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Abstract

The search for more efficient use of energy has been leading to a growing interest
in the research field of magnetocaloric materials. The magnetocaloric effect (MCE)
describes the change of temperature or entropy of a material when exposed to a
change of the magnetic field and forms the basis of magnetocaloric refrigeration
technologies. This utilization of the effect can offer a novel method for cooling that
is economically feasible and ecologically friendly, and hence the effect attracts the
attention of many researches. MCE is identified by the temperature change (∆Tad)
in an adiabatic process, and by the entropy change (∆Siso) in an isothermal process.

Part of this thesis is devoted to the investigation of the magnetocaloric effect
(MCE) by direct measurements in pulsed magnetic fields as well as by analyzing
the magnetization and specific heat data collected in static magnetic fields. The
emphasis is on the direct measurement of the adiabatic temperature change ∆Tad
in pulsed magnetic fields as it provides the opportunity to examine the sample-
temperature response to the magnetic field on a time scale of about 10 to 100 ms,
which is on the order of typical operation frequencies (10 - 100 Hz) of magnetocaloric
cooling devices. Furthermore, the accessible magnetic field range is extended to
beyond 70 T and the short pulse duration provides nearly adiabatic conditions during
the measurement.

In the last years there has been an upsurge in the knowledge of the MCE and
many materials have been investigated for their MCE characteristics. In the con-
text of this thesis, the magnetocaloric properties of the single crystalline compounds
MnFe4Si3 and Mn5Ge3 are investigated. Moreover, the nuclear and magnetic struc-
ture of the AF1′ phase of the single crystalline compound Mn5Si3 are determined.

For the MnFe4Si3, we have studied the magnetic and magnetocaloric response to
pulsed and static magnetic fields up to 50 T. We determine the adiabatic temperature
change ∆Tad directly in pulsed fields and compare to the results of magnetization and
specific heat measurements in static magnetic fields. The high ability of cycling even
in high fields confirms the high structural stability of MnFe4Si3 against field changes,
an important property for applications. The magnetic response to magnetic fields
up to µ0H = 35 T shows that the anisotropy can be overcome by fields of approx.
7 T.

For the Mn5Ge3, we have investigated the field direction dependence of the
thermo-magnetic behavior in single crystalline Mn5Ge3. The adiabatic tempera-
ture change ∆Tad in pulsed fields, the isothermal entropy change ∆Siso calculated
from static magnetization measurements and the heat capacity have been deter-
mined for field parallel and perpendicular to the easy magnetic direction [001]. The
isothermal magnetization measurements yield furthermore the uniaxial anisotropy
constants in second and fourth order, K1 and K2. We discuss how the anisotropy
affects the magneto-caloric effect (MCE) and compare the results to the related com-
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pound MnFe4Si3, which features an enhanced MCE, too, but instead exhibits strong
easy plane anisotropy. Our study reveals the importance of magnetic anisotropy and
opens new approaches for optimizing the performance of magnetocaloric materials
in applications.

For the Mn5Si3 compound, previous studies indicate a transition from AF1 to
AF2 phase at 58 K and a magnetic field of 3.5 T applied along the c-axis. Below 60
K, higher magnetic fields induce a transition from the AF1 to AF1′ before reaching
the AF2 phase. The nuclear and magnetic structure of the intermediate phase,
AF1′, have been investigated using non-polarized single crystal neutron diffraction
at 50 K and 5 T. Under these conditions, the crystal structure was found to have
orthorhombic symmetry with the C-centered space group Ccmm. From literature,
the AF2 phase was found to have a collinear magnetic structure, while the AF1
phase has non-collinear and non-coplanar magnetic structure. In this study, the
best refinements of the magnetic structure of the AF1′ were found to have acentric
orthorhombic symmetry with magnetic moments in all the Mn sites order mostly in
coplanar structure.
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Zusammenfassung

Die Notwendigkeit für einen effizienten Einsatz und Gebrauch von Energie hat zu
einem wachsenden Interesse an magnetokalorischen Materialien geführt. Der magne-
tokalorische Effekt (MCE) beschreibt die Änderung der Temperatur oder Entropie
eines Materials, wenn es einer Änderung des Magnetfeldes ausgesetzt wird und ist die
Basis für magnetokalorische Kühltechnologien. Der magnetokalorische Effekt wird
beschrieben über die Temperaturänderung (∆Tad) in einem adiabatischen Prozess
und über die Entropieänderung (∆Siso) in einem isothermischen Prozess.

Ein wesentlicher Teil dieser Arbeit beschäftigt sich sowohl mit der Erforschung
des magnetokalorischen Effekts über direkte Messungen in gepulsten magnetischen
Felder, als auch mit der Analyse von Magnetisierungs- und spezifischen Wärme-
messungen in statischen magnetischen Feldern. Das Hauptgewicht liegt hier auf
der direkten Messung der adiabatischen Temperaturänderung ∆Tad in gepulsten
magnetischen Feldern, da hier die Möglichkeit gegeben ist, die Temperaturreak-
tion des Materials auf einer Zeitskala von 10 bis 100 ms zu untersuchen. Diese
Zeitskala entspricht in etwa der typischen Frequenz (10 - 100 Hz), die bei magne-
tokalorischen Kühltechnologien tatsächlich eingesetzt wird. Zusätzlich wird die ma-
ximale Feldstärke, die in den Messungen errreicht werden kann, bis auf 70 T erweitert
und die kurze Pulsdauer führt zu nahezu adiabatischen Bedingungen während der
Messungen.

In den letzten Jahren gab es einen Anstieg des Interesses am magnetokalorischen
Effekt und viele Materialien wurden im Hinblick auf ihre relevanten Eigenschaften
untersucht. Im Rahmen dieser Arbeit wurden die magnetokalorischen Eigenschaften
von MnFe4Si3 und Mn5Ge3 an Einkristallen untersucht. Zusätzlich wurde die nuk-
leare und magnetische Struktur der AF1′ Phase von Mn5Si3 über Beugung an
Einkristallen bestimmt.

Bei MnFe4Si3 wurden der Einfluss von gepulsten und statischen Felder bis zu 50
T untersucht. Die adiabatische Temperaturänderung ∆Tad im gepulsten Feld wurde
direkt bestimmt und mit den Ergbenissen aus Magnetisierungs- und spezifischen
Wärmemessungen in statischen magnetischen Felder verglichen. Die hohe Repro-
duzierbarkeit bei wiederholtem Anlegen von selbst sehr starken Feldern belegt die
hohe strukturelle Stabilität von MnFe4Si3 - eine potentiell wichtige Eigenschaft für
etwaige Anwendungen. Die Reaktion des Materials auf magnetische Felder bis zu
einer Stärke von µ0H = 35 T zeigt, dass die beobachtete Anisotropie von Feldern
mit ca. 7 T überwunden werden kann.

Bei den Untersuchungen an Einkristallen von Mn5Ge3 stand die Richtungsab-
hängigkeit des thermomagnetischen Verhaltens im Vordergrund. Die adiabatische
Temperaturänderung ∆Tad in gepulsten Felder und die isothermische Entropie-
änderung berechnet aus statischen Magnetisierungsmessungen, sowie die spezifis-
che Wärme wurden für Felder parallel und senkrecht zur weichen Achse der Mag-
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netisierung [001] bestimmt. Die isothermischen Magnetisierungsmessungen erlaubten
die Bestimmung der uniaxialen Anisotropiekonstanten 2.ter und 4.ter Ordnung, K1

and K2. Der Einfluss der Anisotropie auf die magnetokalorischen Eigenschaften wird
diskutiert und mit den Ergebnissen für MnFe4Si3 verglichen. Letztere Verbindung
zeigt ebenfalls einen erhöhten magnetokalorischen Effekt, jedoch zeigt sich hier eine
Anisotropie in der leichten Ebene. Aufgrund der gewonnenen Ergebnisse, wird die
Bedeutung der magnetischen Anisotropie belegt und es werden neue Ansätze für
die Steigerung der Leistungsfähigkeit von magnetokalorischen Materialien in An-
wendungen vorgeschlagen.

Frühere Untersuchungen an Mn5Si3 belegten einen Phasenübergang zwischen
zwei antiferromagnetischen Phasen AF1 und AF2 bei 58 K und einem magneti-
schem Feld von 3.5 T, angelegt entlang der c-Achse. Unterhalb von 60 K führen
höhere magnetische Felder zu einem Übergang von der AF1 zur AF1′ Phase bevor
die AF2 Phase erreicht wird. Im Rahmen dieser Arbeit wurden die nukleare und
magnetische Struktur der AF1′ mit Hilfe von nicht polarisierter Neutronenstreuung
an einem Einkristall bei 50 K und 5 T untersucht. Bei diesen Bedingungen, wurde
eine orthorhombische Kristallstruktur mit der Symmetrie Ccmm gefunden. In der
Literatur wird die magnetische Struktur der AF2 Phase als kollinear beschrieben,
während die magnetische Struktur der AF1 Phase nicht kollinear und nicht kopla-
nar ist. Im Rahmen dieser Arbeit, zeigen die besten Strukturverfeinerungen, dass
die magnetische Struktur der AF1′ Phase azentrische orthorhombische Symmetrie
aufweist. Die magnetischen Momente auf allen Mn-Lagen sind dabei größtenteils
koplanar angeordnet.
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Chapter 1

Introduction

1.1 The magnetocaloric effect (MCE)

1.1.1 Background: Introduction and history

The search for more efficient use of energy and the need to reduce the emission
of greenhouse gases leads to high interest in utilizing alternative refrigeration tech-
nologies which can replace the existing conventional vapor compression technologies.
Magnetocaloric cooling is an energy-efficient and environmentally friendly method
for cooling based on the magnetocaloric effect. The magnetocaloric effect (MCE)
is described as the entropy changes of magnetic materials in an applied magnetic
field which leads to a change of temperature (heating or cooling) of the material [1].
This effect is an intrinsic property of any magnetic compound, and it is largest at
(or near) a phase transition.

MCE was first discovered experimentally by Warburg in 1881 when he found
that iron heats up or cools down under varying magnetic field [2]. But it was not
explained theoretically until 1918 when Weiss and Piccard [3] established the physi-
cal properties of the MCE. Later, Debye [4] and Giauque [5] proposed independently
the possibility of reaching very low temperatures -even lower than of liquid helium-
by adiabatic demagnetization (ADM). In 1933 Giauque and MacDougall verified
this method by experimentally demonstrating the ADM in paramagnetic salts and
employed this in the first adiabatic demagnetization refrigerator that reached 0.25
K [6]. In 1949, Giauque received the Nobel Prize in physics for his work on magnetic
refrigeration.

Using the MCE for cooling achieved advances in the years between 1933 and
1997. In 1976, Brown designed the first magnetic refrigerator working near room
temperature using the ferromagnetic material gadolinium [7], [8]. After this, Green
et al. [9] built a device that was able to cool a load besides the magnetocaloric
material itself and the heat exchange fluid [10]. In 1997 room temperatures magnetic
refrigerators proved its viability and competitivity with possible energy savings of
around 30% [11]. The apparatus working with Gd as refrigerating material yield
a cooling efficiency of 60% of the Carnot efficiency, in comparison to about 40%
in the best gas-compressor refrigerators [12]. In the same year, the so-called giant
MCE was discovered in Gd5(Si2Ge2) [13], [14], which led to increase the interest in
the magnetic refrigeration at room temperature and many magnetic materials were
proposed and studied for this application [12], [15], [16]. The first room-temperature
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1.1. The magnetocaloric effect (MCE)

magnetic refrigerator using permanent magnets was built in 2001 at Astronautics
Corporation, after this, many different designs were found. Nowadays the research
is focused on finding the novel magnetocaloric materials, the suitable permanent
magnets and the best overall design [10].

1.1.2 Thermodynamics of Magnetocaloric Materials

The magnetocaloric effect results from the coupling of the magnetic sub system
with the magnetic field, which influences the entropy of the system. If one neglects
couplings between the lattice, magnetic and electronic degrees of freedom, the total
entropy S(T,H) can be written as summation of three parts: magnetic entropy
(SM), lattice entropy (SL), and electronic entropy (SE) as presented in equation
(1.1) [1],

S(T,H) = SM(T,H) + SL(T,H) + SE(T,H). (1.1)

Among the three, the magnetic entropy strongly depends on the magnetic field
~H, while usually the lattice and the electronic entropies are practically magnetic-
field independent.

The MCE is described as thermal response of a magnetic substance when sub-
jected to magnetic field change, and can be characterized by the temperature change
of the material in an adiabatic process (∆Tad), and by the entropy change in an
isothermal process (∆Siso). Figure 1.1 shows the total entropy (solid lines) as a
function of temperature for two different values of applied field. When the field is
applied adiabatically, the total entropy stays constant which force the system to
increase it’s temperature, ∆Tad = T1 − T0 (horizontal arrow in the figure). Alter-
natively, when the field is applied isothermally, the spins will align with the field
resulting in a reduction in the magnetic entropy and consequently reduction in the
total entropy, ∆Siso= S1 − S0 (vertical arrow in the figure) [17].

The total differential of the entropy as a function of the temperature and mag-
netic field can be written as [17]–[19]:

dS(T,H) =

(
∂S(T,H)

∂T

)
H

dT +

(
∂S(T,H)

∂H

)
T

dH. (1.2)

By using the Maxwell relation(
1

µ0

)(
∂S(T,H)

∂H

)
T

=

(
∂M(T,H)

∂T

)
H

, (1.3)

where S is the total entropy, H is the magnetic field and M is the magnetization,
∆Siso can be calculated by integration for an isothermal process:

∆Siso(T,∆H) =

∫ H1

H0

(
∂S(T,H)

∂H

)
T

dH = µ0

∫ H1

H0

(
∂M(T,H)

∂T

)
H

dH. (1.4)

This equation states that the change in isothermal entropy is proportional to the
integral over the derivative of magnetization with respect to the temperature and
magnetic field change.
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Chapter 1. Introduction

Figure 1.1: Entropy-Temperature diagram illustrating the existence of the magneto
caloric effect at constant pressure and two different magnetic fields [modified from
[17] ].

From δQ = TdS and and the definition of the heat capacity CP,V = δQ
δT

at
constant pressure or volume, we find:(

∂S(T,H)

∂T

)
H

=

(
Cp(T,H)

T

)
H

. (1.5)

Both ∆Tad and ∆Siso can be calculated by combining equation (1.5) with equa-
tion (1.3):

∆Siso(T,∆H) =

∫ T

0

(
Cp(T,H1)− Cp(T,H0)

T

)
dT. (1.6)

∆Tad(T,∆H) = −
∫ H1

H0

T

Cp(T,H)

(
∂S(T,H)

∂H

)
T

dH

= −µ0

∫ H1

H0

T

Cp(T,H)

(
∂M(T,H)

∂T

)
H

dH.

(1.7)

In the case that the heat capacity is independent of field then ∆Tad is related to
∆Siso as follows:

∆Tad(T,∆H) = − T

Cp

∆Siso(T,∆H). (1.8)

These equations play an important role in the understanding of the MCE and
searching for magnetocaloric materials (MCM) with large MCE. From theses equa-
tions, it is shown that MCE is large when ((∂M/∂T )H) is large and C(T, H) is small.
Eminently large MCE can be seen close to the phase transition where ((∂M/∂T )H)
has a maximum value [17]. There are two types of MCE: (1) direct MCE where
((∂M/∂T )H) < 0 resulting in ∆Siso < 0 and ∆Tad > 0 which means the material

3



1.1. The magnetocaloric effect (MCE)

heats up when the external magnetic field is applied adiabatically and (2) the so-
called inverse MCE where ((∂M/∂T )H) > 0 resulting in ∆Siso > 0 and ∆Tad < 0
which means the material cools down when the external magnetic field is applied
adiabatically. In general, the inverse magnetocaloric effect is less common; on the
other hand it is quite common in antiferromagnetic compounds such as Ni50Mn34In16

[20], Mn3GaC [21] and Mn5Si3 [22].

1.1.3 Measurement of the magnetocaloric effect

The magnetocaloric effect can be measured directly or calculated indirectly [23]. In
the direct method, the change in adiabatic temperature of the sample (∆Tad) is
obtained by measuring its initial (T0) and final temperature (Tf ) when an external
field is changed adiabatically from H0 to Hf , where ∆Tad(T0, Hf −H0) = Tf − T0.
The temperature change of the sample can be detected using a sensor in direct
thermal contact to the sample (this technique is suitable for strong magnetic field
and large temperature change), or by using non-contact methods, for example a
method based on thermoacoustic principle where the pressure waves induced from
the sample with periodically changing surface temperature can be monitored by a
sensitive microphone, and this technique is suitable for weak magnetic field and small
change in the temperature [17], [24], [25]. A sufficiently fast change in the magnetic
field is required for the direct measurements of the MCE to assure the adiabatic
conditions. For this two different ways can be used: first, moving the sample in
and out of constant magnetic field [25], second, using fixed sample and changing
the magnetic field [24]. Using electromagnets or permanent magnets will limit the
magnetic field strength to less than 2 T, and using superconducting magnets will
limit the magnetic field up to 10 T [17].

By considering different sources of error, the experimental accuracy of the direct
method is within 5-10%. This depends on different factors such as errors in the ther-
mometry and field setting, the quality of thermal insulation of the sample and the
quality of the compensation plan that is used to cancel the effect of the fast change
in the magnetic field (dB/dt contributions) on the temperature sensor reading [19],
[26].

Different from the direct measurements of the MCE which give the change in adi-
abatic temperature only (∆Tad), indirect calculations of MCE give an access to both
the change of isothermal entropy (∆Siso) and the change in adiabatic temperature.
∆Siso can be estimated from isothermal magnetization measurements by numerical
integration of equation (1.4), and ∆Tad can be calculated from the combination of
magnetization and heat capacity measurements by solving equation (1.8). Most of
the available MCE studies are based on the calculated ∆Siso. The accuracy of ∆Siso
value calculated from magnetization data depends on the accuracy of temperature
and field measurements, and on the accuracy in the numerical processing of the
experimental data. The error in ∆Siso is reported to be within 3-10%, which makes
this technique popular [19], [27]. The accuracy of ∆Siso and ∆Tad calculated us-
ing heat capacity data depends on the accuracy of the heat capacity measurements
(C(T )H) and data processing.

In the context of this thesis, the MCE has been measured directly in pulsed
magnetic field up to 50 T using a thermocouple in contact with the sample surface
(the technique is described in details in chapter 3) and calculated indirectly in DC
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magnetic fields.

1.1.4 Refrigeration capacity

The cooling power of the magnetic refrigerants for use in the magnetic refrigeration
can be evaluated using the refrigeration capacity (RC), which was proposed by
Gschneidner et.al. [28]. Refrigeration capacity is defined as:

RC =

∫ T2

T1

∆SM(T )dT, (1.9)

where T1 and T2 are temperatures of the hot and cold sinks, respectively, and
∆SM(T) is the refrigerant’s entropy change as a function of temperature. Thus, the
quantity RC is a measure of how much heat can be transferred between the cold
and hot sinks in one ideal refrigeration cycle.

In general, larger RC for the same field change indicates a better magnetocaloric
material. For materials exhibiting hysteresis, the energy loss during one field cycle
should be taken into account when evaluating the goodness of a magnetic refrigerant.
This can be done by calculating the effective refrigeration capacity RCeff which can
be obtained by subtracting the average hysteretic loss from RC [29], [30]. The energy
loss is approximately taken as one half of the area enclosed by a magnetization loop:
Q = −1/2

∮
MdB

1.1.5 Magnetic refrigeration cycle

Figure 1.2 shows simple magnetic-refrigeration cycle. Magnetic material in low and
high fields is shown in yellow and green colors, respectively. (1) A magnetic material
is considered. (2) When an external magnetic field is applied under adiabatic condi-
tions, the randomly oriented magnetic moments align parallel to the field, therefore
the magnetic part of the entropy (SM) is decreased, which force the lattice entropy
(SL) to increase in order to keep the change of total entropy equal to zero for an
adiabatic process. This increase in the lattice entropy causes the magnetic material
to heat up. In the process from (2) to (3), heat-transfer medium -such as water or air
for room temperature cooling and helium or hydrogen for low temperatures- is used
to cool down the magnetic material to its initial temperature (the value in step (1)).
After this, (4) the magnetic field is turned off (adiabatic demagnetization process).
The magnetic moments randomize again, causing an increase of SM , which in turn
results in a decrease of SL and cooling of the magnetic material below the initial
temperature. This whole cycle is the basis for the building of a magnetic refrigerator
and the magnetocaloric materials are at the heart of every magnetic refrigeration.
So tremendous efforts have been made to search for suitable magnetocaloric mate-
rials, and some of them will be discussed in more details in the following section
[31].

1.1.6 Magnetocaloric Materials

There are several promising magnetic materials with large MCE and tunable Curie
temperature (TC can be tuned by doping [32]), and since MCE is highest around
the magnetic phase transitions, these materials can be classified in to two types
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1.1. The magnetocaloric effect (MCE)

Figure 1.2: Schematic of a magnetic-refrigeration cycle [taken from [31]].

according to the nature of their magnetic phase transition: first order (FOPT) and
second order (SOPT) phase transition materials. A FOPT exhibits a discontinuity
in the first derivative of the free energy, whereas, a SOPT is continuous in the first
derivative, but shows discontinuities in the second derivative of the free energy with
respect to the thermodynamic variables.

Materials undergoing FOPT can show magnetic and structural transitions si-
multaneously and they were reported to have the highest MCE due to their abrupt
change in the magnetization as function of temperature, resulting in a high MCE
in a narrow temperature range. However, many of these materials need high mag-
netic fields to excite the magnetostructural transition, and this transition is usually
accompanied by a sudden change in the unit cell volume which limits the cycla-
bility of these materials. They also have a narrow ∆Siso peak and large magnetic
and thermal hysteresis, which affect the reversibility of the magnetocaloric effect -
Indeed, the reversibility of the magnetocaloric effect, being essential for magnetic
heat pumps, strongly depends on the width of the thermal hysteresis. Therefore,
more research efforts have been directed to find out how the hysteresis can be made
narrower by manipulating the microstructure or by tuning the composition [33].
Moreover, FOPT materials usually contain expensive elements (e.g. Gd) or toxic
elements (e.g. As) or require complicated and costly synthesis techniques.

On the other hand, SOPT materials have no thermal hysteresis and the transi-
tion spreads out over a broader temperature interval, but they have smaller ∆Tad
and ∆Siso values (lower MCE) [34]. In general, the choice between an FOPT and
SOPT material is not easy, and the search for suitable materials combining several
advantageous properties for applications of the materials is still ongoing.

For FOPT materials, as was mentioned before, a sharp magnetization drop is
observed, while for SOPT materials the magnetization changes smoothly around TC .
For the specific heat capacity, the SOPT materials show a peak-like shape for small
magnetic fields. The peak broadens and it’s maximum decreases with increasing
field without noticeable shift in the peak temperature. On the other hand, the
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FOPT materials show a sharp peak in the specific heat capacity with a higher peak
maximum, comparing to the SOPT materials, and a clear shift in the peak position
with increasing field.

Theoretically, the properties for the optimum room temperature magnetocaloric
materials can be summarized as: Non-toxic, cheap elements and low fabrication
costs, large ∆Siso and ∆Tad, no/small thermal and magnetic hysteresis, no/small
thermal volume change, temperature range of good performance from 40 to 50 K,
stable (low brittleness, solubility and corrosion), good thermal conductivity and
large electrical resistivity to minimize eddy currents [10], [35]. Figure 1.3 shows
a comparison of some of the most investigated and promising FOPT and SOPT
magnetocaloric materials in plots of ∆Siso and ∆Tad versus transition temperature.

Figure 1.3: (a) Maximum isothermal entropy change versus peak temperature for
field change of 5 T for different families of MCM [taken from [34]]. (b) Adiabatic
temperature change versus transition temperature for field change of 2 T for different
MCM that have FOPT (Tm) (solid filled pattern) or SOPT (Tc) (hatched pattern)
[taken from [32]].

1.2 The Mn5−xFexSi3 series and Mn5Ge3 compound

The Mn5−xFexSi3 (0 ≤ x ≤ 5) based system as well as Mn5Ge3 are interesting
candidates for the study of their magnetocaloric properties. The compounds are
made up of abundant and non-toxic elements, and they are less brittle compared
to the competing materials. It is also possible to synthesize them as large single
crystal -which is impossible for most of the MCM which are usually only available
in polycrystalline form. This opens the way to use a series of experimental techniques
that are not applicable to polycrystalline samples and thus allows obtaining more
profound knowledge about the basic mechanism of the MCE.

Figure 1.4 (a) and (b) shows the composition magnetic phase diagram in the
Mn5−xFexSi3 system and the entropy changes for these materials determined from
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1.2. The Mn5−xFexSi3 series and Mn5Ge3 compound

polycrystalline samples. The compounds undergo a variety of magnetic transitions
which are accompanied by a moderate MCE at various transition temperatures de-
pending on the value of x. Two different antiferromagnetic phases are observed for
the Mn-rich compounds (x = 0, 1, 2, 3). The paramagnetic phase transforms to
the antiferromagnetic structure AF2, and if the temperature is further lowered, a
second transition to antiferromagnetic structure AF1 occurs in all the four com-
pounds. While the transition temperature P-AF2 increases with increasing x, the
temperature for the transition AF2-AF1 decreases with increasing x.

On the other hand, for the Fe-rich compounds (x = 4 and 5), the magnetic
ordering of the compounds is dominated by ferromagnetic interactions and both of
MnFe4Si3 and Fe5Si3 show only one magnetic transition to ferromagnetic ordered
phase FM.

In general, changing the Fe percentage in the compound affects both the transi-
tion temperature and the change in magnetic entropy- generally the entropy increase
with increasing Fe content except for the compound x=5, which has a lower entropy
change than the x=4, which has the highest entropy change in the whole series.

The investigation of the MCE in this family shows that the compounds with x=
3, 4, 5 show a direct MCE while for Mn5Si3 an inverse MCE is reported [22], [36].
According to [22] no field-induced magnetic-phase transitions have been observed in
compounds with x = 1 and 2. For the Mn5Ge3 compound, a phase transition from a
paramagnetic to a ferromagnetically ordered state occurs close to room temperature
and it is accompanied with a modestly large direct MCE.

Figure 1.4: (a) Magnetic phase diagram [modified from [22]] and (b) magnetic en-
tropy changes for two different magnetic field changes for the Mn5−xFexSi3 system
[taken from [22]].

The parent structure for the compounds in Mn5−xFexSi3 series and for Mn5Ge3
is identical, see figures 1.6 and 1.7. They crystallize in the hexagonal space group
P63/mcm, with three crystallographically independent sites M1 (Wyckoff position
4d), M2 (Wyckoff position 6g) and Si (Ge) (Wyckoff position 6g), which for com-
pounds in the series Mn5−xFexSi3 are occupied by Mn and Fe in different ratios de-
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pending on the composition. It was found that the M1 site is preferentially occupied
by Fe while the M2 site preferentially incorporates Mn. Atoms on the M2 site are
located at the corners of distorted octahedra which are interconnected via common
triangular faces and form chains of composition ∞[�(M2)3] along the c-direction. M1
site is surrounded by six Si (or Ge) atoms at a distance of 2.4 Å (2.6 Å), these atoms
form another distorted octahedra and share triangular faces with neighboring octa-
hedra [M1Si6] ([M1Ge6]) in the form of infinite chains of ∞[(M1)Si3] (∞[(M1)Ge3])
along the c-axis. In the present study the compounds Mn5Si3, MnFe4Si3 and Mn5Ge3
are of special interest, and the literature corresponding to them will therefore be re-
sumed in more detail in the following sections [15], [36]–[38].

