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1 Probabilistic uncertainty and sensitivity analysis 

A very convenient method to get a quantification of the uncertainty of a computational 

result (figure of merit) is the Monte Carlo (MC) simulation method (/MCK 79/, /HEL 96/, 

/WIC 98/, /HEL 06/). It relies on the uncertainties quantified for relevant input parameters 

and the propagation of these uncertainties through the computer model. That means 

possible values of the uncertain input parameters are sampled based on the respective 

uncertainty quantifications and supplied as input to corresponding computer runs. The 

different values finally obtained for the computational result can then be analyzed by 

statistical methods in order to derive appropriate indicators for the uncertainty of the re-

sult. 

To identify the most important uncertainty sources of a computational result, an addi-

tional (global) sensitivity analysis is useful (/HOF 99/, /SAL 00/). It can show where to 

improve the state of knowledge in order to reduce the uncertainty of the computational 

result most effectively. 

To facilitate the performance of uncertainty and sensitivity analyses based on the MC 

simulation method, the tool SUSA (Software for the Uncertainty and Sensitivity Analyses) 

was developed. SUSA combines well established methods from probability calculus and 

statistics with a comfortable graphical user interface (GUI). The concept of SUSA ena-

bles the user to fully concentrate on the analysis input including the identification of the 

input parameters which represent the main uncertainty sources of the computational re-

sult and the formulation of the corresponding uncertainties. After this is done, SUSA pro-

vides support to quantify the uncertainties probabilistically and to perform the different 

steps of an uncertainty and sensitivity analysis. 

  



2 

The main steps of a probabilistic uncertainty and sensitivity analysis supported by SUSA 

can be summarized as follows: 

1. Identify the uncertain input parameters which may essentially contribute to the un-

certainty of the computational result.  

2. Document the parameters in SUSA and use SUSA to quantify the uncertainty of the 

parameters in terms of univariate probability distributions and dependences (e.g. as-

sociation measures, conditional distributions, or functional relationships). 

3. Prompt SUSA to generate a sample of values for the parameters based on the quan-

tifications made in step 2. 

4. With the support of SUSA, start the corresponding computer code runs for the sets 

of parameter values sampled in step 3 to get a sample of values for the computa-

tional result. 

5. Prompt SUSA to calculate statistics useful for quantifying the uncertainty of the com-

putational result. 

6. Prompt SUSA to calculate sensitivity indices and to provide a ranking of the param-

eters with respect to their contribution to the uncertainty of the computational result. 

In this manual, the methods integrated in SUSA to perform the aforementioned steps 

2 – 6 of an uncertainty and sensitivity analysis are described in detail. Section 2 provides 

a description of the methods available to quantify input uncertainties. The methods for 

generating the samples of parameter values and of computational results are outlined in 

Section 3. Subject of Section 4 are the methods for quantifying the uncertainty of the 

computational result. Section 5 deals with the sensitivity indices in SUSA. 
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2 Input Uncertainties 

In this Section, the basic principles and methods used within SUSA to transfer experts’ 

knowledge into appropriate (subjective) probability distributions are explained. The Sec-

tion aims to assist the analyst to adequately design uncertainties by the optimal use of 

the resources provided by SUSA. The process of transferring experts’ knowledge into 

descriptive statistical measures such as central tendency (e.g. mean, median, or mode), 

dispersion (variability) and association (e.g. correlation) in order to derive a suitable sub-

jective probability distribution is generally referred to as elicitation of uncertainty 

/GEL 13/. The concept of using a probability distribution as an expression of uncertainty 

essentially corresponds to a Bayesian or subjective interpretation of probability as a de-

gree of belief. For the purpose of performing a probabilistic uncertainty and sensitivity 

analysis the specification of the parameter uncertainties is mainly referred to as input 

specification /MCK 95/. The main steps of the input specification may be considered as: 

1st step: choice of an appropriate univariate probability distribution for a parameter in 

order to model its uncertainty (/KLO 91/). 

