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ABSTRACT
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On the Short-Term Impact of Pollution: 
The Effect of PM 2.5 on Emergency Room 
Visits

In this paper, we study the effect of fine particulate matter (PM 2.5) exposure on Emergency 

Room (ER) visits in Chile. Our identification strategy exploits daily PM 2.5 variation within 

a hospital-month-year combination. Unlike previous papers, our data allow us to study the 

impact of high levels of pollution while controlling for avoidance behavior. We find that 

a one standard deviation increase in PM 2.5 increases respiratory ER visits by 1.4 percent. 

This effect is positive for all age groups but is stronger for children (less than five years old) 

and the elderly (more than 65 years old). Moreover, we find that the effects are stronger 

in geographical areas in which the share of emissions from residential wood burning is 

more than 75 percent. Finally, our results are robust to instrumenting pollution using wind 

direction and speed and to controlling for other pollutants.

JEL Classification: I12, I18, Q51, Q53

Keywords: air pollution, PM 2.5, emergency room visits

Corresponding author:
Eugenio P. Giolito
ILADES, Universidad Alberto Hurtado
Facultad de Economía y Negocios
Erasmo Escala 1835
Santiago
Chile

E-mail: egiolito@uahurtado.cl



1 Introduction

In recent decades, pollution has become a severe health hazard worldwide. An important

source of air pollution, especially in urban areas, is fine particulate matter (PM 2.5). PM

2.5 are tiny particles with diameters smaller than 2.5 micrometers that, when inhaled, get

deep into the lungs or into the bloodstream, causing a variety of health problems such as

decreased lung function, aggravated asthma, irregular heartbeat, etc.1 In fact, some recent

studies find that PM 2.5 is associated with higher mortality for selected groups (Deryugina

et al. (2019), Gong et al. (2019), Clay et al. (2021), Kloog et al. (2013)). In this paper,

we study the causal effect of short-term daily variation in PM 2.5 on respiratory emergency

room (ER) visits. We use data from Chile, a middle-income country with extremely high

levels of air pollution, which, during most of the year, are well beyond what is considered

safe.

The association between air pollution and health outcomes is well-documented in

medicine and epidemiology (Anenberg et al. (2018), Peel et al. (2005), Szyszkowicz et al.

(2018), Zanobetti and Schwartz (2006)). However, estimating the causal effect of pollu-

tion on health outcomes has many well-known challenges. First, individuals with different

characteristics may sort into areas with different air quality. For example, higher-income

individuals may spend more on health care or live in less polluted areas. Second, seasonal

factors increase both pollution and the incidence of respiratory diseases. For example, be-

cause of the intensive use of heating, pollution is usually higher in winter, when there are

also more cases of infectious respiratory diseases that may lead to more ER visits. Third,

measuring the true exposure to air pollution is challenging. In general, air pollution is not

evenly distributed within an area, and we usually do not have precise information on where

the individual lives or works. Moreover, individuals may take part in some kind of avoidance

behavior when pollution is high and/or the government issues a pollution alert.

To overcome the threats to identification described above, we use rich administrative

data on ER visits and air pollution data covering all of Chile between 2013 and 2019. We

have daily PM 2.5 measures from 75 monitors located across Chile and daily information on

total ER visits by age and cause of admission for all hospitals in the country. We match the

monitor information with hospitals located within a 5 km distance, so our unit of analysis is a

hospital. We then estimate the effect of PM 2.5 on ER visits using OLS with hospital-month-

1EPA, https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM
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year fixed effects. Our key identifying assumption is that the daily variation of PM 2.5 within

a particular hospital during a month in a particular year is ’as if’ randomly assigned. This

approach allows us to control for sorting of individuals across locations and seasonal factors

that could potentially bias our results. We alleviate concerns about measurement error in

exposure to air pollution by restricting our sample to hospitals within a short distance of

a monitor. This allows us to have a more accurate measurement of air pollution near the

hospital. If people do not travel long distances for an ER visit, then we also have a more

accurate measurement of pollution exposure for the individual who visits the hospital for

the emergency episode. Nonetheless, we run two additional exercises to alleviate concerns

about measurement errors in air pollution. We include dummies for pollution alerts to model

avoidance behavior, and we instrument air pollution using wind direction and speed.

Our results indicate that a one standard deviation increase in PM 2.5 increases res-

piratory visits by 1.4 percent, which is an order of magnitude larger than the same effect for

the US in Deryugina et al. (2019). When we look at each age group, we find that all of them

are affected by high levels of PM 2.5. We also explore the effect on ER visits by cause of

admission and find that acute respiratory illnesses are the main driving force of the results

for all age groups, even though chronic respiratory illnesses are also important for the 15- to

64-year-old population. We also evaluate the presence of non-linear effects of air pollution

within each age group using a dummy variable for different thresholds. In general, we find

that within each age group, the effect of PM 2.5 on ER visits increases monotonically when

we move to higher levels of pollution.

Finally, we explore heterogeneous effects among different sources of emissions. As

in many developing countries, one important source of PM 2.5 in Chile is residential wood

burning for heating. We divide our sample according to the share of residential wood burning

in the municipality corresponding to the monitor. We find positive effects on our outcome

variable for municipalities with a share of residential wood burning emissions above 75 per-

cent. For areas with a lower share of residential wood burning, we find positive effects smaller

effects and only for some age groups. This is an important result for policy purposes, as

it helps to design targeted and, thus, more effective environmental policies. Moreover, the

results do not appear to be driven by higher levels of pollution in those areas. .

Our paper relates to the broad literature that studies the relation between air pol-

lution and health outcomes (Kim (2021), Neidell (2004), Chen et al. (2013), Knittel et al.

(2016), Anderson (2020), Schlenker and Walker (2015), among others). However, none of
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these studies focuses on PM 2.5. Some recent papers study the effects of PM 2.5 on health

outcomes. Deryugina et al. (2019), using administrative Medicare data and daily pollution

by US county from 1999 to 2013, study the effect of PM 2.5 exposure on elderly mortality,

health care use and medical costs. They find that an increase in PM 2.5 leads to more ER

visits, more hospitalizations, higher mortality, and higher inpatient spending. Ward (2015)

uses daily pollution data from Ontario municipalities and studies the impact of PM 2.5 on

respiratory admissions. She finds that a one standard deviation change in PM 2.5 leads to

a 3.6 percent increase in respiratory admissions for children aged 0-19. She does not find

any effect on the adult population. Gong et al. (2019) estimate the long-term effect of PM

2.5 on mortality in China and find that exposure to PM 2.5 causes a significant increase in

all-cause and cardio-respiratory mortality, with the largest impact on individuals older than

65. .

As Deryugina et al. (2019), our paper also studies the effect of PM 2.5 on ER visits.

However, unlike that study, our dataset allows us to identify the effect over a wider range

of pollution levels. This is important because in many developing countries, the pollution

level is much higher than in developed economies. Our data come from Chile, a middle-

income country with an elevated level of air pollution. According to OECD data, the mean

population exposure to PM 2.5 in Chile was 23.7 µg/m3 in 2019; the average in the US

was less than 10 µg/m3; and the average in the OECD was 13.9 µg/m3. Moreover, the

population exposed to PM 2.5 concentrations exceeding the WHO guideline (10 µg/m3) was

98.6 percent in Chile; the mean in the US was 5.6 percent; and the mean in the OECD was

61.7 percent. Thus, in this paper, we identify the effects of pollution at levels not considered

by the related papers. This is important because, when pollution is low, it is unlikely to

affect the middle-aged population. However, at higher levels, all age groups can be affected,

as our results confirm.

Our study also differs in that we take the hospital as the unit of analysis and, as

explained above, this allows us to reduce the measurement error in pollution exposure. In

fact, in a robustness check, we run our main specification at the county level, and the results

are non-significant once we include municipalities-year fixed effects. This suggests that, if

we had focused our analysis at the county level, we may have underestimated the effects of

pollution.