Mn5Si3 compound

The magnetic phase diagram of Mn5Si3 as a function of temperature and field applied
parallel to c-axis is shown in figure 1.5 (left) [39]. The Mn5Si3 compound exhibits
inverse MCE related to the antiferromagnetic first order phase transitions AF1 to
AF2 at TN1 ≈ 66 K, and direct MCE related to the antiferromagnetic first order
phase transitions AF2 to the paramagnetic phase at TN2 ≈ 99 K [40]–[42]. Neutron
diffraction experiments under magnetic field, supported by electrical transport and
magnetization measurements, showed a transition from AF1 to AF2 phase at 58
K and a magnetic field of 3.5 T applied along the c-axis [40]. Below 60 K, higher
magnetic fields induce a transition from the AF1 to AF1′ before reaching the AF2
phase. Above 60 K, the AF2 phase is stable up to the maximum investigated field
of 10 T.

The magnetic structures of the AF1 and AF2 phases have been established using
single crystal neutron diffraction and spherical polarimetry (see figure 1.5; [12],
[42]). Coinciding with the paramagnetic-to-AF2 transition, the symmetry of the
crystal structure is reduced to the orthorhombic space group Ccmm, where the
orthorombic unit cell dimensions in relation to the hexagonal cell dimensions are:
ao ≈ ah, bo ≈

√
3ah, co ≈ ch. In this phase, the Mn2 site splits into two inequivalent

positions (Mn21 and Mn22). Magnetic reflections follow the condition h + k odd,
the extinction conditions for the Bravais lattice centering and corresponding to the
magnetic propagation vector k= (0, 1, 0). Mn1 and Mn21 atoms have no ordered
magnetic moments, while the Mn22 carry magnetic moments of 1.48(1)µB aligned
parallel and antiparallel to the b-axis (collinear antiferromagnetic phase) (figure 1.5
middle) [12].

According to [42], the magnetic structure stable below 66 K has monoclinic
symmetry, while the nuclear structure can still be described with orthorhombic
symmetry. The magnetic moments on the Mn sites order in a non-collinear and
non-coplanar structure. Mn1 atoms carry magnetic moments of 1.20(5) µB oriented
parallel and antiparallel to the direction with polar coordinates θ = 116(1)◦ and
φ = 105(1)◦ where θ is measured from [001] and φ is measured from (010). The
Mn21 atoms still do not have ordered magnetic moments like in the AF2 phase.
The Mn22 site splits into two inequivalent positions (Mn23 and Mn24). The Mn23
atoms have magnetic moments of 2.30(9) µB at ±θ = 70(1)◦ and φ = 93(1)◦ and the
Mn24 atoms carry magnetic moments of 1.85(9) µB at ±θ = 21(1)◦ and φ = 11(7)◦

(figure 1.5 right) [42]. The non-collinearity is attributed to frustration, and the
variation of the magnetic moments is supposedly related to the instability of the
Mn moments, frustration and single ion anisotropy.
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1.2. The Mn5−xFexSi3 series and Mn5Ge3 compound

In [43], the magnetic structure of the different phases of the Mn5Si3 compound
was studied by neutron powder diffraction, where it was found that the AF2 has
a nearly equivalent magnetic structure to the one described in [12] (orthorhombic
symmetry Ccmm space group), with a magnetic moment of 1.53(6) µB at 90 K.
Neutron powder data collected at 80 and 70 K show similar magnetic ordering with
magnetic moments of 1.74(6) µB and 1.89(6) µB, respectively, yet a small tilt in
the magnetic moments with respect to the b-direction was observed (3◦ at 80 K
and 8◦ at 70 K). For the AF1 phase, the magnetic structure was described with
monoclinic symmetry, with magnetic moments on all the Mn sites (in difference to
the observation of [42]). Mn1, Mn24, Mn23 and Mn21 have magnetic moments of
0.51(3), 2.21(4), 2.66(4) and 0.14(3) µB, respectively1.

The magnetic structure of the AF1′ phase was investigated using neutron powder
diffraction under a magnetic field of 4 T and temperatures from 50 to 5 K. The data
shows orthorhombic symmetry. Annihilation of the magnetic moment on the Mn1
site and contraction of ∼1% of the cell volume were indicated from the refinement
[43].

According to [39], the field-induced phase AF1′ must host a non-collinear mag-
netic structure (as shown in the (T-H) phase diagram, figure 1.5 left) as it has non
zero hall resistivity, however, neutron single crystal studies under magnetic field
to confirm the hypothesis of the magnetic structure of the AF1′ phase is not yet
established and it will be discussed in the scope of this thesis.

Figure 1.5: (Left) magnetic phase diagram of Mn5Si3. Data obtained from Hall
Effect measurements (red open symbols), resistivity (blue dots), and magnetization
(orange triangles) [taken from [39]]. Projection of the magnetic structure of Mn5Si3
along c-axis: (middle) collinear AF2 phase, (right) non-collinear AF1 phase. Violet:
Mn1, magenta: Mn2, yellow: Si. Solid lines indicate the orthorhombic unit cell.
The length of each arrow indicates the size of the local magnetic moment projected
to the plane of view. Blue triangles show the triangular spin arrangements formed
by moments on the Mn1 and Mn2 sites [taken from [44]].

1designated as Mn1, Mn21, Mn22 and Mn23, respectively, in the original paper by [43].
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Mn5Ge3 compound

Mn5Ge3 shows a second order ferromagnetic phase transition close to room tem-
perature, in the range from 290 to 304 K [45]–[50], and features a modestly large
magnetic entropy change of about 3.8 J/kg·K for a field change of 2 T [45] and small
magnetic anisotropy [46], [51].

The magnetic structure of Mn5Ge3 was determined using neutron single crystal
diffraction measurements, where it was found that at saturation the Mn2 atoms in
the WP6g positions have magnetic moments of 3.23(2) µB, while the Mn1 at WP4d
atoms have magnetic moments of 1.96(3) µB. Different strengths of the Mn-Mn
interaction was reported as the major factor for the difference in the moments on
the two sites [52]. For both atoms the spins in the magnetically ordered phase are
aligned parallel to the [001] axis [37] (figure 1.6 (right)). From neutron diffraction
experiments at different temperatures, no changes in the symmetry of the crystal
and magnetic structure were seen [37], [52].

Figure 1.6: (Left) Projection of Mn5Ge3 structure in space group P63/mcm along the
[001]-direction. Sites occupied by Mn1 are shown in pink (4d), sites occupied by Mn2
are shown in magenta (6g); Ge atoms are shown in grey (6g) and [MnGe6]-octahedra
are indicated in blue. (Right) Schematic diagram illustrating the ferromagnetic
structure of Mn5Ge3, projection slightly tilted from the [110]-direction. The length
of the arrows corresponds to M = 1.96(3) µB and 3.23(2) µB for the 4d and 6g sites,
respectively [taken from [51]].

MnFe4Si3 compound

The MnFe4Si3 compound is the most promising candidate for applications in the
series Mn5−xFexSi3 as it has transition from paramagnetic to ferromagnetic state
near 300 K [15], [53] and an isothermal entropy change of about 2 J/kg·K for a
field change of 2 T [16], [53]. A new structural model with space group P 6̄ was
found at 380 K using X-ray and neutron single crystal diffraction refinements [53].
In this lower symmetrical space group, six symmetrically independent sites exist
(M1a/M1b; M2a/M2b; Si1a/Si1b), comparing to three symmetrically independent
sites in P63/mcm (M2 at WP6g; M1 at WP4d; Si at WP6g).

In the new model, Mn and Fe atoms occupy the transition metal sites (M2a, M2b)
by different proportions: M2a, 37.6(2)% Mn and 62.8(2)% Fe; and M2b, 27.7(7)%
Mn and 72.3(7)% Fe. This indicates partial ordering of Mn and Fe on these sites,
which is not in accordance with a c-glide plane and therefore causes the symmetry
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1.2. The Mn5−xFexSi3 series and Mn5Ge3 compound

reduction of the space group. The other sites (M1a, M1b) are completely filled by
Fe atoms as shown in figure 1.7 (left) [53]2.

Neutron diffraction data at 200 and 380 K and X-ray data sets in the range
from 425-200 K were used to study the influence of temperature on the crystal
structure. Although there is a clear response of the lattice to the magnetic ordering,
no change of the structural symmetry was seen in the whole studied temperature
range. In general, within the [M2a6] and [M2b6] octahedra, the distances between
atoms of the same type remain constant as a function of temperature while they
change between atoms of different type (with decreasing temperature, the distance
between Mn2a/Fe2a increases while between Mn2b/Fe2b decreases). The shape and
size of the [M1Si6] octahedra are hardly changing with temperature.

A refinement of the magnetic structure in the space group Pm′ showed that
atoms on the mixed occupancy site (M2a, M2b) carry ordered magnetic moments of
1.5(2) µB. A trial refinement of the magnetic moments on the pure iron sites (M1)
led to a value of 1.1(1.2) µB, not larger than the corresponding standard deviation
and therefore was not taken into account [53]. Magnetization measurements per-
formed on single crystals showed that this compound has strong anisotropy of the
magnetization and of the magnetocaloric effect, with ferromagnetic ordering of the
spins on the Mn/Fe sites in the a, b-plane as the easy plane of magnetization [53],
[54].

Figure 1.7: (Left) Projection of the structure of MnFe4Si3 in space group P 6̄ at
380 K along [001]-direction. Sites occupied by Mn and Fe are shown in magenta
(M2a) and grey (M2b); sites exclusively occupied by Fe are shown in orange (M1);
Si atoms are shown in blue. Magenta and grey sites are in different layers along the
[001] direction. (Right) projection of the ferromagnetic structure of MnFe4Si3 along
[110] direction in magnetic space group Pm′ [taken from [53]].

2M1 and M2 are designated in opposite way in [53].
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Chapter 2

Theoretical Background

2.1 Basics of Magnetism

Magnetic moment is the fundamental object of magnetism. Due to the diverse
interaction between the magnetic moments as well as the interaction between the
magnetic moments with the lattice and the applied magnetic field, materials show
different magnetic properties.

2.1.1 Exchange interaction

The Hamiltonian describing the exchange interaction between two neighboring spins
~S1 and ~S2 can be expressed as:

Ĥ = −2J ~S1 · ~S2. (2.1)

Depending on the exchange constant J , ~S1 and ~S2 align parallel or antiparallel
to minimize the energy. Anyhow, spins in solids usually experience exchange inter-
action with more than one neighboring atom. Therefore, in a many-body system,
the Hamiltonian can be written as:

Ĥ = −2
∑
i<j

Jij ~Si · ~Sj, (2.2)

where Jij is the exchange constant between the ith and jth spins. Equation 2.2 is
known as Heisenberg Hamiltonian. From this relation we can see if the parallel or
antiparallel alignment of ~Si and ~Sj is favored according to whether Jij is positive or
negative, respectively [55], [56].

2.1.2 Magnetic Order

Depending on the interactions between magnetic moments, a solid can show dif-
ferent types of magnetic order. The four main types of collinear magnetism are
shown in figure 2.1. For the compounds of concern in this thesis, transitions from a
paramagnetic state to ferromagnetic and/or antiferromagnetic ordering occurs.

If the thermal energy is much higher than the interaction energy between the
spins, materials containing ions with partially filled shells exhibit a paramagnetic
state (PM, see figure 2.1(a)). The ions have magnetic moments but these moments
are disordered in zero magnetic fields.

13



2.1. Basics of Magnetism

When the exchange interaction between neighboring spins is J > 0, the moments
prefer to arrange parallel to each other, which results in a spontaneous magnetization
in the absence of external magnetic field. This is known as ferromagnetism (FM,
see figure 2.1(b)). The temperature at which the ferromagnetic material exhibits
the spontaneous magnetization is called Curie temperature TC . When the exchange
interaction is negative J < 0, an antiparallel arrangement is favored for neighboring
magnetic moments as depicted in figure 2.1(c), this is called antiferromagnetism
(AFM). The resulting arrangement can be considered as two sublattices (blue and
red), with the magnetic moments in both of them having the same magnitude, but
pointing in opposite directions (up and down). This means that no net magneti-
zation is expected for the perfect antiferromagnetic order. Ordering of this type of
magnetism occurs below a critical Néel temperature TN . If the two sublattices have
different magnitudes of the magnetic moments as shown in figure 2.1(d), then the
sublattices will not cancel each other and a net magnetization is expected. This is
known as ferrimagnetism order (FiM) [55].

Figure 2.1: A basic set of diagrams including the four main types of magnetism: (a)
paramagnetism (b) ferromagnetism, (c) antiferromagnetism and (d) ferrimagnetism.

2.1.3 The Weiss model of a ferromagnet

This section closely follows the explanation from [55]. A ferromagnet has a sponta-
neous magnetization even in the absence of an applied field. This effect is generally
due to exchange interactions. For a ferromagnet in an applied magnetic field ~B, the
appropriate Hamiltonian to solve is:

Ĥ = −
∑
ij

Jij ~Si · ~Sj + gµB
∑
j

~Sj · ~B. (2.3)

In the case of ferromagnetic alignment, the exchange constants for nearest neigh-
bors is positive (as explained in the subsection 2.1.1). The first term on the right is
the Heisenberg exchange energy. The second term on the right is the Zeeman energy.
For 3d transition metal ions, e.g. Mn in our compound, we often have quenched
orbital angular momentum ~L = 0 and ~J = ~S. µB is the Bohr magneton and equal
to 9.274 ×10−24Am2, g is the g-factor, and in our case it is equal to the spin part
which is equal to ≈ 2.

The effective molecular field at the ith site can be defined as:
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~Bmf = − 2

gµB

∑
j

Jij〈 ~Sj〉. (2.4)

The energy of the ith spin is due to a Zeeman part which equal to gµB ~Si · ~B and an
exchange part. The total exchange interaction between the ith spin and its neighbors
is −2

∑
j Jij

~Si · ~Sj, This term can be written in molecule field approximation as:

− 2~Si ·
∑
j

Jij〈 ~Sj〉 = gµB ~Si · ~Bmf . (2.5)

Therefore, the exchange interaction is replaced by an effective molecular field
~Bmf produced by the neighboring spins, so the effective Hamiltonian can be written
as:

Ĥ = gµB
∑
i

~Si · ( ~B + ~Bmf ), (2.6)

which looks like the Hamiltonian for a paramagnet in a magnetic field ~B+ ~Bmf .
For ferromagnets, as the dominant exchange interactions are positive, the molec-

ular field will align the neighboring magnetic moments. Since the molecular field
measures the effect of the ordering of the system, one can assume that

~Bmf = λ ~M, (2.7)

where λ is a constant called the Weiss molecular field coefficient, which param-
eterizes the strength of the molecular field as a function of the magnetization, and
for ferromagnets, λ > 0.

At low temperature, the moments can be aligned by the internal molecular field,
self-sustaining, even without any applied field being present. As the temperature
is increased, thermal fluctuations begin to gradually destroy the magnetic order-
ing, and at a critical temperature, Curie temperature for ferromagnets, thermal
fluctuations overcome the exchange interaction, thus the magnetic moments behave
independently and show paramagnetic behavior. This model is known as the Weiss
model of ferromagnetism.

To find solutions to this model, it is necessary to solve simultaneously the equa-
tions:

M

Ms

= BJ(y), (2.8)

y =
gJµBJ(B + λM)

kBT
. (2.9)

Equation (2.8) is the molecular field equation of state for ferromagnet, where Ms

is the saturation magnetization, Ms = ngµBJ , and BJ(y) is the Brillouin function,
giving by:

BJ(y) =
2J + 1

2J
coth

(
2J + 1

2J
y

)
− 1

2J
coth

y

2J
(2.10)

The temperature at which the transition occurs can be obtained by finding when
the gradients of the line M = kBTy/gJµBJλMs and the curve M = MsBJ(y) are
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equal at the origin. The transition temperature, known as the Curie temperature
TC , is then obtained as:

TC =
gJµB(J + 1)λMs

3kB
=
nλµ2

eff

3kB
(2.11)

Magnetic susceptibility and Curie Weiss law

Applying a small B field at T ≥ TC will lead to a small magnetization, so that the
y � 1 approximation for the Brillouin function can be used. Thus

M

Ms

≈ gJµB(J + 1)

3kB

(
B + λM

T

)
, (2.12)

so that

M

Ms

≈ TC
λMs

(
B + λM

T

)
, (2.13)

this can be arranged to give

M

Ms

(
1− TC

T

)
≈ TCB

λMs

, (2.14)

so that

χ = lim
B→0

µ0M

B
∝ 1

T − TC
=

C

T − TC
, (2.15)

χ is the magnetic susceptibility, C is the Curie Weiss constant and equation
(2.15) is known as Curie Weiss law.

Using the plot of the inverse magnetic susceptibility vs. temperature, and fitting
the data far above the critical temperature by Curie-Weiss law χ ∝ 1

T−θ , where θ
is usually called the paramagnetic Curie temperature or the Weiss temperature (as
shown in figure 2.2), 1/χ curve will cut the x-axis at positive value for ferromagnets,
and we expect θ = TC . The experimentally determined Curie-Weiss temperature
is often larger than TC . This discrepancy is largely due to the assumption that
the molecular field on one sublattice depends only on the magnetization of the other
sublattice, and correlation 〈~Si · ~Sj〉 are neglected in the molecule field approximation.
Close to TC the correlation become important and diverge for second order phase
transition.

From the plot, Curie Weiss constant can be calculated as C = 1/slope, the Curie
constant is defined as:

C =
NAµeff

2µB
2

3kB
, (2.16)

where NA is Avogadro’s number, kB is Boltzmann’s constant, µeff is the effective
magnetic moment, and µB is the Bohr magneton. For d transition metal ions, the
effective magnetic moment is usually given by the spin-only formula (assuming that

the orbital angular momentum is quenched 〈~L〉 = 0),

µeff =

√
4~S(~S + 1). (2.17)
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Experimentally determined effective moments are found using C value calculated
from the slope of 1/χ vs. T in equation (2.16), and the effective magnetic moment
can be calculated as µeff = 797.727

√
C in the SI units [55], [57].

Figure 2.2: Inverse magnetic susceptibility vs. temperature for paramagnetic
(black), ferromagnetic (red) and antiferromagnetic (green) systems. θ = - TN only
for simple two sublattice AFM, neglecting the correlations [Adapted from [55]].

2.1.4 Anisotropy

For some materials, it is easier to be magnetized along specific direction(s) than the
others, which means that the magnetization is no longer isotropic in all directions,
and this is what is called magnetic anisotropy. The preferred magnetization direc-
tions are called the easy axes or easy directions. The directions with the maximum
energy cost are known as hard-directions or hard-axes. The anisotropy depends on
temperature, and must tend to zero at TC if there is no applied field. There are
several types of anisotropy: shape anisotropy, magnetocrystalline anisotropy and
induced anisotropy. For bulk 3d material, magnetocrystalline anisotropy and shape
anisotropy, which is introduced by demagnetization factor, should be taken into
consideration in the first place [57].

Magnetocrystalline anisotropy

The magnetocrystalline anisotropy is an intrinsic property of the materials. A set
of crystallographic directions are energetically more favorable for the magnetic mo-
ment. As a consequence, magnetization becomes anisotropic when it is measured
along different crystallographic directions. The uniaxial anisotropy leads to an addi-
tional energy that is expressed for the hexagonal lattice, c-axis is the reference axis
as: Ea = K1 sin2 θ + K2 sin4 θ, where θ is the angle between the magnetization and
the easy axis, and K1, K2 are the anisotropy constants, E, K1 and K2 are energy
densities measured in Jm−3 (SI units). Only second (K1) and fourth order (K2)
anisotropy constants are considered as usually K1 is much larger than the following
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2.1. Basics of Magnetism

terms and hence, the higher order terms can be neglected. The anisotropy constants
are found to be strongly temperature dependent.

In practice, the method introduced by Sucksmith and Thompson [58] can be
used to calculate the K1 and K2 from a plot of the hard axis magnetization curve as
(µ0M)2 versus µ0H/M at each measured temperature (see figure A.4 as an example).
From Sucksmith and Thompson relation, for an easy axis anisotropy: K1 = ( M2

s ×
intercept)/2 and K2 = ( M4

s × slope × µ2
0 )/4. From the relation for the plane type

of magnetic anisotropy (where all the directions in this plane are easy axes): K1 = ((
M2
s × intercept) + 4 × K2) /-2 and K2 = ( M4

s × slope × µ2
0)/4. The anisotropy field

Ha ,which is defined as the field needed to saturate the magnetization of a uniaxial
crystal in a hard direction, can also be used to calculate K1 as: Ha = 2K1/µ0HMs,
where Ms is the saturation magnetization [55], [57].

MCE investigations and applications use typically polycrystalline materials. How-
ever, anisotropy affects the magnetic susceptibility and consequently also the magne-
tocaloric effect, as the magnetic response is different for field along an easy direction
or along a hard direction and the overall MCE will be the powder average. In an
ideal polycrystalline material all crystallite orientations occur with identical prob-
ability and the temperature-dependent magnetic susceptibility of an ideal powder
can be calculated from the weighted average of the magnetic susceptibilities of a
single crystal as 1/3 of the value parallel to a certain axis and 2/3 of the value
perpendicular to this axis. This relationship changes, if there is a stronger tendency
for the crystallites in a powder to be oriented more in certain directions, and, as
a consequence preferred orientation or texture arises. The presence or absence of
preferred orientation should thus have a direct influence on the overall magnetic
susceptibility and might be detrimental or advantageous for the size of the MCE.

The influence of anisotropy on the MCE has rarely been studied, despite the fact
that many of the candidate materials for applications crystallize in the hexagonal
(e.g. materials related to Fe2P [59], [60], La(Fe,Si)13 [61], [62] or MnAs [63], [64])
or tetragonal system (e.g. materials related to Mn2Sb [65]), where anisotropy is
inherently important due to the presence of one symmetry-salient direction. This
is mainly due to the fact that it is difficult to obtain most of these magnetocaloric
materials as single crystals.

As we have now succeeded to grow single crystals of the room temperature
magnetocaloric compounds Mn5Ge3 (exhibits easy axis anisotropy) and MnFe4Si3
(exhibits strong easy plane anisotropy), we particularly focus our investigations on
the elucidation of the direction dependence of the magnetocaloric effect in these
compounds.

2.1.5 Arrott plots

Curie temperature can be found using different techniques such as inflection point
method and the line projection method. Anyhow, determining the Curie tempera-
ture from the magnetic moments vs. temperature curves requires an applied mag-
netic field which influences the measurements and disturbs the temperature of the
samples (give different Curie temperature at different applied fields) especially for
the highly magnetocaloric materials. Moreover, for the second order materials, it
becomes hard to accurately determine the inflection point of the curves, and the
line projection method completely fails at high magnetic fields (the gradient of M-T
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curves decrease and the line cut the x-axis at a higher temperature than the actual
TC) [66].

In order to overcome the external factors such as the effect of the applied mag-
netic field and thermal effects, the Arrott plot technique is applied to the M-H
isotherms at temperatures near to the transition to determine the accurate Curie
temperature.

Landau theory of a ferromagnet in a magnetic field H implies that the free energy
is given by:

GL = AM2 +BM4 − µ0HM, (2.18)

where the coefficients A and B are temperature dependent. For T < TC , energy
minima at M = ±Ms imply A > 0 and B > 0. For T > TC , an energy minimum at
M = 0 implies A < 0 and B > 0. It follows that A must change sign at TC . It has
the form a(T - TC), where a is a constant independent of temperature, a > 0. The
equilibrium magnetization minimizes GL with respect to M; ∂GL/∂M = 0 implies

2AM + 4BM3 = µ0H. (2.19)

When the system is at a temperature exactly equal to TC , A = 0 and equation
(2.19) gives the critical isotherm:

M = (µ0/4B)1/3H1/3, (2.20)

whereas in the vicinity of TC , equation (2.19) gives:

M2 = (µ0/4B)H/M − (a/2B)(T − TC). (2.21)

This last equation is the basis of Arrott plots used for precise determination of the
Curie temperature. The M(H) curves at different temperatures around the expected
Curie temperature are plotted as H/M vs. M2. The isotherm that extrapolates to
zero is the one at the Curie temperature [55], [57], [67].

2.2 Specific heat capacity

Heat capacity is defined as the amount of heat dQ that has to be supplied to a
material in order to change it’s temperature T by dT, C = dQ/dT. One distinguishes
between Cp and Cv, the specific heat measured at constant pressure p or constant
volume v, respectively. At low temperature and for solids the difference between Cv
and Cp is small and it is often assumed that Cv ≈ Cp.

The experimentally determined heat capacity of solids contain many contribu-
tions, from which the most prominent ones are the magnetic and lattice contri-
butions. Additional contributions, for example from the impurities, also influence
the measured heat capacity data. Various models have been developed in order to
understand and mathematically describe the temperature dependence of the heat
capacity.

The total specific heat actually measured, Cp, is expressed as:

Cp = Clat + Cmag = Cel + Cph + Cmag, (2.22)

19



2.3. Basics of diffraction

where Clat represents the lattice contribution to the specific heat, including the
electron part Cel and the phonon part Cph. Cmag is the magnetic contribution to
the total specific heat capacity.

At low temperatures, the electronic and phonon contributions to heat capacity
can be written as:

Cp = Cel + Cph = γT + βT 3. (2.23)

γ is the Sommerfeld coefficient contained in the electronic component. Using
Debye T 3 law (detailed derivation is given in [68]) at adequately low temperatures

Cv ≈
12π4

5
NkB

(
T

θD

)3

, (2.24)

where N is the number of molecules, kB is Boltzmann constant. By fitting the
Cp(T)/T data to equation (2.23), β can be extracted and then the Debye tempera-
ture can be estimated as:

θD =

(
12π4Rn

5β

)1/3

, (2.25)

where R is the universal gas constant, n corresponds to the number of atoms per
formula unit, and θD is Debye temperature. So, by plotting Cp vs. T3, the Debye
temperature can be straightforward estimated [68].

At high temperatures, T →∞, Cv = 3 ·n ·R which is known as the Dulong-Petit
law.

The heat capacity Cp is connected to the change in isothermal entropy and the
change in adiabatic temperature as mentioned in the subsection 1.1.2, equations (1.5
- 1.8).

2.3 Basics of diffraction

Diffraction is a unique tool to explore the microscopic structure of materials. In this
thesis, different types of scattering techniques were used: Laue diffraction was used
to determine the orientation of the measured crystal, powder X-ray diffraction was
used to check the quality of the prepared samples and single crystal neutron diffrac-
tion was used to determine the magnetic structure of the AF1′ phase of Mn5Si3.

Diffraction by crystalline materials

The three dimensional periodicity of crystals can be represented by the so-called
crystal lattice. The repeat unit in form of a parallelepiped is known as unit cell.
If the vertices of all the unit cells are replaced by points, the result is the crystal
lattice in the form of a point lattice. A plane passing through three lattice points is
known as a lattice plane. Since all the lattice points are translationally equivalent,
there will be infinitely many parallel planes passing through all the other points of
the lattice. A set of equally spaced planes are known as a set of lattice planes. If
a plane of the set intercepts the X, Y, Z axes on a/h, b/k, c/l respectively, where
a, b, c are lattice parameters and h, k, l are Miller indices, then the set of planes are
described with (hkl), and they are separated by an interplanar spacing dhkl. Miller
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indices h, k, l are defined as the smallest integer multiples of the reciprocals of the
fractional intercepts which a plane makes with the crystallographic axes.

In diffraction experiments on crystalline samples, an incoming beam with wave
vector ~ki interacts with the sample which is characterized by a periodic arrangement
of atoms. As a result, the beam is reflected into a certain direction with wave vector
~kf . The scattering vector is defined as: ~Q = ~ki - ~kf . Constructive interference occurs
only when the path difference for elastically scattered waves by neighbouring lattice
planes is a multiple integer number n of their wavelength. In this case a diffraction
maximum can be observed. This is known as Bragg’s law and given by:

nλ = 2dhklsinθ, (2.26)

where λ is the wavelength of the incident beam and dhkl is the spacing between
parallel lattice planes with Miller indices hkl [68].

