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ABSTRACT

IZA DP No. 14440 JUNE 2021

The Dynamics of Inattention in the 
(Baseball) Field1

Recent theoretical and empirical work characterizes attention as a limited resource that 

decision-makers strategically allocate. There has been less research on the dynamic 

interdependence of attention: how paying attention now may affect performance later. In 

this paper, we exploit high-frequency data on decision-making by Major League Baseball 

umpires to examine this. We find that umpires not only apply greater effort to higher-

stakes decisions, but also that effort applied to earlier decisions increases errors later. These 

findings are consistent with the umpire having a depletable ‘budget’ of attention. There is 

no such dynamic interdependence after breaks during the game (at the end of each inning) 

suggesting that even short rest periods can replenish attention budgets. We also find that 

an expectation of higher stakes future decisions leads to reduced attention to current 

decisions, consistent with forward-looking behavior by umpires aware of attention scarcity.

JEL Classification: D83, D91

Keywords: rational inattention, dynamic decision-making, cognitive 

capital, decision fatigue, bounded rationality, behavioral 

economics

Corresponding author:
Matthew Neidell
Department of Health Policy and Management
Mailman School of Public Health
Columbia University
722 W. 168th St.
New York NY 10032
USA

E-mail: mn2191@columbia.edu

1 We thank Stephen Coussens, Jonathan Guryan, Devin Pope and seminar participants at the University of 

Connecticut for comments on an earlier draft.



 2 

1. Introduction 

A growing body of evidence suggests that people don’t pay full attention to each of the 

35,000 individual decisions they make daily.2 Instead, since attention requires costly effort, 

people allocate it strategically to the more important decisions. Whereas evidence abounds to 

support inattention in a static setting, much less exists about the dynamic allocation of attention, 

particularly in a field setting.  

In this paper, we extend upon recent theoretical work on the dynamics of attention, which 

typically focuses on lags in reacting to novel information (e.g. Gabaix 2019), to consider 

attention as a depletable stock that may be rationally managed. That is, we consider the direct 

impact from paying attention at one point in time on attention paid at other points in time. This 

opens up questions about the intertemporal allocation of attention: How does application of 

effort to one decision affect the quality of subsequent yet otherwise independent ones? Does a 

hiatus from decision-making reset the stock of attention? How does the anticipation of the need 

to make difficult decisions in the future affect the current allocation of attention?3  

We explore these dynamics of inattention in a data-rich, high-stakes, field environment by 

focusing on the decisions of home plate umpires from Major League Baseball (MLB). The MLB 

umpire setting is useful for examining these issues for several reasons. First, we can 

operationalize attention through observing not just an umpire’s decision, but also a measure of 

the quality of the decision. Data from camera-technology in MLB stadia provide information on 

the objectively correct ruling for each decision. Under the (mild) assumption that the greater 

attention devoted to a decision increases the probability of a correct outcome, we can infer how 

umpires vary the effort applied to specific decisions. That is, when umpires make correct 

decisions, we infer they paid more attention than if they called it incorrectly, all else equal. 

Second, the importance of decisions varies over time. We call the importance of each 

decision “leverage,” defined as how pivotal any particular umpiring decision is in influencing the 

game outcome.4 Leverage varies substantially across the course of a game, evolving as a function 

of players’ actions and chance events. If the importance of a decision increases the value of                                                            
2 The 35,000 figure is from Erwin (2019). The exact number of decisions is not important, but rather that it is a large 
number. Thank you for deciding to read this footnote. 3 Such anticipation may explain why individuals take forward-looking actions to conserve cognitive capital, e.g. why 
Mark Zuckerberg and Barack Obama wear the same outfit every day (Baer, 2015). 
4 The term “leverage” is commonly used in statistical analysis of baseball to capture how important a particular 
moment is to the outcome of the game. 
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paying attention, and umpires were allocating attention strategically, we would expect umpires to 

make more correct calls as leverage increases, all else equal. 

Third, in a typical game, a home-plate umpire makes around 120 distinct decisions in 

approximately three hours. The number of decisions, along with the varying stakes associated 

with each, allows us to explore the dynamic interdependence of attention.  To test the idea of 

attention as a depletable stock, we examine how umpires’ prior allocations of attention affect 

contemporaneous expenditure. Moreover, we explore whether attention can be replenished after 

short, externally-imposed periods of rest. To test for forward-looking behavior, we examine 

whether umpires’ anticipation of future attention needs leads them to conserve it now. 

Finally, rich data are available. We exploit data on the more than 3 million decisions made by 

127 home-plate umpires in 26,523 games between 2008 and 2018, enabling us to control for a 

wide set of potential confounders. The large sample allows for precise estimates even from 

econometric specifications that include game fixed effects that control for time-invariant 

characteristics of the umpire, the teams involved in the game, and the date of the game. We 

flexibly control for time elapsed, allowing us to separate the effects of decision fatigue from 

physical fatigue associated purely with passage of time. In addition to decision accuracy, our 

data includes an array of characteristics for each pitch thrown (pitch speed, type, location, and 

movement) that allow us to control in detail for the complexity or difficulty an umpire faces at 

any moment. 

Contrary to conventional models of decision-making that predict that errors are random and 

therefore uncorrelated with leverage, our results reject the prediction that umpires exert equal 

effort to all decisions. We find that umpires adjust the attention paid to a decision in response to 

the importance of the decision; a one standard deviation increase in the leverage of a decision 

increases the likelihood of a correct call by 0.61% -- equivalent to improving the accuracy of the 

median umpire to that of the 73rd percentile umpire. This finding supports the concept of rational 

inattention: umpires allocate more attention when the benefits from doing so increase. 

We also find that periods of higher leverage in the past lead to less contemporaneous 

attention even with controls for current leverage. A one standard deviation increase in past 

leverage reduces the probability of a correct decision by 0.32%. This is equivalent to reducing 

the accuracy of the median umpire to that of the 45th percentile umpire. This finding is consistent 

with a model of a depletable budget of decision resource, such that more attention devoted to one 
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decision depletes availability for subsequent decisions, i.e., it increases the marginal cost of 

subsequent attention. 

However, short respites in the decision series – which are provided by the break that the 

structure of the game gives the umpire between each half-inning – reset the process.5 Higher 

leverage in previous innings has no discernible effect on attention to current decisions. While it 

is intuitive that rest would increase productivity in a physical work setting, for example because 

of muscle fatigue, it is less obvious how the design of shift patterns and work breaks might 

impact overall performance in cognitively-intensive workplaces. Our results suggest breaks 

allow for replenishment of cognitive capital. 

Further, we provide evidence consistent with forward-looking behavior by umpires. A 

rational expectation of having to deal with higher leverage (more important) decisions in the 

future of the decision series leads to reduced attention to current decisions. More concretely, an 

increase of one standard deviation in expected future leverage in the half-inning reduces the 

probability of a correct decision by 0.49%; equivalent to reducing the accuracy of the median 

umpire to that of the 39th percentile umpire. Just as an athlete in a physical endeavour might 

conserve her energy for late in a game when she anticipates it might be particularly valuable, our 

subjects conserve cognitive budget by relaxing on current calls when they expect higher stakes 

decisions to come later. 

Taken together, these findings significantly extend existing evidence on rational inattention in 

several ways. The central static prediction of rational inattention models is that agents allocate 

more attention to more important decisions. Laboratory and field studies find that intensity of 

attention is increasing in the importance or stakes associated with a decision across a range of 

settings. Examples in the field include consumer purchases of durable goods (Allcott and Wozny, 

2014; Levav et al, 2010), investor responses to earnings announcements (Dellavigna and Pollett, 

2009), consumer reactions to tax rates (Chetty et al 2009), hiring decisions (Acharya and Wee, 

2020) and information acquisition in the rental housing market (Bartos et al, 2016) to name a few. 