Other papers also use Chilean data to identify the effect of pollution on health out-

comes. Mullins and Bharadwaj (2015) study how environmental alerts in Santiago, Chile
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lead to a reduction of PM 10 concentrations up to 20 percent, leading to fewer deaths among

the elderly due to respiratory causes. Bharadwaj et al. (2017) examine the impact of fetal

exposure to carbon monoxide (CO) on math and language skills measured in the 4th grade.

They find that the 50 percent reduction in CO in Santiago between 1990 and 2005 increases

lifetime earnings by approximately 100 USD per birth cohort. Rivera et al. (2021) study

the effect of solar power generation in the North Region of Chile on air quality improve-

ments and their subsequent effect on human health. They find that solar energy displaces

fossil fuel generation, reducing hospital admissions due to lower respiratory diseases. Finally,

Ruiz-Tagle (2019) studies the effect of PM 2.5 on ER visits in Santiago, Chile using thermal

inversions and major FIFA football games to instrument for air pollution. He finds that a

one standard deviation in PM 2.5 increases respiratory ER visits by 8.2 percent. Unlike the

previous study, we rely on a different identification strategy and use data from all over the

country.

This paper makes several contributions. First, compared to previous papers, we find

a positive impact of PM 2.5 on ER visits at higher levels of air pollution. This is relevant

because the marginal effect of PM 2.5 on health outcomes can be increasing in the level

of air pollution or be significant for different demographic groups. Second, we use a rich

administrative dataset to have a more accurate measure of pollution exposure, which helps

to deal with measurement error in PM 2.5 exposure. We also show that, at least for our data,

having a more accurate measurement of exposure is important. If we estimate our model

using average PM 2.5 at the municipality level, our estimates become non-significant (once

we control for municipality-year fixed effects). Third, we find evidence that the negative

impact of PM 2.5 on health outcomes is stronger in geographic areas with a high share of

emissions due to residential wood combustion. This result suggests that different emissions

sources have different impacts on health outcomes, a result that can be informative for the

design and implementation of environmental policies.

Our paper is organized as follows. Section 2 describes the data. Section 3 presents the

empirical model. Section 4 discusses the results, and Section 5 studies heterogeneous effects

by the share of emissions of residential wood-burning. Finally, we run a series of robustness

checks in 6 and conclude in Section 7.
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2 Data

2.1 Environmental Data

We use four types of data to construct our environmental variables: air pollution data, emis-

sion source data, air quality alerts and atmospheric conditions. We obtain air pollution data

from the Air Quality National Information System (SINCA) of the Ministry of Environmen-

tal Affairs in Chile.2 The SINCA collects hourly information on different pollutants, which

we use to construct average daily measures of air pollution. Our main variable of interest

is fine particulate matter (PM 2.5), which is measured in micrograms of particles per cu-

bic meter (µg/m3). We also use these data to measure other air pollutants: ozone (O3, in

parts per billion) and carbon monoxide (CO, in parts per billion). We have daily PM 2.5

information from 75 monitors during the period 2013 to 2019. The monitors are located in

representative areas by population or by the level of emissions. For this reason, there are

more monitors in either more-populated areas or less-populated but highly polluted areas,

such as zones with high mining activity. Chile is divided into 16 regions, and there is at least

one monitor in each region. Figure 1 shows the locations of monitors across Chile (part a)

and in the Santiago Metropolitan Area (part b), which includes the capital city, Santiago,

the country’s most populated area, located in central Chile. Figure 2 shows the average PM

2.5 across Chile (part a) and in the Santiago Metropolitan Area (part b). In general, the

most polluted areas are in the central part (Santiago Metropolitan Area and Valparáıso) and

the south part of the country.

2Sistema de Informacion Nacional de Calidad del Aire.
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(a) All Monitors (b) Monitors in Santiago Metropolitan Area

Figure 1: Geographic distribution of Monitors

We use the categories defined by the US Environmental Protection Agency (EPA)

to classify the severity of air pollution. The EPA constructs an Air Quality Index (using

24-hour air pollution data) that can be translated into different categories of air quality:

good, moderate, unhealthy for sensitive groups, unhealthy, very unhealthy, and hazardous.

Table 1 shows the thresholds and the cautionary statement corresponding to PM 2.5. The

categories good and moderate do not impose health risks for the general population. On

the other hand, the other categories may impose health risks for some groups or the general

population, and the EPA recommends some actions to reduce exposure to pollution.
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(a) All municipalities (b) Municipalities in Santiago Metropolitan Area

Figure 2: Average PM 2.5 by municipality, 2013-2017

We obtain data on emission sources by municipality in 2018-2019 from the Registro

de Emisiones y Transferencias Contaminantes (RETC). Sources are divided into stationary

and non-stationary. Non-stationary sources include road transport, forest and agricultural

fires, as well as residential burning of wood in rural and urban areas. Stationary sources

include all non-mobile facilities or installations that emit any pollutant. Figure 3 shows PM

2.5 emission share by source and region in 2018-2019. In monitors located to the north of the

Santiago Metropolitan Area and Valparáıso, the most important emission sources are road

transport and stationary sources such as fossil fuel burning power plants (mainly related to

mining companies).3 In those monitors located to the south of Santiago and Valparáıso, the

most important emission sources are forest and agricultural fires and residential burning of

wood. Finally, in monitors located in the Santiago Metropolitan Area and Valparáıso, all

emission sources are important determinants of air pollution. We exploit this heterogeneity

in the sources of emissions in 5.

3Mining companies are located mainly in the northern region of the country.
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Figure 3: PM 2.5 emission share by source and region, 2018-2019

Data on air quality alerts are obtained from the Ministry of Environmental Affairs

in Chile. The system of air pollution alerts is applied in thirteen different geographical

areas located in Santiago Metropolitan Area and the south of Chile. These alerts are issued

one day in advance based on a forecasting model of PM 2.5 concentrations for the following

day.4 When the forecasted PM 2.5 is equal to or higher than 80µg/m3 in any of the monitors

located in a geographic area, an air quality alert is issued. Depending on the severity of the

pollution episode, there are three different types of alerts. An alert episode is issued when

PM 2.5 is between 80 and 109 µg/m3; a pre-emergency episode is issued when PM 2.5 is

between 110 and 169 µg/m3; and an emergency episode is issued when PM 2.5 is higher

than 170 µg/m3. These different types of alerts trigger different protocols, including driving

restrictions, prohibition of residential wood combustion and shutdown of stationary pollution

emission sources, in addition to cancellation of physical exercise classes for elementary and

high school students. We use these data to construct the variable Alert, a dummy the

indicates if a PM 2.5 episode of alert, pre-emergency or emergency is issued in a given day

in a monitor’s location. We use these air quality alerts to control for avoidance behavior.

4The system of air pollution alerts is active for a fixed period during a year, but this period can vary by
geographic area and over time. For example, in 2020, the system is active between May 1 and August 31 for
the Santiago Metropolitan Area, and between April 1 and September 30 for Temuco and Padre de las Casas.
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Finally, we obtain data on atmospheric conditions from the Center for Climate and

Resilience Research. This organization collects daily minimum and maximum temperatures

and precipitation for weather stations owned by the Dirección Meteorológica de Chile and the

Dirección General de Aguas. We use the data from the closest weather station to compute

the atmospheric conditions for each SINCA monitor.5

2.2 Health Data

We obtain data on ER visits from Chile’s Ministry of Health.6 The dataset includes all ER

visits in Chile for the period 2008–2019 and contains daily information on the number of

ER visits by cause, age group, and hospital. There are five age groups: 0-1 year, 1-4 years,

5-14 years, 15-64 years, and older than 65 years. Causes of ER visits are divided into four

groups: respiratory, circulatory, external causes (traffic accidents and other external causes),

and other causes. Within the respiratory group, there are several sub-groups associated with

ICD-10 codes: acute upper respiratory infections (J00-J06), influenza (J09-J11), pneumonia

(J12-J18), acute bronchitis or bronchiolitis (J20-J21), chronic lower respiratory diseases (J40-

J46), and other respiratory causes (J22, J30-J39, J47, J60-J98).