2nd step:  assignment of suitable measures of association, conditional distributions, ine-

qualities or other functional relationships between parameters in order to 

model knowledge dependencies (see Section 2.2 and /KRZ 88/). 

Based on the specified univariate distributions in tandem with the assigned dependen-

cies, a sample of parameter values of size n in compliance with these properties is gen-

erated. The sampling procedures available in SUSA are explained in detail in Section 3. 

Each element of the generated sample represents one realization of the set of uncertain 

parameters. It is used as part of the input to the computer code of interest in order to 

perform Monte Carlo simulation. 

The first step of the input specification comprises the formulation of probability distribu-

tions for the uncertain parameters. This can be done either directly by the specification 

of an appropriate analytical formula or indirectly by the specification of distribution char-

acteristics reflecting the experts’ state of knowledge. In the latter case, SUSA applies 

suitable approaches to deduce an appropriate distribution in compliance with the experts’ 

knowledge. In the second step, (knowledge) dependencies between parameters are 

taken into account. They may be formulated in terms of measures of association, com-

plete dependencies, conditional distributions, inequalities or other functional 
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relationships between parameters. To support the analyst during her/his task of uncer-

tainty specification, the strategies available at each specification step are described in 

detail.  

This Section is organized according to the structure of the graphical user interface (GUI) 

of SUSA as follows:  

− all distributions available in SUSA are defined and their parameters are ex-
plained, 

− the available options to quantify knowledge dependencies are defined and their 
intuitive interpretation is described, and 

− the use of proportions to model further aspects of association are exemplified. 

2.1 Distribution 

The theoretical way to consider parameter uncertainty, indicating the likeliness that a 

parameter acquires alternative values within a certain range, is accomplished by assum-

ing a suitable probability distribution. In general experts’ beliefs are rarely provided in a 

convenient parameterized form. Therefore, an appropriate approximation to the uncer-

tainty considered for an input parameter has to be derived based on scientific judgement 

using all of the relevant information available. This information may include: 

• measurement data (i.e. the statistical analysis of a series of indication values), 

• expert's knowledge about the behavior and properties of the relevant process or 
system, 

• findings from previous uncertainty evaluations, and 

• data provided in calibration studies and other technical reports.  

Dependent on the range of alternative values and further probabilistic characteristics, 

appropriate distribution types can be modelled to best capture the uncertainty. Once a 

distribution type is selected, the distribution parameters can be calculated either analyt-

ically or by applying a random search iteration.  
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Each distribution can be truncated at a given minimum and/or maximum of the uncer-

tainty range. Due to this combination of subjective information given by experts, the elic-

itation process of uncertainty quantification leads to descriptive and subjective probability 

distributions. In general, for each considered uncertain parameter at least one of the 

following characteristics should be known by the analyst: 

• maximum range of possibly applicable alternative parameter values, i.e. the 

support of a hypothetical probability distribution 

• intermediate values to given degrees of belief for a parameter, i.e. supporting 

points of a probability distribution in terms of at least two quantiles (percentiles). 

One of these characteristics suffices to derive an appropriate approximation in terms of 

a probability distribution to the parameter uncertainty. By providing the distribution type 

(e.g. Normal distribution, Beta distribution, Gamma distribution, etc.) as well as the max-

imum range and/or some quantiles and the corresponding quantile probabilities the suit-

able parameterization can be derived analytically or by a simple random search. The full 

spectrum of analytical approaches to quantify the uncertainty of a parameter is carried 

out in detail in the context of the Normal distribution (Section 2.1.1.1). If the analytical 

determination of the distribution parameters is not feasible, a simple random search is 

applied as an iterative solution to a nonlinear optimization problem /KLO 91/. Thereby, 

the optimization problem to estimate the distributional parameters p1 and p2 is defined by 

the α1-quantile q1 and the α2-quantile q2 provided for the corresponding cumulative distri-

bution function F as 

�𝐹𝐹𝑝𝑝1,𝑝𝑝2(𝑞𝑞1)− 𝛼𝛼1�
2 + �𝐹𝐹𝑝𝑝1,𝑝𝑝2(𝑞𝑞2)− 𝛼𝛼2�

2 !
= 𝑚𝑚𝑚𝑚𝑚𝑚 (2.1) 