The first of our results adds to this evidence in the context of an adjudicator whose decision directly 

                                                           
5 In baseball an inning is the basic unit of play and a game typically comprises nine scheduled innings. Each inning 
is divided into two half innings. In the “top” half the visiting team bats until three outs are made. In the “bottom” 
half the home team bats until three outs are made. The umpire receives a scheduled break between each half inning 
as the teams reset their positions.   
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affects the outcomes of others: the attention that an umpire applies to any decision is increasing in 

the leverage of that decision. 

Our results on the dynamics of attention are more novel. As already noted, an appealing 

feature of the baseball setting is that we observe our subjects making a long sequence of 

decisions within a contained period. This allows us to explore both backward- and forward-

looking responses in a field setting for the first time, to the best of our knowledge.6 Our results 

generally support ‘budget-of-attention’ models (Dragone, 2019; Gabaix et al., 2006) in which 

there is a linkage between decisions in a series through the (endogenous) evolution of the 

remaining stock of attention. Effort exerted at one decision moment is expected to influence 

optimal attention allocation in a subsequent decision, conditional on the importance of that later 

decision. Broadly consistent with this framework, we find both prior high leverage decisions and 

rationally-anticipated future high leverage reduce attention to current decisions.7 The latter is in 

contrast to the experimental assumptions of, for example, Levav et al (2010), who interpret 

consumer choices in the sequence of (mentally-taxing) decisions required to configure an 

automobile under the assumption that “consumers are partially myopic in their allocation of 

mental resources. Instead of distributing their mental effort efficiently across the configuration 

process … (they) behave as if the current decision in a sequence is practically their last, despite 

the fact that in our experiments it is obvious that subsequent decisions will follow.” (page 276).8                                                            
6 The closest laboratory experimental evidence is that presented by Gabaix et al (2006). In their set-up subjects face 

an open-ended series of choices between pairs of goods and given a fixed time budget (25 minutes). Collecting 
information about a pair of goods (by clicking on boxes using the ‘Mouselab’ technology) allows for a better 
decision in that round but depletes budget of time available to devote to future rounds. “Our experimental design 
also allows us to evaluate how subjects allocate scarce search time between games …” (Gabaix et al, 2006: 1062). 
They find that subjects devote more effort to higher value rounds, but also show increased propensity to stop 
analyzing the current game as the remaining budget of decision time diminishes. 
7 If an umpire anticipates that paying high attention to one decision negatively impacts subsequent, perhaps more 
important, decisions, he will optimally conserve attention by strategically ‘allowing’ more errors in the present. An 
analogy would be a soccer player conserving physical effort early in a game to apply to possibly more important 
game situations later. Most readers likely have no objection to the idea that a sportsperson would seek to allocate a 
limited budget of physical energy across time, rather than working flat out at every moment. Our results suggest 
umpires engage in the same sort of strategic allocation of cognitive effort. 
8 An important feature of our setting shared by Levav et al (2010) is that they have a proxy for decision complexity, 

namely the number of options among which the consumer is required to choose at any stage of the customization 

process. They show, contrary to predictions of conventional choice theory under unlimited attention, that the vehicle 

ultimately configured by the consumer is sensitive to the (experimentally-manipulated) order in which decisions 

over options are required. If complex decisions are posed early in the sequence, a consumer is more likely to revert 

to reliance on heuristics, such as accepting the default, later. Apart from being a large-sample field setting, an 

additional advantage of the environment that we study is that we have an exact measure of decision quality, whether 

the ‘right’ decision is made, whereas the utility-maximising specification of vehicle is not observed. 
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Our finding that prior decisions affect current ones is consistent with predictions and 

evidence from the related “ego depletion” literature: the quality of decisions deteriorates with the 

number of decisions made (Baumeister et al 1998).  There are numerous studies on decision 

fatigue from healthcare (Linder et al, 2014; Philpot et al 2018; Chan et al 2009; Kim et al 2015),9 

financial forecasting (Hirshleifer et al, 2019), voting behavior (Augenblick and Nicholson, 

2016), consumer science (Bruyneel et al, 2006)), manuscript evaluation (Kwan et al, 2016) and 

air traffic control (Orasunu et al, 2012). However, our study goes beyond this by not only 

showing fatigue arising as a function of the cumulative number of decisions made, but by 

explicitly analyzing the importance of the decision, which we have already established impacts 

the effort exerted, as contributing to fatigue. Our findings therefore point to the depletion of 

attention capital stock as depending not only on the cumulative number of decisions made but 

also their qualitative characteristics. 

Moreover, our forward-looking results point to the anticipation of ego depletion playing an 

important role in the decision-making process. Subjects act in a way consistent with being aware 

that their attentional capital is depletable, and attempt to conserve it for later decisions – 

particularly where future decisions are rationally expected to be high stakes. This provides the 

first evidence of a further level of rationality and sophistication with which agents manage their 

expenditure of attention when faced with a series of mental tasks of varying challenge and 

importance. 

We proceed as follows. In next section we provide basic background on MLB umpires, 

including what they do during a game, the incentives they face, and how we measure 

performance. In Section 3 we describe the basic dataset, provide basic summary statistics, and 

motivate and describe how we operationalize “leverage,” our measure of decision importance. 

Section 4 provides an overview of the basic econometric approach. In Section 5, we present our 

main results, including a battery of robustness checks. Section 6 concludes.  

 

2. Background 

Baseball umpiring is a skilled job, requiring sustained mental effort. We study professional 

umpires operating at the highest level of the game, Major League Baseball. The ballparks where                                                            
9 See however Zheng et al (2020) for evidence to the contrary. 
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they work are dispersed across many of the major cities of the United States, plus Toronto. MLB 

as an organization employs around 100 umpires in any given season, organized into “crews” of 

four, with each serving as the home plate umpire every fourth game. Umpiring at this level is a 

lucrative and competitive career, with an experienced umpire commanding a base salary of 

$350,000 per season, which can be supplemented by post-season assignments and writing and 

speaking engagements for the high performers. 

The most significant task that the home plate umpire faces in his working day is “calling” the 

game: deciding which pitches are balls and which are strikes. A pitch should be called a strike if 

any portion of the baseball passes through the strike zone (see Figure 1), and a ball otherwise.10 

The accuracy of the adjudications is fundamental to the game. We use whether a call is correct as 

our measure of decision quality. 

In an average game, an umpire makes calls on around 120 pitches. We observe the umpire’s 

decision as well as the objectively correct call. We obtained the latter from a high-precision 

pitch-tracking technology called PITCHf/x which has been in operation at every MLB ballpark 

since 2008. The output of the PITCHf/x camera system will be familiar to baseball watchers 

since it forms the basis for the real-time on-screen pitch location graphic used in television 

broadcasts of games. Researchers have used the same data as a testbed for other hypotheses, 

including racial discrimination (Parsons et al, 2011), the effect of status on evaluations and the 

so-called “Matthew Effect” (Kim and King, 2014), the gambler’s fallacy (Chen et al, 2016), how 

decision quality is affected by exposure to air pollution (Archsmith et al, 2018) and as a test of 

models of strategic interaction (Bhattacharya and Howard, Forthcoming). 

Figure 1 presents a spatial scatterplot of the true locations of pitches upon which the umpire 

had to make a call in one game, as generated by PITCHf/x. Correct and incorrect calls are the 

hollow and solid black shapes, respectively. Umpires make both Type 1 and Type 2 errors. A 

solid triangle in the plot denotes a pitch that passed outside the zone that an umpire erroneously 

called a strike. A solid circle indicates that a pitch passed through the zone, but the umpire called 

it a ball. Not surprisingly, only pitches close to the strike zone boundary are called incorrectly. 

[Figure 1 About Here] 

                                                           
10 If the pitcher throws three strikes, the batter is considered out (a “strike out”). If the pitcher throws four balls, the 
batter advances to first base (a “walk”, or “base on balls”). 
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The incentive for umpires to make correct calls is substantial. MLB operates a stringent system 

of monitoring and incentives for its umpires, called the Supervisor Umpire Review and Evaluation 

(SURE) system. This system uses various sources, including evaluations and on-site supervisors, 

to track the performance of umpires (Drellich, 2012). More generally, in the PITCHf/x era umpire 

errors are easily observed by a wider audience. As such, an umpire’s reputation is plausibly highly 

sensitive to how often he makes mistakes, especially at those important (high leverage) moments 

in games when players, fans and the media are paying the most attention.  