To combine the different sources of information, we select hospitals located within

a 5 km radius from a monitor as our unit of observation. We then match each hospital

to the closest monitor and weather station to add air pollution and weather variables to

the ER data in the hospital. By restricting our sample to hospitals within a short distance

of a monitor, we have a more accurate measurement of air pollution near the hospital. If

individuals do not travel long distances for ER visits, then we also have a more accurate

measurement of pollution exposure for the individuals who visit the ER. We select the period

2013–2019 because few monitors measure PM 2.5 before 2013.

Table 2 shows the number of monitors and hospitals in our sample by year. The

number of monitors has increased over time. As a consequence, the number of hospitals we

can match to a monitor has increased, as well.7 In terms of the number of hospitals per

5The data on atmospheric conditions are publicly available from http://www.cr2.cl/recursos-y-
publicaciones/bases-de-datos/. There are 295 stations that report hourly temperature and 816 stations
that report hourly precipitation.

6Data are available from the Departamento de Estad́ısticas e Información de la Salud (DEIS) at
https://deis.minsal.cl.

7In Section 6, we confirm that our results are not driven by entry/exit of monitors. We drop from our
sample those hospitals linked to monitors that enter/exit during the period and estimate our main model in
this balanced sample, finding similar results.
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monitor, two thirds of the monitors are matched with three or fewer hospitals, but a few

monitors located in more-populated areas are matched to ten or more hospitals.

Table 3 shows summary statistics of our sample. There are 2,396,905 observations.

The average concentration of PM 2.5 is 25.66. In terms of the Air Quality Index, this means

that almost 30 percent of the observations correspond to good air quality, 50 percent of

the observations to moderate air quality, and 20 percent to worse-than-moderate air quality.

There is an air pollution alert (alert, pre-emergency or emergency) in 9.4 percent of the

observations. The average number of daily ER visits per hospital is 26, and around 30

percent of these ER visits are for respiratory conditions. Finally, the average maximum

temperature is 21 degrees Celsius; the average minimum temperature is 9 degrees Celsius;

the average precipitation is .80 mm; and the average wind speed is 1.52 km per hour.

Figure 4 shows the average daily respiratory ER visits (above) and the average daily

PM 2.5 (below). Note that both variables are highly seasonal. In the case of PM 2.5 during

the winter months, the average daily pollution is above 50. Also, from the figure, we can

note a strong correlation between both variables.

Finally, Table 4 shows the decomposition of the between-variation and within-variation

of two variables: PM 2.5 and the deviation of the PM 2.5 with respect to the mean. The

between-variation is the variation experienced by the variables across hospitals, while the

within-variation represents the variation within a hospital across time. As we can observe

from the table, the within-variation is higher than the between-variation. Having enough

within-variation is important for our estimation strategy since we exploit the daily PM 2.5

variation within each hospital, as we explain in detail in the next section.

3 Empirical Strategy

We estimate the effect of short-term exposure to fine particulate matter on ER visits using

the following model:

Yhadmy = β0 + β1PM2.5hdmy +X ′

hdmyγ + αa + αhmy + αdmy + ǫhadmy, (1)

where Yhadmy is the logarithm of ER visits for age group a in hospital h on day d in

month m and year y; PM2.5hdmy is the fine particulate level in hospital h on dmy; Xhdmy
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(a) Respiratory ER visits

(b) Average daily PM 2.5 concentration

Figure 4: Air pollution and respiratory ER visits, 2013-2018
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are weather variables (daily max and min temperature and precipitation) in hospital h on

dmy; αa is an age group fixed effect; αhmy is an hospital-month-year fixed effect; αdmy is

an day-month-year fixed effect; and ǫhadmy captures unobservables that affect the outcome

variable. Our parameter of interest is β1, the coefficient on PM 2.5. In one of our baseline

specifications, we also include a dummy variable for air quality alerts and its interaction

with the deviation of PM 2.5 with respect to 80 µg/m3 (the PM 2.5 level that activates the

alert).8 This allows us to control for avoidance behavior.

We estimate equation (1) by OLS with standard errors clustered at the monitor level.

The variation in our data allows us to include a full set of hospital-month-year fixed

effects. Thus, identification comes from daily variations in pollution in a particular hospital

within a month in a particular year. This approach allows us to control for two important

factors that could potentially bias our estimates. First, there are seasonal factors that can

be correlated with both pollution and respiratory conditions. In most regions in Chile, the

level of pollution increases in winter because of the use of contaminating heating fuels such

as wood. However, the incidence of respiratory conditions also increases in winter, and we

need to control for this confounding factor. Moreover, this source of endogeneity could be

more important for regions that rely more on wood as heating fuel. The interaction between

month-year and hospital control for this confounding factor. It also allows us to control for

the potential differences between areas in a particular season. Second, the residential choice

could create a sorting equilibrium such that wealthier individuals choose to live in less-

polluted areas and have better health. The hospital-month-year fixed effects could control

for this sorting, even if it changes over time because some areas become less polluted and

change the residential choice for some families.9

OLS estimates of equation (1) could be biased if there is measurement error in expo-

sure to PM 2.5, or if the daily allocation of PM 2.5 within a hospital-month-year cell is not

as good as randomly assigned.

There could be measurement error in exposure to PM 2.5 for two reasons. First, the

daily measures of PM 2.5 levels at the monitor location could differ from the real exposure

for individuals who visit the ER. To minimize this source of measurement error, we choose

hospitals located within a 5 km radius from a monitor. Because we focus on emergency

8Using the deviation of PM 2.5 with respect to 80 µg/m3 only facilitates the interpretation for the Alert

dummy but does not affect the other estimated coefficients in the regression.
9We also include day-month-year fixed effects that control for any common temporal factor (such as

weekends or holidays) that can potentially affect both pollution and ER visits for all hospitals.
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episodes, we expect that the place of residence or work should be a short distance from

the hospital. Second, on days with a high level of air pollution, individuals can engage in

some kind of avoidance behavior to mitigate exposure to pollution. In Chile, the government

issues air pollution alerts when air quality is above some threshold. These alerts activate

a series of traffic bans and recommendations for avoiding exposure to air pollution. In our

preferred specification, we interact dummies for a pollution alert with PM 2.5 to capture

this avoidance behavior.

Regarding the possible endogeneity of the allocation of PM 2.5 within a hospital-

month-year cell, we follow recent papers (Ward (2015) and Deryugina et al. (2019)) and

use wind direction and velocity to instrument the level of PM 2.5. This instrument satisfies

the exclusion restriction because it is unlikely to have a direct effect on ER visits. More-

over, because the level of fine particulates depends on weather conditions such as wind, our

instrument is correlated with air pollution. The specification for the first stage of the IV is

PM2.5hdmy =

2∑

b=0

π1,bwind direction
b

hdmy + π2wind speedhdmy

2∑

b=0

π3,bwind direction
b
hdmy × wind speedhdmy (2)

+X ′

hdmyθ + αa + αhmy + αdmy + ǫhadmy,

where wind speedhdmy is the average daily wind speed in hospital h on date dmy and

wind direction
b

hdmy is equal to 1 if the average daily wind direction in hospital h on date

dmy falls in the interval [90b,90b+90] and 0 otherwise. To simplify the construction of our

instrument, we partition wind direction in 90-degree intervals and use the interval [270, 360]

as the reference point. Our instrument exploits the effect of wind direction and wind speed,

allowing for wind speed to have a different effect depending on its direction.

In the robustness section, we also allow for a non-linear effect of PM 2.5 on ER visits.

In particular, we use dummy variables defined over the thresholds of PM 2.5 presented in

the previous section (Table 1).

14



4 Results

Table 5 shows the OLS estimates of equation (1). The two first columns in the table show

a basic specification without hospital-month-year interaction and the two last columns our

preferred specification with these interactions, with similar results. Moreover, columns (2)

and (4) of Table 5 include the dummy variable for air quality alerts to control for avoidance

behavior. We estimate that an increase in 1 µg/m3 in PM 2.5 increases respiratory ER

visits from 0.03 to 0.06 percentage points. Notice, also, that our coefficients double when

we control by the alerts, which may suggest that avoidance behavior downward biases our

estimates for the basic specification. This result is consistent with Kim (2021), who finds

that the estimate on respiratory hospital admission is three times larger when controlling for

avoidance behavior. The estimated effect is not negligible: a one standard deviation increase

in PM 2.5 increases respiratory ER visits by 1.44 percentage points. Our results are an order

of magnitude larger than Deryugina et al. (2019), who find that an increase of one standard

deviation in PM 2.5 increases ER visits by 0.05 percent in the US.10 This difference might

be due to the higher level of overall pollution in our data, which leads to bigger effects.

