] for an introduction
into the concept of multipartite correlation and entanglement.
To introduce the concepts of entanglement and correlation, we first recall a few important as-
pects regarding quantum states and their geometry. Although it is illustrative to deal with wave
functions, e.g., ψ(~r, σ), as one can use them to construct probability clouds for atomic and
molecular orbitals visualization, it is advantageous to adopt the representation-free formal-
ism of density operators, acting on an underlying (for simplicity finite-dimensional) Hilbert
space H. This facilitates more direct and compact definitions of correlation and entanglement.
As a matter of fact, both concepts refer solely to a decomposition of the system into two (or
more) subsystems and do not depend on any possible choice of basis states for those subsys-
tems. In this formalism, a quantum state is represented by a Hermitian operator ρ that is positive
semi-definite (i.e., having non-negative eigenvalues) and trace-normalized to unity, Tr[ρ] = 1,
reflecting the probabilistic nature of quantum mechanics. For the following considerations it
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will prove convenient to introduce and briefly discuss the set D of all density operators on a
given finite-dimensional complex Hilbert spaceH:

D ≡ {ρ : H linear−−→ H | ρ† = ρ ∧ ρ ≥ 0 ∧ Tr[ρ] = 1} . (1)

Exercise 2.1

Prove that in case of finite-dimensional complex Hilbert spacesH the Hermiticity of ρ is
a direct mathematical consequence of its positive semi-definiteness (and therefore would
not need to be imposed separately), i.e., show that ρ ≥ 0 implies ρ† = ρ.

Exercise 2.2

Prove that the set D of density operators is convex.

Equipped with the common notion of density operators, we can now discuss the concept of
expectation values of physical observables. The expectation value 〈Â〉ρ of an observable repre-
sented by a Hermitian operator Â follows according to Born’s rule as

〈Â〉ρ = Tr[ρÂ]. (2)

The set of all Hermitian operators generated through multiplication gives rise to the algebra
B(H) of all linear operators on H. For the sake of mathematical elegance one typically refers
to B(H) as the algebra of observables despite the fact that it contains also non-Hermitian oper-
ators. It is also worth noticing that — in contrast to B(H) — the real vector space of Hermitian
operators on H does not exhibit any algebraic structure since this set is not closed under mul-
tiplication, i.e., the product of two Hermitian operators is not necessarily Hermitian anymore.
While the expression (2) of the expectation value of an observable is one of the key concepts
thought in any quantum mechanics course, a crucial observation is often left out. To be more
specific, the compact form (2) reveals a more comprehensive and systematic notation of quan-
tum states: A quantum state is a linear, positive semi-definite map 〈·〉ρ from the algebra of
observables to the complex numbers, normalized to unity 〈1̂〉ρ = 1. The density operator just
defines this map according to (2). At first sight, this comment seems to be a bit pedantic and
overly mathematical. Yet, this more comprehensive notion of quantum states will allow one to
define the concept of reduced states in a rather straightforward manner (as we will see below)
while in the concrete formalism based on density operators and wave functions several obsta-
cles may arise. The latter often leads in practice to confusion and occasionally even to wrong
expressions for the reduced density operators of subsystems.

Exercise 2.3

Let ρ1, ρ2 ∈ D be two density operators on the finite dimensional Hilbert spaceH. Show
that the following two statements are equivalent:

1. ρ1 = ρ2,

2. 〈Â〉ρ1 = 〈Â〉ρ2 , for all Â ∈ B(H).
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Remark. The equivalence described in Exercise 2.3 is not valid anymore if the algebra A
of observables is restricted, i.e., it does not contain all linear operators on the Hilbert space,
A ( B(H). As we will learn in the next section, this will be the case for fermionic quantum
systems whose algebras of observables are restricted by the fundamental superselection rule to
only those operators that are not altering the particle number parity.
To develop some intuition for the convex space of density operators and quantum states, re-
spectively, we observe that the boundary of D is given by those ρ ∈ D which have at least
one vanishing eigenvalue. In particular, the extreme points (those that cannot be written as
a convex combination of others) are given by the pure states, ρ ≡ |Ψ〉〈Ψ |. From a general
point of view, the space D of quantum states could be interpreted as a subset of the Hermitian
matrices with dim(H) many rows and columns. In that sense the space D can be equipped
with a suitable metric. Examples include the distance metric based on the Frobenius norm,
dF (ρ, σ) = ‖ρ−σ‖F ≡

√
Tr(ρ−σ)2, or the Bures distance dB(ρ, σ) = Tr[

√√
ρ σ
√
ρ]2. For

further details on the geometry of density matrices and respective metrics we refer the reader to
Refs. [15–17].
One of the important conclusions from those geometric considerations is that the possible sim-
ilarity of two density operators ρ, σ can be quantified in a universal way, i.e., without referring
to a specific observable, despite the fact that ρ, σ do not carry any physical unit. In particular,
whenever two quantum states are close to each other in the state space D, their expectation
values will be close to each other for any observable as well. This follows directly from the

Cauchy-Schwarz inequality, |〈Â, B̂〉| ≤
√
|〈Â, Â〉|

√
|〈B̂, B̂〉| applied to the Hilbert-Schmidt

inner product, 〈Â, B̂〉 ≡ TrÂ†B̂,∣∣〈Â〉ρ−〈Â〉σ∣∣ = ∣∣TrÂ(ρ−σ)∣∣ ≤ ‖Â‖F dF (ρ, σ). (3)

To fully appreciate relation (3) let us recall that two quantum states with, e.g., the same energy
can still differ in their expectation values of other relevant observables.
All considerations so far were just referring to the total system. The discussion of interesting
physics refers, however, to a notion of subsystems. Let us consider in the following a quan-
tum system which can be split into two subsystems A and B, occasionally also called Alice’s
and Bob’s subsystem. In the common quantum information theoretical formalism those two
subsystems are assumed to be distinguishable and its states are described by density operators
ρAB on the total Hilbert space HAB ≡ HA ⊗HB, where HA/B denotes the local Hilbert space
of subsystem A/B. The underlying algebra AAB of observables of the total system follows
in the same way from the local algebras, AAB ≡ AA ⊗ AB. The presence of a multipartite
quantum system in particular allows us to introduce the important notion of reduced states cor-
responding to subsystems. To work this out, we consider a local measurement corresponding to
Â ∈ B(HA). Its expectation value follows directly as

〈Â⊗ 1̂B〉ρ = Trρ(Â⊗ 1̂B) . (4)

Since such a measurement is essentially restricted to only Alice’s subsystem, there exists a local
description of the quantum state, with respect to which the expectation of any local operator Â
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is the same as (4). This is the commonly used reduced density operator defined as

ρA ≡ TrB ρ, (5)

which satisfies
〈Â〉ρA = 〈Â⊗ 1̂B〉ρ, ∀Â ∈ B(HA). (6)

It is exactly the content of Exercise 2.3 which proves the existence and uniqueness of this
reduced density operator. In this context, it is also worth noticing that the more abstract notion
of a quantum state as a linear map from the algebra of observables to the complex numbers
would allow one to define on a mathematical level the reduced state in a particularly simple
manner: The reduced state is given by the reduction of the total state to the subalgebra AA ⊗ 1̂

(effectively AA). Then, by referring to the Riesz representation theorem, the existence of a
corresponding density operator ρA follows directly.

Exercise 2.4

Calculate the reduced density operator ρA on the subsystem A of the two-qubit state

|Ψ〉 = 1√
3
|0〉A ⊗ |0〉B +

1√
3
|1〉A ⊗ |0〉B +

1√
3
|0〉A ⊗ |1〉B.

To proceed, we notice that a particularly relevant class of observables in AAB are the local
ones, i.e, those of the form Â ⊗ B̂. As a matter of fact, they correspond to simultaneous
measurements of Â on subsystemA and B̂ on subsystemB. To understand the relation between
both subsystems, one would be interested in understanding how the respective measurements of
both local measurements are correlated. As a matter of definition, they are uncorrelated if the
expectation value of Â⊗ B̂ factorizes,

〈Â⊗ B̂〉ρAB
≡ TrAB ρAB Â⊗ B̂
= TrAB[ρAB Â⊗ 1̂B] TrAB[ρAB 1̂A ⊗ B̂]

≡ TrA[ρA Â] TrB[ρB B̂] ≡ 〈Â〉ρA〈B̂〉ρB . (7)

In the second line we introduced the identity operator 1̂A/B ∈ AA/B and the last line gives rise
to the reduced density operators ρA/B ≡ TrB/A ρAB of subsystems A/B obtained by tracing out
the complementary subsystem B/A. To quantify the correlation between the measurements of
Â and B̂ one thus introduces the correlation function

CρAB
(Â, B̂) ≡ 〈Â⊗ B̂〉ρAB

− 〈Â〉ρA〈B̂〉ρB . (8)

Popular examples are the spin-spin or the density-density correlation functions, i.e., the local
operators Â, B̂ are given by some spin-component operator Ŝτ (~x) or the particle density oper-
ator n̂(~x) at two different positions ~xA/B in space.
The vanishing of the correlation function for a specific pair of observables Â, B̂ does not imply
by any means that the same will be the case for any other pair Â′, B̂′ of local observables. A
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prominent example would be the dissociated hydrogen state

|Ψ〉 = 1√
2

(
f †L↑f

†
R↓ − f

†
L↓f

†
R↑
)
|Ω〉 , (9)

where f †L/Rσ denotes the fermionic creation operator for an electron at the left(L)/right(R) nu-
cleus with spin σ, and |Ω〉 the vacuum state. Its electron density-density correlation function
between the left (L) and right (R) side vanishes in contrast to the respective spin-spin correlation
functions. Inspired by this example, one would like to introduce a measure for the correlation
between both subsystems without referring to a specific pair of local observables. One idea
would be to determine an average of the correlation function CρAB

(Â, B̂) or its maximal possi-
ble value with respect to all possible choices of local observables Â, B̂. At first sight, those two
possible measures of total correlation seem to be very difficult (if not impossible) to calculate
for a given ρAB. Yet, by referring to the geometric picture of density operators the introduction
of a total correlation measure turns into a rather simple task. To explain this, we first define

Definition 2.1 (Uncorrelated States) Let HAB ≡ HA ⊗HB be the Hilbert space and AAB ≡
AA⊗AB the algebra of observables of a bipartite system AB, with local Hilbert spacesHA/B

and local algebras AA/B. A state ρAB onHAB is called uncorrelated, if and only if

〈Â⊗ B̂〉ρAB
= 〈Â〉ρA〈B̂〉ρB , (10)

for all local observables Â ∈ AA, B̂ ∈ AB. The set of uncorrelated states is denoted by D0

and states ρAB /∈ D0 are said to be correlated.

A comment is in order regarding the local algebrasAA/B that play a crucial role in definition 2.1.
In the context of distinguishable subsystems one typically assumes that AA/B comprises all
Hermitian operators on the local spaceHA/B. As a consequence, a state ρAB is then uncorrelated
if and only if it is a product state, ρAB = ρA⊗ρB. This conclusion is, however, not true anymore
if one would consider in definition 2.1 smaller subalgebras [18]. Actually, exactly this will be
necessary in fermionic quantum systems due to the number parity superselection rule [19].
By referring to the geometric picture of density operators a measure for the total correlation
between A and B follows naturally. It is given by the distance of ρAB to the set D0 of uncorre-
lated states (see also figure 2 for an illustration). In principle one could base such a measure on
any possible distance-function. Yet, the notion of correlation and entanglement is formalized
in quantum information theory by imposing plausible axioms defining valid measures, com-
plemented by preferable features to guarantee an operational meaning [13, 14]. While further
details on that subject matter would go beyond the scope of these lecture notes, we just would
like to stress that the quantum relative entropy,

S(ρ||σ) = Tr ρ
(
log(ρ)− log(σ)

)
, (11)

emerges as the preferable underlying function for a geometric correlation (and entanglement)
measure (despite the fact that it is not a distance function in the strict mathematical sense) [20].
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Besides its information theoretical meaning, the quantum relative entropy has additional ap-
pealing properties. For instance, it is invariant under unitary transformations,

S(ρ||σ) = S(UρU †||UσU †) (12)

and it is convex in both arguments. The total correlation measures follow as [21, 22]

I(ρAB) ≡ min
σAB∈D0

S(ρAB||σAB) = S(ρAB||ρA ⊗ ρB) . (13)

Remarkably, the distinguished properties of the quantum relative entropy allow one to determine
the minimizer σAB ∈ D0 of ρAB’s distance to D0 analytically. It follows as σAB = ρA⊗ ρB and
the correlation is nothing else than the quantum mutual information I(ρAB). The latter has a
clear information theoretical meaning which emphasizes the significance of the total correlation
measure (13). It quantifies the information content in the state ρAB which is not yet contained
in the local states ρA, ρB.

Exercise 2.5

Prove that the following three definitions of the mutual information I are equivalent:

1. I(ρAB) = S(ρA) + S(ρB)− S(ρAB),

2. I(ρAB) = S(ρAB||ρA ⊗ ρB),

3. I(ρAB) = minσA,σB S(ρ||σA ⊗ σB).

We proceed by stating a crucial relation [23] between the total correlation (13) and individual
correlation functions (8),

CρAB
(Â, B̂)

‖Â‖F‖B̂‖F
≤
√

2 log(2)
√
I(ρAB). (14)

This means in particular that the correlation function of any two local observables Â, B̂ is small
whenever the quantum mutual information is small.

Exercise 2.6

Prove the crucial inequality (14). Hint: Combine (3) applied to the observable Â ⊗ B̂

with a well-known relation between the quantum relative entropy and the Frobenius norm
(see, e.g., Theorem 10.6 in Ref. [24]).

A possibly large total correlation suggests that the accurate description of the total system AB

requires significantly more computational effort than the one of both individual subsystems A,
B (in case they were entirely decoupled). While this is rather unfortunate for a quantum chemist
or a condensed matter theorist (they are interested in an accurate description of such systems)
the opposite is true from a quantum informational point of view. To be more specific, primarily
the quantum part of the total correlation represents an important resource for realizing quan-
tum information processing tasks such as quantum cryptography [7, 8], superdense coding [9],
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quantum teleportation [25] and possibly even quantum computing [10]. Typical protocols for
realizing such fascinating tasks utilize so-called Bell pairs, i.e., maximally entangled pure state
of two qubits (two-level quantum systems), e.g.,

|Ψ〉 = 1√
2

(
|↑〉A ⊗ |↓〉B − |↓〉A ⊗ |↑〉B

)
. (15)

It is thus one of the most important challenges to rigorously quantify the number of such Bell
pairs that could be extracted from a given correlated quantum state ρAB. It is not hard to imagine
that a correlated quantum state ρAB =

∑
i pi ρ

(i)
A ⊗ ρ

(i)
B which is given as the classical mixture

of uncorrelated states ρ(i)A ⊗ ρ
(i)
B does not offer any useful resource in that context: The system

AB is found in uncorrelated states ρ(i)A ⊗ ρ
(i)
B yet there is a classical probabilistic uncertainty

in which of them it will be in. To elaborate further on the quantification of entanglement one
defines

Definition 2.2 (Separable States) A state ρAB is called separable/non-entangled if ρAB can be
expressed as a convex linear combination of uncorrelated states, that is ρAB ∈ Conv(D0) ≡
Dsep . Otherwise a state is called entangled.

Here, Conv(·) stands for the convex hull and the term separable is frequently used in quantum
information theory for denoting non-entangled states. In these lecture notes, we will use these
two terms interchangeably.
In complete analogy to the concept of total correlation one has formulated plausible axioms for
valid and operationally meaningful entanglement measures [13, 14]. By referring the reader to
Ref. [22] for more details, it is again the geometric picture which leads to a prominent entan-
glement measure, the

E(ρAB) ≡ min
σAB∈Dsep

S(ρAB||σAB). (16)

It measures in terms of the quantum relative entropy (11) the minimal distance of ρAB to the
set Dsep of separable states. This and the general geometric picture is illustrated in figure 2.
The set D0 of uncorrelated states (recall definition 2.1) is shown as a black curve. According to
definition 2.2, its convex hull Dsep ≡ Conv(D0) comprises all separable/non-entangled states
while the remaining density operators (gray area) are entangled. The geometric correlation and
entanglement measures are given by the closest distance from a general state ρ ≡ ρAB to the
sets D0 (red dashed) and Dsep (red), respectively. Since the uncorrelated states are in particular
non-entangled, D0 ⊂ Dsep, the entanglement can never exceed the total correlation,

I(ρAB) ≥ E(ρAB). (17)

In contrast to the total correlation, there is no explicit analytical expression known for the rela-
tive entropy of entanglement in case of general mixed states and even its numerical calculation
is typically quite demanding. That is quite different in case of pure states, ρAB = |ΨAB〉〈ΨAB|,
since (16) then simplifies to the entanglement entropy which is defined as the von Neumann
entropy of the reduced density operators of subsystem A and B, respectively [26, 27],

E(|ΨAB〉〈ΨAB|) = S(ρA/B) = −Tr ρA/B log(ρA/B). (18)
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ρ
σ*
E(ρ)

I(ρ)
C(ρ)

Uncorrelated Separable Entangled

D0

Dsep

Fig. 2: Schematic illustration of the space D of quantum states. Family D0 of uncorrelated
states shown as thick black line and the separable states (its convex hullDsep) reside in the blue
area. The grey area represents the entangled states and the red (dashed) line the geometric
entanglement (classical correlation) measure E(ρ) (I(ρ)). From a more heuristic point of view,
one defines the classical correlation C(ρ) as the quantum relative entropy between the closest
separable and closest uncorrelated state.

It is equivalent to calculate the entanglement entropy with either ρA or ρB, as they have the
same eigenvalues in case of pure total states [28] and one has E(|ΨAB〉〈ΨAB|) = 0 if and only
if |ΨAB〉 factorizes. In that context, we also would like to recall that for mixed states ρAB the
entanglement entropy (18) is obviously not a good measure for entanglement anymore since the
mixedness of the reduced density operators ρA/B could originate just from possible mixedness
in ρAB (classical correlation).
Actually, knowing the closest separable state, the classical correlation of ρ can be quantified
geometrically (see figure 2), namely as the distance from the closest separable state σ∗ to the
closest uncorrelated state ρA ⊗ ρB [29],

C(ρ) ≡ S(σ∗||ρA ⊗ ρB). (19)

We conclude this section with two crucial comments. The first one is concerned with the relation
between the different types of correlation. In general, entanglement and classical correlation do
not sum to the total correlation. This is because mixed quantum states typically contain quan-
tum correlations beyond entanglement as it is concisely described by the concept of quantum
discord [30]. Moreover, a known exact relation including quantum discord refers to an alter-
native definition of classical correlation which is more technical than our simple geometric one
(see Eq. (19)) [30]. Due to its particular significance for quantum information tasks and for
the sake of simplicity we focus in our lecture notes on entanglement, however, and refer to it
occasionally as quantum correlation.
Last but not least, we would like to stress that for pure total states a remarkable operational
meaning of the entanglement entropy (to the base 2) has been found [31,26]: In the asymptotic
limit of n identical two-qubit systems, each in the same pure quantum state shared between
two parties A and B with an entanglement entropy S, the number m of maximally entangled
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Bell pairs that can be extracted follows as m = nS. It is exactly this operational meaning of
entanglement between distinguishable subsystems which raises some doubts about the common
approach to entanglement and correlation in condensed matter physics and quantum chemistry:
Applying some partial trace-like map to obtain some type of reduced density operator, possibly
even not normalized to unity, and then plugging it into the formula for the von Neumann entropy
does not necessarily mean to quantify correlation or entanglement.

2.2 Fermionic quantum systems

The concepts of entanglement and correlation, as reviewed in the previous section, refer to a
well-defined separation of the total system into two (or more) distinguishable subsystems. In the
simplest case, this separation emerges naturally from the physical structure of the total system,
namely by referring to a possible spatial separation of two subsystems. In that case, it will
be also easier to experimentally access both subsystems to eventually extract the entanglement
from their joint quantum state. Nonetheless, the notion of bipartite correlation and entanglement
is by no means unique for a given system since one just needs to identify some tensor product
structure in the total system’s Hilbert space,H ≡ HA⊗HB. In the most general approach, one
even defines subsystems by choosing two commuting subalgebras AA,AB of observables [18].
This also highlights the crucial fact that entanglement and correlation are relative concepts since
they refer to a choice of subsystems/subalgebras of observables.
In case of identical fermions the identification of subsystems is not obvious at all. For instance,
how could one decompose the underlying N -fermion Hilbert space HN ≡ ∧N [H1] or the Fock
space F ≡ ⊕N≥0HN? Actually, there exist two natural routes which look promising. The first
one refers naturally to the 2nd quantized formalism and leads to a notion of orbital (sometimes
also called mode or site) entanglement and correlation [32–34]. A second and more subtle
route [11] which is not covered here is related more to first quantization and tries to define
correlation and entanglement in the particle picture.
A natural tensor product structure emerges in the formalism of second quantization, facilitating
a bipartition on the set of spin-orbitals. To explain this, let us fix a reference basis for the one-
particle Hilbert space H1. We then introduce the corresponding fermionic creation (f †i ) and
annihilation operators (fj), fulfilling the fermionic commutation relations,

{f (†)
i , f

(†)
j } = 0, {f †i , fj} = δij. (20)

In the quantum information community the one-particle reference states are often referred to as
modes, or (lattice) sites by condensed matter physicists. Each spin-orbital or generally mode i
can be either empty or occupied by a fermion. In this picture, the quantum states are naturally
represented in the occupation number basis. The respective configuration states

|n1, n2, . . . , nd〉 = (f †1)
n1(f †2)

n2 · · · (f †d)
nd|Ω〉 (21)

with n1, n2 . . . , nd ∈ {0, 1} form a basis for the underlying Fock space

F(H1) =
d⊕

N=0

∧N [H(1)] . (22)
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Bipartitions naturally arise as separations of the basis B = {|ϕj〉}dj=1 of reference spin-orbitals
into two disjoint subsets BA = {|ϕj〉}mj=1, BB = {|ϕj〉}dj=m+1. This in turn suggests a splitting
of the configuration state according to

|n1, . . . , nm, nm+1, . . . , nd〉 7→ |n1, n2, . . . nm〉A ⊗ |nm+1, nm+2, . . . , nd〉B. (23)

The total Fock space F(H1) thus admits the tensor product structure

FAB ≡ F(H1) = F(H(A)
1 )⊗F(H(B)

1 ) ≡ FA ⊗FB, (24)

with respect to the given ordering of the spin-orbitals, where H(A/B)
1 denotes the one-particle

Hilbert space spanned by the first m and last d−m spin-orbitals, respectively. Actually, any
splitting of the one-particle Hilbert space into two complementary subspaces,

H1 = H(A)
1 ⊕H(B)

1 , (25)

induces a respective splitting (24) on the Fock space level.1 Moreover, such a decomposition
of the total Fock space into two factors allows us to introduce orbital reduced density operators
ρA/B for the respective orbital subsystem A/B. They are obtained by taking the partial trace of
the total state ρ with respect to the complementary factor FB/A. Consequently, ρA/B is defined
as an operator on the local space FA/B and in general does not have a definite particle number
anymore.
It seems that we can now readily apply the common quantum information theoretical formalism
referring to distinguishable subsystems. Yet there is one crucial obstacle. Not every Hermitian
operator acting on a fermionic Fock space is a physical observable. For instance, nature does
not allow one to coherently superpose even and odd fermion number states [19]. The signifi-
cance of this number parity superselection rule (SSR) is rather obvious as it will be explained
in the subsequent section since its violation would equivalently make superluminal signalling
possible in contradiction to special relativity. The number parity SSR implies that the algebra of
observables on any Fock space comprises only those operators which are block-diagonal with
respect to the even and odd fermion number sectors, Â = Âee + Âoo [35].

2.3 Superselection rules

A key ingredient in the physics of fermionic systems is the so-called parity superselection rule
(P-SSR). In its original form, P-SSR forbids coherent superpositions of even and odd fermion-
numbers states. In a more modern version, P-SSR states that the operators belonging to physi-
cally measurable quantities must commute with the parity operator of the particle number. This
means they have to be linear combinations of even degree monomials of the fermionic creation
and annihilation operators. This in turn implies that a superposition of two pure states with even

1For the sake of mathematical rigor and conclusiveness, we would like to stress that the corresponding iso-
morphism FAB → FA ⊗ FB is by no means unique. Yet, this changes when we take into account the parity
superselection rule as discussed below.
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Alice

Bob

Shared State

|ΨAB⟩

⇓

⇓ ⇓

U1 : i( f †
A − fA)

Unitary Op. 

M = ( fB + f †
B + 1)
2

Observable

0 1

|Ψ′ AB⟩

U0 : i( f †
A − fA)

Fig. 3: The protocol showing how superluminal signaling is possible when parity superselection
rule is broken: Alice communicates the bit value b ∈ {0, 1} by applying the corresponding
unitary Ub, Bob measures the observable M and obtains instantaneously that bit value, as
explained in the text.

and odd particle numbers cannot be distinguished from an incoherent classical mixture of those
states, thus one recovers the original formulation as a consequence.

The idea that the laws of nature impose P-SSR on fermionic systems was originally derived
based on group theoretical arguments [19, 36, 37]. However, the pertinence of P-SSR is also
obvious from the fundamental fact that violation of P-SSR would lead to a violation of the no-
signaling theorem, as we will explain in the following. The no-signaling theorem states that
two spatially separated parties cannot communicate faster than the speed of light. To relate this
fundamental law of physics to the P-SSR, let us assume that two distant parties Alice and Bob
could violate the P-SSR. For our argument it is sufficient for Alice and Bob to have each access
to one mode (e.g., an atomic spin-orbital). Their local Fock spaces are thus generated by the
fermionic annihilation and creation operators (fA, f

†
A) and (fB, f

†
B), respectively. Assume now

that they can share the state |ψ〉AB = 1√
2
(|0〉A|0〉B + |0〉A|1〉B), which is a superposition of

odd and even number states. The procedure for Alice to communicate instantaneously one bit
b = 0, 1 of classical information to Bob would be the following (see also figure 3): both of
them synchronize the clocks in their labs, and they pre-decide to perform local operations at a
particular time. If Alice wants to communicate 1, she does nothing (i.e., formally applies the
unitary U1 = 1), so |ψ〉AB remains unchanged; to communicate 0, Alice applies the unitary
U0 = i(f †A − fA), and the state becomes |ψ′〉AB = i√

2
(|1〉A|0〉B + |1〉A|1〉B). At the same

instant Bob measures the observable 1
2
(fB + f †B + 1). One easily verifies that in both cases

b = 0, 1 the outcome of that measurement is deterministic and will be nothing else than the
value of b. Hence, this proposed procedure allows Alice to communicate instantaneously a bit
b of information in contradiction to the no-signaling theorem and the laws of relativity.
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Exercise 2.7

Recap various steps of the quantum protocol outlined above and calculate various in-
termediate quantum states to confirm that violation of the P-SSR would indeed make
superluminal signalling possible.

Beside the parity superselection rule, it is often pertinent to consider superselection rules due
to some experimental limitations. One such rule is the fermion particle number superselection
rule (N-SSR). Measurable quantities obeying N-SSR must commute with the particle parity
operators [36]. This, in the form of lepton number conservation, was once considered to be
an exact symmetry of Nature. Recently, however, there have been indications that fundamental
Majorana particles may exist which could lead to a violation of the N-SSR. Nevertheless, in
a usual quantum chemistry set-up, we can safely regard N-SSR to hold. Indeed, the energies
of common molecular systems are (in contrast to systems studied in high energy physics) suf-
ficiently low to entirely suppress the emergence of electrons and other particles from vacuum
fluctuations. In the following parts of the lecture notes we will in particular discuss the conse-
quences of both superselection rules, but we assume that the N-SSR is the more relevant one in
quantum chemistry.
Having established the fundamental importance of superselection rules, we will now elucidate
how they affect our description of quantum states, and consequently change the physically
accessible correlation and entanglement in a quantum state. Accordingly, the SSRs will have
important consequences for the realization of quantum information processing tasks.
In the following, we will explain on a more abstract level superselection rules by referring to
the concept of local symmetries and present a general scheme for taking them into account.
The examples provided in Section 3 will then demonstrate those general concepts on a more
elementary level by applying them to the particle number and number parity symmetry for elec-
tronic quantum systems. From a general point of view, SSRs are restrictions on local algebras
of observables, resulting in physical algebras AA and AB. If the SSR is related to some locally
conserved quantityQA/B, then local operators must also preserve this quantity. That is, all local
observables satisfy

AA/B 3 OA/B =
∑
q

PqOA/BPq, (26)

where q ranges over all possible value of QA/B and Pq’s are projectors onto the eigensubspaces,
i.e.,OA/B are block diagonal in any eigenbasis of QA/B. It follows that different SSRs will lead
to drastically differentAA/B. The fact that we cannot physically implement every mathematical
operator changes the accessibility of quantum states. The fully accessible states are called the
physical states, and they satisfy

ρ =
∑
q,q′

Pq ⊗ Pq′ ρPq ⊗ Pq′ , (27)

or equivalently [
ρ, QA/B

]
= 0. (28)
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Fig. 4: Schematic protocol for utilizing entanglement from molecular systems (see text for more
details).

For a general state ρwhich does not satisfy (28), we can obtain its physical part by the following
projection

ρQ ≡
∑
q,q′

Pq ⊗ Pq′ ρPq ⊗ Pq′ . (29)

The physical state ρQ gives the same expectation value as ρ for all physical observables. There-
fore we can define a new class of uncorrelated states to be the ones with uncorrelated physical
parts with respect to the physical algebra:

DQ-SSR
0 =

{
ρ
∣∣ 〈OA ⊗OB〉ρ = 〈OA〉ρA〈OB〉ρB ∀OA ∈ AA,OB ∈ AB}. (30)

It is clear that the new set of uncorrelated states includes the one of the distinguishable set-
ting, i.e., D0 ⊆ DQ-SSR

0 . Consequently also more states are deemed separable. Relating to
figure 2, both the correlation and entanglement measure become smaller in the presence of an
SSR. There are two key messages here. First of all, correlation and entanglement are rela-
tive concepts. They depend not only on the particular division of the total system into two (or
more) subsystems but also on the underlying SSRs, which eventually defines the physical local
algebras of observables AA/B and the global algebra AA ⊗AB. Secondly, by ignoring the fun-
damentally important SSRs, one may radically overestimate the amount of physical correlation
and entanglement in a quantum state.
One of the biggest motivations for correctly identifying the amount of physical correlation and
entanglement in a quantum state is its value for information processing tasks. An operationally
meaningful quantification of entanglement does not only reveal non-local properties of a quan-
tum state, but should also measure the amount of resource that can be extracted for perform-
ing various quantum information tasks mentioned in section 1. In figure 4 we illustrate the
schematic protocol for utilizing entanglement from molecular systems. The quantum states of
individual molecules are transferred to SSR-free quantum registers through local measurements
and classical communication. A quantum circuit represented by a unitary gate U in figure 4
then acts on these quantum register states to perform computations. Finally, the end results of
the computation are retrieved with carefully designed measurements. The key step that limits
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the extraction of entanglement is the transferring of the quantum state, which is constrained by
the underlying SSR [38]. What remains on the quantum registers after the transfer are the phys-
ical parts defined in Eq. (29). From this perspective, the Q-SSR-constrained total correlation,
entanglement, and classical correlation of a single system in a state ρ follow as

IQ-SSR(ρ) = I(ρQ),

EQ-SSR(ρ) = E(ρQ),

CQ-SSR(ρ) = C(ρQ).

(31)

All quantum information theoretical concepts discussed so far are applicable to any arbitrary
orthonormal basis of D ≥ 2 spin orbitals. In particular, they then refer to any arbitrary sepa-
ration of them into subsystems A and B defined by spin-orbitals {|ϕj〉}DA

j=1 and {|ϕj〉}Dj=DA+1,
respectively. As far as the description of electronic structure is concerned, there are two partic-
ularly relevant separations. To explain them, let us first observe that the underlying one-particle
Hilbert space. H(1) consists of orbital and spin degrees of freedom, i.e., H(1) ≡ H(1)

l ⊗ H
(1)
s ,

where dim(H(1)
l ) ≡ d, dim(H(1)

s ) ≡ 2 and dim(H(1)) ≡ D = 2d. The first partition picks one
orbital |χ〉 ∈ H(1)

l and then defines subsystemA through the two spin-orbitals |χ〉⊗|σ〉, σ =↑, ↓.
Subsystem B follows accordingly and comprises the remaining D−2 spin-orbitals. The corre-
sponding measures for entanglement and correlation can be referred to as single-orbital en-
tanglement and correlation. As we will show in section 3.1, the fact that the total N -electron
ground state of a molecular system is pure drastically simplifies the respective measures and in
particular leads to closed formulas. The second more elaborated separation quantifies entangle-
ment and correlation between two orbitals |χi〉, |χj〉 ∈ H(1)

l . This means to first trace out the
complementary D−4 spin-orbitals to obtain a two-orbital reduced density matrix ρi,j which is
“living” on a sixteen-dimensional Fock space as illustrated in figure 5. Then, one applies to this
new “total state” ρi,j the formalism of bipartite entanglement and correlation for the separation
i↔ j (see also the subsequent section).
Finally, let us also illustrate how the SSRs are implemented in the calculation of pairwise orbital
entanglement. According to the previous comments, particularly Eq. (29), we just need to
replace ρi,j by its physical part ρQ

i,j . For the case of P-SSR and N-SSR this is illustrated in
figure 5. ρP

i,j is obtained by cutting out all light gray parts and ρN
i,j follows after removing two

additional entries (gray).
To avoid confusion, we recall that the quantum state on the algebra of observables based on two
orbitals i, j is described by the full 2RDM ρi,j , including the gray and light gray entries as well.
Yet, if we ask about the true physical correlation and entanglement between orbitals i and j this
means to restrict in a first step the quantum state to the subalgebra

Ai ⊗Aj ( Ai,j . (32)

Indeed, Ai ⊗ Aj is smaller than the full two-orbital algebra Ai,j because of the Q-SSR which
is applied for the former on both single-orbital algebras individually. Just to illustrate this in
more concrete terms, we observe for instance that the operator f †iσfjτ belongs to Ai,j but not to
Ai ⊗Aj , neither for P-SSR nor N-SSR, since f †iσ and fjτ change locally the number parity.
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N, m 3, 1/20, 0 2,−11, −1/2 2, 12, 0 4, 03, −1/21, 1/2

No SSR N-SSRP-SSR

Fig. 5: Illustration of two-orbital reduced density matrix ρi,j and its superselected variants ρQi,j ,
Q = N,P . Most entries vanish due to spin and particle symmetry (white). According to (29)
the P-SSR sets light gray entries to zero while N-SSR removes in addition two entries (gray).

3 Analytic treatment

3.1 Closed formulas for entanglement and correlation

We first look at the single-orbital total correlation and entanglement and assume a pure quantum
state ρ = |Ψ〉〈Ψ | for the total N -electron system (typically it will be the ground state or an
excited state of a molecular system). The one-orbital reduced density matrix associated with
the orbital |χj〉 is obtained by tracing out all remaining orbitals [34]

ρj = Tr\{j}[|Ψ〉〈Ψ |] . (33)

We reiterate that the partial trace Tr\{j}[·] does not mean to trace out particles but instead refers
to the tensor product in the second quantization, i.e., it exploits the structure F = Fj ⊗ F\{j}.
From a practical point of view, the non-vanishing entries of the single-orbital reduced density
matrix can be determined by calculating expectation values of |Ψ〉 involving only fermionic cre-
ation and annihilation operators referring to orbital |χj〉. For more details we refer the reader to
Refs. [39,40,34]. Due to the fixed particle number and the spin symmetry of |Ψ〉 the one-orbital
reduced density matrix will be always diagonal in the local reference basis {|Ω〉, |↑〉, |↓〉, |↑↓〉}
of orbital |χj〉:

ρj =


p1 0 0 0

0 p2 0 0

0 0 p3 0

0 0 0 p4

 . (34)
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By referring to the so-called Schmidt decomposition, the total state then takes the form

|Ψ〉 =
√
p1|Ω〉 ⊗ |ΨN,M〉+

√
p2|↑〉 ⊗ |ΨN−1,M− 1

2
〉 (35)

+
√
p3|↓〉 ⊗ |ΨN−1,M+ 1

2
〉+√p4|↑↓〉 ⊗ |ΨN−2,M〉,

where |Ψn,m〉 is a quantum state with particle number n and magnetizationm of the complemen-
tary subsystem comprising the remainingD−2 spin-orbitals. Now we can readily determine the
physical part ρQ in the presence of P-SSR or N-SSR. In the absence of SSRs, the single-orbital
entanglement of |Ψ〉 is simply given by the von Neumann entropy of ρj , and the single-orbital
total correlation is simply twice the entanglement,

E(|Ψ〉〈Ψ |) = S(ρj) = −
4∑
i=1

pi ln(pi).