 

3. Data 

We compile data to reconstruct the decision environment and outcomes faced by MLB 

umpires during professional baseball games. Our primary data are based on detailed information 

from actual games. We augment these data with a calculation of decision leverage and the 

outcomes of additional simulated games. Below, we describe each data source in detail.  

3.1 MLB Pitch Data 

Following Archsmith et al (2018) we compile data on the details of every pitch in all MLB 

games from 2008 to 2018 from the MLB website. These data are reported as part of MLB’s 

PITCHf/x tracking system. Game-level data include variables for the home and away team, 

venue, the umpires and their position on the field, starting time, starting weather conditions, 

game attendance, and total runs scored by each team. Pitch-level data include identity of the 

players on the field and their position (including the pitcher, batter and catcher), attributes of the 

game situation (current runs by each team, inning, inning part, baserunner positions, outs, balls, 

and strikes), attributes of the pitched ball, the location of the pitch as it crosses home plate, and 

the result of the play after the pitch, including the umpire’s ball/strike call if one was made. 

Given that the ending of a baseball game is endogenous – a game can go into “extra innings” 

if the score is tied at the end of “regular innings” – we choose to focus our samples on only the 

pitches in the regular innings.  

3.2 A measure of decision importance 

Our empirical analysis investigates whether MLB umpires expend more effort to make 

correct decisions when the stakes of that decision are large. Doing so requires an objective 

measure of the stakes of each decision. To this end, we adapt the concept of leverage (a term 
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already used in baseball to refer to the importance of a game situation) to specific pitch-level 

ball/strike decisions of MLB umpires. 

Leverage is a scalar metric that assigns large values to important or pivotal moments in 

sporting events. For example, a decision or action that breaks a tie late in a game will have a 

much larger impact on the probability of winning than breaking a tie early in the game because 

the opposing team has fewer chances to equalize the score. We define leverage for a given pitch 

as the absolute difference in the probability the home team wins in the situation where the 

umpire calls a “ball” and the situation where the umpire calls a “strike”. 11 The stakes can change 

substantially from pitch to pitch, and umpires can make independent decisions at each pitch over 

the level of effort to expend on adjudicating it correctly.  

This leverage metric captures the umpire’s state of incomplete information at the time each 

decision is made. The umpire knows the current situation of the game, but future events 

impacting the outcome of the game (many beyond the umpire’s control) are unknown. Thus, 

computing this leverage measure requires determining two expected probabilities: the probability 

the batting team wins given a “strike” call and the probability they win given a “ball” call, 

conditional on the current situation in the game. In each case, we assume events in a baseball 

game follow a Markov process with state At encompassing the game situation at pitch t. 

We estimate leverage using probabilities derived from simulated MLB games. By simulating 

the evolution of a large number of games, we can compute win probabilities for states that occur 

infrequently in the available history of baseball games at the cost of additional assumptions over 

the evolution of game states. There are four basic steps in the simulation (see the appendix for 

details): 

1. We define the state of the game by the number of outs, baserunner positions, strikes, and 

balls. 

2. Using actual MLB data, we compute the probability of transitioning from given states to 

new states plus new runs scored. We compute these state transitions within each half-

inning.                                                            
11 Unlike many other sports, the rules of regular- and post-season MLB games prohibit games that end in draws. 
Therefore, the probability the away team wins conditional on some game situation A is simply one minus the 
probability the home team wins given that situation. Likewise, umpire decisions of “ball” versus “strike” are 
mutually exclusive and collectively exhaustive when an umpire adjudicates a pitch. As such changing the team for 
which we compute leverage or whether “ball” is subtracted from “strike” would result in an identical leverage 
metric.  
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3. Using these probabilities, we simulate 5 million MLB games from start to finish, 

collecting the states observed in each half-inning of a game and the eventual winner. This 

information is used to compute the probability the home team wins conditional on a given 

state. 

4. Using these win probabilities, we compute a leverage measure for each situation using 

the same method as the measure based on actual game data. 

The appendix also examines robustness of our results to an alternative approach to calculating 

leverage, using actual game outcomes.  

3.3 Past and Future Leverage 

We also consider the impact of accumulated past and expected future leverage. Past leverage 

is simply the sum of the leverage measure for all past pitches during the current inning. Expected 

future leverage is computed from simulated baseball games.12 For each possible game situation 

and across all simulated games, we compute the leverage for all future pitches in that inning. 

Expected future leverage is the mean future leverage across all times that situation occurred. 

3.4 Summary Statistics 

Table 1 shows game-level summary statistics.  We have data on 26,536 games, with an 

average of 291 pitches per game. Of these, about 120 pitches are “called,” meaning they are 

subject to umpire discretion. This leaves about 3.2 million observations where the umpire makes 

a call about a ball in flight. Table 2 shows summary statistics for these pitches on the full sample 

(column 1), the final regression sample (column 2), and then further limits the latter to decisions 

in the first inning (column 3) and ninth inning (column 4). On average, umpires call 84 percent 

of pitches correctly.  

The main explanatory variable in our analyses is leverage. In theory, leverage ranges from 0 

to 1, but the average leverage at any point in the game is low (0.014) because any single pitch 

generally has a small effect on the outcome of the game. Note that columns 3 and 4 show that 

average leverage increases throughout the game, as later decisions are more impactful on the 

final outcome. However, even the 99th percentile value of leverage is small (.08). Past and future 

                                                           
12 Here simulated games are essential since even situations which are overall unlikely –and not frequently observed 
in the 11 years of available data – may have a relatively large probability of occurring conditional on the current 
state and thus influence the umpire’s expectation over future leverage.   
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leverage are higher than current leverage because they capture the accumulation of leverage 

within a half-inning. 

[Table 1 about here] 

[Table 2 about here] 

To illustrate our leverage measures, Table 3 provides specific examples of current and 

future leverage.  For example, the 50th percentile of current leverage, measured as .0097, 

corresponds to a situation where there are 2 outs, 0 balls, 2 strikes, a runner on 3rd base, with the 

home team leading by 3 runs in the bottom of the 6th inning. The value of .0097 is the difference 

in the probability the home team wins if the umpire calls a “ball” as compared to when the 

umpire calls a “strike.” 

[Table 3 about here] 

A potential concern with our measure of future leverage is that it lacks independent 

variation from current leverage. That is, if current leverage reflects not only the current situation 

but also future possibilities, then future leverage may be highly correlated with current. Figure 2, 

which presents a scatter plot of the two, shows ample independent variation in the two measures 

of leverage, suggesting multicollinearity will not be an issue for our analyses.  

[Figure 2 about here] 

Likewise, Figure 3 shows the evolution of the leverage metrics over time through one 

particular MLB game. Current leverage is highest toward the ends of games with close scores, 

particularly in crucial situations. Accumulated leverage is highest after these critical situations, 

even if the current leverage is low. Expected future leverage generally increases over the course 

of the game and tends to peak as the game approaches critical junctures.  

[Figure 3 about here] 

4. Methods 

Our goal is to investigate the relationship between the effort an umpire expends on correctly 

adjudicating a decision and the leverage of the decision. We estimate this relationship using a 

linear regression for each pitch p in game g as follows:13 

𝟏(𝐶𝑝∗ = 𝐶𝑝) = 𝛽𝐶𝐿(𝐴𝑝) + 𝛽𝑃∑𝐿ሺ𝐴𝜏ሻ𝑝−1
𝜏=1 + 𝛽ி𝑬𝒑 [ ∑ 𝐿ሺ𝐴𝜏ሻ∞

𝜏=𝑝+1 ] + 𝛽𝑋𝑝 + 𝜹𝒑𝑰 + 𝛿𝑔 + 𝜖𝑝𝑔 

                                                           
13 We estimate these regressions using the reghdfe package from Correia (2014).  
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Where 𝐶𝑝∗ is the decision of the umpire, 𝐶𝑝 is the correct call given the point at which the pitch 

crossed home plate, 𝐿(𝐴𝑝) is the leverage in the situation where pitch p is thrown, 𝑋𝑝 is a vector 

of continuous (such as velocity or rate of spin) and discrete (such as an indicator for fastballs or 

curveballs) controls for pitch attributes, 𝜹𝒑𝑰  is fixed effect for each inning, 𝛿𝑔  is a game fixed 

effect, and 𝜖𝑝𝑔 is an idiosyncratic error potentially correlated within games.14 The parameters of 

interest are 𝛽𝐶, the coefficient on the current pitch leverage, 𝛽𝑃 the coefficient on accumulated 

past leverage, and 𝛽ி the coefficient on future leverage expected prior to adjudicating the current 

pitch. Given our definition of leverage, we interpret β as the effect of a change in win probability 

for the home team, conditional on the game situation, on the probability of the umpire making a 

correct call. 