Using our preferred specification, which includes alerts and hospital-month-year in-

teractions, we explore heterogeneous effects by age group in Table 6. As we observe from

the table, an increase in PM 2.5 causes a similar increase in respiratory ER visits for each

age group. In particular, we find that a 1 µg/m3 increase in PM 2.5 leads to a 0.04 per-

cent increase in ER visits for the aged 15-64 population. The last result is important. The

middle-aged population constitutes the biggest group, so any positive effect on ER visits

also has a greater impact on the health system. This result differs from Ward (2015), who

does not find any effect on hospital admissions for the population over age 20. A plausible

explanation is that, at higher levels of pollution, every age group can be affected by more

PM 2.5.

We evaluate the presence of non-linear effects of air pollution using a specification

with dummy variables for the different thresholds defined in Table 1.11 Figure 5 shows

the estimated effects by age group. We find that, within an age group, ER visits increase

monotonically when we move to higher levels of pollution. An exception to this rule are

10This comparison uses the OLS estimates in Deryugina et al. (2019), but there are similar differences if
we compare the IV estimates in Deryugina et al. (2019) with ours.

11Our sample has few observations in which air quality is considered ’hazardous,’ so we combine ’hazardous’
and ’very unhealthy’ in the same dummy variable.
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Figure 5: Effect of PM 2.5 thresholds on (log) respiratory ER visits, by age group

adults older than 65 who experience a decrease in ER visits when PM 2.5 is above 150

µg/m3. This may be due to more precautionary behavior for this group, as they are usually

more prone to respiratory problems.

Table 7 reports OLS and IV estimates using wind direction and speed to instrument

for PM 2.5 and its interactions with Alert to instrument for PM 2.5 × Alert (see equation

(2) for more details).

Note that, because not all monitors report wind direction and speed, this sample is

smaller, consisting of 50 monitors and 1,756,720 observations. Columns 1 and 3 show the

results for the basic model, and columns 2 and 4 show the results for the model with alerts.

Because the results are similar across the different specifications, we focus on our preferred

specification with alerts. The test of weak instruments in the first stage has an F-stat of

23.1 for PM 2.5 and 26.6 for PM 2.5 × Alert , showing that the instruments satisfy the

relevant condition necessary for identification in the IV estimation. IV estimates imply that

a 1 µg/m3 increase in PM 2.5 causes a 0.19 percent increase in respiratory ER visits. These

results are three times larger than the OLS estimates12 Using our preferred specification,

Table 8 reports the IV estimates by age group. IV estimates also suggest that all age groups

12Deryugina et al. (2019) and Ward (2015) obtain a similar upward correction in the IV estimates.

16



are negatively affected by air pollution, but these effects are magnified compared with OLS.

Table 9 explores the effect of PM 2.5 on different causes for respiratory ER visits. We

split total respiratory ER visits into acute (J00-J21), chronic (J40-J46), and other respiratory

conditions. The effects of PM 2.5 on acute respiratory ER visits are positive and significant

for all age groups (Panel B). However, chronic respiratory ER visits seem to be an important

cause only for the aged 15-64 population and not for the other age groups (Panel C). Finally,

other respiratory causes are significant only for the population older than 65.

5 Heterogeneous Effects by Different Sources of Emis-

sions

In this section, we explore heterogeneous effects among different sources of emissions on our

outcome variable. Different emission sources can emit particulate matter that can differ in

size and composition, with potentially different effects on health outcomes. We focus on

emissions due to residential burning of wood. This is important for several reasons.

First, as in many developing countries, residential use of wood for heating is an

important source of PM 2.5 in Chile. Moreover, there is regional variation that we can

exploit in our estimation. In particular, the south-central region of the country uses more

wood for heating because of its lower winter temperatures. In fact, around 90 percent of

total emissions in the south-central region of the country are generated by wood combustion

(Chávez et al. (2011)).

Second, residential wood combustion produces a large portion of ultrafine particles—

i.e., particles with a diameter smaller than one micrometer—which are considered the most

harmful to human health (Dı́az-Robles et al. (2014)). These ultrafine particles have a higher

surface-to-volume ratio than larger particles, allowing them to transport large quantities of

toxic pollutants (Dı́az-Robles et al. (2014) and Trojanowski and Fthenakis (2019)).

Third, previous literature documenting the negative effect of residential wood com-

bustion on health outcomes in developing countries (Chakraborty et al. (2020); Hanna et al.

(2016); Fullerton et al. (2008)) focus on its effects through an increase in indoor pollution.

This is not the main channel for Chile though. Since 2007, Chile’s Government has imple-

mented different policies to replace old stoves with less-polluting ones. These new models are

highly efficient in reducing indoor pollution, but they still have a highly polluting combustion
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process that generates outdoor pollution (Ruiz-Tagle and Schueftan (2019); Schueftan and

González (2015)). After the replacement program, implementation emissions continued to

increase in the areas where wood combustion is the main source of emissions (Schueftan and

González (2015)). Whether there are negative effects of residential wood burning on health

outcomes without increasing indoor pollution is an open question.

To estimate the effect of PM 2.5 by sources of emissions, we use data on total PM

2.5 emissions by source for each municipality in the country for the period 2018-2019. Using

these data, we construct the share of residential emissions (i.e., residential burning of wood

in rural and urban areas) at the municipality level. This variable is time-invariant (average

share in the municipality over the period 2018-2019) and aims at capturing municipalities

that rely on wood-burning for heating.

Using the share of residential emissions, we divide our sample into three different

groups: (i) hospitals located in municipalities with a share of residential emissions less than

50 percent of the total; (ii) hospitals in municipalities with a share of residential emissions

between 50 and 75 percent; and (iii) hospitals in municipalities with a share of residential

emissions greater than 75 percent. We run our basic specification by age group for each of

these groups.

Table 10 shows the results. For municipalities with a share of residential emissions

below 50 percent (Panel A) we find a positive and significant effect for the the adult and the

elderly population (15-64 and 65 or more years old). For municipalities between 50 percent

and 75 percent (Panel B), we find no significant effect of PM 2.5 on ER visits, except for the

elderly. For municipalities with a share of residential emissions above 75 percent, however,

we find a positive effect of air pollution on ER visits for all age groups. An increase of 1

µg/m3 in PM 2.5 leads to between a 0.03- and a 0.07-percent increase in ER visits, depending

on the age group. To summarize, we find that effect of PM 2.5 on ER visits is higher and

affects more age groups in municipalities with a high share of residential emissions. The

results show that residential emissions play an important role in this type of health impact.

A possible concern about the share of residential emissions is that it also captures

differences in levels of air pollution because municipalities that rely more on wood burning

for heating also have higher levels of air pollution. To alleviate this concern, we explicitly

estimate heterogeneous effects by the level of pollution. We compute the average PM 2.5

between 2013 and 2019 at the hospital level and divide hospitals into three terciles. Table

11 shows these results: when the average pollution is low (less than 23 µg/m3), the impact
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on ER visits is positive and significant for the adult and the elderly populations (15-64 and

65 or more years old). When we consider intermediate average levels of pollution (between

23 µg/m3 and 30 µg/m3), all age groups are affected. When we move to a higher average

pollution level (more than 30 µg/m3), either young children (four years old or younger) or

senior citizens are affected. Moreover, we observe that the average impact on ER visits

decreases when the average level of pollution increases. Thus, since there is a different

pattern in the effects of PM 2.5 on ER visits by share of residential emissions or by the level

of pollution, we do not find that our results on residential emissions in Table 10 are driven

by higher pollution levels.

6 Robustness Checks

In this section, we run several robustness exercises to evaluate the sensitivity of our results.

