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“Someone once tried to build a machine as efficient as the brain. The only problem

was, it would have had to be bigger than London — do you remember London? —

and powered by the entire European grid. And that was just a human brain. Mine’s

much more complex.”

THE 4TH DOCTOR, DOCTOR WHO
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Abstract

Our nervous system is one of the most complex systems on earth. To investigate some of

the nervous system’s basic principles, neuronal cell cultures provide a highly controllable,

experimental platform of reduced complexity. These basic principles include periods of

synchronous neuronal activity that can be an important mediator of higher functions such

as memory. Another basic principle governing the nervous system’s functionality is its

modularity. Anatomical modularity can be modeled in vitro using neuronal patterning

techniques, one of which is microcontact printing. The functional connectivity of such pat-

terned networks was interrogated using optogenetic techniques, such as calcium indicators

and light-gated ion channels, or electrophysiological methods, such as patch-clamping or

microelectrode arrays. In the first part of this thesis, I modified different methods of-

fering control over neuronal cell cultures. The control over cellular localization could be

improved by chemically uncoupling substrate from coating via the silane GLYMO. This

prevents cells almost completely from growing on the cell-repellent background instead of

the cell-attractive pattern. Moreover, microelectrode arrays with holey gold as a conduc-

tive material were used for electrical recordings. With its plasmonically induced, threefold

increase in transparency compared to solid gold, holey gold can be combined with tools

for controlling neurons optically, such as optogenetics. In the second and third part of this

thesis, I investigated the functional properties - such as signal propagation, synchronic-

ity, and network connectivity - of modular patterned neuronal networks in an all-optical

approach. The triangular, anatomical modules direct neuronal action potentials prefer-

entially towards their tip and subsequent modules. This is true for both main designs,

an elliptic one and one with a small upstream module connected to a larger population.

This directionality, and an increased calcium response to same-module stimulations, indi-

cates that triangular anatomical modules also represent functional modules. Although the

mean connectivity strength within the triangular module seems to contradict this assump-
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tion, the coherence of synchronous network events differs slightly when elicited in different

modules. However, the synchronicity of the stimulus affects network event coherence much

more strongly than stimulus location. In conclusion, I could show using an optimized ex-

perimental system that the dynamics of neuronal synchronous network events depend on

the position and coherence of their initiating activity in a multi-modular network.
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Zusammenfassung

Unser Nervensystem ist eines der komplexesten Systeme unseres Planeten. Um einige der

grundlegenden Prinzipien des Nervensystems experimentell zu untersuchen, können leicht

zu kontrollierende neuronale Zellkulturen verwendet werden. Diese grundlegenden Prinzip-

ien umfassen Zeitabschnitte synchroner neuronaler Aktivität, die ein wichtiger Bestandteil

von höheren Hirnfunktionen, wie Erinnerung, sind. Ein weiteres die Funktionalität des

Nervensystems beeinflussendes, Prinzip ist die Modularität. Anatomische Modularität

kann in vitro durch in festgelegten Mustern wachsende neuronale Netzwerke modelliert

werden, zum Beispiel mit Hilfe des Mikrokontaktdrucks. Die Funktionalität solcher Netzw-

erke wurde durch optogenetische Techniken, z.B. Kalzium-Indikatoren oder lichtsensitive

Ionenkanäle, oder elektrophysiologische Methoden, z.B. Patch-Clamp oder Mikroelektro-

denarrays, untersucht. Im ersten Teil dieser Arbeit veränderte ich verschiedene Methoden

zur Ausübung von Kontrolle über neuronale Zellkulturen. Die Kontrolle über die Posi-

tion der Zellen wurde durch die chemische Entkopplung (durch GLYMO) des Substrats

von der Beschichtung erhöht. Dies verhindert fast gänzlich das Wachstum von Zellen auf

dem zellabweisenden Hintergrund, anstatt auf dem zellfreundlichen Muster. Des Weit-

eren wurden Mikroelektrodenarrays mit löchrigem Gold als leitfähigem Material für die

Aufnahme elektrischer Signale genutzt. Mit seinem plasmonisch angeregten, dreifachen

Anstieg der Transparenz im Vergleich zu solidem Gold, kann löchriges Gold mit Hilfsmit-

teln zur optischen Kontrolle über Neuronen, wie der Optogenetik, kombiniert werden. Im

zweiten und dritten Teil dieser Arbeit untersuchte ich die funktionellen Eigenschaften -

wie Signalweiterleitung, Synchronizität und Netzwerkkonnektivität - von modularen, neu-

ronalen Netzwerken mit einem rein optischen Ansatz. Die anatomischen Dreiecksmodule

lenken neuronale Aktionspotentiale bevorzugt in Richtung ihrer Spitze und anschließender

Module. Dies gilt für beide Hauptdesigns, eine Ellipse aus Dreiecken und eines mit einem

vor eine große Population vorgelagerten Dreiecksmodul. Diese Direktionalität, zusammen
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mit einer erhöhten Kalziumantwort auf Stimulationen des gleichen Moduls, deutet an,

dass anatomische Dreiecksmodule auch funktionellen Modulen entsprechen. Obwohl die

durchschnittliche Konnektivitätsstärke innerhalb der Dreicksmodule dieser Annahme zu

widersprechen scheint, unterscheidet sich die Kohärenz von in verschiedenen Modulen aus-

gelösten synchronen Netzwerkereignissen leicht. Jedoch wirkt sich die Synchronizität des

Stimulus stärker auf die Kohärenz der Netzwerkereignisse aus als der Stimulationsort. Ich

konnte also mit Hilfe eines optimierten experimentellen Systems zeigen, dass die Dynamik

neuronaler synchroner Netzwerkereignisse von der Position und Kohärenz ihrer intialen

Aktivität in einem multi-modularen Netzwerk abhängt.
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Introduction

“How do we think?” For ages, people have been wondering about our ability to think

from a religious, philosophical, psychological, and biological point of view. Although the

field of neuroscience rapidly increased our understanding of the incredibly complex brain

(see section 1.1), many of the underlying principles governing neuronal computation and

its modulation by manifold biological processes remain elusive. Neuroscience tackles the

challenge of uncovering such basic principles on different levels or scales. The invention

of new technological tools such as multi-photon microscopy, ever improving computers, or

CRISPR/Cas has started a huge wave of studies conducted in vivo. However, some of the

basic, generic principles of neuronal networks independent of their location in the nervous

system can also be investigated in highly controllable and manipulatable neuronal cell

culture systems in vitro (see section 1.1.2). These basic principles include: the encoding

of information through sparse neuronal activity; the modulation of neuronal activity; the

presence of coordinating cells; synchronicity within neuronal networks; the hierarchical

modularity of such networks; and more. In this thesis, I refined or optimized techniques

for controlling the behavior of neuronal networks, such as optogenetics, MEA devices and

neuronal patterning. Then, I used such methods - in particular optogenetics and neuronal

patterning - to investigate synchronicity and directionality in modular neuronal networks

(see section 1.1.3).

By now, neurons in culture can be controlled and manipulated in various ways, one of

which is neuronal patterning (for general reviews, see Aebersold et al. (2016); Martinez-

Rivas et al. (2017)) via microcontact printing (µCP; see section 1.4). Although µCP is

a well-established technique using different coating solutions (Albers and Offenhäusser,

2016; Nam et al., 2006; Offenhäusser et al., 2007), its reliability strongly depends on the

substrate and application. One of these applications is the investigation of patterned neu-

ronal networks with optogenetics (see section 1.3). As many microscopy setups depend on

transparent substrates, a cheap option for such a substrate is glass. However, glass is a

quite undefined and variable material so that it has to be modified (Hondrich et al., 2019b)
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or chemically uncoupled from the coating (Hofmann, 2009; Nam et al., 2006) to allow for

precise and reliable patterning. On microelectrode arrays (MEA; see section 1.2.2) (Spira

and Hai, 2013; Stett et al., 2003), the passivation materials are usually (with exceptions,

such as the polyimide HD-8820) less variable than glass. However, for each passivation

material and pattern, the µCP process needs to be optimized to ensure reliable recordings.

Ideally, such MEAs can be combined with optogenetic techniques (Chen et al., 2017; Mos-

bacher et al., 2020; Yoo et al., 2020), for which a completely transparent MEA device is

beneficial. Although many standard materials used as MEA substrates (e.g. quartz glass)

and passivations (e.g. polyimides (Im and Seo, 2016) or ONO (Hofmann et al., 2011))

are inherently transparent, the conducting material is usually not. The most commonly

used transparent materials are indium tin oxide (ITO) (Gross et al., 1985) and the non-

standard material graphene (Kireev et al., 2017a), although ITO is usually not used for

the electrode opening itself (Multi Channel Systems MCS GmbH). In Chapter 3 of this

thesis, I tackled the above mentioned challenges and set out to improve µCP on glass via

chemical uncoupling, to establish MEA recordings from population patterns (Albers et al.,

2015), and to test holey gold as a transparent and tunable electrode material potentially

suitable for its combination with optogenetics.

Dual optogenetic systems for combined calcium imaging and neuronal laser stimulation

are increasingly used in in vivo studies (Emiliani et al., 2015; Kim et al., 2017; Ronzitti

et al., 2018). Electrophysiological methods have a higher temporal resolution and directly

measure APs, rather than the pooled calcium influx during multiple APs (see also sec-

tion 1.1.1.2 and section 1.1.1.3). However, spatial resolution of optical techniques is often

superior, making a direct correlation of a recorded signal and the anatomical position of

the recorded cell possible (see also section 1.3). With adeno-associated viruses as a deliv-

ery vector, a large fraction of the imaged cells (up to 90%) can be monitored (Jin et al.,

2016). Curiously, such dual optogenetic, all-optical systems have rarely been used in neu-

ronal cell cultures (Hu et al., 2019; Mosbacher et al., 2020). Despite its advantages, this

methodology has, to my knowledge, never been attempted to be used in combination with

patterned neuronal networks. After having successfully used calcium imaging to monitor

2



the spontaneous activity of patterned neurons in section 4.3 of Chapter 4, I established an

all-optical system for patterned neuronal networks in section 4.4, and used it in section 4.5

and Chapter 5.

Following the investigation and refinement of different methods for controlling neu-

ronal networks in vitro, I turned towards their application. Cellular patterning was first

applied with the aim to establish a system for fundamental research of cell growth and

cell activity modulation (Mrksich et al., 1997). Patterning was then adapted for neu-

ronal cultures, mainly to align soma positioning with MEA electrodes (James et al., 2004)

and control neurite outgrowth and thereby microcircuit connectivity (Offenhäusser et al.,

2007). However, Feinerman et al. (2005) started to use neuronal patterning to investi-

gate signal propagation in axonal tracts in vitro. Later, the same group utilized neuronal

patterning to influence the output direction of a neuronal population signal in what they

referred to as “neuronal diodes” (Feinerman et al., 2008). With a set of differently pat-

terned neuronal populations (including diodes), they could build “neuronal logic devices”

and even the prototype of a neuronal oscillating device. Inspired by this study, Albers

and Offenhäusser (2016) optimized the diode design and such population patterning for

µCP. Furthermore, they implemented these optimized, curved triangle (CT) patterns into

a larger loop pattern to observe neuronal circulating action potentials (neuroCAP) (Al-

bers, 2016). Forró et al. (2018) implemented a similar loop pattern using microchambers

as patterning technique and could achieve signal propagation in a preferential direction.

However, in this pattern, the analysis of individual neurons is very challenging due to

strong cluster formation. Moreover, the study lacks an evaluation of the pattern’s ability

to allow for full action potential (AP) circulation. In Chapter 4, I investigated whether

downscaling CT patterns preserves their directionality (following Irina Tihaa’s unpub-

lished work). Moreover, I aimed to improve the design of the neuroCAP pattern and

optically investigated signal propagation across multiple CT structures in such a modular

loop.

Synchronous network events (SNE) are a ubiquitous phenomenon in the nervous sys-
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tem (see section 1.1.3) and can be observed across scales and experimental systems. These

systems range from in vivo experiments (Egorov and Draguhn, 2013) over brain slices

(Buzsáki, 2015) down to neuronal cell cultures (Lonardoni et al., 2017; Pasquale et al.,

2008; Wagenaar et al., 2006b). Neuronal cell cultures are a rather simple system, which

allows computational simulations to more accurately model such a neuronal network than

an extremely complex environment such as a living brain. Therefore, such models offer

increasingly precise insights into the generation and characteristics of SNEs (Fardet et al.,

2018; Gritsun et al., 2010; Masquelier and Deco, 2013). However, these models usually

try to explain the influence of a few, selected properties (like adaptive synapses in Fardet

et al. (2018)) on SNE behavior, thereby neglecting the influence of other certain aspects

of a biological neuronal network. One of these aspects is the impact of anatomical and

functional modularity on network activity and SNE generation (see also section 1.1.3.2).

A series of studies could demonstrate that anatomical modules are separate computational

entities with unique intra-modular attributes such as a high functional connectivity (Tsai

et al., 2008) and fast spike sequences (Pan and Sinha, 2009). These modular entities con-

trol each other in a variable fashion (Tsai et al., 2008). They communicate via slower

spike sequences (Pan and Sinha, 2009) that get more segregated and diverse with reduced

anatomical connection strengths (Yamamoto et al., 2018). Other factors increasing the

diversity of slow, inter-modular spike sequences are an increased coordinating activity by

inhibitory neurons (Shein-Idelson et al., 2016) and stronger modularity (Okujeni et al.,

2017). On the other hand, functional modules can be “hidden” within homogeneously

growing networks, thus not always correlating with anatomical modules (Lonardoni et al.,

2017). These communities with high functional connectivity based on their spontaneous

activity most likely initiate SNEs (Lonardoni et al., 2017), probably via the activity of

certain leader cells (Pasquale et al., 2017). Using the optimized set of methods described

above, I investigated in Chapter 5 the impact of evoked modular activity on SNE gener-

ation. For this, I developed a neuronal pattern containing a small module of individual

(unclustered) neurons connected to a larger neuronal network. Moreover, I examined the

functional influence of different modes of evoked activity on the neuronal networks growing

in such patterns using SNE characterization and graph theoretical connectivity models.
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Chapter 1

Fundamentals
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1.1 The nervous system and its neurons

Already in ancient Egypt, some researchers may have suspected the importance of the

inconspicuous whitish gray mass within a human skull for body control. They termed

this mass “brain”. However, the general public probably regarded the organ as negligi-

ble, indicated by the removal of the mass during mummification (as compared to other

organs) (González, 2018). In the millenia following the first neuroscientific insights in

ancient Egypt, only few occasional researchers slowly added to humanity’s understanding

of the brain. They mainly contributed with insights into brain structure. Then, in the

19th century, the density of important neurophysiological discoveries rapidly increased.

Jean-Pierre Flourens partly disabled body control of animals by systematically introduc-

ing lesions to different parts of their brains. Emil du Bois-Reymond and Hermann von

Helmholtz measured the speed of electrical pulses through nerves,

Figure 1.1 – Neurons. (A) Santiago Ramón
y Cajal drew thousands of neurons that he
stained with the Golgi staining. (B) A stereo-
typical neuron comprises a soma with the nu-
cleus, and branched neurons that are further
subdivided into dendrites and the axon. Both
adapted from Bear et al. (2007e).

and Richard Caton recorded electrical ac-

tivity in the cerebrum of animals. Camillo

Golgi discovered a staining method for neu-

rons that was used by Charles Scott Sher-

rington and, most extensively, by Santiago

Ramón y Cajal to demonstrate that the ner-

vous system comprised a multitude of in-

dividual units (neurons, see Figure 1.1 A)

separated by and communicating via small

gaps (synapses) (Bear et al., 2007e). At the

same time, Rudolf Virchow discovered that

the mass between the neurons, so far termed

glia (Greek for “glue”), also consisted of indi-

vidual cells, for example astrocytes and mi-

croglia, supporting the neurons around them

(Benjamin Kacerovsky and Murai, 2016). Today, we know that the nervous system in-

tegrates sensory information, enables higher cognitive functions, and plays a role in the
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control or at least regulation of every bodily function. A wide variety of tools exist to

investigate the brain and its neurons on different scales and in different modalities.

In this fundamentals section, I will first review the development, structure and function

of neuronal networks as the building blocks of the nervous system. Then, I will elucidate

the techniques and methods used in this thesis.

1.1.1 The Neuron - Structure and Function

The cells forming the nervous system can be subdivided into glia and neurons. Glia

cells play many important roles in nutrient distribution (astroglia), neuronal immune

responses (microglia), isolation of neurons (oligodendrocytes), amongst others (Benjamin

Kacerovsky and Murai, 2016). However, the main focus of this thesis lies on neurons

and their networks. A neuron can be described as the smallest functional unit of the

nervous system’s eletrical network activity. A mature neuron usually is divided into three

major compartments. The cell body (or soma) contains the nucleus and some of the

other essential cellular components such as parts of the endoplasmic reticulum and Golgi

complex. Dendrites receive inputs from upstream neurons. And axons send outputs to

(sometimes very far away) downstream neurons (see Figure 1.1 B).

1.1.1.1 Resting Potential

The entire cell membrane of a neuron contains ion channels and transporters that enable

the neuron to modify the electrical potential across the membrane. The main types of

ions playing a role in this membrane potential include potassium (K+), sodium (Na+),

chloride (Cl−), and calcium (Ca2+). At rest, these ions are kept at approximately constant

concentrations (Table 1.1) by active ion transporters (most importantly the Na+/K+

exchanger and the Ca2+ pump) that convert chemical energy in the form of adenosine

triphosphate (ATP) into kinetic energy of the pumping process (Bear et al., 2007c). For a

membrane selectively permeable for one of these ions, the equilibrium potential Eion due

to the ionic conductances across the membrane can be calculated via the Nernst equation

(Bear et al., 2007c):

7



Ion
Concentration
outside [mM]

Concentration
inside [mM]

Equilibrium
potential [mV]

K+ 5 100 -80
Na+ 150 15 62
Ca2+ 2 ≤0.0002 123
Cl− 150 13 -65

Table 1.1 – Ion concentrations and equilibrium potentials of the ions mainly contributing to
neuronal membrane potentials.

Eion = 2.303
RT

zF
log10

[ion]out
[ion]in

(1.1)

where R is the gas constant, T is the temperature, z is the charge of the ion, F is Faraday’s

constant, and [ion]out and [ion]in are the concentrations outside of and inside the cell,

respectively. At room temperature, the term 2.303RT
zF can be calculated as 61.54 mV

for K+ and Na+, -61.54 mV for Cl−, and 30.77 mV for Ca2+. In a resting neuron, K+

has the greatest influence on the membrane potential via K+ channels whilst Na+ has

the second-largest influence via leak currents through the membrane and not completely

closed channels. Ca2+ and Cl− can be neglected due to their minor influence. Considering

this, the resting membrane potential Vm of a stereotypical neuron can be calculated with

the a modified Nernst equation (Equation 1.1), the Goldman equation (Bear et al., 2007c):

Vm = 61.54 mV log10
PK [K+]out + PNa[Na+]out
PK [K+]in + PNa[Na+]in

(1.2)

where PNa and PK denote the relative permeabilities of the respective ions. Choosing

PNa = 1 and PK = 40 (meaning that the membrane is 40 times more permeable to

K+ than to Na+), we get a resting membrane potential of -65 mV (Bear et al., 2007c).

This corresponds well with experimental values via the patch clamp technique (see sec-

tion 1.2.1).

1.1.1.2 Action Potential

When the dendrites of a neuron receive an input, the neuronal membrane gets slightly

depolarized (see also next section). If the depolarization by multiple inputs is strong
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enough, very fast voltage-gated Na+ channels open at a certain threshold voltage, usually

around -50 mV (see Figure 1.2). This textbook view has recently been called into ques-

tion as Sardi et al. (2017) suggested that neurons might in fact have multiple threshold

voltages. Because the equilibrium potential of Na+ is much more positive than that of

K+ (see Table 1.1), Na+ starts to stream into the cell and quickly depolarizes the cell

to about +30 mV. At this time point (1-2 ms after the opening of the channels), the

voltage-gated Na+ channels close and depolarization-triggered, voltage-gated K+ chan-

nels open. Consequently, K+ starts streaming out of the cell, repolarizing the cell.

Figure 1.2 – The action poten-
tial. An action potential has a typi-
cal duration of 1-5 ms and includes dis-
tinct phases. Adapted from Bear et al.
(2007d).

However, the efflux of K+ ions continues until a

potential close to potassium’s equilibrium poten-

tial (-70 to -80 mV). This hyperpolarization occurs

due to the high concentration intracellular Na+ ions

and the slow closing time of the voltage-gated K+

channels. Finally, the membrane potential and ion

concentrations are restored to their resting state

by the closing of voltage-gated K+ channels and

the Na+/K+ exchanger. The whole process from

the onset of depolarization to the restoration of the

resting potential is called the action potential (AP)

and lasts about 3-5 ms (Bear et al., 2007d). The

membrane current Im generated by the above de-

scribed ion channels during an AP was elegantly

described by Hodgkin and Huxley (1952):

Im = gleak(Vm − Eleak) + gKn4(Vm − EK) + gNam
3h(Vm − ENa), (1.3)

where 1/gleak is the passive membrane resistance Rleak, and gK and gNa are the conduc-

tances of the respective ion channels. Eleak is the resting potential of the membrane, and

EK and ENa are the reversal potentials of the ion channels. This formula was adapted and

extended multiple times from then on to describe different types of neurons and include
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more types of ionic currents (Dayan and Abbott, 2001b).

While Na+ and K+ fluxes are the driving forces behind the AP, the somatic, intracellular

Ca2+ concentration also changes (Ali and Kwan, 2019; Grienberger and Konnerth, 2012;

Smetters et al., 1999). During depolarization, somatic voltage-gated L-type Ca2+ channels

(see also Figure 1.9 A) open alongside presynaptic, also voltage-gated, P/Q- and N-type

channels (see also Figure 1.3) (Ali and Kwan, 2019; Wang et al., 2019b). The resulting

increase of the Ca2+ concentration by about 40 nM is enhanced by the release of calcium

from intracellular stores such as the endoplasmic reticulum via calcium-activated ryan-

odine receptors (see also Figure 1.9 A) (Grienberger and Konnerth, 2012). This leads to

an overall increase in Ca2+ of about 10 to 100 times of its concentration at rest. This

increase happens within less than 2 ms, after which the Ca2+ concentration is slowly reset

with a decay time constant of about 100 ms. Ca2+ reset is mediated by the Na+/Ca2+

exchanger of the cell membrane and mitochondria, the SERCA pump of the endoplasmic

reticulum, and other players.

The voltage-gated Na+ channels cannot be reopened after closing at depolarization during

the so-called the refractory period. Therefore, APs progress along the axon in one direc-

tion. Usually, the AP is generated at the axon hillock, a piece of membrane - close to the

soma - that exhibits a high density of voltage-gated Na+ channels (also called the action

potential initiation site or axon initial segment (AIS)). The AP then propagates towards

the tip of the axon (see also the following section), where a synapse with a downstream

neuron is formed. In some cases, retrograde APs have been reported that back-propagate

into the dendritic tree instead of the axon (Bakkum et al., 2013; Markram et al., 1995).

1.1.1.3 Synapses, the Postsynaptic Potential, and Intraneuronal Computa-

tion

Neurons are interconnected via synapses. A synapse chemically uncouples the electrical

activity of two neurons from each other with a short delay of roughly 1 ms. It is formed

by specialized parts of the cell membranes of a pre- and a postsynaptic neuron, and the

gap ( 20-50 nm) between them (Bear et al., 2007a). Newer models include a third cellular

player in a synapse - an astrocytic glia cell that supports the efficient signal transduction
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from one neuron to the next (Bazargani and Attwell, 2016). The specialized membrane

region of the presynaptic neuron is called the axon terminal or synaptic bouton whereas

the membrane region of the postsynaptic neuron is a small protrusion called a dendritic

spine. Another type of synapse is electrical synapses, or gap junctions, that allow for an

immediate propagation of the membrane potential to the next cell.

The synaptic bouton of a chemical synapse is filled with a number of vesicles containing

neurotransmitters that are used to transmit a signal to the postsynaptic neuron (see also

Figure 1.3). When an AP (see previous section) arrives at the axon terminal, it opens

voltage-gated Ca2+ channels so that the Ca2+ concentration is rapidly increased (see Ta-

ble 1.1). Within microseconds, neurotransmitter is released from the synaptic vesicles into

the synaptic cleft in the following process. The increased Ca2+ is sensed by Synaptotagmin

in the vesicle membrane, and Munc13-like and Sec1/Munc18-like proteins in the cell mem-

brane (Kiessling et al., 2018; Rizo and Xu, 2015). These proteins initiate the assembly of

a SNARE protein complex. This in turn mediates the fusion of the vesicle membrane with

the cell membrane, finally releasing the neurotransmitter. The neurotransmitter diffuses

through the cleft and binds to receptors in the postsynaptic membrane. Excess neurotrans-

mitter molecules are recycled by astrocytes and specific transporters in the presynaptic

membrane.

Neurotransmitter receptors are subdivided into two large groups, transmitter-gated ion

channels and G-protein-coupled, or metabotropic, receptors. These groups can further be

classified by the neurotransmitter they respond to and their effect in the postsynaptic neu-

rons. Some transmitters (such as glutamate) open cation channels, eliciting an excitatory

postsynaptic potential (ePSP) via influx of Na+. Other transmitters (e.g. glycine and

gamma-aminobutyric acid (GABA)) open anion channels so that Cl− will stream into the

cell. In adult cells, this influx will lead to an inhibitory postsynaptic potential (iPSP) by

hyperpolarizing the membrane. During development, the intracellular Cl− concentration

is much higher than in adult cells, leading to an excitatory function of GABAergic Cl−

channels (Egorov and Draguhn, 2013). The aforementioned neurotransmitters and a wide

range of others including amino acids (glutamate, glycine, etc.), amines (acetylcholine,

dopamine, epinephrin, etc.), and small peptides (neuropeptide Y, substance P, somato-
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statin, etc.) can also interact with metabotropic receptors. They activate an intracellular

G-protein in the postsynaptic membrane that either opens an ion channel with a certain

delay or activates a signaling cascade by triggering the release of a second messenger such

as cyclic adenosine monophosphate (cAMP) or Ca2+. This signaling cascade can have

diverse effects on gene regulation and protein expression, metabolism, and other functions

via the activation of so-called immediate early genes. One well-studied effect of these

cascades is synaptic plasticity, which decreases or increases synaptic strength over seconds

up to minutes (short-/long-term depression/potentiation).

A cortical neuron usually receives inputs through thousands of synapses at its dendritic tree

from hundreds to thousands of neurons (Bear et al., 2007a). Many of these

Figure 1.3 – A chemical synapse. The time
scales of synaptic transmission range from millisec-
onds up to hours and depend largely on Ca2+, neu-
rotransmitters, and Na+. Adapted from (Wang
et al., 2019b).

synapses elicit ePSPs or iPSPs in the

dendritic tree that are integrated by the

neuron in a complex process of spatio-

temporal summation (reviewed by London

and Häusser (2005)). In spatial summa-

tion, different compartments of the den-

dritic tree receive synaptic inputs almost

simultaneously. In temporal summation,

the same dendritic compartment receives

synaptic inputs at slightly different time-

points below the decay constant of the

preceding PSP ( 1-15 ms). The complex-

ity of dendritic computation is increased

because of the possibility of combinations

of spatial and temporal summation, the

mixture of ePSPs and iPSPs, and different

passive and active properties of dendritic

trees. Passive properties are inherent characteristics of a dendritic tree. Firstly, dendrites

behave similar to electrical cables, thereby serving as linear filters of a PSP, a property

that has different effects depending on the distance of the synapse to the AIS. Secondly,
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the aforementioned spatio-temporal summation itself is a passive property. Thirdly, a

synaptic input locally changes membrane conductances to certain ions, thereby introduc-

ing a dependency of the spatio-temporal summation on the exact distance and timing of

the other synaptic inputs. This change of conductance can even occur without a change

in membrane potential, for example in shunting inhibition. Active properties are less

well understood than passive properties. They influence to what extent a dendritic tree

or compartment can respond to a synaptic or intracellular input. This process is highly

dependent on the local distribution of voltage-gated sodium channels in the dendritic

membrane. Firstly, backpropagation of APs in the same cell can serve as an intracellular

feedback mechanism. Secondly, conductances at synapses seem to be scaled with distance

from the AIS, thus amplifying the PSPs generated by more distant synapses. Thirdly,

local dendritic spikes act as a tool to heavily influence the PSPs in a surrounding region.

And fourthly, global dendritic spikes are elicited by separate spike initiation zones within

the dendritic tree. All these computational properties of dendrites enable the neuron to

fire an AP at the precise time at which it is needed within a network (Bear et al., 2007a;

London and Häusser, 2005). Usually, computational models explaining the functional

principles of neuronal networks (see also section 1.1.3) only take into account a fraction of

these mechanisms of synaptic summation. On the other hand, an experimental system as

used in this thesis naturally integrates the neurons’ synaptic and conductive properties.

In combination with patterning techniques, networks of such physiological neurons with

defined connectivity can be engineered, enabling the investigation of synaptic (in single

cell networks) (Fricke et al., 2011) and network mechanisms (Yamamoto et al., 2018).

1.1.2 Development of Cortical Neurons

At the time point when the cortex is dissected from a rat embryo (embryonic day 18/E18)

in this thesis, the cerebral cortex has already formed in the brain. The prerequisites for this

complex structure are already fixed in the gastrula stage (E6-8) when ectoderm, mesoderm,

and endoderm separate from each other. When the cortex is dissected and dissociated for

a cell culture, the neurons sink onto the substrate and adhere within a few minutes. Once

adhered, the neuron starts to form lamellipodia that turn into neurites within half a day.
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Figure 1.4 – Stages of neuronal network de-
velopment. First, individual glutamatergic and
other excitatory neurons (triangles) and still exci-
tatory GABAergic interneurons (I) exhibit sporadic
firing (A) that gets more synchronized as first weak
synapses and sub-networks form (B). The neurons
further interconnect, and connection strength and
directionality increases, resulting in global network
events (C). As GABAergic neurons turn into in-
hibitory regulator hubs, and certain sub-networks are
strengthened due to synaptic potentiating and de-
pressing mechanisms, defined and reproducible fir-
ing patterns emerge (D), useful for the execution of
specific tasks. Adapted from Egorov and Draguhn
(2013).

During the next day, one of the neu-

rites elongates and starts to become

the axon while the other neurites will

become branched dendrites in the fol-

lowing two to three days. Over the

next few days, the neurites will fur-

ther branch out and form synapses with

other neurons (Fukata et al., 2002),

starting to exhibit individual sporadic

activity (Figure 1.4 A). From then on,

the neurons undergo a developmental

process that is in some aspects simi-

lar to the one found in vivo (Egorov

and Draguhn, 2013). At around day-

in-vitro (DIV) 7, the first synapses are

mature and can propagate APs leading

to first small synchronized (sub)network

firing events (Figure 1.4 B). While the

neurons mature, they express more and

more synaptic and ion channel proteins,

leading to improved encoding of higher

firing frequencies and thus synchroniza-

tion and improved communication with

other neurons (Egorov and Draguhn,

2013; Nikitin et al., 2017). Therefore,

the network starts exhibiting stereotyp-

ical synchronous network bursts recordable by electrical (section 1.2) or optogenetic (sec-

tion 1.3) techniques. In these networks, GABAergic neurons are not yet inhibitory (see

section 1.1.1.3), leading to a mainly excitatory network with large global synchronic-

ity(Figure 1.4 C). At this point, the neuronal networks exhibit a high connectivity as a
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basis for their upcoming refinement. In week 4 or more, stable subnetworks of inhibitory

and excitatory neurons slowly form, reducing synchronous activity to specific subpopula-

tions with complex spatio-temporal firing patterns (Egorov and Draguhn, 2013; Kapucu

et al., 2017) (Figure 1.4 D). These activity patterns of certain subnetworks can represent

the neural basis of specific tasks. In vivo, these tasks include basic computations for higher

functions such as cognition, sensing, or motion. In vitro, the nature of these tasks is more

abstract but may be used, for example, for memory mechanisms (Dranias et al., 2013).

During that process, neurite outgrowth is steered by a mixture of chemical and physical

environmental cues. The neurite, and in particular the axon, uses a hand-like structure

called the growth cone to find its way to a specific target structure (Dent et al., 2011;

Gallo and Letourneau, 2004; Lowery and Vactor, 2009; Sanes et al., 2011a; Vitriol and

Zheng, 2012). Physical cues include the stiffness and topography of the substrate, while

chemical cues include gradients of molecules released from cells, or extracellular matrix

components of other cells. In the brain, these cues guide the axon towards their destina-

tion, usually another neuron. In the cortex, this neuron can be located in the same or a

different cortical layer, or in a different brain region, in case of projection neurons (Sanes

et al., 2011b). In vitro, the guidance cues can be used to encourage or prevent neuronal

growth in chosen regions, and to guide axons and dendrites along defined patterns (see

section 1.4).

1.1.3 Network Activity

Individual neurons interconnect via synapses to form functional neuronal networks. These

networks are the basis for most higher functions of the brain. In addition to the individual

neuronal action potentials (as described above), the combined activity of these neurons

exhibits emergent properties only visible within the complete network as opposed to indi-

vidual neurons (much like individual pixels on a screen do not contain much information,

whereas together they form an image) (Yuste, 2015). One very prominent of these prop-

erties is network bursts, in which a large fraction of neurons in a network fire almost at

the same time (Figure 1.5 A). Since periods of rapid firing in individual neurons (often oc-

curring when a neuron participates in a network burst) are also called bursts in literature,

15



I will refer to network bursts as synchronous network events (SNE) in this thesis. Other

such emergent properties are more indirect and can be quantified via graph theoretical

models of the network. In these models, changes in the network’s abilities for integration

and segregation of its neurons, its resilience towards perturbations, and the character of

neurons with special functionality (such as hub neurons) can be measured.

1.1.3.1 Synchronous Network Events

Neuronal activity patterns can be assigned an “energy” value (borrowed from ferromag-

netism), resulting in an energy landscape with favorable energy states. A SNE is such

a favorable state, or attractor (Yuste, 2015). Attractors also include other stable spatio-

temporal firing patterns, e.g. for memory fixation. Generally, the high synchronization or

coherence between neurons in a network during a SNE was proposed to serve as a phase of

higher input gain of the neurons participating in the SNE. This leads to rhythmic phases

of higher excitability during SNEs (more efficient communication) as opposed to phases

of mixed and lower excitability outside of these coherent events, and therefore to the con-

cept of “communication through coherence” (Fries, 2015). More specifically, SNEs exhibit

diverse functions in very different brain regions and cell types. These functions range

from respiratory rhythmogenesis(Rybak et al., 2014) to memory consolidation (Buzsáki,

2015). As described in the previous section, SNEs represent a developmental maturation

hallmark of neuronal networks in cell culture (Luhmann et al., 2016; Wagenaar et al.,

2006a) and in vivo (Chiu and Weliky, 2001). It may also serve as a model for slow-wave

sleep (Saberi-Moghadam et al., 2018). Due to the similarity of SNEs in culture and in

some systems in vivo, primary neuronal cell cultures have been used frequently as a model

system to investigate SNEs (Gritsun et al., 2010; Lonardoni et al., 2017; Pasquale et al.,

2017; Penn et al., 2016; Takahashi et al., 2010; Teppola et al., 2019; Wagenaar et al.,

2006a,b).