2.4 Crystal structure determination

2.4.1 Structure factor of X-ray scattering

For X-ray scattering, in which the X-rays interact with the electron cloud, the
structure factor Fhkl is the Fourier sum of the atomic form factors of all the atoms
in the unit cell, and the Fourier transform of the scattering density of the unit cell
as follow:

Fhkl =
∑
j

fj exp(i( ~Q · ~rj)) · Tj =
∑
j

fj exp(i(h · xj + k · yj + l · zj)) · Tj, (2.27)

and

ρxyz =
1

V

∑
hkl

Fhkl. exp(i(h · xj + k · yj + l · zj)) · Tj. (2.28)

Here, fj is the atomic form factor of the atom j, hkl is the Miller indices of the
reflections, xj, yj, zj are atomic coordinates of the atom j and V is the volume of the
unit cell. Tj is the Debye Waller factor which takes into account the displacement
of jth atom from its equilibrium position in the unit cell i.e. it describes the effect
of the lattice vibrations on the intensities of the Bragg peak.

2.4.2 Atomic form factor

The atomic form factor is a measure of the scattering power of the jth atom in the
unit cell.

The atomic form factor of X-rays is the Fourier transform of the atomic electron
density ρ(r) of a single atom:

f(Q) =

∫
d3rρ(r) exp(i( ~Q · ~rj)). (2.29)

In an X-ray diffraction experiment, the intensity of the scattered X-rays from
the electron cloud of the atoms is measured, and hence, the scattering power and so
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the atomic form factor increases with increasing number of electrons. Moreover, the
atomic form factor varies with scattering angle 2θ in a way that f(Q) decreases with
increasing scattering angle. Since the electrons are distributed over a finite volume
in an atom, interference takes place within the atom, and the overall effect of Zj
electrons is diminished. In the forward direction sinθ = 0 there is fully constructive
interference and fj = Zj. With increasing the scattering angle θ, the planes spacing
dhkl will decrease, as they are related by Bragg equation, to become of the same
order of size as the atom itself. This means that the scattered rays from the differ-
ent electrons in the atom will get out of phase with each other and so destructive
interference will happen between them. However, they will not cancel to zero as the
electron density and therefore the amplitude of scattering at the electrons in the
outer shells will be less than the ones at the electrons closer to the center of the
atom. When the dhkl spacing is large compared with the atom size (θ is small), the
diffracted X-rays from the different electrons in the atom will be a small fraction of
a wavelength out of phase with each other. The scattered rays will therefore largely
reinforce each other.

2.4.3 Structure factor of nuclear scattering

In the case of neutron scattering, the neutrons interact with the core of the atom
(not with the electrons like in X-ray scattering), and, since the core is more than
four orders of magnitude smaller than the typical neutron wavelength, the scattering
source is well described as a point source. Therefore, the nuclear neutron form factor
is a constant and does not depend on the value of Q. Accordingly, the structure
factor of the nuclear scattering is defined in a similar way as the one in the X-
ray scattering (equation (2.27)) but instead of the atomic form factor fj(Q), the
scattering lengths bj (constant for nucleus j) is used as given in equation (2.30):

Fhkl =
∑
j

bj exp(i(h · xj + k · yj + l · zj)) · Tj. (2.30)

The structure factors contain the complete structural information, including the
atomic coordinates, site occupations and thermal vibrations contained in Tj(Q). In
a diffraction experiment, the measured intensity of the reflections is proportional to
the square of the amplitude of the structure factor for each individual reflection as
I(Q) ∼ |Fhkl|2. The obtained intensities are proportional to the amplitude of the
structure factor, while the information on the phases (exp(i(hxj + kyj + lzj))) are
lost. This is known as the ”phase problem of crystallography” [69].

2.4.4 Neutron scattering lengths

The neutron scattering length, is the basic quantity which describes the strength
and character of the interaction of low-energy neutrons with the individual nuclei.
Neutrons interact strongly with nuclei through the strong nuclear force. The inter-
action potential of the neutron with a nuclei j at the position rj is well approximated
by the Fermi pseudo-potential as follow:

V (~r) =
2π~2

m
bjδ(r − rj). (2.31)
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Where bj is the scattering length of the jth atom, and m is the reduced mass of the
neutron-nucleus system. In nuclear scattering, the range of the interaction is much
smaller than the wavelength of the neutrons which enable the introduction of a point
like interaction. The scattering cross section approaches that of an impenetrable
sphere whose radius equals this length. So the scattering length is related to the
total scattering cross section as σ= 4π |b|2. The Fourier transform of a delta function
in equation (2.31) is unity and thus there is no form factor, which means that the
scattered amplitude is independent of Q.

The Q-independent neutron scattering lengths varies strongly for different ele-
ments and isotopes in a way that appears random with respect to the atomic number
(whereas the scattering length of X-rays generally increases with the atomic number)
and it can be positive or negative. Therefore, low-energy neutrons are an important
tool for the investigation of the properties of condensed matter since they can dis-
tinguish between neighbouring elements in the periodic table and different isotopes
[70].

2.4.5 Debye-Waller factor and atomic displacement param-
eters

Atomic thermal motion and positional disorder cause systematic intensity reduction
of Bragg reflections as a function of the scattering vector ~Q. This intensity reduction
is described by the Debye-Waller factor (DWF), which can be of purely thermal
origin (thermal DWF or temperature factor) or it may contain contributions of
static atomic disorder where the positions of atoms is slightly different in different
unit cells (static DWF). Usually, the global reduction of Bragg intensities by the
DWF is reflected in the experimental data, and the individual dynamic and static
contributions have to be estimated by adjusting individual atomic parameters in a
least-squares refinement.

The atomic thermal DWF is given by an exponential of the form

Tα( ~Q) = 〈exp(i ~Q · ~uα)〉, (2.32)

where uα is the individual atomic displacement vectors of atom αth from its equi-
librium position and the brackets stand for the thermal average over all contributions
uα. In the harmonic (Gaussian) approximation, this equation reduces to

Tα( ~Q) = exp(
−1

2
〈( ~Q · ~uα)2〉). (2.33)

The atomic isotropic/anisotropic displacement parameter (ADPs) describe the
averaged atomic mean-square displacements (of thermal origin), and they are equal
to the average of the product of the displacements along the i and j coordinate
directions, given as U ij = 〈uiuj〉. In the harmonic approximation, this is fully
described by a second-order tensor.

The simplest ADP model consists of isotropic displacements from the mean po-
sition (Uiso). The isotropic approximation treats atoms as diffuse spheres, assuming
equal probability of an atom to deviate in any direction regardless of its environ-
ment. On the other hand, the anisotropic approximation describes the volume in
which atoms are most probably located as ellipsoids. This is a symmetric 3 × 3
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tensor, which means that it contains six independent terms, and is generally repre-
sented by Uaniso, with individual terms represented by Uij which form the diagonal
and off diagonal terms of the 3 × 3 matrix, given as:U11 U12 U13

U21 U22 U23
U31 U32 U33

 ,

where U12 = U21, U13 = U31 and U23 = U32.
The interpretation of this tensor is shown in figure 2.3. Since the ellipsoid rep-

resents a volume in which the atom could be found, this volume must be positive.
An anisotropic ADP corresponding to an ellipsoid with a zero or negative volume is
said to be non-positive definite, and physically senseless.

Figure 2.3: Anisotropic ADP. U11 and U22 are the intercepts on the a∗ and b∗ axes;
U12 is related to the inclination of the ellipsoid with respect to the a∗ and b∗ axes.

In the case of the isotropic motion, all the off-diagonal terms are equal to zero
(U12 = U23 = U13 = 0) and the diagonal terms are equal (U11 = U22 = U33),
so only one parameter (Uiso) is used to describe the isotropic motion, where Uiso =
1
3
(U11 + U22 + U33).

Displacement parameters are mostly based on the Gaussian approximation. An-
harmonicity and disorder, however, might cause deviations from a Gaussian distri-
bution of the atomic displacements around the atomic position, and in this case
higher order tensors (4 × 4 or 5 × 5 matrix) have to be used [71], [72].

2.4.6 Magnetic form factor

The neutron has an intrinsic magnetic moment µn. The magnetic part of neutron
scattering results from the interaction of the magnetic moments of the neutron, with
the magnetic fields arising from the spin and orbital momentum of the unpaired
electrons in the sample. The magnetic scattering potential of a neutron in simplistic
terms is given as Vm = −~µn · ~B where for the interaction of the neutron with a

sample both the dipole field of the electron spin ~Bs = ~5 ×
(
~µe×~R
R3

)
and the field

from the orbital motion of the electron ~BL = e
c

(
~ve×~R
R3

)
have to be considered i.e.

Vm = −~µn · ( ~BS + ~BL) [73].
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The scattering cross section for a neutron changing the projection of the spin on
the z-axis (spin quantization axis defined by a small guide field) from Sz to S ′z can
be derived as: (

dσ

dΩ

)
mag

= (γnr0)
2
∣∣∣ 1

2µB
〈S ′z|~̂σ · ~M⊥Q|Sz〉

∣∣∣2 (2.34)

where γn is the gyromagnetic ratio for the neutron, r0 is the classical electron
radius, ~̂σ the neutron spin operator and ~M⊥Q is the magnetic interaction vector [73],
[74].

The ~M⊥Q term in equation (2.34) means that only magnetization components

perpendicular to the scattering vector ~Q can be measured.

~M⊥Q =
~̂
Q× ~M(Q)× ~̂

Q. (2.35)

Here,
~̂
Q is the unit vector along ~Q, ~M( ~Q) is the total Fourier transform of the

spin and orbital contribution to the magnetization density and is defined as:

~M( ~Q) =

∫ ∞
−∞

~M(~r)ei
~Q·~r d~r, (2.36)

where ~M(~r) is the total magnetization operator. Consequently, and in funda-
mental contrast to nuclear scattering, the magnetic scattering depends on a form
factor, similarly to X-ray scattering.

The magnetic form factor fm is given in terms of the Fourier transform of the
spin density distribution of a single magnetic atom as:

fm( ~Q) =

∫
atom

ρs(~r)e
i ~Q·~rd3~r. (2.37)

Here ρs(~r) is a normalized function which describes how the intensity of magne-
tization varies over the volume of the atom [75], [76]. As the magnetic scattering
takes place on the electron cloud of the atom, the magnetic form factor is compara-
ble to the atomic form factor for X-rays. However, as only the unpaired electrons in
the outer shell contribute to the magnetic moment, the form factor drops typically
faster than the X-ray form factor.

The magnetic form factor describing the ~Q-dependence of the magnetic neutron
cross section of a single magnetic ion can be determined using the following equation:

fm( ~Q) = 〈j0( ~Q)〉+ (1− 2

g
)〈j2( ~Q)〉, (2.38)

where g is Lande splitting factor given as g = 2 for the case of spin-only scat-
tering, j0 is the spherical Bessel function describing only the spin part, and j2 is
the spherical Bessel function describing the orbital contribution (the values of the
spherical Bessel functions have been tabulated in [70], [77].

2.4.7 Structure refinement

As mentioned before (in the subsection 2.4.3), in a diffraction experiment only the
amplitude of the structure factor is measured and the phase information is lost.
Several algorithms are used to solve this problem and obtain the phase information
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from the measured diffraction data, such as: the direct methods [78], Patterson
method [79] and charge flipping [80], [81]. As in our case, the starting model for the
refinement was taken from the literature and no structure solution was performed,
the methods for structure solution will not be explained in detail. Structure re-
finement can be performed using different programs and in this dissertation, the
program Jana 2006 [82] was used.

The basic idea for all structure refinement programs is the same; they propose
a model which is mathematically refined in a least-square process to the measured
data. The model consists of: atomic coordinates, atomic displacement parameters,
magnetic moments, scale factor, twin volume fraction and extinction correction.
For powder data, additional parameters have to be taken into account, such as:
the background parameters, zero shift, parameters defining the profile function for
approximating the peak shape, asymmetry parameters.

Least square method

The least square method is a statistical procedure to find the best fit model for a set
of experimental data points by a continuous optimization of the parameters of the
fit model. In order to reliably apply this technique, the number of the observations
must be much larger than the number of parameters, the ratio between them should
be at least 10:1. In crystallography, the least squares method is used in structure
refinement in order to minimize the differences, D, between the calculated intensities
obtained from a structural model Ihkl,cal, and the measured intensities Ihkl,obs by
varying the structural parameters, as given in equation (2.39)

D =
∑

w(Ihkl, cal − Ihkl, obs)2 = min. (2.39)

w is the weighting factor. The reflection file contains for each independent re-
flection the intensity I and its estimated standard deviation σ(I). The sigma’s are
strictly taken as a measure of accuracy of the corresponding intensity. The weight
of a reflection is based by default on this value and the program Jana does not make
any optimisation of the weighting scheme.

For the refinement based on Fhkl, the default weighting scheme in Jana is defined
by the expression w = 1/(σ2(|Fhkl,obs|)(uFhkl,obs)2). The coefficient u is the instability
factor, which can be defined by the user but it is not further refined by the program.
In all refinements in this thesis, u was chosen to be 0.01 [83].

The structure factors Fhkl are non-linear in the positional parameters (see equa-
tion (2.27)). For applying the least square method successfully, the structure factor
has to be linearized as a Taylor series with truncating the series after the linear term.
Because of this Taylor series approximation, iterative optimization procedures have
to be used to compute the parameters and several cycles of refinement are required
where each cycle provides the starting values for the next one. The refinement is
finished when the difference D is zero or the change in the values of the parameters
is very small. In Jana, the refinement is stopped if the maximum of the ratio of the
change of the parameters over their standard deviation is less than a specific value
defined by the user, and in all the refinements in this thesis, it was chosen to be 0.05
[84], [85].
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Le Bail method

In a powder diffraction experiment, the measured pattern contains information
about the structural parameters such as lattice parameters and atomic positions,
and information about the instrumental parameters such as zero shift and profile
function. Polycrystalline samples -in an ideal case- are composed of statistically
distributed grains in all possible orientations. Therefore, for a given 2θ angle, re-
flections from different Miller planes can fulfill Bragg’s equation simultaneously and
reflections from the different planes with equal d-spacing or with similar d-spacings,
if the difference in d is below the instrumental resolution, overlap.

This reduces the amount of information that can be obtained from the measured
diffractogram compared with the ones that can be obtained from the integrated
reflections intensities that result from single crystal diffraction. In this thesis, the
LeBail refinement [86] was used in order to refine the lattice parameters and to check
the quality of the prepared samples and to make sure that no other impurity phases
exist in the prepared sample.

The LeBail refinement is a least squares algorithm which aims to minimize the
difference between the observed Ihkl,obs and calculated Ihkl,cal intensities at 2θi po-
sition as in equation (2.39). For the application of the LeBail refinement, pre-
determined lattice parameters have to be known. These parameters can either be
obtained from a structure solution or from indexing of the measured powder pat-
terns. In the ideal case, the space group is also known; anyhow, part of the infor-
mation of the space group symmetry can be deduced by analyzing the systematic
extinctions. Moreover, lattice parameters are also helpful for determining the space
group symmetry as they usually narrow down the possible crystal system.

From the lattice parameters and the space group symmetry, the initial positions
2θk (diffraction diagram) of all possible Bragg peaks can be obtained. The calculated
intensities Ihkl,cal can be found as:

Ihkl,cal =
∑
k

Ik ·G(2θi − 2θk) + bg (2.40)

where, Ik is the peak intensity at 2θk position, bg is a function to describe the
background. G(2θi - 2θk) is the profile function used to define the shape of the peak.
At the beginning, the peaks are fitted with arbitrary values for Ik, bg and G(2θi -
2θk). The difference between the calculated and the observed data is minimized by
adjusting the parameters describing the background, the lattice parameters, the zero
shift and the profile function. After this, a new diffraction diagram is calculated and
again compared with the measured data. This is repeated until a good agreement
between the two diagrams is reached. The quality of the refinement can be checked
by the so-called R-factors given in the next subsection.

The zero point shift is an instrumental parameter that has a constant value,
which has to be added to the calculated peak positions in order to correct the shift
in the zero point in 2Θ due to a non-ideal centering of the sample in the beam.

The profile function, which defines the shape of the peaks, was always chosen in
this thesis to be a pseudo Voigt function, given as:
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G(2θi − 2θk) = µ ·

( √
4

πHk,Lorentzian

)(
1

1 + 4X2
ik

)
+

(1− µ)

( √
4 ln 2√

πHk,Gaussian

)
exp(−4 ln 2 · X2

ik)

(2.41)

The pseudo Voigt function is a a mixture of Gaussian and Lorentzian profile,
which are both normalized to their half maximum widths Hk. The ratio of each
part is defined by the mixing parameter µ. The parameter Xik is given by (2θi -
2θk)/Hk [84].

The full width at half maximum parameter Hk, Lorentzian depends on the fit
parameter Lx and Ly as:

Hk,Lorentzian = Lx · tanθ +
Ly
cosθ

(2.42)

Lx is proportional to the reciprocal crystallite size and hence, it is correlated with
the coherently scattering volume. Ly is an indicator for a possible microstrain on
the sample. The half maximum width of the Gaussian part is given by the so-called
Caglioti function, which contains the angle independent fit parameter GW and the
angle dependent parametera GU and GV , as [84]:

Hk,Gaussian =
√
GW +GV · tanθ +GU · tan2θ (2.43)

Agreement factors

The internal R-value Rint

In order to have a first impression about the quality of the measured data, the value
of the internal agreement factor Rint, which is calculated before the refinement and
forms the basis for the determination of the Laue-group, can be checked. Rint is
defined as:

Rint =
∑
i

∑
j

F 2
hkl, j − 〈F 2

hkl, i〉
〈F 2

hkl, i〉
. (2.44)

In equation (2.44), i is running over all independent reflections measured in the
experiment, whereas j runs over all equivalent reflections, corresponding to the i-
th independent reflection, merged under the selected point group symmetry. And

〈F 2
hkl, i〉 =

∑
j=1...n

F 2
hkl, j

n
.

The higher the crystal symmetry, the more reflections are merged. This is ex-
pressed by the so-called redundancy, which is equal to the total number of the re-
flections divided by the number of the averaged symmetry independent reflections.

Agreement factors for single crystal data

The overall agreement factor R and its weighted residual wR are considered in
order to evaluate the quality of the refined structural models from single crystal
data. These factors measure the agreement between model and measured data and
one has to distinguish between R factors of refinements based on F or F 2 as:
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R1 =

∑
||Fhkl, obs| − |Fhkl, cal||∑

|Fhkl, obs|
R2 =

∑
|F 2
hkl, obs − F 2

hkl, cal|∑
F 2
hkl, obs

(2.45)

wR1 =

(∑
w(|Fhkl,obs| − |Fhkl,cal|)2∑

|wF 2
hkl,obs|

)1/2

wR2 =

(∑
w(F 2

hkl,obs − F 2
hkl,cal)

2∑
w(F 2

hkl,obs)
2

)1/2

(2.46)
In Jana, four different R-value are given, two of them, R and wR, are calculated

based on using all the measured data, while the other two are based on using the
observed reflections only. All R values are given in percentages and they become
zero in the ideal case.

LeBail agreement factors

In order to evaluate the quality of a Le Bail refinement, the statistical parameter Rp

(Profile R-factor) and wRp are usually considered. The value Rp and the weighted
value wRp are given as:

Rp =

∑
|Yhkl, obs − Yhkl, cal|∑

|Yhkl, obs|
. (2.47)

wRp =

(∑
|w|Yhkl, obs − Yhkl, cal|2|∑

|Y 2
hkl, obs|

)1/2

, (2.48)

where Yhkl, obs/cal is the intensity of the measured (obs) or calculated (cal) profile
points and w is a weighting factor.

The goodness of fit GOF

Another factor is the goodness of fit GOF , which is calculated as presented in
equation (2.49), where Nobs is the total number of observations, Npara is the total
number of parameters involved in the refinement.

GOF1 =

(∑
w(Fhkl, obs − Fhkl, cal)2

Nobs −Npara

)1/2

GOF2 =

(∑
w(F 2

hkl, obs − F 2
hkl, cal)

2

Nobs −Npara

)1/2

(2.49)
Goodness of fit is a measure of the fit between the distribution expected from

the weights used in the refinement and the distribution of Fhkl,cal − Fhkl,obs. When
the weights are correctly estimated, the ideal value of GOF will be 1. Anyhow, in
difference to other programs, in Jana the weighting scheme is kept constant and is
not adjusted to force the GOF to be 1 (see the subsection 2.4.7). As a consequence,
having a value larger than 1 for GOF does not necessarily mean that the structure
model is wrong or that there are systematic errors in the data set. In Jana, the GOF
provides a measure of whether the structure is under- (GOF > 1) or overrefined
(GOF < 1). In the first case, one can in principle add more parameters to the
refinement, while the second case indicates that there are too many parameters
inside for the number of data points [83].
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2.5 Magnetic structure determination

Polar and axial vectors

There are two types of vectors: polar vectors and axial vectors. The magnetic
moment ~µ, which is of interest for magnetic structure determination, is an example of
an axial vector. Crystallographic symmetry affects the two vector types differently.
This will be considered in this subsection.

Polar and axial vectors can be defined formally by the transformation rules they
obey [87]. A polar vector (~p) is defined as a first-rank tensor which satisfies the
transformation rule:

p∗i = Mijpj, (2.50)

where Mij is the 3 × 3 matrix that describes a symmetry operator O and the
asterisk indicates the new reference frame.

For an axial vector (~µ), the transformation expression must be multiplied by the
determinant of the transformation matrix:

µ∗i = det|M |Mijµj. (2.51)

In other words, an axial vector undergoes an additional sign change. Alterna-
tively, the parity of the operator O can be used:

µ∗i = pOMijµj. (2.52)

In order to show how the vectors transform under different symmetry operations,
an example of the transformation of a polar and an axial vector under the action of
a mirror plane is shown in figure 2.4. For the axial vector, the mirror image must
be inverted due to the fact that pm = -1 in equation (2.52). As a consequence the
image of an axial vector parallel to a mirror plane points in the direction opposite
to the original vector, whereas the image of an axial vector normal to a mirror plane
points in the same direction.

Time reversal symmetry

The following explanation closely follows the teaching report by [87]. The time
reversal component which is of importance for the description of magnetic symmetry
will be represented by the operator R. The product of a regular symmetry operator
O with the time reversal operator R gives a new operator which will be denoted by a
primed symbol O′ = OR = RO (note: since there is no mixing of spatial coordinates
and the time coordinate, the two operators always commute).

Primed symmetry operators are known as anti-symmetry operators. Combining
the elements of a point or space group with R generates a number of new groups.
A group in which the element R appears by itself is known as a gray group, while
the groups that do not have the time reversal operator as an element, but they do
have anti-symmetry operators are known as magnetic point or space groups.

For polar vectors, time reversal has no effect at all. For the axial vectors, the
inclusion of time reversal symmetry means that the transformation equation (2.52)
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Figure 2.4: Representation of the action of a mirror plane m on a polar and an
axial vector. The original vectors are shown in white, whereas vectors related to the
original ones by a symmetry operation are rendered in purple [taken from [87]].

must be generalized to include the additional time reversal sign change when the
operator is an anti-symmetry operator, as follow:

µ∗i = pOpRMijµj, (2.53)

where pR is the temporal parity of an operator, which is equal to +1 for regular
operators and -1 for anti-symmetry operators [87].

In order to make this clear, an example of the point group 2/m with the elements
E, 2,m, i in combination with the time reversal operation will be discussed. As can
be seen in figure 2.5 (a) if the axial vector is oriented parallel to the 2-fold axis,
neither the 2-fold axis nor the mirror plane change the orientation of the vector. If
on the other hand the axial vector is oriented parallel to the mirror plane like in
(b), both the 2-fold axis and the mirror plane change the orientation of the vector
to the opposite direction.

If the elements of 2/m are combined with R, a number of new groups are
generated by combining the elements (E, 2,m, i) with their anti-symmetry oper-
ators (R, 2′,m′, i′). The grey point group, of order 8 combines all eight operators:
{E, 2,m, i, R, 2′,m′, i′} and is represented by the symbol 2/m1′. In addition, there
are three magnetic point groups of order 4 which are subgroups of 2/m1′: 2/m′ =
{E, 2,m′, i′}, 2′/m = {E, 2′,m, i′}, and 2′/m′ = {E, 2′,m′, i}.

Figure 2.6 (a), (b) and (c) represents the operations of these three magnetic point
groups on a magnetization vector oriented parallel to the 2-fold axis. Anti-symmetry
operators are represented by a yellow symbol and a regular symmetry operator is
shown in dark blue. Considering the operators for each group, it is straightforward
to derive the orientation of the individual axial vectors: 2′/m = {E, 2′,m, i′} shown
in {white, cyan, magenta, blue}; 2/m′ = {E, 2,m′, i′} shown in {white, white, blue,
blue}; 2′/m′ = {E, 2′,m′, i} shown in {white, cyan, blue, magenta}. As can be seen
from the figure, all three arrangements correspond to antiferromagnetic orderings.

If however, for the group 2′/m′ the magnetization has a component parallel to
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2.5. Magnetic structure determination

Figure 2.5: Representation of the operations of the point group 2/m on an axial
vector, oriented parallel to the twofold axis (a) and parallel to the mirror plane (b)
[taken from [87]].

the mirror plane, as illustrated in figure 2.6 (d) a ferromagnetic arrangements would
follow.

Figure 2.6: Representation of the operations of the magnetic point groups derived
from 2/m on an axial vector. An anti-symmetry operator is represented by a yellow
symbol; a regular symmetry operator is shown in dark blue [taken from [87]].
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Shubnikov groups and Belov-Neronova-Smirnova BNS notation

The 1651 Shubnikov magnetic space groups combine the 230 crystallographic space
groups with the time reversal operator. Usually, a symmetry operation is called
“primed” or ”black” if it includes ”time reversal”, and ”unprimed” or ”white” if it
does not.

Depending on how the magnetic space group G was constructed from the one of
the 230 crystallographic space groups F , it can be classified to one of four different
types:

1. Type I: For this type, no operator contains time reversal, that is G = F .
The magnetic space group symbol is the same as that for the corresponding
crystallographic space group.

2. Type II: The pure time reversal is an operator in the group, so that the mag-
netic space group symbol ends in 1′ and G = F + F1′. The magnetic group
contains two copies of every spatial operator, one with a time reversal and one
without. Because each operator is both black and white, this is called a grey
group.

3. Type III: Within this type, each rotational symmetry operator is either black
or white, so that exactly half of the point operators include a time reversal.
Thus, a magnetic space group of this type has a ”colored” point group and
G = D + (F −D)1′, where D is an equi-translational subgroup of F . Lattice
translations are not combined with time-reversal.

4. Type IV: Each translational symmetry operator of the magnetic lattice is
either black or white, so that exactly half of the lattice translations include
time reversal. Thus, the magnetic space group of this type has also a ”colored”
lattice and G = D + (F − D)1′, where D is an equi-class subgroup of F .
Combination of the translations and the point group symmetry leads to point
group operators appearing both with and without a time-reversal, so that
the magnetic point group of a type-4 magnetic space group is actually a grey
group.

In general, two different setting are used in order to describe the magnetic space
groups: the BNS (N. V. Belov, N. N. Neronova and T. S. Smirnova ) and OG (W.
Opechowski and R. Guccione) notation. For the first three types of magnetic space
groups, the BNS and OG settings and symbols are identical and derived from the
subgroup F . However, for type-IV groups the BNS and OG settings are different.
All magnetic space groups involved in this thesis belong to type-IV and for all of
them the BNS setting was used. In this notation the magnetic space-group symbol
is the crystallographic space-group symbol for D with a subscript added to the first
letter, denoting the translations characterizing the colored lattice. In this thesis,
square brackets were used instead of the subscript. In the BNS notations the primed
symmetry operators do not appear in the symbol of the group [88], [89].