First, we explore the dynamic effects of PM 2.5 in Figure 6. This figure shows that,

for each age group, there is an immediate effect (same day) of PM 2.5 on respiratory ER

visits, but there are no effects on respiratory ER visits during the subsequent days. The

fact that the coefficients on the lags of PM 2.5 are not significant also suggests that fine

particulates do not merely anticipates ER visits that would have taken place regardless of

the pollution level. In addition, the coefficients on the leads PM 2.5 are not significant,

giving some credibility to our identification strategy because we should not expect an effect

of future pollution on ER visits today.

Second, one of the contributions of our work is that we have a more accurate measure

of pollution exposure because we link hospitals to monitors within a 5 km distance. To

show that measurement error can be an issue when working at the municipality level, we

estimate our preferred specification at this level. Tables 12 and 13 in the online appendix

show the results of this exercise. In Table 12, we find positive and significant effects in

the specification with municipality fixed effects (columns 1 and 2). However, the effects

become non-significant once we control for municipality-year fixed effects (columns 3 and 4)

municipality-month-year fixed effects. Table 13 shows the specification with municipality-

month-year fixed effects by age group. We find do not find any effect for each of the age

groups.

Third, a concern about our estimates is that PM 2.5 can be correlated with other

pollutants and that the negative effects attributed to PM 2.5 are partially due to these other
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Figure 6: Dynamic effect of PM 2.5 on (log) respiratory ER visits, by age group

pollutants. We estimate a specification that includes CO and Ozone with two lags for every

pollutant considered. We restrict our sample to monitors that have readings for all the

pollutants. Table 14 shows the results for this specification. Notice that coefficients for both

CO and Ozone are not significant, and the effect of PM 2.5 on respiratory ER visits barely

changes once we control for these pollutants. We conclude that our results are not driven

by other pollutants.

Fourth, we run some falsification tests using non-respiratory ER visits that are less

likely to be affected by air pollution. Table 15 reports the results for ER visits due to

respiratory illnesses (Panel A), circulatory illnesses (Panel B), and traffic accidents (Panel

C). We do not find any significant effect on ER visits due to circulatory illnesses or traffic

accidents.

Fifth, in our main sample, the number of monitors increases from 58 in 2013 to 75 in

2019. To alleviate any concern that our results are driven by the entry of new monitors, we

construct a new sample keeping the number of monitors and hospitals constant over time.

The results reported in Tables A.1 and A.2 in the online appendix show that the effects are

similar for this sample.
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Finally, the effect of weather variables on ER visits can be nonlinear. We estimate

a new specification controlling for a more flexible form in the weather variables. We divide

daily maximum temperatures into 16 bins, daily minimum temperatures into 16 bins, and

daily precipitation into 5 bins. We then create a set of dummy variables for all possible

interactions of these bins. The results reported in Tables A.3 and A.4 in the online appendix

show that we find similar results to our main specification.

7 Conclusion

Pollution has become a hazard worldwide, affecting the health of the population. Studying

the causal relationship between pollution and different health outcomes is important, as it

makes it possible to address the true costs of contamination and, therefore, to design optimal

environmental policies. One important source of pollution is particulate matter. PM 2.5 are

tiny particulates that, when inhaled, can cause a variety of health problems. In this paper,

we study the impact of PM 2.5 on respiratory ER visits. We use data from Chile, which is a

middle-income, highly polluted country. Unlike the approach in some previous papers in the

literature, this allows us to study the impact of PM 2.5 over a wide range of pollution levels.

This is important because when pollution is low, it may not affect the whole population but

only the more sensitive groups, such as the elderly. However, when we move to higher levels

of contamination, all age groups are affected.

Our detailed dataset allows us to control for some well-documented problems in this

literature: sorting of individuals; seasonal factors; and measurement error due to the un-

known true exposure level and avoidance behavior. To reduce the measurement error, we

match each pollution monitor with hospitals within a 5 km distance. If people do not travel

long distances for an ER visit, then we also have a more accurate measurement of individu-

als’ exposure to pollution. We also include dummies for pollution alerts to model avoidance

behavior, and we instrument air pollution using wind direction and speed. Our identification

strategy relies on the daily variation of PM 2.5 in a hospital in a given month-year, which

allows us to control for seasonal factors and the sorting of individuals.

We find that an increase of one standard deviation in PM 2.5 increases respiratory

visits by 1.4 percent. According to the findings of Deryugina et al. (2019), this is an order of

magnitude larger than evidence from the US. This difference might be due to the higher level

of overall pollution in our data leading to bigger effects. We also explore heterogeneous effects
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by age groups and find that an increase in PM 2.5 causes a similar increase in respiratory

ER visits. We also explore heterogeneous effects among different sources of emissions. We

find positive effects on our outcome variable for municipalities with residential wood-burning

emissions above 75 percent. Our results are robust to controlling for other pollutants; to

falsification tests using non-respiratory ER visits that are not likely to be related to air

pollution; to fixing the number of monitors; and to different specifications for the weather

variable.
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Schueftan, A. and A. D. González (2015). Proposals to enhance thermal efficiency programs

and air pollution control in south-central chile. Energy Policy 79, 48–57.

Szyszkowicz, M., T. Kousha, J. Castner, and R. Dales (2018). Air pollution and emergency

department visits for respiratory diseases: A multi-city case crossover study. Environmen-

tal Research 163, 263–269.

Trojanowski, R. and V. Fthenakis (2019). Nanoparticle emissions from residential wood com-

bustion: A critical literature review, characterization, and recommendations. Renewable

and Sustainable Energy Reviews 103, 515–528.

Ward, C. J. (2015). It’s an ill wind: The effect of fine particulate air pollution on

respiratory hospitalizations. The Canadian Journal of Economics / Revue canadienne

d’Economique 48 (5), 1694–1732.

Zanobetti, A. and J. Schwartz (2006). Air pollution and emergency admissions in Boston,

MA. Journal of epidemiology and community health 60 (10), 890–5.

25



Appendix: Tables

Table 1: Air Quality Index Thresholds for PM 2.5 (in average µg/m3 in 24 hours) and
Cautionary Statement

Air Quality Category PM 2.5 Cautionary Statement

Good 0-12

Moderate 12.1-35.4 Unusually sensitive people should consider
reducing prolonged or heavy exertion.

Unhealthy for Sensitive
Groups

35.5-55.4 People with heart or lung disease, older
adults, children, and people of lower so-
cioeconomic status should reduce pro-
longed or heavy exertion.

Unhealthy 55.5-150.4 People with heart or lung disease, older
adults, children, and people of lower so-
cioeconomic status should avoid prolonged
or heavy exertion; everyone else should re-
duce prolonged or heavy exertion.

Very Unhealthy 150.5-250-4 People with heart or lung disease, older
adults, children, and people of lower so-
cioeconomic status should avoid all phys-
ical activity outdoors. Everyone else
should avoid prolonged or heavy exertion.

Hazardous 250.5-500.4 Everyone should avoid all physical activity
outdoors; people with heart or lung dis-
ease, older adults, children, and people of
lower socioeconomic status should remain
indoors and keep activity levels low.

Note: Source: US EPA.
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Table 2: Number of monitors and hospitals by year

Year Number of Monitors Number of Hospitals

2013 58 196
2014 59 201
2015 66 221
2016 69 249
2017 74 259
2018 73 265
2019 75 267
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Table 3: Summary statistics, 2013–2019

Variables Mean s.d.