Our use of game fixed effects controls for many unobserved factors. Specifically, these 

fixed effects control for all time invariant characteristics of the umpire, the teams that are 

playing, the venue of the game, and the date and time of the game. This will control for features 

like a game between two rivals, a venue more amenable to home runs, or a hot day. With game 

fixed effects, we are exploiting how leverage within a game affects correct calling within the 

same game. This enhances our ability to interpret βc, βp, and βf as causal parameters. 

Although this approach controls for many time invariant components, there may be 

factors varying within the game that affect umpires’ focus, such as physical fatigue and player 

changes. We include inning fixed-effects (𝜹𝒑𝑰 ) to control for physical fatigue as the game wears 

on, enabling us to separately identify the effects of decision fatigue. Teams may change pitchers 

in later innings as the starting pitcher tires or the situation calls for a particular pitcher. These 

relief pitchers often have different pitching styles than the starter, and these different styles may 

affect the umpires’ ability to make correct calls.15  To account for such factors, in some 

specifications we control for various pitch attributes in the vector X. A potential concern with 

this approach is that pitch attributes may be endogenous, or “bad controls” (Angrist and Pishke,                                                            
14 Following Archsmith et al (2018) and Kim and King (2014) we control for all pitch attributes reported in 
PITCHf/x using linear controls for continuous attributes and fixed effects for discrete attributes. Unlike previous 
work, there is substantial within-game variation in our variable of interest and we can identify our parameters of 
interest relying on only within-game variation using game fixed effects. However, variation in leverage is driven by 
the game situation, so we do not control for game situation variables which define the state space for our leverage 
metric. 
15 For example, relief pitchers are likely to throw more fastballs relative to breaking balls, and fastballs are easier for 
an umpire to adjudicate. 
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2008).  Because of this, our preferred specification excludes controls for pitch attributes. 

However, we report results of a specification including pitch controls in Section 5.3.  

For defining past and future leverage, we accumulate leverage measures within the same half 

of an inning. For example, for a game in the top of the third inning, imagine we are at the 5th 

pitch in the inning. Past leverage is the sum of the contemporaneous leverage from the first four 

pitches in the inning. Future leverage is the expected sum of leverage for all remaining pitches in 

the inning. As we move forward to the 6th pitch, past and future leverage update to include the 5th 

pitch. Given that the effects from past leverage may extend beyond the current inning, we also 

include past leverage from previous innings. The existence of a two minute break between 

innings enables us to explore whether the umpires stock of attention is replenished by a short 

respite. 

 

5. Results 

5.1 Main Results 

Our main results are shown in Table 4. The first column reports results from our estimating 

equation in which our measure of past leverage is from the current inning only, with the next 

column adding the lag of past leverage. We exclude data from the first inning to keep the sample 

of pitches we explore fixed.16 All coefficients are multiplied by 100 to improve readability. In 

general, we contemporaneous leverage increases umpires’ attention, while past and future 

leverage decreases it. 

[Table 4 about here] 

Focusing on the effect of contemporaneous leverage on umpires’ attention, we find 

estimates consistent with our hypothesis that higher leverage increases umpire attention. Our 

estimate of 38.223 indicates that increasing leverage from 0 to 0.013, the mean leverage in our 

sample, increases the probability that the umpires makes the correct call by .0051, a 0.61 percent 

increase. This estimate is highly statistically significant, with a 95% confidence interval of 

[0.55%,0.67%]. Adding additional lags of past leverage scarcely affects the coefficient on 

contemporaneous leverage. 

                                                           
16 The sample size changes slightly due to missing or inconsistent game situation data from PITCHf/x that affects 
our ability to calculate leverage. 
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Turning to the effect of past leverage, we find evidence consistent with a hypothesis of a 

depleted attention budget. As umpires face more leverage earlier in the inning, this decreases 

their attention on the current call. The estimate of -3.26 indicates that moving accumulated past 

leverage from 0 to 0.064, the mean of past leverage, decreases current call accuracy by 0.209 

percentage points, which is a 0.248 percent change. This estimate is also highly statistically 

significant with a 95% confidence interval of [-0.289%,-0.207%].  

As we include lags of leverage to our specification, two patterns emerge. One, the 

estimate on the past leverage of the current inning is unaffected. Two, the effect of past inning 

leverage is very small, coming in several orders of magnitude smaller than the current inning, 

and statistically insignificant. (These patterns hold true when we include additional lags of 

leverage.) These results imply that umpires refocus their attention after a short respite, 

suggesting that while our attention is scarce, our budget can replenish quickly. 

Next, we focus on future leverage. Our estimates are again in line with our theoretical 

prediction: higher future leverage decreases current attention. Our estimate of -3.575 indicates 

that changing future leverage from 0 to 0.167, the mean of future leverage, increases an umpires’ 

likelihood of a mistake by .060 percentage points, a 0.71 percent change. This estimate is also 

insensitive to further controls for lagged leverage and highly statistically significant, with a 95% 

confidence interval of [-0.792%,-0.628%].17 

The inning dummy variables, which at least partially control for physical fatigue over the 

course of the game, also indicate an interesting pattern. Except for the last inning, we see fairly 

modest changes in umpire performance as the game wears on. Changes in a correct call vary 

between 0.05 to .1 percentage points compared to the second inning (the reference category), 

though with no clear pattern of physical fatigue throughout the majority of the game.18 This 

suggests umpires are fairly consistent in their performance over the course of the game. 

However, in the last inning umpire performance drops by 0.39 percentage points. Since we 

control for leverage, this drop at the end of the game does not reflect the erosion of the 

importance of calls later in games. 

                                                           
17 Estimating this and all other models excluding data from the ninth innings does not substantially disturb any of 
our results.  
18 We omit inning 1 to allow inclusion of a lagged measure of past leverage. 
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5.2 Additional Results 

In the next table, we explore how the effect of leverage varies within the game by estimating 

the effects separately by inning.19 We find the same general pattern of results in every inning for 

our three measures of leverage, but find some interesting trends within the game. We did not 

derive specific hypotheses for these patterns, so we only speculate about potential explanations. 

[Table 5 about here] 

As the game wears on, the effect of current leverage on umpire attention steadily decreases, 

though it always remains positive. By the 9th inning, the effect of contemporaneous leverage is 

nearly 30% the size of the effect in the 3rd inning. The difference between these two estimates is 

statistically significant; further, the general decrease in the coefficient suggests an important 

trend. A possible explanation is that the umpire fatigues as the game goes on and is less able to 

regain focus for an equally important call later in the game. 

In terms of the dynamics of leverage, we consistently find negative and statistically 

significant effects for past and future leverage, with the effect size steadily diminishing over 

time. While there are some trends across innings, in general the results by inning support our 

main results. 

5.3 Robustness 

In Table 6 we explore whether our results are robust to a range of alternative regression 

controls. First, in column 1 we repeat our preferred specification. The difficulty of an umpire’s 

decision may depend on characteristics of the pitch in flight, such as velocity, spin, or trajectory. 