Magnetic structure determination

Magnetic structures can be described by the periodic repetition of a magnetic unit
cell. For convenience, rather than describing the complete magnetic unit cell which
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could contain thousands of magnetic atoms, a description based on the nuclear unit
cell and a magnetic propagation vector is used.

The information decoded in the Bragg reflections is used in order to determine
the nuclear structure, including the space group symmetry and the occupied Wyckoff
positions.

The propagation vector, ~k, can be determined from the diffraction pattern. It is
the vector that points from the main reflection (nuclear reflection) to the magnetic
reflection (see figure 2.7) and it is chosen in such a way that all the magnetic reflec-
tions can be described by using the nuclear reflections together with the propagation
vector.

Figure 2.7: Schematic drawing illustrating possible choices of suitable propagation
vectors.

From the combined information on the space group of the nuclear structure, the
propagation vector(s) and the Wyckoff positions occupied by the magnetic ions, the
so-called irreducible representations (irreps) are derived based on group theoretical
considerations [90].

These irreducible representations restrict how the magnetic vectors of the symme-
try equivalent atoms are oriented to each other. Each resulting pattern of magnetic
vectors corresponds to a magnetic space group, that is the irreducible representa-
tions fix the symmetry of the magnetic structure and so fix the magnetic Shubnikov
groups. In the subsequent refinement, only the size of the magnetic moments on the
different Wyckoff positions has then to be refined [91].

In general, the order of the magnetic moments in a crystal can be described
either by the magnetic symmetry or by using the representation analysis. From the
first approach, the magnetic (Shubnikov) space group is obtained, while the second
yields a set of possible irreducible representations (irrep) from which the correct
combination of several irreps have to be chosen. Both methods are applicable for
the modulated (k 6= 0) and non-modulated (k = 0) magnetic structures. Anyhow, it
was shown that the direct use of the Shubnikov (magnetic) space groups facilitates
the work with the magnetic structures and simplifies the algorithms for handling the
diffraction data of magnetic structures. The magnetic symmetry operations have a
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direct impact through the rotational symmetry operators on the symmetry of the
diffraction pattern and the crystal structure and can be used to simplify calculations
of magnetic structure factors. Besides, symmetry operators involving translations
can introduce specific systematic extinctions of magnetic reflections. Another point
is that the efficiency and stability of refinement of magnetic crystal structures, in
analogy with the refinement of nuclear structures, depend on direct application of the
magnetic symmetry in the structure-factor formula. Magnetic symmetry also allows
the straightforward description of diffractionally independent magnetic domains and
their mutual spatial orientations [91], [92].

In this work, the possible magnetic symmetries were derived from the different
irreducible representations of the nuclear space group and its maximal subgroups.
All the models were refined in order to figure out the best model. However, it should
be pointed out that the measurements described here were performed under mag-
netic field and that the formalism of deriving magnetic symmetry via the irreducible
representations of the nuclear space group does not take into account the effect of
the magnetic field but are purely based on group theoretical considerations.
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Chapter 3

Experimental setup and
techniques

This chapter explains the experimental methods and instruments used to synthesize
and study the three magnetocaloric compounds: MnFe4Si3, Mn5Ge3 and Mn5Si3.

3.1 Sample preparation

3.1.1 Synthesis of the polycrystalline samples: cold crucible

Polycrystalline samples were prepared using cold crucible induction melting under
argon atmosphere in an apparatus designed in the Forschungszentrum Jülich. A
schematic drawing of the apparatus is shown in figure 3.1 (left) while the right of
the figure illustrates the principle [93], [94].

A water cooled copper crucible, which is covered by glass tube and surrounded
by multi-turn induction coils, is divided into several isolated segments. High fre-
quency alternating currents (AC) that pass through the induction coils induce a
cyclic current (iT ) in each segment which generates an induced current (iS) in the
sample and as a result the required magnetic field. When the power is increased, the
metal is melted by Joule heating caused by eddy currents. Once the metal is melted,
Lorentz forces start to partially levitate the charges which minimizes the thermal
losses and accelerates the process of further heating. The interaction between the
induced currents and the magnetic field generates an additional force F, resulting in
further movement in the melt in the direction of the dashed arrows. In this way, it
is possible to carry out constant and well controlled stirring to provide a melt with
high grades of homogeneity and purity.

Details of prepared samples:

Polycrystalline ingots of MnFe4Si3 and Mn5Ge3 were prepared using the levitation
cold crucible shown below. For the synthesis of MnFe4Si3 polycrystalline samples,
stoichiometric amounts of the constituent elements, manganese, iron and silicon
were used (7.581(1) g Mn 99.99% purity, 30.826(1) g Fe 99.9% purity and 11.627(1)
g Si 99.99% purity). The raw materials were put in a copper crucible, covered her-
metically with a glass tube and then heated under vacuum to remove the impurities
on their surface. After this, they were melted under argon atmosphere, as can be
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3.1. Sample preparation

Figure 3.1: (Left) schematic of the apparatus for cold crucible induction melting.
(Right) principle of cold crucible induction melting [taken from [93]].

seen in figure 3.2, and cooled down to room temperature. The melting process
was repeated two times after turning around the resulting ingot to ensure a high
chemical homogeneity of the melt. The obtained polycrystalline sample was cleaned
mechanically at the surface to remove any contamination.

For the synthesis of Mn5Ge3 polycrystalline samples, exactly the same steps were
followed using stoichiometric amounts of the constituent elements, manganese and
germanium (23.299(1) g Mn 99.99% purity and 18.483(1) g Ge 99.9999% purity).
Two times 50 g of MnFe4Si3 and 43 g of Mn5Ge3 were prepared (for the second
melting pellet of Mn5Ge3, 23.172(1) g of Mn and 18.381(1) g of Ge were used) to be
used as starting material for the growth of a large single crystal of each compound.

Figure 3.2: Photo of the melting process of the material in the cold crucible induction
melting [taken from [95]].
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3.1.2 Single crystal growth: Czochralski method

Large single crystals of MnFe4Si3 and Mn5Ge3 were grown from the polycrystalline
materials using Czochralski method in an argon atmosphere [96].The setup is shown
in figure 3.3. At the beginning, a suitable amount of the polycrystalline material
was filled in an aluminum oxide crucible. This crucible with the materials inside
was inserted in a larger ceramic crucible and then put at the center of the furnace
crucible standing on a holder with copper coils surrounding it. The samples were
heated up until the polycrystalline pieces melted down by induction in the same
way as described in the last subsection (3.1.1).

A rod (3 mm in diameter) with the tungsten seed crystals was dipped into the
melt. The single crystal started to grow at the interface between the seed and the
melt while the rod was moving upwards with a specific speed. During this process,
the rod was also rotating with a certain speed in order to get a cylindrical shape
for the resulting single crystal. The diameter of the single crystal sample can be
controlled by controlling the pulling and rotation speed and the heating power and,
as a consequence, the melting temperature.

Figure 3.3: Schematic drawing of the experimental setup for the single crystal growth
using the Czochralski Method [modified from [97]].

Details of prepared samples:

For the synthesis of the MnFe4Si3 (Mn5Ge3) single crystal, 83 g (61 g) of polycrys-
talline material was used. In order to obtain a crystal of good quality the necking
method was used, in which the diameter of the crystal was reduced at the beginning
of the synthesis to remove the undesired grains and dislocations, and once a single
grain was obtained, the diameter was enlarged, see figure 3.4. The rod was moving
upwards with a speed of 10 mm/h and a rotation speed of 20 rev/min. For both
compounds, the final cylindrical single crystal had a diameter of about 10 mm, see
the right photo of figure 3.4.
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Mn5Si3 samples used in this thesis are parts of a larger single crystal that was
synthesised in a similar way (for synthesis details see the supplemental material in
[98]).

Figure 3.4: Photo showing the growth of the single crystal and a picture of the final
Mn5Ge3 crystal.

The prepared single crystals were checked and oriented using a Laue camera
(see the subsection 3.2.1 below). Spark erosion was used to cut the required sam-
ples for magnetization, magnetocaloric and heat capacity measurements in specific
directions. Some of the small pieces were grounded for x-ray powder diffraction ex-
periments (see the subsection 3.2.2 below) to check the phase purity of the samples.

3.2 Scattering Techniques

3.2.1 Laue X-ray diffractometer

In contrast to the constant wavelength X-ray diffraction which uses a monochromatic
beam, Laue diffraction uses a beam of white X-rays, which is a combination of many
different wavelengths. When the crystal is impinged with a thin pencil-like beam of
x-ray (beam width of 2 mm), the rays of certain wavelengths will be oriented at the
correct angle to a group of parallel lattice planes so that Bragg´s law is fulfilled, they
combine in phase and produce intense, regularly spaced spots on a film or detector
plate. Using Laue diffraction is fundamental for checking the quality of a crystal
and for selecting and orienting single crystals.

A Multiwire MWL120 real time back reflection Laue Camera System, which has
a 30 × 30 cm proportional wire chamber area detector placed between the X-ray
source and the crystal, was used to define the orientation of the crystals by viewing
the back reflection images on a computer screen in real time. The X-ray generator
uses a tungsten target with different electron energies (in the range from 5 - 20
Kev). The set-up also includes a camera system in combination with a mirror which
allows capturing images of the crystal on the sample holder and aligning the sample
in the X-ray beam. The three axis goniometer available on the Laue Camera System
offers the possibility to orient the sample under live feedback from the continuously
updated Laue image. Laue diffraction was used both to check the quality of the
synthesized single crystals and to prealign all the samples for magnetization, heat
capacity and magnetocaloric effect measurements.
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3.2.2 X-ray powder diffraction: The Huber G670 powder
diffractometer

Figure 3.5 shows a schematic view of the used Huber powder diffractometer which
operates in transmission geometry. The diffractometer is equipped with a Cu X-ray
tube, and with the help of the monochromator, the Cu-Kα radiation (1.5418 Å) is
selected. Soller slits are inserted between the monochromator and the sample in
order to reduce the divergence of the beam. The diffractometer is equipped with a
G670 Guinier camera with integrated imaging plate detector which covers an angu-
lar range of 2θ = 0 − 100◦ with an angular resolution of ∆2θ = 0.005◦. By using
the image plate detection method, the desired data can be obtained within a few
minutes, and only a few milligrams of the sample are needed for the measurements.
Inside the housing of the G670 camera, a laser recording unit with photomultiplier
and pre-amplifier is inserted and used for reading out the imaging plate. The diffrac-
tion signal is stored as intensity data versus 2θ by the control software. Before the
next measurement, a halogen deleting lamp is used to erase the information on the
imaging plate.

Figure 3.5: Schematic representation of the powder diffractometer setup with
Guinier geometry [modified from [99]].

The phase purity of the prepared samples (MnFe4Si3 and Mn5Ge3) was confirmed
with X-ray powder diffraction, see figure A.5 as an example. Small amounts of the
sample (few mg) were crushed until a very fine powder was obtained. A piece of
cellophane foil (Mylar-thin film) was placed on the sample holder and a very small
amount of the powder was put on the middle of it with a few drops of isopropanol,
mixed together and distributed until a smooth flat surface was obtained. After the
mixture dried out, it was covered with another piece of foil and fixed together on
the sample holder with a metal ring (the foil is visible in the powder diffraction
diagram as small increased background in the low angle area). The holder with
the sample on it was mounted in the diffractometer. Measurements were performed
at room temperature where the samples were exposed for 240 minutes. During the
exposure, the sample was oscillating horizontally with a frequency of about 1 Hz and
amplitude of 10 mm in order to compensate intensity variations caused by different
crystal orientation in the powder sample to obtain better powder averaged data.
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3.2.3 Non-polarized single crystal neutron diffraction: Po-
larized hot neutron diffractometer (POLI)

Description of POLI
Non-polarized single-crystal neutron diffraction was performed on the two axes

single crystal diffractometer POLI [100] using an out-of-plane lifting counter at the
hot-neutron source of the FRM II reactor, Heinz Maier-Leibnitz Zentrum (MLZ),
Germany (see figure 3.6).

In general, three standard options are implemented on POLI: Zero-field spherical
neutron polarimetry (SNP), polarized neutron diffraction PND (flipping ratio FR
method) and classical single crystal non-polarized diffraction [100], [101]. In non-
polarized diffraction experiment, which was used in the course of this thesis, the
main setup consists of the monochromator, the magnet and the detector.

On POLI, two different non-polarized focusing crystal monochromators are avail-
able, Cu (220) and Si (311), which offer a number of discrete wavelength and flux
values. For our experiment, Cu (220) was used to obtain a wavelength of λ = 0.892
Å with a high flux of about 2.4× 107 neutrons s−1cm−2. The 8 T magnet available
on POLI (see below) was used for applying the magnetic fields; this magnet has an
integrated LHe cryostat which was used to cool down the sample.

With the normal beam geometry, the single crystal diffractometer POLI covers
in-plane scattering angles 2θ (or called γ) in the range from -30◦ to 130◦. The
scattered beams are recorded to the left relative to the incoming beam. Out-of-plane
measurements of the reflections is possible using an out-of-plane lifting counter for
the detector. By using this counter, the detector can move out of the horizontal
plane- below and above the horizontal plane- in an angular range ν from -4.2◦

to 30◦. Moreover, the rod on which the sample is mounted can rotate inside the
magnet around the ω axis (parallel to c* in our experiment) in an angular range
from −180◦ < ω < 180◦ using a motor on the top of magnet. Making use of the
different rotation angles permits the collection of a sufficiently large amount of data
for precise structural determination. A schematic drawing of POLI with the rotation
angles and a photo showing the magnet and the lifting counter are shown in figure
3.6.

Figure 3.6: Schematic drawing of POLI and a photo of the 8 T magnet and the
lifting counter [modified from [100]].
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8 T dedicated magnet on POLI [102]

A new 8 T vertical magnet has been available on POLI since the beginning of 2018
for single crystal and powder diffraction (see figure 3.6 right). The magnet was fab-
ricated by Oxford Instruments as a He re-condensing system. The superconducting
coils are cooled in liquid helium and a structural cold head is used to liquefy the
evaporating helium. This re-condensing cryostat significantly minimizes the con-
sumption of liquid helium and therefore the operating costs; moreover it reduces the
maintenance work for refilling the helium.

The scattered neutrons in the equatorial plane of the magnet can be observed
due to the large vertical access angle of -5◦ to 25◦. Vertical neutron access of
53 mm on the sample position is provided. The magnet has also large clearance
between the coils which allows using larger samples. In the 8 T magnet, the field
has asymmetric geometry in order to avoid neutron depolarization on the zero-
flux density node, which makes this magnet particularly suitable for single crystal
diffraction by polarized neutrons.

An additional particularity of this magnet is the wide temperature range that
can be adjusted on the sample position. Two sample rods are available: the low
temperature sample rod with a temperature range from 1.5 to 400 K, and a dedicated
high temperature rod with temperature range of 30 – 800 K. The sample can be
easily and precisely adjusted in height in order to be in the center of the beam using
a motorized vertical translation stage with a travel length of 49 mm. This device
gives also the chance to measure multiple samples at different heights sequentially,
which helps in minimizing the measuring time, the consumption of the liquid helium
and the effort for the warming and cooling process during the sample change. Many
parameters like magnetic field, temperature, or the helium level can be controlled
automatically as they are implemented into the MLZ instrument control standard
using NICOS [103], which makes the operation process easier.

Experimental details:

For the neutron diffraction experiment on POLI, a rectangular sample of Mn5Si3 was
cut with the size 2 x 5 x 5 mm, with the plane cut normal to the [001] crystallographic
direction. This sample is a part of a larger single crystal from which other pieces
were characterized in a previous study (see Ref. [98]). The sample was mounted on
a thin (0.5 mm) Al-plate with a hydrogen free glue (CYTOP [104]) in such a way
that the [001] axis could afterwards be aligned parallel to the field direction of the
magnet. The holder was bent around the sample and wrapped in Al foil in order
to avoid movement in the field and ensure good thermal contact and temperature
homogeneity (see figure 3.7). Then the holder with the sample on it was fixed at
the end of a long sample rod and inserted axially in the center of the magnet from
the top.

In the beginning, the height of the sample was adjusted and the sample was
optically centered to make sure that the sample will not move out of the beam,
when the crystal is rotated around ω, thus assuring a homogeneous illumination of
the sample in all positions.

Using hkl values of selected strong reflections (e.g. (200) reflection), and the
known values of beam wavelength (λ) and lattice spacing (d), the corresponding
2θ value was calculated from Bragg’s law. Given the known orientation of the c*
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Figure 3.7: Photos of the sample on the sample holder.

direction, it was possible to approximately predict the positions of these reflections.
After detecting the corresponding intensities at or close to the predicted positions,
the reflections were centered with respect to 2θ, ω and ν values. After this, the
temperature was cooled down to 50 K and a magnetic field of 5 T was applied parallel
to the sample c-axis. After checking the sample centering again, a search routine for
further reflections was started. Once found, the additional reflections were centered
with respect to 2θ, ω and ν. From the list of reflections and their angular positions
and by using a special algorithm implemented in the software, the orientation matrix
(OM) of the sample was determined. The OM describes how the crystal coordinate
system is oriented with respect to the reference system of the diffractometer. From
the OM, the lattice parameter can be deduced. Once the OM was determined,
the indices of the reflections could be assigned. The orientation matrix was then
refined again from the angular positions of approximately 10 reflections using the
least square method. Lattice parameters at this stage were found to be a = 6.91, b
= 6.89, c = 4.71 Å, α = 90◦, β = 90◦ and γ = 120◦. Using the refined orientation
matrix, the angular positions of a long list of reflections were calculated, and peak
intensities were measured -after pre-centering them in 2θ, ω and ν - using omega
scans and different scan times. It should be noted that due to the limited opening
of the magnet, it is impossible to center the sample in the beam in an ideal way.
Moreover, not all sections of reciprocal space are accessible and therefore the OM can
only be determined with limited accuracy. Therefore in the subsequent measurement
individual pre-centering of each peak was performed.

At 5 T and 50 K, full data sets of 526 nuclear and 137 magnetic Bragg reflections
were measured on the basis of the hexagonal lattice using omega scan. From a test
scan, it was found that the magnetic reflections were at h/2 and k/2 positions of
the hexagonal lattice.

Each center of a nuclear and magnetic reflection corresponds to a specific value
of γ, ν and ω. As the measurements were performed using omega scans, only ω
is changing- with a specific range and step width- in each peak measurement. For
example, the first nuclear reflection has an ω value of 2.97◦, a range of 3.99◦ and a
step width of 0.15◦, so this peak was measured with omega scan from approximately
1◦ to 5◦ with 0.15◦ steps (27 points).

For the nuclear reflections each point in the ω scan was measured with 8 s. Due
to the difference in the width of the reflections, different omega range and step width
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were used for the different reflections (when the reflection is narrow, smaller steps
were used to get more points in the measured profile). The range of the omega scans
reaches from 2.5◦ to 6◦ and the step width is in the range of 0.08◦ to 0.24◦. The 2θ
value (γ) and the angle of the lifting counter are not changing in the measurement
of an individual reflection. For the whole dataset of all nuclear reflections, γ is in
the range from 8.5 – 99.5, and ν is in the range from -2.3 to 22.7. The hkl limits of
the reflections are in the range from h = 11− 11; k = 11− 11; and l = 0− 2.

Magnetic reflections were measured in a similar way, using omega scans with
ranges from 2.5◦ - 6.7◦ and step widths of 0.12◦ - 0.26◦. For the whole set of magnetic
reflections, γ was in the range of 7.5◦-59◦ and the angle of the lifting counter was
in the range -1.9◦ - 20.8◦. The hkl limit of the reflections are in the range from
h = 13 − 9; k = 12 − 10; and l = 0 − 1, referring to a basis where actually a = 2a
and b = 2b.

From the 137 reflections, 54 reflections were measured with pre-centering and
measuring time of 8 second for each step, while the rest of 83 reflections were mea-
sured without centering (from the measured 54 reflections it was seen that the peaks
were well centered so for measuring the 83 reflections, centering was skipped to not
lose too much time) and with longer measuring time of 30 second.

From the measured 526 nuclear and 137 magnetic reflections, the observed (ex-
perimental) intensity of 508 nuclear and 104 magnetic reflections were extracted
using the DAVINCI program [105]. For the rest of the reflections, it is not clear
whether they were properly measured but are unobserved (I < 3σ) or whether the
reflection positions were not properly found and therefore no intensity was recorded.
However, part of the magnetic reflections were measured without pre-centering and
have significant intensity. This indicates that the orientation matrix was reliably
determined and therefore these are probably really unobserved reflections within a
criteria of I < 3σ.

The final lattice parameters were re-refined after the whole measurements based
on the angular positions of 420 nuclear reflections. The refinement was carried out
assuming a hexagonal lattice where a = b = 6.861(3) Å, c = 4.635(11) Å, α = 90◦,
β = 90◦ and γ = 120◦, χ = 0.003, where χ is a measure for the quality of the fit.
Another refinement was performed assuming that a and b are not equal, where the
lattice parameters were found to be: a = 6.866(3) Å, b = 6.856(3) Å, c = 4.637(11)
Å, α = 90◦, β = 90◦ and γ = 120◦ and χ = 0.003.

3.3 Magnetization Measurements

In the context of this thesis magnetization measurements were performed in DC
field, which were carried out in the Jülich Center for Neutron Science (JCNS-2), and
in pulsed field, which were performed in Dresden High Magnetic Field Laboratory
(HLD) at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

3.3.1 Isothermal magnetization in DC filed

The macroscopic magnetic properties of MnFe4Si3 and Mn5Ge3 were studied using
the vibrating sample magnetometer (VSM) option manufactured by the Quantum
Design Physical Property Measurement Systems (PPMS/PPMS Dynacool).
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PPMS/PPMS Dynacool VSM option:

Magnetic, thermal and electrical properties can be measured using the different
options available on PPMS (PPMS Dynacool) within an applied magnetic field of -9
T < µ0H < 9 T in the vertical direction, and temperature range from 1.9 K to 400 K
(lower temperature can be reached using the Dynacool 1.4 - 400 K). The basic setup
of the two systems includes a sample chamber, which may connect to the various
options, and a control system connecting to a computer. In this work, the VSM
option was used for measuring the magnetization with a sensitivity of 10−6 emu.

The operation of the VSM option is based on Faraday’s law of induction. The
sample is oscillated sinusoidally by a linear drive in the center of the pick-up coils.
By using the motor module, which is connected to the linear motor, the position
and the oscillation amplitude can be controlled. This oscillation causes a change in
the magnetic flux in the area enclosed by the pick-up coils, inducing a voltage in
them which is proportional to the sample’s magnetic moment as:

Vcoil =

(
dφ

dt

)
=

(
dφ

dz

)(
dz

dt

)
= 2πfCmA sin(2πft). (3.1)

Here φ is the magnetic flux of the pick-up coils, z is the sample vertical po-
sition with respect to the coil, t is the time, C is a coupling constant, m is the
magnetic moment of the sample, A and f are the amplitude and the frequency of
the oscillation. Therefore, the magnetic moment of the sample can be acquired by
measuring the time dependence of the coils induced voltage Vcoil. See figure 3.8 for
VSM schematic.

The PPMS Dynacool is practically the same as the PPMS, the main difference
between them is that in the PPMS, an external supply of liquid cryogenics is used
for cooling while the PPMS Dynacool has a water cooled Helium compressor which
expands He in a pulse tube cold head and liquefies a small amount of He for magnet
and sample cooling [106].

Figure 3.8: Basic schematic of VSM set-up [taken from [107]].
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3.3.2 Adiabatic magnetization in pulsed magnetic fields

Magnetization measurements in pulsed fields were performed also by the use of
induction method. For the measurements, a pick-up coil surrounding the sample
space, which is 2 mm in diameter, was employed; this coil is 4 mm long and consists
of 2000 turns of 40 µm diameter copper wire. Since the coil is placed in varying
magnetic field, it should be connected with a compensation coil, which was wound
around 6.8 mm diameter, to measure the magnetization and cancel the influence
of induction dH/dt. Several arrangements are possible for the compensated pick-
up coil system. The coaxial geometry was selected as it is less sensitive to the
field gradient and vibrations. An additional coil (fine-compensation circuit) was
used for reducing the small residual uncompensated voltage due to temperature-
dependent contribution. Two pick-up coils were used for measuring the magnetic
field. These coils were connected in series, placed at equal distance above and below
the magnetization pick-up coils, and far enough (nearly 10 mm) to prevent the
sample from affecting the field measurement. The signals from them, which are
proportional to dH/dt, were digitized, stored and integrated numerically. The pick-
up coil signals were calibrated using the well known magnetization curve of MnF2,
which exhibits a temperature-independent spin-flop transition at 9.27 T (see figure
3.9).

For each sample, magnetization measurements involved two separate measure-
ments. First, measuring the signal from the pick-up coil with the sample in it at the
desired temperature (top-loading system was used to place the sample at the center
of the pick-up coil system). Second, measuring the background (signal without the
sample) under exactly the same conditions. The magnetization of the sample was
then found by subtracting the background from the first signal [108].

Figure 3.9: The pickup-coil system used in the pulsed-field magnetometer with
(left) the principal sketch, (middle) the electrical scheme, and (right) a photo of the
original set up [Taken from[108]].
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Experimental details

MnFe4Si3 magnetization measurements:

Direction dependent magnetization measurements M(H) were performed on MnFe4Si3
single crystals with the magnetic field applied parallel to the crystallographic a and
c-axis.

For the data sets with the field along [100]-direction, a sample of 18.3 mg was
used, mounted with GE varnish on the sample holder, covered by Teflon and inserted
in the PPMS Dynacool. Isothermal magnetization curves were recorded in field
range from 1 to -1 T with a sweep rate of 50 Oe/sec at temperatures between 20
and 350 K with ∆T = 10 K and waiting time of 1 min. for field and temperature
equilibrium.

The corresponding isothermal magnetization measurements with an applied field
along the [001]-direction were performed using a small sample of 5.8 mg, in a field
range from -0.1 T to 6 T (from 6 T to 0.5 T with a sweep rate of 198 Oe/sec and from
0.5 T to -0.1 T with a sweep rate of 20 Oe/sec), and in a temperature range 60 K –
380 K (from 60 K to 260 K with temperature steps of 20 K, from 260 K to 340 K with
2 K steps and from 340 K to 380 K with 10 K temperature steps), with waiting time
of 1 min. for field and temperature equilibrium. The measurements were always
starting from the highest field to make sure that the sample was saturated at the
beginning of each measurement.

At 5 K, two measurements were performed to calibrate the pulsed field measure-
ments, one with the field parallel to a-axis, using 7.5 mg sample, and the second
with the field parallel to c-axis using 5.8 mg sample. For ~H ‖ a-axis measurement,
the field was changed from 8 T to -8 T with a sweep rate of 198 Oe/sec for the field
from 8 T to 0.5 T and from -0.5 T to -8 T, while sweep rate of 20 Oe/sec was used

for the field from 0.5 T to -0.5 T. For ~H ‖ c-axis measurement, the same procedure
was applied but with a field of 8.5 T instead of 8 T.

For adiabatic magnetization measurements, two small samples were used, the
first one was cut perpendicular to the c-axis (7.3 mg), and the second was cut
perpendicular to a-axis (14.3 mg). Magnetization was measured with a pulse length
of 50 ms up to 35 T for the hard direction, and up to 8.5 T for the easy direction,
with both measurements performed at 4.2 K.

Mn5Ge3 magnetization measurements:

Magnetization measurements were also performed in two directions ( ~H ‖ c-axis and
~H ‖ a-axis) using a small sample of 12.9 mg. Isothermal magnetization data were
collected in a field range from 9 T to -0.1 T, with a sweep rate of 150 Oe/sec from 9
T to 2 T and 50 Oe/sec from 2 T to -0.1 T, and starting always from the maximum
field at each temperature between 20 and 380 K (with ∆T =10 K from 20 - 260 K
and from 320 - 380 K, ∆T =2 K from 260 to 320 K).