Pollution

PM 2.5 (µg / m3) 25.66 24.12

Good (0-12) 0.289 0.453

Moderate (12.1-35.4) 0.496 0.500

Unhealthy sensit. (35.5-55.4) 0.123 0.329

Unhealthy (55.5-150.4) 0.087 0.282

Very unhealthy (150.5-250.4) 0.004 0.063

Hazardous (250.5+) 0.001 0.023

CO (parts per billion) 0.72 0.62

Ozone (parts per billion) 13.05 7.47

Alert 0.094 0.292

ER visits

Total 26.38 35.52

Respiratory 7.89 9.51

Acute respiratory (J00-J21) 6.70 8.42

Chronic respiratory (J40-J46) 0.44 1.23

Circulatory 0.55 1.71

External causes 3.13 9.04

Weather

Max. Daily Temp. (Celsius) 20.67 6.64

Min. Daily Temp. (Celsius) 8.91 4.79

Daily precipitation (mm) 0.80 45.28

Wind Speed (km/hour) 1.52 0.83

Observations 2,396,905
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Table 4: Overall, between and within variation in PM 2.5, 2013–2019

Mean Std Dev Min Max N/n/T-bar

PM 2.5 (µg / m3) overall 25.66 24.12 0.00 770.75 479,381
between . 17.56 0.00 380.00 16,661
within . 16.67 -152.91 722.96 29

Table 5: Effect of PM 2.5 on (log) respiratory ER visits

(1) (2) (3) (4)

PM 2.5, same day (µg / m3) 0.0003*** 0.0006*** 0.0003*** 0.0006***
[0.0001] [0.0002] [0.0001] [0.0001]

Alert -0.0057 -0.0081*
[0.0095] [0.0048]

PM 2.5 × Alert -0.0006*** -0.0005***
[0.0002] [0.0001]

Hospital-Month-Year FE No No Yes Yes

Mean DV 7.715 7.715 7.715 7.715
R-squared 0.551 0.551 0.574 0.574
Observations 2,308,060 2,308,060 2,308,060 2,308,060

Note: This table reports OLS estimates of equation (1). The dependent variable is the
logarithm of respiratory ER visits. All specifications include age group, hospital and day-
month-year fixed effects, and controls for weather variables (daily maximum and minimum
temperature and precipitation). Columns (2) and (4) include a dummy variable for air
pollution alerts and its interaction with PM2.5 (in deviations with respect to 80 µg/m3,
the PM level that activates the alert). Standard errors, clustered by monitor, are reported
in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table 6: Effect of PM 2.5 on (log) respiratory ER visits, by age group

(1) (2) (3) (4) (5)
< 1 1-4 5-14 15-64 65 +

PM 2.5, same day (µg / m3) 0.0005*** 0.0007*** 0.0005*** 0.0004*** 0.0008***
[0.0001] [0.0001] [0.0001] [0.0001] [0.0001]

Alert 0.0003 -0.0125* -0.0056 -0.0077 -0.0153**
[0.0068] [0.0072] [0.0073] [0.0051] [0.0065]

PM 2.5 × Alert -0.0003** -0.0005*** -0.0002** -0.0004*** -0.0008***
[0.0001] [0.0001] [0.0001] [0.0001] [0.0002]

Mean DV 3.176 8.824 7.914 15.835 2.827
R-squared 0.659 0.753 0.718 0.787 0.523
Observations 461,581 461,581 461,581 461,581 461,581

Note: This table reports OLS estimates of equation (1) by age group. The dependent variable is the logarithm
of respiratory ER visits in the corresponding age group. All specifications include a dummy variable for air
pollution alerts and its interaction with PM2.5 (in deviations with respect to 80 µg/m3, the PM level that
activates the alert), hospital-month-year and day-month-year fixed effects, and controls for weather variables
(daily maximum and minimum temperature and precipitation). Standard errors, clustered by monitor, are
reported in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table 7: OLS and IV estimates of the effect of PM 2.5 on (log) respiratory ER visits

OLS IV/2SLS

(1) (2) (3) (4)

PM 2.5, same day (µg / m3) 0.0003*** 0.0006*** 0.0013*** 0.0019***
[0.0000] [0.0001] [0.0002] [0.0004]

Alert -0.0100* -0.0562***
[0.0052] [0.0149]

PM 2.5 × Alert -0.0005*** -0.0014***
[0.0001] [0.0005]

F stat PM 2.5 (weak inst.) 24.5 23.1
p-value PM 2.5 (weak inst.) 0.000 0.000
F stat PM 2.5 × Alert (weak inst.) 26.6
p-value PM 2.5 × Alert (weak inst.) 0.000
Mean DV 8.038 8.038 8.038 8.038
Observations 1,756,720 1,756,720 1,756,720 1,756,720

Note: This table reports OLS and IV estimates of equation (1). The dependent variable is the logarithm
of respiratory ER visits. The instruments for PM2.5 are wind direction and speed and its interactions (see
equation(2) for more details), and the instruments for PM2.5 × Alert are the same instruments interacted
with Alert. All specifications include hospital-month-year and day-month-year fixed effects, and controls
for weather variables (daily maximum and minimum temperature and precipitation). Columns (2) and (4)
include a dummy variable for air pollution alerts and its interaction with PM2.5 (in deviations with respect
to 80 µg/m3, the PM level that activates the alert). The test for weak instruments uses the F statistics
and p-values from Sanderson and Windmeijer (2016). Standard errors, clustered by monitor, are reported
in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.

31



Table 8: IV estimates of the effect of PM 2.5 on (log) respiratory ER visits, by age group

(1) (2) (3) (4) (5)
< 1 1-4 5-14 15-64 65 +

PM 2.5, same day (µg / m3) 0.0012** 0.0022*** 0.0012*** 0.0017*** 0.0029***
[0.0006] [0.0005] [0.0004] [0.0005] [0.0005]

PM 2.5 × Alert -0.0002 -0.0017*** -0.0009 -0.0018*** -0.0023***
[0.0008] [0.0006] [0.0005] [0.0007] [0.0005]

Alert -0.0215 -0.0680*** -0.0378** -0.0602*** -0.0934***
[0.0217] [0.0195] [0.0177] [0.0211] [0.0217]

Mean DV 3.452 9.313 8.076 16.415 2.936
Observations 351,325 351,325 351,325 351,325 351,325

Note: This table reports IV estimates of equation (1) by age group. The dependent variable is the logarithm
of respiratory ER visits in the corresponding age group. The instruments for PM2.5 are wind direction and
speed and its interactions (see equation(2) for more details), and the instruments for PM2.5 × Alert are
the same instruments interacted with Alert. All specifications include a dummy variable for air pollution
alerts and its interaction with PM2.5 (in deviations with respect to 80 µg/m3, the PM level that activates
the alert), hospital-month-year and day-month-year fixed effects, and controls for weather variables (daily
maximum and minimum temperature and precipitation). The test for weak instruments uses the F statistics
and p-values from Sanderson and Windmeijer (2016). Standard errors, clustered by monitor, are reported
in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table 9: Effect of PM 2.5 on different types of respiratory ER visits, by age group

(1) (2) (3) (4) (5)
< 1 1-4 5-14 15-64 65 +

Panel A: Total respiratory (J00-J99)

PM 2.5, same day (µg / m3) 0.0005*** 0.0007*** 0.0005*** 0.0004*** 0.0008***
[0.0001] [0.0001] [0.0001] [0.0001] [0.0001]

Mean DV 3.176 8.824 7.914 15.835 2.827
R-squared 0.659 0.753 0.718 0.787 0.523
Observations 461,581 461,581 461,581 461,581 461,581

Panel B: Acute respiratory (J00-J21)

PM 2.5, same day (µg / m3) 0.0005*** 0.0007*** 0.0005*** 0.0003*** 0.0008***
[0.0001] [0.0001] [0.0001] [0.0001] [0.0001]

Mean DV 2.616 7.547 6.883 13.523 2.078
R-squared 0.629 0.723 0.697 0.769 0.458
Observations 461,581 461,581 461,581 461,581 461,581

Panel C: Chronic respiratory (J40-J46)

PM 2.5, same day (µg / m3) 0.0000 0.0001 0.0000 0.0003*** 0.0001
[0.0001] [0.0001] [0.0001] [0.0001] [0.0001]

Mean DV 0.287 0.560 0.284 0.643 0.386
R-squared 0.542 0.553 0.367 0.354 0.336
Observations 461,581 461,581 461,581 461,581 461,581

Panel D: Other respiratory

PM 2.5, same day (µg / m3) 0.0000 0.0002** 0.0000 0.0001 0.0002***
[0.0000] [0.0001] [0.0001] [0.0001] [0.0001]

