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Abstract

An anonymous social choice function for a large atomless popu-
lation maps cross-section distributions of preferences into outcomes.
Because any one individual is too insignificant to affect these distribu-
tions, every anonymous social choice function is individually strategy-
proof. However, not every anonymous social choice function is group
strategy-proof. If the set of outcomes is linearly ordered and par-
ticipants have single-peaked preferences, an anonymous social choice
function is group strategy-proof if and only if it can be implemented
by a mechanism involving binary votes between neighbouring outcomes
with nondecreasing thresholds for “moving higher up”. Such a mech-
anism can be interpreted as a version of Moulin’s (1980) generalized
median-voter mechanism for a large population.
Key Words: Social choice, large populations, strategy proofness,

group strategy proofness, single-peaked preferences.
JEL: D60, D70, D82, H41

1 Introduction

In this paper, I study the implementability of anonymous social choice func-
tions when the population of participants is large and no one individual

∗This paper originated in a cooperation with Felix Bierbrauer, who has however moved
on to other topics. I am grateful to him for this cooperation and for many comments that
made this a better paper. I am also grateful to Salvador Barberà and to Matthew Jackson
for patiently answering my questions about tie-breaking in their 1994 article.
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acting alone has the power to affect the aggregate outcome. I consider con-
stellations where the set of alternatives is linearly ordered and participants
have single-peaked preferences over this set. For implementability, I require
that social choice functions be group strategy-proof, i.e., that, for any group
of participants that might coordinate their actions, truthful communication
of preferences is a dominant strategy.

For finitely many agents with single-peaked preferences over a linearly
ordered set of alternatives, Moulin (1980) has shown that an anonymous
social choice function mapping vectors of preference peaks to outcomes is
individually strategy-proof if and only if it can be implemented by a gener-
alized median-voter mechanism, defined as a median-voter mechanism for a
population that is enlarged by a set of dummy voters with fixed and known
preference peaks. If a social choice function can be implemented by a gen-
eralized median-voter mechanism, then it is group strategy-proof as well as
individually strategy-proof, i.e., the two requirements are equivalent.1 Bar-
berà and Jackson (1994) and Sprumont (1995) extended Moulin’s analysis
to the full class of anonymous social choice functions that condition on the
participants’preference profiles, rather than merely their preference peaks.

This paper provides an analogue of these results for populations with
an atomless continuum of agents. In such populations, individual strat-
egy proofness and group strategy proofness are no longer equivalent. Be-
cause any one individual is powerless to affect the aggregate outcome, every
anonymous social choice function is in fact individually strategy-proof, but
not every anonymous social choice functions is group strategy-proof. The
characterization of group strategy proofness here can be interpreted as an
adaptation of Moulin’s (1980) characterization to large populations.

The argument is different from that of Moulin (1980), Barberà and Jack-
son (1994) and Sprumont (1995), however. In Moulin (1980), Barberà and
Jackson (1994), and Sprumont (1995), group strategy proofness only comes
in as an afterthought because generalized median-voter mechanisms, which
necessary for individual strategy proofness with finitely many participants,
happen to be group strategy-proof as well. Since group strategy proofness
trivially implies individual strategy proofness, the three property, group
strategy proofness, individual strategy proofness, and implementability by
generalized median-voter mechanisms are acutally all equivalent. In a large
population, this line of argument is not available because the requirement

1For finite populations, Barberà et al. (2010) provide a more general systematic analy-
sis of the conditions under which group strategy proofness and individual strategy proof-
ness coincide.
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of individual strategy proofness has no bite.
I therefore provide a direct characterization of group strategy proofness

in terms of what is needed to avoid collective manipulations. The character-
ization relies on the fact that, with single-peaked preferences over a linearly
ordered set of alternatives, any outcome defines three natural coalitions with
locally similar interests: Agents whose preference peaks are “higher”, agents
whose preference peaks are “lower”, and agents whose preference peaks co-
incide with the given outcome. Agents in the first group all agree that they
would like to move “up”, agents in the second group all agree that they
would like to move “down”, and agents in the third group all agree that
they would like to stay at the given outcome. The given characterization
shows that, if a manipulation of social choice by any one of these groups is
to be avoided, the social choice function must not condition on the groups’
compositions and can only condition on their sizes.

The sizes of these groups can be found by having participants vote. If all
participants have strict preferences over neighbouring outcomes, it suffi ces to
have people indicate for each outcome whether they want to move “up”from
that outcome or not. The chosen outcome then is the “lowest”at which the
“up”votes fail to meet a specified threshold. The threshold may depend on
the outcome considered but the mapping from outcomes to thresholds must
be nondecreasing.2 I call this the monotone binary voting (MBV) property.

According to a standard criticism, the use of voting for decisions on
resource allocation is problematic because voting conveys too little informa-
tion to enable effi cient choices. In particular, in binary voting, the decision
taken can only condition on the population shares of the sets of people in
favour of one or the other alternative without taking account of preference
intensities. A small set of people who care deeply about the decision cannot
influence the outcome of the vote even though none of the other people may
care very much at all.3

This argument is valid as a criticism of simple binary voting but not
as a criticism of voting altogether. If there is a continuum of outcome
levels, a set of binary votes indicating for each outcome level whether the

2 If nonnegligible sets of people are indifferent between neighbouring outcomes, one may
also need a vote on whether people want to move “down” from a given outcome or not;
the combination of votes reveals how many people are indifferent.

3Buchanan and Tullock (1962) point to the problem and argue that vote-trading would
be desirable because it provides a way to overcome this problem. Similarly, Casella (2005)
suggests that intensities could be taken into account if voters had an endowment of votes
and could assign more votes to issues that are of greater importance to them. Goeree and
Zhang (2017) propose to replace votes by monetary bids. Ledyard (2006) suggests that,
once incentive problems are taken into account, voting mechanisms may do relatively well.
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voter wants to move higher “up” or not can provide something like full
information about the entire preference profile. This information would be
suffi cient to implement outcomes that maximize aggregate surplus if this is
the objective. However, a social choice function that adapts outcomes to
reported preference distributions so as to maximize aggregate surplus will
not generally be group strategy-proof. The ineffi ciency of outcomes under
a voting mechanism that involves a continuum of such binary votes is not
due to the coarseness of the information conveyed through voting but to the
constraints imposed by group strategy proofness.

Why Large Populations? The paradigm of a large population where
each individual is too insignificant to affect the social outcome has not been
much used in social choice theory. In other areas of economics and political
science, this paradigm is regularly used to study issues of resource allocation
and voting when millions of people are involved. Examples are the theory
of competitive equilibrium in markets for private goods, where no one in-
dividual is able to affect market prices, the theory of taxation, where no
one individual has a noticeable impact on the government budget, and the
theory of political decisions through voting, where no one individual expects
to be pivotal for the outcome.4 Underlying these theories is the observation
that, in a population with a million people or more, the probability of any
one person being able to affect the aggregate outcome is on the order of
10−3, at least if the system treats all individuals alike.5 While not literally
zero, this order of magnitude is so small that, in practice, individuals are
unlikely to pay much attention to the effects of their actions on aggregate
outcomes.

In social choice, as in private markets or in voting, the impact that
an individual in a population of millions can have on the overall outcome
is so small that participants do not give it much consideration. The loss
in precision that results from studying a continuum model in which the
impact of a single person on aggregate outcomes is literally zero is therefore
negligible and is outweighed by the gains in insight that can be obtained
through the greater simplicity of the continuum model.

4Textbook treatments are given by Mas-Colell et al. (1995) for competitive equilib-
rium in markets for private goods, Ljungqvist and Sargent (2012) for macroeconomics and
public finance, and Persson and Tabellini (2000) for political economy models. For ad-
ditional examples, as well as an abstract treatment, of strategic interdependence in large
populations with anonymity, see Hellwig (forthcoming).

5 In a system with n participants, the probability of being pivotal is on the order of
n−

1
2 . See Hellwig (2003) and the references given there.
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Motivation from Public-Goods Theory. The motivation for the analy-
sis comes from public economics, in particular the theory of public-goods
provision. Much of the theory of public-goods provision is concerned with
the incentive problems that may prevent the implementation of effi cient
social choice when information about preferences is private. These incen-
tive problems are usually analysed in terms of strategy proofness or, more
generally, individual incentive compatibility in models with finitely many
participants. In these models, each individual can have a noticeable impact
on aggregate outcomes. With a focus on achieving individual incentive com-
patibility, the problem is to calibrate people’s payments to their expressions
of preferences so that they do not wish either to understate their preferences
for the public good (so as to reduce their payments) or to overstate their
preferences (so as to get a greater provision level at other people’s expense).6

The notion that any one individual can have a noticeable effect on the
level of public-good provision makes sense if we think about people in a con-
dominium deciding on how much to spend on gardening and maintenance.
However, this notion is not very relevant for studying how a society with
millions of people decides on how much to spend on defense or on the judicial
system. For such choices, the notion that individual agents are too insignif-
icant to have a noticeable influence on aggregate outcomes is as relevant as
it is for the allocation of private goods through markets or for elections.

Limiting the theory of public-good provision to models in which each
agent has a noticeable influence on aggregate outcomes is akin to limiting
the analysis of markets to models of bargaining and oligopoly without ever
talking about perfect competition. In the area of public economics, the
discrepancy between the small-economy approach to public-good provision
and the large-economy approach to taxation is particularly vexing because
it stands in the way of an integrated welfare analysis of public spending and
taxation.

However, if individuals are too insignificant to have a noticeable influence
on aggregate outcomes, the problem of how to calibrate people’s payments to
their expressions of preferences so that they do not wish either to understate

6For implementation in dominant strategies, see Clarke (1971), Groves (1973), Green
and Laffont (1979), for (interim) Bayes-Nash implementation, see d’Aspremont and
Gérard-Varet (1979). More recently, Bergemann and Morris (2005) have studied in-
terim implementation with a requirement of robustness with respect to the specification
of agents’beliefs about the other participants. Hellwig (2021) studies Bayesian implemen-
tation in a model with macro shocks to preference parameters, extending d’Aspremont
and Gérard-Varet (1979), formulating an impossibility theorem for weakly robust imple-
mentation with budget balance and a possibility theorem for robust implementation with
budget balance in a large population.
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or to overstate their preferences for the public good is trivial. If individuals
cannot affect public-good provision levels, their payments must be indepen-
dent of what they say. Otherwise, they would choose their communications
to miminize their payments, regardless of what their preferences might be.7

If individual agents are too insignificant to have a noticeable influence on
aggregate outcomes, independence of payments from expressed preferences
is suffi cient as well as necessary for individual incentive compatibility: If
agents believe that all aspects of outcomes, payments as well as public-
good provision levels, are independent of what they communicate, they will
be indifferent as to what they communicate and may as well communicate
their true preferences.

If the payment is the same for all agents and equal to the per-capita
provision costs at whatever level of public-good provision is chosen, the
public budget is balanced. In this case, if there is a single public good,
the set of relevant outcomes is linearly ordered by the level of public-good
provision. Moreover, if utility functions are quasi-concave and the per-capita
provision cost function is convex, preference orderings are single-peaked on
this set, so the analysis of this paper applies.

There is a small literature on public economics and macroeconomics in
large economies that involves public-good provision.8 In this literature, there
is no requirement of equal cost sharing, so public-good provision may con-
tribute to or be supported by the general government budget. The research
focuses on how (second-best) public-good provision and taxation interre-
late when government funding involves distortionary taxes.9 This literature
assumes that information about individual preferences for public goods is
private but aggregate benefits from public-good provision can be elicited
without problems. Bierbrauer (2009) provides a formal justification on the
basis of the above reasoning about individual strategy proofness in a large
population.

7 In a Bayesian setting with correlated values, these sentences assume that one cannot
use Crémer-McLean (1988) mechanisms to exploit type dependence of beliefs about other
agents. The assumption is justified if Bayesian incentive compatibility must be robust to
changes in the specification of beliefs, as postulated by Ledyard (1978) and Bergemann
and Morris (2005).

8For example Barro (1990), Boadway and Keen (1993), Battaglini and Coate (2008),
Gaube (2000), Hellwig (2004), Heathcote et al. (2020). With known benefits from public-
good provision, the question becomes how public-good provision rules are affected by the
presence of distortions from taxes that are used for public funding.

9With finitely many participants, strategy-proof implementation of effi cient public-
good provision precludes budget balance. With a large population, budget balance is not
a problem. See, e.g., Green and Laffont (1979) and Hellwig (2021).
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Why Group Strategy Proofness? However, there is a problem. If one
thinks of the large population as an idealization of a large finite population,
the model with a large population in which no one agent has power to
affect aggregates should work essentially “like”a model with a large finite
population. This requirement is violated when we move from saying that, in
a model with a large population independence of payments from expressed
preferences is necessary for individual incentive compatibility to saying that
this independence is suffi cient for individual incentive compatibility.

The latter property holds only if the influence of any agent on the ag-
gregate outcome is actually zero; it need not hold even approximately if the
influence of an individual agent on the aggregate outcome is small but not
zero. To see this, it suffi ces to observe that in any finite economy, an in-
dividually incentive-compatible social choice function cannot stipulate that
the level of public-good provision should be lower if an agent’s preferences
for the public good are more intense. Similarly, an individually incentive-
compatible social choice function cannot stipulate that the level of public-
good provision should be lower if all agents’preferences for the public good
are more intense.

Now consider a social choice function for the large population that re-
quires the level of public-good provision to be lower when all agents’pref-
erences for the public good are more intense. With a large population and
payments based on equal cost sharing, such a social choice function is indi-
vidually incentive-compatible, but, with monotonicity going the wrong way,
it cannot be approximated by individually incentive-compatible social choice
functions for large finite economies.10

This diffi culty cannot arise if the requirement of individual incentive
compatibility is replaced by a requirement of coalition incentive compatibil-
ity.11 Thus, with a focus on dominant-strategy implementation, I postulate
that a social choice function must be group strategy-proof, i.e., there is no
group of agents and no constellation of strategies of agents outside the group
such that agents in the group can benefit by deviating from truthful com-
munication. I do not give a formal result, but it is straightforward to show
that a group strategy-proof social choice function for a large population can
be approximated by group strategy-proof social choice functions for large
finite economies (and, conversely, that any limit of group strategy-proof so-
cial choice functions for large finite populations is itself group strategy-proof

10Technically, the set of individual incentive compatible social choice functions exhibits
a property of upper hemi-continuity but not a property of lower hemi-continuity as one
goes from large finite populations to the continuum.
11See also Bierbrauer (2014) and Bierbrauer and Hellwig (2015).
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for the large population).
Group strategy proofness avoids the diffi culties that arise because, in a

large population, the individual agent feels powerless to affect the overall
outcome. A well known example is given by the paradox of voting, i.e., the
observation that people participate in elections as if their votes mattered
when in fact they know that, individually, their impact is practically zero.12

Coordination within groups may provide for a sense that participation is
not futile and that the vote itself matters.

In principle, the formation of groups and the coordination of behaviours
within groups can itself be seen as a problem of social choice. An axiomatic
requirement of group strategy proofness assumes this problem away. This is
appropriate if one is interested in the constraints that group behaviour can
impose on implementation. The implications of frictions that may prevent
groups from becoming effective should be treated as a separate subject.13

Why Dominant-Strategy Implementation? I also want to avoid the
question of what information is available to coalitions when they consider
possible deviations. This is why I focus on dominant-strategy implemen-
tation rather than Bayesian implementation. In dominant-strategy imple-
mentation, the individual or group under consideration is assumed to know
everything about the state of the world, including the characteristics of
participants who do not belong to the group. This stark assumption puts
the focus on the implications of strategic interdependence as such, without
worrying about issues of information available to the participants.

An interesting question is what becomes of the analysis if one relies
on robust Bayesian, rather than dominant-strategy implementation. In the
Bayesian framework, the information that is available to each participant
need not be perfect, and this information is explicitly modelled. A require-
ment of ex post coalition proofness in this framework is equivalent to group
strategy proofness, so the logic of our analysis applies directly.14 Prelim-
inary reflections suggest that this logic also applies with a requirement of
interim coalition proofness, where deviating coalitions know the information

12For a political-economy analysis, see Bierbrauer et al. (2021).
13Notice, however, that here too the large-population paradigm provides for a significant

simplification in that coalitions cannot rely on side payments among the participants.
The insensitivity of individual payments to communications about individual preferences
that was explained in the text above extends to side payments within a coalition. With
voluntary participation as well as budget balance within a coalition, such side payments
must all be zero. See Bierbrauer and Hellwig (2015).
14See Bierbrauer and Hellwig (2016).
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of their own members but are uncertain about the information of others.15

However, confirmation of this conjecture must be left to future research.