Two measurements (both directions) were performed at 5 K using 12.2 mg sam-
ple, in a field range from -9 T to 9 T, with a sweep rate of 198 Oe/sec from 9 T to
1 T and from -1 T to -9 T, and 20 Oe/sec from 1 T to -1 T.

Field cooling and field warming magnetization curves were measured using 11.9
mg sample, in a field of 0.01 T and 0.5 T in both directions, in a temperature
range from 5 to 390 K with 3 K steps. Moreover, field warming measurement was
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performed in a field of 5 T parallel to c-axis, from 300 – 1000 K.
Processing of the macroscopic measurements is explained in appendix A.1

3.4 Heat capacity: PPMS Dynacool

Heat capacity measurements were performed using the standard heat capacity option
at the PPMS Dynacool. Heat capacity is measured at constant pressure: Cp =
dQ/dT , where dQ is the thermal energy added to or removed from the sample, and
dT is the change in the sample temperature. A schematic heat capacity puck with
the connections to the sample and the platform is shown in figure 3.10.

For heat capacity measurements, the sample is mounted on the puck’s platform
by using a thin layer of apiezon grease. The platform is fixed in the middle of
the puck frame by thin platinum wires, which also provide electrical connections to
the heater and thermometer, that are attached to the bottom side of the platform,
and thermal conduction between the heater/thermometer and the thermal bath,
consequently lead to a better thermal equilibrium between the sample and platform
during the measurements.

The measurements are performed in high vacuum environment in order to ther-
mally isolate the platform (the thermal conductance between the sample platform
and thermal bath is only supplied via the wires). For the measurements in magnetic
fields, the sample is fixed using silver paste to prevent it from being detached from
the platform and to ensure a good thermal contact between the sample and the
platform.

For determining the heat capacity, a heat pulse is applied to the sample plat-
form using the heater, and then its temperature response is measured using the
thermometer. Two steps are required in order to measure the sample heat capacity.
First, the so-called addenda measurement, with only the grease/silver paste and the
platform, this needs to be done before mounting the sample to take into account the
additional heat capacity produced from the grease (silver paste). The result from
this measurement is considered as background. After this, the sample is placed on
the puck and total heat capacity from the sample and grease is measured. The
sample heat capacity is found by subtracting the addenda from the results of the
measurement with the sample. Temperature dependent heat capacity measurements
are sensitive to both structural and magnetic phase transitions, so usually a peak
or similar feature can be seen at the transition temperature [109].

Figure 3.10: Schematic of the thermal connections to sample and sample platform
for the heat capacity option in PPMS Dynacool [adapted from [109]].
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Heat capacity measurements

For MnFe4Si3, temperature dependent heat capacity was measured using sample of
8.8 mg in a field of 0, 1 and 2 T parallel to a-axis, in the temperature range from 2
to 395 K with 2 K steps. Silver paste was used to fix the sample on the platform in
all the measurements.

For Mn5Ge3, heat capacity data were collected in the temperature range from 2
to 395 K using 8.4 mg sample. For the measurements in zero field, a low temperature
apiezon N grease (Cryogenic High Vacuum Grease; 2 < T < 230 K, ∆T= 0.5 K
from 2 to 20 K and ∆T = 2 K from 20 to 230 K) and a high temperature H grease
(silicone-free high temperature vacuum grease; 210 < T < 395 K, ∆T = 2 from
210 - 250 K and 350 - 395 K, ∆T = 1 K from 250 to 350 K) were used. For the
measurements in 1 and 2 T, the sample was fixed on the platform using silver paint,
and the measurements were performed in the same temperature range (2 < T < 395
K, ∆T = 2 from 2 - 250 K and 350 - 395 K, ∆T = 1 K from 250 to 350 K). Due to
the magnetic torque exerted on the sample at low temperatures in strong magnetic
fields, the measurement with the field parallel to the hard direction ([100] direction)
was restricted to a maximum field of 1 T (6 mg sample, 250 < T < 395 K).

For Mn5Si3, heat capacity measurements were performed in a magnetic field of
0, 3 and 5 T parallel to the c-axis in the temperature range 2 – 130 K, ∆T= 1 K.
A sample of 8 mg was used and mounted on the platform using Apiezon N grease.

3.5 Direct Measurements of the MCE in a Pulsed

Magnetic Field

3.5.1 Introduction

All pulsed magnetic field measurements reported in this thesis were performed at
Dresden High Magnetic Field Laboratory (Hochfeld-Magnetlabor Dresden, HLD) in
the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The pulsed magnets are ener-
gized using a high power 50 MJ modular capacitor bank with a maximum charging
voltage of 24 kV and a maximum electric power of Pmax = 5 GW. The magnets
are installed in individual pulse cells and electrically separated from each other. All
the pulsed magnets are cooled down to 77 K by immersing them in liquid nitrogen
in order to reduce the ohmic resistance, which prevents the magnets from being
damaged.

Currently, different pulsed field magnets and a variety of experimental tech-
niques, such as ultrasound, electrical transport, magnetic resonance, magnetization
and magnetocaloric measurements, are available at the HLD for users, see figure
3.11 (left) which displays the time dependences of the magnetic fields obtained from
the different pulsed magnets operational at the HLD [110].

Mono-coil pulsed magnet “D”:

The “compact-coil” concept, which helps in reducing the design and construction
costs for the pulsed magnets, has been developed and applied for all the pulsed
field magnets (mono-coils and multi-coils) at the HLD. The core design is scaled
to accommodate a specific amount of energy depending on the desired peak field
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Figure 3.11: (Left) measured time dependences of the magnetic fields obtained with
different pulsed magnets operational at the HLD [Taken from [110]]. (Right) a
schematic cross-section of the mono-coils magnets [Taken from [111]].

and pulse duration of the magnet. The key feature of the “compact-coil” concept is
using an outer stainless steel cylinder (35 mm wall thickness), with G-10 end-flanges
(an industrial laminate of high tensile and dielectric strength) and axial bolts which
all together serve as an external reinforcement and housing for the coil providing
support for the magnets. The magnet coil is fixed on the G-10 supporting plate
which forms the base for the installation in the magnet pit. G-10 tubes are also used
to strengthen the copper current leads which provide the necessary rigidity for the
magnet terminals. In order to withstand the mechanical stresses (arising from the
Lorentz force) inside the coil windings, additional distributed internal reinforcement
is used. A schematic of the cross section of the mono-coils magnets is shown in
figure 3.11 (right).

Magnet reliability, longevity and cooling time are important issues which mainly
affect the user operation. As the magnets are subjected to high mechanical stresses,
high voltages, and thermal shocks (due to Joule heating, the wire temperature
increases from 77 K to above room temperature within fractions of a second), a
coil-monitoring program is conducted at the HLD to reduce the probability of an
unexpected coil failure. Signals from the resistors, pick-up coils and the different
antennas are collected during the pulse and checked afterwards. This helps to know
the condition of the coils and to decide if it is possible to continue with the magnet
or if it should be replaced [111], [112].

In our measurements, the small pulsed magnet designated “D” was used, which
has a bore of 24 mm in diameter and operates with 1.5 MJ total energy, generating
fields up to 50 T with full-pulse duration of about 50 ms, and typical cooling time
of about one hour. The green curve in figure 3.11 corresponds to the magnet used
in this work. For this magnet, copper-alloy wires are used as conductor and a Zylon
– Stycast composite is used as the internal reinforcement.

The main advantage of the direct measurements of the magnetocaloric effect
in pulsed magnetic field, besides giving the adiabatic temperature change ∆Tad
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which is one of the most important parameters for magnetic refrigeration, is that
they are straightforward and closer to the real process used in applications. The
pulse lengths of the nondestructive pulsed field magnets in the HLD are in the
range from 10 to 100 ms, which agrees well with the targeted operation frequencies
of the magnetic refrigerators which is about 10 to 100 Hz. Moreover, the short
pulse duration provides nearly adiabatic conditions during the measurements, and
magnetic field range can be easily extended to more than 70 T which gives the chance
to thoroughly characterize the magnetic properties of the compounds at high fields.
These measurements also allow extracting information on the response time of the
material and provide insight on the stability of a material when repeatedly exposed
to a magnetic field [113], [114].

3.5.2 Experimental setup and procedure

The direct measurements of the MCE were performed at HLD using their home
built setup; a schematic drawing of it is shown in figure 3.12. The main components
required for the measurements are: the magnet for supplying the magnetic field, the
cryostat (helium-4) for cooling/heating the sample and thermometer for measuring
the temperature response of the sample. A photo for both sides of the sample holder
together with the local heater is also shown in figure 3.12.

A differential Copper-Constantan thermocouple was used to observe the tem-
perature change of the sample under the pulsed magnetic field. Wires diameter of
20 µm were used to ensure a sufficiently fast response time of the thermocouple.
The two wires (copper and constantan) were thoroughly twisted together in order
to avoid any open loops. After this, one of the thermocouple legs, which is called
sample junction, was squeezed between the two samples, and the other one, called
reference junction, was fixed on the opposite side of the holder to measure the tem-
perature inside the sample holder (reference temperature) and detect any influence
from the field on the thermocouple voltage (see the photo in figure 3.12). Figure
3.13 displays a schematic of the thermocouple.

For preparing sample junction, two kinds of thermal conductive epoxy (EPO-
TEKH20E) were used, mixed in equal proportions and small amount of the mixture
was put at the surface of the first sample. The junction was placed at the center, and
then the second sample was put on top resulting in a sandwich with the junction in
the middle. The sandwiched sample was put on a heater to stiffen out the epoxy in
order to obtain a good thermal contact between the sample and the junction. After
this, the sample sandwich with the thermocouple junction in between was glued on
the sample holder using GE varnish. The other junction was also fixed with GE
varnish on the other side of the holder exactly at the same height as the sample
junction, to make sure that both junctions are subject to the same magnetic field.
The holder was connected to a G10 rod of 1.5 m length. All the electrical contacts
were made of copper wires, and all the used materials and wirings were chosen to
minimize eddy current.

To ensure uniform temperature distribution, a local heater was placed around
the sample. The heater body is made of brass cylinder with 12 mm diameter, 0.5 mm
wall thickness and a longitudinal slit in it to prevent the production of eddy currents.
Manganese wires of 50 µm diameter were bent and wrapped around the cylinder as
heating element and connected with the wires on the rod by solidification (see the
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photo in figure 3.12). If the sample is too close from the heater body, then it will
expose to the radial temperature gradient, and so the accurate sample temperature
is defined by correcting the probe thermometer by the thermocouple reading taken
before the pulse.

Figure 3.12: Schematic of the experimental set-up for MCE measurements in pulsed
magnetic fields with a picture of both sides of the sample holder together with the
brass cylinder[Taken from [35]].

After this, the whole rod was covered by Teflon and enclosed in a thin-walled
stainless steel shield where it was centered using spacers made from PEEK (polyether
ether ketone [115]). Sample space inside the shield was evacuated to provide adi-
abaticity. Anyhow, as short duration pulsed magnetic field was used for the mea-
surements, limited vacuum is sufficient to ensure the adiabatic conditions of the
measurements. At the end, the whole assembly was inserted into the He-4 cryostat.

In the pulsed field measurements, it is critical to measure the magnetic field
precisely. This was done by measuring the induced voltage of a calibrated pick-up
coil. In our experiments, the coil consists of small area (few mm2) with 15 turns of
60 µm isolated copper wire around it, and located at the end of the sample holder.
The induced voltage is proportional to the time derivative of the magnetic flux as
Uind(t) ≈ dφ/dt ≈ dB/dt, where B is the magnetic flux density. This voltage was
registered using a digital oscilloscope (Yokogawa DL750 or DL850) with a sampling
rate of 1 MHz. Magnetic field as a function of time was obtained after numerical
integration of the stored digitized data.
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Figure 3.13: Schematic drawing the differential copper-constantan thermocouple
[modified from [35]].

For a calibrated thermocouple, the voltage as a function of temperature V(T)
and the temperature as a function of the voltage T(V) are defined in polynomials
form. So the initial temperature Ti results in an initial voltage Vi. When the initial
voltage is increased by the measured voltage change ∆V, the final temperature Tf
can be obtained from the inverse dependence T(V) and thus the change in the
adiabatic temperature can be calculated as ∆Tad = Tf − Ti.

A large artificial voltage (dB/dt) may arise from an open loop in the thermo-
couple wires, and this voltage is significantly larger than the voltage change ∆V
attributed to the magnetocaloric effect. To remove the effect of dB/dt from the
measured data, an extra compensation circuit was used. The signal from the pick-
up coil, which measures the magnetic field, was passed through a voltage divider in
order to take the appropriate part of it and subtract it from the thermocouple sig-
nal. Moreover, the desired temperature-dependent part of the voltage signal can be
extracted by averaging between positive and negative pulses using the fact that the
MCE does not depend on the field direction. Therefore, with the help of the com-
pensation scheme and averaging method, it was possible to eliminate the influence
of dB/dt from the experimental results.

After the compensation, the signals from the thermocouple were amplified and
conditioned by a low-noise voltage amplifier (FEMTO-DLPVA).The time-dependent
thermocouple signal ∆V(t), was recorded by a digitizer and later converted to
∆Tad(t) using the thermocouple calibration. A Matlab program was used for the
conversion of the voltage difference in mV to the temperature change in K. So in
general, taking the advantage of the fast field-sweep rate and using a very thin ther-
mocouple (to get the quick response), it was possible to measure adiabatic MCE in
pulsed magnetic fields [107], [114].

Experimental details

MnFe4Si3

Four equally shaped plates (5 mm×5 mm×1 mm) were cut for the MCE measure-
ments in pulsed magnetic fields, two of them with the shortest dimension in [100]-
direction and the other two with the shortest dimension in [001]-direction. The first
two samples were mounted as mentioned before in a way that the field was parallel
to the easy direction ([100]).

The measurements were performed and ∆Tad was calculated in 2 (1 KV) and
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20 (10 KV) pulse fields at different initial temperatures. One 50 T pulse (24 KV)
was applied and ∆Tad was calculated at 320 K. After dismounting the first sample
sandwich, the second one was mounted with the field parallel to the hard direction
([001]). A test 10 T (5 KV) pulse was applied at 340 K, the resulted data were
not in a sufficient quality due to the slow heat transfer between the sample and
the thermocouple, which was obvious from the offset between the measured and
the real temperature of the sample. Due to the limited magnetic time available,
the connection could not be modified and the measurements on this direction were
stopped.

Mn5Ge3

The same procedure was followed for the Mn5Ge3 compound. Four Samples (5
mm×2.5 mm×1 mm) were used to measure the MCE in pulsed magnetic fields of 2
and 20 T in both directions (with the field parallel to [100] and [001] directions) at
different initial temperatures.
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Chapter 4

Direct measurements of the
magneto-caloric effect of MnFe4Si3
in pulsed magnetic fields

All experiments presented in this chapter were performed on the single crystalline
sample MnFe4Si3 that was prepared as described in the subsection 3.1.2. This
compound is considered as the most promising candidate for applications in the series
Mn5−xFexSi3 as it has a transition from the paramagnetic to a ferromagnetically
ordered state close to 300 K and features a modestly large magnetic entropy change.
For this compound, the magnetic and magnetocaloric response to pulsed and static
magnetic fields up to 50 T have been investigated. The adiabatic temperature change
∆Tad has been determined directly in pulsed fields and compared to the results of
magnetization and specific heat measurements in static magnetic fields. The data
in this chapter were published in [54].

4.1 Results and discussion

The phase purity of the ground single crystal was confirmed by x-ray powder diffrac-
tion (see figure A.5). A LeBail refinement [86] performed with the program Jana
2006 [116] yields lattice parameters a = 6.8019(6) Å and c = 4.7293(4) Å in good
agreement with the literature values (a = 6.8057(2) Å and c = 4.72965(16) Å [53]).

Magnetization measurements in static and pulsed fields

Figure 4.1 shows the magnetization of MnFe4Si3 as a function of the applied magnetic
field M(H) parallel to the crystallographic a-axis (a) and parallel to the crystallo-
graphic c-axis (b).

The demagnetization factor was found, as described in appendix A.1, to be
equal to 0.1755 and 0.1312 for the samples used in the magnetization measurements
parallel to a-axis and c-axis, respectively. It should be noted that the specimen for
the easy axis measurements has an irregular shape (see figure A.6), hence introducing
a small systematic error in the demagnetization factor. So the magnetization curves
are not completely corrected with this factor, and still have linear field dependence
at small fields.
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Figure 4.1: Corrected magnetization curves of MnFe4Si3 for the magnetic field ap-
plied parallel to [100] (a) and parallel to [001] (b) at different initial temperatures.

After the correction, a clear anisotropy of the magnetic response can be seen.
One can still observe linear field dependence at small fields (albeit less steep with
the field in [001] than with the field along [100]) in the ordered phase, followed by
a saturation region see the different field range in figure 4.1. Each curve was fitted
with a linear function in the respective regions. On the basis of these data, the
susceptibility in the region around zero field was calculated (figure 4.2).

For the data with H ‖ [100], the slope is constant at low temperatures within
the magnetically ordered state. For temperatures below 300 K, the magnetization is
saturated already for µ0H = 0.4 T. At 20 K the saturation moment reaches 117.35(1)
Am2/Kg at a field of 0.4 T. For higher fields, there is a small linear increase.

Upon increasing the temperature, the sharp transition is gradually broadened
and the value of saturation magnetization decreases. Close to the transition tem-
perature, the slope at small fields changes drastically and the saturation is not
reached at 1 T (4.1 (a)). At 330 K and above, the magnetic moment increases lin-
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early with the field in the measured range. Comparing with the results from [53],
in general a good agreement can be seen with only slightly smaller values of the
maximum magnetization and the field of saturation in the results presented here.

For the data with H ‖ [001] the magnetic response is different to the case with ~H
‖ [100]. The field dependence of magnetization increases slower and reaches smaller

maxima compared to the measurement with ~H ‖ [100]: the magnetization reaches
about 109.87(3) Am2/kg at a field of 5 T at 60 K. All these observations clearly
confirm that for MnFe4Si3, the easy axis of magnetization is in the a, b-plane and
the c-direction is the hard axis of magnetization. At higher fields, there is a small
linear increase and up to 6 T there is no clear saturation. This agrees with earlier
results [53], where no saturation was reached in a field up to 4 T. Above 300 K, the
magnetization dependence of the magnetic response within the probed field range
becomes more and more linear.

limH→0
M
H

exhibits distinct features for the different field directions. For the [100]
direction it increases until the temperature approaches the transition temperature
after that it remains nearly constant. Along the hard direction, limH→0

M
H

features
a sharp maximum at the transition temperature. The presence of the maximum
results also in a sign change of the magnetic entropy change as discussed below.

Figure 4.2: The susceptibility of MnFe4Si3 in the region around zero field, ~H ‖[100]

and ~H ‖ [001]. Statistical error bars are typically smaller than the symbols size.

For the calculation of the MCE from the magnetization curves, the temperature
dependent magnetic response M(T,H) was extracted from the respective isotherms
(see Figure 4.3). The difference between the magnetization values for the two direc-
tions can be easily seen.

In the [100] direction, the magnetization quickly reaches a constant value for
small applied fields (µ0H < 0.2 T). For larger fields the typical temperature depen-
dence of a ferromagnet develops, approaching saturation only at low temperatures.

For the [001] direction the shape is completely different. M(T) features a maxi-
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mum, which shifts with increasing field to lower temperature. For the higher fields
it becomes shallower and might finally disappear for µ0H > 5.0 T (as measurement
below 60 K where not performed, it could also move to a lower temperature range).

Figure 4.3: Temperature-dependent magnetization of MnFe4Si3 from hysteresis mea-
surements, for ~H ‖ [100] (a) and ~H ‖ [001] (b).

Figure 4.4 displays the isothermal entropy change ∆Siso calculated via the Maxwell
relation (equation (A.2)). The magnetocaloric effect has a maximum value at ap-
proximately 300 K and from the curves it is obvious that it shows a significant
anisotropy. With an applied field along the a-axis, the magnetic entropy change has
a maximum of about 1.3 J/kg·K for a field change of 1 T, compared to a magnetic
entropy change of about 0.47 J/kg·K for a field change of 1 T with the field along the
c-axis. These observations demonstrate that the MCE in this compound is clearly
dominated by the magnetic moments aligned in the a, b-plane.

The entropy change for the field applied ‖ [100] is consistent with the earlier
results from single crystal [53] and powder measurements [16]. The entropy change
for small field changes of 1 T applied along the hard direction reveals a more complex
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behaviour (the blue curve in figure 4.4). Here, one observes an inverse MCE up to
290 K where ∆Siso is positive with a maximum positive value of approximately
0.14 J/kg.K at 286K. With further temperature increase the sign changes. And the
inverse MCE near the transition temperature is suppressed for larger field changes
and increases stronger than linear with field , as can be seen from the red curve in
figure 4.4. To emphasize this behavior, the surface plots (figure 4.5) were used.

Figure 4.4: MCE of MnFe4Si3 calculated from magnetization data at a field of 1
T for ~H ‖ [100] (green curve) and at a field of 1 and 6 T for ~H ‖ [001] (blue and

red curves, respectively). For comparison, the 1 T for ~H ‖ [100] is shown again in
dashed green line.

The sign change of the MCE for a field change along the hard direction is high-
lighted in the false color plot fig. 4.5. A normal MCE, i.e. a lowered entropy in the
applied field is shown as red colors, while an inverse MCE, i.e. an increased entropy
in an applied field corresponds to blue colors. Note that the size of the entropy in-
crease and loss are quite different, see the color bar where the red color range is ten
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times larger than the blue color range. Along the easy direction the entropy change
nearly vanishes well below the transition temperature. Along the hard direction,
the entropy increases with field well below the transition temperature as a result
of the magnetocrystalline anisotropy. Here, one observes an inverse MCE around
the transition temperatures for small fields. With increasing field, the inverse MCE
shiftes to lower temperatures (blue area in the (b) panel of 4.5). Even the largest
field (6 T) used in the measurements parallel to [001] could not be overcome the
anisotropy at low temperatures (< 100 K), and so a small inverse MCE can still be
seen.

Figure 4.5: Colour plot of the magnetic entropy change of MnFe4Si3 as a function
of temperature and magnetic field change parallel to [100] and [001]. Blue colours
indicate a positive ∆Siso and hence an inverse MCE, red colours correspond to a
negative ∆Siso and hence normal MCE. Note that the range for the negative entropy
change (red color) is ten times larger than the positive entropy change (blue color).
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Figure 4.6 shows the field dependent magnetization M(H), in Am2/kg and in µB
per metal atom, obtained from the pulsed magnetic field experiment together with
isothermal magnetization data measured in a field up to 8 T in the [100] direction and
up to 35 T in the [001] direction at 5 K. The pulsed field magnetization measurement
data was corrected by the demagnetization factor and then normalized to the DC
field data at 8 T in the first direction and to the data at 8.5 T in the other direction1.
It can be seen that there is a good match between the curves. Magnetization curve
along the hard [001] direction reaches saturation at about 7.2 T. For higher fields,
there is a small linear increase in the magnetization where the curve has small slope
of 0.036(1) Am2/kg·T. No further evolution of magnetization was discovered up to
the highest fields.

Figure 4.6: M(H) curves, in Am2/kg and in µB per metal atom (assuming all the
metal atoms have the same magnetic moment), in pulsed magnetic field and DC
field at 5 K in [100] direction and [001] direction.

Direct measurements of ∆Tad in pulsed magnetic fields

In order to investigate the applicability of the material on the time scale close to
that of possible applications, direct measurements of ∆Tad in pulsed fields were
performed. For that, the temperature of the sample was recorded as the field is
ramped in ∼50 ms to 2 T or 20 T, respectively. Figure 4.7 presents the as-recorded
data measured for the easy direction at 330 K in 20 T pulse (a), and the trial
measurement for the hard direction at 340 K in 10 T pulse (b). The upper graphs
show the time dependencies of the magnetic field and the thermocouple response.

For the easy direction [100], the pulsed field profile and the measured temperature
change nearly coincide, indicating a reasonably good coupling of the thermocouple

1Mnew(B) =
Mpulse(B)×Mdc(8/8.5T )

Mpulse(8/8.5T )
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to the sample. On the other hand, for the measurements with the field applied
in [001] direction, the temperature signal of the thermocouple lags the field pulse
significantly, and a sharp maximum appears at the beginning of the ∆Tad(t) curve,
see panel (b) in Figure 4.7.

Figure 4.7: Field and time dependence of ∆Tad for a pulsed magnetic field of (a)
20 T applied along the [100] direction at 330 K (b) 10 T applied along the [001]
direction at 340 K.

The finite signal of the thermocouple before the pulse can be attributed to a
small open loop of the thermocouple wires, despite a careful twisting of the wires
during the sample preparation. To cancel this contribution, two measurements taken
at positive (+10 T) and negative field (-10 T) have been averaged as shown in figure
4.8. The delay of the thermocouple response is due to the imperfect coupling between
the sample and the thermocouple, and so the measured temperature does not reflect
the real temperature of the sample. This effect can’t be corrected. As there was not
enough time to re-do the coupling, the measurements for the hard directions were
stopped. Anyhow, the measured test data indicate that the temperature change
with the field applied in the [001]-direction is considerably lower than the one with
the field applied in the easy direction.

A more thorough test of the coupling is the field dependence of ∆Tad. The lower
graphs show the temperature changes re-plotted against the field. Here the finite
response time shows up as an opening of the curve upon up- and down-sweeps. The
difference in shape of the field dependencies between the two directions reflect the
thermal contact quality between the particular directions, which is also seen by the
lagging of the temperature signal behind the field signal.

Figure 4.9 shows the adiabatic temperature change for the easy direction of a
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Figure 4.8: Time dependence of the raw signal with pulsed fields of +10 T and -10
T at 340 K and their average.

MnFe4Si3 single crystal sample as obtained from the direct measurements in pulsed
magnetic field up to 2 T and 20 T (blue symbols), respectively. It is obvious that
∆Tad increases with increasing the applied magnetic field. A maximum ∆Tad occurs
at TC (300 K) for a field change of 2 T. With increasing the magnetic field up to
20 T, the observed peak broadens and shifts towards higher temperatures, as the
transition into the paramagnetic state broadens upon the application of the magnetic
field. As the magnetic field stabilizes the ferromagnetic order, a higher thermal
energy is needed to bring the system into a higher entropy state and hence the
maximum adiabatic temperature change shifts towards higher temperature. This
broad maximum is also reported in [117] for the La(Fe,Si)13 system and for the
La(Fe,Si,Co)13 system [114].

The maximum values of ∆Tad are 1.38(2) and 5.66(4) K for field changes of 2
T and 20 T, respectively. Thus, the adiabatic temperature change increases only
by a factor of 4 although the field is increased by a factor 10, see figure 4.10 that
shows the adiabatic temperature change divided on the field value for the 2 and 20 T
parallel to [100] direction. Figure 4.10 demonstrates that the adiabatic temperature
change is not proportional linearly to the field. Similarly, ∆Tad for a pulsed field up
to 50 T at 320 K gave an increase of ∆Tad up to a value of 9.64(46) K.