A SNE usually comprises a pre-phase and a main phase (Gritsun et al., 2010) (Figure 1.5

B). Starting in the pre-phase, sporadic activity in a small subset of neurons (leader

cells (Bauermeister et al., 2020; Pasquale et al., 2017)) recruits (almost) the complete

network to the event. Additional and optional flanking and tail-phases probably rep-
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resent the activation of distinct (functional) subnetworks. Different models have been

Figure 1.5 – Synchronous network
events. (A) Neuronal networks exhibit
synchronous network events, often associ-
ated with bursts of APs withing individ-
ual cells. Adapted from Lonardoni et al.
(2017). (B) A SNE can be subdivided
in different phases. Sporadic activity in
some neurons (potentially leader neurons)
in the pre-phase recruits a larger portion
of the network in the main phase. Some-
times, the main phase is accompanied by
a flanking phase, that may indicate acti-
vation of a separate subnetwork. Finally,
a tail-phase may follow the main phase in
a similar manner but not as pronounced
as the flanking phase. Adapted from Grit-
sun et al. (2010).

proposed and refined over time to explain SNE

behavior in culture (Fardet et al., 2018; Gritsun

et al., 2010; Masquelier and Deco, 2013; Pasquale

et al., 2008; Wilson and Cowan, 1972). Although

even very simple models (Wilson and Cowan,

1972) with as few as two independent variables

(Tyukin et al., 2019) can explain the tendency

of a network to exhibit SNEs, the exact initia-

tion, dynamics and regulation of SNEs are much

more complex. A more complex physical model

based on biological experimental studies (Masque-

lier and Deco, 2013; Penn et al., 2016) provided

evidence that many neurons in a cell culture

could be self-sustaining oscillators that can gen-

erate spontaneous, regular SNEs. In this new

model by Fardet et al. (2018), neurons are as-

sumed to be adaptive by exhibiting Na+ and H+

leak currents INa,P (Penn et al., 2016) and Ih

(Lüthi and McCormick, 1998). By lowering their

excitability upon repeated excitation (adaptabil-

ity) and firing/oscillating spontaneously (leak cur-

rents), these neurons are sufficient to generate

SNEs without any additional mechanisms such as

intrinsic bursting, short-term plasticity (Gritsun

et al., 2010), or inhibitory neurons. This lack of importance of inhibition contradicts a

large body of evidence stating the importance of GABAergic regulation in neuronal net-

works (Egorov and Draguhn, 2013). Therefore, such physical models may explain very well

how a neuronal network can exhibit a specific feature (such as SNEs) in a specific state,

but have to be considered with care when generalizing to other states of a network. This
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specific state can be the homogeneous distribution of neurons, or a certain developmental

stage where GABAergic neurons may not play a role due to their excitatory nature (see

section 1.1.2).

Biologically, experimental studies have found that SNEs seem to rely on three main factors

(Egorov and Draguhn, 2013) and their related phenomena: a) glutamatergic, excitatory

synapses that facilitate fast initiation (AMPA receptors) of SNEs and define and regulate

spatio-temporal firing patterns during SNEs (NMDA/AMPA receptors) (Teppola et al.,

2019). Recruitment of neurons to an emerging SNE due to AMPA receptors is initiated

and/or conducted by leader (Pasquale et al., 2017) or pioneer (Bauermeister et al., 2020)

cells. The definition of spatio-temporal firing patterns does not only rely on the type

of glutamate receptor (Teppola et al., 2019) but also on the type of stimulus (Bauer-

meister et al., 2020; Pasquale et al., 2017) or firing pattern (Lonardoni et al., 2017) a

neuronal (sub-)population receives and the location of SNE initiation (Lonardoni et al.,

2017; Orlandi et al., 2013). b) GABAergic, regulatory neurons that coordinate (in a ma-

ture network by inhibition) firing activity in their local environment (Egorov and Draguhn,

2013) as so-called hub neurons. However, although GABAergic neurons serve as hub neu-

rons (Cossart, 2014) not all hub neurons are necessarily GABAergic. These hub neurons

can steer the initiation and progression of SNEs (Okujeni et al., 2017) and as much as

directly determine the frequency of network oscillations in hippocampal slices (Capogna

and Pearce, 2011). c) Gap-junctions as a direct coupling mechanism between spatially

close neurons (maybe in initiation regions or between hub cells to form anatomical “rich

clubs”, see section 1.1.3.2) (Egorov and Draguhn, 2013). Additionally, mechanisms such as

glial transmitter recycling contribute to the complexity and frequency of SNE generation

(Huang et al., 2017).

1.1.3.2 Network Connectivity and Modularity

In neurobiological systems, three categories of connectivity have been defined (Feldt et al.,

2011): 1) anatomical or structural connectivity, defined via the axons and dendrites be-

tween the neurons; 2) functional connectivity, usually defined by a measure of statistical

correlation between the individual neurons in the network; 3) effective connectivity, usu-
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ally defined by testing the causal relationships between two neurons, e.g. by stimulating a

neuron and monitoring the direct response of this stimulation in other neurons. These def-

initions can be applied to differently scaled neuronal networks, ranging from cell cultures

to brain regions. Connectivity measures can be used to construct graph theoretical models

to investigate indirect emergent network properties. Graphs comprise nodes (or vertices)

Figure 1.6 – Modularity and small-world
networks. Small-world networks have a high
clustering coefficient and are very efficient, i.e.
have short path lengths. Special cases of small-
world networks are modular (A) and hierarchical
modular (B) networks. Adapted from Meunier
et al. (2010).

and connections (or edges) between the

nodes. The connections can be directed or

undirected and weighted or binary. Func-

tional connectivity matrices are most widely

used to construct graphs of cell culture

networks. These matrices have commonly

been based on the statistical measures of

cross-correlation (Lonardoni et al., 2017;

Pasquale et al., 2017), mutual informa-

tion (Wrosch et al., 2017), transfer entropy

(Stetter et al., 2012), and combinations of

those (Wrosch et al., 2017). The graph model can then be used to extract connectivity

measures, such as the clustering coefficient, the efficiency of the network, the in- and out

degree of the connections, the so-called assortativity, and more (for a comprehensive re-

view, see Rubinov and Sporns (2010), and for details of measures used in this thesis, see

section 2.5.6).

Investigating the connectivity of neurobiological systems, a recurring feature of these net-

works is the so-called hierarchical modularity as a sub-category of small-worldedness of

the network (Meunier et al., 2010) (Figure 1.6). Small-world networks form sub-networks

or modules (clustering) that are interconnected with other modules via few, specific long-

range connections (short paths/high efficiency). Hierarchical modularity refers to a net-

work containing modules, which in turn can contain sub-modules, which again can con-

tain sub-sub-modules, and so on (Meunier et al., 2010) (”turtles all the way down”).

With a small-world network architecture, sub-tasks can be performed in adaptable and

exchangeable modules with low wiring cost while at the same time keeping inter-modular
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communication efficient. Additionally, the time scales of intra- and inter-modular com-

munication can be separated (Pan and Sinha, 2009). Due to this temporal and functional

separation of neuronal activity, small-world networks exhibit a complex firing dynamics,

i.e. a mixture of segregated inter-modular and integrated intra-modular firing (Shanahan,

2008; Sporns et al., 2000). However, the anatomical connections between the modules

can influence the functional architecture of the network. For example, small-worldedness

and the resulting dynamical richness of the activity is weakened when the modules are

strongly connected to each other (Moriya et al., 2017; Yamamoto et al., 2018). In turn,

this can lead to an enhanced transmission fidelity of spike codes between modules (De-

Marse et al., 2016). Additionally, the connectivity between modules does not rely only

on the physical connections but also regulatory mechanisms such as inhibition. Disinhi-

bition of modular networks alters the module-to-module communications towards a more

activity-dependent state (Shein-Idelson et al., 2016). Another feature that sometimes ap-

pears in neuronal networks is the so called “rich-club” behavior or positive assortativity,

which means that central nodes such as hub nodes are interconnected with each other (Gal

et al., 2017; Teller et al., 2014). Functionally, this behavior seems to occur in cell culture

systems when the anatomical network has a small-world architecture (i.e. the cells have

grown in interconnected clusters) (Teller et al., 2014).
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1.2 MEAs and Electrophysiology

The first methods to investigate the function of the nervous system were electrophysiolog-

ical. Whilst in the beginning blank wires and crude devices such as simple galvanometers

were used to identify electrical currents within nerves, the technology to measure electrical

neuronal activity has become more and more sophisticated. In this section, I will focus on

two techniques that were used in this thesis to investigate the activity of primary cortical

cell cultures - the patch-clamp technique and microelectrode arrays (MEA) .

1.2.1 Whole-Cell Patch Clamp

The patch clamp technique was developed by Sakmann and Neher (1984) to investigate

the variable currents and potentials across the cell membrane of a neuron, and their depen-

dence certain types of molecules such as ion channels. A platinum wire in a glass pipette

with a tip diameter of 1 - 3 µm serves as the recording electrode of the intracellular voltage

against the extracellular voltage measured by a Ag/AgCl reference or ground electrode in

the extracellular measuring solution. The glass pipette is then closely attached to the cell

membrane, indicated by a very high sealing resistance Rseal (> 1 GΩ) between recording

and reference electrode (this is the so-called “gigaseal”) due to the complete cell insulating

the two electrodes (Figure 1.7 A). The membrane “patch” attached to the pipette is rup-

tured and a defined electrolyte in the pipette replaces the cytosol of the cell. The intra-

and extracellular ion concentrations determine the passive membrane potential according

to the Goldman equation (see Equation 1.2).

The membrane potential can now be “clamped” at a certain value through the record-

ing electrode while measuring the current (“voltage clamp”). Voltage clamp experiments

can be used to accurately estimate the conductances of individual ion channel types, as

ion channels are voltage- and time-dependent but not current-dependent. Alternatively,

the injected current can be clamped while measuring the resulting membrane potential

(“current clamp”). With current clamp experiments, membrane potential changes due to

synaptic inputs or action potentials can be measured. Since the cell membrane behaves

like a leaky capacitor, current clamp induces a capacitive charging effect in the membrane
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until reaching a steady state voltage.

The circuit formed by the patch electrode and membrane can be described by electri-

cal equivalent circuits (Figure 1.7 B), usually comprising resistors, capacitors and voltage

sources (Ypey and DeFelice, 1997). The patch amplifier can be described

Figure 1.7 – The patch-clamp technique.
(A) Schematic representation of the different
steps in a whole-cell (WC) patch-clamp exper-
iment. Besides Rpc, Epc, Cpip, Rpip, Rm, Cm,
and Em, which are explained in section 1.2.1,
Rcap is the resistance of the patched membrane
that is replaced by the access resistance Racc

when the membrane is opened, and is in paral-
lel to the sealing resistance Rseal that is usually
above 1 GΩ. (B) An equivalent circuit repre-
senting the patch-clamp experiment in A, with
switches representing the transition of one step
to another. Adapted from Ypey and DeFelice
(1997).

as a voltage source (Epc) and a (low) out-

put resistance (Rpc) in series. In parallel to

that are the capacitance (Cpip) and the resis-

tance (Rpip) of the patch pipette. In series

with Rpip is the cell membrane, which is a

membrane capacitance (Cm) in parallel with

membrane resistance Rm (or inverse con-

ductance) and voltage source Em (see Fig-

ure 1.7). This three component equivalent

circuit of the cell membrane is only compa-

rable with the passive properties of a mem-

brane, failing to accurately model membrane

behavior during an AP or other activity. The

membrane voltage can be described as (Ypey

and DeFelice, 1997):

Vm(t) = Ae
−t
T1 +B e

−t
T2 +D, (1.4)

where A, B, and C are constants and T1 and

T2 are complex functions of τs,pip = RpcCpip

and τpip,m = RpipCm, respectively. For a

current clamp experiment, Rpc >> Rm, Rpip

can be assumed, leading to a very long expo-

nential capacitive charging effect as compared to voltage clamp (where Rpc << Rpip <<

Rm).
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1.2.2 Microelectrode Arrays

Developed in the 1960s and 1970s (Pickard, 1979), MEAs are one of the most abun-

dantly used systems for measuring neuronal electrical activity in vitro (Hofmann et al.,

2011; Novak and Wheeler, 1988; Pasquale et al., 2008; Stett et al., 2003) and in vivo

(Blau et al., 1997; Obien et al., 2015; Wei et al., 2015). They are classically fabricated

Figure 1.8 – Microelectrode ar-
rays. (A) Schematic representation
of a MEA. The actual array is in the
middle of a chip and comprises a grid
of electrode openings (in this thesis 64)
that consist of a substrate, a conduct-
ing layer, and a passivation in the sim-
plest case. (B) An equivalent circuit
representing the point contact model
used to describe the mechanism of a
cellular recording with a MEA. Note
the similarities (especially the sealing
resistance Rseal) to the patch-clamp
technique (see Figure 1.7). Adapted
from Weidlich (2017).

via photolithography methods. As a substrate,

wafers made from silicon or glass are used. On

this substrate, an adhesion layer, usually Ti or

Cr, is applied, followed by a conductive layer (Fig-

ure 1.8 A). Starting with only noble metals (Hof-

mann et al., 2011; Pickard, 1979; Seo et al., 2017),

many conductive materials are now available, some

with additional properties such as higher flexibility

and softness (Blau et al., 1997; Jeong et al., 2020;

Kireev et al., 2017a; Park et al., 2019; Vosgueritchian

et al., 2012), biocompatibility (Ahn et al., 2014; Blau

et al., 1997; Jeong et al., 2020), transparency (Cao

et al., 2014; Gross et al., 1985; Kireev et al., 2017a;

Ryynänen et al., 2018; Vosgueritchian et al., 2012;

Wang et al., 2019a), or improved resistance (Cao

et al., 2014; Vosgueritchian et al., 2012). The con-

ductive layer is covered with an insulating layer, the

passivation, which is opened at the electrode sites

and the contact pads for connection to an amplifier

system. Also for the passivation, a multitude of dif-

ferent materials are available, the most common of

which include polyimides (Im and Seo, 2016), silicon

dioxide and/or silicon nitride layers (Hofmann et al.,

2011; Multi Channel Systems MCS GmbH), or atomic layer deposited metal oxides (Yuan

et al., 2020). For MEAs used in vitro, a square electrode layout is very common (Hofmann
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et al., 2011; Kireev et al., 2017a; Multi Channel Systems MCS GmbH), unless the appli-

cation demands a different design, as it for example makes sense in microfluidic systems.

Usually, the MEA is read out by connecting a pre-amplifier or headstage to the contact

pads at the outer edge of the chip. The headstage is then connected to a main amplifier

which can be connected to a computer for data storage (for details, see section 2.3.3.1).

When MEAs are used in cell culture systems, the interface between an electrode and a cell

can be expressed by using electrical equivalent circuits. A commonly used circuit is the

so-called point contact model in which the area of the cell and electrode at the interface

(or junction) are neglected for simplicity (see Figure 1.8 B). However, it is important to

note that a smaller electrode will increase the electrode impedance Z while at the same

time increasing thermal noise during voltage-based recordings and therefore decreasing

signal to noise ratio (Obien et al., 2015). This effect can be circumvented by using non-

standard MEA designs such as nanocavity MEAs, in which the electrode size is increased

in a nanometer-high cavity below the passivation to decrease electrode impedance while

preserving a single cell resolution through a small electrode opening (Hofmann et al.,

2011). Disregarding these area effects, the point contact model defines the electrode, the

membrane at the electrode (junctional membrane), and the membrane on the opposite site

of the cell (free membrane) as capacitor-resistor combinations (Spira and Hai, 2013)(see

section 1.2.1 and Figure 1.8 B). The most important element is the so-called sealing re-

sistance Rseal, which is increased the tighter the cell is coupled to the electrode and in

turn increases the measured voltage. This Rseal is usually three to four orders of magni-

tude lower than in a patch clamp experiment, and therefore is under constant effort to be

improved (Hofmann et al., 2011; Spira and Hai, 2013; Weidlich, 2017).
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1.3 Optogenetics

1.3.1 Calcium Sensing and Image Processing

Changes in calcium concentration play a major role in many different intracellular signaling

pathways, ranging in scale from quickly subsiding microdomains directly around individual

calcium channels up to long-lasting global cellular events.

Figure 1.9 – Calcium Imaging. (A) Apart from the synapse (see
Figure 1.3), calcium can stream into the cell via diverse pathways, in-
cluding amplification steps from the ER. This leads to an 10 to 100-fold
increased Ca2+ concentration during an AP. (B) The working principle
of the calcium indicators of the GCaMP and RCaMP families. Adapted
from Grienberger and Konnerth (2012).

To visualize the cal-

cium signals in the

cells of the nervous

system (especially

APs in neurons, sec-

tion 1.1.1.2 and Fig-

ure 1.9 A, and di-

verse events in as-

trocytes and other

glia (Bazargani and

Attwell, 2016)), cal-

cium imaging has be-

come a widely used

technique in neuro-

science. Improve-

ment of chemical dyes like Fura-2 in the 1980s resulted in the reliable indicator Fluo-4.

Following these dyes, the technique was further improved by the introduction of genetically

encoded calcium indicators (GECI; for extensive reviews, see Grienberger and Konnerth

(2012); Lin and Schnitzer (2016); Wang et al. (2019b)). These GECIs can be targeted to

specific cell types and even specific intracellular sites via their gene promoters, and are

stable for much longer than chemical indicators (Grienberger and Konnerth, 2012). The

GCaMP family (excitable by blue light and emitting green light) has become the most

popular group of GECIs. These proteins are based on a circular green fluorescent pro-

tein (GFP) variant in a weakly fluorescent conformation that is attached to a calmodulin
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(CaM) protein (Figure 1.9 B). When calcium ions bind to the M13 domain of the CaM,

calmodulin changes the conformation of itself and the circular GFP, leading to a much

stronger fluorescence of GFP (Grienberger and Konnerth, 2012). While GCaMP1 (Nakai

et al., 2001) still had severe disadvantages compared to Fluo-4 in terms of signal-to-noise

ratio, GCaMP3 was already on par with the chemical dye (Tian et al., 2009). With the

GCaMP6 variants GCaMP6s (slow), m (medium), and f (fast), Chen et al. (2013) could

make a breakthrough in the field. Even the fast variant (resolving individual APs), with

weakest fluorescence intensity, was performing better than the classical chemical dyes.

These improved sensors can be combined with highly efficient transduction of the cells via

adeno-associated viruses (AAV) leading to very high transfection efficiencies. GCaMP6

has since been further improved (jGCaMP7) to fit specific applications such as widefield

or two-photon microscopy (Dana et al., 2019). With these sensors, fluorescence changes

down to below 10% (Grienberger and Konnerth, 2012) can be visualized which corresponds

to single APs. Other calcium signals are usually much slower and/or weaker than AP-

induced ones so that they are easily distinguishable or not even detectable in network-scale

calcium imaging (Augustine et al., 2003). To enable multicolor imaging or the combina-

tion with optogenetic actuators, the most established of which respond to light in the blue

wavelength range, red GECIs based on red fluorescent proteins were developed. One early

variant was the GECI R-GECO1 (Zhao et al., 2011) based on the red fluorescent protein

mApple, which shows photo-switching behavior in blue light (Shaner et al., 2008). Since

this photo-switching is not well-suited for combination with optogenetic actuators, the

non-switchable variant RCaMP1 based on mRuby was developed (Akerboom et al., 2013).

These early variants were equally inferior in signal-to-noise ratio as GCaMP1. Therefore,

Dana et al. (2016) developed the improved GECIs jRCaMP1a (brighter, but less dynamic

range when resolving APs), jRCaMP1b (less bright, but increased dynamic range), and

jRGECO1a (brightest, but photo-switching in blue light).

To record calcium imaging movies, fluorescence microscopy setups with high-speed cam-

eras and adequately strong light sources are used (Grienberger and Konnerth, 2012; Lin

and Schnitzer, 2016) (see also section 2.4.1). Confocal microscopes enable longer record-

ings due to the minimized exposure of the individual GECIs to light and thereby reduced
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photo-toxicity. The tools for post-processing and analysis of calcium imaging movies

are under constant improvement (Burchert and Schneider, 2016; Cantu et al., 2020; Gio-

vannucci et al., 2019; Kaifosh et al., 2014; Mukamel et al., 2009; Pnevmatikakis, 2019;

Reichinnek et al., 2012; Rueckl et al., 2017; Shibue and Komaki, 2020; Stringer and Pa-

chitariu, 2019) (for an overview, see e.g. Bonifazi and Massobrio (2019)). For a detailed

example of one implementation, also refer to section 2.4.2.1. Usually, in the first step,

regions-of-interest (ROIs) around the neurons are extracted from the calcium imaging

movies. For this, the movie can be normalized to a ∆F/F0 movie with F0 as a baseline

(sometimes time-dependent, sometimes space-dependent) (Rueckl et al., 2017). This re-

moves constantly active or inactive neurons. In in vivo recordings, this normalization is

followed by a step of correcting movement artifacts (Pnevmatikakis, 2019; Pnevmatikakis

et al., 2016). Next, ROIs are detected, usually using a series of filtering and thresholding

operations (Burchert and Schneider, 2016; Diego et al., 2013; Giovannucci et al., 2019;

Reichinnek et al., 2012; Rueckl et al., 2017) but now also extended to novel techniques

such as deep learning (Soltanian-Zadeh et al., 2019). With the current state technology

and algorithms, this ROI detection is rarely error-free, which is why most tools include

the option of manually checking and modifying the results of the automatic ROI detec-

tion (Burchert and Schneider, 2016; Giovannucci et al., 2019; Kaifosh et al., 2014; Rueckl

et al., 2017). From the ROIs, a mean intensity trace can be extracted, in which the calcium

events are clearly visible. These events can be detected by simple peak-finding algorithms

such as the find_peaks routines of MATLAB➤ or SciPy in python. Alternatively, a

deconvolution can be used to infer spike rates from the calcium intensity traces (Cantu

et al., 2020; Friedrich et al., 2017; Jewell et al., 2019; Pnevmatikakis et al., 2016; Shibue

and Komaki, 2020; Stringer and Pachitariu, 2019; Theis et al., 2016) suitable for some sta-

tistical analysis of firing probabilities. However, exact spike times cannot be assumed with

this methodology (Theis et al., 2016), preventing an analysis of spatio-temporal calcium

peak patterns. As a third alternative, methods can be used that use the ∆F/F0 traces di-

rectly, without the need to infer or detect spikes or peaks. This includes cross-correlations

between neurons (Eichler et al., 2003) and information theory-based concepts like mutual

information and transfer entropy (Bonifazi and Massobrio, 2019; Schreiber, 2000; Stetter
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et al., 2012). Neuronal ensembles can also be directly estimated from calcium traces with

less common methods (Mölter et al., 2018).

1.3.2 Optogenetic actuators

The ability to perceive light is a common principle in many cells, ranging from single

cellular organisms like algae (Litvin et al., 1978) over plants (photosynthesis) to the

eyes of mammals. This ability relies on proteins that transduce photons into an intra-

cellular signal in the form of a second messenger like cyclic guanosine monophosphate

(cGMP) in case of the mammalian photoreceptors of the eye (Bear et al., 2007b), or

ionic current in case of some photoreceptive algae like Chlamydomonas reinhardtii (Litvin

et al., 1978). Optogenetic approaches utilize this photo-transduction to stimulate elec-

trogenic cells optically. However, almost three decades passed until the first major stud-

ies using genetically targeted, optically activated ion channels (now called optogenetic

tools) in mammalian cells (Boyden et al., 2005; Nagel et al., 2003) (described in de-

tail in Deisseroth and Hegemann (2017), Guru et al. (2015), and Deisseroth (2015)).

Figure 1.10 – Optogenetic actuators.
Channelrhodopsin is a 7-transmembrane re-
ceptor with a bound retinal (left). Upon
stimulation with blue light, APs are reliably
elicited in neuronal cells expressing channel-
rhodopsin 2 (right). Adapted from Deis-
seroth (2015) and Deisseroth and Hegemann
(2017).

The most common optogenetic actuator is the

cation channel channelrhodopsin 2 (Boyden

et al., 2005), abbreviated ChR2 in its func-

tional form after its host organism Chlamy-

domonas reinhardtii (Figure 1.10 left). The

(non-functional) channel itself is a so-called

opsin, which needs a molecule of all-trans-

retinal to actually transduce light signals.

Retinal is produced in sufficient amounts by

the neurons in a tissue, tissue slice or even pri-

mary neuronal cell cultures to produce func-

tional ChR2 (Guru et al., 2015). When a photon hits the all-trans-retinal inside the

opsin, the retinal photoisomerizes into 13-cis-retinal, which in turn leads to a conforma-

tional change in the surrounding protein, opening the cation channel pore (Deisseroth,

2015). The cation influx depolarizes the cell, leading to an AP (see also section 1.1.1.2).
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By using this technique, a spatially and temporally highly precise stimulation of a neuronal

network is possible (Figure 1.10 right): the spatial resolution is limited by the precision of

the motor steering a laser, the resolution of the camera used to direct the laser spot, the

expression level of ChR2 (Maybeck et al., 2016), and the size and power of the laser spot

activating the channels; the temporal resolution is limited by the re-activation kinetics

of the ChR2, leading to a certain delay after an activation until the next full activation

can be conducted (Deisseroth and Hegemann, 2017) (a disadvantage more pronounced in

earlier variants of ChR2).

Just as for calcium indicators, variants of ChR2 have been produced over time (Guru et al.,

2015). Another disadvantage of optogenetic actuators may be the dependence on the ex-

act construct used as different ChR variants seem to be able to elicit different network

activity (Jun and Cardin, 2020). The excitation wavelength ranges have been shifted from

blue (ChR2) to longer wavelengths (blue and green: Chronos (Klapoetke et al., 2014);

green: C1V1 (Yizhar et al., 2011); red: Chrimson (Klapoetke et al., 2014), ReaChR (Lin

et al., 2013)). The activation and inactivation kinetics have been improved (e.g. Chronos

(Klapoetke et al., 2014)). Step function opsins can even modify neuronal firing rates in-

stead of generating individual APs (Guru et al., 2015). Moreover, variants that are not

channels but active proton pumps are available. Additionally, two other classes of optoge-

netic actuators lead to inhibition of the stimulated cell (e.g. via Cl− influx or K+ efflux),

or to the activation of a second messenger such as cAMP (activating intracellular signaling

cascades; for an overview, see Guru et al. (2015)).
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1.4 Patterning Neuronal Networks

As mentioned in section 1.1.2, developmental guidance cues can be used to direct neuronal

growth in vitro. A variety of cell culture patterning techniques have been designed to

position neurons on top of MEAs (James et al., 2004; Jungblut et al., 2009; Nam et al.,

2006), construct logical “bio”-gates (Albers and Offenhäusser, 2016; Feinerman et al.,

2008), investigate the microcircuitry and signal integration of neurons and their networks

(Chen et al., 2017; Feinerman et al., 2005; Forró et al., 2018), or to multiplex drug testing

procedures (Langhans, 2018). Patterning techniques rely on different aspects of neuronal

guidance and can be subdivided into physical and chemical techniques.

Firstly, microfluidics (Millet and Gillette, 2012; Peyrin et al., 2011; Renault et al., 2015,

2016; Taylor et al., 2005) and microchambers (Faid et al., 2005; Forró et al., 2018; Joo

et al., 2018) physically restrict neurons in a confined space in excellently defined patterns.

However, they rely on complicated assembly and seeding techniques. The cells growing

in such devices are hard to access for some monitoring techniques such as patch-clamp

or immunocytochemistry, and tend to cluster due to the confinement. Secondly, surface

topographies can be used to achieve an overall directionality of growth but the positioning

of somata or complex patterns are hard to achieve (Aebersold et al., 2016; Faid et al.,

2005; Haq et al., 2007; Milos et al.; Rajnicek et al., 1997; Simitzi et al., 2017).

Thirdly, the surface chemistry of a substrate can be tuned to achieve cell-attractive (mostly

with mild hydrophilicity (Bacakova et al., 2011)) patterns and cell-repellent backgrounds

(mostly hydrophobic or toxic (Bacakova et al., 2011)). The hydrophilicity of a surface

depends on the interplay between a liquid and a substrate, and can be quantified by the

work of adhesion Wa. The contact angle θ of a drop of water on the substrate depends on

Wa and the surface free energy of the liquid γL (Youssef et al., 2001):

θ = cos−1(
Wa

γL
− 1) (1.5)

Therefore, it can be used as a measure for hydrophilicity. Another measure is the so-called

ζ potential which was not used in this thesis but is explained for example in Bacakova

et al. (2011). As cell-attractive coatings, poly-L-lysine (PLL) (Albers and Offenhäusser,
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2016; James et al., 2004; Nam et al., 2006; Wu et al., 2018), fibronectin (Feinerman

et al., 2008; Mrksich et al., 1997), laminin (Albers and Offenhäusser, 2016; Feinerman

et al., 2008), amongst other molecules (Aebersold et al., 2016; Bacakova et al., 2011; Faid

et al., 2005; Offenhäusser et al., 2007; Xu et al., 2016) have been used. Cell-repellent

coatings include polyvinyl alcohol (PVA) (Wu et al., 2018), polyethylene glycol (PEG)

(Mrksich et al., 1997; Offenhäusser et al., 2007), (3-glycidyloxypropyl) trimethoxysilane

(GLYMO) (Markov et al., 2018; Nam et al., 2006), and a variety of other molecules

(Aebersold et al., 2016; Faid et al., 2005; Feinerman et al., 2008; Martinez-Rivas et al.,

2017; Offenhäusser et al., 2007; Yamamoto et al., 2016). The most common substrates

to which these substances have been applied are glass (Aebersold et al., 2016; Feiner-

man et al., 2008; Nam et al., 2006), gold (Feinerman et al., 2008; Mrksich et al., 1997),

Figure 1.11 – The microcontact printing tech-
nique. A silicon wafer serves as a mold (1) for a
polymer stamp (2). After cutting, the stamps are
bathed in a coating solution (3), and the coating
is transferred to a substrate (4) generating a partly
cell adhesive, partly cell repellent substrate (5).

and different MEA passivations (Aeber-

sold et al., 2016; Chang et al., 2001;

James et al., 2004; Martinez-Rivas et al.,

2017; Nam et al., 2006). The actual pat-

terning procedures are almost as mani-

fold as the used materials and depend on

the compostion of the coatings, the exact

deposition procedure (which may include

other layers, e.g. for adhesion), and the

scale and number of substrates (Aeber-

sold et al., 2016; Nam et al., 2006; Wu

et al., 2018). Photolithography-based

methods are quite common but limited

to the standard wafer-scale (sometimes even only specific wafer sizes such as 4-inch wafers)

(Aebersold et al., 2016; Wu et al., 2018). A method with fewer photolithographic steps and

extending the scale beyond wafers, but equally common is the technique of microcontact

printing (µCP).
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1.4.1 Microcontact Printing

The technique of µCP is relatively simple (Figure 1.11): At first, stamps are fabricated

by casting or pressing a polymer to a re-usable, usually photolithographically prepared

mold (Aebersold et al., 2016; Albers and Offenhäusser, 2016; Martinez-Rivas et al., 2017;

Mrksich et al., 1997). The stamps are then cut from the wafer form and placed in a

coating solution for adhesion of the solution to the stamp. Finally, the coating molecules

are transferred to the substrate of choice, which may already be modified by a different

process (Nam et al., 2006). Although polydimethylsiloxane (PDMS) is the most common

stamp polymer, other polymers such as polyolefine plastomer (POP) may be used to

decrease sagging errors when printing small patterns (Albers and Offenhäusser, 2016;

Schwaab et al., 2013). The actual printing step can be performed manually or with a

stamping device (Samhaber et al., 2016).

In the beginning, µCP was used to pattern endothelial cells into simple stripes (Mrksich

et al., 1997). As the technique got more established, it was adapted for other cell types such

as neurons and more complex patterns. For neuronal cultures, the spatial resolution now

ranges from individual dendrites (Charrier et al., 2010; Fricke et al., 2011; Mourzina et al.,

2006; Offenhäusser et al., 2007; Roth et al., 2012; Wheeler and Brewer, 2010; Yamamoto

et al., 2016) or even dendritic spines (Schwaab et al., 2013) to whole populations (Albers

and Offenhäusser, 2016; Feinerman et al., 2008).
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Chapter 2

Materials and Methods
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2.1 Microcontact Printing

In µCP , a polymer stamp is used to transfer a coating molecule to a substrate in spe-

cific pattern (Figure 2.1 A). The stamp is produced by casting a polymer into a pho-

tolithographically fabricated wafer-scale mold. For applications in cell biology, it is then

incubated in a cell-adhesive molecule or protein, such as poly-L-lysine (PLL) or laminin.

2.1.1 Stamp Fabrication

Stamps were fabricated as described in Hondrich et al. (2019b) and Albers and Of-

fenhäusser (2016). In detail, the different patterns used in this thesis were written into a

chrome layer on top of a borosilicate wafer via electron beam writing to produce a dark field

chrome mask. A 5 to 12 µm thick layer of AZ4562 positive photoresist (Clarion GmbH,

Mörfelden-Walldorf, Germany) was spin coated onto a dehydrated 0.6-mm-thick standard

silicon wafer (500 diameter, MEMC Electronic Materials, O’Fallon, MO, USA), and dried

for 60 s at 130 ◦C. The layout was transferred to the wafer by using UV-photolithography

with the dark field chrome mask. After a baking step for 90 s at 140 ◦C, the resist was

developed in MF-24-A (Süss MicroTec, Garching near Munich, Germany) for 50 s and

stopped by washing in Milli-Q water. Afterwards, reactive ion etching with SF6 at 500 W

was applied for 1 min 20 s to transfer the patterns into the silicon wafer to a depth of 4.5

µm. In an additional step, RIE was used to clean the resists from the wafer. As a last

step, (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (FOTCS) was deposited on the

surface of the wafer via chemical vapor deposition (45 mbar for 1.5 h) as a release layer

for the stamp polymer.

Polyolefine plastomer (POP) stamps were fabricated by hot embossing (Albers and Of-

fenhäusser, 2016; Schwaab et al., 2013). Briefly, the patterns were transferred to POP

by heating and pressing a film of POP between a wafer containing patterns and a plain

wafer. The wafer-sized POP plate was subsequently cut into individual stamps of ⑦1-2

cm2. Polydimethylsiloxane (PDMS; Sylgard 184, Dow Corning Corporation) stamps were

fabricated by mixing base and curing agent 10:1, degassing the mixture overnight at -20

◦C, and casting the PDMS into the prepared wafer. The PDMS on the wafer was heated
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to 60 ◦C overnight and carefully peeled off. Individual stamps of ⑦1-2 cm2 were cut out

using a scalpel. The cleanroom fabrication was conducted by Michael Prömpers.

2.1.2 Chemical Vapor Deposition of GLYMO

To enhance the contrast between pattern and background, different strategies were tested

during the course of this thesis, as described in Hondrich et al. (2019b). In brief, capillary

deposition of MnO2 and a hydrophobizing heat treatment of borosilicate glass coverslips

(VWR, Radnor, PA, USA; Ø18 mm, see section 2.1.3) did not achieve as reliable patterning

as the pre-treatment of the glass with (3-glycidyloxypropyl)trimethoxysilane (GLYMO),

and an optional background hydrophobization with dodecylamine.

Chemical Vapor Deposition (CVD) was used to coat the coverslips with GLYMO (Sigma

Aldrich, Germany) according to GhoshMoulick et al. (2009): The glass coverslips

Figure 2.1 –Microcontact printing. (A) Improved microcontact
printing (for the basic process, see Figure 1.11) with GLYMO and
DDA application (see text). (B) A cut-out POP stamp on top of a
glass coverslip. (C) GLYMO silanization of glass coverslips or MEAs
takes place in a desiccator inside an atmospheric chamber.

were cleaned in 2% Hell-

manex III detergent

(Hellma GmbH & Co.

KG, Müllheim, Germany)

in an ultrasound bath

and rinsed three times

with Milli-Q water. They

were washed once in

Milli-Q water, transferred

to ethanol, dried in a ni-

trogen stream, and acti-

vated in O2 plasma for 30

min at 0.7 mbar and 80

W power. After transfer-

ring the activated cover-

slips to a desiccator con-

taining a ceramic, pre-heated ground disc and glass beaker in a water- and oxygen-free

argon atmosphere (200 ◦C; Figure 2.1 C). The deposition was conducted by adding 150
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µl of GLYMO to the glass beaker, and keeping the pressure at 5 mbar for 1.5 h.

2.1.3 Microcontact Printing Process

POP stamps were used for GLYMO-treated and unmodified glass substrates, and for

MEAs with a HD8820 passivation (see section 2.3.2). Substrates without GLYMO mod-

ification were sterilized beforehand in 70% ethanol or 1 h of irradiation with ultraviolet

(UV) light, and the following stamping process was conducted under sterile conditions.