If further quantiles (up to K=10) are indicated, the optimization problem is defined as 

∑ 𝑤𝑤(𝑞𝑞𝑖𝑖) ∙ �𝐹𝐹𝑝𝑝1,𝑝𝑝2(𝑞𝑞𝑖𝑖) − 𝛼𝛼𝑖𝑖�
2𝐾𝐾

𝑖𝑖=1
 
 !
= 𝑚𝑚𝑚𝑚𝑚𝑚. (2.2) 

with w(qi) representing the subjective weight assigned to quantile qi. 

At the starting point of the iteration process, the specified distribution is assumed to have 

default parameter values p1 and p2. The optimization procedure, that is an iterative 
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variation of the parameter values such that the optimization problem becomes minimal, 

is performed as a random search method. 

SUSA offers the direct visualization of the modelled probability distribution (density, cu-

mulative distribution function, or complementary cumulative distribution function) and the 

comparison to alternative distributions in order to achieve the most suitable distributional 

shape representing the experts’ belief. 

As mentioned before, the range of alternative parameter values must not correspond to 

the original support of the selected distribution type (e.g. (-∞, +∞) for the Normal distri-

bution). It may be specified according to the experts’ belief. That means distributions with 

infinite tails can be truncated at one or both tails. 

A comprehensive summary of all available input combinations for each available distri-

bution is given in /KLO 91/. The following Sections summarize and characterize the ma-

jor probability distributions commonly employed to quantify the input uncertainty in the 

context of Monte Carlo simulation. For this purpose, each probability distribution is ex-

plained via its particular properties and its common field of application. For each distri-

bution, the probability density function and the distribution function are provided and the 

available alternative input strategies besides the plain parametrization are briefly ex-

plained. 

More information about uncertainty evaluation strategies to specify input uncertainties 

can be found, e.g., in the book /BED 01/ and online via /ITL 17/. A general but detailed 

overview of the probability distributions commonly used for uncertainty assignments is 

provided in /JOH 94/, /JOH 95/. A more practical overview in the context of uncertainty 

assignments in engineered systems can be found in /HAL 00/. 
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2.1.1 Parametric Distribution 

2.1.1.1 Normal Distribution 

The Normal distribution (aka Gaussian distribution) is used to describe natural as well 

as technical processes, such as measurement processes. Its importance basically orig-

inates from the Central Limit Theorem. This theorem says that the sum of a large number 

of independent random variables (uncertain parameters) asymptotically follows a Normal 

distribution regardless of the individual distributions of the random variables (uncertain 

parameters). For measurement processes, it might be simplified as follows: if a meas-

urement result is linearly influenced by an infinitely large number of uncertainty sources, 

then the distribution of the measurement result approaches the Normal distribution re-

gardless of the individual distributions describing the uncertainty sources. Even in more 

realistic situations, i.e. a limited set of uncertainty sources, the uncertainty of a measure-

ment result may be adequately approximated via the Normal distribution /COL 09/. 