I(|Ψ〉〈Ψ |) = 2E(|Ψ〉〈Ψ |).

(36)

In the case of Q-SSR, we need to consider the physical part ρQ of ρ = |Ψ〉〈Ψ |, which is no longer
a pure state. Consequently the single-orbital entanglement cannot be quantified by the von
Neumann entropy of ρj anymore. Instead we have to invoke the geometric picture in figure 2.
We first calculate the physical states with respect to P-SSR and N-SSR according to (29), and
then their correlation and entanglement are quantified using (13) and (16). Remarkably, despite
the fact that ρQ is not a pure state anymore the single-orbital correlation and entanglement under
P-SSR and N-SSR still involves the spectrum of ρj only:

I(ρP) = (p1 + p4) ln(p1 + p4) + (p2 + p3) ln(p2 + p3)

− 2(p1 ln(p1) + p2 ln(p2) + p3 ln(p3) + p4 ln(p4)),

I(ρN) = p1 ln(p1) + (p2 + p3) ln(p2 + p3) + p4 ln(p4)

− 2(p1 ln(p1) + p2 ln(p2) + p3 ln(p3) + p4 ln(p4)),

E(ρP) = (p1 + p4) ln(p1 + p4) + (p2 + p3) ln(p2 + p3)

− p1 ln(p1)− p2 ln(p2)− p3 ln(p3)− p4 ln(p4),
E(ρN) = (p2 + p3) ln(p2 + p3)− p2 ln(p2)− p3 ln(p3).

(37)

In particular, this implies immediately for both SSRs (Q=P,N)

IQ-SSR(ρ) = EQ-SSR(ρ) + E(ρ). (38)

For the case of no SSR, this is consistent with Eq. (36).
As already explained in the previous section, the second particularly relevant partitioning of
the total system leads to a notion of orbital-orbital correlation and entanglement. It is fully
described by the two-orbital reduced density matrix associated with orbital |χi〉 and |χj〉

ρi,j = Tr\{i,j}[|Ψ〉〈Ψ |]. (39)

For the specific case of a total system consisting of just two orbitals, the only two-orbital “re-
duced” density operator is given by the total (pure) state. Consequently, the orbital-orbital
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correlation and entanglement thus coincide with the single-orbital ones and the above results
(36), (37) immediately apply. Due to the electron interaction, the two-orbital reduced density
matrices ρi,j of general systems are, however, not pure anymore. This makes the calculation of
orbital-orbital entanglement and classical correlation highly non-trivial: According to the defi-
nition of the relative entropy of entanglement (16) one needs to minimize the distance between
ρi,j and σi,j ∈ Dsep which a priori involves 255 parameters. Yet, ρi,j inherits particle and spin
symmetries from the molecular ground state ρ = |Ψ〉〈Ψ | which changes the general situation
drastically. As a consequence almost all of its entries vanish as it is shown in figure 5 (see also
Refs. [39]). Based on elaborated ideas the respective minimization (16) can be simplified ac-
cordingly by transferring those symmetries toDsep [41,42]. The latter simplification eventually
allows us to calculate below the entanglement between |χ1〉, |χ2〉 ∈ H(1)

l for any ρi,j .
In the following, we will illustrate those concepts in the form of several analytical examples.

3.2 Single electron state

At first glance it might seem somewhat bizarre to examine the correlation and entanglement
in a system with only one particle. However, the reader shall bear in mind that the separation
into subsystems is not referring to particles but orbitals. The total Fock space F in our case
of two orbitals (|1〉, |2〉) has indeed a natural tensor product structure between the Fock spaces
of the first and second orbital, i.e., F = F1 ⊗ F2. Therefore the notion of correlation and
entanglement between two physically distinct orbitals is entirely legitimate even in the case of
one single electron.
In the following we consider the specific one-electron state

|Ψ〉 = 1√
2
(f †1↑ + f †2↑)|Ω〉 ≡

|↑〉 ⊗ |Ω2〉+ |Ω1〉 ⊗ |↑〉√
2

. (40)

Here, f †jσ denotes the fermionic creation operator for the spin-orbital |jσ〉, j = 1, 2, σ =↑, ↓
and |Ω〉 and |Ω1/2〉 the global and local vacuum states, respectively. If the SSRs are ignored,
state (40) is certainly entangled. Yet, as we will show now this entanglement is artificial since it
disappears when the P-SSR is taken into account. To prove this, recall that the P-SSR physical
part of ρ is obtained by projecting onto fixed local parity sectors

ρP =
∑

τ,τ ′=odd, even

Pτ ⊗ Pτ ′ρPτ ⊗ Pτ ′ =
1

2
|Ω1〉〈Ω1| ⊗ |↑〉〈↑ |+

1

2
|↑〉〈↑ | ⊗ |Ω2〉〈Ω2|, (41)

which is correlated but not entangled. Indeed, it is a classical mixture of two uncorrelated states.
For the sake of completeness, we would like to stress that for single electron states there is no
difference between P-SSR and N-SSR. In particular for the state (40) we find

ρN =
2∑

m,n=0

Pm ⊗ Pn ρPm ⊗ Pn

=
1

2
|Ω1〉〈Ω1| ⊗ |↑〉〈↑ |+

1

2
|↑〉〈↑ | ⊗ |Ω2〉〈Ω2| = ρP. (42)
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No SSR P-SSR N-SSR

Total 2 ln(2) ln(2) ln(2)

Quantum ln(2) 0 0

Classical 0.208 ln(2) ln(2) ln(2)

Table 1: Total, quantum and classical correlation between the two orbitals in the one-electron
state |Ψ〉 in (40), for the case without SSR, with P-SSR and with N-SSR.

We present in table 1 the orbital total correlation (“Total”), entanglement (“Quantum”) and
classical correlation (“Classical”) between |1〉 and |2〉 contained in state (40) which can easily
be calculated based on the physical states (41), (42).
The number 0.208 in table 1 is the constant ln(4/3)/2. When P-SSR or N-SSR is present (they
are equivalent in the case of only one electron), all entanglement is wiped out and all correlation
is classical, as it is shown by the second and third column. This striking example shows that one
can never extract any entanglement from a single one-electron quantum state even if it appears
at first sight as being entangled.

Exercise 3.1

Recalculate various entries of table 1.

Exercise 3.2

Building up on Exercise 3.1, explain why single electron quantum states are never P-SSR
or N-SSR entangled (i.e., for any dimension of the underlying one-particle Hilbert space
H(1) and any splitting (25)).

3.3 Dissociated hydrogen

Having studied the orbital-orbital correlation and entanglement in a one-electron state, we now
add a second electron to our two-orbital system. As an example, we consider the ground state
of the hydrogen molecule in the dissociation limit. The two orbital system now consists of the
1s orbital at each nucleus (both orthonormal as we assume almost infinite separation) and the
ground state follows as

|Ψ〉 = 1√
2
(f †1↑f

†
2↓ − f

†
1↓f
†
2↑)|Ω〉. (43)

In table 2 we list the total correlation, entanglement and classical correlation between |1〉 and
|2〉. When no SSR is considered, all three types of correlation equal those of the one-electron
state in table 1. However, in contrast to the latter, the ground state |Ψ〉 of the dissociated hy-
drogen molecule is already a physical state, with respect to both P-SSR and N-SSR. From (43)
we infer that |Ψ〉 is a pure state with definite local parities (odd, odd) and definite local particle
numbers (1, 1). The projection (29) therefore does not change the state |Ψ〉〈Ψ | and thus all three
types of correlation are unaffected by P-SSR and N-SSR according to (31).
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No SSR P-SSR N-SSR

Total 2 ln(2) 2 ln(2) 2 ln(2)

Quantum ln(2) ln(2) ln(2)

Classical 0.208 ln(2) 0.208 ln(2) 0.208 ln(2)

Table 2: Total, quantum and classical correlation between both orbitals |1〉, |2〉 in the dissoci-
ated hydrogen ground state |Ψ〉 in (43), for the case without SSR, with P-SSR and N-SSR.

Exercise 3.3

Recalculate various entries of table 2.

3.4 Hubbard dimer

The dissociated hydrogen molecule described in the previous section is a very special case
with a definite local particle number (and of course, parity). If we consider intermediate bond
length, however, different local particle number or parity sectors will start to mix, and hence
the behavior of the orbital correlation and entanglement will be more interesting. To elaborate
on this, we turn to an elementary model system. The Hamiltonian of this Hubbard dimer which
comprises two sites reads

H = −t
∑
σ=↑,↓

f †1σf2σ + H.c. + U
∑
j=1,2

n̂j↑n̂j↓, (44)

where f (†)
jσ are annihilation (creation) operators associated with a spin σ electron on site j = 1, 2.

It is worth recalling that small hopping rates t correspond to larger inter-nuclei separations. The
repulsive potential U penalizes any doubly occupied site, effectively describing the Coulomb
repulsion of two electrons in the same 1s orbital. Exploiting the symmetries of (44) one easily
determines the ground state of the Hubbard dimer

|Ψ〉 = a√
2

(
f †1↑f

†
2↓ − f

†
1↓f
†
2↑
)
|Ω〉+ b√

2

(
f †1↑f

†
1↓ − f

†
2↓f
†
2↑
)
|Ω〉, (45)

where

a =

√
W + U

2

2W
, b =

2t√
2W

(
W + U

2

) , W =

√
U2

4
+ 4t2. (46)

The orbital-orbital total correlation I , entanglement E and classical correlation C in the ground
state (45) are plotted in figure 6, for the case without SSR, with P-SSR and N-SSR [11], as a
function of the parameter t/U. In this special case of just two orbitals in total and a pure state,
the single-orbital and orbital-orbital correlation and entanglement coincide.
In the case without any SSR, the orbital-orbital entanglement E (red solid) is exactly half of the
total correlation I . For finite t/U , i.e., when b > 0 in (45), P-SSR and N-SSR drastically reduce
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Fig. 6: Total correlation I (black), entanglement E (red) and classical correlation C (blue)
between both sites for the ground state of the Hubbard dimer (44) as functions of the ratio t/U .
The curves for C and CP-SSR coincide.

the orbital-orbital total correlation and entanglement, as is shown by the curves correspond-
ing to IP-SSR (black dashed), IN-SSR (black dot-dashed), EP-SSR (red dashed) and EN-SSR (red
dot-dashed). N-SSR being the stronger rule, reduces correlation and entanglement the most.
However, when we take t/U → 0, corresponding to the dissociation limit, the effect of P-SSR
and N-SSR disappears. This is due to the vanishing coefficient b in (45) in the dissociation limit,
which results in a ground state that is physical in the presence of both P-SSR and N-SSR, as it
has already been pointed out in section 3.3.

In the weak coupling limit, U → 0, the Hamiltonian (44) reduces to the hopping Hamiltonian.
Since the latter is a one-particle operator it is a particularly simple task to understand the form
of its ground state: Both electrons just occupy (in different spin states) the energetically lower
one-particle state 1/

√
2
(
|L〉 + |R〉

)
. This is nothing else than the bonding orbital which max-

imizes relative to the antibonding orbital 1/
√
2
(
|L〉 − |R〉

)
the electron density between both

nuclei/sites. The corresponding ground state therefore reads

|Ψ(U=0)〉 = 1

2

(
f †1↑f

†
1↓ + f †1↑f

†
2↓ + f †2↑f

†
1↓ + f †2↑f

†
2↓

)
|Ω〉 . (47)

Exercise 3.4

Calculate for the state (47) all nine correlation quantities (in analogy to Table 2) and
verify their correctness by comparison with the numerical results presented in Figure 6.

All these previous elementary examples already reveal the drastic effect of SSRs on orbital
correlation and entanglement. In the following section we will apply the quantum information
theoretical concepts to systems with more orbitals.
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4 Numerical application to molecular ground states

In this section we investigate the correlation and entanglement in the ground states of molecules.
We consider exemplarily three chemical systems, the water molecule H2O, naphthalene C10H8

and the chromium dimer Cr2, each containing different levels of correlation. Accurate ground
states are found by using the density matrix renormalization group (DMRG) method as outlined
in the following section 4.1. The single-orbital and orbital-orbital correlation and entanglement
are studied in sections 4.2 and 4.3 with respect to two sets of orbitals, the Hartree Fock molec-
ular orbitals and the so-called natural orbitals. To avoid any confusion, it is worth noticing that
the choice of orbitals with respect to which those quantities are eventually calculated is made
only after having obtained a good approximation of the molecule’s quantum state. Only for
illustrative purposes we will choose in the following for this the Hartree-Fock orbitals which
at the same time already play some role in the calculation of the ground state. Hence, in com-
plete analogy to expectation values of more conventional observables, the orbital entanglement
and correlation depend on both the molecule’s quantum state |Ψ〉 and the choice of orbitals.
Yet, they do not depend on the numerical method that is used to obtain the concrete quantum
state |Ψ〉.

4.1 Computational details

In order to find a ground state, and from it compute the required orbital reduced density ma-
trices, we start with a preceding Hartree-Fock calculation to establish the molecular orbitals.
For our post-Hartree-Fock DMRG calculation we construct an active space consisting of the
most relevant molecular orbitals and compute integral elements with the one- and two-particle
Hamiltonian T and V, respectively. Those respective integral elements define the electronic
Hamiltonian at hand by referring to second quantization

H =
∑
ijσ

Tij f
†
iσfjσ +

∑
ijklστ

Vijkl f
†
iσf
†
jτfkτflσ . (48)

For our DMRG calculations we do not fix any molecular symmetries. Yet, the total particle
number and the z-component of the total spin are always assumed to be conserved, with the lat-
ter one always fixed to be zero. Furthermore, we did not employ exceedingly large active spaces
for two reasons. First, the ground states are almost exactly found. Second, for the purpose of
demonstration, our findings do not qualitatively hinge on the tiny improvement found by resort-
ing to larger active spaces. In particular, the reduction in correlation and entanglement due to
the regularly ignored superselection rules turns out to exceed by several orders of magnitude
the truncation error of our active spaces.

To obtain for each ground state |Ψ〉 the required one- (ρj) and two-orbital reduced density
matrices (ρi,j) we trace all orbitals except one and two, respectively (recall Eqs. (33), (39)).
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Fig. 7: Single-orbital entanglement of the Hartree-Fock molecular orbitals (as visualized) in
the ground states of H2O, C10H8 and Cr2 for the three cases of no, P- and N-SSR. Exact values
of entanglement and the remaining entanglement in terms of percentage of the No SSR case in
the presence of P-SSR and N-SSR are listed in the table below each plot.

4.2 Single-orbital entanglement and correlation

After having obtained the ground states of the desired molecules, we can now explore single-
orbital correlation and entanglement by applying the respective formulas from section 3.1.
Since the states ρ at hand are all pure states, the single-orbital total correlation without any
SSR is always exactly twice the single-orbital entanglement, as stated in (36). When P-SSR or
N-SSR is taken into account, the respective physical states ρP and ρN are no longer pure, but
in general mixtures of fixed parity or particle number states. However, in the form of Eq. (38)
there still exists an exact relation between total correlation and entanglement in the presence of
SSRs. Because of this, we focus in this section on the entanglement.

In figure 7 we plotted the single-orbital entanglement in the ground state of the H2O, C10H8

and Cr2, respectively, for the case without SSR, with P-SSR and with N-SSR, using the analytic
formulas (36) and (37). Below each figure we listed the exact values of single-orbital entangle-
ment in the absence of SSRs, and also the remaining entanglement in the presence of P-SSR
and N-SSR, in percentage. All these results refer here and in the following to the Hartree-Fock
molecular orbitals which are for the sake of completeness also visualized for H2O and C10H8.

Generally speaking, the single-orbital entanglement of Hartree-Fock orbitals is quite small com-
pared to the one of atomic orbitals in a bond (see sections 3.3 and 3.4), particularly for H2O
and C10H8. This confirms that the Hartree-Fock orbitals give rise to a much more local struc-
ture than that the atomic orbitals and in that sense define a much better starting point for high
precision ground state methods. Comparing the three systems, the water molecule contains the
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weakest single-orbital entanglement, less than 10−1 for all eight orbitals, whereas the strongest
single-orbital entanglement in naphthalene and the chromium dimer have the values 0.451 and
0.958, respectively. This already emphasizes the different levels of correlation in those systems.
Yet, it is worth noticing that any type of orbital entanglement and correlation (e.g., single- or
two-orbital entanglement) strongly depends on the chosen reference basis. Even for a config-
uration state (21) one could find large orbital entanglement and correlation if one referred to
orbitals which differ a lot from the natural orbitals.
From a quantum information perspective, the effect of SSRs on the single-orbital entanglement
is drastic. The presence of P-SSR and N-SSR considerably reduces the amount of physical
entanglement. According to the accompanying tables in figure 7, P-SSR eliminates at least
45% of it and occasionally even up to 87%. Taking into account the more relevant N-SSR
eliminates between 86% and 96%. Intriguingly, the entanglement hierarchy, however, remains
almost intact. That is, if one orbital is more entangled with the rest than another orbital, the
same will likely hold in the presence of P-SSR and N-SSR. It is also worth noting that even
the stronger N-SSR does never wipe out the entire entanglement, which we shall see below can
happen in the context of orbital-orbital entanglement.
From a quantum chemistry point of view, in figure 7 the single-orbital entanglement varies
significantly from orbital to orbital. In particular, some orbitals are barely correlated with the
others. Since we have chosen our active spaces systematically by taking into account various
Hartree-Fock orbitals energetically closest to the Fermi level, this is a good indicator that our ac-
tives spaces were large enough to cover most of the correlation contained in the three molecules.
On the other hand, if most orbitals were strongly entangled, the respective active space probably
would have been too small. This is also the reason why the single-orbital correlation could help
to automate the selection of active orbital spaces in quantum chemistry, as has been suggested
and worked out in Refs. [43, 44]. Our refined analytic results (36) and (37) demonstrated in
figure 7 are able to identify exactly the quantum part of the total correlation while also taking
into account the important superselection rules. These additional facets make precise the usage
of quantum information theoretic concepts in the context of quantum chemistry, and may offer
new perspectives into the selection of active space.

4.3 Orbital-orbital entanglement and correlation

To provide more detailed insights into the correlation and entanglement structure of molecular
ground states, we also study the pairwise correlation and entanglement between two orbitals.
This can be done in general in three steps:

1. Obtain the two-orbital reduced density matrix ρi,j by tracing out all orbital degrees of
freedom but orbital i and j as described in (39).

2. Apply the suitable projection to obtain the physical part ρQ
i,j of ρi,j under Q-SSR, as

explained in section 2.3.

3. Calculate the correlation and entanglement between the two orbitals using (31).
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Fig. 8: Total correlation, entanglement (“Quantum”) and classical correlation between any
two Hartree-Fock (left) and natural (right) orbitals in the ground state of H2O for the case with
no, P- and N-SSR.

It is worth recalling that the two-orbital reduced density matrices ρi,j are typically highly mixed,
which is due to the coupling between different Hartree-Fock orbitals in the Hamiltonian (48).
The total correlation for a mixed state, measured by the distance to the closest uncorrelated
state (13), can always be calculated analytically, as it coincides with the quantum mutual infor-
mation (13). However, the entanglement quantified as the distance to the closest separable state
(16) is immensely difficult to obtain by analytic means due to two reasons. One is the challenge
imposed by the high dimensionality, even if we are interested in the entanglement between just
two orbitals. The respective total system in that case has a Hilbert space isomorphic to C4⊗C4

(see also figure 5). A generic density matrix is then described by 16×16− 1 = 255 real-valued
parameters. In order to find the closest separable state to a two-orbital state ρi,j , one already
needs to navigate through 255 parameters. The second difficulty lies in the complexity of the
boundary of the set of separable states Dsep. So far exact criteria for separability known are
only for Hilbert spaces with dimensions up to 2×3 [45, 46]. In some cases when the total state
exhibits many symmetries, the closest separable state for the two-orbital reduced state can still
be found analytically [42]. In general, however, one has no choice but to resort to a combination
of analytic tools and numerical methods, which is here the case.

The quantities calculated are the total correlation, entanglement and classical correlation be-
tween two Hartree-Fock orbitals, for the case without SSR, with P-SSR and with N-SSR. All
those nine quantities are calculate for all pairwise combinations of orbitals, for the ground states
of all three molecules introduced in section 4.1. Since each ground state is a singlet with a fixed
electron number, any two-orbital reduced state ρi,j is also symmetric with respect to the total
two-orbital spin, magnetization and particle number [42]. Using the symmetry argument [41],
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Fig. 9: Total correlation, entanglement (“Quantum”) and classical correlation between any
two Hartree-Fock (left) and natural (right) orbitals in the ground state of C10H8 for the case
with no, P- and N-SSR.

the closest separable state σ∗i,j is block diagonal in the simultaneous eigenbasis of the respective
two-orbital spin and particle number operators (as also illustrated in figure 5). In the case of
N-SSR, the projections used for calculating the physical state further increase the symmetry
of σ∗i,j , which eventually allows us to determine it analytically [42]. For the case without SSR
and with P-SSR, we developed an algorithm based on semidefinite programming to find the
closest separable state and calculate the entanglement in an numerically exact way [42].

In figure 8, 9 and 10 we present the different types of correlation of the ground state of H2O
constructed with 8 orbitals, C10H8 with 10 orbitals and Cr2 with 28 orbitals, respectively.

There are several important messages to get across. First of all, similar to the results for the
single-orbital entanglement, the water molecule contains the weakest orbital-orbital correla-
tion, and the chromium dimer the strongest. Most importantly, our comprehensive analysis
then reveals that the quantum part of the total correlation plays only a minor role. In fact, the
orbital-orbital entanglement is usually one order of magnitude smaller than the total correla-
tion, and the molecular structure is thus dominated by classical correlation. This key result
of the analysis emphasizes that the quantum mutual information (13) is not a suitable tool for
quantifying orbital entanglement, as it leads to a gross overestimation. From a general point of
view, our findings raise questions about the significance of entanglement in chemical bonding
and quantum chemistry in general.

Similar to the single-orbital entanglement, SSRs also have a drastic effect on the orbital-orbital
entanglement, yet in a qualitatively different way. In the molecular systems we considered,
P-SSR preserved almost all of the orbital-orbital entanglement, whereas in the case of N-SSR,
almost no orbital-orbital entanglement is left, and consequently almost all orbital-orbital corre-
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Fig. 10: Total correlation, entanglement (“Quantum”) and classical correlation between any
two Hartree-Fock (left) and natural (right) orbitals in the ground state of Cr2 for the case with
no, P- and N-SSR.

lation is classical. Furthermore, in some instances even the entire orbital-orbital entanglement
is destroyed by the N-SSR. Referring to figure 5, this indicates that most of the contribution to
orbital-orbital correlation and entanglement comes from superposing f †i↓f

†
i↑|Ω〉 and f †j↓f

†
j↑|Ω〉,

which are marked as the dark grey blocks. These states describe either empty or doubly oc-
cupied orbitals. In fact, in all three molecules, single excitations are highly suppressed in any
of the molecular orbitals we consider. This is qualitatively different to the analysis of a single
bond in section 3.3 which was referring to localized atomic orbitals, each singly occupied. In
agreement with valence bonding theory, this observation confirms that two-orbital correlation
and entanglement are suitable tools for describing bonding orders only if they are applied to
localized atomic orbitals.
Lastly we would like to compare the correlation patterns of the Hartree-Fock orbitals with those
of the natural orbitals (see Figure 8, 9 and 10). To recap, the natural orbitals are the eigenstates
of the orbital one-particle reduced matrix

γ
(l)
i,j ≡

∑
σ=↑,↓

〈Ψ |f †jσfiσ|Ψ〉 . (49)

The natural orbitals inherit the ordering of the natural orbital occupation numbers (eigenvalues
of ρ(l)) which are arranged decreasingly. Previous observations regarding the correlation pat-
terns with respect to the Hartree-Fock orbitals is still present. Entanglement takes up only a
small fraction of the total correlation, and the presence of SSRs drastically reduce the entan-
glement. In contrast to the more scrambled pattern of the Hartree-Fock orbitals, however, an
additional pairing structure emerges among the natural orbitals. To be more precise, orbitals in
the neighbourhood of the Fermi level are strongly correlated but they share this entanglement
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only within pairs. After all, these pairs are symmetrical relative to the Fermi level. This sug-
gests a potential simplified description of the ground state in the natural orbital basis. At the
same time, the qualitative difference between the correlation patterns of the two sets of orbitals
demonstrates again that correlation and entanglement are relative concepts.
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1 Introduction

Ultracold quantum gases in optical lattices are highly tunable quantum many-body systems,
which allow investigation of strongly correlated synthetic quantum matter [1,2]. They illustrate
Feynman’s visionary idea of a universal quantum simulator [3], and give access to (analog)
quantum simulation of strongly correlated electronic systems, for example high-temperature
superconductors [4,5], Mott insulators, or quantum magnets. Also bosonic quantum phases and
phase transitions can be studied, for example the paradigmatic superfluid to Mott insulator (MI)
transition [6]. Even more exotic types of quantum matter, such as Fermi-Hubbard models with
higher internal SU(N ) symmetry can be emulated using optical lattices [7, 8].
Ideally, quantum simulations of the Hubbard model should address regimes or (universal) as-
pects of a complex and less tunable quantum system (e.g. a quantum material), which are hard
to investigate on classical computers due to the exponential growth of many-body Hilbert space
with increasing particle number, which limits diagonalization-based methods, and due to the
(dynamical) sign problem in quantum Monte Carlo (QMC) simulations [9, 10]. Highly tunable
model parameters, flexible preparation of initial states, and efficient measurement techniques
are key distinguishing features of optical lattice emulators, which allow observing quantum
many-body dynamics on the intrinsic length and time scales of these systems.
In these lecture notes we will focus on analog, rather than digital quantum simulation [11].

2 Optical lattice emulation of the Hubbard model

The Hubbard model [12] is the simplest microscopic lattice model of itinerant, interacting elec-
trons in a solid. It has been successfully applied to describe, for example magnetic ordering,
metal-insulator transitions and d-wave superconductivity [4,5]. For spin-½ fermions in a single
band it is given by the Hamiltonian

Ĥ = −t
∑
〈ij〉,σ

(
ĉ†iσ ĉjσ + h.c.

)
+ U

∑
i

n̂i↑n̂i↓ +
∑
iσ

εin̂iσ (1)

containing a kinetic energy (hopping) with matrix element t between nearest-neighbor lattice
sites 〈ij〉 and a purely local (on-site) Hubbard interaction term of strength U. A schematic
illustration is shown in Fig. 1. σ = ↑, ↓ labels spin, ĉ†iσ denotes the creation operator on lattice
site i, and n̂iσ is the local number operator for spin σ. We have included an additional single-
particle potential εi, which could arise due to spatial randomness or due to an external potential,
such as an optical or magnetic trap for ultracold atoms.
This simple version of the Hubbard model (1) is highly idealized. In solids, even in metals, the
screening length of the Coulomb interaction can be significantly larger than the lattice constant,
which leads to further terms in the Hamiltonian, for example longer-range interactions [12].
The coupling to lattice phonons can be relevant as well. In optical lattice realizations of the
Hubbard model, to be discussed below, these additional terms are in general absent, but can be
introduced in a controlled way, e.g., by dressing with Rydberg-excited states [13] or by coupling
to dynamical phonons of trapped ion crystals [14].
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Fig. 1: Single-band Fermi-Hubbard model on the square lattice.
Figure reprinted from [2], ©IOP Publishing Ltd. CC BY 3.0.

(Numerically) exact solutions of the Fermi-Hubbard model exist only in one spatial dimension
(Bethe Ansatz, Density-Matrix Renormalization Group (DMRG)) and in infinite dimensions
(Dynamical Mean-Field Theory (DMFT)) [15]. In particular, due to basic limitations of simula-
tion techniques (Quantum Monte-Carlo, DMRG, exact diagonalization) many questions remain
open regarding the low-temperature phase diagram of the 2d Hubbard model, which is believed
to be highly relevant for the description of high-temperature superconductivity [16]. On the
other hand, interacting fermions [17] or bosons [18] in optical lattices provide a controlled and
tunable analog quantum simulator of the pure Hubbard model. Quantum-gas microscopy tech-
niques [19] allow single-site resolved measurements of charge and spin order, for example in
(doped) Mott insulators [20–22], and give access to measurements of nonequilibrium particle
and spin dynamics in real time [23–25].
Optical lattices are standing light-waves created by interfering, pairwise counterpropagating
laser beams; see for example Fig. 2 (left). Neutral atoms interact with the optical lattice via the
AC Stark effect, which results in an effective (time-averaged) lattice potential, see the schematic
illustration in Fig. 2 (right). For a simple cubic lattice with infinite extension this potential is
separable and given by

Vlat(x, y, z) = V0

(
sin2(kx) + sin2(ky) + sin2(kz)

)
(2)

where k= 2π/λ is the wavenumber of the lattice-lasers. The lattice amplitude V0 depends on the
atomic polarizability and the intensity of the light [26], and is positive (negative) for blue (red)
detuning of the lasers. The characteristic energy scale is set by the recoil energyEr = ~2k2/2m,
with typical values of order O(kHz). Many different lattice geometries have been realized in
this way, including triangular [27], Kagome [28], and artificial graphene [29].
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Fig. 2: Left: Cubic optical lattice. For illustration purposes, a 2d slice is shown. The three
lattice lasers have mutually orthogonal polarizations indicated by the arrows, and are each
retroreflected from a mirror. Figure reprinted from [30] with permission. Right: Schematic
illustration of spinless bosons in an optical lattice with hopping t and on-site Hubbard interac-
tion U. Figure reprinted from [2], ©IOP Publishing Ltd. CC BY 3.0.

Compared to solid-state crystals, the lattice constant of an optical lattice is much larger (a =

O(100 nm) instead of O(Å)), and the resulting energy-scales are much lower (kHz instead of
eV). This results in much slower quantum dynamics than in electronic solids, which has made
it possible to observe in-situ the quantum phases and nonequilibrium dynamics of ultracold
atoms on their intrinsic time-scales with single-site, single-atom resolution, via quantum-gas
microscopy [19].
Ultracold gases in optical lattices are almost ideal closed quantum systems, highly isolated from
their environment, with the residual dissipation mostly arising from spontaneous emission [26],
which leads to heating that typically starts to dominate after times of several 100 ms. Note that
optical lattices are very clean, i.e., free of defects, but they are intrinsically finite (typical lengths
of O(100) lattice sites) and typically inhomogeneous due to the profile of the Gaussian laser
beams, although quasi-flat “box potentials” can also be engineered. This confinement-induced
inhomogeneity can often be well described within a local density approximation, where each
lattice site i is treated as part of an infinite homogeneous system with an effective chemical
potential µi = µ−εi that depends on the lattice site.
Let us now show that the low-energy effective Hamiltonian of an ensemble of ultracold atoms
in an optical lattice is given – under suitable conditions – by the single-band Hubbard model.
We consider, for the moment, a homogeneous lattice without external confinement potential.
According to Bloch’s theorem, the single-particle eigenstates in an optical lattice can be written
as

φ(α)
q (r) = eiq·r u(α)

q (r). (3)

The index α labels different bands, and q = (qx, qy, qz) is the quasimomentum. On a simple
cubic lattice its components are in the range qx,y,z ∈ (−π/a, π/a], with the lattice constant
a = λ/2 determined by the laser wavelength. u(α)

q (r) is a lattice-periodic function.
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Fig. 3: Hubbard parameters t and U and their ratio, shown here as a function of the dimension-
less lattice depth s for 87Rb in a 812 nm optical lattice. Both the hopping t and the ratio t/U
decay approximately exponentially for deep lattices. Figure adapted from [30] with permission.

To formulate a tight-binding Hamiltonian we use Wannier functions, which also form an or-
thonormal single-particle basis and are maximally localized at the respective lattice sites. They
are related to the Bloch functions by

w(α)(r−ri) = N−1/2
∑
q

e−iq·ri φ(α)
q (r) (4)

with ri the position of the i-th lattice site and N the total number of sites. Note that comput-
ing the maximally localized Wannier functions usually involves numerical optimization of the
phases of the Bloch states. An efficient alternative is calculating Wannier functions as eigen-
functions of the band-projected position operator [29, 30], which can also be done for systems
with broken lattice translational invariance, for example due to disorder.
If the filling (the number of particles per site), the temperature T, and the Hubbard interaction
strength U are low enough, it is sufficient to consider only the lowest Bloch band with α = 1.
This will be assumed in the following discussion, where the band index will be omitted. We
write the kinetic energy as Ĥkin = −t

∑
〈ij〉,σ ĉ

†
iσ ĉjσ + h.c., where ĉ†iσ =

∫
d3r w(r−ri) Ψ̂ †σ(r)

creates a particle with mass m and internal (hyperfine) state σ in the lowest Wannier state on
site i. The resulting tunneling matrix element between neighboring sites i and j is given by
t = −

∫
d3r w∗(r−ri)

(
−~2∇2/2m+Vlat(r)

)
w(r−rj). For sufficiently deep optical lattices

with a dimensionless depth s ≡ V0/Er � 1, tunneling beyond nearest neighbors 〈ij〉 can
in most cases be neglected. If the lattice is also separable, one obtains approximately t =

(4/
√
π)Er s

3/4 exp
(
−2s1/2

)
[1].
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Two-particle interactions between ultracold neutral atoms are usually dominated by s-wave
scattering and can be described by a contact interaction [1]

Ĥint = g

∫
d3r Ψ̂ †↑(r)Ψ̂ †↓(r)Ψ̂↓(r)Ψ̂↑(r)

of strength g = 4π~2as/m (where as is the scattering length), which has been written here
for fermions with two hyperfine (“spin”) states ↑, ↓. For a sufficiently deep optical lattice with
s � 1 and in the absence of Feshbach resonances we can again use the single-band approxi-
mation. The dominant interaction term is then given by Ĥint = U

∑
i n̂i↑n̂i↓ with the Hubbard

interaction parameter U = g
∫
d3r |w(r)|4 ≈

√
8/π(2πas/λ)s3/4Er. We have thus obtained the

single-band Fermi-Hubbard model as given in Eq. (1) [17]. The additional onsite energy εi de-
scribes the confinement potential, or additional optical potentials (e.g. superlattices or spatially
fluctuating optical Speckle potentials) which may be superimposed onto the primary optical
lattice. Experimentally the correlation strength U/t is highly tunable from values U/t ≈ 0

to |U |/t > 1000, either by varying the optical lattice depth as shown in Fig. 3, or by using
Feshbach resonances [1] to change as.
The bosonic Hubbard model [31]

Ĥ = −t
∑
〈ij〉

(
b̂†i b̂j + h.c.