Outline. In the following, Section 2 introduces the formal model of social
choice with a large population. It introduces the concepts of individual
strategy proofness and group strategy proofness and shows that individual
strategy proofness holds trivially for any anonymous social choice function.
It also introduces a concept of weak group strategy proofness, which makes it
possible to avoid some diffi culties that can arise when the range of the social
welfare function has a gap and a non-negligible set of people is indifferent
between the outcomes that border the gap on either side. Weak group
strategy proofness refers only to social choice at preference constellation
where sets of people who are indifferent between outcomes on two sides of
gaps in the range of the social choice function are negligible.

Section 3 shows that any weakly group strategy-proof social welfare func-
tion can be implemented by a mechanism that has the MBV property, asking
asks people to indicate for each outcome whether they want to move to a
higher outcome or not, with thresholds that are non-decreasing in outcomes,
and implementation of an outcome that is “lowest”among those at which
the “up”votes fail to meet the specified threshold.

Section 4 extends the analysis to social choice for distributions with
nonnegligible sets of people exhibiting indifference between neighbouring
outcomes. Section 5 discusses the implications for public-good provision,
showing that effi ciency is not hampered by a lack of information, but by the
monotonicity requirement for the thresholds in binary voting on whether to
move “up”or not, which in turn is a consequence of group strategy proofness.

The analysis is developed for social choice functions depending on cross-
section distributions of preferences, without reference to the underlying
space of agents. Formal proofs are given in Appendix A. Appendix B the
cross-section distribution formalism in the main text to a formalism with an
atomless measure space of agents.

2 Basic Concepts

Preference Orderings, Type Distributions, and Social Choice. The
set of alternatives for social choice is assumed to be well ordered. I represent
this set by the real line R. The set of participants is an atomless measure
space. Each agent has a preference ordering on R that is induced by a utility
15See Bierbrauer and Hellwig (2015).
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function u(·, t), where t is the agent’s type. The type t belongs to a complete
separable metric space T, and u(·, ·) is an upper semi-continuous function
on R× T.

A social choice function determines an outcome x ∈ R as a function of
the profile of the participants’preference orderings. I only consider anony-
mous social choice functions, that is, social choice functions with the prop-
erty that the chosen outcome depends only on the cross-section distribution
of types in the population. This distribution is an element of the setM(T )
of probability measures on T . An anonymous social choice function is given
by a mapping F from M(T ) to R with the interpretation that, for any
s ∈ M(T ), F (s) is the outcome chosen if the cross-section distribution of
preferences is s.

Because anonymous social choice functions are defined on distributions,
I never refer to the underlying measure space of agents. Appendix B shows
how the formalism for distributions can be derived from a formalism with
an atomless measure space of agents.

Individual Strategy Proofness and Group Strategy Proofness. An
anonymous social choice function F is individually strategy-proof if, for every
s ∈M(T ), and every t and t′ in T,

u(F (s), t) ≥ u(F (ŝ(s, t, t′), t), (2.1)

where ŝ(s, t, t′) is the distribution of reported types that is obtained if the
true type distribution is s, one agent with true type t reports the type t′,
and all other agents report their types honestly.

Proposition 2.1 For a population represented by an atomless measure space
of agents, every anonymous social choice function is individually strategy-
proof.

I next consider group strategy proofness: A type set B ⊂ T is said to
block the anonymous social choice function F at s if there exists s′ ∈M(T )
such that

u(F (s), t) < u(F (sT\B + s(B) · s′), t) (2.2)

for all t ∈ B, where sT\B is the restriction of s to the set T\B. The anony-
mous social choice function F is said to be group strategy-proof if and only
if there are no B ⊂ T and s ∈ M(T ) such that B blocks F at s. Group
strategy proofness implies, in particular, that, for all s, F (s) is Pareto effi -
cient, i.e., there is no s ∈ M(T ) such that the grand coalition T blocks F
at s.
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Single-peakedness of Preferences. The utility function u(·, t) is said
to be single-peaked if there exists a critical outcome π(t) such that u(·, t) is
strictly increasing on (−∞, π(t)] and strictly decreasing on [π(t),∞). If all
utility functions u(·, t), t ∈ T, are single-peaked, then for any x ∈ R there is
a natural decomposition of the type set T into the three sets

P ∗(x) := {t ∈ T |π(t) = x}, U(x) := {t ∈ T |π(t) > x},
and D(x) := {t ∈ T |π(t) < x} . (2.3)

An agent with t ∈ P ∗(x) considers x to be best, an agent with t ∈ U(x)
prefers something higher than x, and would like to move up, an agent with
t ∈ D(x) prefers something lower than x and would like to move down.
Agents with types in U(x), do not agree on where they want to end up, but
they do have the same attitudes to small changes away from x; the same is
true of agents with types in D(x).

The following assumption asserts that single-peakedness is the only re-
striction on the domain of social choice functions. In the remainder of the
paper, this assumption is imposed without further mention.

Richness of T The type set T is rich in the sense that, for any single-
peaked function f on R, there exists t ∈ T such that f(·) = u(·, t).

Weak Group Strategy Proofness. If the range RF of the social choice
function F is a disconnected subset of R, single-peakedness of u(·, t) on R
does not necessarily imply single-peakedness of u(·, t) on RF , i.e., on the set
of outcomes to which the social choice function F is restricted. For suppose
that there is gap in RF so that, for some x1, x2 in RF , (x1, x2)∩RF = ∅. For
utility functions u(·, t) with π(t) ≤ x1 or π(t) ≥ x2, this gap makes no dif-
ference. But for utility functions u(·, t) with π(t) ∈ (x1, x2), one might have
u(x1, t) = u(x2, t) so that the restriction of u(·, t) to the set RF has twin
peaks, at x1 and x2. Such indifference complicates the analysis of group
strategy proofness of F. Because blocking requires strict Pareto improve-
ments, the indifferent types will never be part of a blocking coalition.16 A
full characterization of group strategy proofness must somehow deal with
this fact.

To avoid dealing with this complication right away, I introduce a notion
of weak group strategy proofness. For given F , with range RF , let TF be

16With a weaker definition of blocking that allows for weak Pareto improvements, group
strategy proofness is unattainable unless the social choice function is constant; see fn. 23
below.
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the set of types t such that u(·, t) is single-peaked on RF and letM∗F (T ) be
the set of distributions s ∈ M(T ) that are concentrated on TF . The social
choice function F is said to be weakly group strategy-proof if and only if the
restriction F |M∗F (T ) of F to the set M∗F (T ) is group strategy-proof and,
moreover, the range of this restriction is the same as the range of F itself,
i.e., RF |M∗F (T ) = RF and there are no B ⊂ TF , s, s

′ in M∗F (T ) such that
(2.2) holds for all t ∈ B.

If F is group strategy-proof, the requirement that RF |M∗F (T ) = RF is
automatically fulfilled. For suppose that x ∈ RF and s ∈ M(T ) are such
that s(P ∗(x)) = 1. Then also s ∈M∗F (T ) and, since group strategy proofness
implies Pareto effi ciency of F (s), F (s) = x, i.e., RF |M∗F (T ) = RF . This
observation yields:

Remark 2.2 Any anonymous group strategy-proof social choice function is
also weakly group strategy-proof.

If RF $ R, the sets P ∗(x), U(x), and D(x) in (2.3) must be replaced by
the sets P ∗F (x), UF (x), and DF (x) such that P ∗F (x) is the set of types for
which x is the unique preferred outcome in RF , UF (x) is the set of types
that prefer some higher outcome in RF to x, and DF (x) is the set of types
that prefer some lower outcome in RF to x. If x is at the boundary of one or
two gaps in RF , there is an additional set IF (x) of types that are indifferent
between x and (one of) the boundary outcome(s) on the other side of (one
of) the gap(s), but prefer x to all other outcomes. For s ∈M∗F (T ), however,
s(IF (x)) = 0, and only the sets P ∗F (x), UF (x), DF (x) matter.

From the single-crossing property and the upper semi-continuity of u,
one obtains the following useful properties of the functions s(UF (·)) and
s(DF (·)).17

Remark 2.3 For any F and any s ∈ MF (T ), the map x 7−→ s(UF (x)) is
non-increasing and right-continuous, and the map x 7−→ s(DF (x)) is non-
decreasing and left-continuous.

17Monotonicity is implied by single-peakedness. Right-continuity of s(UF (·)) at x is
trivial if RF has a gap immediately above x. If RF does not have such a gap, single-
peakedness implies UF (x) = ∪x′>xUF (x′), so limx′↓x s(UF (x′)) = s(UF (x)) follows by
elementary measure theory. Left-continuity of s(DF (·)) follows by a symmetric argument.
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3 Weak Group Strategy Proofness

This section provides a complete characterization of weakly group strategy-
proof social choice functions. For greater clarity, I proceed in several steps,
treating the binary case RF = {x1, x2} and the general finite case RF =
{x1, ..., xn} before giving the result for general RF .

As an additional piece of notation, for any x and x̂, I write

P (x, x̂) := {t ∈ T |u(x, t) > u(x̂, t)} (3.1)

for the set of types that strictly prefer the outcome x to the outcome x̂.

3.1 The Binary Case: Voting

If RF = {x1, x2}, then for any weakly group strategy-proof social choice
function F and any s ∈ M∗F (T ), the outcome F (s) can only depend on
the population shares of the sets P (x2, x1) and P (x1, x2). For s ∈M∗F (T ) of
course, these shares must add up to one, i.e., s(P (x2, x1))+s(P (x1, x2)) = 1.

Proposition 3.1 An anonymous social choice function F with a binary
range RF = {x1, x2} is weakly group strategy-proof if and only if there exists
s̄F ∈ [0, 1] such that, for any s ∈M∗F (T ), the following statements hold:

(i) There exists

F (s) = x1 implies s(P (x2, x1)) ≤ s̄F (3.2)

and
F (s) = x2 implies s(P (x2, x1)) ≥ s̄F . (3.3)

(ii) If F (s) = x2 for some s ∈M∗F (T ) such that s(P (x2, x1)) = s̄F , then
F (ŝ) = x2 for all ŝ ∈M∗F (T ) such that ŝ(P (x2, x1)) = s̄F .

If RF = {x1, x2}, an anonymous weakly group strategy-proof social
choice function F is characterized by a threshold s̄F such that people are
asked whether they prefer x1 or x2 and the chosen outcome is x1 if the
population share of the set of people preferring x2 is below the threshold
s̄F and x2 if the population share of the set of people preferring x2 is above
the threshold s̄F . If the threshold is exactly met, the chosen outcome can
be either x1 or x2 but, whichever it is, it must be the same for all type
distributions that meet the threshold precisely.

Weak group strategy proofness eliminates any scope for taking account of
preference intensities. The social choice function considered in Proposition
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3.1 only considers ordinal preferences and asks how many people are on each
side of the binary vote.

To understand why this is so, notice that, if RF = {x1, x2} and s ∈
M∗F (T ), there are exactly two clearly identified interest groups, agents with
types in P (x1, x2), who prefer x1 to x2 and agents with types in P (x2, x1),
who prefer x2 to x1. Suppose that the population shares of these two groups
are σ and 1 − σ. Suppose that agents in the first group coordinate their
reports to transmit the type distribution ŝ1 and agents in the second group
coordinate their reports to transmit the type distribution ŝ2. Then the over-
all distribution of reported types is σŝ1 + (1−σ)ŝ2, and the chosen outcome
is F (σŝ1 + (1− σ)ŝ2).

One can think of the situation in terms of a two-player zero-sum game,
where the two groups are the players, their reports of type distributions
are their strategies and the payoffs are −F (σŝ1 + (1 − σ)ŝ2) for group 1
and F (σŝ1 + (1− σ)ŝ2) for group 2. Group strategy proofness is equivalent
to the condition that, regardless of what the true type distribution s may
be, truthtelling is a Nash equilibrium in this game, i.e., if the true overall
distribution is s = σs1 +(1−σ)s2, then the report ŝ1 = s1 is a best response
for group 1 to the report ŝ2 = s2 of group 2, and the report ŝ2 = s2 is a best
response for group 2 to the report ŝ1 = s1 of group 1.

This non-cooperative game depends on the true type distribution s only
through the population shares σ = s(P (x1, x2)) and (1− σ) = s(P (x2, x1)).
Therefore, if truthtelling is a Nash equilibrium when the overall type distrib-
ution is s = σs1+(1−σ)s2, the report pair (s1, s2) is also a Nash equilibrium
if the overall type distribution is s̄ = σs̄1 + (1 − σ)s̄2 (with the same σ).
By the saddle-point theorem for zero-sum (strictly competitive) games,18 it
follows that, for given σ, we can write F (σs1 + (1− σ)s2) = F ∗(σ), regard-
less of s1 and s2. The within-group distribution of types has no effect on the
chosen outcome.

The choice F ∗(σ) = F (σŝ1 +(1−σ)ŝ2) must also be weakly monotonic in
σ : For σ′ > σ, group 1 can always report a type distribution ŝ1 = σs1+(σ′−
σ)ŝ, with s1 ∈M(P (x1, x2)) and ŝ ∈M(P (x2, x1)); this report induces the
truthtelling outcome for the type distribution σs1 +(σ′−σ)ŝ+(1−σ′)s2, i.e.
F (σs1 +(σ′−σ)ŝ+(1−σ′)s2) = F ∗(σ). For truthtelling to be an equilibrium
when the population shares are σ′ and 1− σ′, F (σ′s1 + (1− σ′)s2) = F ∗(σ′)
must therefore be no greater than F ∗(σ). A greater population share of group
1 must not lead to a higher outcome level. Since F ∗ takes only the values
x1 and x2, monotonicity implies that, for some threshold s̄F , F ∗(σ) = x1 if

18See, e.g., Proposition 22.2, p. 22, in Osborne and Rubinstein (1994).
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σ < s̄F and F ∗(σ) = x2 if σ > s̄F .

3.2 The General Finite Case: Monotone Binary Voting over
Neighbours

I next consider social choice functions F with finite ranges RF = {x1, ..., xn},
where, without loss of generality,

x1 < x2 < ... < xn. (3.4)

For convenience of exposition, I also introduce the fictitious outcomes x0 =
−∞ and xn+1 =∞, in addition to the outcomes in RF , with the convention
that

s(P (x, x0)) = 1 and s(P (xn+1, x)) = 0 for all x,

for all s. The following result generalizes Proposition 3.1.

Proposition 3.2 An anonymous social choice function F with a finite range
RF = {x1, ..., xn} is weakly group strategy-proof if and only if the following
statements hold:

(i) There exist thresholds s̄0
F , ..., s̄

n
F such that

0 = s̄0
F ≤ s̄1

F ... ≤ s̄n−1
F ≤ s̄n = 1, (3.5)

and, for any s ∈M∗F (T ) and j ∈ {1, ..., n},

F (s) = xj implies s(P (xj , xj−1) ≥ s̄j−1
F and s(P (xj+1, xj) ≤ s̄jF . (3.6)

(ii) For any s and ŝ in M∗F (T ), any j ∈ {1, ..., n − 1} and any ` ∈
{j + 1, ..., n}, F (s) = xj and F (ŝ) = x` imply

ŝ(P (xj+1, xj)) > s(P (xj+1, xj)) or s(P (xj+1, xj)) > ŝ(P (xj+1, xj));
(3.7)

both these inequalities must hold if ` = j + 1.

Corollary 3.3 If an anonymous social choice function F with a range RF =
{x1, ..., xn} that satisfies (3.5) is weakly group strategy-proof, then, for any
s ∈M∗F (T ) and j ∈ {1, ..., n}, F (s) = xj if one of the following applies

s(P (xj , xj−1) > s̄j−1
F and s(P (xj+1, xj) < s̄jF ;

s(P (xj , xj−1) > s̄j−1
F and s(P (xj+1, xj) = 0;

s(P (xj , xj−1) = 1 and s(P (xj+1, xj) < s̄jF .
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Proposition 3.2 asserts that weak group strategy proofness requires a
reliance on n binary votes over adjacent outcomes. Each participant submits
a vector of binary votes expressing preferences for x1 versus x2, x2 versus
x3, ..., xn−1 versus xn. Given these votes, the chosen outcome F (s) must
satisfy conditions (i) and (ii). Thus, for outcome j to be chosen, the share
s(P (xj , xj−1)) of participants who prefer xj to xj−1 must reach or exceed
the threshold s̄j−1

F and the share s(P (xj+1, xj)) of participants who prefer
xj+1 to xj must not exceed the threshold s̄

j
F .

If one of the thresholds is met precisely, e.g., if s(P (xj+1, xj)) = s̄jF , for
some j, there is some arbitrariness in the choice of an outcome but, as indi-
cated by condition (ii), social choice is still determined by population shares
without regard to preference intensities. For example, if s(P (xj+1, xj)) =

s̄jF , i.e. if s meets the threshold s̄
j
F precisely, F (s) might be equal to xj or

to xj+1, but, if it is the former, we must have ŝ(P (xj+1, xj)) > s̄jF for any
distribution ŝ for which F (ŝ) = xj+1. If s̄

j
F is the only threshold that two

distributions s and ŝ both meet precisely, we must have F (s) = F (ŝ).