One concern is these attributes are a result of what type of pitch a pitcher decides to throw, 

which is decided after leverage is determined for a given situation. Thus, pitch attributes are 

effectively simultaneously determined with leverage, and could qualify as “bad controls” 

(Angrist and Pishke, 2008). Despite this concern, when we add controls for all pitch 

characteristics20 to our primary specification, shown in column 2, our estimates move only 

slightly.                                                             
19 We estimate leverage effects by inning within a joint regression framework over the full sample to constrain the 
game fixed effects to be identical across innings.  
20 We use continuous, linear controls for all continuous pitch attributes and indicator variables for all discrete 

attributes in the PITCHf/x data. Specifically, the continuous attributes are the position of the ball when released by 
the pitcher (along horizontal, vertical, and distance from home-plate axes), the ball’s direction of spin, rate of spin, 
angle of break and distance of break (measured in both horizontal and vertical axes) and the velocity of the ball 
when it crosses home plate. The discrete attributes are indicators for the pitch type. 
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Our primary specification, by including game fixed effects, identifies the effect of leverage 

on decision accuracy from within-game variation. In columns 3 and 4 of Table 5, we allow for 

identification across games, while still accounting for potentially confounding heterogeneity, by 

replacing game fixed effects with umpire, home team, away team, and date fixed effects (column 

3) and umpire, home team, away team, year, month-of-year, and day of week fixed effects 

(column 4). Estimated effects of leverage are essentially unchanged in this specification. 

Finally, it is possible individual players may be more likely to be included in high-leverage 

situations and may take actions which increase the difficulty of an umpire’s decisions. In column 

5 we add fixed effects for players in each of the three positions that directly participate in this 

component of the game: the pitcher, the batter, and the catcher. Again, the empirical estimates 

are very similar to those from our primary specification. 

[Table 6 about here] 

Our preferred specification assumes a linear relationship between each of our leverage 

measures and its impact on the probability of a correct call. To relax this assumption, we 

estimate a model that more flexibly controls for past, current, and future leverage. For each of 

the leverage measures, we divide the observed values into quintiles of equal size and replace our 

linear leverage measures with indicators for these quintiles.21 Results for each leverage measure 

are shown in Figure 4.  Results from this more flexible specification reveals an approximately 

linear relationship with effect sizes that are similar, if not slightly larger in magnitude, to the 

parametric specification from Table 4.22 

[Figure 4 about here] 

5.4 Heterogeneous Effects 

We further explore heterogeneity in how individual umpires allocate effort by estimating 

umpire-specific leverage effects. Extending the regression specification from Table 4 Column 1, 

we interact each leverage measure with indicators for every umpire in a single regression.23 The 

estimated effects for each umpire are shown in Figure 5. Panels (a) – (c) show the effects for 

past, current, and future leverage, respectively. In each panel, umpire specific effects are ordered                                                            
21 For each leverage measure we treat the first quintile as the omitted category.  22 We observe similar results if we increase or decrease the number of quantiles used.  23 To improve precision, we exclude umpires who are observed to serve as home plate umpire in fewer than 20 
games during our sample. The median umpire served as home plate umpire in 240 games during this period. This 
restriction removes 14 of the 127 umpires or 132 of the over 26,000 games from the sample. 
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from largest at the top and smallest at the bottom. For nearly all umpires, the estimated treatment 

effects are of the same sign as our main results, with a large portion being statistically significant 

at the 95% level despite the large increase in model parameters. These results suggest that very 

few, if any, umpires deviate from our main findings about dynamic inattention. 

Panel (d) of Figure 5 combines the past, current, and future leverage estimates for each 

umpire into a single figure. Here, effects for a given umpire are aligned horizontally and ordered 

by the that umpire’s estimated current leverage effect. For comparability, each leverage effect is 

divided by its standard deviation across all umpires. Lines show the moving average of each 

leverage effect across the 10 umpires above and below each observation. Umpire-specific effects 

for past and future leverage are negatively correlated with the current leverage effect.24 Some 

individuals are highly responsive to high-leverage situations, appearing to expend substantial 

effort when decision stakes are high. These same individuals tend to exhibit larger decreases in 

accuracy from accumulated past and expected future leverage. This result is broadly consistent 

with umpires maintaining a budget for attention; umpires who expend more effort on high-

leverage decisions will need to conserve more effort in other situations to maintain their budget.    

6. Conclusions 

Conventional economic models embody agents able to make perfect, optimising decisions. 

An important strand of recent efforts to increase the behavioral realism of models has been to 

acknowledge that attention is not costless---the effort required to attend to decisions and execute 

them well can be costly and cognitively tiring---and incorporate that in models. Models of 

“strategic inattention”, predicated on rational agents adjusting their behavior to account for 

attention being either limited and/or costly, are increasingly mainstream (for examples Caplin 

and Dean, 2015; Sims, 2003; Falkinger, 2011). 

While the idea of costly attention is intuitively appealing, rigorous evidence characterizing its 

implications in real settings remains limited and primarily focuses on static effects in cross-

sectional data. This paper adds to and extends this evidence. Studying the quality of decisions 

made by a panel of professional decision-makers with strong incentives to get these decisions 

right, we show that MLB umpires systematically vary the effort they apply to individual 

decisions: applying greater attention to those associated with higher stakes. This is consistent                                                            
24 The correlations between an umpire’s past or future leverage effect and the current leverage effect are -0.401 and  
-0.485, respectively. Both correlations are significant at the 1% level.  
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with established theoretical models of strategic inattention. Our data-rich setting, in which the 

same umpire is called upon to issue a long series of decisions, allows for careful study of the 

dynamics of inattention and delivers our most novel results. First, high effort applied early in a 

sequence of decisions reduces effort applied later in the series. Second, umpires act as if they 

anticipate high stakes decisions to come later, and conserve cognitive effort. Both results fit 

closely to the predictions from a model in which the umpire has a depletable stock of attention. 

These dynamics render inter-dependent otherwise separable decision problems. The short and 

exogenously mandated break that the umpire receives between half-innings appears sufficient to 

replenish his stock of attention, since there is no evidence of inter-dependence across those 

breaks. If repeated in other work settings such evidence could point to the utility of short breaks 

built into the working day in many cognitively-demanding professions (Gino, 2006).25 The 

results prove robust to an array of alternative specifications and robustness tests. 

This is not just a paper about baseball. The richness of the data in a field setting affords a 

unique opportunity to explore the much broader issue of strategic inattention in novel ways.26 

Moreover, although umpires work in the sports industry, our subjects are not professional 

athletes, but rather professional decision-makers. Umpires attend specialized training schools, 

acquire 7-10 years of experience prior to achieving MLB status, are highly paid, and their work 

highly scrutinized, making their role much closer to a judge than an athlete. As with studies of 

any industry or profession, there may be concerns about how generalizable the results are.  

Examining whether similar dynamics of attention are seen in other settings is thus an important 

next step. 

  

                                                           
25 Sievertsen et al (2016) found that the performance of Danish children in standardized tests declined as the time of 
the test became later in the day “… because over the course of a regular day, students’ mental resources get taxed.” 
(p. 2621). They also found, however, that a twenty-minute break from mental work restored performance. 
26 Concerns over external validity from using sports data are more limited here than for some other influential 
research that have used sports data, for example testing tournament theory using player choices in professional golf 
tournaments (Ehrenberg and Bognanno, 1990). 
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Tables and Figures 

Figure 1 - Example Pitch Location and Umpire Decisions 

 

Visualization of pitch locations and umpire decisions from a typical MLB game between Arizona and Boston on 
August 4th, 2013. This game was selected because the number of total pitches and umpire error rate are close to the 

sample means. Circles denote pitches called balls and triangles denote called strikes. Filled shapes are incorrect 
decisions by the umpire. Pitch locations are normalized so boundary of the strike zone, shown as a rectangle, is 

identical for each pitch. Pitches far from the strike zone (all of which the umpire adjudicated correctly) are excluded 
from this visualization 
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Figure 2 - Current and Expected Future Leverage 

 

A scatterplot of the current (horizontal axis) and expected future (vertical axis) leverage for each pitch in MLB 
games during the sample period. Random noise uniformly distributed over 1% of the graph size has been added to 

each point for clarity. Data are limited to the 99th percentile values on each axis to remove infrequent, extreme 
values. The orange line is a best-fit regression line based on the full range of data.    
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Figure 3 - Example of Evolution of Leverage Metrics 