The main reason for the error in these measurements is thermalization time. The
maximum error in the ∆Tad was estimated as: max. error = the delay between the
two peaks (pulse profile and sample temperature) × sweep rate. Non-adiabaticity
is also a reason for error, but the error is really small as different procedures were
taken into account to prevent this (subsection 3.5.2).
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Figure 4.9: Comparison of ∆Tad for the easy direction measured in pulsed magnetic
fields of 2 T (blue symbols) and calculated from the magnetization and heat capacity
measurements in static magnetic fields of 2 T (red symbols). ∆Tad measured in
pulsed magnetic fields of 20 T (blue symbols).
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By using the relation (1.8), the change in the adiabatic temperature was cal-
culated for different initial temperatures from the magnetization and heat capacity
measurement for a field change of 2 T (magnetization measurements with the field
parallel to [100]-direction were repeated using smaller temperature steps, as shown
in A.7, in order to be able to compare with the values from the direct measure-
ments of the ∆Tad, see the curve in figure A.7 for ∆Siso values and the red curve
in figure 4.11 for C(p,H) values). A comparison with the values from the direct
measurements in pulsed fields of 2 T (red and blue curves in figure 4.9) shows good
agreement. From the indirect measurements we got a maximum of 1.15(1) K at 300
K and a field change of 2 T compared to a maximum value of 1.38(2) K from the
direct measurements at 300 K and a field change of 2 T. The slight deviation of the
maximum value can be explained by the estimation performed in mass determina-
tion, the error produced from sweeping the field and the coarse temperature steps
of the isothermal measurements. These factors systematically affects the numerical
approximation of equation (1.4).

Figure 4.10: ∆Tad/µ0H for a field of 2 and 20 T parallel to [100] direction.

Heat capacity measurements

The temperature-dependent heat capacity data of MnFe4Si3 measured in a magnetic
field of 0, 1 and 2 T (figure 4.11), show only small differences in the temperature
region between 2-280 K. In zero field we can then clearly identify a lambda anomaly
related to the magnetic phase transition. Upon application of a magnetic field, the
anomaly broadens and shifts towards higher temperature as expected. We observe,
however, further features at elevated temperatures above the phase transition at
∼320 K and 350 K. These are pronounced in the 0 T and 1 T data, but smeared out
in the 2 T data. Only at 380 K – 400 K the three curves merge again, nearly 100 K
above the magnetic phase transition. It is noteworthy that in earlier investigation
by resonant ultrasound spectroscopy [16] it was also observed that the effects of
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the magnetic field extended well above the transition temperature, a fact that was
ascribed to the strong response of the lattice to a magnetic field.

Figure 4.11: Temperature-dependent heat capacity data of MnFe4Si3 measured at
0, 1 and 2 T with field parallel to [100].

4.2 Conclusions

The magnetic and magnetocaloric properties of single crystalline MnFe4Si3 were
studied. The magnetization and MCE were measured in both constant and pulsed
fields. As a strong magnetic anisotropy was observed, the measurements were done
with an applied field along the [100] direction and along the [001] direction.

Magnetization measurements in DC fields confirm that the easy axis of magne-
tization lies in the a, b-plane. The field dependence of the magnetic moments shows
that the compound undergoes a first-order phase transition to a ferromagnetic or-
dered phase at approximately 300 K. Due to the good agreement of the shape of the
magnetization curves in static and pulsed field we could use the static measurements
to calibrate the pulsed field data. These in turn provided the information that no
further transition appears up to very large fields.

Direct and indirect measurements of MCE for the easy direction are in a good
agreement. With repeating the measurements for the hard direction, direct mea-
surements could also be used to address the anisotropy of MCE.

In particular MnFe4Si3 runs very cyclable through the pulsed cycles, which might
be an important property in terms of potential applications. The good stability and
the ability of cycling might be related to the fact that the lattice reacts dynamically
to the magnetic ordering and not by discontinuous structural changes [53].
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Chapter 5

Anisotropy of the Magnetocaloric
effect: Example of Mn5Ge3

All experiments presented in this chapter were performed on the single crystalline
sample Mn5Ge3 that was prepared as described in the subsection 3.1.2. The com-
pound Mn5Ge3 is of special interest for magnetocaloric studies as it exhibits a phase
transition at approximately 300 K, features a modestly large magnetic entropy
change, shows small magnetic anisotropy and contains only environmentally unprob-
lematic elements. For this compound, the field direction dependence of the thermo-
magnetic behavior has been investigated. The adiabatic temperature change ∆Tad
in pulsed fields, the isothermal entropy change ∆Siso calculated from static magne-
tization measurements and the heat capacity have been determined for field parallel
and perpendicular to the easy magnetic direction [001]. The uniaxial anisotropy
constants in second and fourth order, K1 and K2, have been calculated from the
isothermal magnetization measurements and a discussion about how the anisotropy
affects the magneto-caloric effect (MCE) is also presented in this chapter. The data
in this chapter were published in [51].

5.1 Results and discussion

Powder diffraction and chemical analysis

Chemical analysis was performed for the prepared single crystal and according to
the result the compound is Mn4.98Ge3.09, the presence of other elements (Al, Cu, W)
is really small, much less than the standard deviation in Mn and Ge (≈ 2%).

All peaks in the X-ray powder diffraction diagram can be indexed with the
lattice parameter of Mn5Ge3, confirming the purity of the sample (figure 5.1). Room
temperature lattice parameters determined from a LeBail refinement [86] performed
with the program Jana 2006 [116] are a = b = 7.1972(1) Å, c = 5.0331(1) Å.

Heat capacity measurements

The analysis of Cp(T), as was described in section 2.2, at low temperature yields the
electronic specific heat coefficient γ= 51.1(1) mJ/mol·K and a Debye temperature
of θD = 509(1) K. Dulong – Petit limit was calculated to be equal to 405.1 J/kg·K.

The heat capacity data in zero field shows a well-developed λ-type peak at the
magnetic Curie temperature (figure 5.2). In applied magnetic field, the peak broad-
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Figure 5.1: Observed intensities and the difference profile of Mn5Ge3 measured by
X-ray powder diffractometry (1.5418 Å) at room temperature.

ens and shifts towards higher temperatures. This observation corroborates the pre-
dominance of the ferromagnetic order. From the comparison we can see that the
application of a field of 1 T reduces the heat capacity around the transition temper-
ature more, if the field is applied ‖ [001]. However, further features are observed at
temperatures > TC between 320 and 360 K – these features are more pronounced
in the 0 and 1 T curves. At 360 K the three specific heat curves merge again. At
380-400 K there is a spread of the heat capacity values.

Figure 5.2: Temperature-dependent heat capacity data measured at 0, 1 and 2 T
with field parallel to [001] and at 1 T with the field parallel to [100] ([100] measure-
ment - restricted to a max. field of 1 T and temperature range from 250 to 395 K
due to the large magnetic torque exerted on the sample).
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Magnetization measurement in static and pulsed fields

We have measured the magnetic response using the high temperature option of the
PPMS up to 1000 K. Only in the temperature range T > 550 K the susceptibility is
proportional to 1/T and independent of the direction of the applied field indicating
Curie-Weiss behavior. A fit of the Curie-Weiss law in the region T > 800 K see
figure A.8) yields a Curie constant of C = 1.1(1) × 10−4 m3K/mol, Curie-Weiss
temperature of 360(10) K and effective magnetic moment per transition metal ion
µeff = 3.8(2)µB, i.e. the ordered moment as reported in [52] on the WP6g site
(3.23(2)µB) at base temperature comes close to the effective paramagnetic moment
per Mn, while the moment on the WP4d site (1.96(3)µB) is significantly smaller1.

The demagnetization corrected magnetization at different initial temperatures
(5.3; see also figure A.9 for further M(H) curves) shows, that, along the easy [001]
direction, saturation is reached at small fields < 0.3 T and only close to the transition
temperature of ≈ 296 K the field dependence broadens.

Figure 5.3: Selected magnetization curves M(H) of Mn5Ge3 measured at different
temperatures with the magnetic field applied along the [001]-direction (solid lines)
and along the [100]-direction (dash lines).

For the data with field parallel to the [100] direction, the response at small fields
is lower. In the temperature range between TC and 250 K, the slope ∂M/∂H is
increasing with temperature, see figure 5.4. Below 250 K, ∂M/∂H remains nearly
field and temperature independent below the anisotropy field Ha, which we identify
as the locus of maximum curvature in the M(H) curves. Above Ha the magnetization
for field parallel and perpendicular to the easy axis approach each other.

1The effective paramagnetic moment is the moment that each site carries when it does not feel
any interactions. The ordered moment is the fully correlated moment for a certain lattice site
according to the propagation vector.
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Figure 5.4: ∂M/∂H in the region around zero field, ~H ‖ [100].

From literatures, the Curie temperature of the Mn5Ge3 is in the range from 290
K to 304 K [45]–[50]. In order to find the exact Curie temperature for our compound,
Arrott plot was used [66], in which the isothermal M–H data of the Mn5Ge3 single
crystal sample were re-drawn as a plot of (H/M) vs. M2 over the temperature range
of 290–300 K as shown in figure 5.5. The curve which passes through the origin is
the one at 296 K, which was considered as the Curie temperature of this compound.

For the hexagonal system, second (K1) and fourth order (K2) anisotropy con-
stants are considered to parametrize the anisotropy energy (Ea = K1 sin2 θ+K2 sin4 θ).
θ is indicating the angle between the field and the easy direction. We applied the
method introduced by Sucksmith and Thompson [58] to calculate the K1 and K2

from a plot of M2 versus µ0H/M (see figure A.4 as an example). Before saturation
is reached both observables have a linear relation and the slope yields K2, while the
y-axis intersection yields K1 + 2K2, as can be seen from a free energy expansion. In
the calculations, the saturation magnetization Ms was taken as the magnetization
at 8 T. At 20 K, we find the magnetic anisotropy constant K1 = 3.6(1)× 105 J/m3

(anisotropy field ≈ 0.8 T), while K2 = 1.3(1)×104 J/m3. With further temperature
increase, the anisotropy slowly decreases until approaching the Curie temperature
TC ≈ 296 K (figure 5.6). The results agree well with the ones in [46].
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Figure 5.5: Arrott plot (H/M vs. M2) of Mn5Ge3 in the vicinity of TC .

Figure 5.6: Temperature dependence of the magneto-crystalline anisotropy parame-
ters for Mn5Ge3 and MnFe4Si3. The positive sign in K1 of Mn5Ge3 is due to having
an easy axis anisotropy, meanwhile the negative sign for MnFe4Si3 is in line with an
easy plane magnetic direction.
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Thermal hysteresis loops of Mn5Ge3 showing the magnetization as a function
of temperature at applied magnetic fields of 0.01 and 0.5 T parallel to [001] and
[100] directions are presented in figure 5.7. The temperature dependent magnetic
response shows hysteretic behavior of about 5 K along both directions (see the inset
in figure 5.7 (a)) independent of the field direction and strength.

The comparison between M(T) at 0.5 T from the isofield measurements and the
ones extracted from the isothermal magnetization measurements- without demag-
netization correction, green curves in figure 5.7- justifies the calculation of ∆Siso
from isothermal magnetization measurements, which is presented in figure 5.8 for
different magnetic field changes ∆B.

Figure 5.7: Temperature dependent magnetization of Mn5Ge3 at an applied field of
0.01 and 0.5 T in (a) [001] and (b) [100] directions. Lines are M(T) from isofield
measurements and dots are M(T)B extracted from isothermal measurements. Inset
shows the magnetic transition region at 0.01 T ‖ [001].
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∆Siso features the maximum at 296 K for both field directions. The entropy
change for the easy and hard direction differs by 0.4 J/kg·K for all three ∆B (see
figure 5.8, black closed symbols for µ0H ‖ [001] and red open symbols for µ0H ‖
[100]). The difference vanishes for temperatures sufficiently higher than the transi-
tion temperature. Below TC the anisotropy of the effect is quite present and it is
more pronounced at lower fields. Below the transition temperature, the respective
average of these values is consistent with the earlier results from a polycrystalline
sample [45], [48] and the results from the sample in form of ribbons- unfortunately,
no information about the orientation of the ribbons is given in the article, so that a
more detailed comparison regarding the anisotropy is not feasible [118]. The insets
in figure 5.8 show isothermal entropy change normalized to the field change which
demonstrates the non-linearity of the MCE with the field.

When a small field < 1.2 T is applied along the [100] direction, a small inverse
MCE is observed between 150 and 290 K, i.e. the entropy increases with increasing
field (blue area in the right panel of figure 5.9) due to the fact that the small magnetic
field cannot overcome the anisotropy. With further increase of temperature, the
anisotropy decreases and smaller fields are sufficient to align the moments with the
field. As a consequence, the entropy changes the sign and increases stronger than
linear with field. A similar behavior was also observed in the compound MnFe4Si3
which is isostructural to Mn5Ge3, yet exhibits mixed occupancy of Mn and Fe on
the WP6g site and a ferromagnetic structure with the spins aligned in the a, b-plane
[54].

Refrigeration capacity of Mn5Ge3 was calculated from ∆Siso curve at a magnetic
field of 2 T parallel to [100], and found to be equal to 125.7 J/kg , this value is close
to the one stated in [118] of 122.9 J/kg.
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Figure 5.8: Magnetic entropy change of Mn5Ge3 determined from magnetization
data at a field of 0.5, 2 and 3 T parallel to [001] (black closed symbol) and [100]
(red opened symbol) directions. The insets show −∆Siso/µ0H for all curves.
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Figure 5.9: Colour plot of the magnetic entropy change of Mn5Ge3 as a function
of temperature and magnetic field change parallel to [001] and [100]. Blue colours
indicate a positive ∆Siso and hence an inverse MCE, red colours correspond to a
negative ∆Siso and hence normal MCE.
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Field dependent magnetization measurements were also performed in pulsed
magnetic field up to 30 T and in static field up to 9 T with the field parallel to
[100] and [001] directions at about 5 K (figure 5.10). The pulsed field data was
normalized to the DC field data at 8.5 T in both directions. A good match between
the curves can be seen. Magnetization curve along the hard direction [100] reaches
saturation at ≈ 1.9 T. No further evolution of magnetization was discovered up to
the highest fields.

Figure 5.10: M(H) curves, in Am2/kg and in µB per manganese atom (assuming all
the manganese atoms have the same magnetic moment), in pulsed and DC magnetic
fields at 5 K in [100] direction and [001] direction.

Direct measurement of ∆Tad

To probe the applicability of the material on the time scale close to that of possible
applications we performed direct measurements of ∆Tad in pulsed fields. For that
we record the temperature of the sample as the field is ramped in ∼50 ms to 2 T
and 20 T, respectively.

The ∆Tad values are obtained by processing the signal from the thermocouple,
one joint of which is connected to the sample. A lot of effort is put in order to
minimize the thermalization time, which is considered as the main source of error in
the ∆Tad values, and appears as a delay of the thermocouple signal (sample temper-
ature) from the pulse profile due to an imperfect coupling between the sample and
the thermocouple. This effect can’t be corrected, and if the delay is large, then the
thermocouple will not reflect the real temperature of the sample and the coupling
has to be re-done to make a better contact between the thermocouple and the sam-
ple. A lot of effort is also put to cancel the contributions induced in the leads by the
time dependent variation of the magnetic field and sample magnetization, due to an
open loop in the thermocouple, which appears as an artificial sharp maximum at the
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beginning of the ∆Tad(t) curve (also seen in the ∆Tad test measurement of MnFe4Si3
with the field parallel to [001] direction). In order to cancel this contribution, two
measurements taken at positive and negative pulsed field were performed at each
initial temperature. This changes the sign of the induced voltage, while the thermo
voltage keeps the same sign. Therefore, in the average the induced contributions
cancel out, see figure A.10. When the bump in the positive pulsed data is small
(mostly for the 20 T measurements) and can be removed by correction with a com-
pensation factor (see subsection 3.5.2), there was no need for the negative pulsed
measurements and only the corrected positive one was used, see figure A.10.

Figure 5.11 presents the as-recorded data measured for the two directions –easy
and hard directions- at 297.5 K in 2 T pulses. The upper graphs show the time
dependencies of the magnetic field and the thermocouple response. Here the ther-
mocouple signal resembles the pulse profile rather tightly, indicating a reasonably
good coupling to the sample. More thorough test of the coupling is the field depen-
dence of ∆Tad. The lower graphs show the temperature changes re-plotted against
the field. Here the finite response time shows up as an opening of the curve upon
up- and down-sweeps. The difference in shape of the field dependencies between the
two directions reflect the thermal contact quality between the particular directions,
which is also seen by the lagging of the temperature signal behind the field signal.
A similar behavior is seen for 20 T pulses shown in figure A.11.

Figure 5.11: Field and time dependence of ∆Tad for a pulsed magnetic field of 2 T
applied along the [001] direction (a) and along the [100] direction (b) at 297.5 K.

The adiabatic temperature change reaches different maximum values along the
easy and the hard direction (figure 5.12 (a)); ≈ 2.3(1) K for ~H ‖ [001] at 295 K

as compared to ≈ 2.0(1) K for ~H ‖ [100] at 300 K in pulsed magnetic fields of 2
T. These values are in agreement with the values calculated from the isothermal
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5.1. Results and discussion

entropy change and the specific heat measurements, where a maximum value of ≈
2.05(1) K for ~H ‖ [001] at 295 K was obtained, and for ~H ‖ [100], a maximum value
of ≈ 1.91(1) K at 297.5 K was obtained (details in figure 5.13).

Figure 5.12: Comparison of ∆Tad measured in pulsed magnetic fields of 2 T (a) and
20 T (b) with the field parallel to [001] and [100]. The lines drawn in the figures are
just to guide the eyes.
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The observations show that i) this material is quite capable of transferring heat
on the time scale of about 15 ms, and ii) that at least at the top of the pulse
corresponding to the maximum values the data are quite reliable. With that stated,
we have extended the field range up to 20 T (Figure 5.12 (b), Figure A.11) where
the observed peak broadens and shifts to higher temperatures, ∆Tad differs also by
10% for the two directions; ≈ 10.8(2) K for H ‖ [001] at 305 K as compared to
≈ 9.8(4) K for H ‖ [100] at 310 K. ∆Tad varies roughly as H2/3 , as expected for
localized ferromagnetism at TC [119].

For the measurements with the field parallel to [100] direction, the sample was
very close to the heater, because of this, a shift in the temperature was expected.
This shift is seen clearly in figure 5.12 between [001] and [100] directions at 2 and
20 T.

Figure 5.13: Comparison of ∆Tad measured in pulsed magnetic fields of 2 T and cal-
culated from the magnetization and heat capacity measurements in static magnetic
fields of 2 T with the field parallel to [001] (a) and parallel to [100] (b). For the
calculated ∆Tad, statistical error bars are typically smaller than the symbols size.
The lines drawn in the figures are just to guide the eyes.
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5.2 Conclusions

The anisotropy of the magnetocaloric properties in Mn5Ge3 was studied in static and
pulsed magnetic fields. The uniaxial magnetic anisotropy decreases with tempera-
ture and can be overcome by applied fields µ0H > 1.2 T; the anisotropy constants are
calculated over a broad temperature range up to fourth order. The comparison with
MnFe4Si3, which exhibits an easy plane anisotropy shows that in Mn5Ge3 the de-
pendence of the size of the MCE on the field direction is less pronounced. However,
despite the fact that anisotropy constants vanish towards TC , the MCE in Mn5Ge3
features also a significant anisotropy that is seen in the adiabatic temperature change
in pulsed field and also in the isothermal entropy change.

This study suggests that the magnetic anisotropy should be taken into account
when trying to optimize the performance of magnetocaloric materials. In appli-
cations, the control of preferred orientation and texture, depending on the specific
anisotropic characteristics of the candidate materials, could be beneficial for increas-
ing the size of the magnetocaloric effect.
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Chapter 6

Magnetic Structure of the AF1′

Phase of Mn5Si3

In the Mn5Si3 compound, previous studies showed a transition from AF1 to AF2
phase at 58 K and a magnetic field of 3.5 T applied along the c-axis. Below 60
K, higher magnetic fields induce a transition from the AF1 to AF′ before reaching
the AF2 phase. The magnetic structures of the AF1 and AF2 phases have been
established using single crystal neutron diffraction and spherical polarimetry, while
the magnetic structure of the AF1′ phase has not been studied before. Therefore,
in this chapter, the nuclear and magnetic structure of the intermediate phase, AF1′,
have been investigated using non-polarized single crystal neutron diffraction at 50
K and 5 T. Moreover, heat capacity measurements under magnetic field up to 5 T
and over the temperature range of all transitions will be presented.

6.1 Heat capacity measurements

Figure 6.1 shows the specific heat capacity of Mn5Si3 measured in the temperature
range from 2 to 130 K in a magnetic field of 0, 3 and 5 T. Two anomalies at about 63
and 100 K are clearly observed. These anomalies are related to the transition from
the paramagnetic state to the second antiferromagnetic ordering at TN2 ≈ 100 K,
and then to the first antiferromagnetic ordering at TN1 ≈ 63 K. Both transitions have
a different response to the external magnetic field. Indeed, the magnetic field has
only an insignificant effect on the AF2 transition. In contrast, for the AF1 transition,
the maximum of the peak decreases and TN1 is shifted to a lower temperature with
increasing field.

6.2 Refinement of the nuclear structure at 50 K

and 5 T

At the beginning, the measured peaks were integrated using the Davinci program
[105] as it is explained in the appendix A.8.

The starting model for the refinement was taken from the literature [42], [43].
According to the literature, the nuclear structure of Mn5Si3 at ambient temperature
is hexagonal, and at low temperature the nuclear structure is orthorhombic.
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6.2. Refinement of the nuclear structure at 50 K and 5 T

Figure 6.1: Mn5Si3 heat capacity measurements under 0, 3 and 5 T (blue, red and
green curves, respectively).

The orthorhombic Ccmm structure is just a slightly distorted form of the hexag-
onal P63/mcm structure. The application of a magnetic field at 50 K might change
the symmetry of the structure so that it is not certain whether the structure will
still be orthohombic, or whether it changed back to hexagonal. According to the
literature, one of the main pieces of evidence for orthorhombic symmetry is the fact
that in the ortho-hexagonal setting b is not any more

√
3a. From the POLI data one

cannot reliably see this. When the lattice parameters are refined, there is deviation
from the ideal value but it is not significant within the errors, see the subsection
6.4.1. Therefore, the nuclear structure was refined with both, the orthorhombic and
the hexagonal symmetry.

At the beginning, the nuclear structure of Mn5Si3 was refined in the centrosym-
metric space group P63/mcm , with the cell parameters a = b = 6.861(3) Å, c =
4.635(11) Å, 90◦, 90◦, 120◦ and Z=2. The internal R value (Rint) for this space
group is equal to 5.54%, where 83 reflections were averaged from 508 reflections,
with a redundancy of 6.12, and no reflections violating the systematic extinctions
were rejected.

In this refinement, initially one scale factor, the atomic coordinates and isotropic
displacement parameters were refined. Subsequently, the anisotropic ADPs were also
refined. As the anisotropic displacement parameters for Mn1 and Mn2 were equal
within their standard deviations, the corresponding parameters were restricted to
be identical. No extinction correction was applied.

The refinement converged with agreement factors of R = 3.24%, wR = 4.46%
and GOF = 4.0. Table 6.1 shows the details of the atomic positions (xyz) and the
anisotropic displacement parameters (U11, U22, U33, U12, U13 and U23) based on
this refinement.
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6.2. Refinement of the nuclear structure at 50 K and 5 T

A second refinement was performed in space group Ccmm. For this, the lattice
parameters, atomic positions (xyz) and reflections indexes (hkl) were transformed
from the hexagonal lattice to an orthorhombic lattice (Ccmm) using the transfor-
mation matrix: aobo

co

 =

1 0 0
1 2 0
0 0 1

×
ahbh
ch


The resulting lattice parameter are a= 6.866(3) Å, b= 11.893(6) Å, c= 4.637(11)

Å and Z=4. Rint for this space group is equal to 5.04%, where 343 reflections were
averaged from 508 reflections, with a redundancy of 1.481, and no rejections of
reflections violating the systematic extinctions. In the lower symmetrical structure,
Ccmm, the Mn2 and Si positions from the higher symmetry space group P63/mcm
(WP6g), split into two positions, WP4c and WP8g, designated Mn21, Mn22, Si1
and Si2, respectively.

In this refinement, the damping factor was chosen to be 0.1. Again, one scale
factor, the atomic coordinates were refined and all atoms were treated anisotropi-
cally. In this case an isotropic extinction (Becker & Coppens, type1, Gaussian [120])
was applied. The resulting GIso was 0.018(3).

Two local symmetry operators−1/2 −1/2 0
3/2 −1/2 0
0 0 1

 and

−1/2 −1/2 0
−3/2 1/2 0

0 0 −1

 ,

were used in the form x′y′
z′

 = M

xy
z

 ,

where M is the local symmetry operator. These local symmetry operators serve
to locally restrict the ADP parameters so that they still follow the hexagonal sym-
metry to avoid unnecessary correlations. ADP parameters of Mn1 are restrained by
local symmetry #2, parameters of Mn21 and Mn22 are related by local symmetry
#1, parameters of Mn22 are restrained by local symmetry #2, parameters of Si1
and Si2 are related by local symmetry #1 and Si2 was restricted by local symmetry
#2. In the refinement, U33 of Mn21 and Mn22 was still negative, although positive
within the error. It was modified manually by taking into account the error in it
and by converting it to a positive value (U33= -0.000960 ± 0.003125 −→ 0.002165).
U33 was then fixed to the resulting value and not refined further.

The symmetry reduction from (P63/mcm) to the lower symmetry space group
(Ccmm) leads to the loss of rotational symmetry elements (the 3-fold axis). There-
fore, a twin model was refined using 3 twin domains related by the 3-fold axis along
[001] (see figure 6.2).

The twinning matrices are:1 0 0
0 1 0
0 0 1

 ,

−1/2 1/2 0
−3/2 −1/2 0

0 0 1

 and

−1/2 −1/2 0
3/2 −1/2 0
0 0 1

 .
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Chapter 6. Magnetic Structure of the AF1′ Phase of Mn5Si3

Figure 6.2: Schematic drawing illustrating the three twin domains in the orthorhom-
bic setting.

The resulting twin volume fractions are twvol1 = 0.35(1) , twvol2 = 0.338(9)
and twvol3 = 0.313(9). The final agreement factors are R = 2.65%, wR = 3.31%
and GOF = 2.58. The number of the refined parameters is 15. Table 6.2 shows the
details of the atomic positions and the anisotropic displacement parameters based
on this refinement.

Table 6.3 compares the number of the refined parameters, the number of sym-
metry independent reflections and the R, wR-values of the two refinements of the
nuclear structure.

In order to check which space group is better, a Hamilton test [121] was used. For
this, a significance test on the R factor ratio R = R1/R0 was performed, where R1

and R0 are the weighted R factors for a structure resulting from restricted and unre-
stricted least square refinements, respectively. This test allow us to decide whether
the addition of parameters or addition of restraints on some of the parameters results
on a significant improvement or worsening of the R value.

In our case, the hypothesis that the hexagonal model for the nuclear structure
of Mn5Si3 at 50 K and 5 T is better than the orthorhombic model was tested. In
this test it is required that the number of reflections in both models is equal. To
do this the hexagonal model was transformed to ortho-hexagonal while keeping the
number and values of the parameters as they are in the hexagonal model.

The hypothesis that the hexagonal model is better than the orthorhombic model
is a linear hypothesis of dimension 15−8 = 7, where 15 is the number of parameters
for the model without restrictions on the parameters, Ccmm, and 8 is the number
of parameters for the model with these restrictions, P63/mcm.

The ratio of agreement factors for both models is 4.12/3.31 = 1.245, where 4.12 is
the wR value for the ortho-hexagonal structure with 8 parameters and the reflections
merged based on the orthorhombic symmetry, this way ensuring that the number
of reflections in both models is equal. Interpolation from table 1 in [121] results in
R7, 328, 0.005 = 1.032, where 0.005 is the significance level of R (this significance level
means that the risk of rejection of a true hypothesis is 0.5%).

1.245> 1.032, hence at the 0.5% significance level, the hypothesis that P63/mcm
is the correct space group can be rejected. From the results of both refinements and
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6.3. Refinement of the magnetic structure at 50 K and 5 T

based on the Hamilton test, it was therefore concluded that the nuclear structure of
the AF1′ phase of Mn5Si3 at 5 T and 50 K is orthorhombic with space group Ccmm.