Why Monotonicity of Thresholds? As indicated by (3.5), the thresh-
olds s̄jF must be non-decreasing in j. This monotonicity property is an im-
portant implication of (weak) group strategy proofness. It ensures that,
except for the special cases where thresholds are met precisely, the differ-
ent binary votes do not interfere with each other, so the logic of the case
RF = {x1, x2} is directly applicable.

To understand why thresholds must be non-decreasing in outcomes, sup-
pose that, for some j, we had s̄jF > s̄j+1

F . Then there would exist a type distri-
bution s inM∗F (T ) such that s(P (xj , xj−1)) < s̄jF and s(P (xj+1, xj)) > s̄jF ,
i.e., in the binary vote between xj−1 and xj , the threshold for the higher
outcome is not reached but, in the binary vote between xj and xj+1, the
threshold for the higher outcome is surpassed. What could be the outcome
F (s) for this type distribution? By the logic of group strategy-proof binary
choice, it could not be xj because this outcome “loses” against both xj−1

and xj+1 when the type distribution is s.
Could one have F (s) < xj? If so, what is the outcome F (ŝ) for the type

distribution ŝ that coincides with s on the set P (xj+1, xj) and that assigns
the remaining mass 1−s(P (xj+1, xj)) to a single type t̂j that prefers xj over
xj−1 .... over x1 and x1 over all outcomes above xj? Under ŝ, all agents
prefer xj to all lower outcomes, so one cannot have F (ŝ) < xj . Because
ŝ(P (xj+1, xj)) = s(P (xj+1, xj)) > s̄j+1

F , one also cannot have F (ŝ) = xj .
The alternative left is F (ŝ) > xj . But then the group of agents with type
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t̂j can block F at ŝ: If these agents coordinate their reports to mimick the
behaviour of s on the set T\P (xj+1, xj), the distribution of reported types
will be s, and the outcome will be F (s) < xj , which all group members
prefer to F (ŝ) > xj .

Alternatively, could one have F (s) > xj? If so, what is the outcome F (s∗)
for the type distribution s∗ that coincides with s on the set P (xj−1, xj) and
that assigns the remaining mass 1 − s(P (xj−1, xj)) to a single type t∗j that
prefers xj over xj+1 .... over xn and xn over all outcomes below xj? By
the same kinds of arguments as in the preceding paragraph, F (s∗) > xj is
impossible because all agents prefer xj over all higher outcomes, F (s∗) = xj
is impossible because s∗(P (xj , xj−1)) < s̄jF , and F (s∗) < xj is impossible
because the group of agents with type t∗j could block F at s

∗ by coordinating
their reports to mimick the behaviour of s on the set T\P (xj−1, xj). The
assumption that s̄jF > s̄j+1

F for some j is thus incompatible with weak group
strategy proofness.

Given the monotonicity of the thresholds s̄1
F , ..., s̄

n
F , social choice is largely

governed by the principle that, for any type distribution s ∈ M∗F (T ), the
outcome F (s) = xj should be such that the requirement for moving up from
xj−1 is met and the requirement for moving further up from xj is not met.
Corollary 3.3 shows that, except for the ambiguity whether meeting the re-
quirement for moving up involves a weak or a strict inequality, this principle
suffi ces to determine the outcome F (s) without any concern for the results
of binary voting at higher or at lower outcome levels.

Relation to Moulin’s (1980) Generalized Median-Voter Mecha-
nism. Condition (i) in Proposition 3.2 can be interpreted as an instance
of Moulin’s (1980) generalized median-voter rule. The generalized median-
voter rule chooses the outcome preferred by the median voter in a population
that is augmented by a set of dummy participants with single-peaked pref-
erences.19 Suppose we have a population of dummy participants of the same
size as the “real”population and suppose that the distribution of preference
orderings among dummy participants is given by a measure s̄F ∈ M∗F (T )
such that, for any j,

s̄F (P ∗F (xj)) = s̄jF − s̄
j−1
F . (3.8)

19 In Moulin’s model with n participants having single-peaked preferences, any anony-
mous strategy-proof social choice function can be implemented by a generalized median
voter rule with n+ 1 dummy participants. If the outcomes stipulated by the social choice
function always lie between the smallest peak and the largest peak of the “real”partici-
pants, it suffi ces to have n− 1 dummy participants.
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The measure s̄F obviously satisfies

s̄F (UF (xj)) =

n∑
i=j+1

s̄F (P ∗F (xi)) = 1− s̄jF . (3.9)

Because single-peakedness implies s(UF (xj)) = s(P (xj+1, xj)) for all j,
therefore, statement (i) in Proposition 3.2 is equivalent to the condition
that F (s) = xj implies

1

2
s(UF (xj−1)) +

1

2
s̄F (UF (xj−1)) ≥ 1

2
, (3.10)

and
1

2
s(UF (xj)) +

1

2
s̄F (UF (xj)) ≤ 1

2
. (3.11)

If both of these inequalities happen to be strict, the type distribution 1
2s+

1
2 s̄F must assign positive weight to the set P ∗F (xj), which is equal to the
difference between the sets UF (xj−1) and UF (xj). Since (3.10) implies

1

2
s(DF (xj)) +

1

2
s̄F (DF (xj)) ≤ 1

2
, (3.12)

one may think of the set of agents with types in P ∗F (xj) as a generalized
median voter, as less than one half of the population have lower peaks and
less than one half of the population have higher peaks. Statement (i) in
Proposition 4.2 thus corresponds to Moulin’s generalized median-voter rule
with a distribution of preference orderings of dummy participants given by
s̄F ∈ M∗F (T ). As indicated by (3.8), the monotonicity of the threshold
function can be interpreted as an analogue of Moulin’s dummy participants.

With a continuum of participants, there also is a possibility that (3.10)
and (3.12) both hold as equations. In this case, taking account of the dum-
mies, there is a fifty-fifty split between people who prefer xj to xj−1 and
people who prefer xj−1 to xj . In Moulin’s (1980) analysis of social choice in
a finite population, this case cannot arise because the augmented population
has an uneven number of members, so in a vote between the median voter’s
preferred outcome and any other outcome, the median voter’s preferred out-
come is always chosen by more than fifty percent of the population. In a
large population, however, the median voter as such has no effect on the split
of votes, so a fifty-fifty split can occur and the (generalized) median-voter
rule must be complemented by a condition indicating what is to happen
then. Statement (ii) of the proposition implies that, in this case, the out-
come must be the same for all distributions that induce a fifty-fifty split
between xj−1 and xj as well as a strict majority for xj over xj+1.
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3.3 Monotone Binary Voting: The General Case

Turning to the general case of social choice functions with arbitrary ranges,
I note that, with single-peakedness, the sets P (xj , xj−1) and P (xj+1, xj) in
Proposition 3.2 satisfy

P (xj+1, xj) = UF (xj)

and, moreover,
UF (xj) ≥ UF (xj+1)

for all j, where
UF (x) := {t ∈ TF |π(t) > x} (3.13)

is the set of types whose preference peak lies above x.
With this notation, statements (i) and (ii) in Proposition 3.2 are easily

seen to be special cases of the following more general property.

MBV Property An anonymous social choice function F with range RF ⊂
R has the monotone binary voting property (MBV property) if the
following conditions are satisfied:

(i) There exists a non-decreasing right-continuous function s̄F (·) from
RF to [0, 1] such that, for any s ∈M∗F (T ) and any x ∈ RF ,

F (s) = x implies s(UF (x′)) ≥ s̄F (x′), for all x′ < x
and s(UF (x′)) ≤ s̄F (x′), for all x′ ≥ x .

(3.14)

(ii) For any s and ŝ inM∗F (T ) and any x and x̂ > x in RF , F (s) = x
and F (ŝ) = x̂ imply that ŝ(UF (x)) > s(UF (x)) or s(DF (x̂)) >
ŝ(DF (x̂)).

The threshold function s̄F (·) plays the same role as the sequence {s̄jF }
in the finite case. Like the sequence {s̄jF }, the function s̄F (·) must be non-
decreasing. It need not be continuous, however. If it has a jump point,
its value there is actually indeterminate within the interval defined by the
jump. Right-continuity at a jump point is only imposed for specificity.

The following theorem extends the characterizations of Propositions 3.1
and 3.2 to the general case.

Theorem 3.4 An anonymous social choice function with an arbitrary range
is weakly group strategy-proof if and only if it has the MBV property.
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Graphical Illustration. Before discussing the interpretation of this re-
sult in terms of voting, I illustrate the MBV property graphically. Sup-
pose that the social choice function F has the range RF = R so that
M∗F (T ) = M(T ). For any type distribution s ∈ M∗F (T ), consider the func-
tion

x → s(U(x)) (3.15)

that indicates how many people would prefer the chosen outcome to be
greater than x. With RF = R, obviously s(UF (x)) = s(U(x)), regardless 
of x. The function (3.15) is non-increasing in x. In the simplest case, it is 
strictly decreasing and continuous, as shown in Figure 1 for two distributions
s(·) and s(·) = s∗(·).

Figure 1: see next page

Whereas the functions x → s(UF (x)) for s ∈ M∗F (T ) are exogenously 
given, the specification of a threshold function

x→ s̄F (x) (3.16)

that characterizes a social choice function with the MBV property is a
matter of choice. In Figure 1, the threshold is taken to be constant, so
with strict monotonicity of the function (3.15), the graphs of (3.15) and
(3.16) intersect and, for any s, the intersection point is unique. The MBV
property implies that the social choice F (s) for the type distribution s is
given by this intersection point. Thus, in Figure 1, F (s) is the unique
x for which s(UF (x)) = s̄F (x), and F (ŝ) = x̂ is the unique x̂ for which
s∗(UF (x̂)) = s̄F (x̂).

Quite generally, if RF is an interval, if the functions s̄F (·) and s(UF (·))
are continuous and at least one of them is strictly monotonic, only part (i)
of the MBV property is relevant, and is equivalent to the condition:

F (s) = x if and only if s(UF (x)) = s̄F (x), (3.17)

which simgles out the intersection points in Figure 1.
The functions (3.15) and (3.16) need not be continuous. If they are

discontinuous, their graphs need not intersect, i.e., the equation s(U(x)) =
s̄F (x) need not have a solution. However, if at least one of the functions
(3.15) and (3.16) is strictly monotonic, there is a unique point at which
one of the two curves “jumps” over the other. The outcome F (s) then is
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the abscissa of this point, which we may think of as a “generalized point 
of intersection”. Part (i) of the MBV property gives a necessary condition 
for such a point, the following generalization of Corollary 3.3 a suffi  cient 
condition.

Corollary 3.5 If an anonymous social choice function F with range RF
is weakly group strategy-proof, then, for any s ∈ M∗F (T ) and any x ∈ RF , 
F (s) = x if one of the following applies:

s(UF (x
′)) > s̄F (x

′) for all x′ < x and s(UF (x)) < s̄F (x);

s(UF (x
′)) > s̄F (x

′) for all x′ < x and s(UF (x)) = 0;

s(UF (x
′)) = 1 for all x′ < x and s(UF (x)) < s̄F (x).

If neither (3.15) nor (3.16) are strictly monotonic, there may be multiple 
points of intersection. As shown in Figure 2, both functions (3.15) and (3.16) 
may be flat over some interval and any outcome x in this interval may be
a solution to the equation s(UF (x)) = s̄F (x).20 In this case, F (s) = x can 
be any outcome in this interval. However, for this constellation, part (ii) 
of the MBV property implies that, if F (s) = x is also a solution to the
equation ŝ(UF (x)) = s̄F (x) for some distribution ŝ  6= s, then F (ŝ) = x̂ 6= x 
and F (ŝ) = x̂ implies s(UF (x̂)) 6= s̄F (x̂).

Figure 2: see next page

Implementation by Voting. The social choice function underlying Fig-
ure 1 can be implemented by asking people for each x ∈ R whether, starting 
from x, they would like to stay at x or whether they would like to move to
a higher outcome. With honest voting in response to this question, people
with types in UF (x) will indicate a preference for moving up and others will 
indicate that they prefer x to anything higher.

If the actual type distribution is ŝ, the outcomes of these votes will trace 
out the graph of the function (3.15) in the figure. The outcome F (ŝ) = x̂

20This constellation might seem highly exceptional. However, a threshold function with
the constant value s̄F (x) = 1

2
merely embodies the majority rule, and, among the dis-

tributions in M∗F (T ) that must be considered, some will give rise to the constellation in
Figure 3.
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Figure 2: Part (ii) of the MBV Property



in the figure is thus implemented by a rule requiring an outcome x to be
chosen, if, for all x′ < x, the votes in favour of moving up from x′ exceed
the threshold s̄F (x′) and, at x itself, the votes in favour of moving further
up from x do not exceed the threshold s̄F (x).

This mechanism generalizes the voting mechanisms in Propositions 3.1
and 3.2. In those results, with discrete sets of outcomes, there are binary
votes over neighbouring outcomes. In the general case, with a continuum of
outcomes, one cannot generally specify “neighbours”any more but one can
still have a multiplicity of linearly ordered binary votes on whether to move
“up”or not to move “up” from x, one such vote for each x ∈ RF , with a
possibly distinct threshold s̄F (x) for each x. Essentially the same argument
as in the finite case implies that the thresholds must be non-decreasing in
x.

A threshold function with the constant value s̄F (x) = 1
2 for all x cor-

responds to majority voting. If s(UF (x′)) > 1
2 , a majority of participants

wants to move up from x′; and if s(UF (x′)) < 1
2 , a majority of participants

wants to move down from x′. The outcome x at which s(UF (x)) = s̄F (x) = 1
2

is exactly the one where there is no majority for moving up, and where there
is no majority for moving down.

A Further Equivalence Theorem. I conclude the characterization of
weak group strategy proofness with a further equivalence theorem.

Theorem 3.6 An anonymous social choice function F with arbitrary range
RF is weakly group strategy-proof if and only if, for all s and ŝ in M∗F (T ),
F (s) 6= F (ŝ) implies

s(P (F (s), F (ŝ))) > ŝ(P (F (s), F (ŝ))) (3.18)

or
s(P (F (ŝ), F (s))) < ŝ(P (F (ŝ), F (s))). (3.19)

Theorem 3.6 expresses a simple unifying principle that underlies weak
strategy proofness: If two distributions s and ŝ in M∗F (T ) give rise to dif-
ferent outcomes F (s) and F (ŝ); then either the population share of the set
of people who prefer F (s) to F (ŝ) is strictly larger under s than under ŝ or
the population share of the set of people who prefer F (ŝ) to F (s) is strictly
larger under ŝ than under s (or both). Thus, one might consider binary
votes between all alternatives.
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The condition in Theorem 3.6 is simpler to state than the condition in
Theorem 3.4. However, it is also more abstract, and the MBV property is
not apparent from Theorem 3.6.

The proofs of Theorem 3.4 and 3.6 involve showing that weak group
strategy proofness implies the MBV property, the MBV property implies
the condition given in Theorem 3.6, and the latter condition implies weak
group strategy proofness.

4 Group Strategy Proofness

4.1 Group Strategy Proofness with Simple Tie-Breaking

Weak group strategy proofness is only concerned with the behaviour of a
social choice function F on the setM∗F (T ) of distributions that are concen-
trated on the set TF of types with preferences that are single-peaked on the
range RF of F. For a discussion of group strategy proofness, one must also
consider the behaviour of a social choice function F on the setM(T )\M∗F (T )
that are indifferent between different (neighbouring) elements of RF . In vot-
ing between neighbouring alternatives, such type distributions would give
rise to substantial numbers of abstentions, so the question is how the social
choice function deals with such a constellation.

One way to deal with such distributions is to treat the indifferent types as
if they had a strict preference for one of the two alternatives between which
they are indifferent. Barberà and Jackson (1994) refer to this operation as
tie-breaking. Given a social choice function F with range RF , a simple tie-
breaking function for F is a mapping gF from T into T such that, for any
t ∈ T, if u(·, t) has twin peaks π1

F (t), π2
F (t) on RF , then

u(πiF (t), gF (t)) = u(πiF (t), t) + 1 for i = 1 or i = 2, (4.1)

and
u(x, gF (t)) = u(x, t) for all x 6= πiF (t); (4.2)

in particular,
u(πjF (t), gF (t)) = u(πjF (t), t) for j 6= i. (4.3)

If u(·, t) is single-peaked on RF , then gF (t) = t. Thus, regardless of
whether u(·, t) is single-peaked or twin-peaked on RF , u(·, gF (t)) is always
single-peaked on RF ; moreover, the peak πF (gF (t)) of u(·, gF (t)) is also a
peak of u(·, t). Except for the fact that u(·, gF (t)) induces a strict ordering
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on the set {π1
F (t), π2

F (t)}, the utility functions u(·, gF (t)) and u(·, t) induce
the same ordering on RF .

The following result shows that, if the behaviour of F onM(T )\M∗F (T )
is given by applying a simple tie-breaking function gF to the type distri-
butions s ∈ M(T )\M∗F (T ), then the conditions for weak group strategy
proofness in Theorems 3.4 and 3.6 are also necessary and suffi cient for group
strategy proofness.