)
+
U

2

∑
i

n̂i(n̂i − 1) +
∑
i

εin̂i (5)

can analogously be derived for ultracold bosons [18], and has been first implemented in a pio-
neering experiment exploring the superfluid – MI transition [6].
Corrections to the standard single-band Hubbard models (1) and (5) become important for
strong contact interactions, for example close to Feshbach resonances or in shallow lattices.
A density dependence of the Hubbard interaction parameter U has been measured [32]. It can
be described, together with other corrections such as density-dependent hopping, pair tunneling,
and next-neighbor interactions, by including contributions of higher Bloch bands in an effective
single-band model [33]. Independently, it is also possible to populate higher bands of an optical
lattice and to study multi-band phenomena.
Let us now give a brief overview of techniques for measuring observables (e.g. particle- or
spin-density excitation spectra) in cold atom quantum simulators. Time-of-flight (TOF) spec-
troscopy is performed by ballistic expansion of the atomic cloud in the absence of interactions,
followed by measurement of the density via absorption imaging. It allows to extract the in-
trap momentum distribution of the initial many-body state as

〈
n̂(r)

〉
TOF
∝
〈
n̂(k)

〉
trap

where
k = mr/~t [1]. Using a slow initial ramp-down of the optical lattice that is adiabatic with
respect to the band gap, one can also directly image the Bloch quasimomentum distribution,
including higher Brillouin zones [34]. Moreover, spatial correlations of the noise in single-shot
TOF images can be used to infer momentum correlations in the initial many-body state, and
thus to detect for example MI states or magnetic long-range order [35, 36].
Interaction effects can be studied by radio-frequency (RF) spectroscopy [37], where the atoms
initially in the hyperfine state |g〉 are excited to state |e〉 by an applied RF field, and the frac-
tion of excited atoms is then detected. This has allowed, for example, to measure the pairing
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gap in a strongly interacting superfluid Fermi gas [38], similar to tunneling experiments in
superconductors. Using a momentum-resolved version of RF spectroscopy [39] the fermionic
spectral function A(k, ω) = − 1

π
ImGR(k, ω) at frequency ω and momentum k has been mea-

sured experimentally, where GR(k, t) = −iΘ(t) 〈Ψ0|{ĉk(t), ĉ†k(0)}|Ψ0〉. This is an analog of
angle-resolved photoemission spectroscopy (ARPES) in solids.
Two-photon Bragg spectroscopy allows probing dynamical correlation functions such as the
dynamical structure factor S(k, ω) ∝

∑
f

∣∣〈f |ρ̂†(k)|g〉
∣∣2 δ(~ω − (Ef−Eg)

)
given here at zero

temperature. ρ̂(k) is the Fourier transform of the density, and |f(g)〉 the initial (final) state
of the many-body system. This is achieved by a two-photon transition, where atoms absorb a
photon from one laser and emit a photon into a second laser mode, which leads to a momentum
and energy “kick” ~kBragg = ~(k1−k2) and ~δ = ~(ω1−ω2), where ~ki and ~ωi with i = 1, 2

denote the momenta and energies of the two lasers. Bragg scattering has also been applied
in the strongly correlated regime and beyond linear response, where the amplitude mode of
strongly interacting bosons in a cubic lattice has been observed [40]. A related approach is
lattice amplitude modulation spectroscopy, which has been applied, for example, to identify the
Mott-insulator phase of fermions in a cubic optical lattice [41].
Optical quantum-gas microscopy, first realized for bosonic 87Rb [19], has revolutionized quan-
tum simulators based on ultracold atoms. Fluorescence photons created by in-trap laser cooling
are detected with a high-resolution imaging objective, which allows imaging of single atoms on
individual sites of an optical lattice. This technique also allows local control and manipulation,
for example performing spin-flips of individual atoms [42]. It is also applicable to fermionic
quantum gases, where it has for example been applied to image the fermionic Mott insula-
tor [43], including the “wedding cake structure” of the density profile corresponding to spatial
domains of different phases (Fermi liquid, band- and Mott-insulator).

3 Mott insulator transition

Mott insulators and the associated metal-insulator transitions are of fundamental relevance in
strongly correlated electronic systems, for example in transition metal oxides and organic con-
ductors, and – with additional doping – in cuprate high-temperature superconductors [4].
Ultracold gases in optical lattices have allowed for a highly controlled experimental realization
of the Mott transition, both fermionic and bosonic, which clearly separates the itinerant degrees
of freedom from other effects such as phonons and defects, and which is more easily tunable
than solid-state realizations. In particular, the correlation strength (the ratio U/t of Hubbard
interaction and hopping) can be tuned all the way from the limit of a noninteracting Fermi gas
in a lattice [34], to the “atomic limit”, i.e., the deep Mott-insulator regime, where tunneling can
be considered a small perturbation.
On the other hand, the theoretical description of Mott transitions has made strong progress due
to advances in numerical techniques such as DMRG, QMC and, in higher spatial dimensions,
DMFT [15] and its real-space generalization to inhomogeneous systems [44]. DMFT is based
on a mapping of each lattice site of the Hubbard model to an (Anderson-) quantum impurity
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model with the same effective local action

S
(i)
eff = −

∫∫
dτdτ ′

∑
σ

c†iσ(τ)G(i)
0 (σ, τ−τ ′)−1 ciσ(τ ′)− U

∫
dτ ni↑(τ)ni↓(τ) (6)

that is determined self-consistently. This yields a non-perturbative description of local quantum
dynamics in the original correlated lattice problem. The DMFT self-consistency loop is formed
by the local Dyson equation G(i)

0 (σ, iωn)−1 = G(i)(σ, iωn)−1 + Σ(i)(σ, iωn) and the lattice
Dyson equation G(σ, iωn)−1 = G0(σ, iωn)−1 −Σ(σ, iωn), complemented by the requirement
that the interacting local (impurity) Green’s function is equal to the respective diagonal element
of the full lattice Green’s function: G(i)(σ, iωn) = Gii(σ, iωn). Above, boldface objects are
matrices with entries labeled by two lattice site indices. Calculating the self-energy Σ(i) from
the local action (6) is a computationally demanding task which is performed by a quantum
impurity solver, e.g., exact diagonalization, the Numerical Renormalization Group (NRG), or
continuous-time Quantum Monte-Carlo (CT-QMC) [15, 45]. The full real-space extension of
DMFT [44] allows simulation of inhomogeneous, correlated fermionic and bosonic lattice gases
for experimentally relevant system sizes [46], even in situations where other simulation methods
are not applicable. DMFT has been very successful in describing the Mott metal-insulator
transition, see for example the DMFT phase diagram of the single-band Fermi-Hubbard model
at half filling in Fig. 4. In particular, it has provided theoretical understanding of the narrow
quasiparticle resonance in the spectral function of the correlated metallic phase close to the
transition [47]. On bipartite lattices (e.g. cubic) at half filling, antiferromagnetism emerges at
low temperatures for any value of the Hubbard interaction, and typically hides the paramagnetic
Mott transition. On generic lattices with frustration the antiferromagnetic phase is reduced and
the Mott transition can be recovered to some extent, see Fig. 4.
A Mott transition also occurs in the Bose-Hubbard model at integer filling, in this case be-
tween superfluid and Mott insulator [31]. It is captured qualitatively by a static (Gutzwiller)
mean-field theory, based on a variational wavefunction that is a product over all lattice sites and
connects two limiting cases: At vanishing hopping, the Mott insulator wavefunction for integer
filling n can be written as |ΨMott〉 ∝

∏N
i=1

(
b̂†i
)n|0〉, while in the noninteracting case (U=0) and

for arbitrary filling n the condensate can be written as a product of coherent states at the in-

dividual lattice sites: |Ψcond〉 ∝
(∑N

i=1 b̂
†
i

)nN
|0〉 ∝

∏N
i=1 exp

(√
n b̂†i

)
|0〉i. The development

of bosonic DMFT [48] has improved theoretical understanding of the bosonic Mott insulator,
capturing particle-hole excitations which lead to short-range coherence, as well as superex-
change interactions in multi-component systems. Independently, large-scale QMC simulations
of bosonic lattice models became feasible using the Worm algorithm [49].
The Bose-Hubbard model has been realized experimentally [6], following the proposal [18], us-
ing 87Rb on a cubic optical lattice. The superfluid-Mott insulator quantum phase transition has
been observed in measurements of the momentum distribution and the excitation spectrum, at a
correlation strength U/t= 5.8 z, with the lattice coordination number z= 2d, which agrees rea-
sonably well with the static mean-field prediction. Later, a validation of this quantum simulator
for the model (5) has been performed by finite-temperature measurements of the momentum
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Fig. 4: Schematic DMFT phase diagram of the homogeneous Fermi-Hubbard model (1) at
half filling on a generic 3d lattice with bandwidth W. At low temperatures long-range order
emerges (indicated in red), for example antiferromagnetism, depending on the lattice structure.
In the orange region metallic and Mott-insulating phases coexist. At the dashed line a first-
order transition occurs, which ends in a second-order critical point. At higher temperatures
the Mott metal-insulator transition becomes a crossover. Figure reproduced from [47], with the
permission of the American Institute of Physics.

distribution and comparison to QMC calculations [50], which allowed determining the finite-
temperature phase diagram. More recently, optical quantum-gas microscopy has given access
to in-situ imaging and control with single-atom, single-site resolution [19], opening up new
possibilities for optical lattice quantum simulators. It allows, for example, to image superfluid
and Mott insulating domains, and to determine temperature and entropy directly from the local
particle-number statistics.
The fermionic Mott transition has also been observed in ultracold gases. In [51] this was
achieved by measuring the size and compressibility of the fermionic 40K cloud as a function
of the confinement potential, and by comparison to DMFT simulations. On the other hand,
in [41] the double occupancy and particle-hole excitation energies have been determined. The
crossover from the “metallic” to the Mott insulating regime was also studied for spinful ultra-
cold fermions in artificial graphene [29]. The fermionic Mott insulator has also been imaged
with quantum-gas microscopy [43], which has allowed to determine from the local particle
number statistics the entropy per site, which was found to be si ≈ kB ln 2, in agreement with
theoretical expectations.
Mott insulators with larger spin S > 1/2 or higher symmetry groups such as SU(N ) can also
be implemented in optical lattices, using multiple hyperfine states. For example, an SU(6) Mott
insulator of 173Yb has been realized [52], with an increased spin entropy per site s = kB lnN

due to the larger number of internal states.
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Fig. 5: Superexchange couplings due to virtual second-order tunneling.
Figure reprinted from [2], ©IOP Publishing Ltd. CC BY 3.0.

4 Quantum magnetic correlations

For spin-½ fermions and in the “atomic” limit of vanishing tunneling t → 0 the paramagnetic
spin-½ Mott insulator discussed above has an extensive residual entropy S = NkB ln 2 due to
spin fluctuations. At finite t, magnetic superexchange couplings, illustrated in Fig. 5, will induce
spin-spin correlations and possibly long-range magnetic order, depending on temperature.
Quantum magnetism, although studied for a long time, still poses intriguing open questions,
for example whether quantum spin liquids on frustrated lattices exist, and what their properties
are. In many cases it is challenging to investigate quantum magnetic correlations by numerically
exact techniques, due to the sign problem (QMC), system size (exact diagonalization), or spatial
dimensionality (DMRG). The same holds true for simulations of real-time nonequilibrium spin
dynamics in Hubbard-type models.
Optical-lattice quantum simulators are well suited for investigating quantum spin systems. On
the one hand this is due to the high tunability of lattice geometry, dimensionality and (effective)
exchange couplings. On the other hand, novel observation techniques such as quantum-gas
microscopy allow to measure spin ordering, magnetic correlations, and nonequilibrium spin
dynamics with single-site resolution and in real-time [19].
Let us consider a two-component version of the Hubbard model for ultracold atoms [53]

Ĥ = −
∑
〈ij〉σ

(
tσâ
†
iσâjσ + h.c.

)
+ U↑↓

∑
i

n̂i↑n̂i↓ +
1

2

∑
i,σ

Uσ n̂iσ(n̂iσ−1), (7)

where σ =↑, ↓ is a pseudospin index, labeling either different hyperfine states or atomic species.
All interactions are repulsive U↑↓, Uσ ≥ 0. This model is applicable both for bosonic and for
fermionic atoms, created by â†iσ. For fermions, it is equivalent to the standard spin-½ Fermi
Hubbard model, and the repulsion Uσ between equal species should then be set to infinity in
the equations below. The hopping amplitudes tσ are tunable and can be spin-dependent, e.g.,
due to a mass imbalance of the two species σ =↑, ↓ [54] or spin-dependent optical lattices.
Changing the s-wave scattering lengths aσσ′ , e.g., via Feshbach resonances, allows tuning of
the interactions Uσσ′ .
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Fig. 6: Tunable ground-state magnetic order of two-component bosons in a cubic, spin-
dependent lattice, obtained by bosonic DMFT. xy-ferromagnetic, z-Néel antiferromagnetic
(AF) and supersolid (SS) phases are found, in addition to the homogeneous superfluid. Here
tb(d) corresponds to t↑(↓) in Eq. (7), Ub(d) corresponds to U↑(↓), and Ubd corresponds to U↑↓.
Ratios between the different interactions have been fixed as Ub = Ud = 12Ubd. The total filling
per site is one, with nb = nd = 0.5. Reprinted figure with permission from [55]. Copyright
2011 by the American Physical Society.

In the Mott insulator for total filling ni↑ + ni↓ = 1 per site, and to leading order in tσ/U↑↓ and
tσ/Uσ the low-energy effective Hamiltonian

Ĥ =
∑
〈ij〉

Jzσ̂
z
i σ̂

z
j ± J⊥(σ̂xi σ̂

x
j + σ̂yi σ̂

y
j ) (8)

is an XXZ spin model [53], with the sign +(−) for fermions (bosons), and with longitudinal
and transverse superexchange couplings given by

Jz =
t2↑+t

2
↓

2U↑↓
−
t2↑
U↑
−
t2↓
U↓

and J⊥ =
t↑ t↓
U↑↓

. (9)

For fermions these couplings are always antiferromagnetic (tσ ≥ 0 is assumed). However, for
bosons, the sign of Jz can be tuned,leading, in a spin-dependent cubic lattice at unit filling, to a
quantum phase transition between xy-ferromagnetism and z-Néel antiferromagnetism [53, 55],
see Fig. 6. Finite-temperature DMFT calculations for the same model [56] have, in addition,
found a Pomeranchuk effect, where heating the system leads to a transition from the superfluid
phase to a paramagnetic Mott insulator and, as a result, non-monotonic behavior of the local
particle number variance (∆ni)

2 =
〈(
n̂i−〈n̂i〉

)2〉, which should be observable by quantum-gas
microscopy.
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Fig. 7: Real-space DMFT simulation of a Fermi-Hubbard model in a harmonic trap. Shown
are antiferromagnetic order (first row), double occupancy D (second row), particle (3rd row)
and entropy (4th row) densities per site, in the central plane of the Fermi-Hubbard model (1) on
a cubic lattice with U = 12t and a harmonic trapping potential εi = V0r

2
i /a

2 with V0 = 0.05t.
At low temperature (left column) a large antiferromagnetic core is visible; with increasing tem-
perature the AF order decays. In the 2nd, 3rd and 4th row the top half displays the respective
observables in the central plane of the lattice, and the bottom half the corresponding values
after integration along the z-axis. Reprinted figure with permission from [46]. Copyright 2010
by the American Physical Society.

The formation of antiferromagnetic (AF) order of spin-½ ultracold fermions in a half-filled
optical lattice was first proposed in [17]. It was later studied by cluster DMFT [57], which
provided an estimate sNéel ≈ 0.42 kB for the critical entropy per particle. Experiments with 3d
optical lattices have yielded higher values s ≈ 0.77 kB in the Mott core [58], indicating that
in these measurements the AF ordered regime has not yet been reached. Magnetization and
entropy profiles for realistic system sizes in a harmonic trap have been obtained by real-space
DMFT [46], see Fig. 7, and an enhanced double occupancy D = 〈n̂i↑n̂i↓〉 was found in the
Néel-ordered phase.
Ultracold atoms also allow realizing multi-flavor mixtures with more than two hyperfine states
and higher internal symmetry groups. This has for example been achieved with 173Yb, a
fermionic alkaline-earth-like element, which has been cooled into an SU(6) Mott-insulating
state [52]. DMFT studies of three-component fermionic mixtures in optical lattices have pre-
dicted exotic spin and density order [59]. Note that due to enhanced Pomeranchuk cooling,
adiabatic lattice loading of fermions with multiple flavors can achieve lower temperatures than
for spin-½ systems [60].
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Experimentally, tunable superexchange interactions in ultracold atoms, as given in Eq. (9) and
shown in Fig. 5, were first seen in the spin dynamics of a mixture of two hyperfine states of
87Rb in a superlattice [61]. Achieving sufficiently low entropies and temperatures of quantum
gases in an optical lattice in order to observe superexchange-induced magnetic order is an ex-
perimental challenge [62], although much progress has been made. Adiabatic spin gradient
demagnetization has allowed to cool a mixture of two hyperfine states of bosonic 87Rb in a
cubic lattice to temperatures as low as 350 pK [63]. Real-space bosonic DMFT calculations for
this experimental setup have provided quantitative modeling of these results [56] and predicted
that long-range magnetic order can indeed be reached by adiabatic demagnetization.
Early measurements of spin-spin correlations included a detection scheme for singlets and
triplets based on merging pairs of lattice sites, which allowed to observe short-range AF cor-
relations in dimerized and simple cubic lattices [64]. Another powerful approach is given by
spin-sensitive Bragg scattering, which yields the spin structure factor

Szq =
1

N

∑
i,j

eiq·(ri−rj)〈σ̂zi σ̂zj 〉

and is analogous to neutron scattering in solid-state physics. In the experiment [58] a strong
enhancement of Szq at the wavevector q = (π/a)(−1,−1, 1) was observed for fermionic 6Li
in a cubic optical lattice, indicating Néel-type spin-spin correlations. Comparison to numerical
simulations (QMC and linked-cluster expansion) allowed to estimate the temperature in this
setup as 1.4-times the critical temperature of long-range AF order.
More recently, optical quantum-gas microscopy has allowed to detect spin-spin- and density-
density-correlations in-situ. The spin-spin correlator Cd ∝

∑
r〈σ̂zrσ̂zr+d〉−〈σ̂zr〉〈σ̂zr+d〉 has been

measured for a mixture of two hyperfine states of fermionic 6Li in a square optical lattice [20].
At half filling, long-range AF correlations extending throughout the lattice (size 10×10 sites)
were observed at temperatures as low as T/TF ≈ 0.06, where TF = 4t/kB is the Fermi tem-
perature in the lattice.
Ultracold atom quantum simulators allow to directly control and tune the spin-imbalance (spin
polarization) of the system, which in the case of the half-filled Fermi-Hubbard model induces
canted antiferromagnetic correlations, as observed in [21] using 6Li. Note that very large mag-
netic fields would be required for observing this effect in solid-state materials. Very recently, a
bilayer Hubbard model was realized with 40K, where tomographic imaging allowed to address
both layers individually [65]. With increasing interlayer tunneling a crossover from a planar an-
tiferromagnetic Mott insulator to a band insulator of interlayer spin-singlets was observed, con-
firming previous theoretical expectations. Also the attractive (U < 0) Fermi-Hubbard model
has been realized with 6Li, where quantum-gas microscopy of doublon density correlations, in
combination with QMC simulations, made it possible to estimate the strength of s-wave pairing
correlations [22]. Major progress has thus been made in quantum simulations of magnetism
and superconductivity in Fermi-Hubbard systems, as first proposed in [17].
Cold atom quantum simulators also allow observing out-of-equilibrium particle- and spin-
dynamics in real time. For example, using 87Rb a one-dimensional two-component Bose-
Hubbard model (see Eq. (7)) was realized, which for strong coupling maps onto an effective
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ferromagnetic Heisenberg spin chain. In this system, propagation of magnons and of two-
magnon bound states was observed by quantum-gas microscopy [23]. More recently, spin-
charge deconfinement was observed in 6Li Fermi-Hubbard chains, where after sudden removal
of one particle the spin and charge excitations (spinons and holons) were found to propagate
with different, interaction-dependent velocities [24]. Spin diffusion and spin conduction were
measured in a 2d fermionic Mott insulator of ultracold 40K, using quantum-gas microscopy [25],
thus opening up the possibility to gain further insight into the interplay of charge and spin in
strongly correlated fermion systems.
Recent progress with Rydberg-excited and Rydberg-dressed quantum gases allows engineering
long-range interactions, both in quantum spin systems and in itinerant lattice models. Spinless
fermions with next-neighbor interaction on an anisotropic square lattice, with hopping only in
one direction, were realized with Rydberg-dressed 6Li [13], and the effect of the next-neighbor
interaction on the decay dynamics of initially prepared charge-density waves was investigated.
Quantum simulations of extended Fermi-Hubbard models are thus within reach of current ex-
periments. For itinerant bosons with Rydberg excitations in an optical lattice, an extended
2-component Bose-Hubbard model description is appropriate, which includes, in addition to
Eq. (7), a long-range van der Waals interaction HvdW = (C6/2)

∑
i6=j n̂i↑n̂j↑/|i−j|6. Here the

pseudospin states ↑ (↓) denote the Rydberg state (ground state), respectively, i and j are the
positions of lattice sites i, j and C6 is the van der Waals coefficient. Coherent driving by a
laser populates the Rydberg state, which leads (within the rotating wave approximation) to an
additional Rabi term HR = (Ω/2)

∑
i

(
a†i↑ai↓ + a†i↓ai↑

)
−∆n̂i↑ with Rabi frequency Ω and de-

tuning∆. Bosonic DMFT simulations yield a rich phase diagram including a devil’s staircase of
crystalline phases which extends into the supersolid regime, where crystalline and condensate
long-range order coexist [66], see Fig. 8.
Alternatively, optical microtraps can be arranged in arbitrary geometries and loaded with single
atoms, which can be individually addressed and excited to a Rydberg state. In this way, the
quantum many-body dynamics of Ising-type quantum-spin models has been investigated for
systems with up to 51 qbits [67].

5 Topological (many-body) states of ultracold atoms

Topological states of matter provide a new paradigm beyond Landau’s approach towards clas-
sifying phases of matter [68]. A prime example in two spatial dimensions is the integer quan-
tum Hall effect. According to the TKNN formula [69] its quantized transverse conductivity
is determined by a topological invariant, the Chern number n = (1/2π)

∑
m

∫
d2kΩm(k),

where the summation is over all occupied bands. Here Ωm = i
(
〈∂kxum(k)|∂kyum(k)〉 −

〈∂kyum(k)|∂kxum(k)〉
)

is the Berry curvature, and |um(k)〉 is the lattice-periodic part of the
Bloch state with quasimomentum k in band m. Laughlin’s argument [70] proves that in sys-
tems of finite width a quantized Hall conductivity σxy = ne2/h implies the existence of chiral
edge states. As shown by Haldane, time-reversal symmetry breaking can induce a quantum Hall
state even if no net magnetic flux is applied to the 2d system [71].
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Fig. 8: (e) Ground state phase diagram of a two-species extended bosonic Hubbard model with
long-range (van der Waals) interaction of the excited Rydberg state, as a function of hopping
amplitude (here denoted as J) and detuning ∆, in units of the Rabi frequency Ω. n̄e is the
lattice-averaged Rydberg fraction. The green (gray) line marks the emergence of a finite con-
densate order parameter. Black lines indicate transitions between different supersolid (SS) or
density wave (DW) ordered phases, where circles denote second order and points first order.
CB-SS indicates the checkerboard supersolid, and SF the homogeneous superfluid. Subfigures
(a)-(d), (f)-(i) and the inset of (e) show the spatial distribution of different observables: density
nνi and condensate density |φνi |2, where i is the lattice site index and ν = g(e) here denotes
the ground (Rydberg excited) state. In addition, the correlation function 〈b†g,ibe,i〉, sensitive to
checkerboard order, is shown, where b†(b) denote the bosonic creation (annihilation) opera-
tors. Parameters given in the inset of (e) are: the ratio η of excited state hopping and ground
state hopping, the van der Waals interaction strength VvdW = C6/a

3, and the onsite interaction
ratios λ = U↑↓/U↓ and λ̃ = U↑/U↓, see Eq. (7), where we use the notation ↑ =̂ e and ↓ =̂ g.
Reprinted figure with permission from [66]. Copyright 2017 by the American Physical Society.

More recently, time-reversal invariant topological insulators have been discovered, such as the
quantum spin Hall (QSH) state, which is characterized by a Z2 topological invariant and helical
edge states inside the bulk band gap. An important model system featuring a QSH state is the
Kane-Mele model [72], which consists of time-reversed copies of Haldane’s model [71], dis-
cussed below. In solid-state systems quantum (spin-) Hall states can be detected by measuring
band structures via angle-resolved photoemission or by measuring the Hall conductivity. But in
these systems it is hard to measure the Berry curvature, or to study topological states of matter
in the presence of tunable two-particle interactions.

Synthetic gauge fields, i.e., synthetic flux or spin-orbit coupling, have been realized in neutral
ultracold atoms. Here we will focus on gauge fields in optical lattices achieved by time-periodic
driving, in particular by laser-induced tunnelling [73–76] and in shaken lattices [77–79]. These
techniques allow creating strong effective magnetic flux and topologically non-trivial states.
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They are examples for Floquet engineering, which allows to design and tune band structures,
interactions, quantum states and effective (Floquet-) Hamiltonians, by time-periodic driving
[80]. Important model systems have already been realized in this way, in particular the Harper-
Hofstadter (HH) [74, 75] and Haldane Hamiltonians [78].
The topological Haldane model [71] describes a quantum anomalous Hall state in the absence
of a net flux and has the form

Ĥ = −
∑
〈ij〉

tij â
†
i âj −

∑
〈〈ij〉〉

t′ij e
iφij â†i âj + h.c.+∆AB

∑
i∈A

â†i âi (10)

where the indices i(j) label the sites of a honeycomb lattice, tij and t′ij are real hopping am-
plitudes between pairs of nearest neighbors 〈ij〉 and next-nearest neighbors 〈〈ij〉〉, respec-
tively, φij is a phase, and ∆AB is a staggered energy offset between the two sublattices A
and B. The Haldane model has been realized experimentally [78] by “lattice shaking”, i.e.,
by accelerated motion of a two-dimensional optical honeycomb lattice on an elliptical orbit
rlat = A

(
cos(ωt)ex + cos(ωt−ϕ)ey

)
. The Berry curvature Ωm(k) was measured semiclassi-

cally via the quasimomentum drift of a cloud of ultracold 40K in the lowest band. More recently,
a tomographic measurement of the full quasimomentum dependence of the Berry curvature of
a tunable honeycomb lattice has been performed by monitoring the dynamics of the fermionic
cloud after a sudden quench of the periodic driving [79].
The HH Hamiltonian describes a quantum particle on a tight-binding square lattice

Ĥ = −
∑
m,n

t
(
eiφmn â†m+1,nâm,n + â†m,n+1âm,n

)
+ h.c., (11)

where the sites of the lattice are labeled by (m,n), in the presence of a strong magnetic flux,
which is described by the Peierls phase φmn. It has been realized in optical lattices [74, 75],
following the proposal [73], where the Peierls phase is imprinted by laser-assisted tunneling,
as shown in the setup in Fig. 9. Due to a magnetic field gradient the energy offset ∆ between
neighboring sites in x-direction is much larger than the bare tunneling amplitude, suppressing
hopping in this direction. Two additional laser beams with frequency difference ω = ω1−ω2 =

∆/~ and wave vector difference q = k1−k2 then induce resonant, laser-assisted tunneling in
the x-direction. In the limit of high driving frequency ω this system can be described by an
effective time-independent (Floquet-) Hamiltonian of the HH type as given in Eq. (11). The
resulting Peierls phase is given by φmn = q · Rmn, where Rmn is the position of lattice site
(m,n). One defines a dimensionless flux per plaquette of the lattice as α = Φ/2π, where Φ
is the accumulated Peierls phase on a closed path around the plaquette. The Chern number
of the lowest band of this system has been measured for α = 1/4 in a modified, all-optical
set-up [76]. Realizing a QSH state by filling the Chern bands with ultracold fermions and
detecting the associated edge states remains an open challenge for experiments. Note, however,
that edge states, and also a local Chern marker characterizing bulk topology, have been recently
observed in setups where one spatial dimension is replaced by a “synthetic dimension” encoded
in different internal (hyperfine) states, see for example [81].
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Fig. 9: Experimental set-up for the realization of the Harper-Hofstadter Hamiltonian [74].
Two time-reversed copies of the HH-Hamiltonian (11) with opposite flux were realized for two
hyperfine states labeled by | ↑ 〉, | ↓ 〉. Reprinted figure with permission from [74]. Copyright
2013 by the American Physical Society.

Cold atoms with synthetic gauge fields are well suited for studying interacting topological
many-body states. From a theoretical perspective, noninteracting topological insulators have
been studied intensely and are quite well understood [68], but many open questions remain
regarding the effect of two-particle interactions on topological bands. One promising ap-
proach [82] allows to extract (integer) topological invariants of interacting lattice systems from
the zero-frequency Green’s function alone, via an effective noninteracting “topological Hamil-
tonian” htop(k) = −G−1(k, iω=0). It can be conveniently combined with (real-space) DMFT
and allows to calculate topological invariants for strongly correlated fermionic systems, e.g., for
interacting QSH states in Hubbard-type lattice models. This approach has been applied to cal-
culate the phase diagram of the time-reversal-symmetric fermionic Hofstadter-Hubbard model

Ĥ = −t
∑
j

(
ĉ†j+ex

ei2πγσ
x

ĉj + ĉ†j+ey
ei2παxσ

z

ĉj + h.c.
)

+
∑
j

(
(−1)xλĉ†j ĉj + Un̂i↑n̂i↓

)
(12)

with a staggered potential λ and additional spin-orbit coupling γ. Here ex, ey are the primitive
lattice vectors in x- and y-direction of a square lattice and c†j = (c†j↑, c

†
j↓) denotes the creation

operator at site j = (x, y). An interaction-driven transition into the QSH state has been observed
and the bulk-edge correspondence has been verified [83]. Moreover, the formation of a smooth
topological interface in the bulk of the optical lattice has been proposed and studied theoretically
by ramping up the staggered potential λ(x) in the model (12) as a function of the x-coordinate
[84], as shown in Fig. 10. By real-space DMFT simulations it was found that the gapless
edge states at the interface are visible in an enhanced local compressibility. The latter can be
directly related to non-local density-density correlations, which could in principle be measured
by quantum-gas microscopy [19].
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Fig. 10: Topological Hofstadter interface: Schematic representation of the Hofstadter-Hubbard
model, given by Eq. (12), in a cylinder geometry, with a staggered potential λ(x) linearly in-
creasing across the lattice in x-direction. Reprinted figure with permission from [84]. Copy-
right 2019 by the American Physical Society.

The measurement of topological invariants in interacting quantum gases is challenging. In [85]
it was shown for a spin-½ Haldane-Hubbard model that from the single-particle density-matrix
(SPDM) of the system the effective topological Hamiltonian htop(k) can be extracted, and thus
the Chern number calculated and the topological phase transition determined. Furthermore, in
this work a general experimental tomography scheme was proposed for measuring the SPDM
of interacting fermions in bipartite lattices, based on a sudden quench of the system to a non-
interacting lattice Hamiltonian, and subsequent time-of-flight measurement.
Topological band insulators are symmetry-protected topological (SPT) phases, with a bulk gap
and nontrivial surface states which are protected by symmetry. Alternatively, a many-body
system may have intrinsic topological order, with topological ground state degeneracy and frac-
tional excitations [86]. Optical flux lattices may be a promising experimental platform for real-
izing fractional Chern insulators in ultracold atoms [87]. Topological order could be observed
by measuring nonlocal correlation functions, for example string order, which has already been
detected in a 1d bosonic Mott insulator [88].

6 Disorder and localization

Effects of disorder, such as localization or glassiness, are important in solid-state materials,
where defects are intrinsically present and unavoidable. In particular, conducting properties
of electronic systems are strongly affected by scattering from defects. In itinerant electronic
systems metal-insulator transitions can occur which are driven by the interplay between spatial
randomness and two-particle interactions. Noninteracting, disordered systems are rather well
understood, see for example the review [89]. This is due to techniques such as the scaling theory
of localization, which considers the dimensionless conductance g ≡ G/(e2/~) and argues that
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Fig. 11: Paramagnetic ground state phase diagram of the fermionic Anderson-Hubbard model
at half filling, determined by DMFT in combination with typical-medium theory. Reprinted
figure with permission from [94]. Copyright 2005 by the American Physical Society.

its dependence on the linear system size can be expressed as d ln g
d lnL

= β(g). In spatial dimensions
d = 1 and 2 this leads in the thermodynamic limit L → ∞ always to insulating behavior,
corresponding to completely localized single-particle states, since β(g) < 0. On the other hand,
in d = 3 one finds that β(gc) = 0 at a critical value gc of the conductance. This implies a
mobility edge between (Anderson-)localized and extended single-particle states, and a metal-
insulator transition as a function of disorder strength or chemical potential, as already predicted
by Anderson in his seminar paper [90].
Ultracold atomic quantum simulations of relevant theoretical models offer high tunability of the
type and strength of disorder, via quasi-periodic optical lattices or optical speckle potentials. In
addition, two-particle interactions are tunable via Feshbach resonances, and also the (bosonic
or fermionic) quantum statistics can be tuned by an appropriate choice of the atomic species.
Moreover, non-equilibrium dynamics can be monitored in-situ in real time, which allows to
probe many-body localization (MBL), as will be discussed below. We will, in the following,
only consider quenched disorder potentials, corresponding to static, randomly placed defects
which do not change on the experimental timescales.
Ultracold bosons have for the first time allowed direct observation in real space of an exponen-
tially localized matter wave ΨBEC(x) ∼ e−|x|/ξ, for example by imaging an expanding, non-
interacting Bose-Einstein condensate in a 1d disordered optical Speckle potential [91]. Three-
dimensional Anderson localization has been observed in ultracold fermionic 40K, where an
exponentially localized component of the cloud was detected, corresponding to particles below
the mobility edge [92].
Major theoretical challenges remain in studies of quantum many-body systems with (strong)
disorder and interaction. It has been predicted that two-particle interactions can lead to a metal-
insulator transition in 2d disordered Fermi gases [93], in contrast to the non-interacting case.
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Optical lattice quantum simulations are well suited for studying the interplay between strong
local correlations, captured by the Hubbard model and leading e.g., to a Mott metal-insulator
transition, and Anderson localization induced by strong disorder. Developments in DMFT have
led to theoretical progress on this topic. The fermionic Anderson-Hubbard model is a disordered
version of Eq. (1), where the onsite energies εi are independently sampled from a probability
distribution p(ε) of width ∆. Important disorder types are box disorder with a flat, bounded dis-
tribution p(ε) = Θ

(
∆/2−|ε|

)
/∆, or optical Speckle disorder with p(ε) = Θ(ε) exp(−ε/∆)/∆,

where Θ(x) is the Heaviside function. The fermionic Anderson-Hubbard model with box dis-
order has been studied at half filling by DMFT in combination with typical-medium theory
(TMT) [94]. TMT is built on the concept that the typical (i.e. most probable) value of the local
density of states (LDOS) Aiσ(ω) = − 1

π
ImGiiσ(ω+i0+) can be considered as a mean-field for

the Anderson localization transition. In particular, the typical LDOS vanishes inside the Ander-
son insulator, in contrast to the average density of states. The resulting non-magnetic ground
state phase diagram, see Fig. 11, clearly shows that weak interactions can induce delocaliza-
tion in the Anderson insulator. This corresponds to re-entrant metallic behavior, which also
occurs when disorder is added to the Mott insulator. Later DMFT studies also considered the
experimentally realistic disorder distribution for optical Speckle potentials [95], and included
the possibility of antiferromagnetic ordering, which leads to a novel antiferromagnetic metallic
phase [96].

A quantum simulation of the fermionic Anderson-Hubbard model on a cubic optical lattice
has been performed with 40K, where disorder was induced by an additional optical Speckle
potential [97]. A transport-type measurement of localization properties was performed where
the center-of-mass velocity was detected after applying a magnetic field gradient. This velocity
was found to decrease with increasing disorder, and to vanish at a critical disorder strength ∆c,
in agreement with an Anderson metal-insulator transition. Increasing the Hubbard interaction in
the Anderson insulator led to delocalization, as shown in Fig. 12, which qualitatively confirms
the DMFT prediction [94].