Table 6.3: Comparison between the results of the refinement in P63/mcm and
Ccmm space groups

No. of reflections No. of parameters R wR

P63/mcm 83 8 3.24 4.46

Ccmm 343 15 2.65 3.31

6.3 Refinement of the magnetic structure at 50 K

and 5 T

In the hexagonal setting, the magnetic propagation vector has non-integer values, k
= (1

2
0 0). For the measurements on POLI the hexagonal axes were multiplied by 2

to make the propagation vector integer. For the subsequent refinement, the indices
were transformed from hexagonal with lattice parameters 2a = 2b c: 13.7218 13.7218
4.6353 Å to orthorhombic Ccmm, lattice parameters: a = 6.8609 b = 11.8834 and
c = 4.6353 Å, using the matrix: 1/2 0 0

1/2 1 0
0 0 1

 .

In the orthorhombic setting, the propagation vector is then given as k= (1,0,0).
From the 104 magnetic reflections, 102 reflections were written in the output file
and two reflections (hkl = 0 3 1 and 0 3 1) violating the extinction rules were
rejected. It should be noted that the nuclear reflections follow extinction rules for a
C-centered lattice (hkl: h + k = 2n), while magnetic reflections violate them (hkl:
h+ k = 2n+ 1). The magnetic atom is Mn and the magnetic form factor for Mn4+

〈j0〉 [122] was chosen.
From the space group of the nuclear structure in combination with the prop-

agation vector, 8 irreducible representations (irreps) were derived, which led to 8
different Shubnikov (magnetic) groups as can be seen in table 6.4. This was done
using the build-in algorithms of the Jana software [91]. Table 6.4 shows which di-
rectional components of the magnetic moment vectors are allowed for each magnetic
site in the different Shubnikov groups.

The different Shubnikov groups were used for refining the magnetic structure in
the following way: To keep the refined models easily comparable, the refinements
were performed with keeping the original setting (without transformation to the
standard setting of the magnetic space group). Nuclear and magnetic reflections
were refined using the same scale factor (Trial refinement showed that the agreement
factors did not get better when two scale factors were used).

For each Shubnikov group, the atomic positions xyz, the ADP parameters and
the twin volume fractions (twvol2 and twvol3) were fixed corresponding to the values
from the nuclear structure refinement.
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Chapter 6. Magnetic Structure of the AF1′ Phase of Mn5Si3

Table 6.4: A list of the different magnetic models showing the allowed directional
components of the magnetic moment vector.

Magnetic Shubnikov groups Mn1 Mn21 Mn22

P [C]cmm (0,M,0) (0,0,0) (0,0,M)

P [C]nam (M,0,M) (0,0,M) (0,0,M)

P [C]nmn (0,M,0) (0,M,0) (M,M,0)

P [C]can (M,0,M) (M,0,0) (M,M,0)

P [C]nan (0,M,0) (M,0,0) (M,M,0)

P [C]cmn (M,0,M) (0,M,0) (M,M,0)

P [C]cam (0,M,0) (0,0,M) (0,0,M)

P [C]nmm (M,0,M) (0,0,0) (0,0,M)

Optimization of the search for the magnetic moment was performed after exclud-
ing the nuclear reflections and keeping only the magnetic reflections. In this step,
the program starts from arbitrary values of the magnetic moment (which cannot be
zero). Then a certain number of cycles is refined usually 20, and then the program
stores the resulting R-values. After this, the program repeats the procedure start-
ing from a different starting value of the magnetic moments, again refines a certain
number of cycles and stores the R-value. This will continue for a number of trials
that is defined by the user. In our refinements, the starting value for the magnetic
amplitude variation was chosen to be 0.2 and the number of trial was equal to 50.
Depending on the arbitrary starting value, the program could end up with a local
minima and not the real absolute minima, so this routine is simply for trying differ-
ent starting values and choosing the best solution which should then correspond to
the absolute minimum.

After accepting the best model from the magnetic optimization procedure, all
the reflections were included (nuclear and magnetic) and the magnetic moments for
all the atoms (Mx0, My0 and Mz0) were refined. The results from the refinements
for the different Shubnikov groups are given in table 6.5. Note that the number of
parameters includes the magnetic parameters and one scale factor.
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Chapter 6. Magnetic Structure of the AF1′ Phase of Mn5Si3

From the refinements of the magnetic structure using the different Shubnikov
groups, the best model has an Rmagnetic value of about 24% for the magnetic reflec-
tions alone (see table 6.5). As this value is not very satisfactory and as, according
to the literature [42], [43], at low temperature, the magnetic structure of Mn5Si3
has monoclinic symmetry, additional refinements of the magnetic structure starting
from the nuclear structure described in subgroups of Ccmm of lower symmetry were
performed. These subgroups are illustrated in figure 6.3.

For this, the nuclear structure in the space group Ccmm was transformed (with
keeping the original setting) to the lower symmetrical non-isomorphic subgroups that
keep the C-centering. Seven subgroups of index t = 21 exist and were considered (see
figure 6.3: four non-centrosymmmetric orthorhombic ones (Cc2m, C2mm, Ccm21,
C2221) and three monoclinic ones (C2/c, C2/m and C21/m)).

Figure 6.3: A schematic drawing illustrating the group-subgroup relationships rele-
vant for the refinements.

The refinements were performed for each of these subgroups and their respective
Shubnikov groups in the same way as before. All atomic parameters were treated
in such a way that the symmetry of Ccmm was still fulfilled for the nuclear struc-
ture. The results of the refinements from the different nuclear subgroups and their
Shubnikov groups are given in the following tables, from table 6.6 to table 6.13.

1t is known as translationengleich and it is equal to the ratio between the number of the
rotational symmetry operations of the group and the subgroup.
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Chapter 6. Magnetic Structure of the AF1′ Phase of Mn5Si3
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6.3. Refinement of the magnetic structure at 50 K and 5 T
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Chapter 6. Magnetic Structure of the AF1′ Phase of Mn5Si3
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6.3. Refinement of the magnetic structure at 50 K and 5 T
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Chapter 6. Magnetic Structure of the AF1′ Phase of Mn5Si3

6.4 Nuclear and magnetic structure of Mn5Si3 at

50 K and 5 T

6.4.1 Nuclear structure of M5Si3 at 50 K and 5 T

The nuclear structure of Mn5Si3 at 50 K and 5 T was refined based on the neutron
single crystal diffraction data using two different symmetries: a hexagonal model
with space group P63/mcm (see figure 6.4 (left)) and lattice constants of a = b =
6.861(3) Å, c = 4.635(11) Å, 90◦, 90◦, 120◦, and an orthorhombic model with space
group Ccmm and lattice parameters of a = 6.866(3) Å, b = 11.893(6) Å, c =
4.637(11) Å, 90◦, 90◦, 90◦.

The first model corresponds to the symmetry of the structure at ambient con-
ditions, while the second model corresponds to the one described in the literature
[42], [43] for the nuclear structure of the AF1 phase.

The orthorhombic cell parameters as determined from the measurements at
POLI, as was explained in 3.2.3, show a small distortion of the ortho-hexagonal
unit cell where bo (=11.893(6)) >

√
3 ah (=11.883(5)), anyhow the deviation is not

significant within the error.
While the 4d site in P63/mcm occupied by Mn1 converts to one WP in Ccmm

(WP8e), the 6g site occupied by Mn2 splits into two Wyckoff positions in Ccmm
(WP4c and WP8g), which are designated as Mn21 and Mn22 in the following (see
figure 6.4 (right)). It should be noted that the 6g site occupied by Si also splits into
two Wyckoff positions in Ccmm (WP4c and WP8g) as shown in figure 6.5.

Figure 6.4: View along the c-axis of the Mn5Si3 hexagonal (left) and orthorhombic
(right) unit cell. Blue, red and grey spheres represent Mn1, Mn2 and Si atoms, re-
spectively. Mn2 sites split into Mn21 (yellow) and Mn22 (green) in the orthorhombic
unit cell.

Figure 6.5 shows the splitting of Wyckoff positions for all the groups-subgroups
that were used in the refinements.

The refined atomic coordinates in the orthorhombic unit cell show a significant
deviation from the ones obtained from the ortho-hexagonal structure (see table 6.14),
which is produced by the transformation from the hexagonal unit cell according to
the relations ao = ah, bo = ah + 2bh =

√
3ah, co = ch, where ah, bh and ch are the

hexagonal lattice constants, and ao, bo and co are the orthorhombic lattice constants.
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6.4. Nuclear and magnetic structure of Mn5Si3 at 50 K and 5 T

Figure 6.5: A schematic drawing illustrating the splitting of Wyckoff positions for
all the groups-subgroups that were used in the refinements. Wyckoff positions boxes
of the same color are belong to the space group that has the same box color.

Table 6.14: The refined atomic coordinates based on the orthorhombic unit cell (xo,
yo and zo) and based on the ortho-hexagonal unit cell (xo−h, yo−h and zo−h).

Atoms ai xo yo zo xo−h yo−h zo−h

Mn1(8e) 0.5 0.5 0.1675(3) 0 0.5 0.1666(8) 0

Mn21(4c) 0.25 0.2278(7) 0 -0.25 0.2355(3) 0 -0.25

Mn22(8g) 0.5 -0.1183(4) 0.1206(2) -0.25 -0.1179(2) 0.1182(1) -0.25

Si1(4c) 0.25 0.5985(6) 0 -0.25 0.5997(2) 0 -0.25

Si2(8g) 0.5 -0.3007(4) 0.3000(1) -0.25 -0.2999(2) 0.2997(1) -0.25

This indicates that the nuclear structure is really orthorhombic. In the AF1 and
AF2 phases in [43] the distortion of the ortho-hexagonal structure was observed in
high resolution powder diffraction.

Figure 6.3 summarizes all the space groups/subgroups to which the Ccmm struc-
ture was transformed afterwards, this way enabling additional irreducible represen-
tations and as a consequence also additional Shubnikov space groups for the refine-
ments of the magnetic structure. It should be noted that although the Ccmm model
was transformed to the lower symmetrical subgroups, the symmetry of the nuclear
structure at Ccmm was preserved by introducing the necessary restrictions on the
structural parameters in all the refinements.
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Chapter 6. Magnetic Structure of the AF1′ Phase of Mn5Si3

6.4.2 Magnetic models for Mn5Si3 at 50 K and 5 T

Between all the models that were refined based on the nuclear space group Ccmm
(table 6.5), the model in P [C]can magnetic Shubnikov group gave the lowest R value
of about 24%. All the other models are considerably worse, having much higher R
value as can be seen in table 6.5, therefore we will focus only on the P [C]can model.

The refined magnetic moments of the different atoms are shown in the table
and figure below (table 6.15 and figure 6.6). It should be noted that the magnetic
moments that are smaller than the standard deviation were set to be zero and they
are not shown in the figure.

Table 6.15: Magnetic moments of the atoms based on the refinement in magnetic
space group P [C]can.

Mx My Mz

Mn1(8e) -.02(4) ≈ 0 0 0.22(7)

Mn21(4c) 0.01(9) ≈ 0 0 0

Mn22(8g) 1.12(6) -1.55(5) 0

Figure 6.6: Schematic representation of the magnetic structure projected along the
c-direction based on the refinement in the magnetic space group P [C]can. The
arrows indicate the magnitude and the direction of the ordered moments.

From table 6.15, it can be seen that the Mn21 atoms carry a very small magnetic
moment parallel to the a-direction, which within the standard deviation is equal to
zero. Therefore, within an ∞[�(M2)6] octahedra, in the figure 6.6, no magnetic
moment for Mn21 site is indicated. The spins on the remaining Mn22 atoms are
symmetry related and have magnetic moments of the same size which lie in the
a, b-plane, with the spins on the same height always pointing in different directions.

In the octahedron around (0, 0, 0), two of the Mn22 atoms have magnetic mo-
ments point in the [110]-direction and the other two point in the [1-10]-direction.
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In the octahedron at (1/2, 1/2, 0), two of the Mn22 atoms have magnetic moments
point in the [-1-10]-direction and the other two point in the [-110]-direction i.e. their
directions are reversed with respect to the ones at the octahedra round (0,0,0). This
means that the spin arrangement within one ∞[�(M2)6] octahedra is antiferromag-
netically coupled to the spins of the octahedra related via the C-centering operation,
as already indicated by the magnetic space group symbol.

For the Mn1 atoms, components in the a and c direction are allowed, yet the
component of the moments in the a-direction is refined to zero within its standard
deviation. The Mn1 atoms with identical y coordinate with one row along b carry
magnetic moments pointing in the same direction parallel (or antiparallel) to the
c-axis.

The resulting R-values of all magnetic models obtained from the nuclear space
group Ccmm are not satisfactory. Moreover, according to literature, the magnetic
structure of the AF1 phase is monoclinic [42], [43]. Thus, the symmetry of the nu-
clear structure was artificially reduced to its maximal t-subgroups in order to enable
more irreducible representations and so more possibilities of magnetic space groups
with additional degrees of freedom for the magnetic moments. In all these models
the symmetry of the nuclear structure was fixed to Ccmm using additional restric-
tions on the atomic coordinates and displacement parameters. In total, refinements
were carried out in 26 Shubnikov groups, based on the lower symmetrical nuclear
structures. From the refinements of all the magnetic models, it was found that
the R-values of the refined orthorhombic acentric models are in general better than
the ones of the monoclinic centrosymmetric models. Two of the magnetic models,
P [C]2an and P [C]22121, obtained respectively from C2mm and C2221 nuclear sub-
groups, show the lowest R-value of about 17% for the magnetic reflections. Plots of
the calculated structure factors versus the observed structure factors of the nuclear
and magnetic reflections used in the refinements of these two magnetic structures
are shown in figure A.13 and figure A.14. The refined magnetic moments of the
atoms from these two best models are given in the tables below. Figures 6.7 and
6.8 illustrate the obtained magnetic structures.

Model 1

Table 6.16: Magnetic moments of the atoms based on the magnetic space group
P [C]2an.

Mx My Mz

Mn1(8f) -0.0(5) ≈ 0 -1.19(4) -0.52(5)

Mn25(2b) -1.0(1) 0 0

Mn26(2a) 1.1(1) 0 0

Mn23(4d) 0.70(7) 0.66(8) 0

Mn24(4e) 1.2(1) 1.71(7) 0

When the symmetry of the nuclear structure is reduced from Ccmm to C2mm,
the Mn22 site (8g) splits into two sites: Mn23 (4d) and Mn24 (4e). The Mn21 site
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Chapter 6. Magnetic Structure of the AF1′ Phase of Mn5Si3

Figure 6.7: Schematic representation of the magnetic structure projected along the
c-direction based on the refinement in magnetic space group P [C]2an. The arrows
indicate the magnitude and the direction of the ordered moments.

(4c) also splits into two sites: Mn25 (2b) and Mn26 (2a). It should be noted that a
similar splitting also occurs for the Si sites. The WP8e site in Ccmm occupied by
Mn1 converts to one WP in C2mm (WP8f). The splitting of all atoms can be seen
in figure 6.5.

In the P [C]2an model, all the Mn atoms carry magnetic moments as can be
seen in table 6.16 and figure 6.7. For Mn1 all moments components are allowed, for
Mn23 and Mn24 the moments have to lie in the ab-plane and for Mn25 and Mn26
the moments have to lie along a-direction. Only Mn1 atoms have a component of
the magnetic moments in c-direction.

Within one octahedron in the magnetic structure, four symmetry independent
atoms exist, Mn23, Mn24, Mn25 and Mn26. The spins on Mn26 and Mn25 are
approximately antiferromagnetically coupled with Mx(Mn25) ≈ -Mx(Mn26). Mn26
atoms carry a magnetic moment parallel and antiparallel to the a-direction, with the
spins on the atoms with identical y coordinate pointing in the same direction in one
column along a and the direction reversed for the atoms in the next column. The
same situation holds for the Mn25 atoms, the spins point in the same direction for
atoms with identical y, parallel or antiparallel to the a-direction, and this direction
is reversed for the neighbouring column of Mn25 atoms.

The spins of both Mn23 and Mn24 are lying in the ab-plane. In the octahedron
at (1/2,1/2,0), the two spins of the Mn23 are coupled with one of them pointing
approximately in the [-320]-direction, and the other one pointing in [-3-20]-direction.
The two spins of the Mn24 are also coupled with one of them pointing in [-110]-
direction and the other one in [-1-10]-direction. The spins in the octahedron at
(1/2,1/2,0) are coupled antiferromagnetically with the spins of the octahedron in
the corners of the unit cell.

Mn1 sites have magnetic moments with allowed components in all three direc-
tions, although the component in the a-direction was refined to be zero within the
standard deviation. The moments are antiferromagnetically coupled within one row
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6.4. Nuclear and magnetic structure of Mn5Si3 at 50 K and 5 T

of atoms with identical x coordinates.

Model 2

Table 6.17: Magnetic moments of the different atoms based on the magnetic space
group P [C]22121.

Mx My Mz

Mn11(4a) 1.25(6) 0 -1.25(8)

Mn12(4a) -0.69(7) 0 0.36(6)

Mn21(4b) -1.01(8) 0 0

Mn22(8c) -0.31(8) -1.17(5) -0.16(5)

Figure 6.8: Schematic representation of the magnetic structure projected along c
based on the refinements in magnetic space group P [C]22121. The arrows indicate
the magnitude and the direction of the ordered moments.

When the symmetry of the nuclear structure is reduced from Ccmm to P [C]2221,
the Mn1 site (8e) splits into two sites: Mn11 (4a) and Mn12 (4a). The Mn21 site
(4c) and Mn22 (8g) do not split and convert to WP4b and WP8c respectively in
P [C]2221. Si also occupy the sites WP4b and WP8c in P [C]2221 as can be seen in
figure 6.5.

In the P [C]22121 model, all the Mn atoms carry magnetic moments (see table
6.17 and figure 6.8). For Mn11 and Mn12 moments are in the a, c-plane; for Mn21
moments have to lie in a-direction and for Mn22 the moments have components in
all directions. Thus, Mn11, Mn12 and Mn22 have a component of the moment in
the c-direction.
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Chapter 6. Magnetic Structure of the AF1′ Phase of Mn5Si3

Within one octahedron in the magnetic structure, two symmetry independent
atoms exist, Mn21 and Mn22. The spins of the four Mn22 atoms point along the
[120] and the [1-20] directions, with the two spins at the same height z pointing in
different directions. The spins of the Mn21 atoms are pointing parallel or antiparallel
to the a-direction. The magnetic moments of Mn21 with identical y coordinates are
coupled ferromagnetically in one column along a, and then the direction of the
spins is reversed in the next column. As in the previous models, the spins in the
octahedron at (1/2,1/2,0) are coupled antiferromagnetically with the spins of the
octahedron in the corner of the unit cell.

Mn11 atoms carry magnetic moments in the ac-plane, where the spins with iden-
tical x coordinates are pointing in the same direction and this direction is reversed
for the Mn11 atoms in the neighbouring row along b. The Mn12 spins are also in
the ac-plane, pointing in the same direction within one column along a and in the
reversed direction for the spins in neighbouring column.

Table 6.18 summarizes the results from the best two magnetic models P [C]2an
and P [C]22121. The number of parameters is equal to the number of magnetic
parameters and one scale factor.
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Chapter 6. Magnetic Structure of the AF1′ Phase of Mn5Si3

6.5 Discussion

According to the literature [40], the Mn5Si3 compound exhibits a transition from
AF1 to AF2 phase at 58 K and a magnetic field of 3.5 T applied along the c-axis.
Below 60 K, higher magnetic fields induce a transition from the AF1 to AF1′ before
reaching the AF2 phase. Above 60 K, the AF2 phase is stable up to the maximum
investigated field of 10 T.

In the previous literature [42], [43] the magnetic structure of the AF1 phase was
described to have a monoclinic symmetry. Our refinements in the magnetic space
groups following from the minimal monoclinic and orthorhombic subgroups of Ccmm
show that the best fits of the magnetic structure for the AF1′ phase have acentric
orthorhombic symmetry with magnetic space group P [C]2an and P [C]22121, as can
be seen in the tables from 6.7 to 6.13.

For the AF1 phase, according to [42] as shown in figure 6.9 (right) and as was
described in detail in the subsection 1.2, the magnetic moments on the Mn sites
order in a non-collinear and non-coplanar structure, and one third of the atoms in
the (Mn2)6-octahedra do not have ordered magnetic moments. In contrast, from
the best magnetic models in this study, it was found that all the Mn atoms in the
AF1′ phase carry magnetic moments, in agreement with [43].

In [42] the Mn1 atoms carry magnetic moments of 1.20(5) µB with components
in the three directions, this agrees well with the size of the magnetic moments in the
Mn1 sites in the P [C]2an magnetic space group which is equal to 1.30(8) µB lying
nearly in the bc-plane (the component in the a-direction was estimated to equal
zero within the error). Meanwhile, the Mn1 sites in the P [C]22121 magnetic space
group split into two sites Mn11 and Mn12 with magnetic moments of different size,
1.77(10) and 0.78(9) µB respectively, lying in the ac-plane.

The Wyckoff position corresponding to Mn21 atoms, which has no magnetic
moments in the AF1 phase described by [42], is split into Mn25 and Mn26 in the
P [C]2an magnetic model described here with magnetic moments of about 1.02(11)
and 1.13(11) µB, respectively, lying in the a-direction. On the other hand, the Mn21
sites in P [C]22121 model have magnetic moments of 1.01(8) µB comparable to the
ones in P [C]2an magnetic model lying also in the a-direction.

According to [42], the Mn22 site splits into two inequivalent positions Mn23 and
Mn24, as can be seen in figure 6.9, where Mn23 atoms have magnetic moments of
2.30(9) µB and Mn24 atoms carry magnetic moments of 1.85(9) µB with both of
them having components in the three directions.

In the P [C]2an model presented here, Mn22 sites also split into Mn23 and Mn24
sites with magnetic moments of 0.96(11) and 2.07(12) µB respectively, lying in the
ab-plane. On the other hand, the Mn22 sites in P [C]22121 magnetic space group do
not split and carry magnetic moments of about 1.22(11) µB with components in the
three directions (a, b and c).

For the AF2 phase, according to [12] as shown in figure 6.9 (left) and as was
described before in the subsection 1.2, the magnetic moments on the Mn sites order
in a collinear structure. In this phase, the Mn2 site splits into two inequivalent
positions Mn21 and Mn22. Mn1 and Mn21 atoms have no ordered magnetic mo-
ments, while the Mn22 carry magnetic moments of 1.48(1)µB aligned parallel and
antiparallel to the b-axis (collinear antiferromagnetic phase). In contrast, from the
best magnetic models in this study, it was found that all the Mn atoms in the AF1′
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6.5. Discussion

Figure 6.9: Projection of the magnetic structure of Mn5Si3 along c-axis: (left)
collinear AF2 phase, (right) non-collinear AF1 phase. Violet: Mn1, magenta: Mn2,
yellow: Si. Solid lines indicate the orthorhombic unit cell. The length of each arrow
indicates the size of the local magnetic moment projected to the plane of view. Blue
triangles show the triangular spin arrangements formed by moments on the Mn1
and Mn2 sites [modified from [44]].

phase carry magnetic moments.

In the P [C]2an magnetic model, only the Mn1 atoms have a component of the
magnetic moments in the c-direction, while the rest of the Mn sites have magnetic
moments parallel to a (Mn25 and Mn26), or have moments in the ab-plane (Mn23
and Mn24). In the P [C]22121 magnetic model, all atoms except for the Mn21 atoms
(which have their moments aligned along a) have a component of the magnetic
moments in the c-direction. While the Mn11 and Mn12 have magnetic moments
in the ac-plane, the Mn22 atoms carry magnetic moments with components in the
three directions. Anyhow, this is not the end of the story and these two models are
preliminary models.

Generally speaking, in the AF2 phase, the M1 subsystem and one third of the
M2 subsystem have no magnetic moments and two thirds of the M2 subsystem have
collinear magnetic moments. In the AF1 phase, one third of the Mn2 subsystem
has no magnetic moments, while the other two thirds and the M1 subsystem have
magnetic moments with components in the three directions ordered in non-collinear
and non-coplanar structure.

For the preliminary models of the AF1′ phase presented here, all the Mn atoms
carry magnetic moments which order mostly in a co-planar structure. In the first
model, the M2 subsystem has magnetic moments in ab-plane, while the M1 sub-
system has magnetic moments in bc-plane with small components along c. In the
second model, the M1 subsystem and one third of the M2 subsystem have magnetic
moments in ac-plane, and the other two thirds of the M2 subsystem has magnetic
moments in the three directions with small components along a and c.

With the existence of an applied magnetic field along the c-axis, one can expect
that the moments will try to orient in the a, b-plane. This might indicate that the
first model, P [C]2an, is probably more reasonable, as only Mn1 has a moment along
c and this is fairly small. Meanwhile, the second model, P [C]22121, is probably less
likely as there are moments along c for nearly all the atoms. The existence of the
magnetic field possibly induces ordered magnetic moments on the Mn sites in the
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Chapter 6. Magnetic Structure of the AF1′ Phase of Mn5Si3

Table 6.19: Comparison between the results of the refinement in P [C]2an and
P [C]22121 magnetic space groups with restricting the magnetic moment of the Mn21
site to zero. R and wR values for all reflections are always the same as for observed
reflections.

Magnetic
Shubnikov groups

(Restricted)

R

(obs/all)

nuclear

wR

(obs/all)

nuclear

R

(obs/all)

magnetic

wR

(obs/all)

magnetic

No. of param.

P [C]2an 3.72 6.93 16.67 24.92 8

P [C]22121 3.20 7.45 19.21 28.10 8

AF1′ phase which do not carry ordered magnetic moments in the the AF1 and AF2
phases. Although taking in to account the unsatisfactory agreement factors, such a
statement cannot be made with certainty.

However, as, according to the literature, the magnetic moment on the Mn21 site
is supposed to be zero both in the AF1 and AF2 phase [42], a trial refinement of
the two models was performed in which the magnetic moments on the Mn21 site
were restricted to be zero. The results of the restricted models are shown in table
6.19. Using this restriction, the first model, P [C]2an, gave a bit better R-value of
16.7% with two less parameters than before, while the R-value of the second model,
P [C]22121, became worse (≈ 19.2%). This also might indicate that the first model
is closer to reality.

According to [43], and based on neutron powder diffraction in a magnetic field
of 4 T at temperatures of 50 K down to 5 K, it was stated that the magnetic
structure of the AF1′ phase has orthorhombic symmetry, which agrees well with our
observations.

Their refinement indicates annihilation of the magnetic moment on the Mn1
atomic site, which is in difference to what was found in our two preliminary models
where the Mn1 sites still carry an ordered magnetic moment. Based on Hall resis-
tivity measurements in [39] it was predicted that the AF1′ phase has a non-collinear
magnetic structure, which agrees with what was found in our two preliminary mod-
els. The non-collinearity of the magnetic moments was attributed to frustration,
and the broad variation in the magnetic moments can be attributed to the com-
bined effects of Mn moment instability (due to Mn-Mn distances and our findings
is compatible with this), frustration and single ion anisotropy as was explained in
details in [42].

The reason for the unsatisfactory agreement factors for the magnetic reflections
might be manifold. One possibility might be that the problems originate from the
experimental setup e.g. that there is a shading of the magnetic reflections due to
parts of the sample environment. In order to make sure that the unsatisfactory
R-values of the magnetic reflections are not due to a systematic error in the mea-
surements, a refinement of the nuclear reflections in the corresponding sinθ/λ range
of the magnetic reflections (from 0.042 to 0.557 Å−1) was performed, as any shading
in this region should affect their intensities also. From these refinements, R-values
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6.6. Conclusion

of approximately 3% were obtained. Based on this, we can conclude that it is not
very likely that there is a systematic error originating from the measurement setup
as this should affect the quality of the intensities of the main reflections in this range
also.