Theorem 4.1 Let F be an anonymous social choice function with range RF
and assume that, for some simple tie-breaking function gF , F (s) = F (s◦g−1

F )
for all s ∈M(T ). Then the following statements are equivalent:

(a) F is group strategy-proof.
(b) F has the MBV property.
(c) For all s and ŝ inM∗F (T ), F (s) 6= F (ŝ) implies

s(P (F (s), F (ŝ))) > ŝ(P (F (s), F (ŝ))) (4.4)

or

s(P (F (ŝ), F (s))) < ŝ(P (F (ŝ), F (s))). (4.5)

The interpretation of this result in terms of implementability by voting
is the same as before, with one difference. If RF ∩ (x̄, x) = ∅, i.e. if RF has a
gap between x̄ and x, neither voting on whether to move “down”from x nor
voting on whether to move “up”from x̄ by itself provides all the information
that is needed to choose between x and x̄. One needs both votes in order to
infer who is indifferent between the two alternatives so that one can apply
the tie-breaking operation.

4.2 Group Strategy Proofness with Contingent Tie-Breaking

Simple tie breaking is very rigid. Any type with twin peaks x and x̂ in RF is
treated as if the peak was either x or x̂. This leaves no room for the notion
that the behaviour of such a type involves some arbitrariness.

I therefore consider group strategy-proof social choice without assuming
anything about tie-breaking. As it turns out, even if no tie-breaking function
is explicitly specified, if the social choice function is group strategy-proof,
there is no loss of generality in assuming that some form of tie-breaking
occurs. However, the tie-breaking is contingent, rather than simple.

For given F and RF , a contingent-tie-breaking function is a function gF
from T×M(T ) to T such that, for any given s ∈M(T ), the function gF (·, s)
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is a simple tie-breaking function. Thus, with contingent tie-breaking, the
tie-break itself depends on the overall type distribution s.

Proposition 4.2 Let F be an anonymous social choice function F with
range RF . Let ΠF (t) be the set of peaks of type t on RF and define a con-
tingent tie-breaking function g∗F ,such that, for all t ∈ T and all s ∈M(T ),

πF (g∗F (t, s)) = min ΠF (t) if F (s) ≤ min PiF (t) (4.6)

and

πF (g∗F (t, s)) = max ΠF (t) if F (s) ≥ max ΠF (t). (4.7)

If F is group strategy-proof, then for all s ∈M(T ),

F (G(s, g∗F )) = F (s), (4.8)

where
G(s, g∗F ) = s ◦ g∗F (·, s)−1 ∈M∗F (T ) (4.9)

is the type distribution that results when the original type distribution is s
and each type t ∈ T is replaced by g∗F (t, s).

The contingent tie-breaking function in Proposition 4.2 takes a very sim-
ple form: For any t and s, if u(·, t) has twin peaks on RF , the type g∗F (t, s)
that replaces t has a single peak on RF that is equal to the peak of u(·, t)
that is closest to F (s).21 If this operation were to change the outcome, i.e.,
if (4.8) were violated somewhere, there must exist a distribution s and a set
of types that can block F at s.

With contingent tie breaking, for any gap (x, x̂) in RF , any tie-break
between x and x̂ depends on whether F (s) = x or F (s) = x̂. An analysis of
group strategy proofness must therefore take account of the possibility that
coalitions of agents with strict preferences between neighbouring alternatives
might manipulate social choice by manipulating tie-breaks. To some extent,
this can be done by extending the conditions of Theorems 3.4 and 3.6 from
M∗F (T ) toM(T ).

Even then, however, the interdependence of tie breaking and social choice
makes room for some arbitrariness. For example, F (s) might depend on the
behaviour of s on the set of types that are indifferent between x and x̂. For

21Barberà and Jackson (1994) also work with this tie-breaking function. However, given
their focus on individual strategy proofness, their use of this function is somewhat different
from ours.
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some type distributions s, s′ that differ on this set but are otherwise the
same, we might therefore have F (s) = x and F (s′) = x̂.

Such a dependence is problematic because s and ŝ induce exactly the
same distributions of prefence orderings on RF . To avoid this possibility,
we restrict our analysis to social choice functions that do not exhibit this
kind of dependence.22 Intuitively, ties are broken so that the individuals’
preferences are as closely as possible aligned with the intended social choice.

For anonymous social choice functions exhibiting a certain independence
property, one obtains the following equivalence theorem.

Theorem 4.3 Let F be an anonymous social choice function with range
RF and assume that F (s) = F (s′) whenever s and s′ induce the same dis-
tributions on the space of preference orderings on RF . Then the following
statements are equivalent:

(a) F is group strategy-proof.
(b) F has the MBV property. Moreover, for any s and ŝ in M(T ) and

any x and x̂ > x in RF such that F (s) = x, F (ŝ) = x̂, and RF ∩ (x, x̂) = ∅,

ŝ(UF (x)) > s(U+
F (x)) or s(DF (x̂)) > ŝ(DF (x̂)).

(c) For all s and ŝ inM(T ), F (s) 6= F (ŝ) implies

s(P (F (s), F (ŝ))) > ŝ(P (F (s), F (ŝ))) (4.10)

or

s(P (F (ŝ), F (s))) < ŝ(P (F (ŝ), F (s))). (4.11)

Theorem 4.3 differs from Theorem 4.1 in having stronger versions of
statements (b) and (c). In particular, statement (b) requires that condition
(ii) in the definition of the MBV property holds on all of M(T ), not just
onM∗F (T ); statement (c) must also hold on all ofM(T ).

22The problem would disappear if one defined blocking in terms of weak Pareto im-
provements, so that the collective manipulation makes a positive mass of group members
better off without making any group member worse off. However, with such a weakening
of the conditions for blocking, group strategy proofness would be unattainable, except for
social choice functions that are constant. For example, in the case n = 2, with any social
choice function F with threshold s̄2F ∈ (0, 1) would be (weakly) blocked at any s satisfying
s(W+

F (x1)) < s̄2F < s(W+
F (x1)) + s(VF (x1, x2)) : If F (s) were equal to x1, F would be

blocked by the group of agents with types in W+
F (x1) ∪ VF (x1, x2) all claiming to have

types in W+
F (x1); if F (s) were equal to x2, F would be blocked by the group of agents

with types in W−F (x2) ∪ VF (x1, x2) all claiming to have types in W−F (x2).
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The proof of Theorem 4.3 uses Proposition 4.2 to exploit the properties
of the specified contingent tie-breaking function. The additional indepen-
dence property in the statement of the theorem serves to prove that condi-
tion (ii) in the definition of the MBV property must hold for measures in
M(T )\M∗F (T ), as well as measures inM∗F (T ).23

5 Group Strategy Proofness, Voting and Welfare

As mentioned in the introduction, economists tend to be critical of voting
as a device for allocating resources. They consider voting to be too coarse
a device to allow the transmission of all the information that is needed for
welfare maximization. In particular, in any binary decision, the outcome of
social choice based on voting can only depend on the numbers of votes in
favour of the different alternatives, without any consideration of preference
intensities.

The preceding analysis suggests that this criticism must be refined in
several respects. First, reliance on voting as a device for allocating re-
sources may be mandated by considerations of group strategy proofness.
In this case, the criticism that choices based on voting are ineffi cient be-
cause they neglect preference intensities is misplaced because the presumed
ineffi ciency is merely the consequence of additional constraints imposed by
group strategy proofness. Given these constraints, social choice may well be
constrained-effi cient.

Second, voting mechanisms as such need not be too coarse to allow the
transmission of all the information that is needed for welfare maximization.
Theorems 4.3 and 4.1 allow for a continuum of binary votes. Given these
votes, the implementation mechanism is fully informed about the functions
x→ s(UF (x)) and x→ s(DF (x)) that indicate for each outcome x the share
of people in the population who would prefer an outcome higher than x and
the share of people in the population who would prefer an outcome lower
than x. The information contained in these functions is usually rich enough
to allow for social choice to condition on preference intensities.

23As mentioned above, with RF ∩ (x, x̂) = ∅, without the additional independence
property, we might have F (s) = x and F (s′) = x̂ > x even though or s and s′ differ
only on the set of types that are indifferent between x and x̂. Even then, group strategy
proofness imposes additional restrictions, for example, that types in UF (x) and types in
UF (x̂) must not have an incentive to feign indifference. The logic of these restrictions is
fairly clear, but they do not seem worth spelling out.
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For example, let T be a subset of R and suppose that the utility function
takes the quasi-linear form

u(x, t) = t · û(x)− k(x), (5.12)

where û(·) is non-negative-valued, strictly increasing and strictly concave
and k(·) is non-negative-valued, strictly increasing and convex. In this case,
an agent with type t prefers an outcome higher than x if t · û′(x)−k′(x) > 0.
If RF = R, the set UF (x) is given by the interval (γ(x),∞), where

γ(x) =
k′(x)

û′(x)
> 0. (5.13)

Suppose that the share
σ+(x) := s(UF (x))

of people preferring an outcome higher than x is known for all x ∈ R. From
this information, the type distribution s is obtained by setting

s((−∞, t]) = 1− σ+(γ−1(t)). (5.14)

The voting mechanisms considered in Theorems 4.1 and 4.3 are thus rich
enough to convey all the information one would need to maximize a measure
of welfare such as aggregate surplus. The coarseness of information trans-
mission that is traditionally criticized is not due to the reliance on voting
as such but due to the reliance on overly simple forms of voting, e.g. binary
voting.

Third, even if voting is suffi ciently rich to provide the social planner with
complete information about the type distribution, the constraints imposed
by group strategy proofness may still prevent the maximization of whatever
welfare objective is being pursued. For example, in the quasi-linear specifi-
cation (5.12), consider the problem of maximizing the aggregate surplus∫

T
t ds(t) · û(x)− k(x) (5.15)

for each s. Under the given assumptions, for any s, the social choice F (s)
maximizes this objective if and only if

t̄(s) = γ(F (s)), (5.16)

where

t̄(s) :=

∫
T
t ds(t) (5.17)
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is the cross-section average of types, and γ(x) if given by (5.13), as before.
Whereas voting makes social choice depend on s through the population
shares of the sets (γ(x),∞) for different x, condition (5.16) makes social
choice depend on s through the mean t̄(s). The two approaches are not
generally compatible.

The two approaches would be compatible if somehow the social planner
“knew” that s is a symmetric distribution so that the median coincides
with the mean. In this case, surplus-maximizing outcomes can in fact be
implemented by majority voting, i.e., by setting

s̄F (x) =
1

2
(5.18)

for all x. Given the threshold function (5.18), the outcome F (s) that is
chosen when the type distribution is s satisfies

s(W+
F (F (s))) = s((γ(F (s)),∞)) =

1

2
, (5.19)

which is true if and only if the median of the type distribution is equal to
γ(x). If the median is equal to the mean, the surplus maximization condition
(5.16) holds automatically.

Without symmetry, the median and the mean of the type distribution
can differ so that majority voting is not suitable for implementing surplus-
maximizing outcomes. For example, if the type distribution s is concentrated
on an interval [t1, t2] and if it has a density 2

(t2−t1)2
(t−t1) on this interval, the

distribution is left-skewed and the mean is t̄(s) = 1
3 t1+ 2

3 t2, which is less than
the median, (1− 1

21/2
)t1 + 1

21/2
t2. For such distributions, surplus-maximizing

outcomes can be implemented by setting s̄F (x) = 5
9 for all x, i.e. by requiring

more than a majority of votes for going to higher outcomes. If instead
the density of s is 2

(t2−t1)2
(t2 − t) on the interval [t1, t2], the distribution

is right-skewed, the mean is t̄(s) = 2
3 t1 + 1

3 t2, which is greater than the
median, and surplus-maximizing outcomes can be implemented by setting
s̄F (x) = 4

9 for all x, requiring less than a majority of votes for going to
higher outcomes. More generally, if s is left-skewed with an isoelastic density
cr(t − t1)r−1 on [t1, t2], surplus-maximizing outcomes can be implemented

by setting s̄F (x) = 1 −
(

r
r+1

)r
> 1

2 for all x; if s is right-skewed with an

isoelastic density cr(t2 − t)r−1 on [t1, t2], surplus-maximizing outcomes can

be implemented by setting s̄F (x) =
(

r
r+1

)r
< 1

2 for all x.

These considerations show that, for some classes of type distributions,
one can use voting, even with a threshold s̄F (x) that is independent of x,
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to implement surplus-maximizing outcomes for all distributions in the given
class. However, they also show that the requisite thresholds depend on the
specified class. No one threshold function s̄F (·) can be used to implement
surplus-maximizing outcomes for all s ∈ M(T ) or even all s ∈ M∗F (T ).
There is therefore no group strategy-proof social choice function that imple-
ments surplus-maximizing outcomes for all type distributions. The problem
is not that the requisite information cannot be obtained but that the use of
this information for surplus maximization is incompatible with group strat-
egy proofness.

Social choice with a view to maximizing aggregate surplus subject to
group strategy proofness cannot be addressed pointwise, by maximizing
(5.15) for each s. This choice must be considered from an ex ante perspec-
tive, before the type distribution is known. From this ex ante perspective,
the social planner must assign weights to the different type distributions
that can arise, so the objective function might take the form∫

M(T )
[t̄(s)û(F (s))− k(F (s))] dP (s), (5.20)

where P is a measure on M(T ). The choice of the function F (·) is con-
strained by the conditions listed in Theorem 3.4 - 4.3. Among these condi-
tions is the requirement that, for any s ∈ M∗F (T ), the share s(UF (F (s)))
of people who want to move up from F (s) must belong to the interval
[s̄F (F (s)−)), s̄F (F (s))] for some non-decreasing threshold function s̄F (·).24

These considerations point to a problem of commitment in implementa-
tion. If group strategy proofness precludes the maximization of aggregate
surplus at all type distributions but in the process of implementation, the
requisite information about these distribution becomes available, the ques-
tion is why, ex post there should not be a “correction” to shift the chosen
outcome from F (s) to a surplus-maximizing outcome. A simple answer to
this question might be that the initial commitment to the social choice func-
tion F (·) is fully binding. But that merely begs the question why this com-
mitment is binding. If commitment powers are in fact limited, the analysis
must move from a normal-form revelation game to an extensive form treat-
ment in which sequential rationality is modelled explicitly.

24This monotonicity requirement can be weakened by introducing “gaps”in RF so that
the set on which the threshold function must be nondecreasing is smaller. There may
therefore be a tradeoff between the fineness of calibration of outcomes as determined by
the “size”of RF and the stringency of having thresholds be monotone on RF .
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A Appendix: Proofs

A.1 Preliminaries

Throughout this appendix, I assume without further mention that preference
orderings on R are single-peaked, that T is rich, and that F is an anonymous
weakly group strategy-proof social choice function with range RF .

I also impose the following notational conventions. First, for any s ∈
M(T ) and any Borel set B ⊂ T, sB is the (non-normalized) measure on
T that coincides with s on B and that assigns the measure zero to the set
T\B. Thus, trivially, s = sB + sT\B. Moreover, for any two measures s and
s′ inM∗F (T ) and any Borel set B ⊂ T such that s(B) = s′(B), the measures
sB + s′T\B and s

′
B + sT\B also belong toM∗F (T ).

Second, for any t ∈ T, I write δt for the element ofM(T ) that assigns all
mass to the singleton {t}. Notice that δt is a probability measure. Thus, if
the true type distribution is s and all agents with types in a set B claim to
have the type t, the distribution of reported types will be s(B) · δt + sT\B.

I begin the formal analysis with two preliminary lemmas.

Lemma A.1 For any s ∈ M∗F (T ) and any x ∈ RF , s(DF (x)) = 0 implies
F (s) ≥ x, and s(UF (x)) = 0 implies F (s) ≤ x. In particular, s(P ∗F (x)) = 1
implies F (s) = x.

Proof. Suppose that, contrary to the first statement of the lemma, there
exist s ∈ M∗F (T ) and x ∈ RF such that s(DF (x)) = 0 and F (s) < x. Since
x ∈ RF and, by the definition of weak group strategy proofness, RF |M∗F (T ) =
RF , there exists s′ ∈ M∗F (T ) such that F (s′) = x. Since agents with types
in T\DF (x) all prefer x to F (s), a coalition of these agents can block F at s
by announcing s′ rather than s, thus inducing the outcome F (s′) = x rather
than F (s) < x.

The proof of the second statement is completely symmetric and is left
to the reader. The third statement follows immediately.

Lemma A.2 Given F and given any x and x̄ in RF with x ≤ x̄, there exists
an anonymous weakly group strategy-proof social choice function F̂ taking
values in RF ∩ [x, x̄] such that, for any s ∈ M∗F (T ), if F (s) ∈ [x, x̄], then
F̂ (s) = F (s).