Mean DV 0.273 0.717 0.747 1.669 0.363
R-squared 0.456 0.571 0.558 0.577 0.345
Observations 461,581 461,581 461,581 461,581 461,581

Note: This table reports OLS estimates of equation (1) for different types of respiratory ER visits by age
group. The dependent variable is the logarithm of respiratory ER visits in the corresponding age group.
All specifications include a dummy variable for air pollution alerts and its interaction with PM2.5 (in
deviations with respect to 80 µg/m3, the PM level that activates the alert), hospital-month-year and day-
month-year fixed effects, and controls for weather variables (daily maximum and minimum temperature
and precipitation). Standard errors, clustered by monitor, are reported in brackets. Significance levels are
indicated by ∗ < .1, ** < .05, *** < .01.
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Table 10: Effect of PM 2.5 on (log) respiratory ER visits by municipalities with different
shares of residential wood burning emissions

(1) (2) (3) (4) (5)
< 1 1-4 5-14 15-64 65 +

Panel A: Share residential wood burning emissions less than 50 percent

PM 2.5, same day (µg / m3) 0.0003 0.0002 0.0002 0.0005*** 0.0007**
[0.0003] [0.0003] [0.0002] [0.0002] [0.0003]

Mean DV 2.845 7.757 6.499 12.460 2.265
R-squared 0.687 0.803 0.765 0.817 0.554
Observations 86,032 86,032 86,032 86,032 86,032

Panel B: Share residential wood burning emissions 50-75 percent

PM 2.5, same day (µg / m3) 0.0003* 0.0002 -0.0001 0.0001 0.0006***
[0.0002] [0.0002] [0.0002] [0.0002] [0.0001]

Mean DV 3.512 9.392 8.363 16.971 2.921
R-squared 0.673 0.758 0.719 0.811 0.538
Observations 209,931 209,931 209,931 209,931 209,931

Panel C: Share residential wood burning emissions more than 75 percent

PM 2.5, same day (µg / m3) 0.0004*** 0.0007*** 0.0004*** 0.0003** 0.0006***
[0.0001] [0.0001] [0.0001] [0.0001] [0.0002]

Mean DV 2.963 8.716 8.117 16.245 3.002
R-squared 0.632 0.720 0.689 0.707 0.482
Observations 174,723 174,723 174,723 174,723 174,723

Note: This table reports OLS estimates of equation (1) in municipalities with different shares of residential
wood burning emissions. The dependent variable is the logarithm of respiratory ER visits in the correspond-
ing age group. All specifications include a dummy variable for air pollution alerts and its interaction with
PM2.5 (in deviations with respect to 80 µg/m3, the PM level that activates the alert), hospital-month-year
and day-month-year fixed effects, and controls for weather variables (daily maximum and minimum temper-
ature and precipitation). Standard errors, clustered by monitor, are reported in brackets. Significance levels
are indicated by ∗ < .1, ** < .05, *** < .01.
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Table 11: Effect of PM 2.5 on (log) ER visits by different levels of air pollution

(1) (2) (3) (4) (5)
< 1 1-4 5-14 15-64 65 +

Panel A: Low average PM 2.5

PM 2.5, same day (µg / m3) 0.0002 0.0004 0.0003* 0.0007*** 0.0007***
[0.0001] [0.0003] [0.0002] [0.0002] [0.0002]

Mean DV 1.005 1.914 1.874 2.541 1.076
R-squared 0.577 0.667 0.654 0.695 0.451
Observations 145,895 145,895 145,895 145,895 145,895

Panel B: Intermediate average PM 2.5

PM 2.5, same day (µg / m3) 0.0008*** 0.0009*** 0.0005*** 0.0003*** 0.0012***
[0.0001] [0.0002] [0.0001] [0.0001] [0.0001]

Mean DV 1.064 1.899 1.787 2.477 1.133
R-squared 0.723 0.835 0.805 0.866 0.584
Observations 157,238 157,238 157,238 157,238 157,238

Panel C: High average PM 2.5

PM 2.5, same day (µg / m3) 0.0004*** 0.0006*** 0.0004 0.0002 0.0005***
[0.0001] [0.0002] [0.0002] [0.0001] [0.0002]

Mean DV 1.094 2.029 1.968 2.607 1.131
R-squared 0.657 0.717 0.661 0.746 0.528
Observations 167,553 167,553 167,553 167,553 167,553

Note: This table reports OLS estimates of equation (1) by different levels of air pollution. Low average PM
2.5 are hospitals with an average PM 2.5 (in 2013-2019) of 23 µg/m3 or less; intermediate average PM 2.5
are hospitals with an average PM 2.5 between 23 and 30 µg/m3; and high average PM 2.5 are hospitals
with an average PM 2.5 of 30 µg/m3 or more. The dependent variable is the logarithm of respiratory
ER visits in the corresponding age group. All specifications include a dummy variable for air pollution
alerts and its interaction with PM2.5 (in deviations with respect to 80 µg/m3, the PM level that activates
the alert), hospital-month-year and day-month-year fixed effects, and controls for weather variables (daily
maximum and minimum temperature and precipitation). Standard errors, clustered by monitor, are reported
in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table 12: Effect of PM 2.5 on (log) respiratory ER visits. Robustness at municipality level.

(1) (2) (3) (4) (5) (6)

PM 2.5, same day (µg / m3) 0.0006** 0.0007** 0.0002 0.0002 0.0000 0.0000
[0.0003] [0.0003] [0.0002] [0.0002] [0.0001] [0.0001]

Alert -0.0101 0.0130 0.0262***
[0.0273] [0.0241] [0.0083]

PM 2.5 × Alert -0.0009** -0.0004 -0.0001
[0.0004] [0.0003] [0.0001]

Municipality FE Yes Yes No No No No

Municipality-Year FE No No Yes Yes No No

Municipality-Month-Year FE No No No No Yes Yes

Mean DV 18.442 18.442 18.442 18.442 18.442 18.442
R-squared 0.795 0.795 0.836 0.836 0.854 0.854
Observations 540,665 540,665 540,665 540,665 540,665 540,665

Note: This table reports OLS estimates of equation (1). The dependent variable is the logarithm of respira-
tory ER visits. All specifications include age group, hospital and day-month-year fixed effects, and controls
for weather variables (daily maximum and minimum temperature and precipitation). Columns (2), (4) and
(6) include a dummy variable for air pollution alerts and its interaction with PM2.5 (in deviations with
respect to 80 µg/m3, the PM level that activates the alert). Standard errors, clustered by monitor, are
reported in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table 13: Effect of PM 2.5 on (log) respiratory ER visits, by age group. Robustness at
municipality level.

(1) (2) (3) (4) (5)
< 1 1-4 5-14 15-64 65 +

PM 2.5, same day (µg / m3) 0.0001 0.0000 -0.0000 0.0001 -0.0000
[0.0001] [0.0001] [0.0001] [0.0001] [0.0001]

Alert 0.0250** 0.0252** 0.0266* 0.0305** 0.0238
[0.0104] [0.0120] [0.0141] [0.0142] [0.0149]

PM 2.5 × Alert 0.0001 -0.0002 -0.0001 -0.0001 -0.0003
[0.0002] [0.0002] [0.0001] [0.0002] [0.0003]

Mean DV 7.834 21.851 19.090 37.012 6.424
R-squared 0.864 0.912 0.898 0.921 0.841
Observations 108,116 108,116 108,116 108,116 108,116

Note: This table reports OLS estimates of equation (1) by age group. The dependent variable is
the logarithm of respiratory ER visits in the corresponding age group. All specifications include a
dummy variable for air pollution alerts and its interaction with PM2.5 (in deviations with respect
to 80 µg/m3, the PM level that activates the alert), hospital-month-year and day-month-year fixed
effects, and flexible controls for weather variables (daily maximum and minimum temperature and
precipitation). Standard errors, clustered by monitor, are reported in brackets. Significance levels
are indicated by ∗ < .1, ** < .05, *** < .01.
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Table 14: Effect of PM 2.5, CO and O3 on (log) respiratory ER visits

(1) (2) (3)

PM 2.5 (µg / m3) 0.0005** 0.0004** 0.0004**
[0.0002] [0.0002] [0.0001]