Another reason for the bad fit of the magnetic reflections, might be that they also
contain information originating from the nuclear structure, i.e. the nuclear structure
is no longer C-centered. This was not considered during the measurement and sub-
sequent refinement, as according to [98] and private communication with Biniskos,
based on polarized neutrons measurements at 50 K and 80 K the magnetic reflec-
tions are purely magnetic and there is no nuclear contribution on them. However,
these measurements were carried out without magnetic field, and there is thus no
conclusive proof that reflections with h+k=2n+1 are of purely magnetic origin in the
AF1′ phase. Trial refinements show that, if the nuclear structure is refined assuming
a primitive lattice, the R-values for these reflections can be considerably improved.
However, given the evidence from literature, during the measurement on POLI, re-
flections with h+k=2n+1 were only measured in the low θ range where a magnetic
signal was expected. In the higher θ range only reflections with h+k=2n were mea-
sured, as it was believed that the nuclear structure would still be C-centered. A
full refinement assuming a primitive nuclear structure is -with the present data- not
viable.

Looking into the results obtained so far, two possible strategies for obtaining a
more reliable model of the magnetic structure in the AF1′ phase are promising:

The symmetry of the magnetic model structure could be further reduced, this
way allowing more complex ordering patterns for the magnetic moments. However,
this means for the involvement of a larger number of magnetic parameters. With-
out increasing the number of magnetic reflections this would make the refinements
critical, as the data to parameter ratio would be even further decreased. To increase
the number of these reflections is not straightforward. During the measurement,
the crystal is mounted inside the magnet. The magnet has a limited opening angle
through which the primary beam can enter and through which the diffracted beam
can exit. This means that only a section of the reciprocal space can be seen which
was already fully explored during the experiment on POLI. Using the available ex-
perimental setup, it was and is therefore not possible to measure a larger number of
magnetic reflections.

The other option that should be tried, is to reduce the symmetry of the nuclear
structure and to assume a primitive lattice. For this it would have to be checked
whether additional reflections h+k=2n+1 are detectable at higher sinθ/λ. If they
are (and can be reliably measured) this could be the way for determining the correct
magnetic (and nuclear) model unambiguously.

6.6 Conclusion

The nuclear and magnetic structure of the AF1′ phase of the compound Mn5Si3 was
investigated using non-polarized single crystal neutron diffraction at 50 K and 5 T.
Under these conditions, the crystal structure was found to have orthorhombic sym-
metry (Ccmm with Z = 4) with a = 6.866(3) Å, b = 11.893(6) Å and c = 4.637(11)
Å. For the magnetic structure, the best two preliminary models with R-values of
approximately 17% for the magnetic reflections alone were found to have acentric
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orthorhombic symmetry with magnetic space groups: P [C]2an and P [C]22121, with
magnetic moments in all the Mn sites ordering in a non-collinear structure. For
the first model, P [C]2an, all spins on the (Mn2)6 octahedra are coplanar in the
a, b-plane. Only spins from the Mn1 system (Mn1) have a c-component. For the
second model, P [C]22121, all spins of Mn1 system (Mn11 and Mn12) are coplanar
in the a, c-plane. Spins in the Mn2 system (Mn21 and Mn22) are basically aligned
in the a, b-plane as the c-component of Mn22 is very small.

In [42], Mn1, Mn23 and Mn24 atoms carry magnetic moments with component in
the three directions, a, b and c. In [12], Mn22 atoms carry magnetic moments along
b. In this study, an external magnetic field is applied along c-axis, thus the moments
will try to align in a, b-plane. This might indicate that the first model, P [C]2an,
is probably more reasonable, as only Mn1 has a moment along c and this is fairly
small. Meanwhile, the second model, P [C]22121, is less likely as there are moments
along c for nearly all the atoms. Another indicator that the first model is more
reasonable comes from the trial refinements of the two models with restricting the
magnetic moments on the Mn21 site to be zero, as was stated in [42] and [12], where
a better R-value was obtained for the first model unlike the second one. Although
taking in to account the unsatisfactory agreement factors, such a statement cannot
be made with certainty.

In general, the magnetic models that we have here are preliminary and the
refinement is not altogether satisfactory. A refinement of the nuclear reflections in
the corresponding sinθ/λ range of the magnetic reflections was performed in order
to confirm that the unsatisfactory R-values of the magnetic reflections are not due
to systematic error in the measurements. Another reason for the bad fit of the
magnetic reflections, might be that they also contain information originating from
the nuclear structure. Trial refinements show that, if the nuclear structure is refined
assuming a primitive lattice, the R-values for these reflections can be considerably
improved. However, given the evidence from literature, it was believed that the
nuclear structure would still be C-centered, and so this was not considered during
the measurements and subsequent refinements.

Probably the fit of the magnetic structure could be improved by lowering the
symmetry, but this would require more magnetic reflections which are difficult to
measure due to the limited opening angle of the magnet. To check whether the nu-
clear structure is not any longer C-centered it would be desirable to check whether
reflections h+k=2n+1 in the high θ range can be observed. However, further exper-
iments are beyond the scope of this thesis.
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Chapter 7

Summary and Outlook

Part of this thesis was devoted to the investigation of the magnetocaloric effect
(MCE) in single crystalline MnFe4Si3 and Mn5Ge3 by direct measurements in pulsed
magnetic fields as well as by analyzing magnetization and specific heat data taken in
static magnetic fields. The measurements were performed with the field parallel to
[100] and [001] directions. Magnetization measurements in DC fields confirm that
for the MnFe4Si3 compound, the easy axis of magnetization lies in the ab-plane,
while for the Mn5Ge3 compound the easy axis lies along c, with both compounds
order ferromagnetically at TC close to room temperature. No further transition was
seen in the pulsed field magnetization up to 30 T.

MCE measurements in pulsed fields provide the temperature and field depen-
dence of the adiabatic temperature change. For the MnFe4Si3 compound, the max-
ima of ∆Tad are found to be 1.38(2) and 5.66(4) K for a field change of 2 and 20
T, respectively, parallel to [100]. For the Mn5Ge3 compound, the maximum values
of ∆Tad are found to be 2.3(1) and 2.0(1) K for a field change of 2 T parallel to
[001] and [100], respectively. For a field pulse of 20 T, ∆Tad has a maximum val-
ues of 10.8(2) and 9.8(4) K for the [001] and [100] directions, respectively. Both
compounds show good agreement between the direct and indirect measurements of
MCE, and good stability and the ability of cycling through the pulsed field cycles
which are important properties in terms of potential applications.

As the magnetization of the two compounds and MCE measurements in Mn5Ge3
were performed in both the easy and hard directions, the anisotropy of the mag-
netocaloric properties was studied. The anisotropy constants are calculated over
a broad temperature range up to the fourth order. Mn5Ge3 has small magnetic
anisotropy (K1= 3.7(1)×105 J/m3 at 60 K) with c being the easy axis, while MnFe4Si3,
which exhibits an easy plane anisotropy, shows a much larger magnetic anisotropy
(see figure 5.6)1 . The comparison between the two compounds, shows that in
Mn5Ge3, the dependence of the size of the MCE on the field direction is less pro-
nounced. However, despite the fact that anisotropy constants vanish towards TC ,
the MCE features also a significant anisotropy that is seen in the adiabatic temper-
ature change in pulsed field (in Mn5Ge3) and also in the isothermal entropy change.

Provided an ideal powder is used in applications, the large anisotropy of MnFe4Si3
could therefore limit the size of the MCE in this compound (and other compounds
with similar characteristics) when compared to the MCE in a single crystal, while

1Figure 5.6, based on M(H) in [54] compared to -2.8×106 J/m3 at 50 K in [123], the difference
is due to a slightly different Fe content (Mn∼0.86Fe∼4.24Si∼2.90 in [123]).
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for Mn5Ge3 (and similar compounds) the reduction of the MCE will be compara-
tively weak. On the other hand, the targeted introduction of preferred orientation
might also be beneficial for increasing the MCE in materials with large anisotropy
and might represent a new approach for optimizing their performance.

The main magnetic characteristics of both compounds are given in table 7.1.

Table 7.1: Comparison between the main magnetic characteristics of Mn5Ge3 and
MnFe4Si3 compounds.

Mn5Ge3 MnFe4Si3 [53], [54]

Easy axis c ([001]) Easy plane a, b

Moment WP6g site: 3.23(2) µB [52] WP6g site: 1.5(2) µB

Moment WP4d site: 1.96(3) µB [52] WP4d site: 1.1(12) µB

∆Siso = 2.5 J/kg·K (1 T ‖ [001]) ∆Siso 0.47 J/kg·K (1 T ‖ [001])

∆Siso = 2.15 J/kg·K (1 T ⊥ [001]) ∆Siso = 1.3 J/kg·K (1 T ⊥ [001] )

∆Tad = 2.3(1) K (2T ‖ [001]) ∆Tad = 1.38(2) K (2T ⊥ [001])

∆Tad = 2.0(1) K (2T ⊥ [001]) -

K1 = 3.7(1)×105 J/m3 (60 K) K1 = -1.5(1)×106 J/m3 (60 K)

Both of the Mn5Ge3 and MnFe4Si3 compounds exhibits normal MCE related
to the ferromagnetic transition near room temperature. In comparison, Mn5Si3
orders antiferromagnetically at much lower temperature and exhibits an inverse
MCE related to the antiferromagnetic first order phase transitions AF1 to AF2 at
TN1 ≈ 66 K, and direct MCE related to the antiferromagnetic first order phase
transitions AF2 to the paramagnetic phase at TN2 ≈ 99 K [40]–[42]. In the Mn5Ge3
compound the spins are aligned along c ([001]) [51], whereas the spins in MnFe4Si3
are aligned in the ab-plane [53], [54]. In both compounds the magnetic moments on
the M2 sites (magnetic subsystem II: Mn/Fe forming the empty octahedra) are larger
than on the M1 sites (magnetic subsystem I: Mn/Fe inside the Silicide octahedra),
in MnFe4Si3 it was even not possible to refine any ordered moment for the M1 site2.

For the Mn5Si3, previous study showed a transition from AF1 to AF2 phase at
58 K and a magnetic field of 3.5 T applied along the c-axis. Below 60 K, higher
magnetic fields induce a transition from the AF1 to AF1′ before reaching the AF2
phase [40]–[42], see figure 7.1.

The nuclear and magnetic structure of the AF1′ phase at 50 K and 5 T were
investigated. The nuclear structure was found to have orthorhombic symmetry with
the C-centered space group Ccmm and lattice parameters of a = 6.866(3) Å, b =
11.893(6) Å and c = 4.637(11) Å.

According to [12], in the AF2 phase the M1 subsystem and one third of the M2
subsystem have no magnetic moments and the other two thirds of the M2 subsystem

2The refined magnetic moment in the M1 sites is not larger than the corresponding standard
deviation (see table 7.1) and therefore was not taken into account in the refinement [53].
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Chapter 7. Summary and Outlook

Figure 7.1: Magnetic phase diagram of Mn5Si3. Data obtained from Hall Effect
measurements (red open symbols), resistivity (blue dots), and magnetization (orange
triangles) [taken from [39]].

have collinear magnetic moments. The sites split into several sites in the lower
symmetrical structures. For the AF1′ phase and from the best two models in this
study, it was found that the magnetic structure of the AF1′ phase has acentric
orthorhombic symmetry with magnetic moments in all the Mn sites order mostly in
coplanar structure. In the first model, P [C]2an, the M2 subsystem has magnetic
moments in ab-plane, while the M1 subsystem has magnetic moments in bc-plane
with small components along c-direction. In the second model, P [C]22121, the M1
subsystem and one third of the M2 subsystem have magnetic moments in ac-plane,
and the other two thirds of the M2 subsystem has magnetic moments in the three
directions with small components along a and c. According to [42], the magnetic
structure of the AF1 phase has a monoclinic symmetry where one third of the
Mn2 subsystem has no magnetic moments, while the other two thirds and the M1
subsystem have magnetic moments with components in the three directions order
in non-collinear and non-coplanar structure.

With the magnetic field coming in, parallel to the c-direction, one expects that
the moments will try to orient in the ab-plane. This might indicate that the first
model, P [C]2an, is probably more reasonable, as only Mn1 has a moment along c
and this is fairly small. Meanwhile, the second model, P [C]22121, is probably less
likely as there are moments along c for nearly all the atoms. The trial refinements of
the two models with restricting the magnetic moments in the Mn21 site to zero, as
was stated in literatures [12], [42], is another indicator that the first model is more
reasonable where a better R-value as obtained for the first model unlike the second
one. Although taking in to account the unsatisfactory agreement factors, such a
statement cannot be made with certainty.

In general, the refinements of the magnetic structures are not altogether satis-
factory. This could be due to different reasons. One possibility might be that the
problems originate from the experimental setup. To check this, a trial refinement of
the nuclear reflections in the corresponding sinθ/λ range of the magnetic reflections
was performed in order to confirm that the unsatisfactory R-values of the magnetic
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reflections are not due to systematic error in the measurements. Another reason
might be that the nuclear structure is no longer C-centered. Trial refinements show
that, if the nuclear structure is refined assuming a primitive lattice, the R-values for
these reflections can be considerably improved. However, given the evidence from
literature, it was believed that the nuclear structure would still be C-centered, and
so this was not considered during the measurements and subsequent refinements. A
full refinement assuming a primitive nuclear structure is -with the present data- not
viable.

Probably the magnetic structure model could be improved by further reduced
of the symmetry. However, this would require a higher number of reflections which
is not possible due to the limited opening angle of the magnet. The other option
that should be tried, is to check whether the nuclear structure is not any longer
C-centered to check whether reflections h+k=2n+1 in the high θ range can be ob-
served. However, further experiments are beyond the scope of this thesis. Moreover,
for this compound it will be interesting to perform single crystal magnetization mea-
surements in high pulsed magnetic fields so that we can go through all the phases,
AF1, AF1′ and AF2. And also to do isothermal magnetization measurements be-
tween AF1 and AF2 to determine the temperature and direction dependence of the
magnetization, and to measure isofield curves for several fields along the main three
directions.

For the MnFe4Si3 compound, due to some experimental issues and limited mag-
netic time available, it was not possible to measure the ∆Tad in pulsed magnetic
fields along the hard directions. Therefore, in the future it will be interesting to do
this and to check the anisotropy of the MCE from the direct measurements. More-
over, it will be interesting to perform the direct measurements for both MnFe4Si3
and Mn5Si3 compounds in low pulsed magnetic fields to look for the inverse MCE.
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crucible: Technology and applications,” 2015, p. 1.

[95] Y. Cheng, “Thermal behavior of lattice parameter in compounds of the series
Mn5−xFexSi3,” Bachelor thesis, Fachhochschule Aachen, 2014.

[96] J. Czochralski, “A new method for the measurement of the crystallization
rate of metals,” Zeitschrift für Physikalische Chemie, vol. 92, p. 219, 1918.

[97] K. W. Benz, W. Neumann, and A. Mogilatenko, Introduction to Crystal
Growth and Characterization, W. Neumann and K. W. Benz, Eds. 2014,
isbn: 978-3-527-31840-7.

[98] N. Biniskos, K. Schmalzl, S. Raymond, et al., “Spin fluctuations drive the
inverse magnetocaloric effect in Mn5Si3,” Physical Review Letters, vol. 120,
p. 257 205, 2018.

[99] N. K. C. Muniraju, “Crystal and spin structure and their relation to physical
properties in some geometrical and spin spiral multiferroics,” Ph.D. disserta-
tion, RWTH Aachen, 2012.

[100] V. Hutanu, “Poli: Polarised hot neutron diffractometer,” Journal of large-
scale research facilities, vol. 1, A16, 2015.

[101] H. Thoma, H. Deng, G. Roth, and V Hutanu, “Setup for polarized neu-
tron diffraction using a high-TC superconducting magnet on the instrument
POLI at MLZ and its applications,” Journal of Physics: Conference Series,
vol. 1316, p. 012 016, 2019.

[102] “Attracting users: Magnets at mlz,” MLZ News 20, 2018.

[103] “Nicos.” (2021), [Online]. Available: https://nicos-controls.org.

[104] “CY TOP Amorphous fluoropolymer.” (2021), [Online]. Available: https:

//www.agcce.com/cytop-2/.

[105] A. P. Sazonov. “Davinci: Software for visualization and processing of single-
crystal diffraction data measured with a point detector.” (2015), [Online].
Available: http://davinci.sazonov.org.

[106] Quantum design physical property measurement system: Vibrating sample
magnetometer (vsm) option user’s manuel, 4th edition, Quantum Design, San
Diego (USA), 2008.

[107] N. Maraytta, “Direct measurements of the magneto-caloric effect in pulsed
magnetic fields in compounds of the series Mn5−xFexSi3,” Master thesis,
Al-Quds University, 2017.

[108] Y. Skourski, M. D. Kuz’min, K. P. Skokov, A. V. Andreev, and J. Wos-
nitza, “High-field magnetization of Ho2Fe17,” Physical Review B, vol. 83,
p. 214 420, 2011.

[109] Quantum design, physical property measurement system, heat capacity option
user’s manual, 11th edition, Quantum Design, San Diego (USA), 2004.

121

https://nicos-controls.org
https://www.agcce.com/cytop-2/
https://www.agcce.com/cytop-2/
http://davinci.sazonov.org


Bibliography

[110] S. Zherlitsyn, B. Wustmann, T. Herrmannsdörfer, and J. Wosnitza, “Status of
the pulsed-magnet-development program at the dresden high magnetic field
laboratory,” IEEE transaction on applied superconductivity, vol. 22, p. 3,
2012.

[111] F. Weickert, B. Meier, S. Zherlitsyn, et al., “Implementation of specific-heat
and NMR experiments in the 1500 ms long-pulse magnet at the hochfeld-
magnetlabor dresden,” Measurement Science and Technology, vol. 23, p. 105 001,
2012.

[112] S. Zherlitsyn, T. Herrmannsdörfer, B. Wustmann, and J. Wosnitza, “De-
sign and performance of non-destructive pulsed magnets at the dresden high
magnetic field laboratory,” IEEE Transactions on Applied Superconductivity,
vol. 20, p. 672, 2010.

[113] M. D. Kuz’min, “Factors limiting the operation frequency of magnetic refrig-
erators,” Applied Physics Letters, vol. 90, p. 251 916, 2007.

[114] M. G. Zavareh, Y. Skourski, K. P. Skokov, et al., “Direct measurement of
the magnetocaloric effect in La(Fe, Si, Co)13 compounds in pulsed magnetic
fields,” Physical Review Applied, vol. 8, p. 014 037, 2017.

[115] “Polyetheretherketone (PEEK): A complete guide on high-heat engineering
plastic.” (2021), [Online]. Available: https://omnexus.specialchem.com/
selection-guide/polyetheretherketone-peek-thermoplastic.

[116] V. Petricek, M. Dusek, and L. Palatinus. “Jana 2006 crystallographic com-
puting system for standard and modulated structures, version 17/02/2020.”
(2006).

[117] S. Fujieda, A. Fujita, and K. Fukamichi, “Large magnetocaloric effect in
La(FexSi1−x)13 itinerant-electron metamagnetic compounds,” Applied Physics
Letters, vol. 81, p. 1276, 2002.

[118] T. F. Zheng, Y. G. Shi, C. C. Hu, et al., “Magnetocaloric effect and transition
order of Mn5Ge3 ribbons,” Journal of Magnetism and Magnetic Materials,
vol. 324, p. 4102, 2012.

[119] H. Oesterreicher and F. T. Parker, “Magnetic cooling near curie temperatures
above 300 K,” Journal of Applied Physics, vol. 55, p. 4334, 1984.

[120] P. J. Becker and P. Coppens, “Extinction within the limit of validity of the
darwin transfer equations. I. general formalisms for primary and secondary
extinction and their application to spherical crystals,” Acta Crystallographica,
vol. A30, p. 129, 1974.

[121] W. C. Hamilton, “Significance tests on the crystallographic R factor,” Acta
Crystallographica, vol. 18, p. 502, 1965.

[122] “Magnetic form factors for neutrons.” (2021), [Online]. Available: https://
www2.cpfs.mpg.de/~rotter/homepage_mcphase/manual/node137.html.

[123] H. Yibole, W. Hanggai, Z. Q. Ou, R. Hamane, V. Hardy, and F. Guillou,
“Magnetic properties, anisotropy parameters and magnetocaloric effect of
flux grown MnFe4Si3 single crystal,” Journal of Magnetism and Magnetic
Materials, vol. 504, p. 166 597, 2020.

122

https://omnexus.specialchem.com/selection-guide/polyetheretherketone-peek-thermoplastic
https://omnexus.specialchem.com/selection-guide/polyetheretherketone-peek-thermoplastic
https://www2.cpfs.mpg.de/~rotter/homepage_mcphase/manual/node137.html
https://www2.cpfs.mpg.de/~rotter/homepage_mcphase/manual/node137.html


Bibliography

[124] D. X. Chen, E. Pardo, and A. Sanchez, “Demagnetizing factors of rectangular
prisms and ellipsoids,” IEEE Transactions on Magnetics, vol. 83, p. 4, 2002.

[125] Z. Wang, K. Wang, and S. An, Information Computing and Applications,
C. Liu, J. Chang, and A. Yang, Eds. Springer Heidelberg Dordrecht London
NewYork, 2011, ch. Cubic B-Spline Interpolation and Realization, isbn: 978-
3-642-27502-9.

123





Appendix A

Appendix

A.1 Data processing of the macroscopic measure-

ments

For all the magnetization measurements, the demagnetization was taken into ac-
count by correcting the magnetization data with the demagnetization factor. The
factors were calculated from the dimensions of the sample used in the measurements.
The dimensions of the sample (a, b and c) were measured, and then the ratios a/b
and c/

√
ab were calculated. From these ratios and by using the tabulated values

for rectangular prism in [124], the demagnetization factors were found. It should be
noted that c is always taken as the vertical dimension. At the end, the field in the
isothermal magnetization measurements M(H) curves was corrected as:

H =
B

µ0

−NM, (A.1)

where N is the demagnetization factor.

Most of the macroscopic measurements using the Quantum Design instruments
have been performed in the so called sweeping mode. In this mode, the magnetic
field or the temperature are varied continuously and the measurements of the phys-
ical property are performed on the fly, i.e. without stabilizing temperature or field.
This has to two consequences: (i) During the measurements the driving field varies.
Therefore the inverse of the change rate must be much longer than the individ-
ual measurement time. Furthermore the change during the measurement must be
considered carefully for the error treatment of a measurement, both for the x and
the y values. Theses errors are typically much larger than the errors reported from
the PPMS data acquisition. (ii) If data from different measurements is combined,
the x-values do not necessarily coincide. Therefore the different data sets must be
interpolated to a common grid for the further treatment.

For calculating ∆Siso, the non-corrected isothermal magnetization curves were
used. The data were interpolated in order to unite the value of the field at each step
in all the measured temperatures. In this way, we could obtain the magnetization
value at each temperature and field value. ∂M/∂T was determined by the extraction
of the respective M(T )B from the respective isotherms (see figure 4.3 as an example),
and then ∆Siso was calculated using Maxwell´s thermodynamic relation:
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A.1. Data processing of the macroscopic measurements

∆Siso(T,∆B) =
∑
i

(
Mi(T

′
i , Bi)−Mi(Ti, Bi)

T
′
i − Ti

)
∆Bi (A.2)

For susceptibility ∂M/∂H calculations, after demagnetization corrections of the
M(H) curves of the MnFe4Si3 compound, one can still observe a linear field depen-
dence at small fields in the ordered phase, followed by a saturation region. Each
curve was fitted with a linear function in the respective regions (see figure A.1). On
the basis of these data, ∂M/∂H in the region around zero field was calculated.

Figure A.1: The M(H) curve of MnFe4Si3 measured at 200 K with the linear function
fitting around zero field (µ0H ‖ [001]).

For the Mn5Ge3 compound, after demagnetization corrections, linear field de-
pendence at small fields can only be observed in the M(H) curves with the field
parallel to the hard direction [100]. The M(H) curves were interpolated using cubic
B-spline interpolation [125] with 200 point and smoothing factor of 0.001, see figure
A.2. The interpolation was used in order to cover the gap in the data due to instru-
mental error and the smoothing was used in order to make the data less noisy. The
first derivative (∂M/∂H) was found for the interpolated curves, and from the plot
of the first derivative, the value of ∂M/∂H around zero field was found (see figure
A.3).
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Figure A.2: The M(H) curve of Mn5Ge3 measured at 316 K with the cubic B-spline
interpolated data (µ0H ‖ [100]).

Figure A.3: The first derivative (∂M/∂H) for the interpolated M(H) curve at 316
K vs. the interpolated field H.
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A.2. H/M vs. M2 curve of Mn5Ge3 at 180 K

A.2 H/M vs. M2 curve of Mn5Ge3 at 180 K

Figure A.4: H/M vs. M2 curve at 180 K for the determination of the anisotropy
constants by the Sucksmith and Thompson method.

A.3 XRD patterns of MnFe4Si3 powder

Figure A.5: Observed intensities and the difference profile of MnFe4Si3 measured at
room temperature from the LeBail refinement
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A.4 MnFe4Si3 magnetization measurements

Figure A.6: Photos of the MnFe4Si3 samples that were used in the magnetization
measurements parallel to a-axis (left) and parallel to c-axis (right).

Figure A.7: Magnetization curves of MnFe4Si3 showing the magnetization as a func-
tion of the applied magnetic field parallel to [100] (a), MCE of MnFe4Si3 calculated
from the magnetization data at a field of 2 T, H ‖[100] (b).
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A.6 Magnetometry results of Mn5Ge3

Figure A.9: Magnetization curves M(H) of Mn5Ge3 for the magnetic field applied
parallel to [001] (a) and parallel to [100] (b) at different initial temperatures.
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A.7. Direct measurements of ∆Tad of Mn5Ge3 in pulsed magnetic field

A.7 Direct measurements of ∆Tad of Mn5Ge3 in

pulsed magnetic field

Figure A.10: Time dependence of the adiabatic temperature change of Mn5Ge3
with pulsed magnetic fields of +2 T and -2 T at 297.5 K and the average of the two
and also the corrected ∆Tad from the positive field pulse. The field profile is also
indicated (left axis).

Figure A.11: Field and time dependence of ∆Tad of Mn5Ge3 for a pulsed magnetic
field of 20 T applied along the [001] direction (a) and along the [100] direction (b)
at 300 K.
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A.8 Processing of non-polarized single-crystal neu-

tron diffraction data

The scans of the measured peaks were uploaded to the Davinci program [105] and
their integrated intensities were extracted (see figure A.12). The upper screenshot
(a) shows the raw data file for the nuclear peak (2̄72)). From the visualized plot of
the data (see figure A.12 (b) and (c)), the peaks were checked and the background
was set manually for each peak. Reflections with low intensity comparing with the
background were excluded ( I < 3σ, see figure A.12 (c) as an example of one of
these reflections). The output data was stored in the SHELX format containing
information about hkl, intensity and the error in intensity for each accepted peak
(508 nuclear peaks and 104 magnetic peaks). Using this information, the nuclear
and magnetic structure parameters of Mn5Si3 were refined using JANA2006 [116].

133



A.8. Processing of non-polarized single-crystal neutron diffraction data

Figure A.12: (a) The raw data of the nuclear peak (2̄72). Visual representations of
an example of a nuclear reflection which was included (b) and (c) excluded.
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A.9 Observed Fobs versus calculated Fcalc structure

factors

Figure A.13: Plots of the observed structure factors Fobs vs. calculated structure
factors Fcalc of the nuclear reflections (top) and magnetic reflections (bottom) used
in the refinement of the P [C]2an structure.
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A.9. Observed Fobs versus calculated Fcalc structure factors

Figure A.14: Plots of the observed structure factors Fobs vs. calculated structure
factors Fcalc of the nuclear reflections (top) and magnetic reflections (bottom) used
in the refinement of the P [C]22121 structure.
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