Proof. I first prove that, for any x ∈ RF , there exists an anonymous group
strategy-proof social choice function F ′ taking values in RF ∩ [x,∞) such
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that, for any s ∈M∗F (T ), if F (s) ≥ x, then F ′(s) = F (s). For this purpose,
I define a mapping s′(·) by setting

s′(s) = s if F (s) ≥ x (A.1)

and
s′(s) = sUF (x) + sP ∗F (x) + s(DF (x)) · δt′ if F (s) < x (A.2)

where t′ is an arbitrary fixed element of P ∗F (x). Notice that s′(s) ∈ M∗F (T )
whenever s ∈M∗F (T ), i.e., the mapping s′ mapsM∗F (T ) into itself.

Given the mapping s′(·), I define a new social choice function F ′ by
setting

F ′(s) = F (s′(s)) (A.3)

for any s. Trivially then, F (s) ≥ x implies F ′(s) = F (s) ∈ RF ∩ [x,∞).
If F (s) < x, then by (A.2) s′(DF (x)|s) = 0, so Lemma 1 and the weak

group strategy proofness of F yield F (s′(s)) ≥ x. By (A.3), it follows that
F (s) ∈ RF ∩ [x,∞) when F (s) < x, as well as F (s) ≥ x.

I claim that F ′ inherits weak group strategy proofness from F . If this
claim is false, there exist a Borel set B ⊂ T and a measure s ∈M∗F (T ) such
that B blocks F ′ at s by B. Let ŝ ∈ M∗F (T ), with ŝT\B = sT\B, be the
distribution of types that is induced by the collective deviation of agents
with types in B. Then F ′(ŝ) 6= F ′(s), and all types in B prefer F ′(ŝ) to
F ′(s), i.e. we have

u(F ′(ŝ), t) > u(F ′(s), t), (A.4)

and therefore
u(F (s′(ŝ)), t) > u(F (s′(s)), t) (A.5)

for all t ∈ B.
If F ′(ŝ) > F ′(s), B must be a subset of UF (F ′(s)), which in turn is a

subset of UF (x), so (A.1) and (A.2) imply s′(s)B = sB. Therefore, if the
true distribution of types is s′(s) and the group of agents with types in B
coordinates their reports so as to make their types appear to be distributed
as ŝB rather than s′(s)B = sB, the overall distribution of reported types will
be

ŝB + s′(s)T\B = s′(ŝB + sT\B) = s′(ŝ),

so that the outcome under F is F (s′(ŝ)) = F ′(ŝ), which all agents with types
in B prefer to the outcome F (s′(s)) = F̂ (s). In this case, F is blocked by
B at s′(s). This conclusion is incompatible with the assumption that F is
weakly group strategy-proof.
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Alternatively, if F ′(ŝ) < F ′(s), let B̂ ⊃ B be the set of types that
prefer F ′(ŝ) to F ′(s). Since F ′(ŝ) ≥ x, we have B̂ ⊃ P ∗F (x) ∪ DF (x) and
T\B̂ ⊂ UF (x), so (A.2) implies that s′(s)T\B̂ = sT\B̂. If the true distribution

of types is s′(s) and the group of agents with types in B̂ coordinates reports
so as to make their types appear to be distributed as s′(ŝ)B̂ rather than
s′(s)B̂, the overall distribution of reported types will be

sT\B̂ + s′(ŝ)B̂ = ŝT\B̂ + s′(ŝ)B̂ = s′(ŝ)T\B̂ + s′(ŝ)B̂ = s′(ŝ),

so that the outcome under F is F (s′(ŝ)) = F ′(ŝ), which all agents with types
in B̂ prefer to the outcome F (s′(s)) = F ′(s). In this case, F is blocked by
B̂ at s′(s). This conclusion is again incompatible with the assumption that
F is weakly group strategy-proof.

By a precisely symmetric argument, which is left to the reader, one can
also show that, for any x̄ ≥ x, there also exists an anonymous, weakly group
strategy-proof social choice function F̂ that takes values in RF ′ ∩ (−∞, x̄]
and satisfies F̂ (s) = F ′(s) whenever F ′(s) ≤ x̄. Since RF ′ = RF ∩ [x,∞),
F̂ actually takes values in RF ∩ [x, x̄] and satisfies F̂ (s) = F (s) whenever
F (s) ∈ [x, x̄], as claimed in the lemma.

A.2 Key Lemmas

The next few lemmas contain the core of the arguments for the MBV Prop-
erty. I recall that, for any two outcomes x1, x2,

P (x1, x2) = {t ∈ T |u(x1, t) > u(x2, t)}

is the set of types with a strict preference for x1 over x2. I also write I(x1, x2)
for the set of types that are indifferent between x1 and x2.

Lemma A.3 Let F, let F (s) = x and F (ŝ) = x̂ for some s and ŝ in
M∗F (T ) and some x and x̂ 6= x in RF . If s(I(x, x̂)) = ŝ(I(x, x̂)) = 0,
then s(P (x̂, x)) < ŝ(P (x̂, x)) and s(P (x, x̂)) > ŝ(P (x, x̂)).

Proof. Since s(I(x, x̂)) = ŝ(I(x, x̂)) = 0, the two claims in the lemma
are actually equivalent. Thus it suffi ces to prove that, under the indicated
conditions, s(P (x̂, x)) < ŝ(P (x̂, x)).

If this claim is false, there exist s and ŝ in M∗F (T ) and x and x̂ in RF
such that s(I(x, x̂)) = ŝ(I(x, x̂)) = 0, F (s) = x, F (ŝ) = x̂, and s(P (x̂, x)) ≥
ŝ(P (x̂, x)). There is no loss of generality in assuming that x < x̂. By Lemma
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A.2, there is also no loss of generality in assuming that RF ⊂ [x, x̂], i.e. that
F admits no outcomes smaller than x or larger than x̂.

I first consider the case s(P (x̂, x)) = ŝ(P (x̂, x)). Given that s(I(x, x̂)) =
ŝ(I(x, x̂)) = 0, in this case, the formula

s∗ = sP (x,x̂) + ŝP (x̂,x)

defines a further element ofM∗F (T ). Consider the value of F at s∗. If F (s∗) ∈
[x, x̂), then P (x, x̂) blocks F at ŝ : If the true type distribution is ŝ, the
group of agents with types in P (x, x̂) can coordinate their reports so as to
make it appear as if their types were distributed as sP (x,x̂). The distribution
of reported types then is s∗, inducing the outcome F (s∗) ∈ [x, x̂), which
all group members prefer to F (ŝ) = x̂. Alternatively, if F (s∗) = x̂, then
P (x̂, x) blocks F at s: If the true type distribution is s, the group of agents
with types in P (x̂, x) can coordinate their reports so as to make it appear
as if their types were distributed as ŝP (x̂,x). The distribution of reported
types then is s∗, inducing the outcome F (s∗) = x̂, which all group members
prefer to F (s) = x. In either case, if F (s∗) ∈ [x, x̂) and if F (s∗) = x̂, the
assumption that s(I(x, x̂)) = ŝ(I(x, x̂)) = 0, F (s) = x, F (ŝ) = x̂, and
s(P (x̂, x)) = ŝ(P (x̂, x)) thus leads to a contradiction and must be false.

I next consider the case s(P (x̂, x)) > ŝ(P (x̂, x)). In this case, for any
t̂ ∈ T, the formula

s∗ = sP (x,x̂) + ŝP (x̂,x) + (s(P (x̂, x))− ŝ(P (x̂, x)) · δt̂

defines a further element of M∗F (T ). If t̂ /∈ P (x̂, x), one has s∗(P (x̂, x)) =
ŝ(P (x̂, x)) so, by the conclusion of the preceding paragraph, F (s∗) = F (ŝ) =
x̂. But then P (x̂, x) blocks F at s: If the true type distribution is s, the
group of agents with types in P (x̂, x) can coordinate their reports so as to
make it appear as if their types were distributed as ŝP (x̂,x) + (s(P (x̂, x)) −
ŝ(P (x̂, x)) · δt̂. The distribution of reported types then is s∗, inducing the
outcome F (s∗) = x̂, which all group members prefer to F (s) = x. The
assumption that s(I(x, x̂)) = ŝ(I(x, x̂)) = 0, F (s) = x, F (ŝ) = x̂, and
s(P (x̂, x)) > ŝ(P (x̂, x)) thus leads to a contradiction and must be false.

Lemma A.4 Given F, let F (s) = x and F (ŝ) = x̂ for some s and ŝ in
M∗F (T ) and some x and x̂ 6= x in RF . Then s(P (x̂, x)) < ŝ(P (x̂, x)) +
ŝ(I(x̂, x)) and ŝ(P (x, x̂)) < s(P (x, x̂)) + s(I(x, x̂)).

Proof. If ŝ(I(x̂, x)) = s(I(x, x̂)) = 0, the lemma is trivially implied by
Lemma A.3. Suppose therefore that ŝ(I(x̂, x)) > 0 and/or s(I(x, x̂)) > 0.
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As in the proof of the preceding lemma, there is no loss of generality in
assuming that x < x̂ and RF ⊂ [x, x̂], i.e., that F admits no outcomes
smaller than x or larger than x̂. Let s∗ and ŝ∗ be given as

s∗ = sT\I(x,x̂) + s(I(x, x̂)) · δt

and
ŝ∗ = ŝT\I(x̂,x) + ŝ(I(x̂, x)) · δt̂,

where t and t̂ are arbitrary elements of P ∗(x) and P ∗(x̂). I claim that
F (s∗) = x and F (ŝ∗) = x̂ so that Lemma A.3 implies s∗(P (x̂, x)) <
ŝ∗(P (x̂, x)) and s∗(P (x, x̂)) > ŝ∗(P (x, x̂)). Lemma A.4 then follows from
the observation that, by construction,

s∗(P (x̂, x)) = s(P (x̂, x)) and ŝ∗(P (x̂, x)) = ŝ(P (x̂, x)) + ŝ(I(x̂, x)),

as well as

s∗(P (x, x̂)) = s(P (x, x̂)) + s(I(x, x̂)) and ŝ∗(P (x, x̂)) = ŝ(P (x, x̂)).

To prove that F (ŝ∗) = x̂, I note that, with RF ⊂ [x, x̂], F (ŝ∗) 6= x̂ would
imply that ŝ(I(x̂, x)) > 0 and F (ŝ∗) < x̂. But then the singleton set {t̂} can
block F at ŝ∗: If the true type distribution is ŝ∗ and the agents with type t̂
coordinate their reports to make it appear as if their types were distributed
as ŝI(x̂,x) + ŝ{t̂}, the overall distribution of reported types will be ŝ, inducing
the outcome F (ŝ) = x̂, which they all prefer to F (ŝ∗) < x̂. The assumption
that F (ŝ∗) 6= x̂ is thus incompatible with the weak group strategy proofness
of F, which proves that F (ŝ∗) = x̂. The proof that F (s∗) = x uses a precisely
symmetric argument, which is left to the reader.

Lemma A.5 Given F, for any x ∈ RF , there exists s̄F (x) ∈ [0, 1] such that,
for any s ∈M∗F (T ) ,

F (s) = x implies s(UF (x)) ≤ s̄F (x) (A.6)

and

F (s) > x implies s(UF (x)) ≥ s̄F (x). (A.7)

Proof. By Lemma A.4, for any x ∈ RF and any s ∈ M∗F (T ), F (s) = x
implies

s(P (x̂, x)) < ŝ(P (x̂, x)) + ŝ(I(x̂, x)) (A.8)
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for all x̂ ∈ RF \{x} and all ŝ ∈ M∗F (T ) such that F (ŝ) = x̂. If x̂ > x and
RF ∩ (x, x̂) = ∅, we have UF (x) = P (x̂, x) and, for ŝ ∈M∗F (T ), ŝ(I(x̂, x)) =
0, so (A.8) implies s(P (x̂, x)) < ŝ(UF (x)). Alternatively, if x̂ > x and RF ∩
(x, x̂) 6= ∅, i.e., if there exists x′ ∈ RF ∩ (x, x̂), we have P (x̂, x) ∪ I(x̂, x) ⊂
P (x′, x) ⊂ UF (x), so (A.8) implies

s(P (x̂, x)) < ŝ(P (x′, x)) ≤ ŝ(UF (x)).

In either case, if x̂ > x and RF ∩ (x, x̂) = ∅ and if x̂ > x and RF ∩ (x, x̂) 6= ∅,
we find that

s(P (x̂, x)) < ŝ(UF (x)) (A.9)

whenever ŝ ∈M∗F (T ) is such that F (ŝ) = x̂.
By the single-peakedness of preferences, for any s ∈ M∗F (T ), one also

has
s(P (x̂, x)) ≤ s(UF (x)) (A.10)

for all x̂ ∈ RF ∩ (x,∞) and

s(UF (x)) = sup
x̂∈RF∩(x,∞)

s(P (x̂, x)). (A.11)

Upon combining (A.9) - (A.11), one obtains

s(UF (x)) ≤ ŝ(UF (x)) (A.12)

for all s ∈M∗F (T ) and all ŝ ∈M∗F (T ) such that F (s) = x and F (ŝ) = x̂ > x.
To complete the proof of the lemma, define s̄F (x) as the supremum of

s(UF (x)) over the set of measures s ∈M∗F (T ) such that F (s) = x. With this
definition, trivially, s(UF (x)) ≤ s̄F (x) for all s ∈M∗F (T ) such that F (s) = x.
Moreover, if F (ŝ) = x̂ for some ŝ ∈M∗F (T ) and some x̂ > x, one cannot have
ŝ(UF (x)) < s̄F (x) since otherwise there would be a contradiction to (A.12)
for any s ∈ M∗F (T ) satisfying F (s) = x and s(UF (x)) ∈ (ŝ(UF (x)), s̄F (x)).
The lemma follows immediately.

Lemma A.6 Given F, the function s̄F (·) in Lemma A.5 is non-decreasing
on RF .

Proof. Proceeding indirectly, suppose that the lemma is false. Then there
exist x and x̄ > x in RF such that s̄F (x) > s̄F (x̄). Let s ∈ M∗F (T ) be such
that

s(DF (x)) = 0, s(UF (x)) < s̄F (x), and s(UF (x̄)) ∈ (s̄F (x̄), 1).
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Then, by Lemma A.1, F (s) ≥ x. By Lemma A.5 and the assumption that
s(UF (x)) < s̄F (x), one also has F (s) ≯ x. Thus, F (s) = x.

Next, consider a distribution ŝ(t̄) ∈M∗F (T ) such that

ŝ(t̄) = s(DF (x̄) ∪ P ∗F (x)) · δt̄ + sUF (x̄),

where t̄ is some fixed element of P ∗F (x̄). By Lemma A.1, F (ŝ(t̄)) ≥ x̄.
By Lemma A.5 and the assumption that s(UF (x̄)) > s̄F (x̄), one also has
F (ŝ(t̄)) 6= x̄. Thus, there exists x̂(t̄) > x̄ such that F (ŝ(t̄)) = x̂(t̄).

For any t̄ ∈ P ∗F (x̄) and any x̂, x̂′ such that x̂′ > x̂ > x̄,

ŝ(P (x̂, x̂′)|t̄) = s(DF (x̄) ∪ P ∗F (x)) + sUF (x̄)(P (x̂, x̂′))

and

ŝ(I(x̂, x̂′)|t̄) = sUF (x̄)(I(x̂, x̂′)),

so both ŝ(P (x̂, x̂′)|t̄) and ŝ(I(x̂, x̂′)|t̄) are independent of t̄. By Lemma A.4,
it follows that F (ŝ(t̄)) is independent of t̄, i.e., there exists x̂ > x̄ such that
x̂(t̄) = x̂ for all t̄ ∈ P ∗F (x̄).

Because T is rich, there exists t̄∗ ∈ P ∗F (x̄) such that

u(x̂, t̄∗) < u(x, t̄∗) < u(x̄, t̄∗).

I claim that F is blocked at ŝ(t̄∗) by {t̄∗}. For suppose that the true cross-
section distribution of types is ŝ(t̄∗), with stipulated outcome F (ŝ(t̄∗)) = x̂.
Suppose also that the group of all agents with type t̄∗ coordinate their re-
ports so as to mimick sDF (x̄)∪P ∗F (x), which they can because, by construction
they have the total mass s(DF (x̄)∪P ∗F (x)). Then the distribution of reported
types is sDF (x̄)∪P ∗F (x) + sUF (x̄) = s and the induced outcome is F (s) = x,
which all members of the group prefer to the outcome F (ŝ(t̄∗)) = x̂.

This finding contradicts the assumption that F is weakly group strategy-
proof. The assumption that s̄F (·) is not everywhere non-decreasing has thus
led to a contradiction and must be false.

Lemma A.7 Given F, the function s̄F (·) in Lemma A.5 is right-continuous
on RF .