Substrates with GLYMO modification were sterilized with UV light or 70% ethanol after

the printing process. The POP stamps were cleaned in 70% ethanol for 10-15 min in an

ultrasound bath. The patterned side of the stamps was washed once with Milli-Q water.

Excess water was removed in a nitrogen stream, and the stamps were incubated on ice

for >20 min in Hank’s balanced salt solution (HBSS) with 10 µg/ml PLL labeled with

the green fluorescent marker fluorescein isothiocyanate (FITC; Sigma Aldrich, Munich,

Germany) . The coating solution on the stamps was dried in a nitrogen stream, and the

stamps were placed onto the substrate of choice (Figure 2.1 B). For alignment with MEA

electrodes, a FINEPLACER➤ Lambda (Finetech GmbH & Co. KG, Germany; sterilized

by wiping with 70% ethanol) was used to position the stamp. To ensure the microcontact

between stamp and substrate, a 40 g weight was placed on top of the stamps for ⑦2 min.

The stamps remained on the substrates for >20 min, and were carefully removed after-

wards (whole process: Figure 2.1 C).

PDMS stamps were used for MEAs with a ONONO passivation (see section 2.3.2.1) to

avoid ripping off the passivation due to strong adherence to the substrate. The PDMS

stamps were cleaned for 5 min in 2% Hellmanex detergent. The stamps were washed with

MilliQ water, incubated in 10% sodium dodecyl sulfate (Sigma Aldrich, Germany) for 15

min, quickly dipped once into MilliQ water to remove excess detergent, and incubated in

the same way as POP stamps. Before printing, the backside of a stamp was stabilized

with a glass microcoscopy coverslip. No weight was used, and the stamps were incubated

on the substrate for >5 min.
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2.2 Cell Culture

Cell culture systems are useful tools to dissect basic mechanisms in a system with reduced

complexity as compared to tissues or living organisms. In this thesis, the HL-1 cardiomy-

ocyte cell line was used to test a new MEA design (holey MEAs). Primary cortical cell

cultures were used to investigate basic network functionality in a neuronal populations.

2.2.1 HL-1 Cells

The HL-1 cell line was used to test the ability of holey MEAs (section 2.3.2.2) to record

electrophysiological signals and the transparency of holey gold. Frozen HL-1 cells (Clay-

comb et al., 1998) (cell line) were thawed and cultured in a T25 flask until they formed a

confluent layer (100% surface coverage) and displayed electrical activity with frequencies

between ⑦0.8-5 Hz (Lai et al., 2018; Sartiani et al., 2002). Substrates were coated with

fibronectin (10 µg/ml; Sigma Aldrich, Germany) to improve cell adhesion. The confluent

layer of cells was disattached and dissociated with 0.05% Trypsin-EDTA (Sigma Aldrich,

Germany). The cells were split at a ratio dependent on the surface area of the substrate

(MEAs: 2.54 cm2, gold chips in 6-well cell culture plates: 9.60 cm2) and seeded in Clay-

comb medium, supplemented with 10% fetal bovine serum, 100 U/ml penicillin, 100 µg/ml

streptomycin, 0.1 mM norepinephrine, and 2 mM L-glutamine (all from Sigma Aldrich,

Germany). The cells were incubated at 37 ◦C and 5% CO2 for 3 days until they formed a

confluent layer once again. The medium was changed 5 times per week and 1-3 h before

recording sessions.

2.2.2 Preparation of Primary Cortical Cells

Primary cortical neurons were isolated from E18 Wistar rats as published before by Brewer

et al. (1993). The brains were removed from the rats, and the cortex was dissected. The

cells of three cortices were digested in 0.05% Trypsin for 10 min at 37 ◦C and 5% CO2.

At 5 min of incubation, the suspension was swiveled once. The digestion was stopped by

transferring the cortices into a reaction tube containing fresh Neurobasal (NB) medium

(Life Technologies, Carlsbad, CA, USA) supplemented with 1% (v/v) B27 (Thermo Fisher
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Experiment
# Seeded

Cells
Density

(cells/mm2)
DIV

fComInput for opt. stim. and
calcium imaging

200k 208 20-28

neuroCapsTiH plastic dishes for
calcium imaging

150k-200k 170-227 20-29

neuroCapsTiH coverslips for
calcium imaging

200k 208 21-24

neuroCapsTiH coverslips/GLYMO
for opt. stim. and calcium imaging

200k 208 20-28

scaledTriangles 200k 208 15-18
jRCaMP1b and ChR2-GFP testing 100k 104 20
aminothiols on gold 200k 208 6
aminothiols on MEAs 150k 132 18

Table 2.1 – Neuronal cell densities and measurement/recording DIVs for different experiments.
Data for experiments that are not listed here will be given in the respective results chapters.
Experiment labels correspond to chapters Chapter 3 to Chapter 5.

Scientific (Gibco), USA), 0.5 mM L-glutamine (Thermo Fisher Scientific (Gibco), USA),

and 0.05 mg/ml Gentamicin (Sigma Aldrich, Germany). The cortices were washed thrice

with NB medium, mechanically dissociated using an Eppendorf pipette with a 100-1000

µl tip, and left to settle for 1 min to allow glia cells to adhere to the reaction tube. The

supernatant was diluted and used to seed the cells at an appropriate density (Table 2.1).

The cultures were incubated at 37 ◦C and 5% CO2 for up to day in vitro (DIV) 28, de-

pending on the experiment (see Table 2.1). The supplemented NB medium was completely

exchanged ⑦1-4 h after seeding, thereafter half of the NB medium was exchanged twice

per week.

All animal experiments were approved by Landesumweltamt für Natur, Umwelt und Ver-

braucherschutz Nordrhein-Westfalen, Recklinghausen, Germany, under the numbers 81-

02.04.2018.A190 and 84-02.04.2015.A173. Both HL-1 cells and neurons were monitored

with one of two simple Axiovert light microscopes (Zeiss, Germany) during cultivation.

2.2.3 Homogeneous Coating of Substrates

Sterilization was conducted differently for various substrates: Glass coverslips were quickly

sterilized in a flame; glass coverslips with GLYMO and MEAs were either disinfected
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with 70% EtOH or for 30 min in UV light; gold substrates were disinfected with 70%

EtOH. Homogeneous coating was conducted by applying 10 µg/ml PLL (depending on the

experiment, labeled with FITC) in Hank’s balanced salt solution (HBSS; Sigma Aldrich,

Germany) for 20–30 min at RT. The sample was washed three times with HBSS, and the

liquid was completely aspirated.

2.2.4 Transduction

Primary neuronal cultures were transduced with adeno-associated virus (AAV) encoding

for an optogenetic actuator or sensor. AAVs were added to the supplemented NB medium

in an adequate dilution leading to a multiplicity of infection (MOI) of 2.4E5 genome

copies/cell (GC/cell) for AAV6 pAAV.Syn.GcaMP6f.WPRE.SV40 (Chen et al., 2013) (a

gift from Douglas Kim & GENIE Project; UPenn Vector Core, USA), 4.395E5 GC/cell for

AAV9 pAAV.Syn.NES-jRCaMP1b.WPRE.SV40 (Dana et al., 2016) (a gift from Douglas

Kim &GENIE Project; Addgene viral prep # 100851-AAV9; http://n2t.net/addgene:58880;

RRID:Addgene 100851), 0.25E5 GC/cell for AAV8 pAAV-Syn-ChR2(H134R)-GFP (Boy-

den et al., 2005) (a gift from Edward Boyden; Addgene viral prep # 58880-AAV8;

http://n2t.net/addgene:58880; RRID:Addgene 58880), and 1.8E4 GC/cell for AAV6 hSyn-

Ch2opt-mKate (packaged by UPenn Vector Core, USA). The medium of the cell culture

was then completely exchanged with the virus-containing medium at DIV 7 for patch

clamp experiments, or 9 or 10 for all optical experiments. At the next bi-weekly medium

change (3-5 days later), the virus-containing medium was completely exchanged with sup-

plemented NB medium not containing AAVs to remove excess virus particles that did not

infect the cells.

2.2.5 Live/Dead Stainings

Calcein-acetoxymethylester (cal-AM; Thermo Fisher Scientific (Gibco), USA) and ethid-

ium homodimer (EtHD; Thermo Fisher Scientific (Gibco), USA) were supplied to the cell

culture medium in a 1:1000 dilution. Cells were incubated at 37◦ C and 5% CO2 for

20-40 min, washed once with fresh pre-warmed medium, and analyzed using fluorescence

microscopy.
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2.2.6 Immunocytochemistry

Immunostainings are a standard technique for fluorescently labeling proteins and large

molecules in cells by applying a primary antibody that binds to a specific antigen/target

and a secondary antibody coupled to a fluorophore that amplifies and visualizes the bound

primary antibodies. Substrates were fixed in pre-warmed (37 ◦C) 4% paraformaldehyde at

RT for 10-15 min, and washed thrice with phosphate-buffered saline (PBS; made from salts

acquired from Sigma Aldrich, Germany). The fixed samples were permeabilized with 0.3%

Triton X-100 (Sigma Aldrich, Germany) in blocking buffer (1% bovine serum albumin and

2% goat serum in PBS; both Sigma Aldrich, Germany) for 15 min at RT, rinsed thrice with

PBS, and blocked with blocking buffer for 1 h at RT. The primary antibody was applied for

>3 h at RT (dilutions in blocking buffer: chicken anti-Neurofilament Heavy Chain, abcam,

UK, ab4680, 1:400; rabbit anti-Synaptophysin, abcam, UK, ab14692, 1:260; rabbit anti-

MAP2, abcam, UK, ab32454, 1:500), and the substrates were washed 3x with PBS. Next,

the secondary antibody was applied for 1.5 h at RT (dilutions in blocking buffer: goat anti-

chicken DyLight350, life technologies, USA, SA5-10069, 1:130; goat anti-rabbit AlexaFluor

633, life technologies, USA, A21071, 1:500), and the substrates were washed 2x with PBS

and once with deionized water. The substrates were then mounted to glass microscopy

slides in a mounting solution (Agilent Dako, USA), dried over night at RT, and sealed

with nail polish. They were then stored at 4 ◦C for imaging. Imaging was conducted

at an AxioImager Z1 (Zeiss, Germany) in combination with an HXP metal halide light

source with appropriate optical filters (DAPI, Green, and DsRed as in Table 2.2, plus an

additional FarRed (Zeiss 26) filter: excitation, 575-625; dichroic, 645; emission, 669-710).
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2.3 Microelectrode Arrays and Gold Macro Electrodes

2.3.1 Gold Macro Electrodes

Homogeneous Au macro electrodes were used for determining the transparency of holey

gold and for initially testing thiol application. E-beam assisted metal evaporation was

used to deposit a Ti adhesion layer (⑦5 nm) and a conductive Au layer (⑦40 nm) onto 4”

quartz wafers (Plan Optik AG, Germany). The wafer was diced into electrodes (1.6 x 3

cm2) for further usage. The cleanroom fabrication was conducted by Michael Prömpers

or Marko Banzet.

2.3.1.1 Modifications for Holey Gold

In case of holey gold macro electrodes, Polystyrene (PS) particles with low functionaliza-

tion (Bang Laboratories, USA) served as a lift-off mask before metalization. The particles

were deposited by Funnel Assisted Interfacial Assembly, as described in detail in Schöps

et al. (2018). In brief, a the 4” quartz wafer was cleaned and hydrohpilized in oxygen

plasma at 0.7 mbar with 200 W for 5 min to ensure successful colloidal lithography. Sub-

sequently, the wafer was placed horizontally on a sample holder and transferred to a beaker

filled with MilliQ water. A PS particle (Ø380 nm) dispersion (5%) in water was added

to an equal amount of 0.02% Triton-X 100 in ethanol, leading to a aqueous solution with

50% ethanol, 2.5% particles, and 0.01% Triton-X 100. The particles were added to the

surface of the water in the beaker containing the cleaned wafer. At the water surface,

the particles formed a monolayer, which was transferred to the entire wafer surface by

reducing the water level in the beaker.

Next, the particle size was reduced while increasing the inter-particle distance but keeping

the lattice constant (distance between the centers of any two particles) the same. This

was achieved by performing reactive ion etching (RIE, Oxford Instruments, Great Britain)

with a gas combination of O2 and CHF3 in a ratio of 40:10 sccm. The etching conditions

were set to 0.026 mbar, 0 ◦C and a RF power of 30 W for 4 min. The metalization

was performed as for homogeneous gold. Finally, the wafer was stripped of the particles

with adhesive cello-tape and afterwards cleaned by sonication in acetone. The cleanroom
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fabrication was conducted by Michael Prömpers, Marko Banzet, or Bohdan Lenyk.

2.3.1.2 Thiol Application

Substrates were activated in oxygen-plasma for 30s at 0.7 mbar and 200 W, abundantly

rinsed with EtOH, bathed in EtOH for 10 min, and rinsed again. All beakers and equip-

ment was also rinsed with EtOH. Thiols were mixed with EtOH in the appropriate ratios to

achieve fractions of 2 mM (see section 3.2.1), and the mixture applied to the samples. The

containers were backfilled with nitrogen, sealed, and incubate for 24 h. After this time,

the samples were again rinsed, bathed for 10 min, and rinsed again with EtOH, dryed in

a nitrogen stream, and used as soon as possible because prolonged storage oxidizes thiols

(Schoenfisch and Pemberton, 1998).

2.3.2 Fabrication

MEAs were fabricated with the classical photolithography approach on quartz or silicon

wafers. The negative photoresists LOR3B and nLOF2020 (both Microchem Corp., USA)

were spin coated onto a 4” wafer in a double layer. After exposure to 350 nm UV light (55

mJ/cm2), the wafer was baked at 110 ◦C for 1 min, and developed in MIF326 (Microchem

Corp., USA) for 35 s to decrease the resist in the area of electrodes, feed lines, and contact

pads.

Figure 2.2 – Microelectrode array design variation and etching. (A) Line MEAs are an
alternative design option to regular square MEAs (Figure 1.8). (B) Zoom-in of the electrode area.
(C-D) Back etched nano-cavity electrodes under HD-8820 (C) and ONONO (D) passivations.
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The development was stopped by rinsing the wafer in water. Subsequently, e-beam as-

sisted metal evaporation was performed to deposit an adhesion layer of Ti (10-30 nm),

a conductive layer of Pt (200 nm) or Au (200 nm), and (in case of nanocavity MEAs)

a sacrificial layer of Cr (100 nm). The double layer of resist was removed with acetone

and isopropanol to lift off the excess metal. A passivation layer of the polyimide HD-8820

(Hitachi DuPont MicroSystems, LLC) was spin coated onto the wafer, and a soft bake was

conducted at 140 ◦C for 4 min. The area of the electrode openings and contact pads was

exposed to UV light with a power density of 250 mJ/cm2, and the wafer was developed

in MIF326 for 90 s. The polyimide was fully polymerized during a hard bake step in a

convection oven with N2 atmosphere at 350 ◦C for 30 min with a very slow temperature

increase and decrease. Finally, the wafer was covered with AZ5214 (Microchem Corp.,

USA) and diced into 9 MEAs of ⑦24 mm side length for further usage.

After fabrication, the MEAs were cleaned for 2 min in acetone, isopropanol, and water

to remove residues of resist. Glass rings (usually 18 mm inner diameter; for HL-1 cell

experiments, 16 mm inner diameter) were dipped into PDMS (10:1 relation of base to

curing agent), excess PDMS was removed on a tissue paper, and the rings were placed on

the MEAs. The PDMS was cured for 30 min at 110 ◦C or overnight at room temperature.

The glass rings served as cell culture medium containers.

In case of nanocavity MEAs, the sacrificial layer of Cr was etched by placing a drop of

Chromium etchant (Sigma Aldrich, Germany) on the electrode area for ⑦8-12 min (de-

termined by a test etching for each new MEA batch). The result evaluated by DIC

microscopy (Figure 1.8 C-D) with a simple Axioplan 2 microscope with a EC Epiplan-

Neofluar 10x/0.25 HD DIC ∞/0 objective and corresponding Wollaston prisms and po-

larizers (all from Zeiss, Germany). The cleanroom fabrication was conducted by Marko

Banzet.

2.3.2.1 Different passivation: ONONO

As an alternative to the polyimide HD-8820, MEAs were passivated with 5 alternating

layers of SiO2 (O; 200 nm thick) and Si3N4 (N; 100 nm thick), termed ONONO (800 nm

thick). After the metalization step in the above described process, the ONONO passiva-
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tion was applied using plasma-enhanced chemical vapor deposition (PECVD; SENTECH

Instruments GmbH, Germany). SiO2 was generated with a gas mixture of 7.3 standard

litre per minute (slm) SiH4 and 10.5 slm O2 at 1 Pa, while Si3N4 was generated using

7.8 slm SiH4 and 10 slm N2 at 8 Pa. The layers were deposited at 280 ◦C and an induc-

tively coupled plasma radio frequency of 500 W. After ONONO deposition, the wafer was

dehydrated at 150 ◦C for 15 min, covered with the positive photoresist AZ5214 via spin

coating, and baked at 110 ◦C for 1 min. The resist was exposed to UV light and developed

in MIF326 to remove the resist in the areas of the electrode openings and contact pads.

The electrodes and pads are opened using RIE with CF4 (20 sccm), CHF4 (20 sccm), and

O2 (2 sccm) at 0.002 mbar, a RF power of 150 W and bias voltage of 350 V. The resist

was removed by subsequently washing the wafer with acetone, isopropanol and water. The

cleanroom fabrication was conducted by Marko Banzet.

2.3.2.2 Non-standard conducting layer: holey MEAs

Holey MEAs were fabricated in the same way as described above. However, before the

metalization step the wafer with the patterned photoresist was cleaned in oxygen plasma

at 0.7 mbar with 200 W for 5 min, followed by the colloidal lithography described in

section 2.3.1.1 (see Figure A.1). The particles were stripped only after removing the

patterned photoresist with acetone for metalization lift off. The HD-8820 passivation

was applied as described for standard MEAs. The fabrication was conducted by Bohdan

Lenyk.

2.3.3 Cell Recordings

2.3.3.1 Equipment and Software

To record electrophysiological signals via MEAs, a custom-built amplification system was

used. In this system, a MEA was inserted into a headstage with a 10.1x pre-amplification,

and the headstage was connected to a main BioMAS amplifier (Ecken et al., 2003; Eick

et al., 2009; Maybeck et al., 2016). This amplifier operated in a maximum output range

of ± 10 V and had a built-in gain of 1x, 10x, or 100x, an analogue 3 kHz low pass

filter, and a high pass filter with cutoff frequencies of 0.1 Hz, 1 Hz, 10 Hz, or 72 Hz. Its
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coupling could be switched between AC and DC mode. With the BioMAS system, up to

64 channels with an additional 16 channels for external sources could be recorded. When

using voltage-controlled stimulation, a current measurement board could be connected to

record the injected current. The analogue amplified voltage traces were then transmitted

to a computer via an AD converter (Texas Instruments, USA).

The amplifier was controlled via a LabView 2016 software (version BioMAS-dev 2018-

10-16). The software offered the option for channel selection, stimulation pulses and

controlling the functions mentioned above, such as gain. The raw data was written onto

the hard drive of the computer as a .dat file, with a .xml file containing meta data about

the recording.

2.3.3.2 Recording

For HL-1 cells, the cell culture medium was changed ⑦1-2 h before the recording session.

MEAs with cultured cells (neurons or HL-1 cells) were transferred to the headstage in

a BioMAS setup. A Ag/AgCl pellet reference electrode cleaned with ethanol and water

was carefully submerged in the cell culture medium without damaging the cells. Faulty

channels outside of the output voltage range of the amplifier (due to bad contacts or a

damaged conductive layer) were identified in DC coupling mode with a main amplifier gain

of 1x and excluded from the recording. Then, recordings were performed in AC coupling

mode with a gain of 10x, and a 1 Hz or 72 Hz filter for HL-1 cells or neurons, respectively.

If voltage changes in a shape resembling an AP were recorded, the cells were killed by

adding a saturated 400 mM KCl solution to the cell culture medium (ratio 1:50 to 1:100)

to verify the cellular origin of the voltage changes. If the cells were to be imaged after

the recording session, the cells were not killed so as to not alter the morphology due to

changed osmotic pressure.

2.3.3.3 Analysis

A custom-written python program (BioMAS Viewer, version 1.9) was used to extract the

voltage traces from the .dat and .xml files. The software could also be used to plot the

traces, and to perform simple procedures such as filtering, Fourier transforming, a simple

45



peak detection, and exporting to other formats such as comma separated value (CSV).

Using the CSV file and python, the data could be further analyzed. A semi-automatic

peak detection based on the find_peaks algorithm of the SciPy library and a self-written

graphical user interface (GUI) was implemented. The detected voltage peaks were ana-

lyzed for their shape, amplitude, and frequency using SciPy and numpy.

2.3.3.4 Cleaning MEAs after recordings

MEAs without GLYMO were cleaned by incubating the cells in 0.05% Trypsin-EDTA for

15 min, rinsing them with deionized (DI) water, and checking the removal with a light

microscope. If necessary, the digestion with Trypsin was repeated. Finally, the MEAs

were rinsed with DI water for >1 h. MEAs with GLYMO silanization that were intended

to be reused were cleaned with 2% Hellmanex detergent, and also rinsed with DI water

for >1 h. MEAs with GLYMO silanization intended for a completely new silanization or

other procedure were first cleaned in 2% Hellmanex detergent, rinsed with DI water for

>1 h, and then cleaned in O2 plasma at 100 W and 0.5 mbar for 5 min to remove the

silanes and PLL.
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2.4 Optical Recordings and Stimulations

Optogenetic tools can be used to record from and stimulate neuronal networks with a very

high spatial and increasingly high temporal precision. For this, fluorescence microscopes,

laser systems, and amplifiers have to be combined in rather complex setups. Since these

setups can then be used for a huge variety of different experiments, the experimental

procedures have to be defined clearly.

2.4.1 Microscopy and Amplifier Setups

2.4.1.1 All Optical Stimulation and Recordings

Figure 2.3 – Setup for all optical stimulations
and recordings. Components belonging to the
ROE laser system are highlighted in yellow. (A)
Front view of the setup. Note the black incubation
chamber on the microscope, the hardware controllers
on the left and the laser and UGA-42 control boxes
on the right (yellow arrow head). (B) Back view of
the setup as indicated by green arrow. The gray box
on the right contains the Colibri.2 LEDs. The large
tubing at the top provides heating of the incubation
chamber. Laser components include the optical fibers
coupled into a UGA-42 mirror system.

For an all optical approach, a fluores-

cence microscopy setup was optimized

for conducting calcium imaging via ei-

ther the green indicator GCaMP6f or

the red indicator jRCaMP1b and si-

multaneous stimulation via the optoge-

netic actuator ChR2-GFP excitable by

blue laser light. An inverted Axio Ob-

server.Z1 microscope (Zeiss, Germany)

with integrated xy-stage (Merzhäuser,

Germany) was used (Figure 2.3 A). To

keep the sample at incubation condi-

tions (37 ◦C, 5% CO2, 100% humidity)

during imaging, the sample holder is en-

closed in a humidifiable heating cham-

ber and can be covered with a lid for CO2 supply. The fluorescence microscopy light source

is a Colibri.2 LED system (Zeiss, Germany) with exchangeable LEDs for broad spectrum

white light, 365 nm or 385 nm UV light, 445 nm or 470 nm blue light, 505 nm green light,

and 590 nm or 625 nm red light (Figure 2.3 B). For fluorescence of different wavelengths,

one of the filter sets in Table 2.2 was used. For optical stimulation of ChR2, a blue 473 nm
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Designation Excitation [nm] Dichroic mirror cutoff [nm] Emission [nm]

DAPI (Zeiss 49) 355-383 395 420-470
Green (Zeiss 38) 450-490 495 500-550
DsRed (Zeiss 43) 538-562 570 570-640

All Optical — 580 590 long pass
DIC — — —

Table 2.2 – Filter sets for the all optical setup.

laser (100 mW maximum power output) controlled by a UGA Firefly device (both Rapp

Optoelectronics, Germany). The combination of UGA-42 Firefly and laser was calibrated

after each startup process. The laser was coupled into the light path after the Colibri.2

illumination system but before the fluorescence filter sets (Figure 2.3 B). The laser system

was connected to a trigger box (Zeiss, Germany) to allow for precise alignment of stim-

ulation and recording. To combine fluorescence microscopy of jRCaMP1b with optical

stimulation of ChR2, a 561 nm ± 27 nm bandpass filter was moved from the filter cube to

the Colibri.2 system directly after the white light LED, thus gaining green excitation light

without blocking the laser. Images were recorded with a high speed pco.edge 5.5 sCMOS

camera (PCO, Germany) in streaming mode to enable acquisition rates of 100 Hz. The

setup was controlled via the imaging software ZEN 2012 blue edition (Zeiss, Germany)

with the experiment designer extension and a live image streaming capability via custom-

made macros (provided by Rapp Optoelectronics, Germany) to the ROE SysCon software

for UGA-42 and laser control (Rapp Optoelectronics, Germany).

2.4.1.2 Electrophysiology and Optical Stimulation

For stimulation via ChR2 and simultaneous electrophysiological recordings with MEAs

or whole-cell patch clamp, an Axio Scope.A1 upright fluorescence microscope (Zeiss, Ger-

many) was equipped with a blue 473 nm laser (200 mWmaximum power output) controlled

by a UGA40 device (both Rapp Optoelectronics, Germany). The setup was described in

detail by Maybeck (2011) and is depicted in Figure 2.4. The combination of UGA40 and

laser was calibrated after each startup process. A 532 nm (Rapp Optoelectronics, Ger-

many) and a 980 nm (Photontec, Germany) laser were also attached to the setup but
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were not used in this thesis. A broad band HXP light source (Zeiss, Germany) and an

adequate filter set (Table 2.3) could be used to visualize green (e.g. Ch2-GFP) or red (e.g.

Ch2opt-mKate) fluorescence. The excitation filter of the Laser Red filter set (Table 2.3)

was located in the part of the light path before the laser was coupled in to avoid filtering

of the laser.

Figure 2.4 – Setup for optical stimulations and electrophysiological recordings. (A)
Components of the patching system are highlighted in blue and include the main amplifier (top
left), the motor control pads (right and left of microscope), motor main controllers (not visible, in
the rack on the left), and the holding arms for headstages and patch pipettes (at the microscope).
MEA components are highlighted in red and include the main amplifier (left) and its power source
(standing on the left on top) and AD converter (standing on the right on top). Laser components
in the rack are highlighted in yellow. From top to bottom: 532 nm laser, 473 nm laser, UGA-40
control box. Other optical components of the microscope are highlighted in green. (B) Headstage
(preamplifier) of a the BioMAS system. An exemplary MEA device with reference electrode was
placed in the middle (containing red medium). The silver lever in front is used to push the
headstage up to avoid damage to the connecting pins.

For image acquisition, an AxioCam MRm (Zeiss, Germany) camera was mounted to the

microscope. For MEA recordings, the equipment and software described in section 2.3.3.1

were used. Patch clamp recordings and stimulations were conducted with an EPC9 dou-

ble amplifier with a corresponding pre-amplifier (Heka Elektronik Dr. Schulze GmbH, a)

(both HEKA, Germany). The pre-amplifier was mounted on a holder movable by elec-

trical motors (Luigs & Neumann, Germany) in three axes and manually rotatable. The

motors were controlled by a micro manipulator SM1 (Luigs & Neumann, Germany). An

additional motor, controlled by a micro manipulator SM6 (Luigs & Neumann, Germany),

was installed on the microscope body to allow for a motorized fine focus control. The

three controller devices (EPC9, BioMAS amplifier, UGA40) could be interconnected with

standard BNC connector cables to enable precise synchronization within experiments.
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Designation Excitation [nm] Dichroic mirror cutoff [nm] Emission [nm]

DIC — — —
Laser Green 462-497 501 519-549
Laser Red — 580 590 long pass

Table 2.3 – Filter sets for the setup for optical stimulation and electrical recordings.

The EPC9 amplifier was controlled in voltage or current clamp mode by the Tida software

(Heka Elektronik Dr. Schulze GmbH, b) (version 5.05; HEKA, Germany). The UGA de-

vice and laser were controlled by the UGA-40 software (Rapp Optoelectronics, Germany).

The camera was read out either via the AxioVision software (release 4.8; Zeiss, Germany)

or the UGA control software.

2.4.2 Calcium imaging

Calcium imaging on its own allows for monitoring the spontaneous network activity of

neuronal populations. Neuronal cultures were transduced with the green calcium indicator

GCaMP6f under a Synapsin promoter at DIV 7 or 10 (see also section 2.2.4) and recorded

at DIV 21 to 30 in the setup described in section 2.4.1.1. Although an exposure time of 5

or 10 ms was used, the streaming speed of the PCO.edge camera limited the frame rate

to between 100 and 200 Hz with the exact frame time points being saved as meta data for

later analysis. A 4x4 binning was applied to improve signal-to-noise ratio of the weakly

fluorescent signals. The 488 nm LED of the Colibri.2 system was used in combination with

the green fluorescence filter set Green (Zeiss 38) (see Table 2.2) and a 5x EC Plan-Neofluar

(NA = 0.16) objective.

2.4.2.1 Post-Processing of Calcium Imaging Movies

From the calcium imaging movies, regions-of-interest (ROI) and their mean intensity traces

were semi-automatically extracted. Subsequently, peaks were detected in the extracted

traces. All data were post-processed in python.

The automatic ROI detection within the movies was based on the methods described by

Reichinnek et al. (2012) and Rueckl et al. (2017), while the detected ROIs were manually

checked using the samuROI GUI (Rueckl et al., 2017). First, the raw intensity F (x, y, t)
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of a movie with spatial coordinates x and y, and the time t was normalized (Rueckl et al.,

2017):

F̂ (x, y, t) =
F (x, y, t)− F0(t)

F0(t)
, (2.1)

where F0(t) = F̃ (x, y, t) with F̃ as the (time-dependent) median of each image in the raw

movie (Figure 2.5 A (top traces), B (black traces)). The maximum intensity projection

(MIP) of the normalized movie F̂ was calculated as M(x, y) = F̂max(x, y, t) with Fmax as

the maximum values of all pixels (x, y) over t.

Next, the wavelet-based decomposition described by Reichinnek et al. (2012) was used

to preprocess the MIP for ROI detection. In brief, a series of k = (0, 1, 2) smoothing

convolutions were performed on the MIP, starting with the (wavelet) kernel

A0 =


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


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







. (2.2)

Each step k, 2(k−1)−1 zeros were inserted between each row and column of A0, resulting in

an extended wavelet function Ak. The resulting smoothed imagesMk (withM0 = M(x, y))

were subtracted from each other in each step according to Wk = Mk−1−Mk, where Wk is

a wavelet scale image in which round objects are highlighted. The last wavelet scale image

W2 was binarized with all intensities above the 99.1 percentile set to 1, and all other set

to 0. In the binarized image, ROI contour pixels were detected in a sliding square window

of 10 pixels diameter (⑦26 µm) as pixels that a) did not have only neighboring pixels with

the value 1, b) did not have only neighboring pixels with the value 0, c) themselves were

equal to 1, and d) belonged to a square window with a sum of more than 12.5. Finally,

the contour pixels were classified into individual ROI contours by detecting continuously

adjacent pixels.

The automatically detected ROIs were loaded into the samuROI GUI and verified manu-

ally.
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Figure 2.5 – Normalization of calcium imaging movies. (A) Top: ∆F/F0 traces according
to normalization of the movie Equation 2.1. Note that the baseline of the traces differs largely.
Bottom: ∆F/F0 traces according to normalization of the raw mean intensity traces F (t) according
to Equation 2.3. (B) Traces normalized as in A, top panel, (black) or in A, bottom panel, (green)
as individual (top) or overlayed (bottom) traces, as indicated by arrows of the same color.

ROIs without any intensity changes potentially derived from calcium changes were not

taken into account for further analysis. The polygons describing the borders of ROIs from

the samuROI class were used to extract the raw mean intensity of all pixels within a ROI

over time.

The individual raw mean intensity traces F (t) were then normalized to F̂ (t) according to:

F̂ (t) =
F (t)− F5(t)

F5(t)
, (2.3)

where F5(t) is the sliding 5th percentile in a ± 2000 frame window. Commonly, F̂ (t) is

referred to as ∆F/F0 which will also be done in this thesis.

2.4.3 Combined calcium imaging and optical stimulation

For combined calcium imaging and optical stimulation using optogenetics, neuronal cul-

tures were transduced with the red calcium indicator jRCaMP1b and the actuator ChR2

at DIV 9 or 10 (see also section 2.2.4). A complete workflow for these experiments (and

also mostly for section 2.4.2) is depicted in Figure 2.9.
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Figure 2.6 – Stimulation routines for all optical experiments. (A,C) Exemplary stimulus
locations (depending on the exact location of the neurons) for the fComInput (A; 6 neurons; see
Chapter 5) and the neuroCapTiH (C; 12 neurons; see Chapter 4) µCP pattern designs. Color
code corresponds to B and D. (B) Four different stimulation routines (t simul, t long, p simul,
p long) were used for the fComInput patterns, each split into three phases: a control phase before

stimulation; a stimulation phase (during); and a control phase after stimulation. In long stimu-
lations, a 50 ms pulse with a 500 ms delay was chosen. In case of simul stimulation (5 ms pulse,
0 ms delay), stimulating the the same 6 neurons as often as in the long stimulation results in a
very short pulse (in the range of seconds). Therefore, this short pulse (comprising 20-50 cycles of
stimulation of all 6 neurons) was triggered manually 5x (marked violet and bold-faced) again in
the first half of the after phase to witness the effects of a longer total time span of stimulation.
To include appropriate control after the experiment, as in long, the second half of the during and
after phases served as control phases analogous to after in long. (D) In neuroCapTiH patterns,
three stimulus routines were used: p has 50 ms pulses with 95 ms delay with a stimulus in every
triangle (example shown in C, left panel); t has 5 ms pulses with 0 ms delay with three groups of
stimuli in 1-2 triangles distributed through the pattern (example shown in C, right panel), and the
same splitting of during and after phases described in B; and test which uses the same settings as
long in fComInput patterns in B at three of the twelve locations in t and C, left panel.

The cultures were recorded for 6 min each in the setup described in section 2.4.1.1 at DIV

21 to 30 (Table 2.1). The cultures were imaged with 5 ms or 10 ms exposure times with

a 5x EC Plan-Neofluar (NA = 0.16) or 10x Plan-Apochromat (NA = 0.45) objective. A

4x4 binning was applied to improve signal-to-noise ratio of the weakly fluorescent signals.

Before recording and stimulating, the laser spot positions were selected based on a fluo-

rescence image taken in the green channel (of ChR2-GFP). The positions were transferred

as polygon shapes to this image for later analysis. The laser output power was set to 0.38

mW, with an effective power density on the sample of 1210 mW/mm2 at a spot size of 314
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µm2. The laser stimulation pulses were 50 ms or 100 ms long. Depending on the pattern

of the culture, different stimulation locations and sequences were chosen (see Figure 2.6,

Chapter 4, and Chapter 5).