CO (parts per billion) 0.0018 0.0016
[0.0041] [0.0040]

Ozone (parts per billion) -0.0017
[0.0011]

Mean DV 8.189 8.189 8.189
R-squared 0.814 0.814 0.814
Observations 1,038,260 1,038,260 1,038,260

Note: This table reports OLS estimates of equation (1) for different pol-
lutants. The dependent variable is the logarithm of respiratory ER visits.
All specifications include a dummy variable for air pollution alerts and its
interaction with PM2.5 (in deviations with respect to 80 µg/m3, the PM
level that activates the alert), hospital-month-year and day-month-year fixed
effects, and controls for weather variables (daily maximum and minimum
temperature and precipitation). Standard errors, clustered by monitor, are
reported in brackets. Significance levels are indicated by ∗ < .1, ** < .05,
*** < .01.
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Table 15: Effect of PM 2.5 on (log) ER visits by different causes, by age group

(1) (2) (3) (4) (5)
< 1 1-4 5-14 15-64 65 +

Panel A: All respiratory

PM 2.5, same day (µg / m3) 0.0005*** 0.0007*** 0.0005*** 0.0004*** 0.0008***
[0.0001] [0.0001] [0.0001] [0.0001] [0.0001]

Mean DV 3.261 9.069 8.058 16.161 2.908
R-squared 0.659 0.753 0.718 0.787 0.523
Observations 461,581 461,581 461,581 461,581 461,581

Panel B: Circulatory

PM 2.5, same day (µg / m3) -0.0000 0.0000 -0.0000 0.0001* 0.0001
[0.0000] [0.0000] [0.0000] [0.0001] [0.0001]

Mean DV 0.006 0.014 0.038 1.449 1.227
R-squared 0.109 0.130 0.158 0.595 0.667
Observations 461,581 461,581 461,581 461,581 461,581

Panel C: Traffic accidents

PM 2.5, same day (µg / m3) -0.0000* 0.0000 -0.0000 -0.0001 0.0000
[0.0000] [0.0000] [0.0000] [0.0001] [0.0000]

Mean DV 0.004 0.025 0.071 0.567 0.055
R-squared 0.087 0.349 0.438 0.700 0.362
Observations 461,581 461,581 461,581 461,581 461,581

Note: This table reports OLS estimates of equation (1) for different types of ER visits by age group. The
dependent variable is the logarithm of respiratory ER visits in the corresponding age group. All specifications
include a dummy variable for air pollution alerts and its interaction with PM2.5 (in deviations with respect
to 80 µg/m3, the PM level that activates the alert), hospital-month-year and day-month-year fixed effects,
and controls for weather variables (daily maximum and minimum temperature and precipitation). Standard
errors, clustered by monitor, are reported in brackets. Significance levels are indicated by ∗ < .1, ** < .05,
*** < .01.
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Table A.1: Effect of PM 2.5 on (log) respiratory ER visits. Robustness using a balance panel
of monitors.

(1) (2) (3) (4)

PM 2.5, same day (µg / m3) 0.0003** 0.0006*** 0.0003*** 0.0006***
[0.0001] [0.0002] [0.0001] [0.0001]

Alert -0.0096 -0.0095*
[0.0105] [0.0054]

PM 2.5 × Alert -0.0007*** -0.0005***
[0.0002] [0.0001]

Hospital-Month-Year FE No No Yes Yes

Mean DV 8.014 8.014 8.014 8.014
R-squared 0.525 0.525 0.549 0.549
Observations 1,792,180 1,792,180 1,792,180 1,792,180

Note: This table reports OLS estimates of equation (1). The sample drops monitors and
hospitals that enter or exit in the period 2013-2019. The dependent variable is the logarithm
of respiratory ER visits. All specifications include age group, hospital and day-month-year
fixed effects, and controls for weather variables (daily maximum and minimum temperature
and precipitation). Columns (2) and (4) include a dummy variable for air pollution alerts
and its interaction with PM2.5 (in deviations with respect to 80 µg/m3, the PM level
that activates the alert). Standard errors, clustered by monitor, are reported in brackets.
Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table A.2: Effect of PM 2.5 on (log) respiratory ER visits, by age group. Robustness using
a balance panel of monitors.

(1) (2) (3) (4) (5)
< 1 1-4 5-14 15-64 65 +

PM 2.5, same day (µg / m3) 0.0004*** 0.0008*** 0.0005*** 0.0004*** 0.0008***
[0.0001] [0.0001] [0.0001] [0.0001] [0.0001]

Alert 0.0013 -0.0165** -0.0106 -0.0083 -0.0135*
[0.0077] [0.0078] [0.0080] [0.0058] [0.0072]

PM 2.5 × Alert -0.0003** -0.0005*** -0.0003** -0.0003*** -0.0008***
[0.0001] [0.0001] [0.0001] [0.0001] [0.0002]

Mean DV 3.532 9.483 8.189 15.903 2.962
R-squared 0.688 0.769 0.725 0.792 0.523
Observations 358,413 358,413 358,413 358,413 358,413

Note: This table reports OLS estimates of equation (1) by age group. The sample drops monitors and
hospitals that entry or exit in the period 2013-2019. The dependent variable is the logarithm of respiratory
ER visits in the corresponding age group. All specifications include a dummy variable for air pollution
alerts and its interaction with PM2.5 (in deviations with respect to 80 µg/m3, the PM level that activates
the alert), hospital-month-year and day-month-year fixed effects, and controls for weather variables (daily
maximum and minimum temperature and precipitation). Standard errors, clustered by monitor, are reported
in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table A.3: Effect of PM 2.5 on (log) respiratory ER visits. Robustness with flexible weather
controls.

(1) (2) (3) (4)

PM 2.5, same day (µg / m3) 0.0002** 0.0004** 0.0002*** 0.0004***
[0.0001] [0.0001] [0.0000] [0.0001]

Alert -0.0025 -0.0039
[0.0092] [0.0047]

PM 2.5 × Alert -0.0004** -0.0003***
[0.0002] [0.0001]

Hospital-Month-Year FE No No Yes Yes

Mean DV 7.892 7.892 7.892 7.892
R-squared 0.551 0.551 0.575 0.575
Observations 2,307,865 2,307,865 2,307,865 2,307,865

Note: This table reports OLS estimates of equation (1). The dependent variable is the
logarithm of respiratory ER visits. All specifications include age group, hospital and day-
month-year fixed effects, and flexible controls for weather variables (daily maximum and
minimum temperature and precipitation). Columns (2) and (4) include a dummy variable
for air pollution alerts and its interaction with PM2.5 (in deviations with respect to 80
µg/m3, the PM level that activates the alert). Standard errors, clustered by monitor, are
reported in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table A.4: Effect of PM 2.5 on (log) respiratory ER visits, by age group. Robustness with
flexible weather controls.

(1) (2) (3) (4) (5)
< 1 1-4 5-14 15-64 65 +

PM 2.5, same day (µg / m3) 0.0003*** 0.0004*** 0.0002** 0.0003*** 0.0006***
[0.0001] [0.0001] [0.0001] [0.0001] [0.0001]

Alert 0.0042 -0.0068 -0.0013 -0.0044 -0.0111*
[0.0066] [0.0068] [0.0074] [0.0050] [0.0066]

PM 2.5 × Alert -0.0002 -0.0003** -0.0001 -0.0003** -0.0007***
[0.0001] [0.0001] [0.0001] [0.0001] [0.0002]

Mean DV 3.261 9.069 8.058 16.161 2.908
R-squared 0.660 0.754 0.719 0.787 0.524
Observations 461,523 461,523 461,523 461,523 461,523

Note: This table reports OLS estimates of equation (1) by age group. The dependent variable is the logarithm
of respiratory ER visits in the corresponding age group. All specifications include a dummy variable for air
pollution alerts and its interaction with PM2.5 (in deviations with respect to 80 µg/m3, the PM level that
activates the alert), hospital-month-year and day-month-year fixed effects, and flexible controls for weather
variables (daily maximum and minimum temperature and precipitation). Standard errors, clustered by
monitor, are reported in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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