Proof. If the lemma is false, there exists x ∈ RF and there exists a sequence
{xk}∞k=1 of elements of RF that converges to x from above such that the as-
sociated threshold sequence {s̄F (xk)}∞k=1 does not converge to s̄F (x).With-
out loss of generality, one may assume that the sequence {xk}∞k=1 decreases
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monotonically to x. By Lemma A.6, it follows that s̄F (xk) ≥ s̄F (x) for all
k and that the sequence {s̄F (xk)}∞k=1 is (weakly) monotonically decreasing.
Therefore, this sequence converges to a limit s̄F (x+). The assumption that
the lemma is false implies that s̄F (x+) > s̄F (x).

If s̄F (x+) > s̄F (x), there exists s ∈ M∗F (T ) such that s(UF (x)) ∈
(s̄F (x), s̄F (x+)). Consider the outcome F (s). If F (s) ≤ x, then s(UF (F (s))) ≥
s(UF (x)) and, by Lemma A.6, s̄F (F (s)) ≤ s̄F (x). Since s(UF (x)) ∈ (s̄F (x), s̄F (x+)),
it follows that

s(UF (F (s))) ≥ s(UF (x)) > s̄F (x) ≥ s̄F (F (s)).

By (A.6), however, s(UF (F (s))) ≤ s̄F (F (s)). The assumption that F (s) ≤ x
thus leads to a contradiction and must be false.

Alternatively, if F (s) = x′ > x, then, for any x′′ ∈ (x, x′), s(UF (x′′)) ≤
s(UF (x)) and, by Lemma A.6, s̄F (x) ≤ s̄F (x′′). Since s(UF (x)) ∈ (s̄F (x), s̄F (x+)),
it follows that

s(UF (x′′)) ≤ s(UF (x)) < s̄F (x) ≤ s̄F (x′′).

By (A.7), however, F (s) > x′′ also implies s(UF (x′′)) ≥ s̄F (x′′). The as-
sumption that F (s) > x thus also leads to a contradiction and must be
false.

Since both alternatives, F (s) ≤ x and F (s) > x, lead to contradictions,
the assumption that s̄F (x+) exceeds s̄F (x) must be false, which proves the
lemma.

Given the monotonicity and continuity properties of the functions s(UF (·)),
s(DF (·)), and s̄F (·), the following lemma is trivial.

Lemma A.8 For all s ∈M∗F (T ) and all x ∈ RF ,

s(UF (x′) ≤ s̄F (x′) for all x′ ≥ x if and only if s(UF (x) ≤ s̄F (x)

and

s(DF (x′) ≤ 1−s̄F (x′) for all x′ < x if and only if s(DF (x) ≤ 1−s̄F (x−),

where s̄F (x−) := limx′↑x s̄F (x′).

The following lemma is less trivial.
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Lemma A.9 For all s ∈M∗F (T ) and all x ∈ RF ,

s(UF (x′)) ≥ s̄F (x′) for all x′ < x if and only if s(DF (x)) ≤ 1− s̄F (x−)
(A.13)

and

s(DF (x′)) ≥ 1− s̄F (x′−) for all x′ > x if and only if s(UF (x) ≤ s̄F (x).
(A.14)

Proof. I only give a proof for (A.13) The proof for (A.14) is completely
symmetric and is left to the reader. In proving (A.13), I distinguish three
cases, depending on the behaviour of RF just below x. I first consider the
case where RF has a gap just below x.

(a) For some x̄ ∈ RF with x̄ < x, RF ∩ (x̄, x) = ∅, i.e., x is the upper
bound of a gap in RF . In this case, s ∈M∗F (T ) implies that

s(DF (x)) = 1− s(UF (x̄)).

One also has s̄F (x−) = s̄F (x̄). Therefore,

s(UF (x̄)) ≥ s̄F (x̄) if and only if s(DF (x)) ≤ 1− s̄F (x−),

hence, by Lemma A.8,

s(UF (x′)) ≥ s̄F (x′) for all x′ < x if and only if s(DF (x)) ≤ 1− s̄F (x−),

which is just (A.13).
(b) For some sequence {x̄k} in RF , there exists an associated sequence

{x̂F (x̄k)} in RF such that, for each k, RF ∩(x̄k, x̂F (xk)) = ∅, and, moreover,
both sequences, {x̄k} and {x̂F (x̄k)}, converge to x from below. In this case,
s ∈M∗F (T ) implies that

s(DF (x̂F (x̄k))) = 1− s(UF (x̄k))

for all k and therefore

s(UF (x̄k)) ≥ s̄F (x̄k) for all k if and only if s(DF (x̂F (x̄k))) ≤ 1−s̄F (x̄k) for all k.
(A.15)

Because the function x′ → s(UF (x′)) is nonincreasing and the function
x′ 7−→ s̄F (x′) is nondecreasing, one also has

s(UF (x̄k)) ≥ s̄F (x̄k) for all k if and only if s(UF (x′)) ≥ s̄F (x′) for all x′ < x.
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Because, by Remark 2.3, the function x′ 7−→ s(DF (x′)) is nondecreasing
and left-continuous, one obtains

s(DF (x)) = lim
k→∞

s(DF (x̂F (x̄k)))

and

s(DF (x̂F (x̄k))) ≤ 1−s̄F (x̄k) for all k if and only if s(DF (x)) ≤ 1−s̄F (x−).

Again (A.13) follows.
(c) For some x̄ < x, [x̄, x] ⊂ RF , i.e., RF has no gap below x and near

x. In this case, s ∈M∗F (T ) implies that s(DF (x′) + s(UF (x′)) + s(P ∗F (x′)) =
1 for all x′. Because for different x′′ ∈ RF , the sets P ∗F (x′′) are disjoint,
s(P ∗F (x′′)) = 0 for all but at most countably many x′′. For some sequence
{xk} that converges to x from below, it follows that s(P ∗F (xk)) = 0 for all k
and hence s(DF (xk) + s(UF (xk)) = 1 for all k. Thus,

s(UF (xk)) ≥ s̄F (xk) for all k if and only if s(DF (xk)) ≤ 1−s̄F (xk) for all k.
(A.16)

Upon using the monotonicity properties of the functions x′ → s(DF (x′)),
x′ → s(UF (x′)), and x′ → s̄F (x′), as well as the left-continuity of the func-
tion x′ → s(DF (x′)), as before, one also obtains the equivalences

s(UF (xk)) ≥ s̄F (xk) for all k if and only if s(UF (x′)) ≥ s̄F (x′) for all x′ < x

and

s(DF (xk) ≤ 1− s̄F (xk) for all k if and only if s(DF (x)) ≤ 1− s̄F (x−).

Again (A.13) follows.

A.3 Proofs for Section 3

Among the results of Section 3, Propositions 3.1 and 3.2 are special cases of
Theorem 3.4, and Corollary 3.3 is a special case of Corollary 3.5. Therefore,
it suffi ces to prove Theorem 3.4, Corollary 3.5, and Theorem 3.6. As indi-
cated in the text, the equivalences in Theorems 3.4 and 3.6 will be proved
jointly.
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A.3.1 Weak Group Strategy Proofness Implies the MBV Prop-
erty

The following lemma shows that, if F is group strategy-proof, then, for the
threshold function given by Lemma A.5, part (i) of the MBV Property must
hold.

Lemma A.10 If F is weakly group strategy-proof, then, for all s ∈M∗F (T )
and all x ∈ RF ,

F (s) = x implies

s(UF (x′)) ≥ s̄F (x′) for all x′ < x and

s(UF (x′) ≤ s̄F (x′) for all x′ ≥ x. (A.17)

Proof. Trivially, F (s) = x implies F (s) > x′ for any x′ < x, so Lemma A.5,
with x replaced by x′, yields s(UF (x′)) ≥ s̄F (x′) for any x′ < x. By Lemma
A.5, F (s) = x also implies s(UF (x) ≤ s̄F (x) and therefore, s(UF (x′) ≤
s̄F (x′) for all x′ ≥ x.

The next lemma shows that, if F is weakly group strategy-proof, then
part (ii) of the MBV Property must also hold.

Lemma A.11 If F is weakly group strategy-proof, then, for any s and ŝ in
M∗F (T ) and any x and x̂ > x in RF , F (s) = x and F (ŝ) = x̂ imply that
ŝ(UF (x)) > s(UF (x)) or s(DF (x̂)) > ŝ(DF (x̂)).

Proof. The proof is indirect. Suppose that the lemma is false. Then there
exist s and ŝ inM∗F (T ) and any x and x̂ > x in RF such that F (s) = x and
F (ŝ) = x̂ and moreover,

ŝ(UF (x)) ≤ s(UF (x)) and s(DF (x̂)) ≤ ŝ(DF (x̂)). (A.18)

Suppose first that RF ∩ (x, x̂) = ∅. In this case, the fact that s and
ŝ belong to M∗F (T ) implies s(I(x̂, x)) = ŝ(I(x̂, x)) = 0. By Lemma A.3,
therefore,

s(P (x̂, x)) < ŝ(P (x̂, x)) and s(P (x, x̂)) > ŝ(P (x, x̂)). (A.19)

By the single-peakedness of preferences and the fact that RF ∩ (x, x̂) = ∅,
one also has UF (x) = P (x̂, x) and DF (x̂) = P (x, x̂). Thus the inequalities
in (A.19) imply

s(UF (x)) = s(P (x̂, x)) < ŝ(P (x̂, x)) = ŝ(UF (x))
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and
s(DF (x̂)) = s(P (x, x̂)) > ŝ(P (x, x̂)) = ŝ(DF (x̂)),

contrary to (A.18). For the case RF ∩ (x, x̂) = ∅, the assumption that the
lemma fails for s and ŝ inM∗F (T ) with F (s) = x and F (ŝ) = x̂ has thus led
to a contradiction and must be false.

Alternatively, suppose that RF ∩ (x, x̂) 6= ∅. I will show that (A.18)
implies

ŝ(UF (x)) = ŝ(P (x̂, x)) = s(UF (x)) (A.20)

and
ŝ(DF (x̂)) = s(P (x, x̂)) = s(DF (x̂)). (A.21)

To prove (A.20), let x∗ ∈ RF ∩ (x, x̂). Since F (s) = x and F (ŝ) = x̂ >
x∗ > x, one obtains

ŝ(UF (x)) ≥ ŝ(UF (x∗)) ≥ s̄F (x∗) ≥ s̄F (x) ≥ s(UF (x));

the first inequality follow from the monotonicity of the functions ŝ(UF (·))
and s(UF (·)), the second and fourth inequalities from Lemma A.10, and
the third inequality from the monotonicity of the function s̄F (·). If the first
inequality in (A.18) holds, all these inequalities must hold as equations.
Then

ŝ(UF (x)) = ŝ(UF (x∗)) = s(UF (x)) (A.22)

for any x∗ ∈ RF ∩ (x, x̂).
If RF ∩ (x∗, x̂) = ∅, we have UF (x∗) = P (x̂, x∗), so (A.22) implies

ŝ(UF (x)) = ŝ(P (x̂, x∗)) = s(UF (x)), (A.23)

and (A.20) follows because, by elementary set theory, P (x̂, x∗) ⊂ P (x̂, x) ⊂
UF (x).

If, instead, RF ∩ (x∗, x̂) 6= ∅ for all x∗ ∈ RF ∩ (x, x̂), there exists a non-
decreasing sequence {xk} of elements of RF ∩(x, x̂) that converges to x̂ from
below. For any k, (A.22) must hold with x∗ = xk, i.e. one must have

ŝ(UF (x)) = ŝ(UF (xk)) = s(UF (x)) (A.24)

for all k. By the single-peakedness of preferences and the monotonicity and
convergence of the sequence {xk}, one also has UF (xk+1) ⊂ UF (xk) for all
k and

∩∞k=1UF (xk) = P ∗F (x̂) ∪ UF (x̂).
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Therefore, (A.24) implies

ŝ(UF (x)) = ŝ(P ∗F (x̂) ∪ UF (x̂)) = s(UF (x)), (A.25)

and again (A.20) follows because, by elementary set theory, P ∗F (x̂)∪UF (x̂) ⊂
P (x̂, x) ⊂ UF (x).

By the monotonicity of the functions ŝ(DF (·)), s̄F (·), and s(DF (·)) and
by Lemma A.10, F (s) = x, F (ŝ) = x̂ > x, and x∗ ∈ RF ∩ (x, x̂) also imply

s(DF (x̂)) ≥ s(DF (x∗)) ≥ 1− s̄F (x∗−) ≥ 1− s̄F (x̂−) ≥ ŝ(DF (x̂)).

If the second inequality in (A.18) holds, all these inequalities must hold as
equations. Then

s(DF (x̂)) = s(DF (x∗)) = ŝ(DF (x̂)) (A.26)

for any x∗ ∈ RF ∩ (x, x̂).
If RF ∩ (x, x∗) = ∅, one has DF (x∗) = P (x, x∗), so (A.26) implies

s(DF (x̂)) = s(P (x, x∗)) = ŝ(DF (x̂)), (A.27)

and (A.21) follows because, by elementary set theory, P (x, x∗) ⊂ P (x, x̂) ⊂
DF (x̂).

If, instead, RF ∩ (x∗, x̂) 6= ∅ for all x∗ ∈ RF ∩ (x, x̂), there exists a non-
decreasing sequence {xk} of elements of RF ∩(x, x̂) that converges to x from
above. For any k, (A.26) must hold with x∗ = xk, i.e. one has

s(DF (x̂)) = s(DF (xk)) = ŝ(DF (x̂)) (A.28)

for all k. By the single-peakedness of preferences and the monotonicity and
convergence of the sequence {xk}, we also have DF (xk+1) ⊂ DF (xk) for all
k and

∩∞k=1DF (xk) = P ∗F (x) ∪DF (x).

Therefore, (A.28) implies

s(DF (x̂)) = s(P ∗F (x) ∪DF (x)) = ŝ(DF (x̂)), (A.29)

and again (A.21) follows because, by elementary set theory, P ∗F (x)∪DF (x) ⊂
P (x, x̂) ⊂ DF (x̂).

To complete the proof of the lemma, I note that, by single-peakedness,
I(x̂, x) ⊂ UF (x)\P (x̂, x) and I(x, x̂) ⊂ DF (x̂)\P (x, x̂). Since (A.20) implies
ŝ(UF (x)\P (x̂, x)) = 0 and (A.21) implies s(DF (x̂)\P (x, x̂)) = 0, it follows
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that ŝ(I(x̂, x)) = s(I(x, x̂)) = 0. Since I(x̂, x) = I(x, x̂), Lemma 3 is ap-
plicable, but (A.20) and (A.21) jointly are incompatible with Lemma A.3.

Upon combining Lemmas A.10 and A.11, one obtains the "only if" part
of Theorem 3.4.

Proof of Corollary 3.5. If the corollary is false, there exist an anonymous
weakly group strategy-proof social choice function F, a type distribution
s ∈M∗F (T ), and an outcome x ∈ RF such that one of the conditions in the
corollary is satisfied and yet F (s) 6= x. Suppose first that F (s) = x∗ < x. By
the "only if" part of Theorem 3.4 and part (i) of the MBV Property, it follows
that s(UF (x′)) ≤ s̄F (x′) for all x′ ∈ (x∗, x), which is incompatible with the
first two conditions in the corollary. Since one of the three conditions in the
corollary has been assumed to hold, it must be the case that s(UF (x′)) = 1
for all x′ < x. Hence s(DF (x)) = 0. By Lemma A.1 it follows that F (s) ≥ x.
The assumption that F (s) = x∗ < x has thus led to a contradiction and
must be false.

A precisely symmetric argument, which is left to the reader, also shows
that one cannot have F (s) = x∗ > x.

The assumption that the corollary is false thus leads to a contradiction,
which proves the corollary.

A.3.2 The MBV Property Implies the Condition in Theorem 3.6

Lemma A.12 If F has the MBV Property, then for all s and ŝ inM∗F (T )
such that F (s) 6= F (ŝ),

s(P (F (s), F (ŝ))) > ŝ(P (F (s), F (ŝ))) (A.30)

or

s(P (F (ŝ), F (s))) < ŝ(P (F (ŝ), F (s))). (A.31)

Proof. Suppose that the lemma is false, let F have the MBV Property and
let s and ŝ inM∗F (T ) be such that F (s) 6= F (ŝ) and

s(P (F (s), F (ŝ))) ≤ ŝ(P (F (s), F (ŝ))) (A.32)

as well as

s(P (F (ŝ), F (s))) ≥ ŝ(P (F (ŝ), F (s))). (A.33)
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Set F (s) = x and F (ŝ) = x̂ and assume without loss of generality that
x̂ > x. If RF ∩ (x, x̂) = ∅, one has UF (x) = P (x̂, x) and DF (x̂) = P (x, x̂), so
(A.32) and (A.33) stand in contradiction to part (ii) of the MBV Property.

Suppose therefore that RF ∩ (x, x̂) 6= ∅. Since s and ŝ belong toM∗F (T ),
part (i) of the MBV Property implies that for any x′ ∈ RF ∩ [x, x̂),

s(UF (x)) ≤ s̄F (x) ≤ ŝ(UF (x′)). (A.34)

Because the function x′ → s(UF (x′)) is non-increasing, infx′<x̂ ŝ(UF (x′)) is
well defined, and

inf
x′<x̂

ŝ(UF (x′)) = ŝ(∩x′<x̂UF (x′)).