2.4.3.1 Additions to Post-Processing

Some additional post-processing steps had to be implemented into the workflow described

in section 2.4.2.1. Due to the experimental process and the

Figure 2.7 – Removing laser artifacts. (A-
C)Mean intensity traces Fmovie(t) (blue) including
large laser artifacts (peak-like shape) and their cor-
responding thresholds Fmovie,thresh(t) (green) for
individual stimulation (A, magnified in B), and
near-simultaneous stimulation (C). Note the points
in B belonging to an artifact but under the detec-
tion threshold (red arrow heads). (D) Normalized
mean intensity trace F̂movie(t) (blue), its median
(orange) and maximum (green) for a stimulated
trace (left panel; note the clearly visible laser ar-
tifacts) and a not stimulated trace (right panel).
The bottom dashed red box is in the same scale
as the stimulated trace in the left panel. The top
dashed red box is a magnification of the bottom
one.

resulting file size, the experiment was

split into three blocks, which were ana-

lyzed individually. The ROIs of all exper-

imental blocks (e.g. “before”, “during”,

“after”, see also Figure 2.6) were com-

bined and duplicate ROIs were merged

after semi-automatic ROI detection. A

mean intensity trace for each ROI span-

ning all blocks was extracted. More-

over, before ROI detection, frames show-

ing the extremely bright laser stimulus

artifacts were removed. For this, the

mean intensity of each frame was cal-

culated to get one mean intensity trace

of the movie Fmovie(t) (Figure 2.7 A-C,

blue trace). This trace was normalized to

F̂movie(t) = Fmovie(t)/F̃movie. Laser arti-

facts were only cut in movies, for which

max(F̂movie(t)) − median(F̂movie(t)) >

0.0055 (Figure 2.7 D). To remove the

laser artifacts, a threshold was de-

fined as Fmovie,thresh(t) = Fmovie,10(t) +

(Fmovie,max−Fmovie,min)/x (green line in Figure 2.7 A-C), whereFmovie,max and Fmovie,min
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Salt
Molar mass of

substance [g/mol]
Final

concentration [mM]
Mass for 200 ml

solution [g]

NaCl 58.44 2 0.023
KCl 74.55 120 1.789

MgCl2-
hexahydrate

203.3 4 0.163

HEPES 238.3 5 0.238
EGTA 380.4 0.2 0.015
Mg-ATP 507.2 0.2 0.020

Table 2.4 – Salt concentrations for intracellular patch solution. The pH value was adjusted to 7.3
with 1 M KOH. Osmolarity was adjusted roughly to 260 mOsmol/kg with glucose and measured
for the exact value. Everything was prepared on ice.

are the maximum and minimum of Fmovie(t), x is a freely choosable value, and Fmovie,10(t)

is the sliding 10th percentile in a window arbitrarily defined as ± half the length in ms

taken as frames of the longest laser stimulus in the recording. All frames at time points

t for which Fmovie(t) > Fmovie,thresh(t) were removed and the time points were saved for

further usage. In movies with individual stimulations (see previous section, Chapter 4, and

Chapter 5), x was 10 (Figure 2.7 A), and in movies with near-simultaneous stimulations,

x was 4 (Figure 2.7 C). Because some frames at the beginning and/or ending of a laser

pulse were unnaturally high but below Fmovie,thresh(t) (Figure 2.7 B, red arrow heads), 2

frames more than the actual stimulus length were removed from the movie. The intensity

value in the cut time points was replaced by the pixel-wise mean of the frame before and

the frame after the laser artifact: Fcut(x, y) =
Fbefore(x,y)+Fafter(x,y)

2 .

2.4.4 Patch clamp and optical stimulation

With a combination of the whole cell patch clamp technique and optical stimulation using

optogenetic tools, the influence of a small network of neurons on an individual neuron can

be investigated. For these experiments, neuronal cell cultures were transduced with ChR2

at DIV 7 (see also section 2.2.4) and measured at DIV 15-18 (Table 2.1) with the setup

and materials described in section 2.4.1.2. Bringing a glass capillary including Ag/AgCl

electrode into whole cell patch clamp configuration is a well established procedure and its

theory is described in section 1.2.1. Briefly, a glass capillary with an opening corresponding

to a resistance of 7-10 MΩ in solution and containing a Ag/AgCl electrode was filled
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Salt
Molar mass of

substance [g/mol]
Final

concentration [mM]
Mass for

1 l solution [g]

NaCl 58.44 120 7.013
KCl 74.55 3 0.224

MgCl2-
hexahydrate

203.3 1 0.203

HEPES 238.3 10 2.383
CaCl2 110.98 2 0.222

Table 2.5 – Salt concentrations for extracellular patch solution. The pH value was adjusted to
7.3 with 1 M NaOH.

with intracellular patch solution (Table 2.4) and inserted into the pre-amplifier. The cell

culture medium was replaced with extracellular patch solution (Table 2.5), pre-heated and

adjusted to the osmolarity of the cell culture medium by adding glucose or water. The

glass capillary was brought close to the cell under constant, slightly positive pressure to

avoid clogging in voltage clamp mode until an increase in the membrane resistance (Rm)

of ⑦1 MΩ was measured. The positive pressure was released and a slight negative pressure

(suction pulse) was applied to attach the capillary to the membrane, as indicated by an

increase of Rm to more than 1 GΩ. After adjusting the holding potential to -50 mV to -70

mV (which was also used in the experiments), the membrane was opened by applying short

negative pressure pulses (indicated by a decrease of Rm to ⑦200-400 MΩ). Depending on

the experiment, current or voltage traces were recorded (in voltage or current clamp mode,

respectively), always accompanied by the TTL voltage pulse indicating a laser pulse. In

current clamp mode, the current measured at the holding potential in voltage clamp mode

was used as a holding current. Before each experiment involving optical stimulation, the

cell’s ability to generate APs was tested using a series of current steps in current clamp

configuration (from Ihold − 100 pA to Ihold + 1000 pA in 20 steps). A laser output power

of 0.8 mW was used, with an effective power density of 577 mW/mm2 at a spot size of

1385 µm2 on the sample. The locations and sequences used in the experiments involving

optical stimulation are described in more detail in Chapter 4.
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2.4.4.1 Analysis of Patch-Clamp Recordings

Patch-clamp recordings were analyzed with custom-written python scripts. Times in the

voltage trace, V (t), during which the cell was stimulated and times after stimulation were

defined according to the square TTL signal in the AD recording channel (connected to

the UGA-40 control box) of the EPC9 amplifier. Within the designated periods during

stimulation and after stimulation, peaks were detected in the differentiated voltage traces,

dV
dt (t), using SciPy’s find_peaks. The height parameter was 5x the standard deviation

of dV
dt (t), and the distance parameter was set to 100 samples (10 ms). If no peaks were

detected but the maximum of the designated V (t) period was larger than the standard

deviation of the whole trace V (t), and the maximum within the stimulated region was

located more than 20 ms after the start of stimulation, an ePSP instead of an AP was

assumed. In this case, the maximum was taken as the peak value in the designated

period. From all of these peaks, the activity ratio (number of peaks/number of blocks),

the mean response delay, mean amplitude, and mean number of spontaneous peaks after

each stimulus location were extracted from the defined periods.
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2.5 Data Analysis of Neuronal Network Recordings

2.5.1 Peak Detection in Calcium Traces

Intensity peaks in ∆F/F0 traces extracted from calcium imaging movies (see section 2.4.2.1)

were detected semi-automatically using the find_peaks algorithm of the SciPy python

library, and a self-written GUI for verifying the detected peaks (for exemplary trace sec-

tions, see Figure 2.8 A). Before peak finding, the ∆F/F0 traces were average filtered by

convolving the traces with a 0.2 s long kernel of ones (Figure 2.8 A, C). As a baseline for

parameter estimation, a 100 frame long time window Fbase(t) was determined at the time

points for which the standard deviation σ(F ) is minimal. The parameters for find_peaks

Parameter Value

height F base(t) + b σ(F(t))
prominence 3b σ(Fbase(t))
distance 0.2 s
wlen 2 s
width 0.2 s

Table 2.6 – Parameters for initial peak finding. The thresholding value b was set to 5.

are summarized in Table 2.6. The amplitudes of the detected peaks were saved for further

analysis, whereas the time points of the peaks were further refined: After peak detection,

the ∆F/F0 traces were average filtered by convolving the traces with a 0.1 s long kernel

of ones, and differentiated over 50 ms (Figure 2.8 B, D). The maximum value of the dif-

ferentiated traces in a 0.4 s long window before each detected peak was taken as the new

peak value, as it is closer to the onset of the peak, and therefore a better estimation of

the time point of the much faster AP (Figure 2.8 D; see also section 1.1.1.2). This peak

estimation is not accurately estimating the exact onset of each peak, and very small peaks

are poorly reflected in the differentiated trace. However, it shifts the peak time points

in a controlled fashion towards earlier values that depend on the upwards slope of the

original peaks. This results in a much more precise assignment of peaks to certain stimuli

(Figure 2.8 D), and a more precise timing of peaks within SNEs.
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Figure 2.8 – Filtered and differentiated traces with detected peaks. Exemplary average
filtered (0.1 s kernel length) with originally detected peaks (A, magnified in C) and additionally
differentiated (over 50 ms) ∆F/F0 traces with shifted peaks towards the maximum value in a 0.4
s window before the original peak location (B, magnified in D). Vertical colored bars indicate
stimuli, with the same colors corresponding to the same stimulated neuron. Blue circles in (C-D)
indicate the position of the onset of the peaks, for reference. Note that the peaks in D mostly lie
between the same two stimuli as the blue circled onset, whereas the peaks in C (i.e. the maxima)
sometimes are located after a subsequent peak.

2.5.2 Synchronous Network Event Detection

SNEs were detected using a simple thresholding algorithm. The peak trains s(t) (for

s(tpeak) = 1 and s(tnopeak) = 0) of all neurons u in a network U were summed to get a

combined peak train with all calcium event time points S(t) =
∑

u∈U su(t). A smoothed,

combined, approximate firing rate for the n peaks in S(t) was calculated based on Dayan

and Abbott (2001a) using a window function of duration ∆t = 500 ms:

r(t) =

n
∑

i=1

w(t− ti), (2.4)
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where the window function is

w(τ) =











1 if −∆t/2 ≤ τ < ∆t/2

0 otherwise.

Figure 2.9 –Complete workflow for all optical recordings and stimulations and analysis.
Primary neurons are seeded onto µCP substrates, and imaged and stimulated or only imaged. ROIs
and mean intensity traces are extracted, normalized to ∆F/F0 traces, and directly used for cross-
correlation- and transfer entropy-based graph model construction. Additionally, calcium peaks
were semi-automatically detected, shifted towards the peaks of the traces’ first derivative, and
used to find SNEs in the recordings. The peak trains were used to analyze the effective response to
individual stimuli, and the SNEs were analyzed for their duration and similarity between different
stimulation routines.

Two thresholds were chosen as the height parameter for the find_peaks algorithm of the

SciPy python library to detect minor synchronous activity between more than 20% of

the population and major SNEs of more than 50% of the population. Since r(t) contains

the same peaks at adjacent time points due to the overlap of w(τ), the actual peaks in

a window of duration ∆t around each network event peak time point were designated as

peaks within a network event.
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2.5.3 Edit Distance

The edit distance or Levenshtein distance was established as a measure for the similarity

between words. It counts the minimum amount of operations (insertions, deletions, sub-

stitutions) needed to transform one word into the other. In this thesis, the implementation

by Pasquale et al. (2017) (see especially Supplementary Figure 5) was used to determine

the edit distance between the temporal neuronal patterns in different SNEs. In brief, an

ASCII character was assigned to each neuron measured in a network (neuron 1 = ‘a’,

neuron 2 = ‘b’, ...). The ASCII characters were written in the order in which the neurons

elicited a calcium event during an SNE. For example, if neuron 2 fired first, neuron 1

fired second, and neuron 3 fired third, this would correspond to the string ‘bac’. The edit

distances of these strings were calculated, and the two strings were shuffled 200 times.

The normalized edit distance was then defined as the fraction of edit distances between

the shuffled strings that were smaller than the actual edit distance between the original

strings. If this fraction was below 0.05, the SNEs were considered significantly similar.

2.5.4 Cross-Correlations

Cross-correlation (Xcor) is widely used to determine functional connections between neu-

rons in a network (Bonifazi and Massobrio, 2019). XCor between two discrete neuronal

signals (spike trains or other processes like calcium intensity traces) fx(t) and fy(t) is

defined simply as:

Rxy(τ) =

t0+Ttot
∑

t0

fx(t)fy(t+ τ), (2.5)

where t is discrete time step of the total time Ttot of fx(t) and fy(t) and τ is a discrete

time step of a time span around τ = 0 (i.e. the correlation between the two processes).

Rxy was then normalized against the autocorrelation functions of x and y to obtain the

scaled partial covariance density (Eichler et al., 2003):

R̂xy(τ) =
Rxy√
rxry

, (2.6)
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where rx and ry are the maxima of Rxx(τ) and Ryy(τ) at τ = 0, respectively. By deter-

mining τmax at the maximum of R̂xy(τ), the average delay between an event in fx(t) and

an event in fy(t) can be found. Thus, the maximum of R̂xy(τ) was used as the weight of

a connection with the direction X −→ Y if τmax < 0 and with the direction Y −→ X if

τmax > 0.

2.5.5 Generalized Transfer Entropy

The concept of transfer entropy (TE) and generalized transfer entropy (GTE) was re-

searched and an algorithm was designed and implemented by Müllender (2020) under my

close supervision, and afterwards further extended and modified by myself. The TE be-

tween two processes describes the information (or entropy) transferred between the two

processes by measuring how strongly a process X depends on the past states of process

X and the second process Y . It is stronger if more surprising, improbable events occur.

TE’s basis is the information content of the discrete process Xi, the Shannon entropy

H(Xi) =
∑

xi∈A
p(xi)log2

1
p(xi)

, where p is the probability that Xi is in state xi ∈ A at

time point i. The base of the logarithm determines the unit of the entropy, with the com-

mon unit bits for a base of 2. The derivation from the Shannon entropy over the Kullback

entropy to TE, utilizing the concept of Markov chains, is described and reviewed in detail

by Kaiser and Schreiber (2002) and summarized in less detail, but for properties specific

to my experimental system, by Müllender (2020). Finally, the TE between processes Xi

and Yi for the past k states of Xi and the past l states of Yi is defined as (Schreiber, 2000):

T (Xi+1|X(k)
i , Y

(l)
i ) =

∑

xi+1,x
(k)
i ,y

(l)
i

p(xi+1, x
(k)
i , y

(l)
i )log2

p(xi+1|x(k)i , y
(l)
i )

p(xi+1|x(k)i )
, (2.7)

where p(a|b) is the conditional probability that a occurs if b also occurs. The TE is

non-symmetric, as opposed to mutual information, another measure for the information

transfer between two processes.

Taking into account that in calcium imaging, the exposure time of the camera (10-20 ms)

is roughly 2-10 times larger than the duration of an AP (2-5 ms), Stetter et al. (2012)
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proposed a generalized form of TE. In generalized TE, same bin interactions are taken into

account, and a threshold value is introduced that eliminates consideration of SNEs (see

section 1.1.3) in TE. In this thesis, one of the main points is to elicit SNEs via stimulation

and compare the stimulated networks to spontaneously active networks. Therefore, a

modified version of generalized TE (from here on GTE) was used that is defined as:

T (Xi+1|X(k)
i , Y

(l)
i ) =

∑

xi+1,x
(k)
i ,y

(l)
i+1

p(xi+1, x
(k)
i , y

(l)
i+1)log2

p(xi+1|x(k)i , y
(l)
i )

p(xi+1|x(k)i )
. (2.8)

In spite of a less accurate estimation of the functional connections between neurons, sta-

tionarity was assumed for processes Xi and Yi to reduce computing time, and because I

was mainly interested in the relative change in GTE between different stimulation condi-

tions, and not the absolute transferred information. The larger of the GTEs for X −→ Y

and Y −→ X was used as a weight for the connection between neurons X and Y .

2.5.6 Graph Theoretical Model

Graph theoretical models serve as a useful tool for the analysis of complex networks

(for a review, see Rubinov and Sporns (2010)). A graph model consists of nodes, in

my case the neurons in a network, and edges, in my case the functional connections

between neurons in a network. Two different ways of assigning weights and directions

to the edges were used: a) Xcor (see Equation 2.6, section 2.5.4), b) a modified GTE

(see Equation 2.8, section 2.5.5). In this thesis, the python package NetworkX 2.4 was

used. The graph analysis was first implemented for Xcor and GTE by Müllender (2020)

under my close supervision, and afterwards slightly adjusted (compare Müllender (2020)

and this thesis), and extended by other network measures. The determined topology

measures were the density, the global efficiency, and the average clustering coefficient (see

section 5.4.1). Moreover, the number of equal hub nodes, sink nodes, source nodes, and

nodes with the 0.5% strongest edges between experimental conditions were counted (see

section 5.4.3 and next section). For comparison of connectivity measures, random graphs

were calculated using the gnm_random_graph method of NetworkX. This method creates

a random, directed graph with the same number of edges and nodes. The original edge
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weights were then shuffled randomly and applied to the random graphs.

Figure 2.10 – Connectivity measures derived from graph models. A few basic measures
are the basis for global connectivity parameters. The shortest path length can be used to describe
the efficiency of a network. Triangles of nodes are usually a good indicator for clustering within a
network. Hub nodes indicate connecting nodes between different subnetworks or modules. Motifs
are recurring patterns in edge weight and direction between multiple nodes. Finally, the degree of
a node defines how much that node participates in the network. Taken from Rubinov and Sporns
(2010).

2.5.6.1 Sink, Source, and Hub Nodes

In directed graphs, sink and source nodes are the nodes of the most in- or outgoing

edges, respectively. The number of incoming edges to a node i is called the in degree

kini =
∑

j∈N aji, where N are the nodes in the network and aji is the edge between nodes

j and i. The out degree is defined analogously as kouti =
∑

j∈N aij . In this thesis, all

nodes with kouti higher than 0.5 standard deviations above the mean are considered source

nodes. Sink nodes are defined analogously for kini .

Hub nodes can be determined via a measure called the betweenness centrality which de-

scribes how many shortest paths between other nodes pass through this node (Figure 2.10

right). Betweenness centrality is therefore defined as (Rubinov and Sporns, 2010):

bi =
1

(n− 1)(n− 2)

∑

h,j∈N,h 6=j,h6=i,j 6=i

ρhj(i)

ρhj
, (2.9)
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where ρhj(i) is the number of shortest paths between nodes h and j through node i and

ρhj is the number of shortest paths between nodes h and j. In this thesis, all nodes with

bi higher than one standard deviation above the mean are considered hub nodes. A higher

threshold was chosen to yield comparable numbers of hub, sink and source nodes. As

these node numbers are based on very different measures (k
in/out
i or bi), keeping them

roughly in the same order of magnitude provide some guidance that these numbers are

not underestimated or overestimated.

2.5.6.2 Density

The density is a measure combining the number of nodes and edges in a graph. It is 0 for

a graph without edges and 1 for a complete graph (in which all nodes are connected to all

other nodes). It is described as:

d =
m

n(n− 1)
, (2.10)

where n is the number of nodes and m is the number of edges in the network.

2.5.6.3 Global Efficiency

The global efficiency (GEf) describes how well information can spread to all nodes of a

network. It is maximal in a fully connected network and becomes smaller if more nodes lie

between any two nodes (Figure 2.10 left). For n nodes N , the global efficiency is defined

as (Rubinov and Sporns, 2010)

E =
1

n

∑

i∈N

∑

j∈N,j 6=i d
−1
ij

n− 1
(2.11)

at nodes i and j, where dij is the shortest path length between nodes i and j. In this

thesis, the shortest path length is taken as dw,−→
ij =

∑

auv∈gwi−→j
w−1uv , where gi←→j is the

shortest geodesic path between nodes i and j and wuv is the weight of the edge auv. Thus,

the global efficiency is inversely correlated to the shortest path length.
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2.5.6.4 Average Clustering Coefficient

Clustering around a single node can be described as the fraction of neighboring nodes that

are also neighbors of each other, or the number of triangles around a node. The average

clustering coefficient (ACC) describes the degree to which clusters, or subnetworks, of

nodes exist in the whole network (Figure 2.10 left). Networks with a high clustering

coefficient and high global efficiency are called small-world networks. The number of

triangles around node i are defined as ti = (Ŵ + Ŵ T )3ii (Fagiolo, 2007), with Ŵ = {w
1
3
ij}

as the matrix obtained by taking the 3rd root of each entry of the weight matrix. On the

other hand, the number of all possible triangles around a node i is Ti = (kouti +kini )(kouti +

kini − 1)− 2
∑

j∈N aijaji (Fagiolo, 2007). The average over all nodes N of these measures

is the ACC (Fagiolo, 2007):

C =
1

n

∑

i∈N

ti
2Ti

. (2.12)
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2.6 Statistical Comparisons

Different statistical tests were used as indicated in the respective text and figures. For

small sample sizes of uneven size (< 20 data points), the non-parametric pooled boot-

strap test with B = 100000 (from hereon referred to as bootstrap test) was used. The R

implementation by Dwivedi et al. (2017) (Appendix A.1) was reproduced in python. For

normally distributed samples, the independent, two-sample t-test (referred to as t-test)

of the SciPy.stats library was used (sample sizes > 10, as the t-test already provides

reliable results for small samples (de Winter, 2013)). For large (> 20), non-normally

distributed samples, the Mann-Whitney-U test of the SciPy.stats library or the non-

parametric pooled bootstrap test was used. Multiple comparisons were conducted using

Bonferroni-corrected Dunn’s multiple comparison test or t-test for normally distributed

samples. For non-normally distributed and small samples, Mann-Whitney-U or bootstrap

tests were used for all comparisons and afterwards Bonferroni-corrected. To test for over-

all significance within multiple samples (not between individual pairs), sometimes the

Kruskal-Wallis-H test of the SciPy.stats library was used.

Boxplots are displayed in the standard implementation of the python module PyPlot in

the matplotlib library: Boxes extend to the upper and lower quartile, the median is indi-

cated as a line, whiskers extend to the last data point within the upper and lower quartile

± 1.5 x interquartile range, and outliers beyond that range are displayed as individual

data points, or all data points are displayed as gray crosses. Text in the corresponding

section referring to boxplots will give the median. If relevant to the displayed data sets,

the first quartile (Q1) and third quartile (Q3) are also stated. Sometimes, only the median

will be given for clarity if the distributions show a similar spread. Errorbars in bar plots

indicate the standard deviation. Text referring to bar plots will give the mean ± standard

deviation. Statistical significance is indicated by asterisks corresponding to the p-values

(✯✯✯ (yellow): p < 0.001; ✯✯ (orange): 0.001 < p < 0.01; ✯ (red): 0.01 < p < 0.05).
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Correlations were investigated with the linregress function of the SciPy.stats li-

brary in python. The function outputs the slope and intercept of a linear function fitted

to a dataset. Moreover, Pearson’s correlation coefficient R and a p-value stating the sta-

tistical significance of the difference to a regression slope of 0 is given. The color of the

p-value in plots corresponds to the color code of asterisks.
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Chapter 3

Observing Patterned Neurons

Different in vitro techniques enable researchers to exert control over various aspects of

neuronal cell cultures. Micro-electrode arrays have been used as a major electrophysiolog-

ical technique for the investigation of such neuronal cultures (see section 1.2.2). Moreover,

optogenetic tools have become more and more important recently as the tools themselves

and the microscopy setups around them are constantly improved and fine-tuned (sec-

tion 1.3). Additionally, patterning techniques for neuronal networks continuously help to

understand the basics of neuronal networks in vitro (see section 1.4). Ideally, these tools

can be combined to correlate direct electrical activity of cells growing on electrodes with

calcium imaging of these cells and extend this correlation to the complete neuronal net-

work. However, there are some challenges when combining these methods. MEA electrode

materials are usually not transparent, limiting their combination with many optogenetic

approaches. Also, MEA passivations behave differently from substrates such as glass used

to develop patterning techniques and for pure optical investigations. Moreover, patterning

itself highly depends on the substrate and needs to be optimized to achieve clearly defined

patterns while avoiding cell clumping. In this Chapter, I describe different approaches

of how to tackle improving certain aspects of these methods for controlling neuronal net-

works.

This chapter was in part reproduced from Hondrich et al. (2019b) and Hondrich et al.

(2019a).
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3.1 Improvements in Microcontact Printing

3.1.1 Polystyrene and GLYMO Improve Patterning

Glass is a widely used material for culturing cells, as it is cheaply produced, is bio-

compatible and transparent. Due to its low autofluorescence and transparency, it is also

well suited for the combination of cells with optogenetics. Early microcontact printing

experiments intending to influence cellular guidance and/or patterning were established

on bare glass surfaces (see also section 1.4.1). Although this can lead to well-defined cell

Figure 3.1 – Polystyrene improves the patterning quality of microcontact printing.
(A) Development of printing quality measured by the number of cells growing outside of the
pattern. Each point represents one experiment. Apart from cells growing outside of the pattern in
all experiments, the variability between experiments is very high. On Polystyrene, variability and
outside cell number is reduced. (B) Pooled comparison of the experiments in A. Bootstrap test:
p < 0.001

patterns, the undefined nature of commonly used borosilicate glass and a fabrication not

optimized for its use as a highly reproducible surface results in a high variation between

and even within individual lots of glass (see Figure 3.1 A and Figure 3.2 A).

70



As a first variation to achieve higher reproducibility, I exchanged the glass substrate for

Figure 3.2 – Patterned neuronal cultures on
glass and polystyrene. Phase contrast micro-
graphs of patterned neuronal cultures on glass (A)
and PS (B). A magnification of the area in the red
box inB is shown inC. Scale bar inA corresponds
also to B (100 µm) and C (306 µm). A was mod-
ified from Hondrich et al. (2019b).

polystyrene (PS) cell culture dishes. On

this substrate, the amount of cells grow-

ing outside the pattern could be reduced

(median: 0.5 cells, Q1: 0.0, Q3: 1.75; Fig-

ure 3.1 B) as compared to glass (median:

13.0 cells, Q1: 7.0, Q3: 16.0). The field-

of-view was ⑦5.261 mm2 with a printed

area of ⑦2.021 mm2, leaving an unpat-

terned area of ⑦3.240 mm2. However, PS

shows some optical artifacts or impuri-

ties rendering it less ideal than glass for

imaging purposes (stripe pattern in back-

ground of Figure 3.2 B, magnified in C).

Also, cells were still growing outside of

the pattern, albeit less than on glass (Fig-

ure 3.1). Moreover, the coating molecule

PLL is only physisorbed to the substrate

(Offenhäusser et al., 2007) and does not

covalently bind, which could lead to weak

cell adhesion to the substrate. Although

on glass coverslips cell adhesion is cer-

tainly important, it is essential for µCP

on MEAs to provide a close coupling of

cells to the electrodes (see section 1.2.2).

3.1.1.1 GLYMO and DDA Improve Patterning Quality

To take into account the above-mentioned points, I extended the standard microcontact

printing procedure by an additional chemical uncoupling step of the glass substrate and the

µCP coating. To implement this uncoupling step, I modified and extended the application
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✘ Figure 3.3 – Mechanisms and properties of glymo-silanized substrates. (A) The
proposed reactions during GLYMO-based modifications of µCP on idealized glass. Compare with
the steps in Figure 2.1. (B-C) Live/dead staining via cal-AM (green, alive) and EtHD (red,
dead) of neurons growing on glass coated with GLYMO and bathed in DDA (B) and coated
with GLYMO and bathed in PLL (C). Scale bar: 100 µm. (D) Comparison of contact angles
θ between glass treated homogeneously with GLYMO and PLL, DDA, or EtOH, and untreated
glass (control) (n = 6). The color code of the bars corresponds to Figure 2.1. Dunn’s multiple
comparison test with Bonferroni correction yielded pPLL/DDA = 9.05×10−5; pPLL/EtOH = 0.9183;
pPLL/control = 0.0225; pDDA/EtOH = 0.0225; pDDA/control = 0.9183; pEtOH/control = 0.8499. (E)
Total number of living and dead cells (n = 3 cell cultures per condition). The complete figure was
modified from Hondrich et al. (2019b).

of GLYMO (see section 2.1.2) (Hondrich et al., 2019b), which was first published by Nam

et al. (2006) and Hofmann (2009). During reproduction, modification, and first tests, I was

supported by practical student Oliver Deußen (Deußen, 2019), and during investigation

of cell patterning with this technique, I was supported by the Master’s student Caroline

Grannemann (Grannemann, 2019).

Methodically, GLYMO was applied to an oxygen plasma-activated glass substrate using

chemical vapor deposition. During this, a condensation reaction should lead to a bonding

between the silane backbone of GLYMO and the hydroxyl groups of the activated glass

(Branch et al., 1998). Simultaneously, the silane backbone additionally interconnects,

forming a monolayer of GLYMO (Markov et al., 2017) (Figure 3.3 A). During transfer of

PLL onto GLYMO via a POP stamp (see section 2.1.3), the amino group of PLL binds

to GLYMO’s epoxy ring (Nam et al., 2006). As a last step, the samples were washed in

hydrophobic dodecylamine (DDA) and EtOH or only EtOH. Washing with DDA should

lead to a condensation reaction of DDA with GLYMO’s epoxy ring and a protection from

hydrolysis in water or EtOH during storage, alongside an even further reduced cell growth

outside of patterns. Washing with EtOH should have no effect on the epoxy ring.

Four different types of substrates are in contact with cells after patterning in differently

treated samples (untreated glass/control, GLYMO+PLL, GLYMO+DDA, GLYMO+EtOH).

Therefore, the contact angle θ (see section 1.4) was measured by photographing a drop

of water on top of these substrates in profile. Hydrophobicity of the substrate types in-

creased in the order PLL < EtOH < control < DDA (34.0◦± 2.8◦ < 44.1◦± 3.3◦ < 62.9◦±
8.8◦ < 76.0◦± 2.9◦; Figure 3.3 D). The standard deviation of θ on the control substrate is

twice as large (8.8◦) as on other substrates, which is in accordance with the highly vari-
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able cell growth on glass substrates shown in Figure 3.1. Although θ on the control and

θ on GLYMO+DDA or GLYMO+EtOH are not significantly different, the variability is

reduced by the chemical uncoupling. As expected, PLL strongly decreases hydrophobicity,

resulting in a cell-attractive coating. Most importantly, the strongest difference of θ is ex-

hibited between GLYMO+PLL and GLYMO+DDA, but not between GLYMO+PLL and

GLYMO+EtOH. This suggests that the separation between background and foreground

of the pattern should be most pronounced on DDA-treated glass substrates.

To test whether the modifications have an effect on cell growth in general, I conducted

a live/dead staining using calcein-acetoxymethylester (cal-AM, green, alive) and ethidium

Figure 3.4 – Microcontact printing on different GLYMO-silanized substrates. (A-B) 
Exemplary fluorescence micrographs of the fComInput pattern (see Chapter 5) printed with PLL-
FITC (green) on GLYMO with subsequent DDA application (A) or on GLYMO subsequently 
washed with EtOH (B). Scale bars: 500 µm. (C-D) Phase contrast micrographs of neurons on 
the glass treated as in A (C; DIV14) or as in B (D; DIV14). Scale bars: 100 µm. Figure modified 
from Hondrich et al. (2019b).

homodimer (EtHD, red, dead) of primary cortical neurons (see section 2.2.2) on GLYMO+DDA

(Figure 3.3 B) and GLYMO + PLL (Figure 3.3 C). Both the live/dead ratio and the total
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number of cells was higher on PLL-coated substrates (ratio: 28.93% ± 10.08%; total num-

ber: 7259 ± 1703) than on DDA-coated ones (ratio: 14.32% ± 7.83%; total number: 3308

± 194; Figure 3.3 E).

Next, µCP was conducted and primary cortical neurons were seeded onto substrates

treated with GLYMO and washed with EtOH or bathed in DDA. The printing procedure

lead to a clearly defined PLL pattern on both substrate types (Figure 3.4 A, B). Moreover,

neurons were growing in equally well-defined patterns on both substrates (Figure 3.4 C,

D).

Figure 3.5 – The quality and shelf-life of neuronal patterns on GLYMO-treated sub-
strates. (A) Fraction of patterns in each quality category at DIV5 (see Figure A.2) on GLYMO-
treated substrates subsequently bathed in DDA (plus GLYMO; n = 78) compared to untreated
glass (control; n = 9). Mann-Whitney-U test yielded p = 9.6 × 10−6. (B) Long term shelf life
of GLYMO-silanized glass before µCP treatment and DDA wash, measured by the same quality
categories as in A. Dunn’s multiple comparison test with Bonferroni correction yielded (only p
values < 0.05) pweek7/week10 = 0.0044; pweek8/week10 = 0.0237. Figure modified from Hondrich
et al. (2019b).

However, due to the results from the contact angle measurements, I decided to continue

with DDA-treated substrates in future experiments since these should restrict outside-

growing cells even more. For quantification of the neuronal patterns on DDA-treated

GLYMO-silanized glass, Grannemann (2019) defined the quality categories 1 to 5, from 1

(only dead cells outside of the pattern) as the best defined patterns to 5 (no pattern visible,

cells grow homogeneously or are dead) as the least well defined ones (for example images,

see Figure A.2). This analysis showed that neurons on substrates with GLYMO+DDA
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were growing significantly more in higher categories (median: category 2) than neurons

grown on patterned, but otherwise untreated coverslips (median: category 5; Figure 3.5

A), which is in accordance with the qualitative analysis in Nam et al. (2006) and Figure 3.4.

Finally, the shelf life of GLYMO-silanized substrates was quantified by applying the same

quality categories to patterns that were printed after up to 22 weeks of storage. The quality

of patterns was stable throughout the whole time with only non-significant variations

(Figure 3.5 B). Thus, GLYMO-silanization before and a DDA bath after µCP on glass

coverslips, reliably and stably improves the quality of neuronal patterns.

3.1.2 Population Patterns Are Difficult to Record via MEAs

Neuronal cell cultures are often recorded via MEAs (see section 1.2.2). To compare op-

tical recordings via optogenetic tools with electrophysiological ones, I aimed to transfer

the µCP technique to MEAs. This has been done before with single cell patterns (Chang

et al., 2001; James et al., 2004; Nam et al., 2006) but has not been attempted with µCP

of population patterns. An optimal pattern quality is the prime objective on substrates

used in recordings with optical methods. However, in MEA recordings the first goal is to

establish reliable recordings from many electrodes so that a network investigation is possi-

ble at all. Therefore, I did not quantify the patterning quality, although patterning itself

seemed to be reliable in many cases (for examples, see Figure 3.6 A-B). On homogeneous

coatings, such MEA recordings are a very well-established technique (Gritsun et al., 2010;

Lonardoni et al., 2017; Sardi et al., 2017; Stett et al., 2003; Wagenaar et al., 2006a,b).

Although I varied multiple patterning and recording conditions, I was able to only record

APs in roughly 0.1% of all electrodes on 4 out of 102 MEAs (3.9%) that I used for pat-

terning (for an example of these recordings, see Figure 3.6 C-E). The varied conditions

included the type of coating, the type of MEA passivation (see section 2.3.2), the cell den-

sity, the stamp material and other conditions. The different tested conditions are listed

in Table 3.1. The latter of these conditions include ONONO as a passivation material

because it has a weaker autofluorescence than the polyimide HD-8820 (see Figure A.4).

On these substrates, PDMS stamps had to be used to avoid rupturing the passivation

layer. With these PDMS stamps, patterning was then comparable to patterns achieved
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with POP stamps on HD-8820. As only neurons in fComInput patterns (see section 5.1)

were successfully recorded (but not neurons in neuroCapTiH patterns, see section 4.1),

the pattern itself seemed to have the biggest influence on neuronal recordings. Indeed, the

population part of the fComInput pattern resembles a part of a homogeneous neuronal

culture which might explain its higher recording probability. On homogeneous coatings,

the coating itself is thicker as it is usually applied in a bathing approach.

Figure 3.6 – Neuronal patterning and recordings on MEAs. (A-B) Phase contrast mi-
crograms of neurons growing in a neuroCapTiH pattern on line MEAs (A) and in a fComInput
pattern on standard MEAs (B). (C-E) Examples of MEA recordings in different scales. (C) All
channels of a MEA recording from a fComInput pattern. (D) Magnification of the channel in C
in a red box. (E) Magnification of the first AP (orange box) in D.