On the other hand, the disordered Bose-Hubbard model [31] describes effects of randomness in
strongly correlated bosonic systems, for example in superfluid 4He immersed in random pores
of Vycor. It is given by Eq. (5) with onsite energies εi sampled from a probability distribution
of width ∆. In the ground state, an insulating and compressible Bose glass (BG) phase has been
predicted, in addition to the Mott insulator (MF) and the superfluid (SF) [31]. The properties
of the BG have been the subject of numerous theoretical studies. In one spatial dimension,
DMRG simulations have provided early insight [98], but less has been known in higher di-
mensions. Simple arithmetic averaging over disorder cannot describe the BG phase, since it
effectively restores translational invariance. This has motivated development of a stochastic
mean-field theory (SMFT), which maps the inhomogeneous system with spatial fluctuations of
the condensate onto an ensemble of effective single-site problems, each coupled to a mean-field
bath with condensate order parameter ψ, subject to a probability distribution P (ψ) that is de-
termined self-consistently [99, 100], as shown in Fig. 13 (left). In this way, the BG phase with
its disorder-induced localization is captured, with a non-trivial dependence on spatial dimen-



Analog Quantum Simulations 10.21

Fig. 12: Critical disorder-strength of the disorder-driven fermionic metal-insulator transition
measured for ultracold 40K in a cubic lattice with Speckle disorder. Interaction-induced delo-
calization can be clearly seen. Reprinted figure with permission from [97]. Copyright 2015 by
the American Physical Society.

sion beyond mean-field scaling. The method can be applied to realistic disorder types such as
optical Speckle potentials, and is formulated directly in the thermodynamic limit, thus avoiding
finite-size effects. The MI, SF and BG phases are distinguished by their values of the average
condensate order parameter ψ and the compressibility ∂n/∂µ. When including collective ex-
citations of the BG in the SMFT calculation [100], one observes that the transition from MI
to SF in the ground state of the disordered Bose-Hubbard model always occurs via an inter-
mediate BG phase. This has been independently shown by QMC studies and a “theorem of
inclusions” [101]. In the strongly interacting regime, at constant filling, increasing the disorder
strength can lead to re-entrant superfluidity, i.e., drive the system from the insulator back into
the superfluid phase. This was observed in SMFT calculations with a finite lattice coordination
number z = 6 (see Fig. 13 (right)) [100] and in QMC simulations on a cubic lattice [101].

The disordered Bose-Hubbard model has been realized experimentally in a cubic optical lattice
with an additional short-wavelength optical Speckle potential [102]. After switching on the
Speckle potential, a strong reversible decrease of the condensate fraction was observed, which
indicates that the interacting Bose-Einstein condensate is indeed localized by disorder. This
was confirmed by measurement of mass transport in the lattice. Distinguishing the MI and BG
phases would require additional measurements of the excitation spectrum or the compressibility,
which were not performed in this experiment. Also, presumably due to finite temperature, no
disorder-induced re-entrant superfluidity was observed.

Our discussion of localization transitions so far has focused on thermodynamic equilibrium and
low temperatures. However, disordered and isolated quantum many-body systems may fail to
thermalize, thus violating ergodicity, as was found in a perturbative study [103]. This so-called
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Fig. 13: (left) Schematic illustration of SMFT. The lattice model is mapped onto an ensem-
ble of effective single-site problems, each of which is coupled to a condensate mean-field bath.
Spatially random fluctuations are captured by a statistical distribution of the condensate order
parameter ψ. Reprinted figure with permission from [99]. (right) Phase diagram of the Bose-
Hubbard model with lattice coordination number z = 6 and box disorder at filling n = 1 and
T = 0.03U (J denotes the hopping). At the protruding Mott lobe re-entrant superfluidity oc-
curs, i.e., increasing the disorder strength drives a series of SF-insulator transitions. Reprinted
figure with permission from [100]. Copyright 2010 by the American Physical Society.

many-body localization (MBL) has since been the subject of numerous theoretical studies using
different numerical and analytical approaches; for a review see [104]. Remarkably, a many-
body localized system can remain fully insulating even at T > 0, different from an interacting
Anderson insulator, which is only strictly insulating at T = 0. In the out-of equilibrium real-
time dynamics of MBL systems, when initialized in a non-entangled state, entanglement spreads
logarithmically, in contrast to thermal states or noninteracting Anderson insulators [104]. For
a 1d quantum spin chain with short-range interactions a quasi-rigorous proof for the existence
of MBL has been given [105]. Much less is known in d > 1, due to a lack of exact analytical
solutions or reliable numerical simulation of quantum many-body dynamics. There have been
arguments that MBL may be absent in d > 1 [106] and even MBL in disordered, interacting
quantum spin chains has recently been challenged [107].
Quantum simulations with ultracold atoms have provided new insight into MBL. For fermions
in a 1d incommensurate optical superlattice, described by the Aubry-André model which con-
tains quasi-random disorder, it was observed that an initially prepared particle-density wave
state does not decay in time, provided randomness is sufficiently strong [108]. This indicates a
breakdown of thermalization. In a later measurement the real-time dynamics of a bosonic 87Rb
ensemble in a 2d disordered optical lattice after a quantum quench was observed. It was found
that an initially prepared density domain wall fails to decay completely if the disorder strength
is above a critical value, leading to a non-thermalized (quasi-) steady state [109]. The spatial
decay length of the density distribution in the steady state was found to diverge at the critical
disorder strength, i.e., at the (possible) MBL transition observed here. However, it remains to
be seen whether the MBL phenomena observed on the time scales accessible in these experi-
ments represent a stable localized quantum phase, or whether they correspond to a metastable
transient regime that emerges before thermalization sets in at much longer time scales [104].
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7 Outlook

Analog quantum simulations of Hubbard-type models with ultracold atoms in optical lattices
have already been very successful. One future goal will be to achieve even lower temperature
(entropy) in optical lattices, in order to reach exotic low-temperature phases such as d-wave
superfluidity in the Fermi-Hubbard model [17]. Hybrid quantum simulators with degenerate
fermionic clouds coupled to phonons of trapped ion crystals can provide insight into the effect
of additional electron-phonon coupling in strongly correlated systems [14].
Tunable long-range interactions in ultracold atomic ensembles will lead to novel physics com-
pared to strongly correlated electronic systems. They can be induced by different approaches,
including Rydberg excitations, heteronuclear molecules, magnetic dipolar moments, and cou-
pling of quantum gases to single- or few-mode optical cavities. In this way, for example, super-
solid phases have already been realized [110, 111].
Fermionic alkaline-earth-like elements (for example 173Yb or 87Sr) with their large nuclear spin
decoupled from electronic angular momentum have emerged as platforms for simulating itin-
erant lattice models with orbital degeneracy or higher internal symmetries, which could allow
quantum simulation of more exotic states of matter [112, 7, 8].
Due to the unprecedented local access in preparation and measurement of quantum states that
is provided by optical quantum-gas microscopy, optical lattice quantum simulators are also
ideally suited to study far-from-equilibrium quantum many-body dynamics. Fundamental open
questions that will be further investigated in this way range from many-body-localization to
quantum chaos.
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Contents

1 Introduction 2

2 Gate-based quantum computing 2
2.1 Quantum bits and gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Programming and simulating quantum circuits . . . . . . . . . . . . . . . . . . 8
2.3 Example: Quantum adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Example: Quantum approximate optimization algorithm . . . . . . . . . . . . 13

3 Quantum annealing 17
3.1 Optimization problems with binary variables . . . . . . . . . . . . . . . . . . . 17
3.2 Working principle of a quantum annealer . . . . . . . . . . . . . . . . . . . . . 18
3.3 Architecture of D-Wave quantum annealers . . . . . . . . . . . . . . . . . . . 20
3.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Programming a D-Wave quantum annealer . . . . . . . . . . . . . . . . . . . . 22
3.6 Example: Garden optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A JUQCS standard gate set 31

E. Pavarini and E. Koch (eds.)
Simulating Correlations with Computers
Modeling and Simulation Vol. 11
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1 Introduction

Quantum computing is a new emerging computer technology. Current quantum computing
devices are at a development stage where they gradually become suitable for small real-world
applications. This lecture is devoted to the practical aspects of programming such quantum
computing devices.
Over the past twenty years, two major paradigms of quantum computing have emerged. The first
is the gate-based model of quantum computing (also known as universal quantum computing),
and the second is quantum annealing (also known as adiabatic quantum computing). From a
mathematical point of view, both models have the same computational power, but in practice
they operate in a fundamentally different way.
The first part of this lecture focuses on gate-based quantum computers. We will define the
basic unit of computation, the quantum bit (qubit), and how a quantum computer processes
information. Subsequently, basic quantum circuits (i.e., the programs for gate-based quantum
computers) are discussed and simulated. Finally, a more complex algorithm called the quantum
approximate optimization algorithm (QAOA), which is considered to be an approach to address
small optimization problems, is introduced and discussed.
In the second part of this lecture, we give an introduction to quantum annealing and discuss
how to program a quantum annealer, i.e., the quantum processing unit (QPU) that performs the
quantum annealing process. The introductory part starts with a discussion of discrete optimiza-
tion problems and a formulation of the particular set of problems that can be solved on currently
available quantum annealers. Subsequently, we describe the working principles of quantum an-
nealers and the architecture of the currently available quantum annealers by D-Wave Systems
Inc. We also discuss physical aspects including some limitations. Finally, we demonstrate how
to program a D-Wave quantum annealer by means of some example programs.

2 Gate-based quantum computing

This section provides a hands-on introduction to the programming of gate-based quantum com-
puters. After introducing the basic notions of qubits and gates, several examples of quantum
circuits are programmed and discussed. These are either fundamental building blocks in disrup-
tive quantum circuit scenarios, such as the quantum Fourier transform in Shor’s factoring algo-
rithm [1], or potentially relevant for near-term applications such as the QAOA [2]. In this sec-
tion, the term quantum computer always refers to the gate-based model of quantum computing.

2.1 Quantum bits and gates

2.1.1 Single qubits

A gate-based quantum computer is designed to process information in terms of quantum bits
(qubits). The word qubit is derived from the basic unit of computation in a digital computer, a
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Fig. 1: Bloch sphere representation of a pure single-qubit state |ψ〉. The azimuthal angle
ϑ ∈ [0, π] and the polar angle ϕ ∈ [0, 2π) are defined in Eq. (3), and the Cartesian coordinates
rx, ry, and rz are given by Eq. (5).

binary digit or bit. While a bit in a digital computer can only ever be either 0 or 1, a qubit is a
generalization of a bit in the sense that it can also be in a superposition of 0 and 1.
We describe a qubit |ψ〉 in terms of two complex numbers ψ0, ψ1 ∈ C,

|ψ〉 = ψ0|0〉+ ψ1|1〉 =

(
ψ0

ψ1

)
, (1)

which are normalized such that the norm of |ψ〉 is 〈ψ|ψ〉 = |ψ0|2 + |ψ1|2 = 1. In the quantum
computer model, the notions of 0 and 1 are represented by the standard vectors

|0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
. (2)

For the sake of programming quantum computers, these two notations are equivalent. We call
|ψ〉 the state vector of the qubit.
Informally, a complex superposition like Eq. (1) is sometimes described as “0 and 1 at the same
time”, although it is important to realize that the notion of time plays no role here. Equation (1)
is a well-defined mathematical object that completely describes the state of a single qubit.
A very useful representation of the general single-qubit state |ψ〉 in Eq. (1) is called the Bloch
sphere representation that is shown in Fig. 1. It is particularly convenient to visualize the states
and operations on a single qubit. We obtain the Bloch sphere representation by using the fact
that 〈ψ|ψ〉 = |ψ0|2 + |ψ1|2 = 1, which implies that there exists an angle ϑ ∈ [0, π] such that
|ψ0| = cos(ϑ/2) and |ψ1| = sin(ϑ/2). Furthermore, as the global phase of a quantum state
is irrelevant, we can choose without loss of generality ψ0 = cos(ϑ/2) and ψ1 = eiϕ sin(ϑ/2),
where ϕ ∈ [0, 2π) represents the relative phase between the complex coefficients. We thus
obtain

|ψ〉 = cos
ϑ

2
|0〉+ eiϕ sin

ϑ

2
|1〉. (3)
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For all values of ϑ and ϕ, this state can be drawn on the surface of a 3D sphere with radius one
as shown in Fig. 1.
When a qubit is measured, one always obtains one of the two discrete, digital outcomes “0”
and “1”. The complex coefficients of |ψ〉 determine the corresponding probabilities p0 = |ψ0|2

and p1 = |ψ1|2 to measure one of the two outcomes. On the Bloch sphere, the probabilities p0
and p1 can be obtained from the projection of |ψ〉 onto the z axis.

Exercise 1: Calculate ϑ and ϕ for the following states, visualize them on the Bloch sphere
with radius one, and compute the probabilities to measure the qubit in |0〉 and |1〉:
(a) |0〉, (b) |1〉, (c) (|0〉+ |1〉)/

√
2, (d) (|0〉+ i|1〉)/

√
2, (e) (

√
3/2)|0〉+ ((1+i)/2

√
2)|1〉,

(f) ((1+i)/2)|0〉+ ((1−
√
3i)/
√
8)|1〉 (hint: remove the global phase here first).

The Cartesian coordinates rx, ry, and rz of the single-qubit state |ψ〉 in Fig. 1 can be com-
puted as expectation values of the Pauli matrices,

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (4)

A short calculation yields

~r =

rxry
rz

 =

〈ψ|σx|ψ〉〈ψ|σy|ψ〉
〈ψ|σz|ψ〉

 =

sinϑ cosϕ

sinϑ sinϕ

cosϑ

 . (5)

2.1.2 Quantum gates

A quantum gate is a unitary operation that can be performed on a qubit. All single-qubit quan-
tum gates can be visualized as rotations of |ψ〉 on the Bloch sphere in Fig. 1. One defines three
elementary qubit rotations as matrix exponentials of the Pauli matrices in Eq. (4)

Rx(θ) = e−iθσ
x/2 =

(
cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

)
, (6)

Ry(θ) = e−iθσ
y/2 =

(
cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

)
, (7)

Rz(θ) = e−iθσ
z/2 =

(
exp(−iθ/2) 0

0 exp(iθ/2)

)
. (8)

Here, the quantum gate Rα(θ) for α = x, y, z rotates the qubit |ψ〉 by an angle θ around the axis
α according to the right-hand rule. This means that if the thumb of the right hand points along
the corresponding axis α in Fig. 1, the sense of rotation is given by the curl of the remaining
fingers, i.e., counter-clockwise when looking at the top of the thumb. An example for the gate
Ry(π) is shown in Fig. 2.
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Fig. 2: Visualization of the single-qubit gate Ry(π) (see Eq. (7)) applied to the state |0〉 on the
Bloch sphere defined in Fig. 1. The gate represents a counter-clockwise rotation around the y
axis by an angle of π. Shown is the time evolution of a qubit during the application of a pulse
designed to implement the gateRy(π). The time is encoded in the color of the arrows (from blue
at the beginning over yellow to red at the end of the pulse). The data is taken from a simulation
of transmon qubits [3].

Often, at least one of these elementary qubit rotations is implemented in a hardware realization
of a gate-based quantum computer. When programming quantum computers, the quantum gates
are internally decomposed into products of such elementary rotations. For instance, for the
current generation quantum processors of the IBM Q (which are based on superconducting
transmon qubits [4]), the elementary rotations are Rx(π/2) and Rz(θ) [5, 6].
A general single-qubit rotation by an angle θ around a unit axis ~n = (nx, ny, nz) is given by

R~n(θ) = e−iθ~n·~σ/2 = cos
θ

2
I − i sin θ

2
~n · ~σ, (9)

where ~n ·~σ = nxσx+nyσy +nzσz, and I is the 2×2 identity matrix. All single-qubit gates can
be written in this form, up to an arbitrary global phase factor of the form eiα.
Besides the elementary single-qubit rotations, there are six other important gates that belong to
the so-called standard gate set

X = σx, Y = σy, Z = σz, (10)

H =
1√
2

(
1 1

1 −1

)
, S =

(
1 0

0 i

)
, T =

(
1 0

0 eiπ/4

)
. (11)

Especially the X gate (also known as the NOT gate or bit flip gate) and the Hadamard gate H
(which maps a state |0〉 to a uniform superposition of |0〉 and |1〉 and back) are used in many
applications. A comprehensive list of common quantum gates is given in appendix A.
As each quantum gate U is unitary (i.e., U−1 = U † where U † denotes the Hermitian conjugate),
the inverse of a quantum gate U is again a quantum gate.



11.6 Kristel Michielsen, Madita Willsch, Dennis Willsch

Exercise 2: For all single-qubit gates in Eqs. (10) and (11) and their inverses, find the cor-
responding axes ~n and angles θ (and optionally the global phase factors eiα) to express them in
the form of Eq. (9) and visualize their operations as rotations on the Bloch sphere, as in Fig. 2.

2.1.3 Multiple qubits

While a single-qubit state is described by two complex coefficients ψ0 and ψ1 (see Eq. (1)), a
multi-qubit state |ψ〉 with n > 1 qubits is described by 2n complex coefficients ψ0, . . . , ψ2n−1,

|ψ〉 = ψ0|0 · · · 00〉+ ψ1|0 · · · 01〉+ · · ·+ ψ2n−1|1 · · · 11〉 =


ψ0

ψ1

...
ψ2n−1

 , (12)

The corresponding basis vectors |q0q1 · · · qn−1〉 for qi = 0, 1 and i = 0, . . . , n−1 are constructed
from the single-qubit standard basis in Eq. (2) by means of the tensor product “⊗” (also known
as Kronecker product), |q0q1 · · · qn−1〉 = |q0〉 ⊗ |q1〉 ⊗ · · · ⊗ |qn−1〉. For simplicity, we often do
not write the tensor product explicitly. Consequently, for two qubits, the computational basis
reads

|00〉 =


1

0

0

0

 , |01〉 =


0

1

0

0

 , |10〉 =


0

0

1

0

 , |11〉 =


0

0

0

1

 . (13)

One may notice that in Eq. (12), the basis state |q0q1 · · · qn−1〉 corresponding to the coefficient
ψj for j = 0, . . . , 2n−1 contains the binary representation of j, i.e., bin(j) = q0q1 · · · qn−1, or
equivalently, j =

∑n−1
i=0 qi× 2n−i−1. For this reason, we identify the notations |j〉 ≡ |bin(j)〉 ≡

|q0q1 · · · qn−1〉 so that the state in Eq. (12) is also written as

|ψ〉 =
2n−1∑
j=0

ψj|j〉. (14)

This notation is needed for the example of the quantum Fourier transform discussed below.
Quantum gates on multiple qubits are, like single-qubit gates, unitary operations on the multi-
qubit state |ψ〉. In practice, most multi-qubit gates are actually single-qubit gates acting on
certain qubits in the multi-qubit state. For instance, a single-qubit gate U from Eqs. (10) or (11)
acting on a certain qubit i (denoted by Ui) transforms a basis vector |q0 · · · qn−1〉 according to

Ui|q0 · · · qn−1〉 = |q0 · · · qi−1〉(U |qi〉)|qi+1 · · · qn−1〉. (15)

In other words, Ui is given by the tensor product Ui = I ⊗ · · · ⊗ U ⊗ · · · ⊗ I .
Another common set of multi-qubit gates derived from single-qubit gates are controlled quan-
tum gates. For a single-qubit gate U , the controlled-U gate (denoted by CU ) acts on two qubits
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i1 and i2 in a multi-qubit state. Its action on a basis vector |q0 · · · qn−1〉 is defined by

CUi1i2|q0 · · · qn−1〉 =

 |q0 · · · qn−1〉 (if qi1 = 0)

|q0 · · · qi2−1〉(U |qi2〉)|qi2+1 · · · qn−1〉 (if qi1 = 1)
. (16)

In other words, the action is controlled by qubit qi1: Only if the control qubit qi1 is in state 1,
the target qubit qi2 experiences the single-qubit gate U . On the two-qubit space spanned by the
four basis states in Eq. (13), the matrix representation of the controlled-U gate is given by

CU =

(
I 0

0 U

)
, (17)

where 0 denotes a 2×2 matrix with all elements equal to zero.
It is important to realize that for controlled quantum gates constructed in this way, the global
phase of the single-qubit gate U becomes a relative phase. In particular, this means that,
even though the single-qubit gates S and Rz(π/2) are equivalent, the controlled gates CS and
CRz(π/2) are different two-qubit gates.
Two very important two-qubit gates constructed like this are the controlled-NOT (CNOT or
CX) and the controlled-phase (CZ) gates. Their matrix representations with respect to the
two-qubit basis in Eq. (13) are given by

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 . (18)

The CNOT gate and the CZ gate can be converted into one another using the identity CNOT =

(I ⊗ H) CZ (I ⊗ H), which can be verified by computing the product of the correspond-
ing matrix representations. On a space with more than two qubits, the same identity reads
CNOTi1i2 = Hi2 CZi1i2 Hi2 . More of such circuit identities that are useful when programming
quantum computers can be found in the following exercise and in [7].

Exercise 3: Verify the following circuit identities, e.g. by computing their matrix represen-
tations on a suitable space and then confirming that they are equivalent (up to a global phase):
(a) X = HZH , (b) Y = H YH , (c) Z = HXH , (d) I = XX = Y Y = ZZ = HH ,
(e) S = TT , (f) H = SRx(π/2)S, (g) HTH = Rx(π/4), (h) XRy(θ)X = Ry(−θ),
(i) CNOTi1i2 = Hi2 CZi1i2 Hi2 ,
(j) CNOTi2i1 = Hi1Hi2 CNOTi1i2 Hi1Hi2 ,
(k) CNOTi2i1 = Hi1Hi2 CNOTi1i2 Hi1Hi2 ,
(l) CZi1i2 = CZi2i1 , (m) CSi1i2 = CSi2i1 ,
(n) C(eiαI) = Rz(α)⊗ I ,
(o) Rz

i1
(θ) CNOTi1i2 = CNOTi1i2R

z
i1
(θ),

(p) Rx
i2
(θ) CNOTi1i2 = CNOTi1i2R

x
i2
(θ).
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(a)
H T H •

(b)
•

S
=

• • T

T T †

Fig. 3: Example quantum circuit diagrams. Note that the diagrams are read from left to right.
(a) Quantum circuit that generates the state cos(π/8)|00〉 − i sin(π/8)|11〉 (which can be com-
puted using the circuit identity from exercise 3 (g)) when starting with the initial state |00〉 on
the left. (b) Schematic way of writing a circuit identity for the CS gate.

2.2 Programming and simulating quantum circuits

A program for a gate-based quantum computer is called a quantum circuit. A quantum circuit
is a sequence of several quantum gates. It is often expressed with a diagrammatic language that
uses horizontal lines to represent the qubits and boxes to represent the quantum gates. The order
of execution in the quantum gate sequence is from left to right. Controlled quantum gates such
as CUi1i2 in Eq. (16) are visualized with a filled dot on the control qubit and the single-qubit
gate U on the target qubit. The CNOT gate in particular is visualized with an encircled plus
symbol on the target qubit. Two examples using this schematic language are shown in Fig. 3.
As described in the previous section, each gate in a quantum circuit represents a unitary matrix.
By multiplying all quantum gate matrices in a quantum circuit, we could, in principle, obtain a
large unitary matrix that is equivalent to the quantum circuit. Note that, as the order of execution
in a quantum circuit diagram is from left to right, the corresponding quantum gate matrices must
be multiplied in reverse order. For the right circuit in Fig. 3(a), for instance, this matrix product
would read CNOT (H ⊗ I) (T ⊗ I) (H ⊗ I).
To simulate a quantum circuit, one could use the thus obtained matrix and apply it to a certain
initial state, which is typically chosen as |0 · · · 0〉 = (1, 0, . . . , 0)T . This method works for small
quantum circuits. However, it quickly becomes prohibitive because the size of the quantum
circuit matrix for N qubits is 2N×2N .
Larger quantum circuits with, say, N ≥ 30 qubits can be simulated on supercomputers such as
the GPU-cluster JUWELS Booster using JUQCS–G [8], which is a GPU-accelerated version
of the Jülich Universal Quantum Computer Simulator (JUQCS) [9, 10] that was also used for
benchmarking purposes in Google’s quantum supremacy experiment [11]. For reference, the
standard gate set implemented by JUQCS is given in appendix A.
A qiskit [12] interface to JUQCS including the conversion from the qiskit gate-set to the
JUQCS gate-set is available through the Jülich UNified Infrastructure for Quantum computing
(JUNIQ) service at http://jugit.fz-juelich.de/qip/juniq-platform.
An example program to simulate the circuit in Fig. 3(a) using this interface is shown in listing 1.
It simulates the quantum circuit by propagating the state vector, sampling from the resulting
probability, and returning the counts for all sampled events (in this case “00” and “11”). Fur-
thermore, instead of sampling, JUQCS also provides an option to return the full state vector
up to a certain number of qubits. An example program for this mode of operation is shown in
listing 2.

http://ju git.fz-juelich.de/qip/juniq-platform
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1 import qiskit
2
3 circuit = qiskit.QuantumCircuit(2)
4 circuit.h(0)
5 circuit.t(0)
6 circuit.h(0)
7 circuit.cx(0,1)
8 circuit.measure_all()
9

10 from juqcs import Juqcs
11 backend = Juqcs.get_backend(’qasm_simulator’)
12 backend.allocate(minutes=10, max_qubits=2)
13
14 job = qiskit.execute(circuit.reverse_bits(), backend=backend, shots=1000)
15 result = job.result()
16
17 print(result.get_counts())
18
19 backend.deallocate()

Listing 1: Example program to simulate the quantum circuit shown in Fig. 3(a). As the result
of this circuit is cos(π/8)|00〉 − i sin(π/8)|11〉, the printed counts should correspond to the
probabilities p00 = cos(π/8)2 ≈ 0.85 and p11 = sin(π/8)2 ≈ 0.15. Note also the usage
of circuit.reverse bits(), because qiskit uses the ordering |qn−1 · · · q0〉 while all
standard text books as well as these lecture notes use |q0 · · · qn−1〉.

1 import qiskit
2
3 circuit = qiskit.QuantumCircuit(2)
4 circuit.h(0)
5 circuit.t(0)
6 circuit.h(0)
7 circuit.cx(0,1)
8
9 from juqcs import Juqcs

10 backend = Juqcs.get_backend(’statevector_simulator’)
11 backend.allocate(minutes=10, max_qubits=2)
12
13 job = qiskit.execute(circuit.reverse_bits(), backend=backend)
14 result = job.result()
15
16 print(result.get_statevector())
17
18 backend.deallocate()

Listing 2: Example program to simulate the quantum circuit shown in Fig. 3(a) using the
state vector simulator. The result of this program is a numerical representation of the state
cos(π/8)|00〉 − i sin(π/8)|11〉, up to a global phase.
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I ⊗ I ⊗QFT2 Addition [14] I ⊗ I ⊗QFT†2

|q0〉

INIT

•
|q1〉 • •
|q2〉 H S Z S S† H

|q3〉 • H Z H •

Fig. 4: Circuit for a quantum adder [14] that adds two two-qubit registers modulo four, accord-
ing to the rule Eq. (19). The circuit consists of four parts: Initialization of the qubit registers,
QFT on the last two registers, the phase addition transform from [14], and another QFT on the
last two registers. Note that the swaps that are part of typical QFT circuits (see [7]) are left
out. Finally, a measurement of the qubits, which produces a “0” or a “1” for each qubit, is
indicated at the end. To rewrite the gates, one can use identities from exercise 3 or [7].

Instead of the JUQCS backend, one can also use a simulator from qiskit via the function
qiskit.Aer.get backend. This one only works for circuits with a small number of
qubits, but it does not need the calls to backend.allocate and backend.deallocate
as it does not run on a supercomputer. Furthermore, backends for real quantum devices can be
accessed in a similar manner through the IBM Q Experience [13].

2.3 Example: Quantum adder

As a first “real-world” example, we consider a four-qubit quantum computer program that adds
two two-qubit registers according to the rule

|q0q1〉|q2q3〉 7→ |q0q1〉|q0q1 + q2q3〉, (19)

where the expression q0q1 + q2q3 is to be understood as integer addition (modulo 4) of the two-
bit integers with binary representations q0q1 and q2q3, respectively. After the application of the
quantum circuit, the second register contains the sum in binary notation. Some examples of the
operation of the quantum adder are

|2〉|1〉 7→ |2〉|3〉, (20)

|2〉|0〉+ |1〉√
2

7→ |2〉|2〉+ |3〉√
2

, (21)

|2〉|0〉+ |1〉+ |2〉√
3

7→ |2〉|2〉+ |3〉+ |0〉√
3

. (22)

The interesting thing is that it can also add superpositions in parallel, as done in Eqs. (21)
and (22) (note that this works because quantum circuits are linear maps, so a circuit U applied
to a state |ψ1〉+ |ψ2〉 produces the state U |ψ1〉+ U |ψ2〉).
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Exercise 3: Use the rule Eq. (19) for the quantum adder to work out the result when the initial
state is given by (|0〉+ |3〉)/

√
2⊗ (|1〉+ |2〉+ |3〉)/

√
3.

The quantum circuit for the adder consists of four stages that are shown in Fig. 4. The pur-
pose of the INIT block at the beginning is to initialize the registers in a certain initial state, such
as the states on the left-hand side in Eqs. (20)–(22).
The second and the fourth stage contain a quantum Fourier transform (QFT) on the second
register. The QFT is an operation that, loosely speaking, moves information from the registers
to the phases of exponential prefactors and vice versa. For an initial N -qubit basis state |j〉
(j = 0, . . . , 2N−1), the QFT is defined as the unitary transformation

|j〉 QFT7→ 1

2N/2

2N−1∑
k=0

e2πijk/2
N |k〉, (23)

where we identified j and its binary representation q0 · · · qN−1 as done in Eq. (14). There is a
generic quantum circuit [7] to implement this transformation using onlyH gates and conditional
z rotations in a number of steps polynomial in N, as opposed to the Fast Fourier Transform
that requires O(N2N) steps. It is an important component of many quantum algorithms for
which a theoretical exponential speedup is known. One such algorithm is Shor’s factorization
algorithm [1] in which the QFT is basically used to find the period of a suitable function (note
that finding periods is a generic feature of any Fourier transform).
The third part of the quantum adder circuit in Fig. 4 is the addition transform from [14]. It uses
conditional phase shifts from the first to the second register so that an addition is effectively
performed in the exponent of the phase factors. For instance, if the first register represents an
integer l (e.g. |l〉 ≡ |q0q1〉 above), and the second register is given by the QFT of an integer j
(i.e. QFT|j〉 ∝

∑
k e

2πijk/2N |k〉), the addition transform performs the operation

2N−1∑
k=0

e2πijk/2
N |l〉|k〉 7→

2N−1∑
k=0

e2πi(j+l)k/2
N |l〉|k〉. (24)

After this step, the inverse QFT (given by QFT† in Fig. 4) can be used to move the result
(j+l) of the addition from the exponent back into the second register. Note that the addition is
automatically implemented modulo 2N , because the complex exponential function is periodic
with period 2πi.
As an example, we consider an implementation of the quantum adder using the single-qubit
gate set defined in Eqs. (9)–(11) and the CNOT gate as the only two-qubit gate. This requires
rewriting (also known as transpiling) the gates using the circuit identities from exercise 3 and
Fig. 3(b). The result is shown in Fig. 5 and listing 3. Note that the initial state in this example is
chosen to be |2〉(|0〉+ |1〉)/

√
2, i.e., the example from Eq. (21) above. As the output contains a

superposition of the results, each result occurs as separate event in the simulation.
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X •
T T † •
H • T • H H • • • • H

H T T † T T †

Fig. 5: Example circuit for the quantum adder in Fig. 4 after transpiling some of the quantum
gates using appropriate circuit identities. Note that in this example, an X and an H gate have
been used to explicitly create the initial state for the example in Eq. (21).

1 import qiskit
2
3 circuit = qiskit.QuantumCircuit(4)
4 circuit.x(0)
5 circuit.h(3)
6 circuit.barrier()
7 circuit.t(1)
8 circuit.h(2)
9 circuit.t(3)

10 circuit.cx(2,3)
11 circuit.tdg(3)
12 circuit.t(2)
13 circuit.cx(2,3)
14 circuit.h(2)
15 circuit.cx(0,2)
16 circuit.h(2)
17 circuit.cx(2,1)
18 circuit.tdg(1)
19 circuit.cx(2,1)
20 circuit.cx(1,3)
21 circuit.cx(2,3)
22 circuit.t(3)
23 circuit.cx(2,3)
24 circuit.h(2)
25 circuit.tdg(3)
26 circuit.measure_all()
27
28 from juqcs import Juqcs
29 backend = Juqcs.get_backend(’qasm_simulator’)
30 backend.allocate(minutes=10, max_qubits=circuit.num_qubits)
31
32 job = qiskit.execute(circuit.reverse_bits(), backend=backend, shots=1000)
33 result = job.result()
34
35 print(result.get_counts())
36
37 backend.deallocate()

Listing 3: Example program for the quantum adder circuit shown in Fig. 5 for the case given
by Eq. (21) with initial state |2〉(|0〉+ |1〉)/

√
2. The circuit is simulated with JUQCS as shown

in listing 1. The output should be the events “1010” (corresponding to state |2〉|2〉) and “1011”
(corresponding to state |2〉|3〉) with roughly 50% frequency each.
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Repeat for k = 1, . . . , p QAOA steps

Weighting Mixing

|q0〉 H Rz(2γkh0)

∏
i,j

e−iγkJijσ
z
i σ

z
j

Rx(2βk)

|q1〉 H Rz(2γkh1) Rx(2βk)

...
...

...
...

...

|qN−1〉 H Rz(2γkhN−1) Rx(2βk)

︷ ︸︸ ︷ ︷ ︸︸ ︷

Fig. 6: General QAOA circuit [2]. Initially, the qubits are brought into a uniform superposition
over all states using H gates. Then, k = 1, . . . , p QAOA steps with variational parameters
β1, . . . , βp and γ1, . . . , γp are applied. Each QAOA step k consists of a “weighting step” using z
rotations scaled with γk and the parameters {hi} and {Jij} that define the optimization problem
(see Eq. (25)), followed by a “mixing step” using x rotations with angle 2βk. Finally, the qubits
are measured. The result can then be used to update the variational parameters until the energy
is sufficiently low.

2.4 Example: Quantum approximate optimization algorithm

In this section, we consider an approach to address optimization problems on gate-based quan-
tum computers. Gate-based quantum computers are not made to solve optimization problems
by design, which is a key difference to the adiabatic quantum computers covered in the next
section. However, there is a standard (and by now rather common) way of addressing optimiza-
tion problems in QUBO/Ising form on gate-based quantum computers, namely the quantum
approximate optimization algorithm (QAOA) [2].
The optimization problems considered here are discrete Ising problems. The goal of such prob-
lems is to find the minimum of an energy function (or cost function)

E(s0, . . . , sN−1) =
N−1∑
i=0

hisi +
∑
i<j

Jijsisj, (25)

where s0, . . . , sN−1 = ±1 are the discrete, two-valued variables, N is the number of variables
(which is equal to the number of required qubits), and {hi} and {Jij} are real numbers that
define the optimization problem instance (for more information see the following section).
The QAOA is a quantum algorithm to find minima (or low-energy states) of Eq. (25). It is
a variational quantum algorithm, which means that it has a number of variational parameters
β1, . . . , βp and γ1, . . . , γp that are varied during the iterations of the algorithm. The order of the
QAOA, denoted by p, determines the number of variational parameters. It is worth mention-
ing that for large p, the QAOA can be related to approximate quantum annealing, which also
provides a method to find a useful initialization of the variational parameters (see [8]).
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|qi〉
e−iγkJijσ

z
i σ

z
j

|qj〉
=

|qi〉 • •
|qj〉 Rz(2γkJij)

Fig. 7: Circuit identity to implement the second part of the weighting step in Fig. 6.

In each iteration of the QAOA, one executes the quantum circuit in Fig. 6 for a given set of
variational parameters β1, . . . , βp and γ1, . . . , γp (note that the quantum circuit depends on the
fixed problem instance given by {hi} and {Jij}). To execute the gate

∏
i,j e

−iγkJijσz
i σ

z
j in the

weighting step of the QAOA circuit in Fig. 6 using the standard gate set defined above, we need
another circuit identity. This identity is shown in Fig. 7.