Moreover, ∩x′<x̂UF (x′) is the union of the sets P ∗F (x̂), UF (x̂), and, if inf RF ∩
(x̂,∞) > x̂, the set I(x̂, inf RF∩(x̂,∞)). Because ŝ ∈M∗F (T ), ŝ(I(x̂, inf RF∩
(x̂,∞))) = 0. Therefore,

inf
x′<x̂

ŝ(UF (x′)) = ŝ(P ∗F (x̂) ∪ UF (x̂)). (A.35)

By elementary set theory,

P ∗F (x̂) ∪ UF (x̂) ⊂ P (x̂, x) ⊂ UF (x), (A.36)

so (A.34) - (A.36) imply

s(P (x̂, x)) ≤ s(UF (x)) ≤ ŝ(P ∗F (x̂) ∪ UF (x̂)) ≤ ŝ(P (x̂, x)). (A.37)

Upon combining (A.37) and (A.33), one obtains

s(P (x̂, x)) = ŝ(P (x̂, x)). (A.38)

Next, observe that

ŝ(DF (x̂)) = sup
x′<x̂

(1− ŝ(UF (x′)).

By part (i) of the MBV Property, therefore,

ŝ(DF (x̂)) ≤ sup
x′<x̂

(1− s̄F (x′)) ≤ 1− s̄F (x′′) ≤ 1− s(UF (x′′)) (A.39)

for all x′′ ∈ RF ∩ (x, x̂). Because the function s(UF (·)) is non-decreasing and
right-continuous, it follows that

ŝ(DF (x̂)) ≤ 1− s(UF (x)). (A.40)
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The right-hand side of (A.40) is the measure (under s) of the complement

of UF (x). This complement is the union of the sets P ∗F (x), DF (x), and, if
supRF ∩ (−∞, x) < x, the set I(x, supRF ∩ (−∞, x)). Since s ∈ M∗F (T ),
s(I(x, supRF ∩ (−∞, x)) = 0. Therefore, (A.40) implies

ŝ(DF (x̂)) ≤ s(P ∗F (x) ∪DF (x)). (A.41)

By elementary set theory, one also has

P ∗F (x) ∪DF (x) ⊂ P (x, x̂) ⊂ DF (x̂). (A.42)

From (A.39) - (A.42), therefore,

ŝ(P (x, x̂)) ≤ ŝ(DF (x̂)) ≤ s(P ∗F (x) ∪DF (x)) ≤ s(P (x, x̂)). (A.43)

Upon combining (A.43) with (A.32), one further obtains

s(P (x, x̂)) = ŝ(P (x, x̂)). (A.44)

From (A.38) and (A.44), I infer that all the inequalities in (A.34) - (A.43)
hold as equations. For (A.34) with x′ = x, this implies

s(UF (x)) = ŝ(UF (x)). (A.45)

For (A.39), replacing the inequalities by equations yields

ŝ(DF (x̂)) = 1− s(UF (x′))

for all x′ ∈ RF ∩ (x, x̂), hence, taking limits as x′ ↑ x̂,

ŝ(DF (x̂)) = s(DF (x̂)). (A.46)

However, equations (A.45) and (A.46) holding jointly is contrary to part (ii)
of the MBV Property. The assumption that F satisfies the MBV Property
but not the condition in Theorem 3.6 has thus led to a contradiction and
must be false.
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A.3.3 The Condition in Theorem 3.6 Implies Weak Group Strat-
egy Proofness

Lemma A.13 Let F be such that for all s and ŝ in M∗F (T ), F (s) 6= F (ŝ)
implies (A.30) or (A.31). Then F is weakly group strategy-proof.

Proof. Suppose that the lemma is false. Then there exists a type set B
and a type distribution s ∈ M∗F (T ) such that B blocks F at s, i.e., there
exist distributions ŝ, s∗ ∈M∗F (T ) such that

ŝ = sT\B + s(B) · s∗ (A.47)

is the distribution of overall reports that is induced when the true type dis-
tribution is s and agents with types in B coordinate their reports to have
the distribution s∗, F (ŝ) 6= F (s) and, moreover, agents with types in B pre-
fer F (ŝ) to F (s). Since types in B prefer F (ŝ) to F (s), B ⊂ P (F (ŝ), F (s)).
Therefore

ŝ(P (F (ŝ), F (s))) ≤ ŝ(P (F (ŝ), F (s))\B) + s(B) · s∗(P (F (ŝ), F (s)))

≤ s(P (F (ŝ), F (s))). (A.48)

Since B ⊂ P (F (ŝ), F (s)), one also has P (F (s), F (ŝ)) ⊂ T\B. By (A.47), it
follows that

ŝ(P (F (s), F (ŝ))) = ŝ(P (F (s), F (ŝ))\B) + s(B) · s∗(P (F (s), F (ŝ)))

≥ s(P (F (s), F (ŝ))). (A.49)

The inequalities (A.48) and (A.49), however, are incompatible with (A.30)
and (A.31). The assumption that F is not group strategy-proof has thus led
to a contradiction and must be false.

Theorems 3.4 and 3.6 follow from Lemmas A.10 - A.13.

A.4 Proofs for Section 4

I first recall the definition of a simple tie-breaking function gF for a social
choice function F. For any t ∈ T, let ΠF (t) be the set of peaks of u(·, t) on
RF , and let

π1
F (t) = inf ΠF (t) and π2

F (t) = sup ΠF (t).
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Then
ΠF (t) = {π1

F (t), π2
F (t)},

so ΠF (t) is a singleton set if π1
F (t) = π2

F (t) and a doubleton set if π1
F (t) 6=

π2
F (t). In the latter case, RF ∩ (π1

F (t), π2
F (t)) = ∅.

A simple tie-breaking function is a function gF : T → T such that, for
any t ∈ T, if u(·, t) has twin peaks π1

F (t), π2
F (t) on RF , then

u(πiF (t), gF (t)) = u(πiF (t), t) + 1 (A.50)

for some i, which is independent of t, and

u(x, gF (t)) = u(x, t) for all x 6= πiF (t); (A.51)

in particular,
u(πjF (t), gF (t)) = u(πjF (t), t) for j 6= i. (A.52)

If u(·, t) has a single peak πF (t) on RF , then

u(x, gF (t)) = u(x, t) (A.53)

for all x.
As mentioned in the text, if gF is a simple tie-breaking function, then

the functions u(·, gF (t)) and u(·, t) induce the same ordering on RF except
for the fact that, if u(·, t) has twin peaks, then u(·, gF (t)) induces a strict
ordering on ΠF (t). Formally, one obtains:

Lemma A.14 Given a social choice function F with range RF and a simple
tie-breaking function gF for F, for any x and x̄ 6= x in RF ,

t ∈ P (x, x̄) implies gF (t) ∈ P (x, x̄) (A.54)

and
gF (t) ∈ P (x, x̄) implies t ∈ P (x, x̄) ∪ I(x, x̄); (A.55)

if x < x̄ and RF ∩ (x, x̄) 6= ∅ or x > x̄ and RF ∩ (x̄, x) 6= ∅,

gF (t) ∈ P (x, x̄) implies t ∈ P (x, x̄). (A.56)

Proof. By (A.50) - (A.53), u(x, gF (t)) ≥ u(x, t), and the inequality is an
equation unless u(·, t) has twin peaks and x = πF (gF (t)). Since t ∈ P (x, x̄)
if and only if u(x, t) > u(x̄, t), it follows that t ∈ P (x, x̄) implies

u(x, gF (t)) ≥ u(x, t) > u(x̄, t) = u(x̄, gF (t),
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which yields (A.54). Similarly, if gF (t) ∈ P (x, x̄) and x 6= π(gF (t)), then

u(x, t) = u(x, gF (t)) > u(x̄, gF (t)) = u(x̄, t),

i.e. t ∈ P (x, x̄). If instead x = πF (gF (t, s)), then also x = πiF (t) for i = 1
or i = 2 and u(x, t) ≥ u(x̄, t), which implies t ∈ P (x, x̄) ∪ I(x, x̄). In either
case, (A.55) follows.

To complete the proof, it suffi ces to note that, in (A.55), t ∈ I(x, x̄) is
only possible if x̄(t) = πjF (t) for j 6= i and the intersection of RF with the
interval between x and x̄ is empty.

I also recall that a contingent tie-breaking function is a function gF :
T ×M(T )→ T such that, for any s ∈M(T ), the section gF (·, s) of gF that
is determined by s is a simple tie-breaking function.

Given these definitions, Theorems 4.1 and 4.3 can be seen as special
cases of the following result.

Theorem A.15 Let F be an anonymous social choice function with range
RF such that F (s) = F (s′) whenever s and s′ induce the same distrib-
utions on the space of preference orderings on RF . If there exists a sim-
ple or contingent tie-breaking function g∗F such that, for all s ∈ M(T ),
F (s) = F (s ◦ g∗F (·, s)−1), then the following statements are equivalent:

(a) F is group strategy-proof.
(b) F has the MBV property. Moreover, for any s and ŝ in M(T ) and

any x and x̂ > x in RF such that F (s) = x, F (ŝ) = x̂, and RF ∩ (x, x̂) = ∅,

ŝ(UF (x)) > s(UF (x)) or s(DF (x̂)) > ŝ(DF (x̂)).

(c) For all s and ŝ inM(T ), F (s) 6= F (ŝ) implies

s(P (F (s), F (ŝ))) > ŝ(P (F (s), F (ŝ)))

or

s(P (F (ŝ), F (s))) < ŝ(P (F (ŝ), F (s))).

To prove Theorem A.15, I will establish the implications (a) =⇒ (b),
(b) =⇒ (c), and (c) =⇒ (a). For brevity, the property that F (s) = F (s′)
whenever s and s′ induce the same distributions on the space of preference
orderings on RF will be referred to as the Independence Property.
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Lemma A.16 Under the specified assumptions, Statement (a) in Theorem
A.15 implies Statement (b) in Theorem A.15.

Proof. If F is group strategy-proof, Theorem 3.4 implies that F can be
implemented on M∗F (T ) by monotone binary voting over neighbours. It
remains to be shown that, for any s and ŝ inM(T ) and any x and x̂ > x in
RF such that F (s) = x, F (ŝ) = x̂, and RF ∩ (x, x̂) = ∅,

ŝ(UF (x)) > s(UF (x)) or s(DF (x̂)) > ŝ(DF (x̂)).

Proceeding indirectly, suppose that the claim is false. Then there exist s
and ŝ in M(T ) and x and x̂ > x in RF with RF ∩ (x, x̂) = ∅, such that
F (s) = x and F (ŝ) = x̂ and, moreover,

ŝ(UF (x)) ≤ s(UF (x)) and s(DF (x̂)) ≤ ŝ(DF (x̂)). (A.57)

Because F has the Independence Property, there is no loss of generality in
assuming that s and ŝ take the form

s′ = s′UF (x) + s′DF (x̂) + σ(s′) · δt̃, (A.58)

where
σ(s′) = 1− s′(UF (x))− s′(DF (x̂)) (A.59)

and t̃ is an arbitrary fixed element of IF (x, x̂).
Consider the distribution

s∗ = sDF (x̂) + ŝUF (x) + (1− ŝ(UF (x))− s(DF (x̂))) · δt̃. (A.60)

Notice that (A.58) implies ŝ(UF (x)) + s(DF (x̂)) ≤ 1, so the last term in
(A.60) is non-negative, and s∗ is a well-defined element ofM(T ).

I claim that, no matter how the outcome F (s∗) is specified, some group
of agents can block F at s, ŝ, or s∗, i.e. (A.58) is incompatible with group
strategy proofness. I distinguish four cases.

Case 1: F (s∗) > x̂.
In this case, F is blocked at s∗ by the group of agents with types in

T\UF (x) ⊂ DF (x∗). This group comprises agents with types in DF (x̂) ∪
IF (x, x̂). If they coordinate their reports, they can make it appear as if their
types were distributed as ŝ(DF (x̂)) + σ(ŝ) · δt̃, so the overall distribution of
reported types is ŝ and induces the outcome F (ŝ) = x̂, which they all prefer
to F (s∗) > x̂.

Case 2: F (s∗) = x̂.
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In this case, F is blocked at s by the group of agents with types in
UF (x). The first inequality in (A.57) implies that these agents can coordinate
their reports so as to make it appear as if their types were distributed as
ŝUF (x) +(s(UF (x))− ŝ(UF (x))) ·δt̃. The overall type distribution of reported
types is then given as

ŝUF (x) + (s(UF (x))− ŝ(UF (x))) · δt̃ + sDF (x̂) + σ(s) · δt̃,

which is equal to s∗ because

s(UF (x))− ŝ(UF (x)) + σ(s) = 1− ŝ(UF (x))− s(DF (x̂)).

The induced outcome then is F (s∗) = x̂, which they all prefer to F (s) = x.
Case 3: F (s∗) = x.
In this case, F is blocked at ŝ by the group of agents with types inDF (x̂).

The second inequality in (A.57) implies that these agents can coordinate
their reports so as to make it appear as if their types were distributed as
sDF (x̂)+(ŝ(DF (x̂))−s(DF (x̂)))·δt̃. The overall type distribution of reported
types is then given as

sUF (x) + sDF (x̂) + (ŝ(DF (x̂))− s(DF (x̂))) · δt̃ + σ(ŝ) · δt̃,

which is equal to s∗ because

ŝ(DF (x̂))− s(DF (x̂)) + σ(ŝ) = 1− ŝ(UF (x))− s(DF (x̂)).

The induced outcome then is F (s∗) = x, which they all prefer to F (ŝ) = x̂.
Case 4: F (s∗) < x.
In this case, F is blocked at s∗ by the group of agents with types in

T\DF (x) ⊂ UF (x∗). This group comprises agents with types in UF (x) ∪
IF (x, x̂). If they coordinate their reports, they can make it appear as if their
types were distributed as s(UF (x)) + σ(s) · δt̃, so the overall distribution of
reported types is s and induces the outcome F (s) = x, which they all prefer
to F (s∗) < x.

In each case, one obtains a contradiction to the assumption that F is
group strategy-proof. The assumption that s and ŝ satisfy (A.57) must
therefore be false.

Lemma A.17 Under the specified assumptions, Statement (b) in Theorem
A.15 implies Statement (c) in Theorem A.15.
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Proof. Assume that F satisfies statement (b) in Theorem A.15. The claim
is that, for all s and ŝ inM(T ), F (s) 6= F (ŝ) implies

s(P (F (s), F (ŝ))) > ŝ(P (F (s), F (ŝ)))

or

s(P (F (ŝ), F (s))) < ŝ(P (F (ŝ), F (s))).

Let s and ŝ in M(T ) be such that F (s) 6= F (ŝ). Set F (s) = x and
F (ŝ) = x̂ and without loss of generality assume that x̂ > x. If RF∩(x, x̂) = ∅,
one has UF (x) = P (x̂, x) and DF (x̂) = P (x, x̂), so the claim in the lemma
follows trivially from the second part of statement (b) in Theorem A.15.

If RF ∩ (x, x̂) 6= ∅, Lemma A.14 implies that

P (x̂, x) = {t ∈ T |g∗F (t, s′) ∈ P (x̂, x)} and P (x, x̂) = {t ∈ T |g∗F (t, s′) ∈ P (x, x̂)},
(A.61)

where s′ is an arbitrary element ofM(T ) and g∗F is the specified tie-breaking
function. Upon using these equations once with s′ = s and once with s′ = ŝ,
we obtain

s(P (x, x̂)) = (s◦(g∗F (·, s)−1)(P (x, x̂)) and s(P (x̂, x)) = (s◦(g∗F (·, s)−1)(P (x̂, x)),
(A.62)

as well as

ŝ(P (x, x̂)) = (ŝ◦(g∗F (·, ŝ)−1)(P (x, x̂)) and ŝ(P (x̂, x)) = (ŝ◦(g∗F (·, ŝ)−1)(P (x̂, x)).
(A.63)

By the specified assumption about g∗F , we also have F (s ◦ (g∗F (·, s)−1) =
F (s) = x and F (ŝ ◦ (g∗F (·, ŝ)−1) = F (ŝ) = x̂. Since s ◦ (g∗F (·, s)−1 and
ŝ ◦ (g∗F (·, ŝ)−1 both belong toM∗F (t), therefore, Theorems 3.4 and 3.6 imply
that

(s ◦ (g∗F (·, s)−1)(P (x, x̂)) > (ŝ ◦ (g∗F (·, ŝ)−1)(P (x, x̂))

or
(s ◦ (g∗F (·, s)−1)(P (x̂, x)) < (ŝ ◦ (g∗F (·, ŝ)−1)(P (x̂, x)).

By (A.62), it follows that s(P (x, x̂)) > ŝ(P (x, x̂)) or s(P (x̂, x)) < ŝ(P (x̂, x))
as claimed in the lemma.