Additionally, neurons are often seeded with a higher density which, on a patterned sub-

strate, can easily lead to the formation of cell clusters that detach from the substrate.
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Thirdly, cells growing in a dense network benefit from cofactors and extracellular molecules

that increases network maturation and health. However, this does not explain the reduced

recording efficiency as compared to single cell patterns. A possible explanation for this

low efficiency of recordings from population patterns is their larger scale. As opposed to

a single cell pattern that restricts growth to an area immediately surrounding the elec-

trode opening of a MEA, population patterns allow for a random distribution of the cells

within the boundaries of the pattern. For example, the area of 12 µm-diameter electrode

openings covers ⑦86.3% of the area of simple grid patterns used by Hofmann (2009); Nam

et al. (2006). On the contrary, electrode openings only cover ⑦0.3% of the area of the

neuroCapTiH pattern and ⑦1.8% of the area of the fComInput pattern. Therefore, the

chance of a cell growing exactly on top of an electrode is lower. In combination with a

low cell density to avoid clusters (in which individual cells cannot be recognized) and a

less continuous coating (as compared to homogeneous bath coatings), the probability of a

successful recording will be dramatically reduced.

78



Pattern
Number
of MEAs

Number of
Electrodes

Number of
Active

Electrodes
Coating

Cell
Count

Stamp
Material

Passivation

neuroCapTiH 7 434 0 laminin 100k POP HD8820
neuroCapTiH 10 620 0 ECM 100k POP HD8820
neuroCapTiH 6 372 0 ECM 25k POP HD8820
neuroCapTiH 6 372 0 ECM 50k POP HD8820
neuroCapTiH 12 744 0 gelatine 25k POP HD8820

ECM
neuroCapTiH 3 186 0 ECM 25k POP HD8820

plasma
neuroCapTiH 3 186 0 ECM 25k POP HD8820
neuroCapTiH 3 186 0 ECM 50k POP HD882

plasma
neuroCapTiH 3 186 0 ECM 50k POP HD8820
fComInput 3 186 0 ECM 50k POP HD8820

plasma
fComInput 3 186 1 ECM 50k POP HD8820
fComInput 7 434 0 GLYMO 80k/120k POP HD8820
fComInput 5 310 0 GLYMO 100k/150k POP HD8820
fComInput 5 310 0 GLYMO 100k POP ONONO
fComInput 5 310 0 GLYMO 150k POP ONONO
fComInput 2 124 0 GLYMO 150k POP ONONO
fComInput 2 124 0 plasma 150k POP ONONO

PLL
fComInput 3 186 0 GLYMO 100k PDMS ONONO

(possibly
faulty)

fComInput 3 186 0 GLYMO 125k PDMS ONONO
(possibly
faulty)

fComInput 3 186 0 GLYMO 100k PDMS ONONO
(possibly
faulty)

fComInput 4 248 2 GLYMO 100k PDMS ONONO
no DDA

fComInput 4 248 3 plasma 100k PDMS ONONO
PLL

Table 3.1 – Various experimental conditions for testing MEA recordings of patterned neuronal cul-
tures. PLL - poly-L-lysine, GLYMO - (3-glycidyloxypropyl)trimethoxysilane (see previous section
and section 2.1); ECM - ECM Gel from Engelbreth-Holm-Swarm murine sarcoma (E1270, Sigma
Aldrich, Germany); POP - polyolefine plastomer, PDMS - polydimethoxysilane (see section 2.1.1);
HD8820 - a polyimide, ONONO - layers of SiO2 (O) and Si3N4 (N; see both in section 2.3.2).
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3.2 Thiols on Gold Electrodes

Thiols have previously been applied to gold substrates to improve cellular growth on this

material (Chang et al., 2001; Mrksich et al., 1997). In theory, applying thiols to electrodes

of MEAs using gold as a conducting layer could improve the adhesion of a cell to the

electrode when using µCP on these MEAs (see previous section). As µCP stamps usually

have a flat printing area, the coating substance will most likely only be printed on the

passivation around the actual electrode. This will lead to cells avoiding the electrode,

having a detrimental effect on the sealing and Rseal, and thus signal-to-noise ratio (see

section 1.2.2).

3.2.1 Thiols Improve Adhesion to Large Gold Surfaces

Previous studies suggested that a mixture of polar (e.g. aminothiols) and unpolar (e.g.

alkanethiols) thiols could be used to achieve cell-attractive coatings on a gold surface

(Gilles et al., 2012; Mrksich et al., 1997). In an attempt to combine these suggestions, I

rather arbitrarily chose to test a mixture of the unpolar alkanethiol HS-(CH2)9CH3 and

the slightly longer polar aminothiol HS-(CH2)11-NH2.

I mixed the aminothiols with the alkanethiols in molar ratios of 0%:100%, 2.5%:97.5%,

25%:75%, 50%:50%, 75%:25%, and 100%:0% with 2 mM as 100%, and applied these

mixtures to large gold substrates fabricated on quartz wafers (section 2.3.1). After this,

neurons were seeded onto these substrates, and stained with cal-AM and EtHD to deter-

mine the live/dead ratio and amount of adhering cells at the different ratios of thiols. The

total amount of cells and the live/dead ratio increased with growing fractions of aminoth-

iols in the mixture (Figure 3.7 A), which is in accordance with previously published results

(Chang et al., 2001). At 50% to 100%, the number of cells is clearly above the bare gold.

However, these results have a sample size of 1 and therefore have to be regarded with

caution. For example, PLL was intended as a positive control but exhibits as few live cells

as bare gold, which may be due to an anomalous substrate rather than a failure of the

technique itself. Nevertheless, for the following experiments on MEAs, the 75% aminothiol

fraction was chosen as the mean of the range with most cell growth.
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3.2.2 Thiols do not Clearly Improve Recording Quality

The 75%:25% molar ratio of aminothiols:alkanethiols was applied to nanocavity MEAs

with gold electrodes under HD-8820 passivation in combination with µCP of a flat, ho-

mogeneous layer of PLL (without pattern). PLL was applied in this way to avoid coating

the electrode area with the usual bath application, thereby negating any thiol-based ef-

fect on cell adhesion. In total, four different conditions were chosen: a) printed PLL on

MEAs with thiols (ThPrint); b) homogeneous PLL applied in a bath as a control (noTh-

HomPLL); c) printed PLL with no thiols (noThPrint); d) only thiols (onlyThiols). After

live/dead staining, the number of cells growing on the large reference electrodes of the

MEAs (see Figure 1.8 or Figure 2.2) was used as a way to quantify cell adhesion on the

gold surfaces of the MEA (Figure 3.7 B). Surprisingly, the numbers of cells were highly

comparable on the electrodes. Moreover, cells were also growing on the passivation of

all samples, including onlyThiols, meaning that the plasma activation of the MEAs must

have enabled the HD-8820 passivation to bind thiols. Similarly, the number of active

channels (Figure 3.7 C) and the signal-to-noise ratio (not shown) was comparable when

recording neuronal activity with the MEAs. To ascertain if thiol application could be

prevented on passivation, I repeated the experiment (this time, on HD-8820 and ONONO

passivation, see section 2.3.2) without plasma activating the surface before thiol/control

EtOH application. On reference electrodes, the cell numbers do not differ significantly

in the different conditions although on homogeneous PLL most cells seem to grow on

ONONO-passivated MEAs (Figure 3.7 D). Although the same seeding density was used,

cell density was much higher on plasma-treated samples (Figure 3.7 B) than on samples

without plasma treatment (Figure 3.7 D). The cell density on ONONO-passivated MEAs

is also higher on the passivation in the electrode array area of the MEAs (Figure 3.7 E).

This seems to indicate that the ONONO passivation is inherently more favorable for neu-

ronal growth than HD-8820 passivation when combined with a PLL coating. On the other

hand, few cells were growing on MEAs (both passivation and reference electrodes) treated

with thiols or EtOH as a control on both passivations. This proves that thiol application

on the passivation material can be prevented by excluding prior plasma treatment. A

beneficial effect of thiols on the growth of electrodes cannot be seen directly. Probably,
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the lack of a neuronal population surrounding the electrodes perturbs healthy neuronal

growth of individual cells (as opposed to PLL-treated substrates where more neurons are

growing in general).
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✘ Figure 3.7 – Thiols on gold electrodes. (A) Comparison of the cell number on large gold
surfaces at different molar ratios of the aminothiol HS-(CH2)11-NH2 (top left corner, top molecule)
and the alkanethiol HS-(CH2)9CH3 (top left corner, bottom molecule) acquired by live/dead stain-
ing (n=1 per condition). (B-C) Comparison of the cell numbers on the large reference electrodes
(B) and the number of channels showing neuronal activity (C) at different combinations of thiols
and PLL on MEAs with gold electrodes (described in section 3.2.2). (D-E) Comparison of the cell
numbers on the reference electrode (D or cell densities on the complete imaged passivation (E) of
MEAs without oxygen plasma treatment.

Taken together, these results indicate strongly that thiols do not have a strong enough

effect on their own on the sealing resistance and the cell-electrode interface to influence

MEA recordings. However, the effect seen on large gold surfaces (Figure 3.7 A) (Chang

et al., 2001) suggests that thiols might have a cumulative positive effect on recording qual-

ity together with other techniques. A potential drawback in the combination with other

techniques (such as GLYMO application to the surface, see section 3.1.1.1) is the require-

ment of excluding plasma treatment to prevent thiols from binding to the passivation.

However, by applying agents (such as GLYMO) first the effect of oxygen plasma on the

passivation could be shielded for subsequent thiol application. As an additional outcome,

I could add further evidence to the beneficial influence of an oxygen plasma treatment on

cell adhesion (Ohsugi et al., 2005). Interestingly, at least without this plasma treatment,

ONONO passivation seems to have a more positive effect on cell adhesion and survival

when coated with PLL. Cell adhesion on ONONO as compared to HD-8820 is not in-

creased without PLL. Possibly, the amino end group of PLL could interact with oxygen or

hydroxyl groups on the ONONO surface (compare also silicon-based glass surface in Fig-

ure 3.3 A) as opposed to the undefined and variable surface of HD-8820. Thus, ONONO

seems to be better suited to study neuronal cell cultures in the future. Thiols may add

a mild positive effect on recording quality but may be difficult to combine with other

methods depending on plasma treatment of the substrate.
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3.3 Transparent, Holey MEAs for Electrophysiology

Coupling optical techniques such as neuronal stimulation via optogenetic tools, calcium

imaging, or simple phase contrast or fluorescence microscopy for the exact localization and

control of cells with electrophysiological devices becomes more and more important in vivo

(Park et al., 2019; Thunemann et al., 2018) and in vitro (Chen et al., 2017; Kim et al.,

2017; Thompson et al., 2014). A standard material like gold (even without its plasmonic

properties) offers some advantages over other transparent materials such as indium tin

oxide (ITO) or graphene. Gold’s impedance is lower, and it is more flexible than ITO

(Cao et al., 2014; Gross et al., 1985; Tran et al., 2018). Graphene is harder to handle

and less stable than gold (Reina et al., 2017). To circumvent gold’s disadvantage - its low

transparency - gold nanohole arrays can be used (holey gold). Holey gold was developed

as a meta material for surface plasmon polariton (SPP)-based biosensing (Qi et al., 2018;

Sharpe et al., 2008) or other nano-optical techniques (Luo et al., 2019). However, such

gold was recently introduced as a conductive material for MEA devices with transparent

electrodes (Seo et al., 2017). Bohdan Lenyk and Dmitry Kireev then implemented a novel

way of fabricating such holey gold substrates (Schöps et al., 2018) into the standard process

of MEA fabrication, which is described in detail in Hondrich et al. (2019a), section 2.3.1.1,

and section 2.3.2.2. I used the HL-1 cardiomyocyte-like cell line (Claycomb et al., 1998)

to test the applicability of these novel MEAs for microscopy and electrophysiology.

3.3.1 Plasmonically-Enhanced Transparency of Holey Gold and MEA

Electrodes

As expected, holey gold offers a higher transparency than solid gold of the same thickness

(40 nm; Figure 3.8 A). The geometry of the holes alone causes a homogeneous increase in

transmission across all measured wavelengths, which can be seen for example as a boost

in transmission at ⑦600 nm (Figure 3.8 A, green asterisks). However, holey gold exhibits

SPPs when excited at a certain wavelength range (for details, see Hondrich et al. (2019a)).

Therefore, its transmission is further increased non-uniformly by a transmission peak of
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⑦45% at 726 nm (Figure 3.8 A, green arrowhead). This plasmonically induced peak is

unique for holey gold and is not detectable in solid gold (Escobedo, 2013; Qi et al., 2018)

(compare black and red curves in Figure 3.8 A at the position of the green arrowhead).

Figure 3.8 – Transparency of holey gold. (A) Trans-
mission spectra of solid gold (red) and holey gold (black)
in air. Green asterisks indicate a wavelength at which
transmission is linearly increased. The green arrowhead
indicates the SPP-induced peak. (B) Transmission spec-
tra of holey gold in air (black solid line) and medium (red
solid line). Dashed lines represent the respective finite-
difference time domain simulations in air and medium.
(C) Phase contrast micrographs of HL-1 cells imaged
through the quartz substrate with 40 nm of solid (left)
and holey (right) gold. Scale bar: 200 µm. (D) Phase
contrast micrograph of HL-1 cells imaged through a ho-
ley MEA. The inset shows a magnified region containing
one transparent electrode and two transparent feedlines.
Transparency is the same as in C (right) but image bright-
ness was decreased to see cells on non-metalized areas.
Scale bar: 200 µm; inset: 37 µm. Figure modified from
Hondrich et al. (2019a).

As position and strength of the

SPP transmission peak depends

strongly on the refractive index

of the materials on top of holey

gold, its transparency was further

increased in cell culture medium

(Figure 3.8 B, solid lines). Finite-

difference time domain simulations

could reproduce these results very

well (Figure 3.8 B, dashed lines).

Moreover, by varying (in the sim-

ulations) the nanohole diameter,

and especially the lattice constant

of the nanoholes, transparency

could theoretically be increased up

to 70% (Hondrich et al., 2019a).

This transparency is comparable

with, or higher than, many other

materials used as electrode mate-

rials (Cao et al., 2014).

To demonstrate that holey gold’s

high transparency could be used

for imaging cells directly through

the material, I cultured HL-1 cells

on top of holey gold. Micrographs

obtained with an inverted microscope show that the cells are more clearly visible on holey

gold than on solid gold (Figure 3.8 C). To quantify this relation, I defined the relative
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transmission as the ratio of the mean intensity of a rectangular window in the image with

cells and the mean intensity of such a window at the plastic dish background. The relative

transmission of holey gold is 3-fold higher (32%) than that of solid gold (10%). Due to

the tunability of holey gold, its transmission can be tuned by varying the lattice constant

of the nanoholes to modify the peak transmission wavelength (see figure S5 in Hondrich

et al. (2019a)). By this, the material could serve as an optical filter, for example for an

improved compatibility with optogenetic techniques.

Finally, HL-1 cells were also cultured on holey MEAs. Cells are visible through all met-

alized areas such as feedlines and electrode openings (Figure 3.8 D). Thus, correlation

of electrophysiological with anatomical data is possible by imaging through transparent

holey MEAs. Thereby, special objectives with very high working distances (and subopti-

mal imaging due to the differences in refractive indices of air and water) or the need for

(potentially contaminating) immersion do not have to be used.

3.3.2 Electrophysiological Recordings with Holey MEAs

Before culturing electrogenic cells, the electrochemical impedance of the electrode-

electrolyte interface and resistance of the electrodes of holey MEAs were characterized.

Due to the nanoholes, the area of holey MEAs is slightly smaller (403.7 vs 452.4 µm2,

respectively, for an electrode of 24 µm diameter). This results in a higher impedance for

holey MEAs (2.65 ± 0.67 MΩ at 1 kHz) than for standard MEAs ((1.50 ➧ 0.64 MΩ at

1 kHz; see figure S4 A in Hondrich et al. (2019a)). The volume of conducting material is

reduced even more than its area. Therefore, the resistance between contact pad and elec-

trode opening is higher in holey MEAs (614.7 ± 44.1 Ω) than in standard MEAs (126.4

± 61.5 Ω; see figure S4 B in Hondrich et al. (2019a)).

To test if holey MEAs could be used for electrophysiological recordings, the HL-1 cell

line provides an optimal test system. Within days, these cells form an adhesive confluent

(and therefore tightly sealing) layer of cells, which develops rhythmic APs that are easily

recognizable as cellular activity (see example recording in Figure 3.9 A). As described in

section 1.1.1.2, APs depend on the ionic equilibrium between the extracellular and intra-

cellular space. Increasing the extracellular KCl concentration therefore shifts equilibrium
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potential to higher values so that the repolarization of the cells after an AP is blocked. To

ensure the cellular origin of the MEA recordings, only voltage traces that could be blocked

by application of 400 mM KCl were analyzed (Figure 3.9 B). Recordings of these cells with

holey MEAs showed APs with an average spike frequency of 0.42 ± 0.11 Hz. Because this

spike frequency is slightly lower than the frequencies reported in previous studies (Kireev

et al., 2017b; Lai et al., 2018; Sartiani et al., 2002), cells of the same cell line and passage

were measured on one standard MEA with solid gold. The frequency (0.34 ➧ 0.01 Hz) was

comparable to the one on holey MEAs, attributing the lower frequency to a property of the

particular lot of cells. For these calculations, individual MEAs were compared because the

cells should roughly beat with the same frequency of the population’s pacemaker cell(s)

(Yang and Murray, 2011).

To compare the shape of individual APs, I calculated the ratio of the APs’ full width at

half-maximum (FWHM) and amplitude on holey and standard MEAs (Figure 3.9 C). This

ratio has a statistically significantly different (p = 0.039) distribution in holey (1.4, Q1:

0.8, Q3: 1.8) and standard (1.4, Q1: 1.0, Q3: 2.3) MEAs. However, this difference results

from the very high APs measured with one single electrode (Figure 3.9 D, red circle).

This electrode is probably sealed very tightly to one or multiple cells by chance, leading

to a sharp increase in amplitude and signal-to-noise ratio (see section 1.2.2 and Denyer

et al. (1998)). As this behavior is only expressed at this one electrode, it was excluded

from the comparison of AP shapes. APs of comparable amplitude (magnified region in

black box in Figure 3.9 D) have roughly the same shape in holey (1.4, Q1: 0.8, Q3: 1.8)

and standard (1.4, Q1: 1.0, Q3: 2.0) MEAs (p = 0.154, Figure 3.9 E). To conclude, these

results demonstrate that transparent, holey MEAs with additional plasmonically tunable

properties can be used to record APs, a stepping stone towards the improved combination

of electrical and optical recording techniques and simplified cell culture monitoring during

electrical measurements.
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Figure 3.9 – Cell recordings with holey MEAs. (A) Exemplary HL-1 potentials recorded
with a holey MEA as a raw (gray) or a 100 Hz low-pass filtered (green) trace. (B) Example raw
trace during AP blockade with KCl as indicated at the arrow. KCl application during recording
caused an artifact (clipped at black horizontal lines) due to the introduction of noise by the pipette.
(C) Magnified APs recorded with holey MEAs (green) or standard MEAs (blue). Full width at
half-maximum (FWHM) and amplitude are indicated as black bars. (D) Correlation of FWHM
and amplitude of APs on holey MEAs (green; n = 193) and standard MEAs (blue; n = 250). A
small population of outliers is indicated by a red circle (n = 11). The main population (black box)
of APs is not significantly different. In the black box, green dots are brought to the foreground to
clarify the similarity of distributions. (E) Comparison of the ratio of amplitude and FWHM as
a measure for AP shape. Outliers from D were removed (standard MEA APs: n = 239). Mann-
Whitney-U test was used as a significance test. Figure modified from Hondrich et al. (2019a).
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3.4 Conclusions and Outlook

An ideally controllable system for investigation of neuronal networks in vitro would be

an electrophysiological device with extremely high spatial resolution, and stimulation and

recording capabilities, upon which neuronal networks grow in perfectly designed patterns

with defined connectivity.

Figure 3.10 – A possible future of fully controllable patterned neuronal networks.
(A) Theoretical future combination of methods improved, developed and tested in this thesis to
achieve highly controllable investigations of neuronal networks. (B-C) Exemplary fluorescence
micrographs of microchambers containing healthy neurons. The green area in B is magnified
in C. (D) Design of a new pattern combining the neuroCapTiH population pattern with single
cell patterns for soma positioning. (E-F) Fluorescence micrographs of an immunocytochemical
staining of neurons growing in the patterns shown in D with the neuronal marker MAP2 (red)
and the axonal and neuronal marker NFH (orange), excluding (E) or including (F) the PLL-FITC
stained pattern (green). D-F were adapted from Grannemann (2019).
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Such a system is far beyond our reach although recent breakthroughs with high density

MEAs (Bakkum et al., 2013) promise some aspects of this ideal system to be reachable in

the future. However, even with low density MEAs and a combination of available technolo-

gies, high resolution recordings and stimulations of patterned neuronal networks should

be possible (Figure 3.10 A). Holey MEAs (see section 3.3) could serve as a transparent,

tunable electrophysiological device to correlate optogenetic recordings and stimulations to

electrical AP recordings. Patterning on holey MEAs with transparent and less autoflu-

orescent ONONO passivation (see section 3.1.2) could be achieved with improved µCP

using Glymo and DDA (see section 3.1.1.1). To improve MEA recording quality of pop-

ulation patterns, aminothiols (see section 3.2.2 and section 3.2.1) may play a minor role

in improving cell adhesion on (holey) gold electrodes. However, microchambers adapted

from microfluidic chambers could serve as a means of greatly improving signal-to-noise

ratio of MEA recordings (FitzGerald et al., 2008; Forró et al., 2018). First tests of these

microchambers (first designed by Grannemann (2019) and modified during this thesis)

on glass showed that neurons were indeed growing in an area corresponding to the later

positions of MEA electrodes without adverse effects to their health (Figure 3.10 B-C). Ad-

ditionally, population patterns could be split into “pseudo-population” patterns by com-

bining single cell patterns with population shapes, thereby more effectively positioning

neuronal somata exactly on MEA electrodes (Figure 3.10 D; first designs by Grannemann

(2019) under close supervision). First immunocytochemical stainings showed neurons

growing in these patterns in a well-defined manner (Figure 3.10 E-F). Thus, the tech-

niques developed and improved in this Chapter help to come closer to the ideal system

depicted in Figure 3.10 A although further work needs to be invested into this system.
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Chapter 4

Small populations: from linear to

circular activity

Neuronal cell cultures offer a highly controllable system (see previous Chapter) of greatly

reduced complexity to investigate neuronal network function. In this simple system, neu-

ronal cell cultures can be combined with basic concepts from electrical engineering to study

the interplay between organic, random neural networks and defined electrical elements

such as logic gates, delay lines and oscillators (Feinerman et al., 2008). This interplay

can help uncover basic principles of neuronal networks regarding signal integration and

propagation within, and communication between these microcircuits. Additionally, such

investigations may help to improve novel computational principles like neuromorphic chips

and artificial neural networks by combining them with classical engineering approaches.

These combined neuronal network architectures not only rely on precisely defined patterns

(see Chapter 3) but also on the directionality of AP propagation in what may be called

“neuronal diodes”. Such diodes were first developed by Feinerman et al. (2008) and later

reproduced and improved by Albers and Offenhäusser (2016) with the µCP technique.
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4.1 Pattern Designs

After experimenting with different diode designs (Albers and Offenhäusser, 2016; Albers

et al., 2015), Albers (2016) determined that a curved triangular design (CT1; Figure 4.1 A)

led to increased axonal growth towards the tip of the triangle.

Figure 4.1 – Patterns for
directed population growth.
(A) The original curved trian-
gle (CT1) structure. (B) Down-
scaled CT1 structures. Per-
centages indicate the percentage
of the size of the CT1 struc-
ture. The 75% structure is also
termed CT2. (C) The original
neuroCAP design with big arc
structures. (D) The modified
neuroCapTiH design with trian-
gles in the arc.

Moreover, signal propagation was directed towards the

next triangle in a daisy chain of these structures. To inves-

tigate the effect of network size on spontaneous network ac-

tivity and directionality, the CT1 pattern was downscaled

by Irina Tihaa during her PhD thesis (dsCT; unpublished

work). This scaling ranged from 100% (CT1) over 75%

(also called CT2 by Albers et al. (2015)), 60%, 50%, 40%,

30%, 20%, 10% , 5%, and 2% down to 1%. In the latter

three only one neuron can fit per triangle. Thus a range

from populations to individual neurons is spanned (Fig-

ure 4.1 B). I used these scaled triangles to investigate di-

rectionality in different sizes of neuronal populations with

the patch clamp technique (see section 1.2.1) and stimula-

tion via optogenetic actuators (see section 1.3.2).

To create a neuronal oscillation device similar to the one

published by Feinerman et al. (2008), and investigate prin-

ciples of recurrent signaling pathways, Albers (2016) fur-

ther developed a µCP pattern for potentially circulating

APs (neuroCAP). In this design, two daisy chains made of

three CT1 structures placed in parallel and pointing in op-

posite directions are connected by two large semi-circular

blocks ending in a triangular structure (arcs; Figure 4.1

C). In these arcs, SNEs are propagated from the preceding

triangle to the succeeding one less than 25% of the time as

the network size within the arc is probably large enough to generate its own SNEs (Al-

92



bers, 2016). Therefore, I modified the neuroCAP design by replacing the arc structures

with equally bent CT1 structures (Figure 4.1 D). In this new neuroCAP design (neuro-

CapTiH), the base of a bent triangle is still at a 90◦ angle to the tip of the preceding

triangle to minimize neurites crossing from tip to base outside of the pattern (Albers and

Offenhäusser, 2016). I used the calcium indicators GCaMP6f and jRCaMP1b to investi-

gate spontaneous (section 4.3) and evoked (section 4.5) APs and SNEs within complete

neuroCapTiH structures (as opposed to parts of the neuroCAP structure conducted by

Albers (2016)). Thus, the effect of network size (dsCT) and modularity (neuroCapTiH)

on directionality and synchronicity could be investigated.
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4.2 Large Triangles Propagate Electrical Activity

Continuing from Irina Tihaa’s work, I first investigated whether the directional signal

propagation witnessed in CT1 structures (Albers and Offenhäusser, 2016) is preserved in

neuronal dsCT patterns (see section 4.1). For this, I recorded the electrophysiological

Figure 4.2 – Stimulation and recording of down-
scaled triangles. (A) Fluorescence micrograph of the
ChR2-mKate expression in an exemplary 30% down-
scaled CT1 neuronal network grown on a glass cover-
slip without GLYMO application. The red dashed lines
highlight that cells are growing in the intended CT1
design. Laser stimulation sites are marked in orange
(downstream), blue (upstream), and green (same tri-
angle as patched cell). (B) Exemplary voltage traces
from the cell at laser stimulation site 10 in A. The
lightest blue trace was recorded first, and later traces
have darker blue tones. Laser stimulation times are
marked by horizontal bars in colors corresponding to
A.

activity from one cell in an arbi-

trarily chosen triangle within a daisy

chain of dsCT structures via cur-

rent clamp (see section 2.4.4 and sec-

tion 2.4.1.2). Simultaneously, I opti-

cally stimulated neurons growing in

the same triangle, and triangles fur-

ther up- or downstream (Figure 4.2

A). The last stimulus was always pre-

sented to the patched cell. In total,

nine neurons growing in dsCT pattern

with the scalings of 10%, 20%, 30%,

40%, 60%, 75%, and 100% were in-

vestigated. Due to the limited field-of-

view needed for laser stimulation, 75%

and 60% dsCTs could only be stim-

ulated in one upstream triangle and

the same triangle as the patched cell.

100% dsCTs could only be stimulated

in the same triangle. The resulting

voltage traces (Figure 4.2 B) were analyzed for their response to the presented stimuli

(section 2.4.4.1). Since my main focus lay on determining directionality of signal propaga-

tion PSPs and APs were pooled for further analysis. Specifically, I investigated whether

the mean number of response peaks per stimulus (activity ratio), the mean amplitude of

the response, and the delay between stimulus onset and response were changed depending
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on the stimulus position and the size of the triangles. For this analysis, the dsCT patterns

were divided into two categories (> 50%; ≤ 50%) to provide a rough overview over the

influence of the size. Alternatively, three categories (> 66.7%; 33.3% < dsCTs ≤ 66.7%;

≤ 33.3%) for a more detailed view into the differences in size were used.

Figure 4.3 – Activity ratio and mean amplitude of the patched neuron in response
to stimulation. (A-B) Comparison of the activity ratios defined as the mean number of peaks
per stimulus evoked by stimulation of neurons in triangles upstream (blue), downstream (orange),
or in the same triangle as the patched cell (green). (C-D) Comparison of the amplitudes evoked
by stimulation of neurons in triangles as in A-B. (A,C) Comparison of triangles downscaled to
below 50% of CT1 and triangles downscaled to above 50% of CT1. (B,D) Comparison of triangles
downscaled to below 33.3% of CT1, above 33.3% but below 66.7% of CT1, and above 66.7% of
CT1. (A-D) Stimulation and recording of 60% or larger dsCTs was limited due to the field-of-view
(see corresponding section). The bootstrap significance test was used. Asterisks indicate p values
as described in section 2.6.

If directionality is preserved in dsCT structures, the activity ratio should be higher

when stimulating an upstream triangle than when stimulating a downstream triangle.

However, the activity ratio is significantly lower when stimulating an upstream trian-

gle than when stimulating a downstream or the same triangle (Figure 4.3 A). The only

exceptions are the very large triangles (Figure 4.3 B, > 66.7%) of 75% and 100% scal-
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ing, where the activity ratios due to stimulation of an upstream and the same triangle

do not differ significantly. The activity ratios of these large triangles are similar be-

cause the activity ratio in response to same triangle stimulation is significantly lower

in large triangles than in smaller triangles (compare green data points in Figure 4.3).

Figure 4.4 –Delay of the response to onset of
stimulation. Comparison of the delays between
the onset of stimulation and the response of neu-
rons in triangles upstream (blue), downstream (or-
ange), or in the same triangle as the patched cell
(green). (A,B) See description in Figure 4.3.

This is probably due to the fact that more

neurons are growing on a larger area in

a large triangle. On the one hand, this

sparsity reduces network efficiency and ef-

ficiency to evoke an AP in the patched

neuron. On the other hand, the higher

density in smaller triangles increases the

chance of stimulating neurites of another

cell in the same triangle, including the

patched cell, thereby also increasing ac-

tivity ratio. This is possible even with

laser stimulation of somatic resolution (⑦

20 µm laser spot diameter) if neurites are

growing on top of somata or if cells are

growing very densely. Moreover, due to a

more linear growth within smaller trian-

gles (and therefore strong axon bundles

leading through multiple triangles), the

chance for backpropagation of APs to an upstream triangle is higher. Taken together, the

activity ratio does not show directionality in dsCT patterns, especially in smaller versions.

Comparing the response amplitude shows that stimulating cells in the same triangle as the

patched cell generally results in a higher amplitude (green data points in Figure 4.3 C).

This is not surprising, as the patched neuron is also contained in this category. Since APs

and PSPs are pooled, more APs (which is usually the case in the patched neuron) increase

the mean amplitude. However, in small dsCTs this effect is not existent (Figure 4.3 D;

≤ 33.3%), hinting that AP generation may be not as effective in small dsCTs. Since in
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small structures the cell networks are smaller, maturation could be slower or the cells

could be less healthy. Moreover, the amplitude of the response to upstream stimulation is

also increased in larger triangles (blue data points in Figure 4.3 C, and partly as a trend

in B). This indicates that large amplitude responses (e.g. APs) are more reliably elicited

in large triangles when stimulating an upstream triangle. This is in line with the results

from the activity ratio, suggesting that dsCTs are not showing as clear directionality as

the original CTs.

Finally, the delay of stimulate onset to the response peak is not different between any

of the rough categories (Figure 4.4 A). Interestingly, in the fine categories (Figure 4.4

B) middle-sized triangles seem to have shorter delays when stimulating the same triangle

(and as a trend also downstream triangles). However, all in all the delay does neither

confirm nor disprove the theory that smaller dsCTs are less well suited for directional

signal propagation.

Taken together, stimulating dsCTs of different sizes while patching a neuron indicates the

possibility that smaller dsCTs exhibit less directionality than larger triangles. This could

be explained by the confined space in small patterns. Here, the neurons have fewer options

of growth such that axon bundles form earlier and follow a rather linear path. Firstly,

this could lead to backpropagation of APs evoked by stimulating neurites growing very

close to laser-targeted somata. Secondly, axons could start growing backwards along those

axon bundles, further preventing a directional signal propagation. Although laser stimu-

lation and patching is a valid approach for determining directionality in younger neuronal

cultures growing in single cell patterns (Jin, 2016), it might offer insufficient precision

for investigation of older cultures with multiple overlapping neurites. Dual patch clamp

experiments (Yamamoto et al., 2016; Zhu et al., 2016) of neurons in two triangles could

help to further investigate the contribution of each of the two explanations in the future.
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4.3 neuroCapTiH - Spontaneous activity dynamics

4.3.1 Establishing Calcium Imaging and Subsequent Analysis

To investigate spontaneously occurring SNEs exhibited by neuronal networks growing in

neuroCapTiH patterns (see section 4.1), I used calcium imaging with the genetically en-

coded calcium indicator (GECI) GCaMP6f (Chen et al., 2013). GCaMP6f is very bright

and highly expressed via AAV-mediated transduction (see section 2.2.4). Therefore, it was

possible to monitor calcium activity using low magnification within an entire neuroCap-

TiH pattern (Figure 4.5 A). The AAV titer used for GCaMP6f was determined by Irina

Tihaa (unpublished work), and resulted in expression levels suitable for calcium imaging.

To be precise, a median of approx. 87% (Q1: 68%, Q3: 90%; not significantly lower than

100%, determined by one sample t-test) of all neurons (determined by a MAP2 immuno-

cytochemical staining) were expressing GCaMP6f.

As calcium imaging is a well-established technique, many methods exist for post-

processing calcium imaging data (see section 1.3.1). However, these tools mostly do not of-

fer complete analysis pipelines, or if they do, they apply only for specific data sets (mostly

acquired from in vivo experiments (Mölter et al., 2018; Stringer and Pachitariu, 2019)).

Moreover, some tools offer accurate ROI detection but they lack methods to manually

check the results of ROI- and peak detection. Additionally, tools are written in different

languages (most often MATLAB➤ or Python, the latter of which is used in this thesis).

Tools provided in Python may depend on a specific version of Python or even its packages,

ruling out simple co-implementation with other tools. The scripts used by Albers (2016)

were optimized for usage with the fluorescent calcium indicator Fluo-4, and the CT1 and

original neuroCAP patterns.

For those reasons, I established my own post-processing pipeline for calcium imaging

that combines elements of different published tools and techniques (Burchert and Schnei-

der, 2016; Reichinnek et al., 2012; Rueckl et al., 2017) (compare Figure 2.9, exclud-

ing elements of stimulation). The pipeline starts at recording calcium imaging data

with a fluorescence microscopy setup extended by a stimulating laser originally intended

for fluorescence recovery after photobleaching experiments (section 2.4.1, section 2.4.2).
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Figure 4.5 – Calcium imaging recordings in
neuroCapTiH structures. (A) Fluorescence
micrograph of the GCaMP6f-expressing neurons
grown in a neuroCapTiH pattern on a polystyrene
(PS) substrate (see section 2.1.3). GCaMP6f ex-
pressing cells were either grown on PS or glass with-
out GLYMO. (B) Phase contrast micrograph of
the same neurons. Regions of interest (ROIs) are
marked with red numbers that correspond to the
neuron ID in C. (C) Top: Raster plot showing the
time points of individual calcium events as small
vertical bars. The amplitude is color coded from
blue (low) over orange to yellow (high). Neuron
ID corresponds to the ROIs in B. Bottom: His-
togram (blue) and combined peak rate of the cal-
cium peak count within 500 ms time windows (see
section 2.5.2) . The combined peak rate was used
for SNE detection. Detected SNEs indicated by red
crosses.

Next, ROIs are detected (Reichinnek

et al., 2012) and manually checked in a

GUI (Rueckl et al., 2017) (section 2.4.2.1;

see Figure 4.5 B for example locations).

After this, peaks are detected and also

manually confirmed (section 2.5.1; see

Figure 4.5 C). After peaks are detected,

SNEs are detected and further analysis

conducted, depending on the experiment

(see section 2.5.2 and and following sec-

tions and Chapters).