Exercise 4: Prove the circuit identity in Fig. 7, e.g. by computing the matrix representations of
both sides and verifying that they are equivalent.

Each measurement at the end of the circuit produces a string of discrete variables s0, . . . , sN−1 =
±1, where the qubit measurement qi = 0 corresponds to si = +1 and qi = −1 corresponds
to si = −1. Note that this convention, qi = (1−si)/2, is standard for gate-based quantum
computers [7]; for quantum annealers, one often uses qi = (1+si)/2 instead (see below).
From several executions of the circuit, an expectation value for the energy in Eq. (25) can be
computed. This result can be used to update the variational parameters and perform the next
iteration. This process is continued as long as necessary until it converges.
Note that, when the QAOA is simulated using a state vector simulator (see listing 2), the expec-
tation value can also be computed directly from the state vector |ψ〉. This is done by replacing
the problem variables si in Eq. (25) by the Pauli matrices σzi (which yields the Ising Hamiltonian
of the problem) and computing the expectation value

〈E〉 = 〈ψ|E(σz0, . . . , σzN−1)|ψ〉. (26)

As an example, we consider a three-qubit problem characterized by the energy function

E(s0, s1, s2) = −s0 +
1

2
s1 −

1

2
s2 +

1

2
s0s1 +

1

2
s1s2. (27)

In this case, the problem parameters for Eq. (25) are given by (h0, h1, h2) = (−1, 1/2,−1/2)
and (J01, J02, J12) = (1/2, 0, 1/2). The minimum is given by (s0, s1, s2) = (+1,−1,+1) and
corresponds to the state vector |010〉. The energy at the minimum is E(+1,−1,+1) = −3.
Constructing the QAOA circuit for p = 1 according to Figs. 6 and 7 yields the quantum circuit
in Fig. 8. The program to simulate this circuit for a certain range of values for β1 and γ1 is
shown in listing 4.
Figure 9 shows the expectation value of the energy, computed from the state vector |ψ〉 accord-
ing to Eq. (26), and the success probability |〈010|ψ〉|2. In this case, the energy minimum (see
Fig. 9(a)) is very close to the point with maximum success probability (see Fig. 9(b)). Note that
this is not guaranteed for larger QAOA applications [8, 15].
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H Rz(2γ1h0) • • Rx(2β1)

H Rz(2γ1h1) Rz(2γ1J01) • • Rx(2β1)

H Rz(2γ1h2) Rz(2γ1J12) Rx(2β1)

Fig. 8: Example QAOA circuit for p = 1 to find the minimum of the energy function given by
Eq. (27). The circuit has three qubits (one for each problem variable si). The qubit values qi
after the measurement at the end are related to the problem variables via qi = (1− si)/2 (gate-
based convention). Note that only two of the blocks in Fig. 7 are necessary for the weighting
step, because the third coupling parameter J02 = 0.

(a) (b)

Fig. 9: Example QAOA result for p = 1 that shows (a) the expectation value of the energy 〈E〉
(see Eq. (26)) and (b) the probability to measure the solution state |〈010|ψ〉|2. In this case, the
energy minimum at (β1, γ1) ≈ (2.505, 0.681) is very close to the point (β1, γ1) ≈ (2.524, 0.713)
where the success probability is maximal. The state vector |ψ〉 has been obtained by simulating
the QAOA circuit in Fig. 8 for the whole range of β1 ∈ [0, π) and γ1 ∈ [0, 2π). Beyond this
range, the landscapes can be continued periodically; the periodicity in β1 and γ1 is due to the
periodicity of the Rx and Rz gates in Fig. 8.

Exercise 5: Run the p = 1 QAOA for the energy function in Eq. (27) by simulating the circuit
in Fig. 8. Either perform a grid scan over β1 ∈ [0, π) and γ1 ∈ [0, 2π) (as done to produce
Fig. 9), or write an optimization program to find the location of the minimum (e.g. by using the
scipy package [16]).

Exercise 6: Construct the p = 2 QAOA circuit and run it to improve upon the p = 1 re-
sult. One way to do this is to take the best (β1, γ1) from exercise 5 or Fig. 9, and optimize for
(β2, γ2). Another way would be to consider a case with larger p and take values for (βk, γk)
from a quantum annealing schedule as described in [8].
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1 import qiskit
2
3 h = [-1, 1/2, -1/2]
4 J = [1/2, 1/2]
5
6 def E(s0, s1, s2):
7 return h[0]*s0 + h[1]*s1 + h[2]*s2 + J[0]*s0*s1 + J[1]*s1*s2
8
9 qaoa_circuits = []

10 qaoa_parameters = []
11
12 for beta1 in [2.0, 2.5]:
13 for gamma1 in [0.5, 0.7, 1.0]:
14 circuit = qiskit.QuantumCircuit(3)
15 circuit.h(0)
16 circuit.h(1)
17 circuit.h(2)
18 circuit.rz(2*gamma1*h[0], 0)
19 circuit.rz(2*gamma1*h[1], 1)
20 circuit.rz(2*gamma1*h[2], 2)
21 circuit.cx(0,1)
22 circuit.rz(2*gamma1*J[0], 1)
23 circuit.cx(0,1)
24 circuit.cx(1,2)
25 circuit.rz(2*gamma1*J[1], 2)
26 circuit.cx(1,2)
27 circuit.rx(2*beta1, 0)
28 circuit.rx(2*beta1, 1)
29 circuit.rx(2*beta1, 2)
30 qaoa_circuits.append(circuit.reverse_bits())
31 qaoa_parameters.append([beta1, gamma1])
32
33 from juqcs import Juqcs
34 backend = Juqcs.get_backend(’statevector_simulator’)
35 backend.allocate(minutes=30, max_qubits=3)
36
37 job = qiskit.execute(qaoa_circuits, backend=backend)
38 result = job.result()
39
40 print(’beta1\tgamma1\tenergyexpectation\tsuccessprobability’)
41 for i,(beta1,gamma1) in enumerate(qaoa_parameters):
42 psi = result.get_statevector(i)
43 prob = abs(psi)**2
44 energy = E(+1,+1,+1)*prob[0b000] + E(+1,+1,-1)*prob[0b001]
45 energy += E(+1,-1,+1)*prob[0b010] + E(+1,-1,-1)*prob[0b011]
46 energy += E(-1,+1,+1)*prob[0b100] + E(-1,+1,-1)*prob[0b101]
47 energy += E(-1,-1,+1)*prob[0b110] + E(-1,-1,-1)*prob[0b111]
48 probability = prob[0b010]
49 print(f’{beta1}\t{gamma1}\t{energy}\t{probability}’)
50
51 backend.deallocate()

Listing 4: Example program for the p = 1 QAOA circuit shown in Fig. 8. Separate circuits
are simulated for all given values of β1 and γ1. From the resulting state vector, both energy
and success probability are evaluated. The best result in the output should be at β1 = 2.5 and
γ1 = 0.7 with energy −1.69 and success probability 58.9%.
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3 Quantum annealing

The second part of these lecture notes focuses on quantum annealing. Besides gate-based quan-
tum computers, quantum annealing has emerged as the second major paradigm of quantum
computing. As quantum annealers are somewhat simpler to manufacture, much larger devices
of 5000+ qubits are already available and the technology is closer to the verge of technological
maturity.

For this reason, the quantum annealing programs discussed in section 3.5 of these lecture notes
exclusively target real devices, in contrast to the simulators discussed in the gate-based case
above. Furthermore, with the garden optimization problem [17] as an application, the program
type reflects the typical kind of problems solved on current quantum annealers that are a little
bit closer to actual real-world applications.

3.1 Optimization problems with binary variables

Optimization of parameters in high-dimensional spaces can, in general, be a (computationally)
demanding task. Gradient-based algorithms as well as non-gradient based algorithms usually
require many evaluations of the cost function or its gradient. Typically, they rely on the con-
tinuity of the parameter space and often also on the continuity of the function itself. In high
dimensional spaces, cost functions usually have many local optima in which optimization al-
gorithms can get stuck as well as plateaus which slow down the convergence. There exist
algorithms that use an adaptive step size to mitigate these effects. However, usually it is still
necessary to start the optimizer with different (random) initial parameters and take at the end
the overall best solution that was returned. In that sense, these algorithms also do not guarantee
that the globally optimal solution has been found.

For cost functions of discrete or binary variables, these optimization algorithms are not appli-
cable because the functions are only defined at discrete values. In general such optimization
problems are NP-hard, and only a brute-force search over all possible inputs can deliver the op-
timal solution. For large configuration spaces, however, this is not feasible. For many discrete
optimization problems, heuristic algorithms have been developed which work well for many
cases. A heuristic algorithm may find the globally optimal solution but it may also return just
a locally optimal solution as the outcome usually depends on the initialization. The advantage
of heuristic algorithms is that the run time is much shorter than for a brute-force search. An
example for such a heuristic algorithm is the simulated annealing algorithm [18].

A common discrete optimization problem in physics is to find the ground state of the Ising spin
Hamiltonian

HIsing =
N∑
i=1

hiσ
z
i +

∑
i<j

Jijσ
z
i σ

z
j , (28)

where N denotes the number of spins, hi denotes the local field for spin i, Jij denotes the
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coupling strength between spins i and j, and σzi denotes the Pauli z matrix

σz =

(
1 0

0 −1

)
(29)

for spin i with eigenstates |↑〉 and |↓〉 such that σz|↑〉 = |↑〉 and σz|↓〉 = −|↓〉. This kind of
problems can be solved on the D-Wave quantum annealer.
Another form of discrete optimization that can be solved on the D-Wave quantum annealer is
Quadratic Unconstrained Binary Optimization (QUBO). The QUBO cost function to minimize
is given in the form

C(x) =
N∑
i=1

aixi +
∑
i<j

bijxixj, (30)

where N is the number of binary variables xi ∈ {0, 1}, x = x1x2 . . . xN denotes the bitstring
obtained by concatenating the problem variables, aixi are the linear terms and bijxixj are the
quadratic terms in the binary variables, and ai, bij ∈ R are the parameters that define the prob-
lem instance to be solved. In the definition of a QUBO, the term “Unconstrained” means that
there are no constraints in the optimization of C(x) such as “subject to f(x) = 0”. Solving a
QUBO is equivalent to solving for the ground state of an Ising Hamiltonian Eq. (28). Many op-
timization problems that can be formulated in terms of an Ising or QUBO model are discussed
in Ref. [19].

3.2 Working principle of a quantum annealer

Initially, quantum annealing was invented as an heuristic algorithm for a classical computer
[20–22]. It was inspired by the simulated annealing algorithm [18] where thermal fluctuations
are replaced by quantum fluctuations. For simulated annealing, thin but high energy barriers are
difficult to overcome as thermal hopping processes become unlikely for high barriers. There-
fore, the idea was that quantum fluctuations in quantum annealing allow for tunneling through
these thin but high energy barriers. The quantum annealing Hamiltonian can be expressed as

HQA(t/tmax) = Γ (t/tmax)HQF +Hproblem , (31)

whereHproblem encodes the optimization problem to be solved, andHQF denotes the Hamiltonian
introducing the quantum fluctuations. The function Γ (t/tmax) controls the strength of these
fluctuations. It has to satisfy Γ (0)� energy scale of Hproblem and Γ (1) ≈ 0.
Later, adiabatic quantum computation was proposed [23, 24]. The idea to perform the com-
putation is based on the adiabatic theorem: The quantum system is to be initialized in the
known ground state of an initial Hamiltonian Hinit. Then, the time-dependent Hamiltonian of
the system

H(t/tmax) = A(t/tmax)Hinit +B(t/tmax)Hfinal (32)

is changed over time into the Hamiltonian Hfinal which encodes an optimization problem (e.g.,
the Ising Hamiltonian Eq. (28)). The annealing functions A(t/tmax) and B(t/tmax) satisfy
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Fig. 10: The annealing functions A(t/tmax) and B(t/tmax) for a linear annealing schedule.

A(0) � B(0) and B(1) � A(1). An example for a linear annealing schedule is shown in
Fig. 10. With Hfinal = Hproblem, Hinit = HQF, A(t/tmax) = Γ (t/tmax) and B(t/tmax) = 1,
Hamiltonian Eq. (32) implements the quantum annealing Hamiltonian Eq. (31). The adiabatic
theorem [25] states that if the Hamiltonian H(t/tmax) changes sufficiently slowly with time, the
system stays in the instantaneous ground state so that a measurement at the end of the process
yields the state that encodes the solution to the optimization problem. A detailed review on the
ideal (i.e., closed-system) model of adiabatic quantum computation is given in Ref. [26].
For a single spin-1/2 particle in a time-dependent external magnetic field, the closed-system
model can be solved analytically exactly and is described by the Landau-Zener theory [27]:
The Hamiltonian describing the spin in the external field hz = vt which changes with time t
from −∞ to∞ with sweep velocity v and a time-independent transverse field hx is given by

HLZ(t) = −hxσx − hz(t)σz = −hxσx − vtσz (33)

where σx is the Pauli x matrix

σx =

(
0 1

1 0

)
, (34)

with eigenstates |+〉 = (|↑〉 + |↓〉)/
√
2 and |−〉 = (|↑〉 − |↓〉)/

√
2. The spin is prepared in the

ground state of HLZ(t → −∞) which is the state |ψinit〉 = |↓〉. The spin then evolves with the
Hamiltonian HLZ(t) and the Landau-Zener theory gives the probability to find the spin in the
ground (|↑〉) or excited state (|↓〉) of HLZ(t) for t→∞

P↑ = 1− e−πh2x/v, P↓ = e−πh
2
x/v. (35)

These probabilities show that for fast sweeping (large v), P↑ → 0 and P↓ → 1. They also show
that for hx → 0, P↑ → 0 and P↓ → 1. Since the minimal energy gap is proportional to |hx|,
the probabilities scale not only with the sweep velocity but also with the minimal energy gap
squared.
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Fig. 11: Small-size examples of the connectivity graphs of the (a) Chimera topology of the D-
Wave 2000Q processors and (b) Pegasus topology of the Advantage processors. Blue nodes in
the Pegasus graph show the embedding of the Chimera graph onto the Pegasus graph.

In practice however, the annealing system is always connected to an environment at a finite
temperature. This means that some sources of noise can never be removed completely. So not
only a too rapid change of the Hamiltonian but also a too slow annealing procedure may excite
the system.

3.3 Architecture of D-Wave quantum annealers

There are currently two generations of D-Wave quantum annealers available: The previous gen-
eration (D-Wave 2000Q) with about 2000 qubits and up to 6 couplers per qubit, and the current
generation (Advantage) with more than 5000 qubits and up to 15 couplers per qubit. The qubits
of the D-Wave 2000Q quantum processors are arranged in the so-called Chimera topology and
the qubits of the Advantage systems are arranged in the so-called Pegasus topology (see Fig. 11).
The Chimera graph is a subgraph of the Pegasus graph.
In the case of D-Wave quantum annealers, the final Hamiltonian is given by the Ising Hamilto-
nian

Hfinal = HIsing =
N∑
i=1

hiσ
z
i +

∑
i<j

i,j neighbors

Jijσ
z
i σ

z
j , (36)

and the initial Hamiltonian is given by

Hinit = −
N∑
i=1

σxi . (37)

The ground state of the initial Hamiltonian is given by the equal superposition of all computa-
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Fig. 12: The annealing functions A(t/tmax) and B(t/tmax) of the annealing schedule of
D-Wave’s 5000+ qubit processor Advantage system1.1.

tional basis states,

|ψinit〉 = |+〉⊗N =
1√
2N

∑
zi∈{↑,↓}

|z1z2 . . . zN〉. (38)

The qubits (two-level systems) of the Hamiltonians in Eqs. (36) and (37) are built of supercon-
ducting circuits. The particular design of these circuits is called flux qubits. The flux qubits
as well as the couplers which allow for a tunable coupling between the qubits are controlled
via external fluxes. The parameters hi and Jij of the final Hamiltonian given in Eq. (36) are
controlled by time-independent external magnetic fluxes. The annealing process is controlled
through time-dependent external magnetic fluxes which change the effective Hamiltonian from
the initial Hamiltonian to the final Hamiltonian. As an example, in Fig. 12 we show the anneal-
ing schedule of the processor Advantage system1.1. The annealing schedule is obviously
different from the linear annealing schedule shown in Fig. 10. The reason for this is that the
hardware design of the flux qubits does not allow for an independent control of the functions
A(t/tmax) andB(t/tmax) [28]. Like all superconducting qubits, these systems are actually multi-
level systems of which only a two-dimensional subspace (spanned by the two lowest energy
eigenstates) functions as the qubit. More detailed information can be found in, for instance,
Refs. [28–30].

3.4 Limitations

Current quantum annealers are subject to various limitations which may have an impact on the
performance. For instance, due to the limited connectivity of the qubits (up to 6 connections per
qubit on the Chimera architecture; up to 15 connections per qubit on the Pegasus architecture),
the variables of a given problem may not be directly mappable to the qubits. In that case, an
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embedding of the problem graph onto the hardware graph is necessary. Finding an (optimal)
embedding is in general a hard problem itself. However, there exist heuristic methods to find
embeddings and the Ocean package provides such an algorithm (cf. section 3.5.4). The need
to find an embedding limits the performance due to the time overhead required to generate an
embedding and it often also increases the required number of qubits (see section 3.5.4 for more
details). Thus, although problem instances that feature the native hardware graphs (Chimera or
Pegasus graphs) can be put on the D-Wave 2000Q and Advantage systems with sizes of 2000+
and 5000+ qubits, respectively, only 64- and 124-qubit fully-connected problems can be placed
on these systems, respectively.

Other limiting factors are the restricted range and the limited precision of the parameters hi and
Jij . In order for the parameter values to fit into the available range they have to be rescaled
(see section 3.5.1). Thus, for problem instances which cover a large range of values but at the
same time include parameters with small differences, these differences may not be resolvable
anymore within the available precision, i.e., configured parameters on the hardware may differ
from the specified ones.

A general limiting factor in practical quantum annealing is that in practice the quantum system
can never be completely isolated from the environment and noise sources. As a consequence,
the system can be thermally excited. In particular, for theoretical closed-system quantum an-
nealing, the annealing time cannot be too long. However, for open systems, a long annealing
time means long time for the system to interact with the environment and a higher probability
to leave the ground state.

Apart from these practical limitations, there are also theoretical issues. The adiabatic theorem
states that the quantum system stays in its instantaneous ground state if the Hamiltonian changes
sufficiently slowly in time. In particular, the annealing time should satisfy (s = t/tmax) [31]

tmax � max
s∈[0,1]

∣∣〈En(s)|∂H∂s |E0(s)〉
∣∣(

E0(s)−En(s)
)2 for n 6= 0. (39)

Thus, for an adiabatic evolution and for exponentially small energy gaps, the annealing time is
expected to also increase exponentially.

3.5 Programming a D-Wave quantum annealer

In this section, we focus on programming the D-Wave quantum annealer using D-Wave’s python
package Ocean-SDK [32, 33], as well as some practical aspects which are useful when pro-
gramming a D-Wave quantum annealer. It is worth mentioning that, even though the previ-
ous sections contain useful technical details for background information, the only knowledge
required to program a quantum annealer is about the kind of optimization problem (Ising or
QUBO) that it solves. This makes quantum annealers particularly attractive for non-physicists.
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3.5.1 Problem specification

Optimization problems that can be put onto D-Wave quantum annealers have to be formulated
as QUBO

min
xi=0,1

(
N−1∑
i=0

aixi +
N−1∑
i<j

bijxixj

)
= min

xi=0,1

(
N−1∑
i≤j

xiQijxj

)
, (40)

or as an Ising Hamiltonian

min
si=±1

(
N−1∑
i=0

hisi +
N−1∑
i<j

Jijsisj

)
, (41)

where si ∈ {−1,+1} are the eigenvalues of the Pauli-z matrix σzi . Reformulating a QUBO as
Ising Hamiltonian can be done by substituting

xi =
1+si
2

. (42)

This convention is commonly used in quantum annealing and maps xi = 0 and xi = 1 to si =
−1 and si = 1, respectively. Note that this convention is different from the one commonly used
for gate-based quantum computing (see above). When converting problems between QUBO
and Ising formulation, constants which arise from the substitution Eq. (42) can be neglected as
they only lead to an energy shift but do not change the solution of the optimization.

To specify the problem instance using the Ocean-SDK, the coefficients can be stored in a dic-
tionary Q = {(i,j):Qij} (QUBO) or two dictionaries h = {i:hi} and J = {(i,j):Jij}
(Ising).

In practice, the coupling strength Jij can only be set to values in a certain interval [Jmin, Jmax],
where usually Jmin = −Jmax, with a limited precision. The same applies to the single-qubit bias
hi with interval [hmin, hmax]. Thus, all hi and Jij need to be rescaled by a factor [34]

r = max

{
max

[
max{hi}
hmax

, 0

]
,max

[
min{hi}
hmin

, 0

]
,max

[
max{Jij}
Jmax

, 0

]
,max

[
min{Jij}
Jmin

, 0

]}
,

(43)
to fit into the ranges hmin ≤ hi ≤ hmax and Jmin ≤ Jij ≤ Jmax. If r < 1, rescaling is optional, but
it may be useful to exhaust a larger parameter range and potentially improve the performance.
When auto scale is set to true (default), the rescaling is performed automatically when
submitting a problem through Ocean. When auto-scaling is disabled and the problem parame-
ters do not fit into the parameter range, the submission of the problem fails. Note that rescaling
does not change the solution of the problem. In general, it is advised to have the auto-scaling
feature enabled (default). However, there may be certain cases where it has to be disabled. If
in such a study, unexpected results are obtained, one should check to disable the auto-scaling
feature.
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1 from dwave.system import DWaveSampler
2
3 sampler = DWaveSampler(solver=’DW_2000Q_6’, token=’insert_your_token_here’)
4 h = {0:1, 4:-0.5}
5 J = {(0,4):1, (0,5):-1}
6
7 response = sampler.sample_ising(h, J)
8 print(response)

Listing 5: A minimal working example to run a program on a D-Wave quantum annealer.

1 from dwave.system import DWaveSampler, EmbeddingComposite
2
3 sampler = EmbeddingComposite(DWaveSampler(solver=’DW_2000Q_6’, token=’

insert_your_token_here’))
4 Q = {(0,0):1, (0,1):1, (0,2):-1, (1,2):-0.8}
5
6 response = sampler.sample_qubo(Q, num_reads=100, chain_strength=2,

annealing_time=5)
7 print(response)

Listing 6: Example showing how to use an EmbeddingComposite.

3.5.2 Submitting a problem to the D-Wave quantum annealer through the
Ocean package

Listing 5 shows a minimal working example of a submission to the D-Wave quantum annealer.
The class DWaveSampler takes a solver (for example the current hardware solvers, at the
time of writing, ‘DW 2000Q 6’ or ‘Advantage system1.1’) to which to submit the prob-
lem. If one did not create a config-file during or after the installation of the Ocean-SDK,
the personal token also has to be provided to DWaveSampler. Depending on the formu-
lation of the problem (Ising or QUBO), one has to create the h and J or Q dictionaries, re-
spectively. The example code in listing 5 shows the case for the Ising formulation. For larger
problems, the dictionaries should be generated algorithmically. The class DWaveSampler has
the member functions sample ising and sample qubo which submit the specified prob-
lem to the QPU. The function sample ising takes the h and J dictionaries and the function
sample qubo takes the Q dictionary.

Optional parameters of the functions sample ising and sample qubo are for instance the
number of samples obtained per submission (num reads), the annealing time (in µs), or
the chain strength (see section 3.5.4). An example is shown in listing 6.

Listing 6 also illustrates how to use an EmbeddingComposite (see section 3.5.4). The re-
turn value contains the solutions returned by the quantum annealer as well as some additional
information. An example output is shown in listing 7: The first column labels the different
solutions returned (rows). The following Nqubit (in this case Nqubit = 3) columns give the values
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1 0 1 2 energy num_oc. chain_.
2 0 0 1 1 -0.8 79 0.0
3 1 0 0 1 0.0 5 0.0
4 2 1 0 1 0.0 5 0.0
5 3 0 0 0 0.0 7 0.0
6 4 0 1 0 0.0 1 0.0
7 5 1 1 1 0.2 2 0.0
8 6 1 0 0 1.0 1 0.0
9 [’BINARY’, 7 rows, 100 samples, 3 variables]

Listing 7: Example output of the program given in listing 6.

1 import dwave.inspector
2
3 ##################
4 # previous code #
5 ##################
6
7 dwave.inspector.show(response)

Listing 8: Example showing how to use dwave.inspector to visualize the result. A
screenshot using the Leap IDE is shown in Fig. 13.

of the qubits in the returned solution. The next three columns contain the energy, the number
of occurrences of this solution in all samples, and the chain break fraction (see section 3.5.4),
respectively. In our example output, we obtained 79 times the solution no. 0 with energy −0.8
(the energy of the ground state) and no chain breaks. In addition, the response also contains
the information that the result is given in BINARY, i.e. QUBO, format (in the Ising represen-
tation it would be SPIN), that 7 distinct answers were returned by the quantum annealer (the
number of rows), that the number of samples is 100 (equals num reads), and that the number
of qubits (variables) is three. Further information can be accessed through response.info.

Another tool of the Ocean package which can be handy when studying the returned results
is dwave.inspector. With this tool, the response object can be visualized. The usage is
illustrated in listing 8 and Fig. 13.

3.5.3 Implementing constraints

As mentioned previously, D-Wave quantum annealers are designed to solve QUBO or Ising
problems by minimizing the corresponding energy function without constraints. However, in
practice optimization problems often require constrained optimization, i.e., the objective func-
tion C(x) needs to be minimized under a certain constraint f(x) = c, where f is a function
that takes a string of bits x and returns a scalar, and c is a scalar, i.e., the optimization task is to
“minimize C(x) subject to f(x) = c”.
We can consider such a constraint by formulating it as a QUBO (or Ising Hamiltonian) and
adding it to the objective function: We can write the constraint f(x) = c as f(x)− c = 0. The
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Fig. 13: Running the example program from listing 6 and visualizing the result on the D-Wave
using the inspector (see listings 7 and 8). The Leap IDE with an example template to run such an
experiment can be opened at https://ide.dwavesys.io/#https://github.com/
dwave-examples/template.

square (f(x) − c)2 is always greater than zero, except if the constraint f(x) = c is satisfied in
which case the square is equal to zero and thus minimal. By adding the square term (f(x)− c)2

to the objective function, we effectively add a penalty to the objective function if the constraint
is not satisfied. To keep things simple, we assume that f(x) is a linear function in the bits xi
(further information can be found in [35]). We add the penalty term to the objective function
C(x) so that the new/modified objective function reads C(x) + λ(f(x) − c)2, where λ is a
scalar called Lagrange multiplier and has to be chosen reasonably. The optimization task is
now “minimize C(x) + λ(f(x)− c)2”.

A “reasonable” choice for λ means that λ should neither be too small nor too large. If λ is
chosen too small, the constraint will likely not be satisfied in the optimal solution for C(x) +
λ(f(x) − c)2 as it may be more favorable to accept a penalty multiplied by a small λ than to
return a state with a larger cost function value C(x). On the other hand, a too large λ will force
the constraint to be satisfied but due to the rescaling of the parameters (see section 3.5.1), the
problem parameters might become so small that they cannot be represented accurately enough
with the limited precision, and also the energy differences become so small that excitations to
higher energy states, which do not encode the optimal solution to the original problem anymore,
become very likely.

https://ide.dwavesys.io/#https://github.com/dwave-examples/template
https://ide.dwavesys.io/#https://github.com/dwave-examples/template
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Fig. 14: A graph with triangular connectivity (left) cannot be directly mapped onto the Chimera
hardware graph (right).

3.5.4 Embedding of problem graphs onto the hardware graph

As soon as problem sizes become larger so that we cannot immediately find a mapping of the
problem graph onto the hardware graph, it is convenient to call a dedicated routine to find
this mapping for us. Generating the optimal embedding of a graph onto another one is in
general NP-hard, but a heuristic algorithm is provided by the Ocean-SDK. This algorithm
uses probabilistic methods, which means that each time we call the function, it may return a
different embedding and these may be of different quality. Thus, one typically tries several
different embeddings and chooses the best one (see also [15, 17]). It may also be possible that
the problem graph requires connectivities which are not present on the hardware graph. For
instance, a triangular connectivity as shown in Fig. 14 cannot be mapped onto the Chimera
graph. In such a case, we have to use more than a single physical qubit (the ones on the
hardware) to represent a logical qubit (the ones in the problem specification), see Fig. 15. If we
have more than a single physical qubit representing a logical qubit, i.e., a chain of two or more
physical qubits represents a single logical qubit, the physical qubits should behave as a single
entity, i.e., at the end of the annealing process, they should all have the same value.

To achieve this, the couplings Jij between these physical qubits are set to a negative value with
large magnitude. The magnitude (also called chain strength) determines how strongly these
qubits couple and how easily the chain may “break”. In this context, a “chain break” means that
different qubits of a chain representing the same logical qubit end up in different states. The
Ocean package includes post-processing procedures which, in this case, determine the value to
return for the logical qubit by majority vote of the physical qubits. Thus, the values returned
will always be valid for the original problem, although they could be far from optimal. Too
many chain breaks should be avoided as the returned solutions become “randomized” and may
be rather poor.

The optimal value of the chain strength depends on the particular problem and possibly also
on the particular embedding. If the chain strength is chosen too weak, the optimal and close-
to-optimal solutions may likely contain chain breaks as it is energetically favorable to break
these couplings instead of the ones that encode the actual problem instance. In theory, the chain
strength should be chosen as large as possible to satisfy the constraints. In practice however,
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Fig. 15: A graph with triangular connectivity (left) can be mapped onto the Chimera hardware
graph (right) by using two physical qubits for one of the logical qubits.

we have to keep in mind that the coupling strength Jij can only be set to values in the interval
[Jmin, Jmax] with a limited precision (cf. section 3.5.1). Thus, all hi and Jij are rescaled by the
factor r (see Eq. (43)). If the chain strength is chosen too strong, all parameters defining the
problem instance will be rescaled to small values which might be no longer resolvable with the
given precision. Moreover, the energy differences of the original problem are also rescaled and
become very small which could more likely lead to excitations to higher energy states. This, in
turn, would lead to worse results for the original problem than if a weaker chain strength had
been chosen. The chain strength is a parameter called chain strength that can be given to
the sample qubo or sample ising functions.

The Ocean package provides several EmbeddingComposite classes [33] to handle the
generation of embeddings:

• EmbeddingComposite tries to find an embedding each time one of the sample func-
tions (sample qubo or sample ising) is called. This can be useful when submitting
different problems or when studying the dependence on different embeddings.

• LazyFixedEmbeddingComposite tries to find an embedding the first time one of
the sample functions is called. Later, it reuses this embedding. This can be useful when
submitting the same problem with different hyperparameters such as annealing time or
chain strength.

• FixedEmbeddingComposite takes an embedding as argument which is then used
each time one of the sample functions is called. This can be useful when we already
have an embedding for a particular problem (either by generating it ourselves or by load-
ing a previously stored embedding) and we want to reuse it again.

• TilingComposite can be passed to any of the EmbeddingComposites to place
several copies of small embedded graphs.
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Leek Celery Peas Corn
Leek ◦ ♥ × ◦

Celery ♥ ◦ ◦ ×
Peas × ◦ ◦ ♥
Corn ◦ × ♥ ◦

Table 1: Companion planting example of good (♥), neutral (◦), and bad (×) neighbors.

Fig. 16: Labeling of the qubits in a Chimera graph unit cell of the D-Wave 2000Q quantum
processors.

3.6 Example: Garden optimization

As an example, we consider a simplified four-qubit problem from the garden optimization prob-
lem presented in [17]. The task is to place four plants in two pots such that good neighbors are
in the same pot and bad neighbors are not. The relationships between the four plants that we
consider in this example are shown in table 1.
The two pots have the labels −1 and +1 and the value si of qubit i denotes into which pot
we place the plant of type i (i ∈ {leek, celery, peas, corn}). Since we consider minimization
problems, we want to minimize the energy when good neighbors are placed in the same pot.
Assume we place plants i and j in the same pot (i.e., si = sj). According to Eq. (41), the energy
is lowered if we choose Jij negative (which we want for good neighbors i and j), and the energy
is increased if we choose Jij positive (which we want for bad neighbors i and j). Thus, we set
Jleek, celery = Jpeas, corn = −1 and Jleek, peas = Jcelery, corn = 1. The energy function is then given by

E(sleek, scelery, speas, scorn) = sleekspeas + sceleryscorn − sleekscelery − speasscorn. (44)

The next step is to map the qubits onto the hardware graph. The labeling of the qubits in the first
unit cell of the Chimera topology used in the D-Wave 2000Q processors is shown in Fig. 16.
Since the problem is small and can be directly mapped onto the hardware graph, we define the
mapping without an EmbeddingComposite. We use the mapping

leek→ 0, corn→ 3, (45)

celery→ 4, peas→ 7, (46)

which gives

J04 = J37 = −1 and J07 = J34 = 1. (47)
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The program to submit and solve the problem on the D-Wave 2000Q chip DW 2000Q 6 is
shown in listing 9.

Exercise 7: Consider the case that leek has already been placed in the pot with label “−1”.
Replanting it would require additional work. How could this additional cost be considered in
the energy function? Modify the program in listing 9 accordingly. How does the result change?

1 from dwave.system import DWaveSampler
2 import dwave.inspector
3
4 sampler = DWaveSampler(solver=’DW_2000Q_6’, token=’insert_your_token_here’)
5
6 h = {}
7
8 # We choose:
9 # 0 = leek

10 # 4 = celery
11 # 7 = peas
12 # 3 = corn
13 J = { (0,4): -1, (0,7): +1, (3,4): +1, (3,7): -1 }
14
15 response = sampler.sample_ising(h, J, num_reads=100)
16
17 dwave.inspector.show(response)

Listing 9: Example code solving the four-qubit garden problem.
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Appendix

A JUQCS standard gate set

This appendix contains the standard gate set implemented by the Jülich Universal Quantum
Computer Simulator (JUQCS) [10]. JUQCS is a large-scale simulator for gate-based quan-
tum computers that was also used for Google’s quantum supremacy experiment [11]. A GPU-
accelerated version was recently used to benchmark JUWELS Booster [8] with over 2048 GPUs
across 512 compute nodes. A qiskit [12] interface to JUQCS including the conversion from
the qiskit gate set to the JUQCS gate set is available through the Jülich UNified Infras-
tructure for Quantum computing (JUNIQ) service at https://jugit.fz-juelich.de/
qip/juniq-platform. This interface was used for the example programs in this lecture.

I gate
Description performs an identity operation on qubit n.

I =

(
1 0
0 1

)
Syntax I n
Qiskit syntax circuit.id(n)
Argument n integer, 0 ≤ n < N with N the number of qubits. I

H gate
Description performs a Hadamard operation on qubit n.

H = 1√
2

(
1 1
1 −1

)
Syntax H n
Qiskit syntax circuit.h(n)
Argument n integer, 0 ≤ n < N with N the number of qubits. H

X gate
Description performs a bit flip operation on qubit n.

X =

(
0 1
1 0

)
Syntax X n
Qiskit syntax circuit.x(n)
Argument n integer, 0 ≤ n < N with N the number of qubits. X

Y gate
Description performs a bit and phase flip operation on qubit n.

Y =

(
0 −i
i 0

)
Syntax Y n
Qiskit syntax circuit.y(n)
Argument n integer, 0 ≤ n < N with N the number of qubits. Y

Z gate
Description performs a phase flip operation on qubit n.

Z =

(
1 0
0 −1

)
Syntax Z n
Qiskit syntax circuit.z(n)
Argument n integer, 0 ≤ n < N with N the number of qubits. Z

S gate
Description rotates qubit n about the z-axis by π/2.