Lemma A.18 Under the specified assumptions, Statement (c) in Theorem
A.15 implies Statement (a) in Theorem A.15.
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Except for the fact that the space of type distributions is now M(T )
rather thanM∗F (T ), the proof of this lemma is step for step the same as the
proof of Lemma A.13 and is left to the reader.

Theorem A.15 follows from Lemmas A.16 - A.18.
Theorem 4.1 follows from Theorem A.15 and the observation that, if

the tie-breaking function is simple, then F has the Independence Property.
Theorem 4.3 follows from Theorem A.15 and Proposition 4.2, the proof of
which follows.

A.5 Proof of Proposition 4.2

Proposition 4.2 asserts that, if F is a regular anonymous group strategy-
proof social choice function, then, for the contingent tie-breaking function
g∗F such that

πF (g∗F (t, s)) = π1
F (t) = min ΠF (t) if F (s) ≤ π1

F (t)

and (A.64)

πF (g∗F (t, s)) = π2
F (t) = max ΠF (t) if F (s) ≥ π2

F (t)

for any t ∈ T and s ∈ M(T ), we have F (s) = F (G∗F (s)) for all s ∈ M(T ),
where G∗F (s) is short-hand for s◦g∗F (·, s)−1. The equation F (s) = F (G∗F (s))
results from the two inequalities F (s) ≥ F (G∗F (s)) and F (s) ≤ F (G∗F (s)).
The following lemma establishes the first of these two inequalities.

Lemma A.19 Under the given assumptions on F , F (s) ≥ F (G∗F (s)).

Proof. Before proceeding with the argument, I note that, by Remark 2.2
and Theorem 3.4, F has the MBV property.

Suppose that, contrary to the lemma, there exists s ∈ M(T ) such that
F (s) < F (G∗F (s)). Let F (s) = x and F (G∗F (s)) = x̄ > x.

For any x′ ∈ RF and t ∈ UF (x′), we have π2
F (t) ≥ π1

F (t) > x′, so (A.64)
implies g∗F (t, s) ∈ UF (x′). Moreover, if x′ ≥ x = F (s) and g∗F (t, s) ∈ UF (x′),
we have πF (g∗F (t, s)) > x′ and, by (A.64), πF (g∗F (t, s)) = π1

F (t), hence also
t ∈ UF (x′). Therefore,

G∗F (UF (x′)|s) = s(UF (x′)) for all x′ ∈ RF ∩ [x,∞). (A.65)

By Theorem 3.4, we also have G∗F (UF (x′)|s) ≥ s̄F (x′) and hence

s(UF (x′)) ≥ s̄F (x′) for all x′ < x̄.
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Because the population shares s(UF (x′)) are non-increasing and right-continuous
and the thresholds s̄F (x′) are non-decreasing in x′, it follows that either

s(UF (x′)) = s̄F (x′) for all x′ ∈ RF ∩ (x, x̄), (A.66)

or
s(UF (x∗)) > s̄F (x∗) for some x∗ ∈ RF ∩ (x, x̄). (A.67)

Distinguishing two cases, according to whether (A.66) or (A.67) is true,
I will show that the restriction of F toM∗F (T ) violates part (ii) of the MBV
property if (A.66) is true and part (i) of the MBV property if (A.67) is true.

Case 1: s satisfies (A.66).
In this case, s-almost all types in UF (x) prefer F (G∗F (s)) = x̄ to F (s) =

x. I claim that
s(UF (x)\UF (x′)) = 0 (A.68)

for all x′ ∈ RF ∩ (x, x̄). To prove (A.68), it suffi ces to note that (A.66) and
the monotonicity of s(UF (x′)) and s̄F (x′) in x′ imply

s(UF (x′′)) ≥ s(UF (x′)) = s̄F (x′) ≥ s̄F (x′′) = s(UF (x′′))

for all x′ ∈ RF ∩ (x, x̄) and all x′′ ∈ RF ∩ (x, x′). Thus, for all such x′

and x′′, s(UF (x′′)\UF (x′)) = 0. (A.68) follows because the function x′′ →
s(UF (x′′)\UF (x′)) is right-continuous.

Consider the distribution

s∗ := sT\UF (x) + s(UF (x)) · δt̄, (A.69)

where t̄ is an arbitrary element of P ∗(x̄). What can one say about F (s∗)
and F (G∗F (s∗))? By Lemma A.1, obviously,

F (s∗) ≤ x̄ and F (G∗F (s∗)) ≤ x̄. (A.70)

I claim that
F (s∗) = x. (A.71)

If F (s∗) were smaller than x, the group of agents with types in P ∗(x̄) could
block F at s∗ by coordinating their reports so that their reported types would
be distributed as sUF (x), rather than s(UF (x)) · δt̄. The overall distribution
of reported types would then be s, rather than s∗, and the induced outcome
would be F (s) = x, which they all prefer to anything below x. Alternatively,
if F (s∗) were greater than x, the group of agents with types in UF (x) could
block F at s by coordinating their reports so that their reported types
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would be distributed as s∗UF (x) = s(UF (x)) · δt̄, rather than sUF (x). The
overall distribution of reported types would then be s∗, rather than s, and
the induced outcome would be F (s∗) ∈ (x, x̄], which, by (A.68), s-almost all
of them prefer to F (s) = x. Given these arguments, (A.71) follows.

I next show that
F (G∗F (s∗)) ≤ x. (A.72)

If F (G∗F (s∗)) were greater than x, the group of agents with types in T\UF (x)
could block F at G∗F (s∗) by coordinating their reports so that their reported
types would be distributed as s∗T\UF (x), rather than G

∗
F (s∗)T\UF (x). The over-

all distribution of reported types would then be s∗, rather than G∗F (s∗), and
the induced outcome would be F (s∗) = x, which they all prefer to anything
above x. To see this, it suffi ces to note that, because F (s∗) = x, one has
t ∈ T\UF (x) if and only if g∗F (t, s∗) ∈ P ∗F (x) ∪DF (x)) and hence

s∗(T\UF (x)) = G∗F (T\UF (x))|s∗) = G∗F (P ∗F (x) ∪DF (x))|s∗).

To conclude the proof, I show that F violates part (ii) of the MBV
property. We first note that, because F (s∗) = F (s) = x, (A.64) implies
that, for any t ∈ T ,

πF (g∗F (t, s∗)) = πF (g∗F (t, s)). (A.73)

Given that x∗ ≤ x,

G∗F (UF (x∗)|s∗) = G∗F (UF (x∗)\UF (x)|s∗) +G∗F (UF (x)|s∗)
= s∗({t ∈ T |πF (g∗F (t, s∗)) ∈ (x∗, x]})

+s∗({t ∈ T |πF (g∗F (t, s∗)) > x}).

By (A.73) and (A.69), it follows that

G∗F (UF (x∗)|s∗) = s({t ∈ T |πF (g∗F (t, s)) ∈ (x∗, x]})
+s({t ∈ T |πF (g∗F (t, s)) > x})

= G∗F (UF (x∗)\UF (x)|s) +G∗F (UF (x)|s)
= G∗F (UF (x∗)|s). (A.74)

By (A.69), one also has

G∗F (DF (x̄)|s∗) = 1− s(UF (x)). (A.75)

Moreover, since G∗(s) ∈M∗F (T ),

G∗F (DF (x̄)|s) = 1−G∗F (UF (x̄) ∪ P ∗F (x̄)|s) ≥ 1−G∗F (UF (x)),
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so, by (A.65),
G∗(DF (x̄)|s) ≥ 1− s(UF (x)). (A.76)

Upon combining (A.76) and (A.75), one obtains

G∗F (DF (x̄)|s∗) ≤ G∗(DF (x̄)|s). (A.77)

(A.77) and (A.74) contradict part (ii) of the MBV property. The assumption
that F (s) < F (G∗F (s)) for s satisfying s(UF (x)) = s̄F (x+) has thus led to a
contradiction and must be false.

Case 2: s satisfies (A.67).
Trivially, in this case, one also has

s(UF (x̂)) > s̄F (x̂) for all x̂ ∈ RF ∩ (x, x∗] (A.78)

and
s(UF (x)) > s̄F (x). (A.79)

By single-peakedness,

UF (x) =
⋃

x̂∈RF∩(x,x∗]

P (x̂, x),

where, as before, P (x̂, x) is the set of types that prefer x̂ to x. By the
monotonicity property P (x̂′, x) ⊂ P (x̂, x) for x̂ ≤ x̂′, which is implied by
single-peakedness, it follows that

s(UF (x)) = inf
x̂∈RF∩(x,x∗]

s(P (x̂, x)).

For some x̂ ∈ RF ∩ (x, x∗], therefore, s(P (x̂, x)) is close enough to s(UF (x))
so that

s(P (x̂, x)) > s̄F (x). (A.80)

For this x̂, consider the type distributions

ŝ := sT\P (x̂,x) + s(P (x̂, x))) · δt̂, (A.81)

and
s∗ := s(T\P (x̂, x)) · δt + s(P (x̂, x))) · δt̂ (A.82)

where, as before, P (x̂, x) is the set of types that prefer x̂ to x, t̂ is an arbitrary
fixed element of P ∗(x̂), and t is an arbitary fixed element of P ∗(x).
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What can one say about F (ŝ) and F (s∗)? By Lemma A.1, obviously,

F (ŝ) ≤ x̂ and x ≤ F (s∗) ≤ x̂. (A.83)

I claim that in fact
F (ŝ) = x (A.84)

and
F (s∗) = x. (A.85)

If F (ŝ) were smaller than x, the group of agents with types in P (x̂, x)
could block F at ŝ by coordinating their reports so that their reported types
would be distributed as sP (x̂,x), rather than s(P (x̂, x)) · δt̂. The overall dis-
tribution of reported types would then be s, rather than ŝ, and the induced
outcome would be F (s) = x, which they all prefer to anything below x.
Alternatively, if F (ŝ) were greater than x, the group of agents with types
in P (x̂, x) could block F at s by coordinating their reports so that their
reported types would be distributed as ŝP (x̂,x) = s(P (x̂, x)) · δt̂, rather than
sP (x̂,x). The overall distribution of reported types would then be ŝ, rather
than s, and the induced outcome would be F (ŝ) ∈ (x, x̂], which they all
prefer to F (s) = x. Given these arguments, (A.84) follows.

To prove (A.85), by contradiction, suppose that F (s∗) 6= x, hence, by
(A.83), F (s∗) > x. Then the group of agents with type t ∈ P ∗(x) can
block F at s∗ by coordinating their reports so that their reported types
would be distributed as sT\P (x̂,x), rather than s(T\P (x̂, x)) · δt. The overall
type distribution then would be ŝ, rather than s∗, and the induced outcome
would be F (ŝ) = x, which they all prefer to anything above x. F satisfying
F (s∗) 6= x would thus fail to be group strategy-proof. (A.85) follows.

To conclude the proof, I show that (A.85) is incompatible with part (i)
of the MBV property. By construction, the type distribution s∗ belongs to
M∗F (T ) and

s∗(UF (x)) = s(P (x̂, x)). (A.86)

By (A.80), it follows that

s∗(UF (x)) > s̄F (x). (A.87)

By part (i) of the MBV property, however, F (s∗) = x implies s∗(UF (x)) ≤
s̄F (x). The assumption that F (s) = x < x̄ = F (G∗F (s)) for s satisfying
(A.67) for some x̂ ∈ (x, x̄] has thus led to a contradiction and must be false.
This completes the proof of Lemma A.19.

A completely symmetric argument, which we leave to the reader, also
establishes that F (s) ≤ F (G∗F (s)). Proposition 4.2 follows immediately.
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B Social Choice with an Atomless Measure Space
of Agents

In this appendix, I show how the type distribution formalism that is used
in the body of the paper can be derived from a formalism with an atomless
measure space of agents, (A,A, α). We assume that each agent a ∈ A has
a preference ordering �θ(a) on the set R of alternatives for social choice
and that this ordering can be represented by a utility function of the form
ua(·) = u(·, θ(a)), where θ(·) is a measurable mapping from A to a complete
separable metric space T and the function u(·, ·) is upper semi-continuous.

A social choice function determines an outcome x ∈ R as a function of
the mapping θ(·). I say that the social choice function is anonymous if the
chosen outcome depends only on the cross-section distribution

s(θ) = α ◦ θ−1 (B.1)

of preference parameters.25 Because the mapping θ(·) from A to T is mea-
surable, this cross-section distribution is well defined and is an element of
the set M(T ) of probability measures on T . Thus an anonymous social
choice function is given by a mapping F : M(T ) → R such that, for any
s ∈ M(T ), F (s) is the outcome chosen if the cross-section distribution of
preference parameters is s.

Individual Strategy Proofness. In the measure space formulation, we
say that an anonymous social choice function F :M(T )→ R is individually
strategy-proof if, for every â ∈ A, every measurable function θ : A→ T , and
every t′ ∈ T,

u(F (s(θ)), θ(â)) ≥ u(F (s(θ̂(θ, â, t′))), θ(â)), (B.2)

where θ̂(θ, â, t′)) : A→ T is the mapping satisfying

θ̂(â|θ, â, t′)) = t′ and θ̂(a′|θ, â, t′)) = θ(a′) (B.3)

for a′ ∈ A\{â}. By (B.1), this formulation of individual strategy proofness
is obviously equivalent to the one given in the text. Moreover, because the
25 If the measure space (A,A, α) is homogeneous, this definition of anonymity is equiva-

lent to the requirement that social choice is unchanged under any permutation of agents’
names. If (A,A, α) is not homogeneous, the definition in the text is stronger than the
requirement of invariance under permutations of names. As discussed in Section 4 of Khan
and Sun (1999), homogeneity holds if (A,A, α) is a hyperfinite Loeb space and fails to
hold if (A,A, α) is the Lebesgue unit interval.
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measure α is atomless, we have

s(θ̂(θ, â, t′)) = s(θ) (B.4)

for every â ∈ A, every measurable function θ : A → T , and every t′ ∈ T.
This observation yields the conclusion of Proposition 2.1.

Group Strategy Proofness. Turning to group strategy proofnes, I say
that, given an anonymous social choice function F and a measurable function
θ : A → T, a set Â ∈ A blocks F at θ if there exists a measurable function
θ′ : Â→ T, such that

u(F (s(θ)), θ(â)) < u(F (s(θ̂(θ, Â, θ′))), θ(â)), (B.5)

for all â ∈ Â where θ̂(θ, Â, θ′) is the mapping from A to T such that

θ̂(â|θ, Â, θ′) = θ′(â) (B.6)

for â ∈ Â and
θ̂(a′|θ, Â, θ′) = θ(a′) (B.7)

for a′ ∈ A\Â. F is said to be group strategy-proof if there are no Â ∈ A and
θ : A→ T such that Â blocks F at θ.

In terms of the space M(T ), the domain of the social choice function,
recall that in the formalism of the main text a Borel set W ⊂ T blocks F at
s if there exists s′ ∈M(T ) such that

u(F (s), t) < u(F (sT\W + s(W ) · s′), t) (B.8)

for all t ∈ W , where sT\W is the restriction of s to the set T\W. The
following remark shows that the measure space formulation of group strategy
proofness given here is in fact equivalent to the distribution formulation of
group strategy proofness in the main text.

Remark B.1 An anonymous social choice function F is group strategy-
proof if and only if there are no W ⊂ T and s ∈ M(T ) such that W blocks
F at s.

Proof. To prove the "if" part of the remark, suppose that F is not group
strategy-proof and let Â ∈ A and θ : A→ T be such that Â blocks F at θ.
Let θ′ : Â → T be such that (B.5) holds for all â ∈ Â. Since (B.5) implies
F (s(θ̂(θ, Â, θ′))) 6= F (s(θ)), one must have α(Â) > 0 so one may define

s′ =
1

α(Â)
· αÂ ◦ (θ′)−1, (B.9)
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where αÂ is the restriction of α to Â. Given this specification of s′, one
easily verifies that (B.5) holds for W := θ(Â), s = α ◦ θ−1,and all t ∈ W.
Thus W = θ(Â) blocks F at s = α ◦ θ−1. Conversely, if there are no W ⊂ T
and s ∈M(T ) such that W blocks F at s, F must be group strategy-proof.

To prove the "only if" part of the remark, suppose that there exist W ⊂
T and s ∈ M(T ) such that W blocks F at s. Using the fact that α is
an atomless measure, let θ : A → T be such that α ◦ θ−1 = s and let
Â = θ−1(W ). Since (B.5) implies F (s) 6= F (sT\W + s(W ) · s′) and therefore
s(W ) > 0, one has α(Â) > 0. Again using the fact that α is an atomless
measure, one may define θ′ : Â→ T so that (B.9) holds for the distribution
s′ with which W blocks F at s. Then Â ∈ A blocks F at θ. Conversely, if
F is group strategy-proof, there must not exist any W ⊂ T and s ∈ M(T )
such that W blocks F at s.
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