Figure 4.5 C shows exemplary results of

this pipeline. Two different thresholds

were chosen to detect SNEs. At a thresh-

old of 20% of recorded neurons, a me-

dian of 0.51 SNE/s (Q1: 0.21 SNE/s;

Q3: 0.86 SNE/s; see section 2.6) are de-

tected. These SNEs correspond to minor

network events from very small microcir-

cuits. At a threshold of 50% of recorded

neurons, a median of 0.08 SNE/s (Q1:

0.03 SNE/s; Q3: 0.22 SNE/s) are de-

tected. These SNEs correspond to major,

substrate-spanning events. Major events

are the most commonly detected events

in literature and the detected rates corre-

spond well to previously published results (Wagenaar et al., 2006b).
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4.3.2 Spontaneous SNEs are not Trapped in Arcs

The original neuroCAP design (Albers, 2016) featured two large arcs in which such dense

neuronal subnetworks formed that in many cases APs did not propagate through the arc

to a subsequent triangle or were exclusive to the arc. The main purpose of modifying

this design was to remove the arcs at both sides of the daisy-chained CT1 triangles. To

check if this modification had the desired effect, I determined the fraction of SNEs that

were initiated in the arc or in straight triangles. The fraction of minor SNEs starting

in arc triangles (0.43; Q1: 0.37; Q3: 0.55) and starting in straight triangles (0.57; Q1:

0.45; Q3: 0.63) is not significantly different (Figure 4.6 A). The fraction of major events

Figure 4.6 – Arc contribution to SNEs.
Arc and straight triangles are equally partici-
pating in SNEs. (A) Comparison of the frac-
tion or ratio of minor and major SNEs starting
(blue) or ending (orange) in arc triangles. (B)
Comparison of the fraction or ratio of SNEs
in which at least one arc triangle (blue) or
straight triangle (orange) participated. Box
plots are explained in section 2.6.

is also not significantly different (arc: 0.50;

Q1: 0.40; Q3: 0.70; straight: 0.50; Q1: 0.30;

Q3: 0.60). The fraction of minor and major

SNEs ending in arc triangles (minor: 0.50;

Q1: 0.40; Q3: 0.60; major: 0.50; Q1: 0.39;

Q3: 0.67) and in straight triangles (minor:

0.50; Q1: 0.40; Q3: 0.60; major: 0.50; Q1:

0.33; Q3: 0.61) are equally similar. Addi-

tionally, all ratios lie approximately at 0.5,

which is the expected value for an equal dis-

tribution as the number of straight triangles is

equal to the number of arc triangles (both 6).

Moreover, the fraction of arc triangles (minor:

0.99; Q1: 0.90; Q3: 1.00; major: 1.00; Q1:

1.00; Q3: 1.00) and straight triangles (minor:

1.00; Q1: 0.93; Q3: 1.00; major: 1.00; Q1:

1.00; Q3: 1.00) participating in a SNE is not

significantly different (Figure 4.6). It is close

to or at 1.00 for all conditions, meaning that an arc triangle and a straight triangle partic-

ipate in almost every SNE. Thus, the modified version neuroCapTiH did remove the trap

for APs in the curves/arcs of the neuroCAP pattern.
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4.3.3 APs Propagate Mostly Forward for up to 11 Triangles

In a first investigation of neuroCAP activity, Albers (2016) was restricted to parts of the

whole pattern due to the neurotoxicity and low intensity of the calcium indicator Fluo-4.

However, using GCaMP6f I could monitor the whole neuroCapTiH pattern as opposed to

focusing on the AP propagation at the tip of a CT1 pattern (Albers and Offenhäusser,

2016). I started by examining the propagation direction and distance of SNEs in a

neuroCapTiH neuronal network.

Figure 4.7 – Delay between triangles as a measure for the direction of network events.
(A-C) Histograms of the average (A), maximum (B), and minimum (C) delays between the
individual triangles in each minor (blue) or major (green) SNE. The average delay can serve as
a measure for the overall direction of the SNEs in the neuroCapTiH pattern. Maximum and
minimum delays indicate the strongest forward and backward step in each SNE. (D) Histogram of
the duration of an SNE defined as the time difference between the first and the last calcium peak
in the event. The duration can serve as an indicator for the effectiveness of SNE generation.

The prevailing propagation direction in a neuroCapTiH pattern was measured by the

time delay between triangles within a SNE. For each triangle, the median time point of
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all calcium events in this triangle was determined relative to the onset of a SNE. Starting

from the first triangle in the SNE (with the lowest median time point), the difference

in median time points between two subsequent triangles participating in the SNE was

calculated. The average, minimum and maximum time delays within each SNE could

then be derived from the differences or delays between the individual triangles (Figure 4.7

A-C). The average time delays are always positive (Figure 4.7 A) although in the majority

of SNEs, at least one delay is negative (Figure 4.7 C). The delays range around a minimum

of -0.201 s (major SNEs, Q1: -0.283 s, Q3: -0.091 s; minor: -0.l42 s, Q1: -0.248 s, Q3:

-0.012 s) to a maximum of 0.277 s (major SNEs, Q1: 0.199 s, Q3: 0.350 s; minor: 0.273

s, Q1: 0.193 s, Q3: 0.353 s; Figure 4.7 B). The delays last for an average of 0.040 s

(major SNEs, Q1: 0.016 s, Q3: 0.061 s; minor: 0.057 s, Q1: 0.028 s, Q3: 0.098 s).

Figure 4.8 –Number of triangles participat-
ing in SNEs. (A-B) Histograms of the number
of triangles (A) and the number of consecutive tri-
angles (B) participating in minor (blue) or major
(green) SNEs.

The mean of the average delays is close to

0. This indicates that in the large majority

of SNEs, the direction of the SNE cannot

be determined clearly as APs propagate

between triangles in both directions. Al-

ternatively, it suggests that SNEs combine

many fast and some slow inter-triangular

AP propagations into the direction of the

triangle tips. In any case, the overall pos-

itive nature of the average delays means

that the preferred AP propagation direc-

tion towards the tip of a CT1 pattern is

preserved even on a large scale.

The duration of SNEs in neuroCapTiH

structures shows a distribution that is al-

most the reverse of the average time delays

(Figure 4.7 D). Its median is at 0.45 s (Q1:

0.38 s, Q3: 0.48 s) for both minor and ma-

jor SNEs. As the maximum duration of a SNE is limited to 0.5 s due to the detection
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method using a window of this size, the majority of SNEs are almost as long as this

maximum duration. Interestingly, the duration of minor SNEs is similarly distributed as

that of major SNEs, indicating larger delays between the (fewer) individual neurons par-

ticipating in such SNEs. This is only slightly represented by a small shift in the average

and minimum delays distribution (compare blue and green lines in Figure 4.7 A,C). In

conclusion, neurons in neuroCapTiH structures exhibit mostly forward propagating SNEs

that move slower when containing fewer neurons.

How far do these SNEs move through the whole neuroCapTiH pattern? Minor SNEs

span in total a median of 5 triangles (Q1: 3, Q3: 6; Figure 4.8 A) while major SNEs

span a median of 6 triangles (Q1: 4, Q3: 8) and up to 11 triangles. The number

of consecutive triangles is lower (minor: 2, Q1: 1, Q3: 4; major: 4, Q1: 2, Q3: 5,

also up to 11; Figure 4.8 B) than the total number. A reason for this could be that

not 100% of cells express GCaMP6f, therefore providing the basis for some hidden ac-

tivity. Alternatively, some axons might span multiple triangles, or some random cal-

cium events in an uncorrelated triangle could be occurring simultaneously with the SNE.

The number of active triangles seems to be correlated to the number of cells growing on

the substrate. Significantly more cells grow on substrates that exhibit activity of more

than 6 triangles (73.0, Q1: 69.0, Q3: 83.5; Figure 4.9 A) than on substrates with 6 or

less triangles (54.0, Q1: 37.0, Q3: 65.0). However, when excluding neuroCapTiH patterns

with less than 10 cells growing outside of the pattern, the number of cells leading to more

active triangles is not significantly higher anymore (> 6: 63.5, Q1: 58.0, Q3: 88.5; ≤
6: 54.0, Q1: 37.0, Q3: 60.0). This shows that neurons growing in the defined triangular

modules within a neuroCapTiH pattern generate SNEs of different sizes depending on the

intrinsic connectivity of the network. This intrinsic connectivity can be governed by the

connections between the triangular modules (Okujeni and Egert, 2019) or the presence of

certain neuron types such as hub cells (Cossart, 2014). On the contrary, the size of SNEs

in networks that grow in a less modular fashion depends more on the size and/or density

of the network than on other connectivity properties (Biffi et al., 2013).

To sum up, neurons grown in neuroCapTiH patterns do not exhibit full circulating APs

as claimed for example by Feinerman et al. (2008). However, the modular structure
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and ability to track individual neurons to specific triangles provides a good system for

investigating SNE initiation and propagation through multiple microcircuits. Therefore,

I next investigated this pattern using an all optical system for stimulation and recording.

Figure 4.9 – Influence of cell count on SNEs. (A)-B Comparison
of the cell number in neuronal networks growing in neuroCapTiH patterns
showing a maximum number of active triangles larger, or smaller or equal
than 6 for all patterned networks (A) or only those with fewer than 10 cells
growing outside the pattern (B). The cell count is only significantly different
between smaller and larger SNEs in patterns with many cells growing outside
of the pattern. The Mann-Whitney-U test was used to determine significance.
Asterisks and boxplots explained in section 2.6.
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4.4 Interlude - Establishing an All Optical Recording and

Stimulation System

Can individual triangles elicit SNEs, and how far are these SNEs able to travel through

the neuroCapTiH structure as compared to spontaneous ones? To answer these questions,

I established a double optogenetic system using the GECI jRCaMP1b and the actuator

ChR2(H134R) labeled with GFP (ChR2-GFP; section 2.2.4; Figure 2.9). Such a system

was rarely used in in vitro studies before (see Introduction), and therefore posed some

challenges.

To ensure proper functioning of both optogenetic tools, I tested the proteins separately in

unpatterned, random neuronal networks grown on PLL-coated glass coverslips. Calcium

imaging of neurons transduced only with jRCaMP1b (section 2.4.3, excluding stimulation)

showed individual and concerted calcium events in neurons throughout the whole substrate

(an exemplary region is shown in Figure 4.10 A). Whole-cell patch-clamp (current clamp)

of neurons transduced with only ChR2-GFP revealed that normally-shaped APs could

reliably be evoked by 473 nm laser pulses of 50-150 ms duration (an exemplary trace is

shown in Figure 4.10 B; see also section 2.4.4). In voltage-clamp mode, photocurrents of

around -125 pA could be elicited, which is a physiologically relevant value for excitatory

currents (Deisseroth and Hegemann, 2017).

As both proteins were introduced into the cells via AAV-mediated transduction, the com-

bination may pose some stress to the neurons. Therefore, an optimal multiplicity of

infection (MOI) for both AAVs had to be found that did not prevent the experiments due

to low expression levels while at the same time minimizing harm to the cells. A low MOI

of ChR2-GFP (0.33× 105 GC/cell) combined with a high MOI of jRCaMP1b (5.86× 105

GC/cell) at a transduction on the same DIV yielded most active cells (cells displaying

calcium events), comparable to expression of only jRCaMP1b (Figure 4.10 C). This MOI

is calculated using the seeding density of cells, and on patterned substrates many cells

die and/or disattach after seeding. Therefore, the determined MOIs were down-scaled to

0.25 × 105 GC/cell for ChR2-GFP and 4.395 × 105 GC/cell for jRCaMP1b on patterned

substrates.
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Figure 4.10 – Optical stimulation and recording
via optogenetic constructs. (A) Selected frames of
a calcium imaging movie recorded from neurons only
expressing jRCaMP1b. Green circles highlight active
neurons. (B) Voltage (blue) and current (red) traces
recorded during current-clamp (blue) or voltage-clamp
(red) experiments. Green vertical bars at the top
represent laser stimulations. The violet box magni-
fies the stimulus response. (C) Comparison of the
number of active neurons at different MOIs of AAVs
containing jRCaMP1b (red) and ChR2-GFP (green).
DIV7 and DIV14 in the middle experiment indicates
the transduction days for this experiment. All oth-
ers were transduced at DIV11 (see also section 2.2.4).
All cultures were recorded at DIV20. (D) Expression
efficiency of the different constructs. Box plots are
explained in section 2.6.

Next, the expression efficiencies of jR-

CaMP1b, ChR2-GFP, and both in

the same neuron were checked. For

this, the ratio of the number of neu-

rons expressing the respective pro-

tein(s) and the number of neurons

labeled by an antibody against the

neuronal marker neurofilament H (see

section 2.2.6) was calculated. The

cells were counted automatically using

the background subtraction, thresh-

olding, and Analyze particles plu-

gin in Fiji(Schindelin et al., 2012).

The expression levels were deter-

mined on patterned substrates with

fComInput patterns (see Chapter 5

and Figure 5.1 B). Expectedly, expres-

sion levels of the individual proteins

are higher (ChR2-GFP: 0.84, Q1: 0.75,

Q2: 0.96; jRCaMP1b: 0.92, Q1: 0.66,

Q3: 1.05) than of both proteins to-

gether (0.65, Q1: 0.52, Q3: 0.89; Fig-

ure 4.10 D). This difference is not sta-

tistically significant. No expression

level differs significantly from 1.00 al-

though of course all are in fact lower

than 1.00. The theoretical probabil-

ity of a double transduction based on

the single protein efficiencies is 0.84×
0.92 = 0.77. Therefore, the median of

0.65 is even closer to this probability
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of 0.77 than to 1.00. Due to inhomogeneities in and the inefficiency of immunocytochem-

istry, these expression levels are just rough approximations. However, they demonstrate

clearly that the expression levels are very high, and the majority of neurons expresses both

proteins.

Figure 4.11 – Stimulation and calcium events of 5 neurons in double-transfected cul-
tures. (A) Neurons on unpatterned substrates expressing jRCaMP1b (white) depicted as a maxi-
mum intensity projection of a calcium imaging movie. Active neurons are labeled with unique IDs,
which correspond to B. Stimulated neurons are marked with crosses (color corresponds to B). (B)
Normalized (see section 2.4.2.1) mean intensity traces of all neurons in A.
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Next, I tested if stimulating such double-transduced neurons on unpatterned substrates 

resulted in a calcium response. To make sure that a potential response was due to stimu-

lation of ChR2-GFP and not an artificial effect of the laser on the intensity of jRCaMP1b, I 

stimulated cultures only expressing jRCaMP1b. Expectedly, these cultures did not show 

any response to the laser stimuli (data not shown). On the other hand, stimulation of 5 

neurons in double-transduced cultures (Figure 4.11 A) resulted in a reliable calcium re-

sponse (see for example green and cyan traces in Figure 4.11 B). As the laser stimulation 

leads to stimulation artifacts in the calcium imaging movie, the post-processing procedure 

described in section 2.4.2.1 had to be extended. This extension introduces an additional step 

for removal of those artifacts (see section 2.4.3.1; indicated as vertical colored bars in 

Figure 4.11 B).

For quantification of this response, the response rate of a neuron was defined as the 

mean number of peaks occurring in a 400 ms window after the end of all stimuli at a 

certain position. Additionally, a peak was only counted as a valid (non-random) 

response if a peak was present in less than 10% of 50 randomly shuffled variants of the

Figure 4.12 – Stimulated neurons respond more often to stimuli than others. (A)
Response rate (mean number of peaks occurring in a 400 ms window after the end of all stimuli at
a certain position) of each active neuron in 3 experiments (exp 1 to 3). A peak was only counted
as a valid (non-random) response if a peak was present in less than 10% of 50 randomly shuffled
variants of the peak train under investigation. Colored horizontal bars represent the stimulated
neurons. If no bar is present, the stimulated neuron did not express jRCaMP1b. (B) Comparison
of the the categories of all neurons depicted in A. Mann-Whitney-U yielded p < 0.001.
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peak train under investigation. Thus, the mean response rate of neurons with a very

high firing rate, and therefore a high probability of falsely identifying a random peak as

a response, was downscaled. In all three experiments, at least some stimulated neurons

exhibited high response rates (>0.5) as compared to the rest of the neurons (Figure 4.12

A). However, some stimulated neurons did not seem to respond strongly to the stimuli

(compare experiments 2 and 3 in Figure 4.12 A). This may be due to a low expression level

of ChR2-GFP (unlikely, as neurons with strong GFP fluorescence were chosen), a reduced

activity due to a very strong expression of both optogenetic proteins, or a low expression

level of jRCaMP1b. Some stimulated neurons are not measurable as they only express

ChR2-GFP but insufficient amounts of jRCaMP1b (e.g. violet and yellow in experiment 2,

or orange and violet in experiment 3). All in all, when comparing the rates of all stimulated

neurons (0.345 peaks/stimulus, Q1: 0.118; Q3: 0.450) with the rates of all others (0.034

peaks/stimulus, Q1: 0.000; Q3: 0.077), they are on average significantly higher in the first

group (p < 0.001; Figure 4.12 B). In conclusion, these first tests on unpatterned substrates

show that the all optical system is suitable to elicit neuronal responses recordable with

calcium imaging.
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4.5 neuroCapTiH - Evoked activity dynamics

Figure 4.13 – Optical stimulation and recording of neurons in neuroCapTiH pat-
terns. (A) Fluorescence micrograph of neurons expressing jRCaMP1b (red calcium indicator)
and ChR2-GFP (GFP-tagged light sensitive cation channel) grown in a neuroCapTiH pattern on a
GLYMO-treated glass substrate (see section 3.1.1.1). (B-D) Three times the same phase contrast
micrograph of the same neurons as in A with marked stimulation locations of the p (B), t (C),
and test (D) stimulation routines (see also section 2.4.3). Regions of interest (ROIs) in B for mean
intensity trace extraction (see corresponding sections in section 2.4) are marked with light blue
numbers that correspond to the neuron ID in E-G. (E-G) Top: Raster plots showing the time
points of individual calcium events as small vertical bars. The amplitude is color coded from blue
(low) over orange to yellow (high). Neuron ID corresponds to the ROIs in B. Vertical bars above
each plot correspond to the blind regions during laser stimulation. In G, the individual stimulation
locations can be separated and are color coded as in D. A magnified region is shown in the inset
(see also Figure 4.11). Bottom: Combined peak rate (see section 2.5.2) of the calcium peak count
within 500 ms time windows. The combined peak rate was used for SNE detection. Detected SNEs
indicated by red crosses.
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After establishing a system for an all optical recording and stimulation, I applied this

approach to investigate the behavior of neurons grown in neuroCapTiH patterns upon

stimulation (Figure 4.13 A). Three different stimulation routines were chosen (for de-

tails, see section 2.4.3 and Figure 2.6 C-D): stimulation of individual neurons within the

whole population with 50 ms pulses and a short delay of 95 ms (p; Figure 4.13 B); near-

simultaneous stimulation of three locally confined locations (1-2 triangles) with 5 ms pulse

duration and no delay (t ; Figure 4.13 C); and individual stimulation of three neurons with

50 ms pulse length and a long delay of 500 ms (test ; Figure 4.13 D). All of these stimulation

types were able to elicit some neuronal response (Figure 4.13 E-G; Figure 4.14 A-C).

Figure 4.14 – Stimulation response of individual neurons. Stimulated selected triangles
elicit higher response rates than global stimulation. (A-C) Response rates of each recorded neuron
(ROIs in Figure 4.13 B) for the p (A), t (B), and test (C) stimulation routines. The size of the
red circles correlates with the response rate. (D-E) Comparison of the mean response rate (D;
mean of the rates displayed in A-C) or the ratio of responding neurons (E; number of responding
neurons divided by the total number of ROIs) for the different stimulation routines. The bootstrap
significance test was used. Asterisks and box plots as explained in section 2.6.

To quantify the neuronal response in a way comparable between stimulation routines,

the number of calcium events elicited by one iteration over all stimulus locations was

determined. The response rate was defined as the mean number of such events over
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all iterations of the stimulus locations, and was normalized to the number of stimulus

locations. Individually stimulated neurons (test) exhibited significantly higher and more

variable response rates (0.09, Q1: 0.05, Q3: 0.14) than neurons stimulated with the t (0.06,

Q1: 0.05, Q3: 0.07) or p (0.03, Q1: 0.02, Q3: 0.03) stimulation routines (Figure 4.14 D).

The p stimulation routine showed the lowest response rates. This difference between test

Figure 4.15 – Arc participation in spontaneous and evoked SNEs. Arc and straight
triangles are participating similarly in SNEs. (A-B) Comparison of the fraction or ratio of minor
and major SNEs starting (A) or ending (B) in arc triangles for the different stimulation conditions.
(C-D) Comparison of the fraction or ratio of SNEs in which at least one straight triangle (C) or
arc triangle (D) participated. The bootstrap significance test was used. Box plots are explained
in section 2.6.

and p/t is probably caused by the higher probability to fail evoking a response in some

neurons when more neurons are stimulated. The difference between t and p indicates that

individual triangles form subnetworks. These subnetworks may act as modules with an

increased response rate upon stimulation of other neurons in the same triangle (see also

Figure 4.16 C and D). Alternatively, the higher synchronicity of the t stimulation routine

evokes the response of a larger subnetwork inducing a SNE-like behavior (see following

section). At the same time, a smaller fraction of recorded neurons responded to test
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stimulation types (0.60, Q1: 0.42, Q3: 0.65) as compared to p (0.73, Q1: 0.70, Q3: 0.74)

or t (0.73, Q1: 0.66, Q3: 0.78; not significant; Figure 4.14 E). This is to be expected as a

smaller fraction of neurons is stimulated.

4.5.1 The Spatial Structure of SNEs Varies Between Conditions

Are the responding neurons distributed equally through the neuroCapTiH structure? To

answer this question, I determined whether arc and straight triangles participated equally

in SNEs. For spontaneous SNEs monitored in GCaMP6f expressing neurons, no preference

between these categories exists (see also section 4.3.2). The same is true for evoked SNEs.

Figure 4.16 – Distribution of evoked responses over the neuroCapTiH pattern. The
neuronal response is differently distributed through the individual triangles in the neuroCapTiH
networks. (A-B) Comparison of the ratio of responding neurons (A; normalized to the number
of ROIs within the respective triangle) or the mean response rate (B) within each triangle of
the neuroCapTiH networks for the different stimulation routines. Color code corresponds to the
neuroCapTiH sketch in B. The bootstrap significance test was used. Asterisks and box plots as
explained in section 2.6. (C-D) Mean response rate of triangles before and after the stimulated
triangles in test (C) and t (D) stimulations. The respective triangles are color coded as indicated
for one exemplary region out of the three stimulated regions in a sketch in C or D. All three
stimulated regions are indicated with violet crosses. For all comparisons, the bootstrap significance
test was used. Asterisks and box plots as explained in section 2.6.
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SNEs start and end in arcs almost equally with the exception of p-induced SNEs (described

below; Figure 4.15 A, B; Table A.1). All conditions are not significantly different from 0.5

(determined by one sample t-test). An arc and a straight triangle participate in almost

every SNE evoked by the p and t stimulation routines (Figure 4.15 C, D; Table A.1). This

high ratio is achieved because these routines directly stimulate cells in both categories.

Spontaneously occurring and test-induced SNEs do not always include a straight and an

arc triangle (see especially significant difference in Figure 4.15 D) as no or only three neu-

rons are stimulated randomly. in test stimulations, one of the stimulations could therefore

fail to evoke a response, thus biasing participation. However, these ratios are still not

significantly different from 1.0. Only for (especially major) SNEs induced by p stimula-

tion the equality between arc triangles starting and ending SNEs is slightly skewed. Here,

the ratio of arc triangles starting a SNE seems to be lower than the ratio of arc triangles

ending a SNE. This is probably caused by the nature of the stimulation, as this always

started in a straight triangle (top left). Although this imbalance is not reflected by the

ratio of neurons responding in the individual triangles (violet to blue straight triangles

in Figure 4.16 A), it is reflected by a slightly, not significantly lower mean response rate

of responding neurons in the first stimulated triangles (violet to blue straight triangles in

Figure 4.16 B). This lower mean response rate indicates that some of the responses from

the first stimulated triangles are hidden within the blind period during stimulation. Thus,

it is more likely that straight triangles begin a SNE while arc triangles (orange to red in

Figure 4.16) end it although starting and ending fractions do not differ significantly from

a 0.5 (chance level) ratio (see above). All other conditions show no such imbalance.

However, t stimulation induces uneven distributions of the ratio of responding neurons

in each triangle (Figure 4.16 A). As the triangles stimulated in this routine are selected

randomly but depend on the growth and expression of the network, some triangles are

under-represented. The same is true for the uneven, albeit not significantly different, dis-

tribution of the mean response rates when stimulating with the t or test routine. Therefore,

I calculated the mean response rate distribution centered on the stimulated region in these

stimulation routines, excluding the response of actually stimulated neurons. The mean

response rate of the stimulated triangles in the test routine expectedly is highest (0.050,
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Q1: 0.000, Q3: 0.103; Figure 4.16 C). Response rates in the downstream triangles (tri-

angle 1: 0.028, Q1: 0.021, Q3: 0.067; triangle 2: 0.000, Q1: 0.000, Q3: 0.013) are only

slightly lower than in the stimulated triangles. On the other hand, response rates in the

preceding triangles are more strongly reduced (triangle 1: 0.008, Q1: 0.000, Q3: 0.017;

triangle 2: 0.000, Q1: 0.000, Q3: 0.004) as compared to stimulated triangles. A similar,

but even clearer, distribution is seen for the t stimulation routine. The mean response

rate in the stimulated triangles is highest (0.900, Q1: 0.850, Q3: 0.950). Downstream

triangles respond significantly more reliably (0.367, Q1: 0.317, Q3: 0.511) than preceding

triangles (0.080, Q1: 0.043, Q3: 0.122). This not only demonstrates that APs propagate

towards the tip of the triangle (see section 4.5.3) but also that the response distribution is

not as homogeneous as indicated by the average response in each triangle (Figure 4.16 B).

Thus different stimulations clearly activate different subnetworks, which are most strongly

functionally connected in individual triangles.

4.5.2 Different network stimulation elicits different types of SNEs

In the previous section, I determined that stimulation was able to elicit a neuronal response

that was distributed equally through the neuroCapTiH network. Next, I checked the

effect of different stimulation routines on the measures calculated for spontaneous activtiy

recorded via GCaMP6f-based calcium imaging (see section 4.3). Interestingly, the rate of

spontaneous SNEs is much lower than in the previous experiments with GCaMP6f (major

SNEs: median, Q1, Q3: 0.00 SNE/s; minor: 0.01 SNE/s, Q1: 0.00 SNE/s, Q3: 0.01 SNE/s;

Figure 4.17 A) albeit still in the range of reported values (Wagenaar et al., 2006b). The

dual AAV transduction and resulting expression under the Synapsin promoter probably

consumes cellular resources usually reserved for the production of growth- and synapse-

related proteins. Moreover, neurons in neuroCapTiH patterns were grown on GLYMO-

treated substrates (see section 3.1.1.1) with less cells growing outside of the actual pattern.

As described in section 4.3 (Figure 4.9), the number of cells growing outside increases the

number of large SNEs with the disadvantage of losing the clearly defined modularity of

neuroCapTiH networks. Therefore, these networks are very sparse, exchanging only a few

maturation-driving signals of biological and electrophysiological nature. Thirdly, at least
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imaging with chemical green fluorescent calcium indicators like fluo-4 increase network

activity as an artifact (Ghirga et al., 2020). This could also be the case for imaging

the green fluorescent GCaMP6f. In combination, the sparse network, few outlying cells,

and the dual expression system can lead to a slowed maturation process. Nevertheless,

Figure 4.17 – Rate and duration of spon-
taneous and evoked SNEs. (A-B) Compar-
ison of the rate (A) and duration (B) of minor
and major SNEs. The duration was defined as
in Figure 4.7 D. The rate and duration can serve
as an indicator for the efficiency of SNE gener-
ation and coherence individual events within an
SNE, respectively. The bootstrap significance
test was used. Asterisks and box plots as ex-
plained in section 2.6.

the relative effect of the different stimulation

routines on neuroCapTiH neuronal networks

can be investigated.

Even though the spontaneous condition does

not show many SNEs, minor and major

SNEs are evoked very reliably during stim-

ulation. On the background of the strongly

reduced spontaneous SNEs, this evoked ac-

tivity gains additional significance. As op-

posed to the mean response rate, SNEs are

elicited most strongly in networks stimu-

lated by p and t stimulations. On the other

hand, test stimulation yielded similarly low

rates (major: median, Q1, Q3: 0.00 SNE/s,

mean: 0.01 SNE/s; minor: 0.08 SNE/s, Q1:

0.08 SNE/s, Q3: 0.13 SNE/s) as witnessed

in spontaneous activity (Figure 4.17 A). For

minor events, even the relation between p

(2.50 SNE/s, Q1: 2.38 SNE/s, Q3: 3.06

SNE/s) and t (1.63 SNE/s, Q1: 0.88 SNE/s,

Q3: 2.07 SNE/s) stimulations is reversed as

compared to the response rate with p eliciting most SNEs. However, major events are

elicited equally well by p (0.50 SNE/s, Q1: 0.38 SNE/s, Q3: 1.00 SNE/s) and t (1.00

SNE/s, Q1: 0.61 SNE/s, Q3: 1.88 SNE/s) stimulations, with a trend towards higher rates

for t stimulations.

The duration of minor SNEs is similar throughout almost all conditions (spont: 0.382 s,
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Q1: 0.272 s, Q3: 0.413 s; p: 0.363 s, Q1: 0.277 s, Q3: 0.422 s; test : 0.352 s, Q1: 0.251

s, Q3: 0.417 s). Only t stimulation (0.081 s, Q1: 0.040 s, Q3: 0.171 s) leads to shorter

SNEs (Figure 4.17 B). In minor SNEs, the direct response of the near-simultaneously ac-

tivated neurons (t) could artificially shorten these SNEs. Major SNEs are also shortest in

t-stimulated networks (0.141 s, Q1: 0.101 s, Q3: 0.242 s), followed by p stimulated (0.362

s, Q1: 0.312 s, Q3: 0.424 s) and finally spontaneously active (0.444 s, Q1: 0.443 s, Q3:

0.463 s) networks. Major SNEs elicited by test stimulation show a similar duration (0.442

s, Q1: 0.442 s, Q3: 0.442 s) to spontaneous but statistical significance cannot be deter-

mined (n < 3). An artificial reduction of the SNE duration for t stimulation by the direct

response of stimulated neurons could also play a role in major SNEs. Yet, the difference

to the other conditions is so strongly pronounced that this explanation is unlikely to be

the solitary reason.

In conclusion, the following theory can be derived from the results regarding major SNEs.

Small, synchronized subnetworks are able to recruit the majority of a network to elicit

a short, global network response. This may provide evidence for the model proposed by

Lonardoni et al. (2017) in which functional communities elicit SNEs. The definition of

functional communities is based on spontaneous activity whereas functional subnetworks

in neuroCapTiH patterns are determined by evoked activity. However, the missing depen-

dence of spontaneous activity on cell number (section 4.3.3) also provides some evidence

for modularity. Many, asynchronously active, individual neurons can also elicit such a

response but the recruitment process of the majority of neurons is slower. Spontaneous

SNEs are slower and rarer than p and t stimulation-induced ones. Probably, evoked SNEs

are skipping the recruitment process induced by some sporadically active pacemaker cells

usually precedes a naturally occurring SNE (Fardet et al., 2018; Gritsun et al., 2010).

Therefore, stimulation immediately recruits many neurons of the network that in turn

recruit more neurons, resulting in more efficient generation of short SNEs.

4.5.3 Evoked SNEs Travel Mostly Forward for up to 11 Triangles

After learning that stimulation can evoke SNEs of different duration than spontaneous

ones, I compared the traveling distance of SNEs withing the different stimulation routines.
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The number of triangles (minor: 3; major: 7; Figure 4.18 A) participating in a spontaneous

SNE is comparable to the results from GCaMP6f-expressing networks (Figure 4.8). The

Figure 4.18 – Number of triangles covered
spontaneous and evoked SNEs. Only minor
SNEs show strong differences in their propagation
length. (A-B) Comparisons of the number of tri-
angles (A) and the number of consecutive trian-
gles (B) participating in minor or major SNEs for
the different stimulation routines. The bootstrap
significance test was used. Asterisks and box plots
as explained in section 2.6.

number of consecutive triangles (minor: 2;

major: 5; Figure 4.18 B) is also compara-

ble. Thus, although the rate of SNEs is

much smaller in the double transduction

system, the distance covered by SNEs is

similar.

All numbers of triangles (p: 7; t : 7; test :

6) and consecutive triangles (p: 5; t : 4;

test : 4) traversed by major SNEs are sim-

ilar to each other. These numbers are

higher (up to 11 triangles triggered by p

stimulation) than the numbers for minor

SNEs. All such differences are highly sig-

nificant except for test stimulations and

the number of consecutive triangles tra-

versed by spontaneous SNEs. In test stim-

ulations, significance tests fail as only one

major SNE, which traveled for 6 triangles

and 4 consecutive triangles, was evoked

by this routine. However, in spontaneous

SNEs case a clear trend is present (com-

pare black boxplots in Figure 4.18 B). Despite the differences in rate and duration of

major SNEs, they follow one of the planned working principles of the neuroCapTiH pat-

tern - the propagation through multiple consecutive triangles in the pattern.

For minor SNEs, significantly more total triangles are participating in SNEs stimulated

by the p routine (5, Q1: 4, Q3: 6) than in SNEs stimulated by the test routine (3, Q1:

2, Q3: 6) or occurring spontaneously. The t routine (5, Q1: 4, Q3: 6) also recruits more

triangles than spontaneously occurring minor SNEs. On the other hand, the amount of
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consecutive triangles is higher in minor SNEs evoked by the p routine (3, Q1: 2, Q3: 4)

compared to all other SNEs (t : 2, Q1: 2, Q3: 2; test : 2, Q1: 1, Q3: 2). Again, this

provides evidence that minor SNEs evoked by stimulation routines are highly influenced

by the calcium activity of the directly stimulated neurons. The p routine activates neu-

rons around the whole pattern, evoking also a higher proportion of neurons in consecutive

triangles. The t routine activates equally many neurons at three triangles but they are not

connected in minor SNEs. The test routine activates three random neurons, not eliciting

spatially long minor SNEs in general. And in minor SNEs spatially close neurons with

many synaptic connections are more likely to exhibit synchronous events outside of major

SNEs than spatially distant ones.

When analyzing the numbers of participating triangles in evoked and spontaneous major

SNEs, the principle of propagating APs through multiple CT1 structures is functional.

As neurons are stimulated in the direction of the triangle tips during all stimulation rou-

tines, the SNE directionality should be forward in evoked SNEs. Thus, the average delays

between triangles within SNEs should be equally positive as in spontaneous events (sec-

tion 4.3.3; Figure 4.7). However, the average delay is lower in major SNEs evoked by t

stimulation than in the other conditions (statistically significant only for the difference

to p; Figure 4.19 A and Table A.2). This behavior is consistent also in the average of

maximum delays between triangles (Figure 4.19 B) but the average of minimum delays is

highest for major SNEs evoked by t stimulation (Figure 4.19 C and Table A.2). Thus,

t stimulation elicits major SNEs with the smallest delays and no clearly definable direc-

tionality as most neurons participating in the SNE are active almost simultaneously. Yet,

all average delays are positive albeit small, indicating a general tendency toward forward

SNEs. This is consistent with the short duration of SNEs evoked by t stimulation.

The delays of minor SNEs behave similar to those of major SNEs. However, in minor

SNEs the average delay between triangles is reduced in SNEs evoked by p stimulation.