 

An example of the evolution of the leverage metrics through one MLB game on May 18th, 2014 between Atlanta and St. 
Louis. The horizontal axis represents each pitch in the game, regardless of whether the home plate umpire was required to 

make a ball/strike decision. Vertical black lines denote the first pitch of the top (black) or bottom (gray) of each inning. 
The black line represents leverage of the decision for the current pitch. The orange line represents accumulated leverage 

through the course of the current half inning and the blue line denotes the expected cumulative leverage for the remainder 
of the inning. The score advantage/disadvantage of the away team is shown as the shaded green area.  
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Figure 4 – Comparison of Parametric and Nonparametric Effects   Panel (a) – Past Leverage   Panel (b) – Current Leverage 

 

Panel (c) – Future Leverage 

 

 

Comparison of the estimated total effects of past (Panel A), current (Panel B), and future (Panel C) leverage on the 
probability of a correct call from parametric and non-parametric specifications. Parametric estimates, using the 

specification from Table 4 Column 1, shown as the blue line with the shaded region representing pointwise 95% 
confidence intervals. Nonparametric estimates for quintiles of observed leverage values with 95% confidence intervals 

shown as point-and-whiskers. In each case, the first quintile is the omitted category.    
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Figure 5 – Heterogeneous Effects By Umpire   Panel (a) – Past Leverage   Panel (b) – Current Leverage 

 
  Panel (c) – Future Leverage   Panel (d) – All Leverage 

 
Individual-specific estimates of past (Panel A), current (Panel B), and future (Panel C) leverage effects from a single 

regression. Regression controls are otherwise identical to Table 4 Column 1 and the sample is limited to umpires who are 
observed calling balls and strikes in at least 20 distinct games. 95% confidence intervals for each estimated effect shown 

as capped bars. Observations ordered by the estimated effect size. Panel D combines all three estimated effects, ordered by 
the magnitude of the current leverage effect. For ease of interpretation, effect sizes in Panel D are divided by the standard 
deviation across all umpires. Dots represent the estimated effect and lines are the moving average for the 10 individuals 

with larger and 10 individuals with smaller current leverage effects.  
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Table 1 - Summary Statistics by Game 

 (1) 

Final Home Team Score 4.338 
 (3.070) 

Final Away Team Score 4.299 
 (3.116) 

Game Total Pitches 290.951 
 (40.012) 

Game Total Called Pitches 119.254 
 (19.629) 

Game Total Leverage 1.648 
 (0.736) 

N Games 26,536 
First Year 2008 
Last Year 2018 

Summary statistics for attributes that vary by game. Standard deviations shown in parenthesis. 
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Table 2 - Summary Statistics by Pitch 

 Full Sample Regression Sample 1st Inning 9th Inning 
 (1) (2) (3) (4) 

Correct Call 0.840 0.840 0.842 0.836 
 (0.367) (0.367) (0.365) (0.371) 
Current Leverage 0.014 0.014 0.014 0.016 
 (0.016) (0.016) (0.012) (0.026) 
Running sum leverage current inning 0.117 0.117 0.120 0.104 
 (0.126) (0.126) (0.099) (0.173) 
Expected sum future leverage current inning 0.170 0.171 0.171 0.204 
 (0.136) (0.138) (0.086) (0.226) 
Pitch release point (X-axis) -2.130 -2.110 -2.480 -3.302 
 (10.909) (10.898) (11.056) (10.765) 
Pitch release point (Y-axis) 27.007 26.987 27.249 28.216 
 (4.533) (4.544) (4.351) (4.670) 
Pitch release point (Z-axis) -22.254 -22.352 -20.697 -21.432 
 (8.977) (9.002) (8.312) (9.334) 
Pitch spin direction (deg) 180.291 180.075 183.862 182.264 
 (66.074) (66.447) (59.449) (64.042) 
Pitch spin rate (rpm) 1,795.912 1,789.485 1,894.113 1,842.551 
 (670.399) (672.427) (632.757) (676.447) 
Pitch initial velocity (mph) 87.986 87.941 88.562 89.733 
 (6.018) (6.045) (5.535) (5.840) 
Pitch break angle (deg) 5.313 5.268 6.099 8.315 
 (24.862) (24.787) (26.027) (24.975) 
Pitch break length (in) 6.466 6.495 6.028 6.047 
 (2.946) (2.956) (2.713) (2.834) 
Pitch break (Y-axis) 23.803 23.803 23.802 23.796 
 (0.100) (0.100) (0.101) (0.098) 
Pitch final velocity (mph) 81.019 80.979 81.541 82.541 
 (5.390) (5.412) (4.965) (5.207) 
N 3,164,525 2,971,642 200,174 265,885 

Summary of attributes that vary across each pitch. Standard deviations shown in parenthesis. Column 1 summarizes all 
pitches in the data for which an umpire makes a ball/strike decision. Column 2 limits the sample to observations where all 

covariates from our primary regressions are non-missing.  
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Table 3 - Examples of Current and Future Leverage by Situation 

 

Examples of the difference in expected future leverage for situations with similar current-pitch leverage. Current 
leverage situations selected to be at the specified percentile of the observed leverage distribution in actual MLB 

games. The examples provided are the most extreme differences in expected future leverage for all situations with 
current leverage within 0.00001 of the percentile value. Score Diff. is the score advantage (positive) or deficit 

(negative) of the currently batting team. Current Leverage is the absolute change in the probability the batting team 
wins should the umpire call a strike versus a ball. Future Leverage is the expected sum of leverage on all pitches for 

the remainder of the inning.    
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Table 4 - Lag Leverage Only Innings 2-9 

 No 1 Inning 2 Inning 
 Lag Lags Lags 
 (1) (2) (3) 

Current Leverage 38.223 38.101 38.037 
 (1.866)*** (1.868)*** (1.869)*** 
Past Leverage (Current Inning) -3.260 -3.246 -3.239 
 (0.274)*** (0.274)*** (0.275)*** 
Expected Future Leverage (Current Inning) -3.575 -3.571 -3.573 
 (0.210)*** (0.210)*** (0.211)*** 
Inning 3 0.102 0.098 0.099 
 (0.086) (0.086) (0.086) 
Inning 4 -0.061 -0.061 -0.062 
 (0.088) (0.088) (0.088) 
Inning 5 0.043 0.043 0.042 
 (0.087) (0.088) (0.088) 
Inning 6 0.023 0.023 0.023 
 (0.088) (0.088) (0.088) 
Inning 7 0.016 0.015 0.013 
 (0.088) (0.088) (0.088) 
Inning 8 -0.060 -0.061 -0.066 
 (0.088) (0.088) (0.089) 
Inning 9 -0.391 -0.389 -0.392 
 (0.097)*** (0.097)*** (0.097)*** 
Lag Leverage Inning - 1   -0.011 -0.004 
  (0.197) (0.197) 
Lag Leverage Inning - 2    0.035 
   (0.204) 
N 2,712,508 2,710,491 2,708,875 
N Clusters 26,535 26,535 26,535 
Mean Correct 0.84 0.84 0.84 
    
    
Estimates from linear probability model that the umpire makes the correct call for a given pitch. Standard errors 

clustered at the game level shown in parenthesis. All coefficients and standard errors multiplied by 100 for legibility. 
Past leverage is the total of current leverage in the current inning. Lag leverage is the average of the leverage 

measure for all ball/strike decisions by the umpire during a previous inning. Regressions include game fixed effects 
and inning fixed effects. Estimates limited to innings 2-9.   
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Table 5 - Leverage Effects by Inning 

 Inning 2 Inning 3 Inning 4 Inning 5 Inning 6 Inning 7 Inning 8 Inning 9 
 (1) (2) (3) (4) (5) (6) (7) (8) 