S =

(
1 0
0 i

)
Syntax S n
Qiskit syntax circuit.s(n)
Argument n integer, 0 ≤ n < N with N the number of qubits. S

https://jugit.fz-juelich.de/qip/juniq-platform
https://jugit.fz-juelich.de/qip/juniq-platform
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S† gate
Description rotates qubit n about the z-axis by −π/2

S† =

(
1 0
0 −i

)
Syntax S+ n
Qiskit syntax circuit.sdg(n)

Argument n integer, 0 ≤ n < N with N the number of qubits. S†

T gate
Description rotates qubit n about the z-axis by π/4

T =

(
1 0

0 (1+i)/
√
2

)
Syntax T n
Qiskit syntax circuit.t(n)
Argument n integer, 0 ≤ n < N with N the number of qubits. T

T† gate
Description rotates qubit n about the z-axis by −π/4

T † =

(
1 0

0 (1−i)/
√
2

)
Syntax T+ n
Qiskit syntax circuit.tdg(n)

Argument n integer, 0 ≤ n < N with N the number of qubits. T †

U1 gate
Description performs a U1(λ) operation [6] on qubit n.

U1(λ) =

(
1 0
0 eiλ

)
Syntax U1 n λ
Qiskit syntax circuit.p(lam, n)
Arguments n integer, 0 ≤ n < N with N the number of qubits,

U1(λ)
λ angle in radians (floating point or integer).

U2 gate
Description performs a U2(φ, λ) operation [6] on qubit n.

U2(φ, λ) = 1√
2

(
1 −eiλ
eiφ ei(φ+λ)

)
Syntax U2 n φ λ
Qiskit syntax circuit.u(pi/2, phi, lam, n)

Arguments n integer, 0 ≤ n < N with N the number of qubits, U2(φ, λ)

φ, λ angles in radians (floating point or integer).

U3 gate
Description performs a U3(θ, φ, λ) operation [6] on qubit n. U3(θ, φ, λ) =
Syntax U3 n θ φ λ (

cos( θ2) −eiλ sin( θ2)
eiφ sin( θ2) ei(φ+λ) cos( θ2)

)
Qiskit syntax circuit.u(theta, phi, lam, n)
Arguments n integer, 0 ≤ n < N with N the number of qubits,

θ, φ, λ angles in radians (floating point or integer). U3(θ, φ, λ)

+X gate
Description rotates qubit n by −π/2 about the x-axis.

+X = 1√
2

(
1 i
i 1

)
Syntax +X n
Qiskit syntax circuit.rx(-pi/2, n)
Argument n integer, 0 ≤ n < N with N the number of qubits. +X

-X gate
Description rotates qubit n by +π/2 about the x-axis. −X = 1√

2

(
1 −i
−i 1

)
Syntax -X n
Qiskit syntax circuit.rx(pi/2, n)
Argument n integer, 0 ≤ n < N with N the number of qubits. −X
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+Y gate
Description rotates qubit n by −π/2 about the y-axis.

+Y = 1√
2

(
1 1
−1 1

)
Syntax +Y n
Qiskit syntax circuit.ry(-pi/2, n)
Argument n integer, 0 ≤ n < N with N the number of qubits. +Y

-Y gate
Description rotates qubit n by +π/2 about the y-axis. −Y = 1√

2

(
1 −1
1 1

)
Syntax -Y n
Qiskit syntax circuit.ry(pi/2, n)
Argument n integer, 0 ≤ n < N with N the number of qubits. −Y

R(k) gate
Description changes the phase of qubit n by 2π/2k.

R(k) =

(
1 0

0 e2πi/2
k

)
Syntax R n k
Qiskit syntax circuit.p(2*pi/2**k, n)
Arguments n integer, 0 ≤ n < N with N the number of qubits,

R(k)
k is non-negative integer.

R†(k) gate
Description changes the phase of qubit n by −2π/2k.

R†(k) =

(
1 0

0 e−2πi/2
k

)
Syntax R n −k
Qiskit syntax circuit.p(-2*pi/2**k, n)
Arguments n integer, 0 ≤ n < N with N the number of qubits,

R†(k)
k is non-negative integer.

Two-qubit gates
CNOT gate

Description flips the target qubit if the control qubit is 1. CNOT =
Syntax CNOT control target


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Qiskit syntax circuit.cx(control, target)
Arguments control 6= target integers in the range

0, . . . , N−1 with N the number of qubits.
Note The matrix looks different from the qiskit documen-

tation as qiskit uses the ordering |qn−1 · · · q0〉 while •
all standard text books as well as these lecture notes use
|q0 · · · qn−1〉. To fix this, the supplied example programs
invoke the circuit.reverse bits() function.

U(k) gate
Description shifts the phase of the target qubit by 2π/2k if the U(k) =

control qubit is 1.


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e2πi/2
k

Syntax U control target k
Qiskit syntax circuit.cp(2*pi/2**k, control, target)
Arguments control 6= target integers in the range 0, . . . , N−1

with N the number of qubits, k non-negative integer. •
U(k)
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U†(k) gate
Description shifts the phase of the target qubit by −2π/2k if the U †(k) =

control qubit is 1.


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e−2πi/2
k

Syntax U control target −k
Qiskit syntax circuit.cp(-2*pi/2**k, control,target)
Arguments control 6= target integers in the range 0, . . . , N−1

with N the number of qubits, k non-negative integer. •
U †(k)

Toffoli gate
Description flips the target qubit if both control qubits are 1. TOFFOLI =
Syntax TOFFOLI control1 control2 target



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0



Qiskit syntax circuit.ccx(control1,control2,target)
Arguments control1 6= control2 6= target 6= control1 integers in

the range 0, . . . , N−1 with N the number of qubits.
Note The matrix looks different from the qiskit

documentation because qiskit uses the ordering
|qn−1 · · · q0〉 while all standard text books as well as
these lecture notes use |q0 · · · qn−1〉. To fix this, the
supplied example programs invoke the ••
circuit.reverse bits() function.
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1 Introduction

An exact simulation of quantum systems, including those in quantum chemistry, on a classical
computer is computationally hard. The problem lies in the dimensionality of the Hilbert space
needed for the description of a studied system that in fact grows exponentially with the size of
this system, which is illustrated in Fig. 1. No matter if we simulate the dynamics or calculate
some static property, e.g. the energy, this limitation is always present. Richard Feynman came
up with an alternative to the classical simulation [1]. His idea was to convert the aforementioned
drawback of quantum systems into their benefit. He suggested to map the Hilbert space of a
studied quantum system on another one (both of them being exponentially large) and thus to
efficiently simulate one quantum system on another one (i.e. on a quantum computer).
Although developing small quantum computers has taken over 30 years, we may soon benefit
from Feynman’s suggestion.1 Indeed, quantum chemistry is supposed to be one of the first prac-
tical applications of small noisy quantum computers, named noisy intermediate-scale quantum
(NISQ) devices [4]. Moreover, it is believed that quantum computers will eventually allow us
to tackle classically intractable problems in chemistry, physics, and materials science [5–7]. In
particular, strongly correlated systems, such as catalysts or high temperature superconductors,
belong to problems of high socio-economic importance, which might be solved with the help
of quantum hardware.
So far, several quantum algorithms have been proposed to solve computationally hard problems
in chemistry efficiently (i.e. in polynomial time with polynomial resources with respect to size
of the studied system and accuracy). Some of them have also been demonstrated experimen-
tally [6]. However, due to limited quantum hardware capabilities, these experiments represent
“only” proof-of-principle simulations of small chemical systems, which we can easily simu-
late classically. In order to make them scalable, there is a need for quantum error correction,
which requires lower error rates than are currently available and moreover orders of magnitude
more (physical) qubits. This field, on the other hand, grows very rapidly and we might see
error-corrected digital quantum simulations of molecules in not so far future.
As mentioned above, several quantum algorithms which can solve different kinds of problems
in chemistry have already been proposed [6]. In fact, quantum computational chemistry [5] has
achieved enormous progress in the last 15 years.2 In this chapter, we mention some of the algo-
rithms, but most of the time restrict ourselves to the electronic structure problem of molecular
Hamiltonians, i.e., the problem of finding the low lying energy spectrum of molecules. These
algorithms can serve as subroutines for geometry optimization, calculation of optical proper-
ties, or determination of reaction rates [5]. Moreover, the methodology elaborated here can be
easily applied to other problems (e.g. vibrational analysis). We focus on digital quantum sim-
ulation (analog quantum simulation is a subject of a different chapter), which means that the

1In fact, quantum computers with more than about 50 qubits are supposed to outperform the largest classical
supercomputers and the first papers presenting the so called quantum supremacy have already appeared [2, 3].
However, the problems which they solved are rather artificial and not directly usable in chemistry simulations.

2The pioneering work of Aspuru-Guzik et al. [8] is being considered as the beginning of the quantum compu-
tational chemistry.
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100 ≈ 107 ≈ 1046

Fig. 1: Exponential scaling of the Hilbert space dimension demonstrated on the examples of H2,
CH2, and C6H6 molecules. The numbers below the molecular structures represent the number
of Slater determinants in the full configuration interaction method (exact diagonalization) in
double-ζ basis.

original problem is mapped on a set of (quantum) gates which can be implemented on an uni-
versal quantum computer (i.e. not purpose specific). The chapter is meant to be a pedagogical
introduction. For more details and references to original papers, we refer readers to the recent
extensive reviews [5, 6], from which we also draw a lot of information.

The chapter is organized as follows: we start with the basic elements of quantum computing
in Sec. 2 and quantum chemistry in Sec. 3. We are aware of the fact that these topics are
covered also in other chapters, however to make this chapter self-contained, we very briefly
mention the basics, which are necessary for subsequent discussion of quantum algorithms for
chemistry. In Sec. 4, we describe how to map the quantum chemistry problems onto a register of
qubits (both in first and second quantization) and in Sec. 5 we present quantum algorithms for
chemistry, both for the ultimate error-corrected applications (phase estimation, Sec. 5.1) as well
as for NISQ devices (variational quantum eigensolver, Sec. 5.2). We end up with conclusions
in Sec. 6.

2 Quantum computing in a nutshell

2.1 Qubit-based circuit model

We work with the qubit-based circuit model of quantum computation [9]. Similarly as the fun-
damental entity of classical computation and classical information is one bit, the fundamental
entity of quantum computation and quantum information is one qubit. It is a quantum two-state
system in a normalized state

|ψ〉 = α|0〉+ β|1〉, |α|2 + |β|2 = 1, (1)
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where α and β are complex-valued amplitudes. The orthonormal computational basis B =

{|0〉, |1〉} is defined as

|0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
, therefore |ψ〉 =

(
α

β

)
. (2)

When going to n qubits, the system is described by a vector from the 2n dimensional Hilbert
space, which is formed by the tensor product of the Hilbert spaces of individual qubits. For
example, a two-qubit system has four computational basis states

|00〉 =

(
1

0

)
⊗

(
1

0

)
=


1

0

0

0

 , |01〉 =

(
1

0

)
⊗

(
0

1

)
=


0

1

0

0

 ,

|10〉 =

(
0

1

)
⊗

(
1

0

)
=


0

0

1

0

 , |11〉 =

(
0

1

)
⊗

(
0

1

)
=


0

0

0

1

 (3)

and a general two-qubit state has the form

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉. (4)

Multi-qubit states can be classified as either product states or entangled states. Product states
can be written as tensor products of fewer qubit (subsystem) wave functions, for example

1√
2

(
|00〉+ |01〉

)
= |0〉 ⊗ 1√

2

(
|0〉+ |1〉

)
(5)

is one of the two-qubit states from Eq. (4), which is a product state. On the other hand

1√
2

(
|00〉+ |11〉

)
(6)

cannot be written as a tensor product of subsystem wave functions and thus is entangled. The
entanglement is a very interesting property stemming from the foundation of quantum mechan-
ics, which does not have a classical counterpart, and is a key ingredient in quantum computation
and quantum information, e.g., in quantum teleportation [9] (more about entanglement is given
in other chapters). Each of the computational basis states can represent one decimal number in
its binary form, e.g. |4〉 = |100〉 (we employ the notation that the rightmost qubit is the first
one).
A quantum circuit is composed of quantum gates acting on qubits, which are usually initialized
in a |zero〉 = |0 . . . 0〉 state. Since the time evolution of quantum systems must be unitary, these
gates are unitary operators. Quantum gates manipulate all components of a state vector, such
as the one in Eq. (4), at the same time. This is so called quantum parallelism, which is however
measurement limited.
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Every multi-qubit unitary operation can be decomposed into single-, and entangling two-qubit
gates [9]. Among the most important single qubit gates belong Pauli operators

X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
. (7)

The Pauli matrices when exponentiated give rise to rotation operators about x, y and z axes,
defined by the equations

Rx(ϑ) = e−iϑX/2 = cos
ϑ

2
I − i sinϑ

2
X =

(
cosϑ

2
−i sinϑ

2

−i sinϑ
2

cosϑ
2

)
, (8)

Ry(ϑ) = e−iϑY/2 = cos
ϑ

2
I − i sinϑ

2
Y =

(
cosϑ

2
−sinϑ

2

sinϑ
2

cosϑ
2

)
, (9)

Rz(ϑ) = e−iϑZ/2 = cos
ϑ

2
I − i sinϑ

2
Z =

(
e−i

ϑ
2 0

0 ei
ϑ
2

)
, (10)

where I is the identity. Other very important single qubit gates include the Hadamard (denoted
as Had not to confuse with the Hamiltonian) and T gates

Had =
1√
2

(
1 1

1 −1

)
, T =

(
1 0

0 eiπ/4

)
. (11)

The most common entangling two-qubit gate is the controlled-NOT (CNOT), which is a gen-
eralization of the classical XOR gate. Its action can be written as |A,B〉 −→ |A,B ⊕ A〉,
where ⊕ is addition modulo two. The CNOT gate has the following circuit notation and matrix
representation

•


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


and the action in the computational basis can be summarized as

|00〉 −→ |00〉; |01〉 −→ |01〉; |10〉 −→ |11〉; |11〉 −→ |10〉. (12)

One can see, that the NOT operation (X gate) is applied on the first qubit (rightmost in the ket,
bottommost in the circuit), if the so called control qubit is in the state |1〉.
A final part of quantum circuits is a measurement that reveals some information. In quantum
mechanics, a measurement is destructive, because it destroys superpositions. For example,
when measuring the two-qubit state in Eq. (4) in the computational basis, the outcome will be
one of the four possible states with the probability equal to the square of the absolute value of
the expansion coefficient, e.g., the state |00〉 will be measured with probability |α|2.
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wire carrying a qubit |q〉

measurement: projection onto |0〉 and |1〉 |q〉

single-qubit unitary gate U |q〉 U

controlled-NOT operation |q2〉 •
|q1〉

controlled-U operation |q2〉 •

|q1〉 U

qubits ordering convention: |qn . . . q2q1〉 |qn〉
...
|q2〉
|q1〉

Fig. 2: The quantum circuit model notation.

Generally, having a register of qubits in the state |ψ〉, we can measure some observable O,
which is represented by a Hermitian matrix. One is usually interested in an average value over
many measurements, i.e., the expectation value of O

〈O〉 = 〈ψ|O|ψ〉. (13)

Measuring in the computational basis of ith qubit corresponds to the expectation value of the
Pauli Z operator, 〈ψ|Zi|ψ〉. This expectation value is in practice obtained by repeated mea-
surement of qubit i (each time the state |ψ〉 must be reinitialized) and averaging the outcomes
of individual measurements (+1 for |0〉 and −1 for |1〉). As we will see in Sec. 4, strings
of fermionic second quantized operators can be represented as strings of the Pauli operators.
Therefore, in order to measure the expectation value of molecular Hamiltonians, we need also
to measure in X and Y bases. These measurements can be realized by first applying single
qubit rotations changing the basis, e.g., from X to Z and then measuring in the Z basis. One
can easily verify that the Hadamard gate with the matrix representation in Eq. (11) transforms
X eigenstates to Z eigenstates (and vice versa)

1√
2

(
1 1

1 −1

)
· 1√

2

(
1

1

)
=

(
1

0

)
, (14)

1√
2

(
1 1

1 −1

)
· 1√

2

(
1

−1

)
=

(
0

1

)
. (15)

In Fig. 2, we summarize the quantum circuit model notation that is used throughout this chapter.
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|0〉 Had •

|0〉

Fig. 3: A quantum circuit which generates the Bell state 1√
2

(
|00〉+ |11〉

)
.

As an example of a simple quantum circuit, we show in Fig. 3 the circuit, which generates the
entangled state from Eq. (6) (the so called Bell state [9]). We employ the standard convention
that time flows from left to right, i.e., first the Hadamard gate is applied on |00〉 forming

1√
2

(
|00〉+ |10〉

)
, (16)

then the CNOT gate produces the final Bell state.

2.2 Quantum simulation

Quantum simulation can be either analog or digital. In case of analog simulators [10], a Hamil-
tonian of a studied system is mapped onto a tunable purpose-built quantum device (described
by the same type of Hamiltonian), which then emulates the original system’s dynamics. Any
observable can be read out using suitable measurements. Analog simulators are very attractive
as they are generally more robust to noise, which makes them suitable candidates for the near
term quantum devices. However, in a long run, the lack of error correction is problematic for
simulations of larger systems.
On the other hand, digital quantum simulation is realized by a quantum circuit (composed of
single and two-qubit gates) implemented on an universal quantum computer. Digital quantum
simulation can concern time evolution (dynamics) as well as computations of some static prop-
erties, such as the ground state energy.
The quantum algorithms for simulation of quantum dynamics were originally developed by
Abrams and Lloyd [11, 12]. In order to time-evolve the studied system wave function on a reg-
ister of qubits, one has to first map the initial system wave function (at time t = 0) onto the
register, as well as map the system Hamiltonian to its qubit representation (Hq). The time evo-
lution is then performed by the unitary propagator e−itHq , which is decomposed to elementary
single and two-qubit gates. In quantum chemistry, we are interested in cases, when the system
Hamiltonian contains polynomial number of terms (due to the two-body nature of molecular
Hamiltonians)

H =
∑
j

hj, (17)

which, however, mutually do not commute. The exponential of a Hamiltonian thus cannot be
written as a product of the exponentials of individual hj terms, but a numerical approximation
must be used [11].
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The first-order Trotter approximation [13] can be expressed as

e−itH = e−it
∑
j=1 hj =

(∏
j=1

e−ihjt/N
)N

+O(t2/N). (18)

We would like to note that Trotterization is not the only possible way to simulate a Hamiltonian
time evolution. Other approaches, which are however much more involved, will be briefly
mentioned in Sec. 5.1 in the context of phase estimation algorithm. It has also been shown that
time evolution can be simulated using variational algorithms [14]. Variational algorithms are
discussed in Sec. 5.2.
As a simple example of quantum simulation, let us consider a spin chain model with an Ising
Hamiltonian of the following form, which we adopted from [5]

HIsing =
∑
〈i,j〉

JijZiZj +
∑
i

BiXi, (19)

where the first sum is over nearest-neighbor spins. In this spin case, the qubit representations of
the wave function as well as the Hamiltonian are simple; |0〉 represents α spin, |1〉 represents β
spin and the Hamiltonian in Eq. (19) has already a proper qubit form. After Trotterization, the
Hamiltonian time evolution can be implemented by means of the terms

e−iJijZiZjδt and e−iBiXiδt, where δt = t/N. (20)

The second one corresponds to a rotation about x axis (Eq. (8)) applied on the ith qubit,Ri
x(2Biδt).

The first term in Eq. (20) has a diagonal form in the computational basis with e±iJijδt on the
diagonal. The sign depends on the parity of the corresponding basis state and the exponential
can be implemented with the following circuit [9]

|qj〉 • •

|qi〉 Rz(2Jijδt)

(21)

where CNOTs assure the correct sign of the exponent according to the parity of the state and
rotation about z axis is defined in Eq. (10).
In Fig. 4, we show a quantum circuit corresponding to the time evolution governed by the Ising
Hamiltonian (Eq. (19)), which uses the first-order Trotter approximation [13]. The sequence
of Hadamard gates in the beginning constitutes the state preparation and effectively aligns the
spins along the x axis. The unitaries Um change the basis before the measurement and their
form depends on what exactly is measured (e.g. spin correlation functions) [12].
The original quantum algorithm for obtaining static properties of quantum systems by means of
digital quantum simulation was developed by Abrams and Lloyd [15] and is based on the phase
estimation algorithm [9]. We will discuss this approach in detail in the context of quantum
chemistry and molecular Hamiltonians in Sec. 5.1.
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|0〉 Had
U

e−iHδt e−iHδt e−iHδt

Um

|0〉 Had
U

Um

|0〉 Had Um

... e−iHδt . . .

|0〉 Had Rx Um

Fig. 4: Scheme of a digital quantum simulation of the dynamics of a spin chain (Eq. (19)),
which employs the first-order Trotter approximation. The two-qubit unitary gates correspond
to Uij = CNOTi,jRj

z(2Jijδt)CNOTi,jRi
x(2Biδt).

3 Quantum chemistry in a nutshell

We are predominantly interested in the electronic structure of molecules, whose Hamiltonians
can be written (in atomic units) as

H = −
∑
i

∇2
i

2
−
∑
I

∇2
I

2MI

−
∑
i,I

ZI
|ri−RI |

+
1

2

∑
i 6=j

1

|ri−rj|
+

1

2

∑
I 6=J

ZIZJ
|RI−RJ |

, (22)

whereMI , RI , and ZI are the mass, position, and charge of the I th nucleus and ri is the position
of ith electron. Taking into account that nuclei are more than 1000 times heavier than electrons,
we can employ the Born-Oppenheimer approximation, which separates the electronic and nu-
clear parts of the Hamiltonian in Eq. (22) and solves them separately. Nuclei are then treated as
classical point charges fixed at given positions in the electronic Hamiltonian

Hel. = −
∑
i

∇2
i

2
+

1

2

∑
i 6=j

1

|ri−rj|
−
∑
i,I

ZI
|ri−RI |

. (23)

The Born-Oppenheimer approximation gives rise to the concept of the potential energy surfaces.
Most of the quantum algorithms for chemical problems use this approximation, but there are
exceptions. They comprise the first-quantized (Sec. 4.1) grid-based method [16] as well as the
second-quantized (Sec. 4.2) nuclear and electron orbitals approach [17]. Both approaches treat
nuclei and electrons on an equal footing.

3.1 Hartree-Fock method

The standard starting point of most of the electronic structure methods is the Hartree-Fock
approximation. By using a wave function in the form of a single Slater determinant (see below)
and applying the variational principle, it converts the N -electron problem in Eq. (23) to one-
electron problems [18]. Electrons in the Hartree-Fock approximation are moving in an effective
mean field of all the others. It is a so called mean-field approach.
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As was mentioned above, the essence of the Hartree-Fock approximation is a wave function in
the form of a single Slater determinant (or spin-adapted combination of few of them in case of
open-shell problems)

Φ(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
χ1(x1) χ1(x2) . . . χ1(xN)

χ2(x1) χ2(x2) . . . χ2(xN)
...

...
...

...
χN(x1) χN(x2) . . . χN(xN)

∣∣∣∣∣∣∣∣∣∣
≡ |χ1χ2 . . . χN〉. (24)

Here xi are composite spatial and spin coordinates of the ith electron, xi = (ri, σi) and χj
are one-electron wave functions, molecular spin-orbitals, which are obtained by solution of the
Fock operator eigenvalue problem

f(x1)χi(x1) = εiχi(x1). (25)

The Fock operator f(x1) has the form [18]

f(x1) = −
∇2

1

2
−
∑
I

ZI
|r1−RI |

+ vHF(x1), (26)

where vHF(x1) represents the operator of a mean field potential of the remaining electrons

vHF(x1) =
∑
i

∫
χ∗i (x2)

1

|r1−r2|
(1− P12)χi(x2)dx2 , (27)

and the permutation operator P12 permutes indices of both electrons. The eigenvalues εi in
Eq. (25) are spin-orbital energies.
The Slater determinant form of a wave function, Eq. (24), correctly accounts for the exchange
symmetry stemming from the fermionic nature of electrons. In fact, swapping any two electrons
is equivalent to interchanging two columns of the determinant, which changes the sign of the
wave function.
The Hartree-Fock equations, Eq. (25), are in fact nonlinear integro-differential equations, which
are usually solved numerically via expansion of molecular orbitals3 in an atomic orbital basis

ψi(r) =
∑
µ

Cµiϕµ(r). (28)

The expansion coefficients Cµi then represent variational parameters optimized during the self-
consistent-field (SCF) procedure [18]. The most common atomic orbital basis functions ϕµ(r)
are Gaussian-type orbitals (GTOs). GTOs obey the usual radial-angular decomposition

ϕ(r) = Rnl(r)Ylm(ϑ, ϕ), (29)

3Since the non-relativistic electronic Hamiltonian (Eq. (23)) does not contain spin-dependent operators, the
spin can be effectively integrated out, transforming the original problem of molecular spin-orbitals to the problem
of molecular orbitals.
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with Ylm(ϑ, ϕ) being spherical harmonic functions and the radial part is of the form

RGTO
nl (r) ∝ (

√
αnlr)

le−αnlr
2

, (30)

where l denotes the angular momentum quantum number of the orbital and αnl is a fitting
parameter. Gaussian-type orbitals do not form as compact basis sets as Slater-type orbitals
(STOs), which have the correctly behaving radial part of the hydrogen atom solution

RSTO
n (r) ∝ (ζr)n−1e−ζr, (31)

however, two-electron integral evaluation with GTOs is much easier. For this reason, the most
common basis sets used in quantum chemistry are contracted GTOs. In this case, each basis
function is a fixed linear combination (contraction) of Gaussian functions (so called primitives).
The contraction coefficients as well as exponents of Gaussian functions are pre-optimized for
standard basis sets [19]. Regarding the flexibility of basis sets, the minimal basis (e.g. STO-
3G) contains all orbitals involved in the Hartree-Fock Slater determinant (occupied ones) plus
orbitals of the same/similar energy (e.g. all orbitals of a given open shell). For atoms such as
lithium, basis functions of p type are also added to the 1s and 2s orbitals, because lithium also
has a 1s2p bound state. The lithium minimal basis thus contains {1s, 2s, 2px, 2py, 2pz}.
Since the valence electrons are the most important ones for chemistry (they participate in bond-
ing), it is not surprising that valence orbitals are commonly represented by more than one basis
function. These basis sets are denoted as split-valence and according to the number of basis
functions per valence orbital are called valence double, triple, quadruple-ζ , etc. basis sets. Ad-
ditional polarization functions (with higher angular momentum) or diffuse functions (with small
exponents) can further increase the flexibility of GTO basis sets.
In spite of the fact that GTOs have been used in mainstream quantum chemistry for decades, it
turns out that they may not be the best basis sets for use in connection with quantum algorithms.
Their problem lies in a number of terms in a second-quantized form of a Hamiltonian (see
Sec. 3.3), which scales as O(M4), where M is the basis set size. The number of terms in
a Hamiltonian largely influences the cost of quantum algorithms, as will be discussed below.
Babbush et al. [20] pointed out this problem and suggested the use of the plane wave basis and
its dual representation. The plane wave basis functions have the form

ϕk
G(r) =

1√
Ω
ei(k+G)r, (32)

where Ω is the computational cell volume, k the wave vector, and G denote the reciprocal lat-
tice vectors. The Fourier transform of the complete plane wave basis would lead to a basis of
delta functions (a grid), thus by applying the discrete Fourier transform on an incomplete plane
wave basis, one obtains a so called plane wave dual basis [20], which resembles a smooth ap-
proximation to a grid. Direct use of the plane wave basis leads to a reduction of the Hamiltonian
terms from O(M4) to O(M3) (due to the momentum conservation). The plane wave dual basis
which diagonalizes the two-body potential operator reduces the number of Hamiltonian terms
to O(M2) [20]. The plane wave basis sets have been traditionally used for density functional
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theory (DFT) calculations of periodic systems. They can also be used for isolated molecules,
however, for a given accuracy about hundred times more plane wave basis functions than GTOs
are necessary.
The basis set methods exploit some suitable basis in order to make the wave function expansion
as compact as possible (or decrease the number of terms in the Hamiltonian, or ideally both).
Alternatively, one can employ grid based methods. In this case, the wave function is expanded
on a discretized spatial grid (basis of delta functions at given positions {|r〉}) and has a form

|Ψ〉 =
∑

x1...xN

ψ(x1,x2, . . .xN)A(|x1,x2, . . .xN〉), (33)

where |xi〉 is the composite spatial and spin coordinate (|ri〉|σi〉) of the ith electron and A is
the operator assuring proper antisymmetrization of the wave function. Classically, such ap-
proaches (without further approximations) are exponentially costly, because they naturally face
the original problem of exponentially large Hilbert space. If each of the 3N coordinate axis is
discretized to P equidistant points, then the number of expansion coefficients ψ(x1,x2, . . .xN)

scales as P 3N × 2N . On the other hand, the grid-based quantum simulations can be efficient, as
will be briefly discussed in Sec. 4.1.

3.2 Correlation energy

The Hartree-Fock method is derived based on the approximation of the N -electron wave func-
tion in the form of a single Slater determinant (or their spin-adapted combination) as shown in
Eq. (24). Even if we solve the Hartree-Fock equations (Eq. (25)) exactly (in the limit of the
complete basis set), we will certainly not get the exact energy, because the movement of elec-
trons is not properly correlated at a single determinant level (e.g. electrons with opposite spins
are allowed to be at the same place).
The exact wave function, for a given one-particle basis, which were discussed above, can be
written as

|Ψ〉FCI = c|Φ〉+
∑
ia

cai |Φai 〉+
∑
a<b
i<j

cabij
∣∣Φabij 〉+ · · · , (34)

where |Φ〉 is the Hartree-Fock Slater determinant (Eq. (24)), i, j, . . . are indices of occupied
orbitals, a, b, . . . are indices of virtual orbitals (at the Hartree-Fock level), and Φab...ij... denote
excited Slater determinants with respect to the Hartree-Fock one (singly excited i→ a, doubly
excited ij → ab, . . ., up to N -electron excited). This exact wave function form corresponds to
the full configuration interaction (FCI) method. Since the number of Slater determinants in the
FCI expansion (Eq. (34)) scales exponentially with the number of electrons (see Fig. 1), only
the smallest molecules can be treated by FCI (up to approx. 20 electrons in 20 orbitals).
The correlation energy is defined as the difference between the FCI energy in the limit of a
complete basis set and the Hartree-Fock energy in the same limit

∆Ecorr = EFCI-lim. − EHF-lim.. (35)
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In spite of the fact that the correlation energy is only about 1 % of the Hartree-Fock energy,
it is orders of magnitude larger than reaction or activation enthalpies of chemical reactions
even for small molecules and its, at least approximative, treatment is absolutely essential for
chemically relevant results. The correlation energy is calculated by post-Hartree-Fock methods
(we will briefly mention two of them, the configuration interaction method in Sec. 3.3.1 and
the coupled cluster approach in Sec. 3.3.2). We can formally express the transition from the
reference (Hartree-Fock) wave function to the exact one by means of the wave operator Ω

|Ψ〉 = Ω|ΦHF〉. (36)

A widely used accuracy threshold of 1 kcal/mol (1.6 · 10−3 Hartree) is known as “chemical ac-
curacy”. If the energy difference between the transition state of a chemical reaction and the
reactant (∆E†) is given within this accuracy threshold, then the reaction rate at room tempera-
ture can be predicted to within an order of magnitude with the Eyring equation

v ∝ e−∆E
†/kBT , (37)

where T denotes the temperature and kB is the Boltzmann constant. The concept of the chemical
accuracy is also widely used in the quantum computational chemistry community [5]. Usually,
the experimental realizations of quantum algorithms for chemistry (or their simulations) are
compared against the chemical accuracy [5, 6].
As was mentioned above, electrons are not properly correlated at the Hartree-Fock level. Very
often, the correlation effects (and their contributions to the correlation energy) are divided into
dynamic (or weak) electron correlation and static (or strong) electron correlation. The former
one is usually a small correction to the wave function (the Hartree-Fock determinant is by far
the most dominant one) and is a result of improper treatment of Coulomb repulsion in the
single-determinant Hartree-Fock approach. The dynamic electron correlation can be accounted
for by an expansion into a large number of Slater determinants systematically formed from
the Hartree-Fock reference (single excitations, single and double excitations, etc.), e.g., via the
configuration interaction or coupled cluster methods (see Sec. 3.3), or to a large extent also by
means of density functional theory. These methods are called single reference and they work
very well, when the wave function can be qualitatively described by a single Slater determinant.
DFT has a favorable scaling and can treat hundreds of atoms. If spectroscopic accuracy is
desired, coupled cluster theory is often the first choice with CCSD(T) being the “gold standard”
of quantum chemistry [21].
The static correlation is a result of quasidegeneracy of molecular orbitals and manifests itself
by several equally dominant Slater determinants in a wave function expansion. Many important
chemical problems fall into this category, e.g. homolytic bond breaking/formation, open-shell
and excited electronic states, transition-metal complexes, and transition states of chemical re-
actions [22]. They are called multireference or strongly correlated. When the manifold of
quasidenerate orbitals is small and can be treated by FCI, the active space methods (e.g. com-
plete active space self consistent field, CASSCF) with perturbative dynamic electron correlation
extensions can be used. However, when tens of orbitals are strongly correlated, the situation is
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Fig. 5: Structure of the FeMoco cluster. For clarity, only the atoms of the ligands which are
directly bonded to Fe and Mo atoms are displayed. Atom colors: nitrogen - blue, sulphur -
yellow, oxygen - red, carbon - brown, iron - grey, molybdenum - green.

much more complicated. The classical computational methods like tensor networks with the
density matrix renormalization group (DMRG), different flavors of quantum Monte Carlo, or
e.g., selected configuration interaction approaches, which can treat larger active spaces than ex-
act diagonalization allows, in fact have their own limitations. These are the situations, where
quantum algorithms are believed to become a game changer [6].
We have already mentioned in the introduction that catalysts or high temperature superconduc-
tors belong to the class of very important strongly correlated problems. As a concrete example,
let us mention the electronic structure problem of the Mo-dependent nitrogenase active site (Fe-
Mo cofactor, FeMoco), whose structure is depicted in Fig. 5. It has been suggested by Reiher
et al. [23] as a prominent candidate for quantum simulation algorithms. Enzyme nitrogenase is
transforming N2 into two NH3 molecules under ambient conditions and understanding of this
very complex process, whose mechanism is still not known, is of very high scientific and eco-
nomic importance. In fact, 2 % of the annual energy production is consumed in the energetically
demanding industrial Haber-Bosch synthesis of ammonia. The electronic structure problem of
FeMoco is one of the most challenging problems of current computational chemistry.

3.3 Second quantization

Quantum mechanics can be formulated either in the first, or in the second quantization. In the
former case, operators are assigned to variables like position or momentum. In the later one,
fields rather than variables are quantized. The formalism of second quantization is widely used
also in quantum chemistry [18]. Using this formalism, we can transform properties of determi-
nants into algebraic properties of creation and annihilation operators. We restrict ourselves to
orthonormal bases of spin orbitals.
The creation operator a†p creates an electron in the pth spin orbital. On the contrary, the annihi-
lation operator aq destroys an electron in the qth spin orbital. These operators obey fermionic
anti-commutation rules

{ap, a†q} = apa
†
q + a†qap = δpq, (38)

{ap, aq} = {a†p, a†q} = 0, (39)
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which ensure proper anti-symmetry of a wave function and also satisfy the Pauli exclusion
principle (if p = q, then a†pa

†
p = 0).