This reduction seems to be caused by both longer positive and negative delays as the aver-

age of maximum delays is higher for minor SNEs evoked by p stimulation, and the average

of minimum delays is lower than for the other conditions (see Table A.2). Intuitively, this

suggests a longer duration of such SNEs but the duration of minor SNEs evoked by p is
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Figure 4.19 – Directionality of spontaneous and evoked SNEs. (A-C) Comparisons of
the average (A), maximum (B), and minimum (C) delays between the individual triangles in each
minor or major SNE. The average delay can serve as a measure for the overall direction of the
SNEs in the neuroCapTiH pattern. Maximum and minimum delays indicate the strongest forward
and backward step in each SNE. The bootstrap significance test was used. Asterisks and box plots
as explained in section 2.6.

equal to that of spontaneous minor SNEs and even shorter than spontaneous SNEs for

major SNEs (compare section 4.5.2 and Figure 4.17 B). On the other hand, the average

delays are closer to 0 than for spontaneous minor SNEs, fitting well with the shorter

or equal duration of p-induced SNEs. This indicates that p stimulation evokes different

multi-triangular subnetworks that are all tightly interconnected and therefore elicit very

coherent activity (low average delays). However, when propagation within a SNE skips to

the next of such subnetworks, a larger delay occurs than within subnetworks (large max.

and min. delays). However, all these subnetworks are still functionally linked to each

other, thus not increasing duration of the SNEs.

For the test and t stimulation routines, it is possible to determine the direction of signal

propagation more directly by calculating the mean response rates (i.e. the relative num-

ber of responses of each neuron to a stimulus) in the stimulated and its successive and

120



preceding triangles (see Figure 4.16 C, D). In p, this is not possible as all triangles are

stimulated, and therefore it is not possible to determine if a calcium response was elicited

in a preceding or succeeding triangle. In both stimulation routines (t and test), the suc-

cessive triangles clearly exhibit a higher response than the preceding triangles. Therefore,

calcium events (and most likely APs) are preferably propagated towards the triangle tip.

This further proves the results by Albers and Offenhäusser (2016), and extends them to

multiple triangles instead of just one.

Thus, the delays between triangles provide further evidence that small subnetworks induce

SNEs. Individual neurons evoke SNEs that can also be more coherent than spontaneous

ones. Those SNEs are also very variable as they depend on the ability of all 12 stimulated

neurons to a) respond to a stimulus and b) recruit other neurons into the SNE. Moreover,

special types of neurons such as hub neurons (Cossart, 2014) (see section 2.5.6.1) or leader

neurons (Pasquale et al., 2017) may influence SNE generation differently than others. Ad-

ditionally, small responses might sometimes be hidden in the blind period during laser

stimulation, thus adding variability to the SNE (compare also section 4.5.1).
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4.6 Conclusions and Outlook

The CT1 pattern was developed by Albers and Offenhäusser (2016) to direct axonal growth

and consequently AP propagation in the direction of the triangle tip. By investigating

AP propagation between neurons growing in downscaled CT1 patterns, I found that the

directionality is most likely not preserved in much smaller versions of the CT1 pattern.

This could be due to an increasing linearity of the patterns, failing to prevent backward

growth of axons. On the other hand, neuroCapTiH patterns (in which the CT1 pattern is

implemented) show calcium event propagation with the preferred directionality towards

the triangle tips for up to 11 triangles within SNEs. While being consistent with the re-

sults published by Forró et al. (2018), the neuroCapTiH system seems to show less strong

clustering and therefore allows for an individual neuronal analysis. Moreover, replacing

the arcs in the original neuroCAP design with bent CT1 structures could prevent cal-

cium signals from getting trapped, and allowed them to propagate longer through the

whole pattern. This demonstrates the reliability of CT1 patterns as the calcium signal is

transferred through multiple triangles, even if a full circulation through the neuroCapTiH

pattern was not achieved. A full circle is probably prevented by the constant decrease

in transfer probability due to the bottleneck character of the connecting elements, the

triangle tips. To achieve a neuronal “oscillator” with fully circulating APs, the number

of triangles in the neuroCapTiH pattern could be reduced. To further characterize the

properties of AP propagation in CT1-based patterns, electrophysiological techniques such

as MEA (see also Chapter 3) or patch clamp would be beneficial for a higher temporal

resolution. While MEA recordings were already combined in a system published by Forró

et al. (2018), patch clamp recordings would not be possible in this system relying on closed

microchambers. In combination with the high spatial resolution of calcium imaging, the

properties of APs propagating through multiple subnetworks could be investigated. Such

an investigation was recently conducted by Barral et al. (2019) but only by examining

individual neurons (by patch clamp) in each layer of a multi-layered network.

Furthermore, I could demonstrate that an all optical system could be used to monitor

evoked calcium activity during optical stimulation. By applying this dual optogenetic sys-
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tem to neuroCapTiH patterns, I found that this pattern can be used to investigate certain

properties of neuronal networks and SNE generation. Neurons growing in one triangle

seem to be functionally connected more strongly to each other than to other triangles in

the pattern. This could be a hint that the triangles serve as (functional) neuronal com-

munities although these communities are usually defined based on spontaneous activity

correlations (Lonardoni et al., 2017; Okujeni and Egert, 2019; Tsai et al., 2008). Addition-

ally, I found that activity of multiple neurons in the network induces SNEs that propagate

as far as spontaneous SNEs but are more coherent. The most coherent SNEs are generated

by near-synchronous activity in spatially confined subnetworks (the triangles). This could

fit with the theory that functional communities induce SNEs (Lonardoni et al., 2017).
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Chapter 5

Large populations: investigating

network synchronicity

Neuronal cell cultures can be grown not only in patterns inspired by electrical engineer-

ing (see Chapter 4) principles, but also by those based on biological concepts. The CT1

“diodes” (see section 4.1; Albers and Offenhäusser (2016)) can also be described as small

modules or microcircuits of neuronal networks with a directed output. The anatomical

modularity of neuronal networks has an effect on information processing (Yamamoto et al.,

2016). On the other hand, functional modules were proposed to initiate and steer syn-

chronous network events (Lonardoni et al., 2017). Neurons growing in triangle patterns

are anatomically segregated through the triangle tip, therefore displaying anatomical mod-

ules with separately examinable cells. Such triangle patterns seem to represent functional

modules as well (see Chapter 4). Similarly weak connections as the axons growing through

the triangle tip were shown by Yamamoto et al. (2018) to lead to functionally segregated

networks. By combining patterning and optogenetics, the investigation of the effect of

neuronal activity in small modules on a larger population of neurons can be extended.

This chapter was in part reproduced from the manuscript by Hondrich et al. (In prepara-

tion.).
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5.1 Pattern Design

A downscaled version of the CT1 pattern (75% of original) designed by Albers and Of-

fenhäusser (2016) was used as a starting point (Figure 5.1 A; see also Figure 4.1 B).

This structure (from now on called triangle) was placed upstream of a large population

of neurons (from now on called population; Figure 5.1 B). The population pattern was

Figure 5.1 – Pattern for functional com-
munity investigation. (A) Triangle pattern
with 75% of the size of the CT1 pattern (see
also Figure 4.1 B). (B) Functional community
input (fComInput) pattern, in which a triangle
pattern (A) is placed upstream of a large pop-
ulation of neurons.

based on a rectangle with edge lengths of

1660 µm × 1000 µm. A corner of this rect-

angle was removed in a way to ensure that a)

the triangle tip is perpendicular to the pop-

ulation (to minimize backwards growth (Al-

bers, 2016)) and b) to maximize the distance

between the base of the triangle and the

population. Similarly to the neuroCapTiH

design, the triangle was intended to serve

as an anatomical and functional community.

The highly confined space within the triangle

was assumed to lead to more abundant and

stronger anatomical and functional intercon-

nections within this structure than with the

population (compare also the design used by Yamamoto et al. (2018)). Therefore, the

pattern is termed “functional community input” and will be abbreviated as fComInput.

The whole pattern was designed to fit exactly into the field-of-view of the microscope used

for calcium imaging during optical stimulation (see section 2.4.1.1). On the other hand,

AAVs exhibit a high transduction efficiency (see section 4.3.1 and section 4.4). Thus, a

very large fraction of all cells within the entire investigated system can be monitored with

an extremely high spatial resolution. Additionally, an equally large fraction of cells can

be stimulated optically, also with a high spatial resolution limited by the precision of the

motors of the targeting system and the laser spot size.
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5.2 Stimulus Location and Synchronicity Impact Neuronal

Response
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✘ Figure 5.2 – Optical stimulation and recording of neurons in fComInput patterns.
(A) Fluorescence micrograph of neurons expressing jRCaMP1b (red calcium indicator) and ChR2-
GFP (GFP-tagged light sensitive cation channel) grown in a fComInput pattern on a GLYMO-
treated glass substrate (see section 3.1.1.1). (B-C) Two times the same phase contrast micrograph
of the same neurons as in A with marked stimulation locations of the p long and p simul (B), and
t long and t simul (C) stimulation routines (see also section 2.4.3). Regions of interest (ROIs) in
B for mean intensity trace extraction (see corresponding sections in section 2.4) are marked with
light blue numbers that correspond to the neuron ID in D-G. (D-G) Top: Raster plots showing
the time points of individual calcium events as small vertical bars. The amplitude is color coded
from blue (low) over orange to yellow (high). Neuron ID corresponds to the ROIs in B. Vertical
bars above the raster plots correspond to the blind regions during laser stimulation. In D and F,
the individual stimulation locations can be separated and are color coded as in B and C. For an
exemplary, magnified region of the color code, see the inset in D. Bottom: Histogram (blue) and
combined peak rate (see section 2.5.2) of the calcium peak count within 500 ms time windows.
The combined peak rate was used for SNE detection. Detected SNEs indicated by red crosses.

The dual optogenetic approach for all optical stimulation and recording (see section 4.4)

proved to be reliable for neuronal networks growing in neuroCapTiH patterns and was

therefore also used for the fComInput patterns. About 127 ± 26 neurons (determined by

an immunostaining of NFH, see section 4.4) were growing in well-defined patterns due to

the improved µCP method (section 3.1.1.1). These cells were strongly expressing both

the calcium indicator jRCaMP1b and the GFP-tagged light-responsive ion channel ChR2

(Figure 5.2 A; see section 4.4). To examine the influence of concerted and individual

activity within the triangle and population (see section 5.1) on the network, four different

stimulation routines were used (see section 2.4.3): p long & p simul - individual long or

near-simultaneous (simul) stimulation of neurons in the population (Figure 5.2 B); t long

& t simul - individual long or near-simultaneous (simul) stimulation of neurons in the

triangle (Figure 5.2 C).

5.2.1 Synchronous Stimulation Increases Response Reliability

The response rate of each neuron in the fComInput network in form of calcium peaks within

400 ms after the end of each stimulus was determined as described in section 4.4 and sec-

tion 4.5 (Figure 5.3). The mean response rates of neurons showing any response differ

significantly between all conditions, with t long eliciting the lowest response rates (0.05).

Response rates evoked by p long (0.08) and t simul (0.09) stimulations follow. Finally,

p simul (0.10) induces the highest response rate (Figure 5.3 E). The fraction (or ratio)

of responding neurons to all neurons does not show as strong differences. However, the
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triangular stimulation routines show the lowest ratios (t long : 0.51 peaks/s; t simul : 0.46

peaks/s).

Ratios for population stimulation routines are higher than for triangle stimulations (p long :

0.70 peaks/s; p simul : 0.66 peaks/s; Figure 5.3 F).

Figure 5.3 – Stimulation response of individual neurons. Near-simultaneous stimulations
evoke higher response rates, and triangle stimulation activates fewer neurons. (A-D) Response
rates of each recorded neuron (ROIs in Figure 5.2 B) for the p long (A), p simul (B), t long (C),
and t simul (D) stimulation routines. The size of the red circles correlates with the response rate.
(E-F) Comparison of the mean response rate (E; mean of the rates displayed in A-D) or the ratio
of responding neurons (F; number of responding neurons divided by the total number of ROIs)
for the different stimulation routines. The bootstrap significance test was used. Asterisks and box
plots as explained in section 2.6.

Thus, synchronized activity of neurons elicits a more reliable response than individual

activity in similar numbers of neurons. Moreover, activity in the triangle subpopulation
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does not elicit this response as reliably and not in as many neurons as the population sub-

population. These lower response metrics in the triangle population are a first indication

that the original purpose of the triangle to serve as a SNE-initiating functional community

may not be fulfilled as intended. However, it is an indication that different subnetworks

are addressed by the two stimulation locations.

5.2.2 Functional Separation and Triangle Directionality

Is the triangle exhibiting directionality (as published before by Albers and Offenhäusser

(2016)) and functional separation from the population? To answer this question,

Figure 5.4 – Specific responses in triangle
and population in the fComInput pattern.
Neuronal response correlates with stimulus loca-
tion, and the triangle shows directionality. Com-
parison of the fraction (or ratio) of responding
neurons (A; normalized to the number of ROIs
within the respective triangle) or the mean re-
sponse rate (B) within the triangle (violet) and
population (gray) of the fComInput networks for
the different stimulation routines. The boot-
strap significance test was used. Asterisks and
box plots as explained in section 2.6.

I analyzed the response of neurons specif-

ically growing in the triangle and popu-

lation when stimulating with the different

routines (Figure 5.4). Population stimula-

tions activate most neurons in the popula-

tions (Figure 5.4 A, gray plots; p long : 0.70;

p simul : 0.69). Triangle stimulations ac-

tivate less neurons in the population than

population stimulations (Figure 5.4 A, gray

plots; t long : 0.50; t simul : 0.44). There-

fore, the difference in the overall ratio of

responding neurons (Figure 5.3 F) can be

attributed to this more efficient activation

of population neurons by population stimu-

lations. This indicates a functional separa-

tion of the two subpopulations (triangle and

population). On the other hand, roughly

the same ratio of neurons in the triangle re-

sponds to triangular (t long : 0.60; t simul :

0.83) and population (p long : 0.50; p simul :

0.33) stimulation routines (Figure 5.4 A, vi-
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olet plots). This indicates that directionality of the triangular structure towards the tip

of the triangle and beyond is not preserved in fComInput patterns. One explanation for

this may be that a 75% downscaled CT1 instead of an original CT1 pattern was imple-

mented into the fComInput pattern. Downscaled CT patterns exhibit a slight loss of

uni-directionality in signal propagation (see section 4.2).

However, this loss of directionality is not represented by the mean response rate of neurons

(Figure 5.4 B). The triangle reacts more reliably to triangle stimulations (violet plots;

t long : 0.13; t simul : 0.15) than to population stimulations (violet plots; p long : 0.03;

p simul : 0.09). This indicates that connecting axons from the triangle to the population

form more effective and/or numerous connections than the axons in the opposite direction.

The higher response rate due to near-simultaneous stimulations occurs both in triangles

and populations, recapitulating the overall rates (Figure 5.3 E). Moreover, the evidence

for a functional separation of the triangle and population indicated by the fractions of

responding neurons is reinforced by the mean response rate (Figure 5.4 B). This rate is

increased more in the population (gray plots; p long : 0.08; p simul : 0.10) than in the tri-

angle (violet plots; p long : 0.03; p simul : 0.09) when the population is stimulated. Also,

it is higher in the triangle (violet plots; t long : 0.13; t simul : 0.15) than in the population

(gray plots; t long : 0.04; t simul : 0.07) when the triangle is stimulated. This offers first,

strong evidence that the two stimulation types activate different functional networks of

neurons.
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5.3 SNEs Are Influenced by Stimulus Location and Type

After finding that individual calcium activity was indeed changed in neurons growing in

fComInput patterns upon stimulation with different routines, I investigated the effect of

these stimulations on SNEs (see also section 2.5.2 and section 4.5.2). Pasquale et al.

(2017) showed that evoked SNEs are similar to spontaneous ones in their intra-SNE firing

pattern. Moreover, Lonardoni et al. (2017) could show in simulations that SNEs could be

elicited by stimulation of functional communities in a network.

5.3.1 Synchronized Population Activity Increases SNE Rate and De-

creases SNE Duration

First, I quantified the commonly determined rate, duration, mean inter-peak interval (IPI),

and number of calcium peaks of minor and major SNEs (Fardet et al., 2018; Pasquale et al.,

2008; Teppola et al., 2019). Minor SNEs are defined by a peak participation of 20% to

50% of neurons, major SNEs show a peak participation of more than 50% of neurons.

The time between SNEs was not used as a measure because periodic stimulation leads to

an artificially regular time. SNE correlograms were also not calculated due to the sparse

nature of calcium events. The rate of SNEs can serve as a measure of how efficiently a

certain stimulation can elicit SNEs. On the other hand, the duration, IPI and number

of peaks in a SNE are measures for the coherence of the events within a SNE and of its

internal structure.

The rate of major SNEs evoked by the p simul stimulation routine (0.50 SNE/s) is highest.

Spontaneously occurring SNEs exhibit lower rates (0.00 SNE/s, Q3: 0.00 SNE/s). Simi-

larly low are the rates of SNEs evoked by t long (0.00 SNE/s, Q3: 0.01 SNE/s) or p long

(0.00 SNE/s, Q3: 0.02 SNE/s) stimulation (Figure 5.5 A, right). Major SNEs induced by

t simul stimulation are more frequent (0.00 SNE/s, Q3: 0.44 SNE/s) than SNEs induced

by long stimulations or spontaneously occurring ones, albeit not significantly. The rate

of minor SNEs shows exactly the same behavior but even more pronounced (Figure 5.5

B, left). Thus, synchronized activity in any part of the whole network can reliably elicit

SNEs. However, a more separate subpopulation (the triangle) will less efficiently induce
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SNEs that span the entirety of the neuronal network.

The duration of major SNEs is only significantly reduced in SNEs evoked by p simul (0.24

s) stimulation compared to spontaneous SNEs (0.46 s; Figure 5.5 B, right). A tendency

toward shorter SNEs evoked by t simul (0.46 s) or t long (0.48 s) is also noticeable.

Figure 5.5 – Rate, duration, IPIs, and peak number of spontaneous and evoked SNEs.
(A-D) Comparison of the rate (A), duration (B), inter-peak interval (IPI; C), and number of
peaks within a SNE (D) of minor and major SNEs. The duration was defined as in Figure 4.7
D. The bootstrap significance test was used to compare minor/major SNEs between all conditions
and the same condition between minor and major SNEs. Asterisks and box plots as explained in
section 2.6. (E) Schematic representation of SNEs in different conditions as a summary of B-C,
taking into account duration, IPIs and numbers of peaks. Each vertical bar represents a calcium
peak within a SNE.

A reason for the shorter t stimulations might be, as for the rates (see above), the anatom-

ical separation by the triangle tip. This might induce quicker, spatially confined SNEs

in the triangle. To test whether the anatomical connection between triangle and popu-

lation had an influence on the duration of t-induced SNEs, I measured its correlation to
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the width of the triangle tip in jRCaMP1b and ChR2-GFP fluorescence images of the

networks. However, the width is not correlated to the duration of SNEs in any type of

stimulation (very variable, high Pearson’s correlation coefficients R and insignificant dif-

ferences from a regression slope of 0). Only p long induces major SNEs that are similar

in length (0.46 s) to spontaneous ones. As for the SNE rates, the majority of tendencies

in major SNE durations are reflected in minor SNEs in a more pronounced fashion (Fig-

ure 5.5 B, left). As opposed to major SNEs, minor SNEs evoked by p long stimulation are

shorter (0.43 s) than spontaneous ones (0.45 s) but less so than all others. These durations

are similar to the results in neuroCapTiH structures (Figure 4.17 B) in that synchronous

activity induces shorter SNEs.

To gain more insights into the internal structure of a SNE, I determined the mean IPI

and number of peaks in a SNE and compared them with SNE durations. In major SNEs,

the IPI does not differ significantly between any conditions (Figure 5.5 C, right). How-

ever, major SNEs induced by p long stimulation seem to have longer intervals between

their peaks (0.012 s) than all others. Longer IPIs in combination with a similar duration

suggest a reduction in the number of peaks within a SNE. Indeed, the number of peaks is

(albeit non-significantly) reduced in p long-induced major SNEs (40; Figure 5.5 D, right),

making these SNEs more sparse than spontaneous ones (Figure 5.5 E). The mean IPI

of spontaneous major SNEs (0.011 s) is followed by SNEs induced by t simul (0.009 s),

p simul (0.008 s), and t long (0.005 s). The number of peaks in major SNEs induced by

t simul (42) is also slightly reduced as compared to spontaneous SNEs (44). Major SNEs

evoked by p simul stimulation contain fewest peaks (23), explaining their short duration.

Thus, the duration of these SNEs (Figure 5.5 B, right) is so strongly shortened that a

lower number of peaks still leads to slightly shorter intervals between the peaks. These

SNEs elicited by near-simultaneous stimulation, especially of the population, are there-

fore the most compressed and coherent (Figure 5.5 E). Finally, major SNEs induced by

t long stimulation contain slightly more peaks (67) than spontaneous major SNEs. Their

duration is not as strongly reduced as the duration of SNEs evoked by simul stimulations.

However, the increase in peaks makes these SNEs also more coherent than spontaneous

major SNEs or those induced by p long stimulation (Figure 5.5 E).
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As for the SNE rate and duration, minor SNEs follow the behavior of major SNEs in a

more pronounced fashion with some differences. Minor SNEs elicited by simul stimulation

routines are the most compressed or coherent ones. However, minor SNEs induced by long

stimulation routines do not show the same differences as major SNEs. Both types are just

shorter than spontaneous SNEs (Figure 5.5 B, left) due to a reduced number of peaks

(Figure 5.5 D and E, left). Therefore, the mean IPI is the same as in spontaneous minor

SNEs.

Taken together, all stimulation routines influence SNEs to a certain degree but near-

simultaneous stimulations do so more strongly. The longer duration and greater sparsity

of spontaneous SNEs probably results from the slow pre-phase of the SNE (Gritsun et al.,

2010). In this pre-phase, sporadic neuronal activity slowly creates a neuronal avalanche

(Pasquale et al., 2008), finally leading to a full SNE. Synchronous activity of neurons

more effectively induces this recruitment of a functional network, therefore limiting the

SNE to its main phase. Individual activity probably only “nudges” the network into a

certain direction, skipping some of the stochastic parts in the pre-phase of a SNE. The

more coherent nature of (major) SNEs resulting from triangular individual activity than

from population activity could be evidence for more efficient communication within the

spatially confined triangle. Thus, triangularly addressed connections may be sparser but

more strongly connected. These stronger connections could also lead to an increased num-

ber of peaks recruited to a SNE during synchronous activity. This would be an indication

that the triangle indeed serves as a sort of functional community.

5.3.2 Intra-SNE Event Patterns Differ Between All Conditions

To investigate whether the spatiotemporal pattern of calcium events within a SNE is influ-

enced by the location and type of stimulation, I chose to investigate the edit or Levenshtein

distance between all SNEs (Figure 5.6; see also section 2.5.3). The edit distance is calcu-

lated by determining the number of operations needed to change one string of characters

into another. By assigning a character to each neuron participating in a SNE (and normal-

izing to account for strings of variable length), the spatiotemporal pattern of these neurons

can be quantified. Pasquale et al. (2017) implemented and used the ratio of SNEs with
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a similar normalized edit distance (below 0.05, see section 2.5.3) to compare spontaneous

with evoked SNEs. They found that evoked SNEs resulting from stimulation at different

MEA electrodes are less similar to each other than SNEs evoked at the same electrode.

Figure 5.6 –Edit distances between each SNE in one exem-
plary network. The edit distance was calculated between each
pair of SNEs in all conditions (indicated at the figure axes). A
lower edit distance corresponds to a more similar SNE pair. The
labels min and maj at each condition refer to minor and major
SNEs. Color code corresponds to the normalized edit distance.

However, SNEs elicited by

different stimulations are

still more similar to each

other than different clus-

ters of spontaneous SNEs.

Moreover, the ratio of sim-

ilar SNEs between spon-

taneous and evoked, clus-

tered SNEs was higher than

expected by chance.

The experiments in this

thesis yielded fewer spon-

taneous SNEs (see previous

section and section 4.5.2)

than recorded in the study

cited above. Moreover,

only SNEs in the same net-

work (or experiment) could

be compared to each other due to the differing assignment of characters in differently grown

networks. Therefore, I was not able to effectively use clustering algorithms as in the study

cited above. Additionally, the activity patterns within SNEs are inherently different for

calcium imaging and electrophysiology due to the sparse nature of calcium events (see also

section 1.3.1). However, I did use the edit distance to compare the similarity of calcium

peak patterns of all pairs of SNEs between different conditions (Figure 5.6). For this, the

ratio of similar normalized edit distances (<0.05) was calculated between each condition.

Then, the ratio of similar SNEs between the two conditions was compared with the com-

bined ratios within each of the two conditions (Figure 5.7). Additionally, the mean ratio
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of similar SNEs was determined for SNE character sequences that were randomly shuffled

50 times.

All ratios of similar pairs do not differ from the similarity ratios of randomly shuffled

sequences (compare red and violet triangles for mean values of original and shuffled data,

respectively, in Figure 5.7). Because the sequence of neurons within each SNE is shuffled,

Figure 5.7 – Comparison of the ratio of SNEs with similar activity patterns. Minor,
spontaneous SNEs are different from stimulations while major SNEs are mostly similar. The ratio
of similar SNE pairs between two conditions (blue boxes, on the right side of each comparison)
were compared with the ratio of similar SNE pairs within the two compared conditions (red boxes).
Each comparison between the conditions (blue boxes) was compared to all other such comparisons
within the categories of minor and major SNEs (however, here no significant differences wer found).
The comparison of minor and major SNEs are separated by a dashed vertical line. Mean similarity
ratios of randomly shuffled SNE sequences are plotted as light violet circles, and their mean is
indicated by a violet triangle. The numbers 0.2 and 0.5 refer to the detection threshold of minor
(0.2) and major (0.5) SNEs (see section 2.5.2), and the descriptor “short” is equivalent to “simul”.
The bootstrap significance test was used. Asterisks and box plots as explained in section 2.6.

the similarity of original and shuffled data means that the order of peaks is randomly dis-

tributed in each condition. However, the identity of the neurons within each SNE may still

differ between conditions, which would indicate the activation of variable sub-populations

of neurons. In major SNEs, the differences in similarity ratios between conditions and

within conditions are all insignificant except from the comparison of p long and t simul.

However, this comparison is based on very few data points, as especially long stimulations

elicited extremely few major SNEs per investigated network. Nevertheless, the signifi-

cantly lower similarity of these particular two stimulation routines may be expected as
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they share neither their location nor type. This rather high similarity in major SNEs

between (almost) all conditions (even between spontaneous and evoked SNEs) reinforces

the results published by Pasquale et al. (2017) that stimulation evokes inherent SNEs.

On the other hand, minor spontaneous SNEs differ from most evoked SNEs except for

SNEs induced by t simul stimulation. This indicates that when stimulation (or sporadic

spontaneous activity) fails to initiate a major SNE, the initial neurons that can trigger

such an event do differ between spontaneous and evoked SNEs. Only the major event

that sometimes follows the initial neuronal activation is similar. The difference between

p simul - and p long-induced minor SNEs probably reflect highly conserved subnetworks of

neurons that are activated by either simultaneous or individual activation of neurons in the

population. In the triangle, there is probably more overlap due to the confined nature of

this sub-population. The increase in similarity between spontaneous and t simul -induced

SNEs could be evidence that SNEs elicited (synchronously) in the triangle might be simi-

lar to spontaneous ones. This in turn is a hint that the triangle drives SNEs with a similar

mechanism as spontaneous SNEs. A possible such mechanism would be that the origi-

nal intention of a functional community within the triangle was fulfilled. Alternatively,

minor SNEs induced by the t simul routine could just be more similar to major SNEs

than p simul, as spontaneous and major SNEs are similar (see above and Pasquale et al.

(2017)). This last explanation could also be valid for the increased similarity between

most evoked SNEs.
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5.4 Functional Network Connectivity Is Different Between

Stimulations

After finding changes in SNE generation and behavior, I studied the functional connec-

tivity of the fComInput networks (see also section 1.1.3.2). This functional connectivity

can offer insights into the underlying (emergent) network properties that lead to altered

SNE attributes and individual response characteristics (Shanahan, 2008; Yamamoto et al.,

2018). To conduct this analysis, I used graph theoretical models whose connection strength

was based on a modified generalized transfer entropy (GTE; section 2.5.5) or cross corre-

lation (Xcor; section 2.5.4) between each pair of (normalized) mean intensity traces. With

these graph models, it is possible to determine global connectivity changes during differ-

ent stimulation routines (Figure 5.8). Moreover, the influence of stimulations on special

neurons (such as hub, sink, or source cells) can be determined.

Figure 5.8 – Exemplary functional graph models derived from neuronal activity during
each experimental condition and period in the same anatomical network. The models
are based on modified GTE (section 2.5.5). Directionality of functional connections (or edges; black
lines) is indicated by arrowheads at each line, whereas weight is not indicated for simplicity. Circles
indicate the neurons (or nodes) of the network. Nodes can be either inactive (gray; representing
a neuron with no calcium event in this condition) or active (blue/red). Special types of nodes
can be determined in the network (section 5.4.3). Out of these, hub nodes are depicted in red
as an example. Green arrowheads highlight an exemplary node that has consistent hub node
characteristics in some functional networks of the displayed exemplary anatomical network.
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5.4.1 Average Clustering is Altered in Functional Networks

Global connectivity measures are changed when the information processing within a net-

work is restructured. For example, Yamamoto et al. (2018) showed that the strength of

inter-modular connections within a modular network influences the global efficiency of the

network (see also section 1.1.3.2). Figure 5.8 indicates that the network is in different

Figure 5.9 – Density of the fComInput networks
and their correlations. (A-B) Density of the graphs
based on Xcor (A) or GTE (B). All conditions in A
and B were compared using the bootstrap method but
were not significantly different. (C-D) The correlation
of the global efficiency or clustering coefficient and the
density based on Xcor (C; GEf: R = 0.725; p = 3.58×
10−29; ACC: R = 0.859; p = 6.36 × 10−51) or GTE
(D; GEf: R = 0.789; p = 3.61 × 10−34; ACC: R =
0.923; p = 1.79× 10−65). Box plots and correlation as
explained in section 2.6.

functional states in the different ex-

perimental conditions. The most ob-

vious difference seems to be the num-

ber of edges (black lines in Figure 5.8)

and active nodes (blue and orange cir-

cles in Figure 5.8) in the networks.

The relation between edges and nodes

can be expressed as a measure called

the density of the graph (see sec-

tion 2.5.6). The graph density was

calculated for each stimulation type

and each time period within the stim-

ulation experiments for both vari-

ants of graph construction (Xcor, Fig-

ure 5.9 A, and GTE, Figure 5.9 B).

Although not statistically significant,

functional network densities during

stimulation periods tend to be higher

than during control periods before or

after stimulation. This is reflected in

graphs derived from Xcor (Figure 5.9

A) and GTE (Figure 5.9 B). Only the

stimulation period of the t long rou-

tine (orange boxes in Figure 5.9 A and

B) elicits a slightly different behavior.
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This is in line with the lower response rates of neurons in the population (Figure 5.4 B) and

the whole network (Figure 5.3 E) to this routine. Thus, stimulation acutely increases com-

munication between neurons which is reflected by an increase of functional links between

neurons and leads to shorter and more coherent SNEs (see section 5.3). This communi-

cation seems to be perturbed by the anatomical separation (the triangle tip) of an input

from its target population.

The general tendency in graph density could be related to the anatomical connections in

the network. However, the anatomical connections in fComInput patterns are very dense

so an accurate estimation of the anatomical connections is hard to achieve. Therefore, I

quantified the intensity of a synaptic immunocytochemical marker (synaptotagmin) nor-

malized to the expression of jRCaMP1b to estimate synaptic density withing the network.

This normalized intensity can be compared to the graph density of the different functional

networks and analyzed for correlation. However, this correlation is very low for all dif-

ferent stimulation types and experimental periods. When pooling all functional networks

and comparing them to the respective anatomical synaptic strength, Pearson’s correlation

coefficient is R = −0.13 with p = 0.08 for GTE-based graphs. For Xcor-based graphs

correlation is at R = 0.06 with p = 0.42.

The underlying equations of ACC (Equation 2.12) and GEf (Equation 2.11) suggest that

the density of a network will influence these connectivity measures. GEf relies heavily on

the shortest path length, which varies with density. ACC relies on the number of node

triangles, which should also be reduced in less dense networks. Indeed, the correlation be-

tween density and ACC or GEf is very strong (Figure 5.9 C-D) for graphs based on Xcor

(Figure 5.9 C) or GTE (Figure 5.9 D). Therefore, I investigated the ratio of ACC and GEf

with the density instead of the raw values of ACC and GEf (Figure 5.10). Neither cluster-

ing nor efficiency of the network changes significantly during the different periods (control

before, during stimulation(s), control(s) after, see Figure 2.6 B) of the experiment. How-

ever, the networks were also compared to randomly shuffled graphs with the same number,

weights and directions of edges (but between different neurons). Surprisingly, some net-

work states in fact do display significantly higher ACCs than expected from a random

network. This behavior is most clearly pronounced in the networks during stimulation

141



(or first stimulation in case of simul experiments). ACCs are increased in all conditions

in graphs derived from either Xcor or GTE. Interestingly, the only graph whose ACC is

increased significantly in both graph types (Xcor and GTE) is the one derived from t long

stimulation. Amongst all other conditions, clustering is increased only in either one of the

two construction methods (Xcor or GTE) but not in both of them (as for t long).

Figure 5.10 – Comparison of connectivity measures in different experimental condi-
tions. The graph network models (for a GTE example, see Figure 5.8) were compared for their
ACC (A-B) and GEf (C-D). Measures were derived from graph models based on Xcor (A, C)
or GTE (B, D). The bootstrap significance test was used to compare each condition with each
other condition and with a randomized network with the same number, weights, and directions of
edges. Small, violet vertical bars (one for each condition) indicate the mean of the value expected
for randomized networks. Asterisks and box plots as explained in section 2.6.

Apart from the period during stimulation (during/during 1), ACC seems to be increased

by equal amounts in controls and stimulation conditions, with the after/after 2 control

period showing even lower p-values than the second stimulation phase (after 1) of the

simul experiments. Taken together, this suggests that neurons in general tend to form

functional clusters, i.e. subpopulations or modules of neurons that interact more strongly

with each other, which is consistent with previous findings (Meunier et al., 2010). During

stimulation, the sub-populations activated by the stimulation seem to further increase

clustering (during/during 1). This applies especially if the sub-population is segregated

(t) and individual neurons activate their respective communication partners (t long).
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As opposed to the ACC, GEf is not significantly different from random networks in any

condition although a weak trend towards a decrease can be seen. This is slightly counter-

intuitive as biological networks tend to have small-world properties (Meunier et al., 2010)

with high clustering and high efficiency/short paths. However, in fComInput functional

networks, neurons seem to form functional clusters that do not communicate via specific

projection pathways but with multiple unspecific (and inefficient) connections. Stimulation

seems to increase this behavior.

5.4.2 Intra-Triangle Connectivity is Increased During Stimulation

Functional communities are defined by Lonardoni et al. (2017) as subnetworks of higher

functional connectivity based on spontaneous network activity. To finally determine if

the triangle in the fComInput pattern is a functional community by the aforementioned

definition, I calculated the ratio of the mean functional connectivities of edges only in the

triangle or the population and in the complete neuronal network (Figure A.5). In graphs

based both on GTE (Figure A.5 B) and Xcor (Figure A.5 A), the ratio of the population

connectivity is around 1.0. The ratio of the triangle connectivity is around 0.2 for GTE

(Figure A.5 D) Xcor (Figure A.5 C). This proves that the triangle is probably not serving

as a functional community by the definition of Lonardoni et al. (2017).

5.4.3 Conserved Special Neuron States Indicate Distinct Evoked Com-

munities

Upon qualitative inspection of the functional graphs (Figure 5.8), different stimulation

types seemed to activate different functional subnetworks or communities of neurons.

Thus, I decided to quantify this impression of communities and further investigate the

slight increase in functional clustering in stimulated networks. For this, the behavior of

special nodes within the graph models (see previous section) was determined. The dual

optogenetic system in combination with patterning is optimally suited for such an analysis.

In this system, most neurons in the network are accessible and therefore an investigation

of the role of individual neurons is possible. Such an investigation poses a serious chal-

lenge in a complex environment such as a brain slice or a living brain, and even in a more

143



densely growing and unpatterned neuronal cell culture (Forró et al., 2018; Okujeni and

Egert, 2019; Tsai et al., 2008).