Current Leverage 40.444 53.013 53.426 40.206 45.724 44.275 35.871 16.037 
 (6.048)*** (6.088)*** (5.917)*** (5.844)*** (5.449)*** (4.987)*** (4.453)*** (4.283)*** 
Past Leverage (Current Inning) -4.117 -5.463 -6.425 -3.942 -2.129 -2.986 -2.140 -2.072 
 (0.874)*** (0.934)*** (0.902)*** (0.880)*** (0.755)*** (0.729)*** (0.667)*** (0.628)*** 
Expected Future Leverage (Current Inning) -4.738 -5.013 -5.593 -3.893 -3.456 -3.661 -3.442 -2.011 
 (0.776)*** (0.762)*** (0.713)*** (0.666)*** (0.595)*** (0.535)*** (0.476)*** (0.436)*** 
Inning Effect 0.000 0.061 0.045 -0.110 -0.383 -0.284 -0.339 -0.652 
 (0.000) (0.203) (0.196) (0.189) (0.181)** (0.176) (0.172)** (0.178)*** 
N 2,712,508 2,712,508 2,712,508 2,712,508 2,712,508 2,712,508 2,712,508 2,712,508 
N Clusters 26,535 26,535 26,535 26,535 26,535 26,535 26,535 26,535 
Mean Correct 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 

Estimates from linear probability model that the umpire makes the correct call for a given pitch. Standard errors 
clustered at the game level shown in parenthesis. All coefficients and standard errors multiplied by 100 for legibility. 

Past leverage is the total of current leverage in the current inning. Lag leverage is the average of the leverage 
measure for all ball/strike decisions by the umpire during a previous inning. Regressions include game fixed effects. 

Estimates limited to innings 2-9.   
Table 6 - Alternative Regression Controls 

 Pref. Pitch Alternative Coarse Player 
 Spec Controls FEs FEs FEs 
 (1) (2) (3) (4) (5) 

Current Leverage 38.223 37.454 37.842 37.702 39.809 
 (1.866)*** (1.869)*** (1.853)*** (1.853)*** (1.873)*** 
Past Leverage  -3.260 -3.590 -3.089 -3.075 -3.258 
(Current Inning) (0.274)*** (0.275)*** (0.266)*** (0.266)*** (0.274)*** 
Expected Future Leverage  -3.575 -3.256 -3.444 -3.443 -3.486 
(Current Inning) (0.210)*** (0.211)*** (0.202)*** (0.202)*** (0.213)*** 
N 2,712,508 2,712,508 2,712,508 2,712,508 2,712,419 
N Clusters 26,535 26,535 26,535 26,535 26,535 
Mean Correct 0.84 0.84 0.84 0.84 0.84 
      
Controls Game FE Game FE Umpire, Date Umpire, Yr, 

MOY,DOW 
Game FE 

  Pitch Attribs Team FEs Team FEs Player FEs 

Estimates from linear probability model that the umpire makes the correct call for a given pitch. Standard errors 
clustered at the game level shown in parenthesis. All coefficients and standard errors multiplied by 100 for legibility. 
Past leverage is the total of current leverage in the current inning prior to the current pitch. Expected future leverage 

is the expected sum of leverages for all future pitches this inning. Column (1) repeats the primary specification. 
Column (2) adds controls for the attributes of the pitch, including velocity, break, starting position, spin rate, and 

pitch type. Column (3) removes game fixed effects and replaces them with umpire, home team, away team, and date 
fixed effects. Column (4) further replaces game date fixed effects with year, month-of-year, and day-of-week fixed 
effects. Column (5) adds fixed effects for the identity of the current pitcher and batter to the primary specification.    
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Appendix 1 Robustness  

A1.1: Results Excluding the Ninth Inning 

The leverage measure employed in our analyses is the effect an individual decision will 

have on the likelihood of a given team winning a game. By construction, this leverage measure 

will tend to be larger toward the end of games, where there are fewer decisions remaining for the 

umpire and a single decision can be pivotal to the outcome of a game. As test of robustness, we 

re-estimate our primary model, limiting our sample to the eighth inning and earlier. Results are 

shown in the tables below. Estimated parameters are not substantially different from models 

where we include the ninth inning.  

 

Table 7 - Robustness: Omit 9th Inning 

 Incl. Lag Incl. Lag Incl. Lag 
 0 innings 1 innings 2 innings 
 (1) (2) (3) 

Current Leverage 43.990 43.942 43.881 
 (2.068)*** (2.070)*** (2.071)*** 

Past Leverage (Current Inning) -3.506 -3.494 -3.488 
 (0.305)*** (0.305)*** (0.306)*** 

Expected Future Leverage (Current Inning) -3.946 -3.944 -3.949 
 (0.239)*** (0.239)*** (0.240)*** 

Lag Leverage Inning - 1   0.065 0.072 
  (0.219) (0.219) 

Lag Leverage Inning - 2    0.051 
   (0.228) 

N 2,446,325 2,444,606 2,443,182 
N Clusters 26,534 26,534 26,534 
Mean Correct 0.84 0.84 0.84 

Estimates from linear probability model that the umpire makes the correct call for a given pitch. Standard errors clustered 
at the game level shown in parenthesis. All coefficients and standard errors multiplied by 100 for legibility. Past leverage 
is the total of current leverage in the current inning. Lag leverage is the average of the leverage measure for all ball/strike 
decisions by the umpire during a previous inning. Regressions include game fixed effects. Estimates limited to innings 3-

9.  
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Table 8 - Robustness: Omit 9th Inning, Inning Level Effects 

 Inning 2 Inning 3 Inning 4 Inning 5 Inning 6 Inning 7 Inning 8 
 (1) (2) (3) (4) (5) (6) (7) 

Current 
Leverage 

40.609 53.023 53.165 40.464 45.555 44.167 35.652 

 (6.047)*** (6.089)*** (5.924)*** (5.846)*** (5.442)*** (4.990)*** (4.455)*** 
Past 
Leverage  

-4.136 -5.397 -6.386 -3.975 -2.175 -3.027 -2.086 

 (0.874)*** (0.938)*** (0.905)*** (0.883)*** (0.756)*** (0.733)*** (0.667)*** 
Expected 
Future 
Leverage  

-4.738 -4.949 -5.608 -3.894 -3.426 -3.634 -3.396 

 (0.777)*** (0.764)*** (0.714)*** (0.667)*** (0.596)*** (0.537)*** (0.477)*** 
Inning 
Effect 

0.000 0.045 0.050 -0.110 -0.386 -0.282 -0.344 

 (0.000) (0.203) (0.196) (0.190) (0.181)** (0.176) (0.172)** 
N 2,446,325 2,446,325 2,446,325 2,446,325 2,446,325 2,446,325 2,446,325 
N Clusters 26,534 26,534 26,534 26,534 26,534 26,534 26,534 
Mean 
Correct 

0.84 0.84 0.84 0.84 0.84 0.84 0.84 

Estimates from linear probability model that the umpire makes the correct call for a given pitch. Standard errors clustered 
at the game level shown in parenthesis. All coefficients and standard errors multiplied by 100 for legibility. Past leverage 
is the total of current leverage in the current inning. Lag leverage is the average of the leverage measure for all ball/strike 
decisions by the umpire during a previous inning. Regressions include game fixed effects. Estimates limited to innings 3-

9.  