Slater determinants are represented in the occupation basis

Φ(x1,x2, . . . ,xN) = |o1, . . . , op, . . . , oM〉, (40)

where op is equal to 1, when χp is occupied, or 0, when it is unoccupied. In other words,
kets in the occupation basis representation are binary strings with the length of the number of
spin orbitals, in which ones define which spin orbitals are occupied. In order to demonstrate
the action of second-quantized operators on determinants, let us take a simple example of the
hydrogen molecule (H2) in a minimal basis (we will use this example also further). Each of
the two hydrogen atoms is described with one 1s atomic orbital, which are combined into
the two molecular orbitals: bonding (denoted as gerade, ‘g’), which is lower in energy, and
antibonding (denoted as ungerade, ‘u’), which is higher in energy. If we order orbitals in
occupation binary strings according to the energy from the left to the right (α spin preceding
β), the H2 determinants in a minimal basis are represented as |og↑og↓ou↑ou↓〉. The Hartree-Fock
state is given by

ΦHF = |1100〉 = a†g↑a
†
g↓|〉, (41)

where |〉 denotes the normalized vacuum state, which does not contain any electrons and thus
ap|〉 = 0. If we now apply, e.g., ag↓ on ΦHF, we have

ag↓|1100〉 = ag↓a
†
g↑a
†
g↓|〉 = −a

†
g↑ag↓a

†
g↓|〉 = −a

†
g↑(1− a

†
g↓ag↓)|〉 = −a

†
g↑|〉 = −|1000〉 (42)

where we have used Eq. (38) twice and the aforementioned property of |〉. The minus sign in
Eq. (42) is the result of fermionic exchange anti-symmetry. In fact, the action of creation and
annihilation operators on general determinants can be summarized as

ap|o1, . . . , op, . . . , oM〉 = δop,1(−1)
∑p−1
i=1 oi |o1, . . . , op ⊕ 1, . . . , oM〉, (43)

a†p|o1, . . . , op, . . . , oM〉 = δop,0(−1)
∑p−1
i=1 oi |o1, . . . , op ⊕ 1, . . . , oM〉, (44)

where ⊕ stands for addition modulo 2 (0⊕ 1 = 1, 1⊕ 1 = 0).
Slater determinants excited with respect to the Hartree-Fock state as used in Eq. (34) can be
written as

|Φai 〉 = a†aai|Φ〉, (45)∣∣Φabij 〉 = a†aa
†
bajai|Φ〉, etc. (46)

As mentioned above, in second quantization, the proper anti-symmetry of a wave function is
maintained by properties of creation and annihilation operators applied on it. On the other hand
in first quantization, the operators applied on a wave function retain its anti-symmetry, which
must be explicitly created during an initialization (see Sec. 4.1).
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An arbitrary one-electron operator O1, which can be written as a sum of one-electron contribu-
tions

∑N
i o1(xi), has the following second-quantized representation [18]

O1 =
∑
pq

〈p|o1|q〉 a†paq, (47)

where 〈p|o1|q〉 denote the one-electron integrals

〈p|o1|q〉 ≡
∫
χp(x1)

∗o1(x1)χq(x1) dx1. (48)

Analogously a two-electron operator O2, which is expressed as a sum of two-electron contribu-
tions

∑N
i<j o2(xi,xj), can be written as [18]

O2 =
1

2

∑
pqrs

〈pq| o2|rs〉a†pa†qasar, (49)

with
〈pq|o2|rs〉 ≡

∫
χp(x1)

∗χq(x2)
∗o2(x1,x2)χr(x1)χs(x2) dx1dx2. (50)

One can easily verify that such definitions satisfy the general Slater-Condon rules for matrix el-
ements [18]. Based on these definitions, we can write the electronic Hamiltonian from Eq. (23)
in the second-quantized form as

H =
∑
pq

hpq a
†
paq +

1

2

∑
pqrs

〈pq|rs〉 a†pa†qasar, (51)

where the one and two-electron integrals have the form

hpq =

∫
χp(x1)

∗

(
− ∇

2

2
−
∑
I

ZI
|r1−RI |

)
χq(x1) dx1, (52)

〈pq|rs〉 =
∫
χp(x1)

∗χq(x2)
∗χr(x1)χs(x2)

|r1−r2|
dx1dx2 . (53)

One can see in Eq. (51) that the Hamiltonian contains up to M4 terms (depending on the basis
functions used) and these terms contain only up to four second-quantized operators (Coulomb
interaction is two-body).
The formalism of second-quantization is commonly used in the derivation of computational
methods. In what follows, we will very briefly mention two approaches, which are important for
further discussion, namely the configuration interaction (CI) and coupled cluster (CC) methods.

3.3.1 Configuration interaction method

The configuration interaction is a variational method, which unlike the Hartree-Fock approach
is not restricted to a single Slater determinant, but the wave function has the form of a linear
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combination of the ground and excited Slater determinants. The wave function of the full con-
figuration interaction (FCI) was already shown in Eq. (34). The wave operator, Eq. (36), can be
written as

ΩCI = c+
∑
α

Cα, (54)

where

C1 =
∑
ia

cai a
†
aai, (55)

C2 =
∑
a<b
i<j

cabij a
†
aa
†
bajai, (56)

...

with c, cab...ij... being the variational parameters. The FCI wave function contains all possible
Slater determinants formed by placing Nα and Nβ electrons in M/2 orbitals and is exact within
a given orbital basis. However, its computational cost scales exponentially with the system
size. Therefore, the CI method is typically restricted to including only certain excitations, most
commonly single excitations (C1, denoted as CIS) or single and double excitations (C1, C2,
denoted as CISD).
The consequences of the linear form of the wave operator (Eq. (54)) are slow convergence to the
FCI with increasing excitation rank as well as incorrect scaling of the energy with the system
size (truncated CI is not size-extensive).

3.3.2 Coupled cluster method

The aforementioned limitations of the linear CI expansion are avoided in the coupled cluster
(CC) theory. The CC wave operator has an exponential form

ΩCC = eT , (57)

where T is the so called cluster operator

T =
∑
α

Tα (58)

and for Tα, it holds

T1 =
∑
ia

tai a
†
aai, (59)

T2 =
∑
a<b
i<j

tabij a
†
aa
†
bajai, (60)

...

where t parameters are CC amplitudes. Similarly to CI, the CC method is normally truncated to
only certain excitations, e.g. single and double excitations, CCSD. The CCSD(T) method with
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perturbative triple excitations andO(M7) scaling is considered the “gold standard” of quantum
chemistry [21].
The standard CC theory is unlike CI not variational, because direct application of the Rayleigh-
Ritz variational principle on the wave function from Eq. (57) would lead to an infinite commu-
tator expansion.4 Instead, a projection technique is employed, which leads to closed explicit
algebraic equations for the CC amplitudes, the so called amplitude equations.
The starting point in the derivation of the amplitude equations is the Schrödinger equation writ-
ten using the CC wave function

H|Ψ〉 = E|Ψ〉 = EeT |ΦHF〉. (61)

If we multiply the above Schrödinger equation on the left by e−T and then project on ΦHF, we
get the CC energy formula

〈ΦHF|e−THeT |ΦHF〉 = E〈ΦHF|ΦHF〉 = E. (62)

If we project onto the entire set of up to m-tuply excited determinants Φ∗ (Φai , Φ
ab
ij , etc.), where

m is the highest excitation rank in T , we get the amplitude equations mentioned above

〈Φ∗|e−THeT |ΦHF〉 = E〈Φ∗|ΦHF〉 = 0. (63)

The unitary coupled cluster (UCC) approach employs the following unitary form of the wave
operator

ΩUCC = eT−T
†
. (64)

The UCC method is superior to the standard CC [24], however for the same reason as the vari-
ational coupled cluster approach, it cannot be implemented efficiently on a classical computer.
On the other hand, as we will discuss in Sec. 5.2, on a quantum computer the unitary ansatz is
clearly advantageous as the wave function parametrization then straightforwardly and efficiently
translates to a (unitary) quantum circuit.

4 Quantum chemistry to quantum computing mappings

In this section, we will discuss methods for encoding fermionic problems into qubits in both first
and second quantization. In order to keep the text self-contained, we will mention in some detail
also the most widely employed Jordan-Wigner mapping (Sec. 4.2), which is also discussed in a
different chapter.

4The problem lies in the fact that a variational approach requires computation of eT
†
HeT , which when employ-

ing the Baker-Campbell-Hausdorff formula does not produce a finite commutator expansion, because T † contains
de-excitations.
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4.1 First quantized methods

First quantized methods can be grid based or employ the single-particle basis. We will fol-
low the presentation given in the fantastic pedagogical review [5] and adopt some illustrative
examples from there.
Let us start with grid based methods. In this case, the wave function is expanded on a discretized
spatial grid and has the form shown in Eq. (33). Classically, it is not possible to store all the
P 3N × 2N complex amplitudes for larger systems, where P is the number of equidistant points
in each axis. However, it can be done efficiently on a quantum computer. If P is expressed as
power of 2, P = 2m, then the number of complex amplitudes is equal to P 3N ×2N = 2(3m+1)N .
Taking into account properties of composite quantum systems discussed in Sec. 2.1, it is clear
that (3m+1)N qubits can store the wave function from Eq. (33).
As a simple example, we consider two spinless electrons on a four-point one-dimensional grid.
Four points of a grid can be represented using 2 qubits: |0〉 ≡ |00〉, |1〉 ≡ |01〉, |2〉 ≡ |10〉, and
|3〉 ≡ |11〉. As in [5], we distinguish two types of wave functions denoted as ‘n’ and ‘u’ shaped
(according to the shape of amplitudes distribution). They have the form

|ϕn〉 =
1√
6
|0〉+ 1√

3
|1〉+ 1√

3
|2〉+ 1√

6
|3〉, (65)

|ϕu〉 =
1√
3
|0〉+ 1√

6
|1〉+ 1√

6
|2〉+ 1√

3
|3〉. (66)

In order to properly account for the fermionic exchange symmetry, one has to initially prepare
the two-electron anti-symmetric wave function, such as

|Φ〉 = 1√
2

(
|ϕn〉1|ϕu〉2 − |ϕu〉1|ϕn〉2

)
=

1

6
√
2

(
|1〉1|0〉2−|0〉1|1〉2+|1〉1|3〉2−|3〉1|1〉2+|2〉1|0〉2−|0〉1|2〉2+|2〉1|3〉2−|3〉1|2〉2

)
,

(67)

where ket subscripts label the electrons. The wave function is then maintained anti-symmetric
during the time evolution. We have already mentioned the Trotterized time evolution in Sec. 2.2
and will comment on other approaches in Sec. 5.1.
Grid-based approaches have certain advantages, but also certain disadvantages. Regarding the
advantages, they achieve a good scaling and it is easy to generalize them for equal treatment
of nuclei and electrons on a grid, thus avoiding the Born-Oppenheimer approximation. On the
other hand, they require a lot more qubits (to represent a grid) than basis set approaches, which
makes them unsuitable for near-term devices.
The original first-quantized basis set based algorithm for quantum simulation was developed
by Abrams and Lloyd [12]. It uses Ndlog2Me qubits to represent N electrons in M basis
functions. For each of the electrons, dlog2Me qubits are necessary to assign a basis function,
they are ordered from |0 . . . 00〉 to |1 . . . 11〉. The product of N -electron wave function then
has to be antisymmetrized. The original approach [12] requires O(N2 log22M) gates and also
O(N log2M) ancilla qubits.



12.20 Libor Veis

As an illustrative example, we adopt the H2 molecule in a minimal basis from Sec. 3.3 and
label the molecular spin orbitals as |g↑〉 = |00〉 = |0〉, |g↓〉 = |01〉 = |1〉, |u↑〉 = |10〉 = |2〉,
and |u↓〉 = |11〉 = |3〉. The simple product of one electron in the |g↑〉 spin orbital and the
other in |g↓〉 representing the Hartree-Fock state is clearly not anti-symmetric. The properly
anti-symmetrized Hartree-Fock state looks like

|ΦHF〉 =
1√
2

(
|0〉1|1〉2 − |1〉1|0〉2

)
. (68)

The exact ground state wave function of the H2 molecule in a minimal basis can be written as
a linear combination of only two Slater determinants (we use the compact determinant notation
from Eq. (24))

|Ψ〉 = α|g↑g↓〉+ β|u↑u↓〉 =
α√
2

(
|0〉1|1〉2−|1〉1|0〉2

)
+

β√
2

(
|2〉1|3〉2−|3〉1|2〉2

)
, (69)

because the remaining two fulfilling the sz = 0
(
|g↑u↓〉, |g↓u↑〉

)
have different spatial symmetry

(“ungerade”) and thus does not contribute to the ground state wave function.
The Hamiltonian can be obtained by projection onto the single-particle basis

H =
N∑
i=1

M∑
p,q=1

hpq|χp〉i〈χq|i +
1

2

N∑
i 6=j

M∑
p,q,r,s

〈pq|rs〉|χp〉i|χq〉j〈χs|j〈χr|i, (70)

where one and two-electron integrals hqp and 〈pq|qs〉were already defined in Eqs. (52) and (53).
Individual operators from Eq. (70) can be straightforwardly expressed by means of the Pauli op-
erators, Eq. (7), leading to the total number ofO(N2M6) Pauli terms, which are up to 2 log2M -
local [5]. The Hamiltonian can then be used to time evolve the anti-symmetrized wave func-
tion [12]. We will discuss the time evolution, which is a key part in many quantum simulation
algorithms, in more detail in Sec. 5.1.

4.2 Second quantized methods

In this subsection, we will describe how to express the creation and annihilation operators of in-
distinguishable electrons in terms of the Pauli operators acting on distinguishable qubits, which
can be achieved in multiple ways.
In case of the Jordan-Wigner (JW) mapping [25], qubit states encode the occupation vector
(Eq. (40))

|o1 . . . oM〉 → |qM . . . q1〉, qp = oM−p+1 ∈ {0, 1}. (71)

Since we employ the standard conventions used in quantum chemistry and quantum computing
communities, i.e., orbitals in occupation vectors are ordered from the left [18] and qubits in kets
are ordered from the right [9], in what follows, we will use the primed indices for qubit labels
with a simple conversion

p′ =M − p+ 1. (72)
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The second-quantized operators can be expressed as

a†p =

(
p−1⊗
j=1

Zj′

)
⊗Q†p′ , ap =

(
p−1⊗
j=1

Zj′

)
⊗Qp′ , (73)

where Q = |0〉〈1| = (X+iY )/2 and Q† = |1〉〈0| = (X−iY )/2. The strings of Pauli Z
operators ensure the right phase factor / “parity of the state” as summarized in Eqs. (43) and (44),
Q and Q† then decrease or increase the occupation of a given spin orbital. One can easily verify
that such a representation of the second quantized operators satisfies their anti-commutation
relations (Eq. (38)).
The electronic Hamiltonian, Eq. (51), can be rewritten using strings of Pauli operators

H =
∑
j

hjPj =
∑
j

hj
∏
i

σji′ , (74)

where σji stands for one of the Pauli operators (X , Y , Z) or the identity acting on ith qubit,
the sum over j runs over all one and two-electron terms and hj formally represent one and
two-electron integrals. Finally the exponentials of these strings, which are required by some
time evolution algorithms, can be build up from single qubit gates and CNOTs [9], similarly to
the time evolution of the simple Ising model presented in Sec. 2.2. We will demonstrate this
approach on the one-electron part of the non-relativistic (real) Hamiltonian

H1 =
∑
pq

hpqa
†
paq =

∑
p

hppa
†
pap +

∑
p<q

(
hpqa

†
paq + hqpa

†
qap
)
. (75)

Employing the JW transform, the diagonal terms can be written as

hppa
†
pap = hppQ

†
p′Qp′ = hpp|1〉p′〈0|p′ |0〉p′〈1|p′ = hpp|1〉p′〈1|p′ =

hpp
2

(
Ip′ − Zp′

)
. (76)

For the exponential it holds

e−ihppa
†
papδt = e

−ihppδt
2 Rz(−hppδt)p′ . (77)

Similarly, the off-diagonal terms read

hpqa
†
paq + hqpa

†
qap =

hpq
2

[
Xp′ ⊗ Zp′→q′ ⊗Xq′ + Yp′ ⊗ Zp′→q′ ⊗ Yq′

]
, (78)

where Zp′→q′ represents the direct product

Zp′→q′ ≡ Z(p+1)′ ⊗ Z(p+2)′ ⊗ . . .⊗ Z(q−2)′ ⊗ Z(q−1)′ . (79)

The exponential of the string of Z operators exp[−iδt(Z ⊗ . . . ⊗ Z)] is in fact diagonal in the
computational basis with the phase shift e±iδt on the diagonal. The sign of this phase shift
depends on the parity of the corresponding basis state (“+” if the number of ones in the binary
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representation is odd, “−” otherwise). The exponential can be implemented with the following
circuit [9]

p′ • •
• •

...
...

• •

q′ Rz(2δt)

(80)

where CNOTs assure the correct sign of the phase shift according to the parity of the state and
z-rotations were defined in Eq. (10). Generalization to the cases with X or Y operators acting
on p′ and q′ qubits (Eq. (78)) can be easily realized with change-of-basis operators applied on p′

and q′ qubit before and after the action of the quantum circuit from Eq. (80). We have already
shown in Eqs. (14) and (15) that, e.g., the Hadamard gate changes the basis from X to Z (and
vice versa). The procedure for the two-electron part of the Hamiltonian is more elaborate, but
completely analogous and can be found in [26].
The JW mapping is simple, but not the most economic one, when it comes to the number of
gates required. As can be seen in Eq. (80), the quantum gates overhead scales as O(M). This
is because the parity unlike the occupation of spin orbitals is not stored locally and must be
collected by means of CNOT’s before the single qubit rotation is applied. An alternative, which
however has the same O(M) scaling, is the parity encoding. In this approach, the parity is
stored locally and the occupation of spin orbitals non-locally

|o1 . . . oM〉 → |qM . . . q1〉, qp′ =

[
p∑
i=1

oi

]
(mod 2). (81)

The same scaling as for the JW mapping stems from the fact that when the occupation of a
given orbital is changed, all the parities to which it contributes have to be updated, e.g. the first
contributes to all of them.
More efficient than the JW mapping is the Bravyi-Kitaev (BK) mapping [27], which is a combi-
nation of the Jordan-Wigner and parity mappings. It compromises on the locality of occupation
and parity information. The qubits store partial sums of occupation numbers, according to the
BK matrix, βpq,

|o1 . . . oM〉 → |qM . . . q1〉, qp′ =

[
p∑
q=1

βpqoq

]
(mod 2), (82)

which is defined recursively

β1 = [1],

β2i+1 =

(
β2i 0

A β2i

)
, (83)
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where A is a 2i×2i matrix filled with zeros except the bottom row, which is filled with ones.
For example for M = 4, the BK matrix reads

β4 =


1 0 0 0

1 1 0 0

0 0 1 0

1 1 1 1

 . (84)

The construction of second-quantized operators in the BK mapping is much more involved than
in the JW mapping and we will not discuss it here, but rather refer readers to the work of Seeley
et al. [28]. The ingenious BK mapping, which combines the occupation and parity as can be
clearly seen from the structure of the BK matrix, Eq. (84), in fact leads to theO(log2M) scaling.
Recently, also more sophisticated mappings with certain advantages have been presented, e.g.,
generalizations of the BK mapping, which reduce the number of qubits due to symmetries
(particle number, spin, or point group symmetries) [5].

5 Quantum algorithms for quantum chemistry

In this section, we will discuss the two main approaches which are cornerstones of most of
the quantum algorithms for chemistry. In particular, the phase estimation which is an ultimate
algorithm for error-corrected quantum devices with a potential to simulate very accurately the
most complex molecular systems in future, and the variational quantum eigensolver, which
combines the power of both quantum and classical computers and is suitable for NISQ devices.

5.1 Phase estimation
5.1.1 Phase estimation algorithm

The phase estimation algorithm (PEA) [9] is a quantum algorithm for obtaining an eigenvalue
of a unitary operator U, based on a given initial guess of the corresponding eigenvector. Since a
unitary U can be written as U = eiH , with H Hermitian, the PEA can be viewed as a quantum
substitute of the classical diagonalization.
Suppose that |u〉 is an eigenvector of U and that it holds

U |u〉 = e2πiϕ|u〉, ϕ ∈ [0, 1), (85)

where ϕ is the phase which is estimated by the algorithm. The quantum register is divided into
two parts. The first one, called the read-out part, is composed of m qubits on which the binary
representation of ϕ is measured at the end and which is initialized to the state |0〉⊗m. The second
part contains the corresponding eigenvector |u〉.
The PEA quantum circuit is shown in Fig. 6. The application of Hadamard gates on all qubits
in the first part of the register gives

|reg〉 = 1√
2m

(
|0〉+ |1〉

)
. . .
(
|0〉+ |1〉

)
|u〉 = 1√

2m

2m−1∑
j=0

|j〉|u〉. (86)
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QFT†

|0〉 Had · · · • Had · · · • • • · · · |ϕm〉
...

...
...

...

|0〉 Had • · · · · · · R†m−2 · · · |ϕ3〉

|0〉 Had • · · · · · · R†m−1 · · · |ϕ2〉

|0〉 Had • · · · · · · R†m · · · |ϕ1〉

U20 U21 U22 U2m−1|u〉 · · · |u〉

Fig. 6: The PEA circuit with the highlighted part corresponding to the inverse quantum Fourier
transform [9].

Next, after the application of a sequence of controlled powers of U, the register is transformed
into

|reg〉 = 1√
2m

(
|0〉+ e2πi2

m−1ϕ|1〉
)(
|0〉+ e2πi2

m−2ϕ|1〉
)
. . .
(
|0〉+ e2πi2

0ϕ|1〉
)
|u〉

=
1√
2m

2m−1∑
j=0

e2πijϕ|j〉|u〉. (87)

The crucial part of the PEA is the efficient inverse quantum Fourier transform (QFT†, high-
lighted in Fig. 6) performed on the read-out part of the register. The Rj operator is defined
as [9]

Rj =

(
1 0

0 e2πi/2
j

)
. (88)

If the phase can be expressed exactly with m bits

ϕ = 0.ϕ1ϕ2 . . . ϕm =
ϕ1

2
+
ϕ2

22
+ . . .+

ϕm
2m

, ϕi ∈ {0, 1}, (89)

it (and consequently the eigenvalue) is recovered with unit probability by a measurement on the
first part of the quantum register, which is by QFT† transformed into |2mϕ〉.
When the phase cannot be expressed exactly with m bits, in order to obtain this precision with
the success probability of at least 1−ε, one has to use n qubits [9]

n = m+ dlog2(2 + 1/2ε)e. (90)

If the desired eigenvector is not known explicitly (as is typically the case in quantum chemistry),
we can start the algorithm with an arbitrary initial guess vector |ψ〉, which can be expanded in
terms of eigenvectors of U

|ψinit〉 =
∑
i

ci|ui〉. (91)
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When using the number of ancillary qubits according to the Eq. (90), the success probability
is decreased to |ci|2(1−ε) (due to the linearity of quantum mechanics). It is therefore crucial
for the success of the algorithm to be initialized with a wave function, which has a non-zero
overlap with the exact targeted state. We will discuss some of the techniques of the initial state
preparation in the following subsection.
We would like to note that the original phase estimation algorithm briefly sketched above has
been improved in many aspects over the years. For example only one ancillary qubit can be used
for sequential measurement of the phase. Also modifications for better efficiency, including
parallelization or resistance to noise, have been proposed [6, 5].

5.1.2 Initial state preparation

Initial states with a large-enough overlap with the exact targeted state are key for the success
of the phase estimation algorithm. In fact, a randomly chosen state from an exponentially large
Hilbert space would have an exponentially decreasing overlap with the exact state, as the system
size increases. This is indeed in agreement with the fact that solving the ground state problem of
a completely general local Hamiltonian is a QMA-complete (quantum Merlin-Arthur complete,
the quantum analogue of NP-complete) problem, i.e., considered difficult even for a quantum
computer [29]. Nevertheless, the electronic structure problem of physically relevant systems, is
believed to be efficiently solvable by means of quantum computers. In this case, the initial state
preparation methods outlined below may be used.
Aspuru-Guzik et al. in their seminal work [8] proposed the adiabatic state preparation (ASP)
algorithm inspired by the adiabatic model of quantum computing. In this approach, one slowly
varies the Hamiltonian of the quantum register, starting with a trivial one and the register in its
(exactly known) ground state, e.g. the Hartree-Fock state, and ending with the final exact one in
the following simple way

H = (1− t/T )Hinit + (t/T )Hexact t : 0 −→ T, (92)

where t is time and T the maximum annealing time. The efficiency of ASP depends on the min-
imum energy gap between the ground- and the first excited state along the adiabatic path, gmin

gmin = min
0≤s≤1

(
E1(s)− E0(s)

)
, s = t/T. (93)

In particular, the maximum annealing time scales as

T ≈ O

(
M4

g2min

)
. (94)

Similarly to the phase estimation also ASP has been improved in several aspects. For exam-
ple, non-linear adiabatic paths, more efficient for chemical problems, have been proposed and
numerically tested [30].
Alternative options for the initial state preparation can be variational methods discussed in
Sec. 5.2, or employing reference states obtained by some polynomially scaling computational
methods. Several such methods including CI, CASSCF, selected CI, or tensor networks have
already been used in numerical simulations [6].
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5.1.3 Hamiltonian time evolution

If we take U in Eq. (85) in the form

U = e−iHτ , (95)

where τ is a suitable parameter (equivalent to time in a time evolution) assuring ϕ being in the
interval [0, 1) and H the electronic Hamiltonian, then the phase estimation algorithm reveals
its energy spectrum. The whole procedure can be simply viewed as a time propagation of
a trial wave function followed by the QFT switching from the time to energy domain and a
measurement projecting out a certain eigenstate. Looking at the circuit in Fig. 6 and observing
that the unitary U is applied up to the power 2n−1 and that the number of ancillary qubits is
related to the precision according to Eq. (90), the total evolution time (the number of e−iH

calls) is proportional to O(1/ε). This number of calls governs the cost of a simulation. For the
case of molecular Hamiltonians (Eq. (51)), Reiher et al. showed numerically that a number of
calls scales as π/2ε [23].
There are multiple ways how to implement the time evolution operator of the form e−iHt. In
Sec. 2.2, we have already mentioned the first-order Trotter approximation, Eq. (18). In order to
achieve accuracy ε, the number of Trotter steps N = O(t2/ε). This can be improved by using
higher order product formulae. It was also shown that the accuracy can be further improved by,
e.g., randomly ordering the terms in the Trotter sequence [5]. The gate counts of all Trotter-
based approaches scale as O(poly(1/ε)).
Several more advanced methods for time evolution, which are more efficient than Trotteriza-
tion have been proposed [6]. Description of these approaches is, however, beyond the scope
of this chapter. We will only briefly mention the Taylor series method, in which the Hamilto-
nian evolution, Eq. (95), is divided into shorter segments and each of the segment exponentials
is approximated by a truncated Taylor series, which can be expanded as a linear combination
of unitaries (LCU). These unitaries are then applied in a superposition employing oracle cir-
cuits. For a detailed summary of different Hamiltonian simulation techniques and references to
original papers, we refer readers to the review [6].
In order to study the asymptotic scaling of the phase estimation based algorithms, one typically
employs the fixed chemical accuracy. The scaling properties largely depend on the basis set
employed, i.e., number of terms in the Hamiltonian (as discussed in Sec.3.1) as well as the
actual algorithm used for implementation of the Hamiltonian time evolution (Eq. (95)). In the
Gaussian basis, the second quantized Hamiltonian contains O(M4) terms and the Taylor series
method, which is more sophisticated than the Trotter based approaches, scales as O(M5) [5].
On the other hand, it is well known that rigorous bounds on the Trotter error are loose by several
orders of magnitude. In the plane wave dual basis, the Hamiltonian contains O(M2) terms and
the Taylor series method was shown to scale as O(M2.67) [5]. We would like to note, however,
that more advanced Hamiltonian simulation techniques, which were not discussed here, can
lead to even lower scaling. For example in the plane wave basis, algorithms which achieve
sublinear scaling in M have been developed.
In spite of the recent development of highly sophisticated algorithms for Hamiltonian simula-
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Fig. 7: Flow chart of the variational quantum eigensolver.

tions, the phase estimation based approaches require quantum circuits with a large number of
gates, which are expected to require some form of a quantum error correction. Therefore they
are not suitable for near term devices, which will not have enough qubits for this purpose.

5.2 Variational quantum-classical algorithms

A promising alternative to the phase estimation for near-term quantum devices is the variational
quantum eigensolver (VQE) approach [31, 32], which combines classical variational energy
minimization over normalized trial wave functions Ψ(~ϑ)

E = min
~ϑ

〈
Ψ(~ϑ)

∣∣∣H∣∣∣Ψ(~ϑ)〉 (96)

with a state preparation and a measurement of the Hamiltonian expectation value on a quantum
computer. The VQE method in fact trades long coherent quantum circuits for short circuits and
lots of measurements (though at the cost of asymptotically worse scaling in terms of precision).
The scheme of VQE is depicted in Fig. 7.
The starting point of VQE is a preparation of the fixed reference state |Ψref〉, which can be
the Hartree-Fock determinant or also some multireference state. Then for an initial set of a
polynomial number of parameters ~ϑ, a series of parametrized gates U(~ϑ) (ansatz circuit) is
applied on |Ψref〉, producing the so called ansatz state

∣∣∣Ψ(~ϑ)〉. Here comes the advantage of
quantum hardware, since ansatz states cannot be stored and manipulated on a classical computer
for general U(~ϑ) (due to the exponentially large Hilbert space). We will discuss different types
of ansatz circuits below.
After preparing the ansatz state, the expectation value of the Hamiltonian is measured. We are
working with the second-quantized representation and we have already shown in Sec. 4.2 that
when employing the JW transformation (or the BK one), the Hamiltonian is mapped to a linear
combination of products of Pauli operators, as shown in Eq. (74). The energy can be written as

E(~ϑ) =
∑
j

hj

〈
Ψ(~ϑ)

∣∣∣∏
i

σji

∣∣∣Ψ(~ϑ)〉, (97)

where, as in Eq. (74), σji stands for one of the Pauli operators (X , Y , Z) or the identity acting
on the ith qubit, the sum over j runs over all one and two-electron terms and hj formally rep-
resent one and two-electron integrals. In the Hamiltonian averaging method [32], each term is
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repeatedly measured (each time the ansatz state must be prepared) in order to get the desired
precision. This approach requires O(1/ε2) measurements to get the energy with precision ε.
The measured energy is then together with the actual values of ~ϑ passed to a classical optimiza-
tion routine. This can be a gradient-free optimization, such as Nelder-Mead simplex, or some
gradient-descent, since strategies to directly measure the energy gradients with respect to one
of the parameters were also developed [5]. The classical optimization produces a new set of
parameters ~ϑ and the whole procedure is repeated until energy convergence.
The advantage of VQE over classical computational methods certainly depends on the employed
ansatz. Two types of ansätze have been used so far. The first category are so called hardware
efficient ansätze and it comprises the limited parametrized gate set, which is easy to implement
on a given quantum architecture. The aim is to produce as much flexible ansatz state as possible
with a minimal number of gates. These approaches do not use any information about a system
studied, however, have been successfully demonstrated on several small molecules [5].
The second category comprises chemically inspired ansätze. To the best of our knowledge, all
VQE methods of this type are based on the unitary coupled cluster theory (Sec. 3.3.2) usually
restricted up to double excitations and employ

U(~ϑ) = eT−T
†
. (98)

The point is that the UCCSD method cannot be performed efficiently on a classical computer
due to infinite commutator expansions, as discussed in Sec. 3.3.2, but it can be implemented on a
quantum computer. The CC amplitudes are then the VQE variational parameters. Moreover, the
fully variational UCCSD method is expected to outperform traditional CCSD in accuracy [32]
and converge even for multireference problems.
Since T and T † in Eq. (98) do not commute, some sort of numerical approximation similar to
those used in the Hamiltonian time evolution (Sec. 5.1.3) has to be used in order to implement
the circuit ansatz by means of single and two-qubit gates. If we assume that we have a rea-
sonable |Ψref〉, which is close enough to the exact state, the CC amplitudes are expected to be
small numbers (much smaller than 1). In this case, much less Trotter steps are necessary than
for the phase estimation based approaches. In fact, it was shown that even a single Trotter step
can be used to implement the circuit ansatz from Eq. (98), which yields accurate results [5]. In
this case, the number of quantum gates for the UCCSD circuit ansatz implementation scales as
O(M3N2) when the JW mapping is employed [O(M2N2 log2M) for the BK mapping].
Undoubtedly, the biggest bottleneck of VQE is the huge number of measurements (requiring
repeated state preparation) in the Hamiltonian averaging method. It was shown [32] that the
number of measurements Nm required to estimate the energy with precision ε is bounded by

Nm =

(∑
i |hi|

)2
ε2

, (99)

where hi again represent one and two-electron integrals. The number of measurements thus
scales as O(M8/ε2) in a Gaussian basis, which can be reduced by using local basis sets to
O(M6/ε2), and O(M4/ε2) in a plane wave dual basis [6]. However, as in the case of the phase
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estimation based approaches, advanced techniques, whose presentation is behind the scope of
this chapter, have been developed, which reduce this scaling in certain cases by orders of mag-
nitude [5].
The VQE method has also been extended for excited state calculations. One such approach is
the quantum subspace expansion (QSE) of McClean et al. [33], in which a polynomial number
of additional measurements allows the treatment of excited states. In this method, excited states
are expanded in a subspace around the ground state |Ψ0〉 spanned by single excitations a†paq|Ψ0〉
for all possible p, q. They can be found by solving the generalized eigenvalue problem

HQSEC = SQSECE, (100)

whereC is a matrix of eigenvectors,E a diagonal matrix of energies and the Hamiltonian matrix
HQSE is given by

HQSE
pq,rs = 〈Ψ0|apa†qHa†ras|Ψ0〉. (101)

Since the subspace states are not orthogonal, the overlap matrix has to be also obtained

SQSE
pq,rs = 〈Ψ0|apa†qa†ras|Ψ0〉. (102)

One can see in Eq. (100) that this approach of excited state calculations requires, on top of mea-
suring the one-particle and two-particle reduced density matrices (1-RDMs, 2RDMs), which
are measured in standard VQE,5 also measuring the 3-RDMs and 4-RDMs.

6 Summary

In this chapter, we have reviewed some of the basic concepts, which were developed for the sim-
ulation of chemical problems on quantum computers. In fact, quantum computational chem-
istry [5] has achieved enormous progress recently and it would be impossible to include all
important developments in this field. On the small illustrative examples, we have rather shown
the basic strategies, which may be used also in case of more advanced algorithms.
We have presented how to map the quantum chemistry problems onto a register of qubits both
in the first and second quantization and most of the time restricted ourselves to the electronic
structure problem. The two main approaches to this problem have been discussed: the phase
estimation algorithm, which is an ultimate algorithm for error-corrected quantum devices as
well as the variational quantum eigenvalue solver, which combines power of both quantum and
classical computers and is due to short quantum circuits suitable for near-term devices.