Specifically, I compared functional hub, sink, and source nodes in the different stimulations

and control periods (see section 2.5.6, Figure 5.11 A-C, and Rubinov and Sporns (2010)).

Figure 5.11 – Exemplary graph model with special
nodes. Hubs, sinks, sources, and nodes connected by the
strongest 0.2% of edges (marked in green in the bottom right
graph) in a network model resulting from p long stimulation
during stimulation (see Figure 5.8). Color code is indicated
at the bottom.

Hub nodes are neurons through

which many computational paths

lead. Therefore, they are key

players in the communication of

a network. Sinks integrate in-

formation of many other neurons

and output the integrated signal

to few other nodes (possibly of

coordinating function). Sources

receive only few inputs and dis-

tribute this signal to many other

neurons, thereby exhibiting the

ability to make decisions influ-

encing global network activity.

Hubs, sinks and sources have been pooled as “operational hubs” (Cossart, 2014) before

because in most experimental systems it is impractical to further distinguish between

those sub-classes. Moreover, I compared the strongest 0.5% of edge weights of the graph

models and the nodes participating in these strongest connections (Figure 5.11 D). These

strongest nodes probably contribute most to information processing of the network al-

though also weak connections can serve essential computational functions (Meunier et al.,

2010). All of these nodes can vary in their identity depending on the network state and

the active subnetwork or community of neurons. As such variable elements, they are not

to be confused with anatomical neurons. Therefore, I will refer to these special graph

nodes as special neuronal or neuron states and not as neurons. For example, a neuron

may occupy a “hub” state when the network is stimulated in one specific way but not

occupy any special state when the network is not stimulated.
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Figure 5.12 – Numbers of special neuronal states and their relation to graph density.
(A-B) Correlation of the absolute number of special neuronal states and the graph density for
GTE (A) or Xcor (B) weight estimation. The type of special neuronal state is indicated on
the y-axes. Calculations of R- and p-values (see plots) are explained in section 2.6. (C-D)
Normalized numbers of neuronal hub states in the different experimental conditions and periods.
The normalized number of hub states is the ratio of absolute number and density, and is based
on weights estimated with GTE (C) or Xcor (D). The label of the y-axis in C applies also for D.
Different colors of data points indicate different experimental conditions. The bootstrap test did
not show significant differences. Asterisks and box plots as explained in section 2.6.

5.4.3.1 The Number of Special Neuron States does not Vary

Do stimulations induce variations in the number of special neuronal states? To answer this

question, I first compared the absolute numbers of neurons to the density of the graphs.

Comparably to ACC and GEf, the derivation of special neuronal states suggests that it

is highly dependent on the number and types of connections in the graph (e.g. for hub

nodes, see Equation 2.9). Indeed, the correlation between sink and source states and the
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density is very high. Neuronal hub states do not depend as strongly on the density of

the underlying graph (Figure 5.12 A-B). The number of neuronal states participating in

the strongest connections of a graph shows the weakest correlation to the density. This

behavior is independent of the method of weight estimation, i.e. GTE (Figure 5.12 A)

or Xcor (Figure 5.12 B). The absolute number of special neuronal states varies (data not

explicitly shown, compare Figure 5.12 A-B). However, the ratio of these numbers and the

density does not vary between conditions and is not different from the numbers of special

neuronal states in randomly shuffled graphs. An exemplary comparison for neuronal hub

states is shown in Figure 5.12 C and D but other special states follow similar trends

(data not shown). These unaltered numbers of special states indicate that the general

mechanism of information processing is similar throughout each condition. However, the

identity of these key network elements might be different.

5.4.3.2 Special Neuron State Identities are Similar in Same-Location Stimu-

lations

The neuronal networks in fComInput patterns differ between experiments. Neuronal cul-

tures are derived from different progenitor cells and form different networks within the

boundaries of the pattern. To compare the special neuron states between such completely

different network architectures with each other, I determined the ratio of equal special

neuronal states between experimental conditions (e.g. p long-during vs. t long-during).

More specifically, I only compared all periods within one stimulation routine (e.g. all pe-

riods within p long) and all stimulation routines during one period with each other (e.g.

all “before” control periods in p long, t long, etc...). This ratio was calculated between

the number of equal special neuronal states (interception of the sets of states) and the

number of all unique special neuronal states of the compared conditions (union of sets of

states). For each original graph (e.g. p long-during), the same ratios were calculated for

the special neuronal states of 50 randomly shuffled graphs based on the original graph

(see section 2.5.6). Afterwards, the average over all 50 randomly shuffled graphs for each

original graph was calculated. The large majority of these ratios is not significantly dif-

ferent from the random ratios (a comparison of only neuronal hub states derived from
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GTE-based graphs as an example for all states - sinks, sources, strongest connections - is

shown in Figure 5.13 A). However, the higher ratios in each distribution (the upper parts

Figure 5.13 – Ratios of equal hub nodes for GTE-based graphs. All ratios (A) and
only ratios > 0 (B). B therefore shows only ratios of graphs sharing at least one hub node/state.
Blue horizontal lines are the mean ratios derived from 50 randomly shuffled graphs with the same
number of nodes and edges and the same, but shuffled, edge weights. The x-axis labels in B also
correspond to A. The bootstrap test was used to compare the ratios with the mean ratios derived
from 50 randomly shuffled graphs. Asterisks and box plots as explained in section 2.6.

of the box plots) seem to differ rather strongly. Therefore, I re-analyzed the ratios only

for those graphs that shared at least one respective special neuronal state (ratios > 0;

Figure 5.13 B for hub states derived from GTE-based graphs). The ratios derived from

randomly shuffled graphs were treated equally. As suspected, the ratios of similar graphs
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differ more strongly (and sometimes statistically significantly) from the random ratios

(Figure 5.13 B) than the ratios including completely dissimilar graphs (Figure 5.13 A).

Figure 5.14 – Similarity and differences in hub nodes between different stimulation
routines and periods. (A-B) Comparison of equal hub nodes all periods within one stimulation
routine (lines within each of the four corners) and all stimulation routines during one period (lines
between different corners). Conditions with similar hub nodes are indicated in A and conditions
with dissimilar hubs nodes in B. Hub nodes were determined in graphs based on GTE (blue lines
in A) or Xcor (red lines in A). Violet lines indicate similarity in both graph types. (C-D) The
same comparison as in A-B but only between the actual stimulation periods (“during”). Color
code in C as in A.

Thus, between all conditions that do not rely on completely different neurons to be in

a special state some are more similar to each other than others - they share more equal

special neuron states than others. To make the results more comprehensible, I extracted

all comparisons for all special neuronal states (hubs, sinks, etc...) that showed significantly

higher ratios than in random graphs. These extracted most similar conditions with respect
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to neuronal hub states are connected by a line in Figure 5.14 A (blue lines: graphs based

on GTE, red: Xcor, violet: both). The inverse of this extraction, i.e. graphs that are

dissimilar with respect to hub states in graphs based either on GTE or on Xcor, is displayed

Figure 5.15 – Similarity of special nodes between different stimulation routines during
actual stimulation. The same comparison shown in Figure 5.14 C for hub nodes (A), sink nodes
(B), source nodes (C), nodes participating in the 0.5% strongest edges (D), and the strongest
edges themselves (E). A is a duplicate of Figure 5.14 C.

in Figure 5.14 B. Most of the control periods (e.g. “before” or “after”, 74%) share many

hub states (Figure 5.14 A), whereas the minority of control periods shares sink states

(33%), source states (37%), nodes participating in strongest edges (41%), or strongest
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edges (19%; Figure A.3 B-E). A possible explanation for this discrepancy between hub

and all other states is of a rather technical nature. By definition, hubs are more robust

to changes in the overall network architecture as they are determined by the number of

shortest paths running through these particular nodes. On the other hand, the other

special nodes depend only on their direct neighbors. If individual functional connections

are changed, this might therefore change the identity of sinks, sources and nodes with

strongest edges more easily than that of hubs. This explanation implies that the sponta-

neous activity does indeed rely on conserved computational pathways (represented by the

Figure 5.16 – Exemplary correlations for the ra-
tios of equal hub nodes and the ratio of these
equal hub nodes that are also stimulation sites.
Ratios are plotted for all comparisons between condi-
tions (A-B) and only periods during stimulation (C-D).
Graphs were derived either based on GTE (A,C) or Xcor
(B, D). Different colors of data points indicate different
experimental conditions and periods. Correlation calcu-
lations are described in section 2.6.

hubs) in many cases. SNEs con-

tribute strongly to weight estima-

tion via GTE and Xcor (see sec-

tion 2.5.5 and section 2.5.4). There-

fore, the variability of the networks

with some stable pathways at its

core could also explain why the

identity of neurons is similar in

about 10% of spontaneous SNEs

(see Figure 5.7).

While the control conditions seem

to correspond with the edit dis-

tance, they do not offer very mean-

ingful insights into the generation

of spontaneous SNEs. Therefore, I

continued by investigating the acute

influence of stimulations on similar-

ity of special neuron states. For this,

I reduced the number of connections displayed in Figure 5.14 A-B to only the periods

during the actual stimulation, thereby excluding the above discussed control periods (Fig-

ure 5.14 C - similar, D - dissimilar). In these simplified visualizations, a pattern is apparent:

triangle stimulations induce hub states that are similar to the states induced by other tri-
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angle stimulations (left-right connections in Figure 5.14 C). On the other hand, population

stimulations induce hub states that are similar to the states induced by other population

stimulations. However, only a few triangle stimulations induce hub states that are simi-

lar to population stimulations and vice versa (top-bottom connections in Figure 5.14 C).

This pattern is consistent throughout all special neuron states (Figure 5.15 A-D). The

consistency of this pattern contrasts the inconsistency of similar conditions in the control

periods (see above), raising the pattern’s significance. Special neuron states are always

similar during stimulations at one location (population or triangle) at least in graphs of

one estimation method. Between stimulations in different locations (top-bottom connec-

tions in Figure 5.15 A-D) similarity is different for each special neuron state type. Only

the strongest edges in a network (Figure 5.15 E) seem to be similar between almost all

conditions. However, even these strongest edges differ between p simul and t simul, and

therefore different stimulation locations. Peculiarly, the ubiquitous similarity in strongest

edges is only valid for graphs based on Xcor, whereas GTE-based graphs lead to almost

completely opposite results (compare red and blue lines in Figure 5.15 E). An explanation

for this disparity could be that Xcor might be more strongly influenced by SNEs because

the large and synchronous intensity fluctuations during a SNE contribute more directly

to this measure than to GTE (see section 2.5.5 and section 2.5.4). As the edit distance

shows that SNEs are rather similar between different stimulation conditions, this might

explain the larger similarity of special neuron states derived from Xcor-based graphs. Nev-

ertheless, the similarity of special neuron states between stimulations at the same location

seems to indicate that the stimulated neurons activate a specific sub-network.

An alternative explanation for these similar networks is that the stimulation of neurons

itself induces special states within these particular neurons. Therefore, I analyzed the

correlation between the ratio of equal special neuron states and the ratio of equal special

neuron states that were also stimulation sites in one or the other compared condition.

More specifically, the second ratio was derived between the number of equal special neu-

ron states that were also stimulation sites and the number of equal special neuron states

in total. The correlation between the two ratios is very low for all special neuron states

and the slope of linear regression did in all but two cases not differ significantly from 0
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Special States Periods Weight Estimation R p

Hubs all GTE 0.05 0.37
Hubs all Xcor -0.01 0.88
Hubs during GTE 0.08 0.47
Hubs during Xcor -0.05 0.59

Sinks all GTE 0.11 0.03
Sinks all Xcor 0.03 0.50
Sinks during GTE 0.11 0.22
Sinks during Xcor -0.03 0.13

Sources all GTE -0.06 0.24
Sources all Xcor 0.06 0.22
Sources during GTE -0.13 0.13
Sources during Xcor 0.13 0.13

Strong Nodes all GTE -0.11 0.02
Strong Nodes all Xcor 0.03 0.47
Strong Nodes during GTE -0.11 0.20
Strong Nodes during Xcor -0.03 0.76

Table 5.1 – All values of correlations between ratios of equal special nodes and the ratio of these
equal special nodes that are also stimulation sites in Figure 5.16.

(exemplary plots for hubs in Figure 5.16; all values in Table 5.1). This is true for graphs

derived from both weight estimation methods (compare Figure 5.16 A and C with B and

D). Additionally, it is also true if comparing all conditions (Figure 5.16 A, B) and only

periods during actual stimulation (Figure 5.16 C, D).

Thus, stimulation of neurons at the same location does actually seem to induce specific

subnetworks. However, these subnetworks must be activated in different fashions, as the

properties of SNEs (section 5.3) and individual neuronal responses (section 5.2) behave

not completely according to these subnetworks. On the other hand, the triangle does not

seem to behave as a functional community during periods of spontaneous activity.
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5.5 Conclusions and Outlook

The fComInput pattern was designed to investigate how activity in a small segregated

population (triangle) of neurons influences a larger population (population) to which the

small population is connected via a directed axonal tract. More specifically, I set out

to investigate the underlying network principles of SNE generation in such a segregated

network. First of all, directionality seems to be preserved to a certain degree. However, it

is not as apparent as for example in neuroCapTiH patterns (see section 4.5).

The individual and concerted (SNE) response of neurons suggest that population stim-

ulation and triangle stimulation activate different subnetworks of neurons. Evidence for

such separate functional (because only apparent when activated) subnetworks also comes

from a high amount of shared neurons that exhibit special functions when stimulating the

network at the same location. Amongst these special neuronal states, hubs are probably

most preserved because they reflect stable information processing pathways in the different

functional networks. Similar hub states are not only shared by functional networks created

through stimulation routines at the same locations but also by a majority of unstimulated

control networks. Hubs are often the connecting elements between clusters of neurons

(Meunier et al., 2010). Therefore, the existence of such shared hubs might also explain

increased clustering, i.e. segregated information processing, of many functional networks,

including - to a lesser extent - unstimulated controls. Functional clustering seems to be

highest in asynchronous stimulations of the triangle (t long), which indicates that the

intended functional separation of the triangle indeed seems to be achieved. The high seg-

regation in asynchronous, triangular stimulations might also explain why communication

between the neurons of the network, measured by the density, seems to be not as strongly

increased for this stimulation as for other stimulation routines. However, the density in

any functional state is not correlated to the synaptic density of the anatomical networks.

The functional separation of subnetworks induced by triangle and population stimulation

can in turn explain other observed effects. Firstly, the rates of evoked individual and con-

certed (SNE) calcium events are lower for triangle stimulations. Secondly, the response

of individual neurons in the population is stronger when stimulating the population than
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when stimulating the triangle. Thirdly, triangle stimulations do (sometimes) not seem to

activate similar neurons during SNEs. Fourthly, SNEs induced by asynchronous triangu-

lar stimulation are slightly more coherent than those induced by asynchronous population

stimulation. A correlation between this coherence and the thickness of the axon bundle at

the triangle tip could not be observed (as could be assumed from the relation of anatom-

ical connection strength and dynamic neuronal richness by Yamamoto et al. (2018)). An

increased coherence in combination with lower response rates indicates that fewer con-

nections are activated more rarely. Such a diversity in neuronal activity was for example

reported by Yamamoto et al. (2018). But if they are activated they very efficiently activate

a (small) subnetwork that leads to a dense SNE.

Apart from the location of stimulation, synchronicity of the stimulation affects neuronal

response (but not the network connectivity) even more strongly. Near-synchronous stimu-

lation elicits more individual and concerted calcium events. SNEs elicited by such stimu-

lations are most coherent. Therefore, directly activating multiple components of a subnet-

work at almost the same time seems to increase efficiency of recruiting more neurons by

introducing a certain redundancy into the activation. Probably, the pre-phase of the SNE

(Gritsun et al., 2010) is skipped entirely by such a stimulation, immediately activating the

main phase with the complete subnetwork participating in a SNE.

Functional communities in spontaneously active networks have been suggested as initia-

tion regions for SNEs (Lonardoni et al., 2017). Although the system in the present thesis,

is not suitable to directly confirm this theory, it adds indirect evidence and extends the

theory towards stimulated events. The system is not suitable because the triangle does

not act as a functional community defined by spontaneous network activity (section 5.4.2).

It provides indirect evidence by a) the different characteristics of SNEs evoked by triangle

stimulation (section 5.3.1), b) the segregation of neuronal responses to different stimula-

tions (section 5.2 and section 4.5.3), and c) the slightly different functional clustering of

individual triangle stimulation (section 5.4.1). Additionally, my results suggest that func-

tional communities can be triggered by randomly selecting neurons in a network. Thus,

the identity of these communities is highly dependent on the inputs certain subnetworks

receive from inside a population and from other populations projecting axons into the
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investigated population. Such a variable nature of modules communicating with other

modules was also reported by Tsai et al. (2008). In fact, in a highly interconnected neu-

ronal network, the anatomical connections seem to play a minor role in defining these

communities although pronounced landmarks, such as the triangle tip bottleneck, have

a certain influence. Although the neuronal identities in large SNEs are mainly similar

(comparable to Pasquale et al. (2017)), the internal dynamics of the SNE depend on the

functional community triggering the SNE, and even more strongly, the synchronicity of

the activity in the triggering functional community.

In the future, the fComInput pattern can be used for further research of neuronal net-

works. By streamlining and simplifying the analysis pipeline, closed-loop experiments can

potentially be conducted (Mosbacher et al., 2020). In this way, the simulations carried

out by Lonardoni et al. (2017) (activating a spontaneously occurring functional commu-

nity) can be replicated experimentally. Moreover, hub nodes or other special states can

be determined in a specific stimulation or in spontaneous activity and afterwards directly

stimulated to investigate their network effect. By determining special nodes like this, they

can also be further examined using the patch clamp technique to determine their exact

firing and subthreshold behavior (similar to Barral et al. (2019)). To gain a deeper insight

into the firing pattern within SNEs induced by different stimulation routines, MEAs with

improved recording or transparency can also be used (see Chapter 3). Moreover, more

stimulation routines can be investigated. For example, high frequency stimulation could

potentially induce neuroplastic effects that would open the field of learning and memory

for this system. Additionally, different promoters for the genetically encoded calcium in-

dicators or actuators can be used to investigate the effect of neuronal subtypes, such as

GABAergic neurons on the observed network events. Furthermore, the pattern itself can

be modified. Firstly, different triangle tip widths can be designed to further investigate

the effect of this bottleneck. Secondly, a second or even third triangle can be introduced

to investigate the effect of the combined input of multiple subnetworks into a large popu-

lation. Thus, further continuing the work in the described system or its modifications can

help to further understand how neuronal networks generate emergent properties used for

higher information processing from individual neuronal activity.
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Conclusions

The research of neuronal networks can help to uncover the basic mechanisms underlying

brain function, discover therapeutic approaches, and improve deep learning algorithms.

Amongst such basic mechanisms of neuronal networks are synchronous network events

and directional signal propagation, which I examined in patterned neuronal cell cultures

using optogenetics. For an improved investigation of such principles, I also refined and/or

optimized different in vitro techniques - patterned neuronal networks, MEAs, and opto-

genetics - used for controlling the behavior of neuronal cell cultures.

Although microcontact printing is a well-established technique for patterning neuronal

cultures, its pattern-to-background contrast had to be optimized by introducing GLYMO

to chemically uncouple the substrate from the patterned coating. Ideally, such reliably

well-defined patterns would be investigated with a combined approach using microelec-

trode arrays as an electrophysiological technique and optogenetic calcium imaging and/or

stimulation. However, the population patterns used in this thesis were not suitable for

simple microelectrode array recordings. Even improving the adhesive properties of gold

electrodes via aminothiols did not result in more reliable recordings. On the other hand,

I could use holey gold as a transparent electrode material with plasmonic properties in

cellular recordings. Holey gold’s plasmonically enhanced transparency is even tunable by

varying the nanohole parameters and could be used as an optical filtering mechanism for

microscopic and optogenetic techniques. Moreover, I could successfully record from pop-

ulation patterns on ONONO-passivated standard nanocavity microelectrode arrays with

reduced autofluorescence. Finally, I could establish a dual optogenetic system for moni-

toring and stimulating a very large fraction of the neurons in a patterned network on the

GLYMO-treated glass.

Using some standard techniques such as patch clamp and some of the above described

improved methodologies, I could set out to investigate network function. For examining

157



action potential propagation in a modular network, I used the downscaled CT1 pattern

as chains of triangles and the neuroCapTiH pattern as a loop of such triangles. Smaller

versions of the CT1 pattern do not seem to share the original CT1’s preference for a di-

rectional action potential propagation towards the tip of the triangle, probably because

of their more linear design. However, in neuroCapTiH patterns action potentials propa-

gate almost through the entire loop with a strong preference towards the triangle tip and

independent of triangle curvature. By reducing the number of triangles in the loop, the

transformation of an evoked action potential passing through multiple neurons could be

investigated in the future by monitoring and stimulating individual neurons in the loop.

Additionally, neuroCapTiH patterns provided evidence that the CT1 triangles serve as

functional communities with a strong intra-triangular response to stimulation.

To further investigate such functional communities, I designed the fComInput pattern, in

which a downscaled CT1 triangle is placed upstream of a larger population of neurons.

Both in neuroCapTiH and fComInput experiments I found evidence that more synchro-

nized neuronal activity leads to more coherent and numerous synchronous network events

than individual, asynchronous activity. On the other hand, these synchronous events can-

not only be generated by the triangle but also, and even more efficiently, by the population.

This could indicate that triangles do not serve as spontaneous functional communities, or

that other functional communities exist in the population that more efficiently generate

network events. On the other hand, the ability to generate network events and the con-

servation of special network nodes when stimulating either of the two randomly chosen

sets of neurons suggests that functional communities can actually be generated when a

(sub)network receives stimuli. These stimuli could be either generated within the network,

e.g. by neuromodulatory events, or without the network, e.g. via projections from another

region.

“How do we think?” Of course I cannot answer this question in this thesis. However, I

could develop or improve a set of methods for investigation of in vitro networks. More-

over, I could use these methods to uncover some of the principles governing synchronous

network events and directional action potential propagation, basic processes involved in

higher brain function.
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Albers, J. and Offenhäusser, A. (2016). Signal Propagation between Neuronal Populations Controlled by Micropatterning.

Front. Bioeng. Biotechnol., 4:, doi: 10.3389/fbioe.2016.00046.

Albers, J., Toma, K., and Offenhäusser, A. (2015). Engineering connectivity by multiscale micropatterning of individual

populations of neurons. Biotechnol. J., 10: 332–338, doi: 10.1002/biot.201400609.

Ali, F. and Kwan, A. C. (2019). Interpreting in vivo calcium signals from neuronal cell bodies, axons, and dendrites: a

review. 7:, doi: 10.1117/1.nph.7.1.011402.

Augustine, G. J., Santamaria, F., and Tanaka, K. (2003). Local Calcium Signaling in Neurons. Neuron, 40: 331–346, doi:

10.1016/S0896-6273(03)00639-1.

Bacakova, L., Filova, E., Parizek, M., Ruml, T., and Svorcik, V. (2011). Modulation of cell adhesion, proliferation and

differentiation on materials designed for body implants. Biotechnol. Adv., 29:, 739–767, doi: 10.1016/j.biotechadv.2011.

06.004.

Bakkum, D. J., Frey, U., Radivojevic, M., Russell, T. L., Müller, J., Fiscella, M., Takahashi, H., and Hierlemann, A. (2013).

Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites. 4:,

doi: 10.1038/ncomms3181.

Barral, J., Wang, X.-J., and Reyes, A. D. (2019). Propagation of temporal and rate signals in cultured multilayer networks.

10:, doi: 10.1038/s41467-019-11851-0.

Bauermeister, C., Keren, H., and Braun, J. (2020). Unstructured network topology begets order-based representation by

privileged neurons. Biol. Cybern., 114:, 113–135, doi: 10.1007/s00422-020-00819-9.

Bazargani, N. and Attwell, D. (2016). Astrocyte calcium signaling: the third wave. Nat. Neurosci., 19:, 182–189, doi:

10.1038/nn.4201.

Bear, M. F., Connors, B. W., and Paradiso, M. A. (2007)a. Synaptic Transmission. In: Neurosci. - Explor. Brain. Editors Lupash,

E., Connolly, E., Dilernia, B., and Williams, P. C., third edition, Lippincott Williams & Wilkins, Philadelphia (PA), Chapter 5,

p. 102 ff. ISBN 0-7817-6003-8.

Bear, M. F., Connors, B. W., and Paradiso, M. A. (2007)b. Phototransduction. In: Neurosci. - Explor. Brain. Editors Lupash, E.,

Connolly, E., Dilernia, B., and Williams, P., third edition, Lippincott Williams & Wilkins, Philadelphia (PA), Chapter 9, p. 292

ff. ISBN 0-7817-6003-8.

Bear, M. F., Connors, B. W., and Paradiso, M. A. (2007)c. The Neuronal Membrane at Rest. In: Neurosci. - Explor. Brain.

Editors Lupash, E., Connolly, E., Dilernia, B., and Williams, P., third edition, Lippincott Williams & Wilkins, Philadelphia (PA),

Chapter 3, p. 51 ff. ISBN 0-7817-6003-8.

Bear, M. F., Connors, B. W., and Paradiso, M. A. (2007)d. The Action Potential. In: Neurosci. - Explor. Brain. Editors Lupash,

E., Connolly, E., Dilernia, B., and Williams, P., third edition, Lippincott Williams & Wilkins, Philadelphia (PA), Chapter 4, p.

75 ff. ISBN 0-7817-6003-8.

Bear, M. F., Connors, B. W., and Paradiso, M. A. (2007)e. Neuroscience: Past, Present, and Future. In: Neurosci. - Explor.

Brain. Editors Lupash, E., Connolly, E., Dilernia, B., and Williams, P., third edition, Lippincott Williams & Wilkins, Philadelphia

(PA), Chapter 1, p. 3 ff. ISBN 0-7817-6003-8.

Benjamin Kacerovsky, J. and Murai, K. K. (2016). Stargazing: Monitoring subcellular dynamics of brain astrocytes.

Neuroscience, 323:, 84–95, doi: 10.1016/j.neuroscience.2015.07.007.

Biffi, E., Regalia, G., Menegon, A., Ferrigno, G., and Pedrocchi, A. (2013). The influence of neuronal density and maturation

on network activity of hippocampal cell cultures: A methodological study. 8:, doi: 10.1371/journal.pone.0083899.

Blau, A., Ziegler, C., Heyer, M., Endres, F., Schwitzgebel, G., Matthies, T., Stieglitz, T., Meyer, J. U., and Göpel, W. (1997).
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J. (2018). Modular microstruture design to build neuronal networks of defined functional connectivity. Biosens.

Bioelectron., 122:, 75–87, doi: 10.1016/j.bios.2018.08.075.

Fricke, R., Zentis, P. D., Rajappa, L. T., Hofmann, B., Banzet, M., Offenhäusser, A., and Meffert, S. H. (2011). Axon guidance of rat
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Luhmann, H. J., Sinning, A., Yang, J. W., Reyes-Puerta, V., Stüttgen, M. C., Kirischuk, S., and Kilb, W. (2016). Spontaneous

neuronal activity in developing neocortical networks: From single cells to large-scale interactions. Front. Neural

Circuits, 10:, doi: 10.3389/fncir.2016.00040.

Luo, X., Xing, Y., Galvan, D. D., Zheng, E., Wu, P., Cai, C., and Yu, Q. (2019). Plasmonic Gold Nanohole Array for Surface-

Enhanced Raman Scattering Detection of DNA Methylation. ACS Sensors, 4: 1534–1542, doi: 10.1021/acssensors.9b00008.
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Schöps, V., Lenyk, B., Huhn, T., Boneberg, J., Scheer, E., Offenhäusser, A., and Mayer, D. (2018). Facile, non-destructive
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Schwaab, D., Zentis, P., Winter, S., Meffert, S., Offenhäusser, A., and Mayer, D. (2013). Generation of Protein Nanogradients

by Microcontact Printing. 52:, doi: 10.7567/JJAP.52.05DA19.

Seo, K. J., Qiang, Y., Bilgin, I., Kar, S., Vinegoni, C., Weissleder, R., and Fang, H. (2017). Transparent Electrophysiology

Microelectrodes and Interconnects from Metal Nanomesh. ACS Nano, 11: 4365–4372, doi: 10.1021/acsnano.7b01995.

Shanahan, M. (2008). Dynamical complexity in small-world networks of spiking neurons. 78:, doi: 10.1103/PhysRevE.78.

041924.

Shaner, N. C., Lin, M. Z., McKeown, M. R., Steinbach, P. A., Hazelwood, K. L., Davidson, M. W., and Tsien, R. Y. (2008).

Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods, 5: 545–551, doi:

10.1038/nmeth.1209.

Sharpe, J. C., Mitchell, J. S., Lin, L., Sedoglavich, N., and Blaikie, R. J. (2008). Gold nanohole array substrates as immuno-

biosensors. Anal. Chem., 80: 2244–2249, doi: 10.1021/ac702555r.

Shein-Idelson, M., Cohen, G., Ben-Jacob, E., and Hanein, Y. (2016). Modularity Induced Gating and Delays in Neuronal

Networks. PLoS Comput. Biol., 12: e1004883, doi: 10.1371/journal.pcbi.1004883.

Shibue, R. and Komaki, F. (2020). Deconvolution of calcium imaging data using marked point processes. PLoS Comput.

Biol., 16: e1007650, doi: 10.1371/journal.pcbi.1007650.

Simitzi, C., Ranella, A., and Stratakis, E. (2017). Controlling the morphology and outgrowth of nerve and neuroglial cells:

The effect of surface topography. Acta Biomater., 51:, 21–52, doi: 10.1016/j.actbio.2017.01.023.

Smetters, D., Majewska, A., and Yuste, R. (1999). Detecting action potentials in neuronal populations with calcium imaging.

Methods A Companion to Methods Enzymol., 18:, 215–221, doi: 10.1006/meth.1999.0774.

Soltanian-Zadeh, S., Sahingur, K., Blau, S., Gong, Y., and Farsiu, S. (2019). Fast and robust active neuron segmentation in

two-photon calcium imaging using spatiotemporal deep learning. Proc. Natl. Acad. Sci. U. S. A., 116: 8554–8563, doi:

10.1073/pnas.1812995116.

Spira, M. E. and Hai, A. (2013). Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol., 8:,

83–94, doi: 10.1038/nnano.2012.265.

Sporns, O., Tononi, G., and Edelman, G. (2000). Theoretical Neuroanatomy: Relating Anatomical and Functional Connec-

tivity in Graphs and Cortical Connection Matrices. Cereb. Cortex, 10:, 127–141, doi: 10.1093/cercor/10.2.127.

Stett, A., Egert, U., Guenther, E., Hofmann, F., Meyer, T., Nisch, W., and Haemmerle, H. (2003). Biological application

166



of microelectrode arrays in drug discovery and basic research. Anal. Bioanal. Chem., 377:, 486–495, doi: 10.1007/

s00216-003-2149-x.

Stetter, O., Battaglia, D., Soriano, J., and Geisel, T. (2012). Model-Free Reconstruction of Excitatory Neuronal Connectivity

from Calcium Imaging Signals. PLoS Comput. Biol., 8: e1002653, doi: 10.1371/journal.pcbi.1002653.

Stringer, C. and Pachitariu, M. (2019). Computational processing of neural recordings from calcium imaging data. Curr.

Opin. Neurobiol., 55:, 22–31, doi: 10.1016/j.conb.2018.11.005.

Takahashi, N., Sasaki, T., Matsumoto, W., Matsuki, N., and Ikegaya, Y. (2010). Circuit topology for synchronizing neurons in

spontaneously active networks. Proc. Natl. Acad. Sci., 107: 10244–10249, doi: 10.1073/pnas.0914594107.

Taylor, A. M., Blurton-Jones, M., Rhee, S. W., Cribbs, D. H., Cotman, C. W., and Jeon, N. L. (2005). A microfluidic culture

platform for CNS axonal injury, regeneration and transport. Nat. Methods, 2: 599–605, doi: 10.1038/nmeth777.
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Appendix A

Additional Figures and Tables
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Figure A.1 – Fabrication process of Holey MEAs. Taken from Hondrich et al. (2019a).
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Figure A.2 – Quality categories 1-5 of patterns. Example micrographs for clarification of
categories quantified section 3.1.1.1.
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Figure A.3 – Similarity special nodes between different stimulation routines. The same
comparison shown in Figure 5.14 A for hub nodes (A), sink nodes (B), source nodes (C), nodes
participating in the 0.5% strongest edges (D), and the strongest edges themselves (E). A is a
duplicate of Figure 5.14 A.

174



Figure A.4 – Autofluorescence of ONONO and HD-8820. Example fluorescence micro-
graphs of MEAs with HD-8820 passivation (A-B) and with ONONO passivation (C-D). ONONO
passivation is covered with an additional metal-oxide layer applied by atomic layer deposition
(ALD). Figure corresponds to section 3.1.2.
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Figure A.5 – Mean connectivity ratio in triangle and population. (A-D) Ratio of the
mean edge weights in the population (A, B) or the triangle (C, D) and the mean edge weights
of the complete network. (A-D) Graphs were based on Xcor (A, C) or GTE (B, D). Figure
corresponds to section 5.4.2. Asterisks and box plots as explained in section 2.6.
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Measure Condition Mi Med Mi Q1 Mi Q3 Maj Median Maj Q1 Maj Q3

Arc Start spont 0.500 0.333 0.750 0.000 0.000 1.000
Arc Start p 0.375 0.300 0.525 0.333 0.000 0.568
Arc Start t 0.750 0.237 0.917 0.388 0.094 0.475
Arc Start test 0.357 0.054 0.500 0.000 0.000 0.000
Arc End spont 0.250 0.000 0.667 1.000 0.000 1.000
Arc End p 0.520 0.510 0.546 0.667 0.518 0.875
Arc End t 0.615 0.250 0.833 0.467 0.177 0.900
Arc End test 0.464 0.107 0.500 1.000 1.000 1.000
Str. Part. spont 1.000 1.000 1.000 1.000 1.000 1.000
Str. Part. p 1.000 1.000 1.000 1.000 1.000 1.000
Str. Part. t 1.000 1.000 1.000 1.000 1.000 1.000
Str. Part. test 1.000 1.000 1.000 1.000 1.000 1.000
Arc Part. spont 1.000 0.667 1.000 1.000 1.000 1.000
Arc Part. p 1.000 1.000 1.000 1.000 1.000 1.000
Arc Part. t 1.000 1.000 1.000 1.000 1.000 1.000
Arc Part. test 1.000 0.732 1.000 1.000 1.000 1.000

Table A.1 – Exact values of arc participation in Figure 4.15. Q1 is the upper, Q3 the lower
quartile, and Med the median. Mi and Maj indicate minor and major SNEs, respectively. Str.
Part. and Arc Part. correspond to Figure 4.15 C and D, respectively

Measure Condition Mi Med Mi Q1 Mi Q3 Maj Median Maj Q1 Maj Q3

Ave. Del. spont 0.080 0.040 0.151 0.022 0.007 0.026
Ave. Del. p 0.056 0.026 0.086 0.032 0.006 0.042
Ave. Del. t 0.008 0.005 0.012 0.004 0.003 0.008
Ave. Del. test 0.101 0.073 0.166 0.032 0.032 0.032

Min. Del. spont 0.040 -0.121 0.101 -0.232 -0.232 -0.201
Min. Del. p -0.121 -0.214 0.000 -0.201 -0.297 -0.121
Min. Del. t -0.020 -0.040 -0.013 -0.040 -0.111 -0.030
Min. Del. test 0.040 -0.075 0.108 -0.101 -0.101 -0.101

Max. Del. spont 0.221 0.121 0.302 0.303 0.271 0.342
Max. Del. p 0.282 0.201 0.362 0.262 0.196 0.343
Max. Del. t 0.040 0.033 0.078 0.070 0.040 0.121
Max. Del. test 0.226 0.146 0.312 0.231 0.231 0.231

Table A.2 – Exact values of delays in Figure 4.19. Q1 is the upper, Q3 the lower quartile, and
Med the median. Mi and Maj indicate minor and major SNEs, respectively.
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