 

A1.2: Results Using Actual Instead of Simulated Leverage 

Our measure of the leverage at each pitch requires that we compute two probabilities in 

each game situation: the probability a given team wins in the event of a called ball and the 

probability they win if there is a called strike. Although we use simulated data, it is possible to 

empirically calculate these probabilities using observed outcomes in MLB games. However, 

while we have a wealth of data on which to base these estimates (over three million pitches in 

over 26,500 games), the space of possible situations is also large, and using actual game data to 

compute leverage could lead to substantial measurement error.27  To address this concern, the 

leverage measure used as the basis of our primary specifications is derived from simulations of 5 

million MLB games.                                                              
27 Accounting for all possible combinations of balls, strikes, outs, baserunner positions, inning and inning part, and 
score differences between a 10-run advantage and a 10-run disadvantage, there are 108,864 possible states. Some 
states occur very frequently, e.g., every game starts in an identical state, and some states are not observed at all. A 
given state is observed, on average, around 30 times over the course of our data. If the probability of a team winning 
were 0.50, the estimated probability based on 30 observations would have a standard error of approximately 0.09. 
The standard error in leverage estimated this way would be even larger since it is the difference of two such 
probabilities measured with error. Computing the standard error of leverage requires knowledge of the covariance in 
the two estimated win probabilities. Applying the Cauchy-Schwarz inequality, we can bound the standard error of a 
leverage measure based on two outcomes observed thirty times each to [0.1286,0.1296]. 
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A test of the robustness of using this simulated leverage metric would be to re-estimate 

our primary specifications using leverage computed using a leverage measure based on game 

data-only (GDO), with the understanding that it is poorly measured. Assuming classical 

measurement error, we would expect the parameter on leverage to be biased toward zero in these 

estimates.28  

As a prerequisite, we first compute the degree of attenuation bias that can be expected 

given the measurement error in the game data-only leverage measure. Assuming the simulated 

leverage measure is the “true” measure of leverage on every pitch, attenuation bias is a function 

of the variance of the true measure divided by the sum of the variance of the true measure and 

the variance of the error in the noisy measure. Using estimates of these variances from our 

observed data, we can then compute the expected ratio of parameters from our preferred 

specification to those from a specification using the GDO leverage measure. 

Measurement error in the game data-only measure is driven by sampling variance. 

Therefore, values of the leverage metric based on game states that are observed more often 

should be more precise. A natural approach to reducing measurement error would be to limit the 

sample to situations that are observed more frequently, with lower sampling variance. Table 9 

recomputes the variance in the true leverage measure (“signal”) and the sampling variance 

(“noise”), limiting the sample to observations where the game data-only measure is computed 

using at least 1, 100, 250, 750, 1000, and 2500 observations. Then, using these variances, we 

compute the ratio between the “true” parameter and the expected value of a parameter when the 

corresponding independent variable is measured with error.  

The results of this table demonstrate the large impact measurement error might have on 

the estimated model parameters. Using the full sample, the true effect of leverage would be over 

8 times value of the parameter one would expect to observe given the magnitude of measurement 

error in the GDO leverage measure. This bias decreases steadily as we limit the sample to 

situations observed more frequently, but is still over 3 times the value when considering 

situations occurring over 250 times in our sample.29                                                             
28 If measurement error in the game data-only measure arises only from sampling variation in the estimated win 
probability in each state, then the measurement error is orthogonal to any other unobserved variables in our 
regression and meets the criteria of classical measurement error.  
29 As the minimum number of games increases over 750, the bias factor increases. This results from the fact that 
while increasing the number of games threshold reduces sampling variance (noise), it also reduces variance in the 
true leverage measure (signal) as the set of game situations in the sample decreases. 
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Table 9 - Estimated Bias from Measurement Error in Game Data Leverage 

Minimum 
Num 

Games 

Variance 
Signal 

Variance 
Noise 

Signal-to 
Noise 
Ratio 

Bias 
Factor 
b / b̂ 

1 0.0001764 0.0012982 0.1196263 835.90% 

100 0.0001532 0.0004344 0.2607022 383.60% 

250 0.0001390 0.0003351 0.2931118 341.20% 

750 0.0001170 0.0002416 0.3262512 306.50% 

1000 0.0000960 0.0002323 0.2924336 342.00% 

2500 0.0000816 0.0002147 0.2753444 363.20% 
Estimates of the magnitude of attenuation bias due to measurement error by using actual game, as opposed to 
simulated, outcomes to compute leverage. Assumes simulated leverage is the “true” measure of leverage. The 
“signal” is this true value (x). “Noise” is the difference between the GDO leverage measure and the simulated 

measure for a given pitch (u). Under classical measurement error, attenuation bias is proportional to the signal-to-

noise ratio ቀ 𝜎𝑥2𝜎𝑥2+𝜎𝑢2ቁ in the probability limit. The Bias Factor is the ratio of the true b (absent attenuation bias) and the 

estimated b when using the GDO leverage measure assuming classical measurement error. Minimum number of 
games denotes the minimum number of games on which the GDO leverage measure is based. 

 

We follow by estimating the impact of leverage on the umpire making a correct call using 

the GDO leverage measure. That is, for each pitch in each of these games, we define the situation 

as the score differential30, current inning31, inning part, number and position of baserunners, 

number of outs, number of balls, and number of strikes. The estimated probability of the home 

team winning conditional on that situation is the proportion of games where that situation 

occurred to games where that situation occurred and the home team won.32 We then compute the 

leverage in some situation At as the difference in win probability for the situation At incremented 

by a ball and the situation At incremented by a strike. This method of computing leverage 

requires minimal assumptions, only that events in a baseball game follow a Markov process with 

a state defined by the game situation variables. However, in spite of our large dataset consisting 

of over 26,000 individual games, the large state space leaves some relevant states unobserved or 

so infrequently observed that the win probabilities for these states are poorly estimated.33                                                             
30 We limit to cases where the score difference between teams is 10 or less.  
31 MLB games that are tied after nine innings continue one inning at a time until the tie is broken at the end of the 
inning. Consistent with our assumption that states evolve as a Markov process, we treat any inning after the 9th 
inning as the 9th for the purposes of computing the state.  
32 If a given situation occurs multiple times in a game – which frequently occurs when a batter hits a foul ball with 
two strikes – it is only counted once for the purposes of this calculation.  
33 The state space consists of 21 possible run differences, nine innings, two inning parts, three outs, eight possible 
arrangements of runners on the bases, three strike states, and four ball states. This is a total of 108,864 possible 
states. A typical game will pass through around 300 unique states. Given some states are more likely to occur than 
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To further investigate the role of measurement error, we again limit the sample to cases 

where the GDO measure is computed using data from at least 1, 100, 250, 750, 1000, and 2500 

unique occurrences in MLB games. For comparison, we also estimate the leverage effect using 

the same sample of observations and our leverage measure derived from simulated games. 

Finally, we compute the bias factor dividing the coefficient on the simulated measure to the 

coefficient on the GDO measure. The results are shown in Table 10. 

These estimates demonstrate two key advantages to using the simulated measure. First, 

the discrepancy between results using the simulated and GDO measure are broadly consistent 

with the magnitudes estimated in Table 9, declining to approximately 300% when limiting to 

cases where the GDO measure is based on at least 2500 observations. Second, limiting the 

sample to cases where the GDO measure is based on more observations increases the magnitude 

of the estimated coefficient in the simulated leverage regressions. Situations with few or many 

underlying observations on which to base the calculation of the GDO leverage measure are not 

randomly assigned and limiting the sample in this way can bias the estimated coefficients. Using 

the simulated leverage measure avoids both issues. While this table reveals discrepancies 

between estimates, the qualitative results still hold. 

 

Table 10 - Comparison of Estimated Leverage Effects from Different Measures 
 Leverage Effect  

Minimum  
Num Games 

GDO 
  

Simulated  
Bias Factor  

b / b̂ 

1 -0.381 15.149 -3979.20% 
100 1.577 19.804 1255.40% 
250 4.133 23.668 572.60% 
750 10.250 47.772 466.10% 

1000 7.558 43.940 581.30% 
2500 15.384 44.675 290.40% 

Estimates from linear probability models that the umpire makes the correct call of a given pitch. “Simulated 
Leverage” estimates computed using our preferred leverage measure from 5 million simulated MLB games. “GDO” 

(Game Data Only) estimates computed using a leverage measured derived only from actual game data. Standard 
errors clustered at the game level shown in parenthesis. Attenuation ratio shows the ratio of the estimated 

coefficients from each model. All coefficients and standard errors multiplied by 100 for legibility. Regressions 
include only contemporaneous leverage, game, and inning fixed effects. The first column uses all non-missing 

observations. Each subsequent column limits to observations where the GDO leverage measure is computed using a 
minimum of the number of games shown in the column header.                                                             

others (e.g., the state in the top of the first inning, tied game, zero base runners, balls, and strikes occurs in every 
game) there is incomplete coverage of the state space. 