5These are indeed the individual expectation values in Eq. (97)
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13.2 David DiVincenzo

1 Quantum computing science is everywhere

In this small lecture, I will first comment on the generalities of quantum computing, and then
plunge into some particulars.
Quantum computing continues to evolve as a science. It is now entering a phase where some
concrete applications are seriously anticipated. Highly technological projects are underway in
various companies and large organizations, and very ambitious efforts to assemble the unique
and complex hardware required have borne some fruit. The 53-qubit device of the Google
laboratory, and now the 56-qubit device of the Chinese Academy of Sciences, has executed a
few algorithms that, to a very limited extent, were difficult for conventional computers. Tenta-
tive plans are drawn up for executing some additional algorithms, for example from quantum
chemistry, for which these new machines may be capable of some modest successes.
We have, however, not reached the stage where truly society-changing computations are per-
formable on any existing quantum computer. One issue is sheer size: estimates can be made of
the size of quantum computer that would be transformative, and these estimates are generally in
the millions of qubits. This is still far short of the bit-counts in even modest conventional com-
puters of today, but it is a big, and expensive, leap from the unique Google and CAS processors.
The optimistic timelines (I draw from IBM’s projections here) for getting there involve many,
many years of additional work.
Much of this work is a clearly engineering effort, required to make a unique, high precision
piece of hardware at 10, 000 times the present scale. Work on quantum computers have reached
such a highly technological stage.
But, looking at IBM and others, we see reasons for the field cannot be purely one involving
systems engineering. No qubit in use today meets the precision requirements needed to make
the 10, 000-fold leap. To tell the story for the superconducting qubits of the Google/CAS/IBM
machines, they have in about 20 years improved in the quality of operation by about 6 orders of
magnitude. However, the consensus is that about another 2 orders of magnitude are needed.
The improvements that I have just referred to require pure quantum physics insights. This is
connected with a realization that we had 20 years ago, and that remains the focal point of our
struggle: quantum physics has the property that it can, under the right circumstances, predict
physical properties to fantastically high precision. But these circumstances are also fantastically
difficult to bring into being.
One can see this as related to the struggle that we have had in crystal physics in the last
100 years. We have a wonderfully complete understanding of band theory, Fermi surfaces,
van-Hove singularities, thermal conductivity, and a host of other properties. But the things we
predict were quite hard to realize: materials are no perfect crystals, it takes a lot of work to
make them so.
On the quantum computer side, the big stumbling block has been the many manifestations of
decoherence. Quantum mechanics predicts in wonderful detail what happens to a two-level
system when you apply forces to it, if it is isolated from everything else. We can tell less well
what happens when you take account of the environment. But we know enough about this to
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say that it creates a no-go condition for quantum computing.
So, quantum theorists have been forced to tell the growers (or better synthesizers, because it
is both the materials and the devices that you make from them) to achieve conditions that are
unquestionably very hard, and to not even be able to tell them what the exact target is. It is a
fortunate thing that progress has been possible under these conditions. It has been iterative and
slow, but at least it has been steady.
In the area of superconducting qubits, we might have been persuaded to say that 30 years ago
there was already not really that much more to learn about the physics of superconductivity
in Aluminium. The trouble was, this physics knowledge said that it would be possible to
make ideal quantum two-level systems with Aluminium, with its superconductivity and with
the Josephson effect made possible by tunnel junctions of AlOx. All derivations could have
been confidently done on the basis of material given in lectures at the time.
It initially didn’t work at all. The things left out about the actual state of these devices made
reality completely different from the model. It exposed our ignorance of the physics that really
went on when you put an Aluminium junction into a circuit.
But over the last 20 years, we have gradually learned. Our models have been extended, experi-
ments have become more sophisticated. Interestingly, this didn’t require much new work from
the crystal grower, the important sources of imperfections were not so much in her domain.

2 My main thesis

The thesis that I announce based on these observations is that progress on quantum computers,
including from the pure engineering point of view, requires all the physics knowledge that we’ve
got and that we know how to make. In short, quantum computing science is all of physics theory.
Let me take as examples the other lectures of this school. In most cases, I can see an application
for these efforts that have a chance to impact the efforts to build a quantum computer. Let me
go through them:

• The Hubbard model. This is the fundamental model on which we base our thinking about
spin qubits. It is also a good model to think about in working on algorithms for quantum
simulation.

• Frustrated magnetism. This topic connects with ideas of topological order in eigenstates,
and therefore with problems in quantum error correcting codes.

• Quantum chemistry. This is a topic for devising quantum algorithms and quantum simu-
lations.

• Calculating with Green functions. This has been taken up in other work on quantum
simulation, notably in the work of Jim Freericks, who has lectured in several of these
schools in years past. See his article [1].

• Second quantization. The language used throughout quantum information science.
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• Superconductivity. This is one of the most basic topological states of matter. Protection
from dissipation and decoherence is very fundamental here.

• Entanglement. It goes without saying that this is the cornerstone of most thinking in
quantum information science.

My premise for the rest of these lecture notes is that since quantum information science needs
all of theoretical physics, I will just proceed to give a few living examples of how we need all
details of our understanding to make progress on the problems of quantum computing, including
those in the most engineering directions.
My examples will be in the area of semiconductor physics.

3 Electron theory for qubits

I will go through a small case study of a “correlation” effect in electronic qubits that has many
consequences, some good and some bad, for the quality of the qubits. The qubit I have in mind
is that defined by the electron spin of extra carriers in semiconductors. The “correlation” effect
is that which arises from spin-orbit interaction.
One should immediately object that I have a strange definition of “correlation” here, since spin-
orbit is a single-electron term in the Hamiltonian. This is a good objection: in the right basis,
the electron problem with spin-orbit but without electron-electron interaction still has eigen-
states that are single Slater determinants, so there is always a way in which the computational
problem for this setting is “easy”. On the other hand, there is an important new correlation:
with spin-orbit interaction, the spin and orbital degrees of freedom are entangled, while they
occur in an unentangled product state in the absence of spin-orbit coupling. This entangle-
ment already occurs at the single-particle level: the single-particle states from which the single
Slater determinant eigensolutions are constructed are already entangled between spin and orbit.
This entanglement varies dramatically from one part of the single-particle spectrum to another,
which is very consequential for electron-qubit physics.
Recall the general situation from relativistic quantum mechanics: Foldy and Wouthuijsen de-
rived a series in 1/c for the effective Hamiltonian. The terms to be added to the Pauli-Schrö-
dinger Hamiltonian are

− p4

8m3c2
, mass-velocity term (1)

− e~
8m2c2

∇ · E , Darwin term (2)

− e~
8m2c2

σ ·
(
E×p− p×E

)
, spin-orbit term. (3)

The first two terms are quantitatively important but do not change the entanglement structure of
the electron state, while the last term does, so we will continue with this term in the following.
First, we slightly rewrite the spin-orbit term in the conventional way

Hso = −
~

4m2c2
σ ·∇V (r)×p. (4)
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Three things to note: 1) V (r) is now a potential energy, not a voltage; 2) The form here given
doesn’t look hermitian, since in general pi doesn’t commute with ∂jV , but the situation is saved
because ∇ ×∇V = 0; 3) the replacement is not correct if E is time dependent, but the effect
of this error is negligible at ordinary frequencies.
I always find it informative to analyze how big a term is for atomic matter. Given that the
characteristic scale of pi is ~/a0 and the characteristic scale of ∇V is Eh/a0, we rewrite Eq. (4)
as

Hso =
Eh
4

(
1

4πε0

e2

~c

)2

σ · ∇V (r)

Eh/a0
× p

~/a0
=
Eh
4
α2σ · ∇V (r)

Eh/a0
× p

~/a0
. (5)

Here the Rydberg constant Eh = ~2/ma20, the Bohr radius a0 = 4πε0~2/me2, and the fine
structure constant α = 1

4πε0
e2

~c ≈ 1/137. The appearance of the square of the fine structure
constant signals the smallness of the term for atomic matter. However, we will see that under
some circumstances, this term is nevertheless fully entangling.

3.1 Other spin-orbit terms

I referred to Eq. (4) as the spin-orbit term. But there are in fact many others that could occur.
In this generous way of looking at things, we will call any Hamiltonian term a spin-orbit term
if it involves both the electron coordinate, or momentum, and its spin. An example would be

iα18Eh σx e
y/y0 tanh

(
pz
p0

)(
x

x0

)7

σz + h.c. (6)

Very few such expressions will pass muster as being physically interesting. There are two major
exceptions, that is, two other spin-orbit terms are worth our attention:

1. First is the “micromagnet” term:

− gµB σ ·B(r) (7)

There is nothing fundamental one can say about the size or importance of this term, since
it requires engineering a spatial dependence to the applied magnetic field. With the use
of micromagnets, its effect can indeed be significant in laboratory experiments on spin
qubits.

2. Next is the magnetic dipole-dipole interaction:

µ0g
2µ2

B

16π|r|3
(
3(σ1·r̂) (σ2·r̂)− σ1·σ2

)
, r = r1−r2 (8)

This can indeed lead to spin-orbit entanglement – the barely-bound p states of 129Xe2 is
the cleanest example that I know of. While we often use Eq. (8) in the case where one
or the other of the spins are nuclear, it is also a perfectly good Hamiltonian for the pure
electron problem. In this setting, it is not to be confused with the Heisenberg exchange
Hamiltonian Jσ1 ·σ2), which is merely an effective Hamiltonian that describes electrons
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in particular orbital configurations. The dipole-dipole interaction Eq. (8), by contrast, is
“fundamental” – at least as fundamental as the normal spin-orbit interaction. Like that,
it has the status of a leading relativistic correction. To see this, we “de-dimsionalize”
Eq. (8) using atomic units. The new replacement we must employ is Maxwell’s relation
µ0 = 1

ε0c2
. With this, the de-dimensionalized form of the overall factor in the electronic

dipole-dipole interaction is

µ0g
2µ2

B

16π|r|3
=
g2

16

Eh
(r/a0)3

4

4πε0c2
µ2
b

Eha30
=
g2

16

Eh
(r/a0)3

α2. (9)

Thus, just like the normal spin-orbit term, the dipolar term is second order in the fine
structure constant.

Given that it is of the same order, why does it not emerge as a term in the Foldy-
Wouthuijsen series? The answer is that is a two-electron spin-orbit term, which can never
emerge from the one-particle Dirac equation. It is understood that it emerges from the
same sort of analysis (as a series in α) applied to the two-particle relativistic wave equa-
tion, the Bethe-Salpeter equation. The dipolar term, along with another novel orbit-orbit
term, emerges from this. The derivation via the Breit equation is also informative, but
less rigorous.

Now let’s turn to the consequences of spin-orbit coupling in a semiconductor that hosts a spin
qubit. The relevant semiconductors, the various group-IV and III-V compound semiconductors
like GaAs, have a rather universal structure near the Fermi energy. All these semiconductors
have full cubic symmetry, so that the electron states at the center of the Brillouin zone have high
symmetry. The relevant irreducible representations at the Gamma point are isomorphic to those
for full spherical symmetry.
Thus, the states at the Gamma point, in the absence of spin-orbit, have a conserved orbital
angular momentum L. It happens that the states near the Fermi energy always have L = 1, in
~ units, at the top of the valence band (which can host hole qubits), and the first state of the
conduction band is always L = 0. Around an origin of high symmetry, we can rewrite the
spin-orbit Hamiltonian as in atomic physics

V (r) ≈ V (|r|) (10)

∇V ≈ r̂
∂V

∂r
(11)

Hso ∝
1

r

∂V

∂r
σ ·
(
r×p

)
=

1

r

∂V

∂r
σ · L. (12)

An aside: it is sometimes said that the atomic spin-orbit operator is σ · L. This is misleading;
1
r
∂V
∂r

is an operator too, on the position Hilbert space! When this is replaced by a “spin-orbit
constant”, it should rather be understood as a matrix element between specific radial orbital
pairs.
Thus, the situation with the top of the valence band is the same as with the p-state in an atom: the
total angular momentum, J = S+L = 1

2
σ+L is conserved. The angular momentum addition
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rules say that the angular momentum states are J = 3/2 and J = 1/2, due to the composition
rule for irreducible representations 1

2
⊗ 1 = 1

2
⊕ 3

2
. This also means that the p-states, which

would be 6-fold degenerate (3 orbital times 2 spin), split up into a 4-fold degenerate set of states
J = 3

2
, and a two-fold pair J = 1

2
.

In semiconductors of interest the J = 3
2

states are always the higher ones, and thus define the
valence-band edge. The J = 1

2
states are, rather prosaically, referred to as the “split-off band”.

the spin-orbit splitting between these multiplets, ∆, is one of the important band parameters in
semiconductors. We will see below the crucial role that it plays in the behavior of electron [sic]
spin qubits.
Note that this lifting of valence-band degeneracy comes along with there being strong spin-
orbit entanglement in these states. For example, one of the eigenstates in the J = 3

2
space,

made non-degenerate by a magnetic field in the (100) crystal direction, is∣∣∣∣32 , 12
〉

=
1√
3

(
ψp+(r)χ↓ +

√
2ψpz(r)χ↑

)
. (13)

Here ψp+(r) is the k = 0 Bloch state constructed from the orbital px + ipy, ψpz(r) is the
different orbital Bloch state constructed from the pz orbital, and χ↓ and χ↑ are the orthogonal
spin wavefunctions that can also be denoted

(
0
1

)
and

(
1
0

)
. Thus, the “weak” spin-orbit interaction

can, in this circumstance, result in an almost maximally entangled wavefuction.
We will pursue this interesting topic much further, but note that the J = 3

2
states come with two

different effective masses, so that away from the Gamma point they disperse into two pairs of
states. A remaining two-fold degeneracy is guaranteed by Kramers’ theorem plus the inversion
symmetry in the point group. Because of these two different masses, the top of the valence band
is further split if the crystal is strained, as happens in the formation of heterostructures.
The bottom of the conduction band, the place where we normally put electrons in order to make
spin qubits, is at first glance immune from the large effect of spin-orbit interaction. The state is
essntially of the simple form ∣∣∣∣12 , 12

〉
≈ ψs(r)χ↓, (14)

with basically no spin-orbit entanglement. But I say “basically” because the spin-orbit Hamil-
tonian still couples this state perturbatively to other eigenstates.
This, in some cases, produces a significant physical effect. This is very evident in the effective
g-factor of these states, in other words, the splitting between the |1/2, 1/2〉 and |1/2,−1/2〉 due
to a magnetic field, Without spin-orbit interaction this splitting is gµBB, with a g factor always
equal to g = 2 + α/2π (that is, a fraction of a percent above 2, with additional, even smaller
terms of higher order in α). The fine structure constant α appears here due to a distinct vacuum
relativistic effect, the coupling of the electron to the quantized electromagnetic field.
But spin-orbit effects in crystalline matter modify this dependence dramatically. First, the Zee-
man splitting in no longer rigorously linear in B, there are B2, etc. terms. But more dramatic
and significant is the departure of g far from 2. This can be analyzed by perturbation theory. The
most significant contributors are couplings to the six valence band states. A beautiful formula
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emerges from this, due to Laura Roth in 1959 [2]

g = 2− 2∆

3Eg + 2∆

(
m

meff

− 1

)
. (15)

(This is ignoring the Schwinger correction α/2π, which is almost always far smaller.) Here∆ is
the valence band spin-orbit splitting discussed a above,Eg is the band gap of the semiconductor,
and meff is the effective mass of the conduction band electrons. These latter two parameters are
not primarily determined by spin-orbit interaction, while ∆ is only non-zero when spin-orbit is
included.
The parameters on the right-hand side of the Roth formula are all accurately known from exper-
iment. For example, ∆ = 44, 295, 341, 380, 930 (in meV) for Si, Ge, GaAs, InAs, and ZnTe,
respectively. Plugging these in gives for GaAs gRGaAs = 0.09, and for InAs gRInAs = −14.9. The
Zeeman splittings are also readily measured, and the experimental values are gGaAs = −0.44,
and for gInAs = −15. While not being precisely accurate, Roth’s analysis correctly predicts
the dramatic departures of the Zeeman splitting from its non-relativistic value, and the trend of
increasing departure when going to heavier elements.
The important message of this formula is that the g factor depends, potentially strongly, on
details of the orbital electronic structure. One can imagine, based on the kind of perturbation
theory involved, that the result will depend on where we are in k-space. To get ahead of our
story somewhat, this tells us something of what will happen when we form a quantum dot:
depending on the size of the dot, the resulting wavefunction will sample a greater or lesser part
of this k space – thus, the g factor will depend on the degree of confinement. This variation,
while not particularly large in, e.g., Si, has been observed recently and is definitely a source of
concern for applications as qubits.
While the derivation of the Roth formula is a bit time consuming, I will give a flavor of this
kind of band perturbation for the simpler problem of the band effective masses that appear
in her formula. This formula has nothing to do with spin-orbit, so we revert to the regular
Schrödinger equation.
When we substitute the Bloch function

Φnk(r) = eik·runk(r) (16)

in the Schrödinger equation(
p2

2m
+ V (r)

)
Φnk(r) = Enk(r)Φnk(r), (17)

we get the wave equation for the periodic part of the Bloch function,(
p2

2m
+

~2k2

2m
+

~
m
k · p+ V (r)

)
unk(r) = Enk(r)unk(r). (18)

The new term here is referred to as the “cay-dot-pee” perturbation; although it is not really a
perturbation, Eq. (18) is just an exact rewriting of Eq. (17).
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The procedure is as follows: one obtains solutions for k = 0, un0(r) and En0. Then one treats
the k ·p term (together with the simple k2 term) using perturbation theory to get the dispersion.
Around k = 0 the lowest order perturbation result is quadratic in |k|. The band curvature gives
the effective mass. The simple formula for this is

1

meff

=
1

m
+

2

m2

∑
n′ 6=n

∣∣k̂ · 〈un0|p|un′0〉
∣∣2

En0−En′0
. (19)

In our high symmetry situation, meff is independent of the direction of the unit vector k̂.
We can note that, generically, large contributions to 1/meff will occur (so that meff will have a
small magnitude) if the energy gap is small.
With spin-orbit interaction, our Schrödinger equation Eq. (17) becomes(

p2

2m
+ V (r) +

~
4m2c2

p · (σ×∇V )

)
eik·runkσ(r) = Enkσ(r)e

ik·runkσ(r). (20)

The band energies E and the periodic part of the Bloch wavefunction u have acquired spin
labels σ. As above, one obtains a k · p-style Schrödinger equation for the u function(

H0 +
~2k2

2m
+

~
m
k · p+

~2

4m2c2
k · (σ×∇V )

)
unkσ(r) = Enkσ(r)unkσ(r). (21)

Here H0 is the whole Hamiltonian for the k = 0 states, including the spin-orbit contributions;
often this is left as a separate term to be treated, along with the k-dependent terms, with pertur-
bation theory. We will again look at what happens to the conduction band in, e.g., GaAs. The
approach is as for the effective mass: take into account the effect of other bands perturbatively.
Since the conduction band is two spin states, we get not a single corrected dispersion, but an
effective 2×2 Hamiltonian

Heff =
~2k2

2m∗
+ γ~2

(
σxkx

(
k2y−k2z

)
+ cyclic permutation x→y→z→x

)
. (22)

The form here is universal for s-bands in crystals with a form of cubic symmetry, with only
γ depending on details of the perturbation matrix elements; but for full cubic symmetry (i.e.,
including inversion symmetry, e.g., in Si and Ge) γ = 0. This set of terms is called “Dresselhaus
spin-orbit coupling”.
A few interesting notes about this term: 1) While it respects cubic symmetry, it does not have
full rotational symmetry, so the band dispersion is not isotropic. 2) Except along high-symmetry
directions, the energy splitting of the two spin states is nonzero with a quantization axis that is
a function of k. 3) There is a superficially similar term, called the Rashba spin-orbit coupling,
that is not intrinsic to the crystal structure, but is activated by additional applied magnetic fields.
This Rashba coupling produces a variety of interesting effects, but in the interests of space will
not go into them here.
We are now going to see how this affects the electrons that are confined to quantum dots, for the
purpose of making spin qubits. I will state without proof the use of effective Hamiltonians like
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Eq. (22) when we consider the envelope function approximation. When we describe an electron
as being confined to a quantum dot, we have in mind that the Bloch function is modulated by a
slowly varying envelope wavefunction

ψenv ,nσ(r)e
ik0·runk0σ(r). (23)

Here k0 is the extremum of the band, i.e., k0 = 0 for the examples we have been discussing.
The envelope-function theory shows that to apply the effective Hamiltonian to ψenv alone to get
an eigenvalue equation, the prescription is to elevate k to operator status with the replacement
k→ i∇. You are probably very familiar with this in the case of the simple effective mass term,
where we say that the kinetic energy operator in the effective mass approximation is just

− ~2∇2

2meff

. (24)

With spin-orbit interaction, we just make this replacement everywhere in Eq. (22).
We will now explore what consequences this has for the control of two spin-qubits. We will
follow the derivation of Kavokin [3]. We will assume the Hamiltonian consists of Eq. (22),
along with a spatial confining potential. This potential is assumed smooth on the scale of the
lattice constant. Notationally we will write this double quantum dot Hamiltonian as

H(r,k) = Heff (k) + Vconf (r). (25)

This notation indicates, as suggested above, that the envelope coordinate r and the crystal mo-
mentum k will function as conjugate variables. “conf” refers to “confinement”.
We will solve the two-electron problem. Importantly, we will proceed with first quantization,
which flexibly deals with undetermined and non-orthogonal space orbitals. In first quantization
the two electron Hamiltonian is

Htot =
2∑
i=1

H(ri,ki) + C(r1−r2). (26)

C is some screened electron-electron interaction whose details will not be important here.
One can proceed with a Heitler-London (two-orbital) calculation which, in the absence of spin-
orbit, gives the familiar Heisenberg exchange expression for the effective qubit-qubit interaction
(calculated in [4])

H2qu = J SA · SB. (27)

Here we specialize to a double-well confinement potential, with distinct wells A and B. We ex-
pect that with two electrons, electron one will occupy the A well, and electron two will occupy
the B well, and vice versa. Note we are again using the first quantized language. In second
quantization we should just say that the state is obtained from the vacuum (i.e., filled semicon-
ductor bands) by applying a creation operator for spatial orbital A, and a creation operator for
spatial orbital B, with the spin content of the orbital left for the present unspecified.
Kavokin begins by specializing the Dresselhaus contribution Eq. (22). We consider quantum
dots that are strongly confined in one direction (z direction). This means that we will only
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consider dynamics in the xy plane. It also means that, if we think in terms of expectation
values, we expect that the strong confinement will mean that 〈k2z〉 � 〈k2x〉, 〈k2y〉. Thus, we
approximate Eq. (22) by

H =
~2k2

2m∗
+ Vconf (r) + γ~2

(
−σxkx〈k2z〉+ σyky〈k2z〉

)
= −~2∇2

2m∗
+ Vconf (r) + ia

(
−σx∇x + σy∇y

)
, (28)

where a = γ~2〈k2z〉.
I now proceed, following closely Sec. IV of [3]. Again with our mindset of first-quantization,
we write a wavefunction basis states involving “electron 1” and “electron 2”, providing for the
possibility of antisymmetrization

ΨA(1)ΨB(2)χ
σ1
1 χ

σ2
2 and ΨA(2)ΨB(1)χ

σ′
1

1 χ
σ′
2

2 . (29)

Note that unlike in second quantization, the spin functions χ are associated with electron num-
ber 1, 2 and not with spatial orbitalA,B. Also, (1, 2) is shorthand for (r1,2). The σ’s are indices
for the spin basis states ↑ and ↓, and are not to be confused with Pauli matrices. Observe that
these are 8 basis functions overall, but we will come back to a 4D space due to antisymmetriza-
tion.

We now proceed with Heitler-London. The sleight of hand here involves recognizing that or-
bitals A and B are almost, but not quite, orthogonal, so that where their non-orthogonality is
crucial for the leading-order term, it is accounted for; but other parts of the calculation are done
as if the orbitals are orthogonal.

We will get matrix elements for the basis above. The two-electron Hamiltonian is split into two
parts

Htot = H0 +H1 (30)

H0 =
2∑
i=1

(
−~2∇2(i)

2m∗
+ Vconf (ri)

)
+ C(r1−r2). (31)

H1 = i
2a

~

2∑
i=1

(
−Sx(i)∇x(i) + Sy(i)∇y(i)

)
. (32)

In Heitler London the key matrix element is the off-diagonal one

〈ΨA(1)ΨB(2)χσ11 χσ22 |H0|ΨA(2)ΨB(1)χ
σ′
1

1 χ
σ′
2

2 〉 = J δσ1,σ′
1
δσ2,σ′

2
. (33)

This gives the usual exchange constant J of the Heisenberg model Eq. (27). Note that it is only
nonzero if orbitals A and B are nonorthogonal.
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The interesting new spin-orbit contribution is

〈ΨA(1)ΨB(2)χσ11 χσ22 |H1|ΨA(2)ΨB(1)χ
σ′
1

1 χ
σ′
2

2 〉
= i〈ΨA|ΨB〉〈σ2|b · S2|σ′2〉δσ1,σ′

1
− i〈ΨB|ΨA〉〈σ1|b · S1|σ′1〉δσ2,σ′

2
, (34)

b ≡ 2a

~

 −〈ΨA|∇x|ΨB〉
〈ΨA|∇y|ΨB〉

0

 . (35)

The minus sign in Eq. (34) comes from the fact that the matrix elements comprising the vector
b are real and antisymmetric (Anti-Hermitian) in A,B. We give a 3D version of the vector
b because there are other spin-orbit terms, e.g., the ‘Rashba’ spin-orbit coupling, for which
z-components of this vector are recovered.
One is now to infer the effective spin Hamiltonian that this leads to, and see how the effective
interaction departs from the Heisenberg form. We simplify Eq. (35) further, by setting the
coordinate system in spin space so that the z spin axis is parallel to the vector b. Then we can
write

〈ΨA(1)ΨB(2)χσ11 χσ22 |Htot|ΨA(2)ΨB(1)χ
σ′
1

1 χ
σ′
2

2 〉 =
(
J + iΩ |b| (S2z−S1z)

)
δσ1,σ′

1
δσ2,σ′

2

≈ J ′ei(γ/2)(S1z−S2z)δσ1,σ′
1
δσ2,σ′

2
(36)

Here Ω is the real number 〈ΨA|ΨB〉, J ′ =
√
J2 + (Ω|b|)2 and γ = arctan (Ω|b|/J). Typically

J ′ ≈ J and γ � π, but I will review Kavokin’s estimates at the end, indicating that this will not
be an entirely negligible effect.
Finding eigensolutions to the full Hamiltonian (all the interesting spin dependence comes from
the “exchange integral” Eq. (36)), we can write these down by requiring antisymmetry. These
are constructed in precise analogy to the case of no spin-orbit (γ=0), with the change of sign
characterizing the antisymmetry appearing in one of two factors, according to the quantum
number I

ΦIM = 1
2
(ΨA(1)ΨB(2)e

i(γ/2)(S1z−S2z) + (−1)IΨA(2)ΨB(1)e−i(γ/2)(S1z−S2z))ζIM (37)

Here ζIM are the usual spin eigenfunctions of the two-particle system, i.e., the triplets (I = 1,
M = −1, 0, 1), and the singlet (I = 0, M = 0). Our last task is to understand what effective
two-spin Hamiltonian will produce such states as eigenstates. To understand how this works,
I show the singlet case of these states in a more explicit notation, in which the spin operators
have been applied to the state

Φ00=
1

2

(
ΨA(1)ΨB(2)

(
eiγ/2| ↑1↓2〉−e−iγ/2| ↓1↑2〉

)
+ΨA(2)ΨB(1)

(
e−iγ/2| ↑1↓2〉−eiγ/2| ↓1↑2〉

))
.

(38)
Note this does not factorize into a spin part and a space part, but the total is clearly antisymmetric
with respect to 1↔ 2.
We will take a next step that will give us an effective wavefunction for the spins alone. It is based
on the following premise: we suppose that the A and B orbitals are disjoint in space (clearly
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not exactly true in reality, since they have a finite inner product Ω), and that the wavefunction
has no double-occupancy character. Then we see that the first term of wavefunction Eq. (38)
is only nonzero if electron 1 is in the A quantum dot, and electron 2 is in the B quantum dot.
Then, the spin state associated with this first term is

Ψspin = eiγ/2| ↑A↓B〉 − e−iγ/2| ↓A↑B〉. (39)

Note the crucial change of labeling 1, 2 → A,B motivated by our argument. If we apply the
same reasoning to the second term of Eq. (38), noting that it is only nonzero if electron 1 is in
the B quantum dot, and electron 2 is in the A quantum dot (note the reversal from above). We
then transcribe the spin wavefunction of this term as

e−iγ/2| ↑B↓A〉 − eiγ/2| ↓B↑A〉, (40)

which is in fact exactly the same (after rearranging) as Ψspin . The same observations go through
for the triplet states. This encourages us to look for an effective Hamiltonian with only spin
operators which has Eq. (39) as an eigenstate. The answer is

Hspin = exp
(
iγ
2
(SAz−SBz)

)
SA · SB exp

(
−iγ

2
(SAz−SBz)

)
= S′A · S′B. (41)

So this is a kind of Heisenberg exchange, except that the coordinate system has been rotated, so
there are two different frames of reference used at theA site and theB site. Let me comment that
the line of argument just given is basically a switchover from first-quantized to second-quantized
thinking, since it changed from “which electron is where?” to “where are the electrons?”. It has
the limitation that it is only proper if the A and B orbitals are orthogonal; I note that Eq. (41) is
not even Hermitian if A and B are non-orthogonal.
Finally, I mention Kavokin’s calculations for the size of this effect. He estimates:

1. quantum dots in GaAs, 10 nm heterostructure: γ ≈ 0.1

2. shallow donors, bulk GaAs: γ ≈ 0.01

3. donors near oxide interface in Si: γ ≈ 0.03

This just serves to illustrate that this is not necessarily a very small effect.

4 A few thoughts about electron-electron interaction for
spin qubits

I will here briefly discuss the electronic structure of the double quantum dot from another angle.
We have taken into account electron-electron interaction in the calculation done above. More
generally, how do interaction effects enter the electron problem for the quantum dot? Is there a
basically one-electron picture that is close to the truth?
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For this I explain some of the insights of [5]. In this work we retreat from the problem of
spin-orbit interaction, considering only the electronic structure of few-electron dots in the non-
relativistic limit.
Let me review some of the most basic facts about multi-electron eigenstates. I will state the
facts in both first- and second-quantization.
If there are no e-e interactions, then eigenstates are single spin-orbital Slater determinants.
Not to be confused with the spin-orbit interaction, spin-orbital functions are single-electron
functions of both space and spin. In the nonrelativistic case there will be functions like the
kind we have seen above, single products like ΨAσ = ΨA(1)χ1. (If we were doing spin-orbit
coupling, these would be entangled spin and space functions.) Then a single Slater determinant
of two electrons would have the form∣∣∣∣∣ ΨA(1)χ1 ΨB(1)χ

′
1

ΨA(2)χ2 ΨB(2)χ
′
2

∣∣∣∣∣ (42)

Here I use the convention that in a Slater determinant, the rows are indexed by electron number,
and the columns are indexed by the distinct spin-orbital (which may involve a repetition of the
spatial orbital). This seems to immediately contradict the observation that two electron systems
have triplet eigenstates of the form∣∣∣∣∣ ΨA(1) ΨB(1)

ΨA(2) ΨB(2)

∣∣∣∣∣ (|↑A↓B〉+ | ↓A↑B〉), (43)

split off from the other triplets in the presence of a magnetic field. This appears to be, and
indeed is, a sum of two spin-orbital Slater determinants. But there is no contradiction here, as
this state is degenerate with the singlet state (even in a magnetic field), so each determinant is
separately an eigenstate. It is only if we also insist that we have eigenstates that are labelled by
total spin that superpositions become necessary.
Note that the equivalent statement in second quantization is that an eigenstate can be formed by
applying, to the vacuum, two spin-orbital creation operators

a†Aχa
†
Bχ′ |0〉. (44)

We will be considering two and four electron systems. We will not get further than the story of
a single quantum dot. For this, the “vacuum” will be the filled valence band, and all calculations
will be done at the level of the envelope function (“effective mass theory”). But the gigantic
complication of many-electron theory is that the eigenstates are not single Slater determinants.
But the Slater determinants form a complete, orthonormal basis for the many-electron Hilbert
space. This means that the general form for these eigenstates is, using the second-quantized
notation,

′∑
i,j

cij a
†
ia
†
j|0〉. (45)

Here the sums run over the orthogonal spin-orbitals i, j. The prime is a reminder that the i = j

term gives nothing, since (a†)2 = 0.
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In quantum chemistry the terms in Eq. (45) are called configurations, and using a set of basis
functions like this is called the configuration-interaction (CI) technique. Convergence in this
technique is difficult, the only useful calculations use a computer.
In [5] we have done a fairly large calculation for a harmonically confined quantum dot in a
magnetic field, with two or four electrons. Here the number of single-particle eigenstates used
is 50, meaning that the CI basis has

(
50
2

)
or
(
50
4

)
elements. Bases of these size were apparently

necessary for good convergence.
We describe now a step which leads to a much more powerful starting basis. This is called the
Natural Orbital (NO) method due to Löwdin.
Suppose we have chosen a spin sector to examine, e.g., the singlet; thus, we are left with just
orbital determinants such as in Eq. (43). Löwdin’s procedure involves first obtaining the first-
order density matrix of the N -particle orbital wavefunction

ρ(r′, r) = N

∫
dr2...drN ψ

∗(r′, r2, ...rN)ψ(r, r2, ...rN). (46)

He next notes that if there were no e-e interactions and the eigenstate was a single Slater deter-
minant, the first-order density matrix would be given by a simple sum over the single-particle
orbitals in that determinant

ρ(r′, r) =
∑
α

φ∗α(r
′)φα(r). (47)

But very generally, as a symmetric, positive semi-definite function of r and r’, the first order
density matrix has a spectral decomposition

ρ(r′, r) =
∑
α

ρα φ
∗
(NO),α(r

′)φ(NO),α(r). (48)

This set of “natural orbitals” φ(NO) is in general quite different from any approximate single
particle orbital, and should provide a CI expansion that is more rapidly convergent. Note that
the “NO occupation numbers” ρα ≥ 0, and obey the sum rule

∑
α ρα = N .

We find that a relatively small number of NOs (i.e., somewhat larger thanN ) capture most of the
weight of Eq. (48). So, if we had been lucky enough to be given (say by some wizard Merlin)
these NO functions, we could have done a very compact CI expansion with good convergence
on the full many-body answer.
Our calculation in [5] is for a harmonically confined quantum dot for GaAs (in the sense of using
the effective mass of the conduction band) in a heterostructure-confined structure, so it is a 2D
calculation. A large CI basis is used for convergence. We do calculations for two electrons and
for four electrons, fixing the spin state to be singlet and then triplet, as in Eq. (43). For the two
electron case there is nothing more to be said about the spin state, but for four electrons there
are several alternatives for making these spin states. We do it in shell-style, where the lowest
two orbitals are “paired” (that is, in their own singlet), while the highest occupied orbitals have
the freedom to be singlet or triplet.
Figure 1 just shows the Hartree-Fock one-particle spectrum for this dot, indicating the range
of magnetic field of interest. The quantum numbers are those of the so-called “Fock-Darwin”



13.16 David DiVincenzo

Fig. 1: Single-particle energy levels of the quantum dot, in the Hartree-Fock approximation.

Fig. 2: Weights of natural orbitals for the four settings considered here.

states. In all four cases, the full CI calculation is done, and then the natural orbitals are extracted
from the first-order density matrix as above. These give new orbitals which are indicated by a
tilde; they can still be put in one-to-one correspondence with the Hartree-Fock orbitals. Figure 2
shows the results for these four cases. It shows percentages, we can multiply by the electron
number N to talk about the number of electrons in different orbitals. The N = 2 singlet case
shows that 2 × 0.89 = 1.98 of the electron weight is in the lowest orbital, doubled since both
spin states can be occupied. In theN = 2 triplet case, 0.988 electrons are in each of the two first
orbitals, as expected from the Pauli exclusion principle. The quality of the N = 4 case is only
a bit less ideal: in the singlet case 4× 0.442 = 1.768 electrons are a singlet in the first “shell”,
with the second shell with 1.762 occupancy. This leaves 0.47 of an electron “unaccounted for”,
in the sense that multiple Slater determinants are necessary to capture the effect of this much of
the weight in the many-electron wavefunction. Finally, the story is similar for theN = 4 triplet:
1.776 electrons are in the core singlet, and 0.97 electrons each in the two next orbitals. 0.284 is
“unaccounted for”. It is understandable that the single Slater determinant is a little better for
the triplet cases, since the antisymmetric orbital wavefunction does a better job of keeping the
electrons out of each other’s way and avoiding effects due to the Coulomb interaction.
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Fig. 3: Charge density of the four quantum-doty settings considered here, with full interaction
effects.

Finally, this numerical study uncovered an important fact about the natural orbitals: to very good
approximation, they are just the non-interacting Fock-Darwin orbitals with a simple rescaling
of the radial coordinate. The natural orbital is in almost all cases blown-up compared with the
Hartree-Fock orbitals – interactions push the electrons away from the center. This expansion
is about 40% for the lowest-energy orbital, and is about half that for the next orbitals that
participate in the N = 2, 4 states discussed above.
A concluding word about this study is that interaction effects are not so overwhelming, causing
a definite renormalization of the Hartree-Fock picture but leaving it qualitatively intact. This is
somewhat at odds with the general experience that very low-density electron systems have the
largest departures from single electron physics (think of the Wigner crystal). But fortunately
for our quantum-dot qubits, the mental picture of single-electron physics is shown to work quite
well.
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