The Normal distribution of variable X is defined via the density function as 

𝑓𝑓(𝑥𝑥) =
1

√2𝜋𝜋  𝑝𝑝2
∙ exp�−

1
2
�
𝑥𝑥 − 𝑝𝑝1
𝑝𝑝2

�
2

� , 𝑥𝑥 ∈  ℝ (2.3) 

and via the cumulative distribution function as 

𝐹𝐹(𝑥𝑥) = � 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑡𝑡
𝑥𝑥

−∞
=  

1
2
∙ �1 + erf�

𝑥𝑥 − 𝑝𝑝1
𝑝𝑝2 ∙ √2

�� ,        𝑥𝑥 ∈ ℝ (2.4) 

It is parametrized by the mean p1 and the standard deviation p2 > 0 (or variance p2
2) of X 

for the support range 𝑆𝑆 =] −∞,∞[. The expression erf (∙) refers to the error function 

defined as 

erf(𝑦𝑦) =
2
√𝜋𝜋

� 𝑒𝑒−𝑡𝑡2  𝑑𝑑𝑡𝑡   
𝑦𝑦

0
 (2.5) 



8 

In general the Normal distribution has an unbounded support, i.e. the x values may range 

from minus to plus infinity. In this case, the most remarkable intuitive property of the 

Normal distribution depicts its symmetric bell-shape. If the distribution parameters p1, p2 

are not explicitly known, the specific parameters can be analytically computed from two 

quantile-probability pairs (q1, α1) and (q2, α 2) with 0 < α1 < α2  < 1 and q1 < q2: 

𝑝𝑝1 =
𝑞𝑞1 ∙ 𝐹𝐹−1(𝛼𝛼2)− 𝑞𝑞2 ∙ 𝐹𝐹−1(𝛼𝛼1)

𝐹𝐹−1(𝛼𝛼2)− 𝐹𝐹−1(𝛼𝛼1)  (2.6) 

𝑝𝑝2 =
𝑞𝑞2 − 𝑞𝑞1

𝐹𝐹−1(𝛼𝛼2)− 𝐹𝐹−1(𝛼𝛼1) (2.7) 

The Normal distribution can be truncated, that is the support range may be restricted to 

a closed interval (i.e. two-sided truncation) or half closed interval (i.e. left- or right-sided 

truncation). The support of the untruncated Normal distribution 𝑆𝑆 =]−∞,∞[ = ]𝑎𝑎, 𝑏𝑏[ may 

be restricted to the closed interval 𝑆𝑆 = [𝑎𝑎′, 𝑏𝑏′] with −∞ < 𝑎𝑎′ < 𝑏𝑏′ < ∞ representing a two-

sided truncation, to the half-closed interval 𝑆𝑆 = [𝑎𝑎′,∞[  representing a left-sided trunca-

tion or to the half-closed interval 𝑆𝑆 =]−∞, 𝑏𝑏′] representing a right-sided truncation. The 

density function 𝑓𝑓(𝑥𝑥) and distribution function 𝐹𝐹(𝑥𝑥) of the truncated distribution can be 

generally derived as: 

𝑡𝑡𝑤𝑤𝑡𝑡 −  𝑠𝑠𝑚𝑚𝑑𝑑𝑒𝑒𝑑𝑑:

⎩
⎪
⎨

⎪
⎧𝑓𝑓𝑎𝑎′,𝑏𝑏′(𝑥𝑥) =

𝑓𝑓(𝑥𝑥)
𝐹𝐹(𝑏𝑏′) − 𝐹𝐹(𝑎𝑎′)

𝐹𝐹𝑎𝑎′,𝑏𝑏′(𝑥𝑥) =
𝐹𝐹(𝑥𝑥) − 𝐹𝐹(𝑎𝑎′)
𝐹𝐹(𝑏𝑏′) − 𝐹𝐹(𝑎𝑎′)

  , 𝑥𝑥 ∈ [𝑎𝑎′,𝑏𝑏′] (2.8) 

𝑙𝑙𝑒𝑒𝑓𝑓𝑡𝑡 −  𝑠𝑠𝑚𝑚𝑑𝑑𝑒𝑒𝑑𝑑:

⎩
⎪
⎨

⎪
⎧ 𝑓𝑓𝑎𝑎′(𝑥𝑥) =

𝑓𝑓(𝑥𝑥)
1 − 𝐹𝐹(𝑎𝑎′)

𝐹𝐹𝑎𝑎′(𝑥𝑥) =
𝐹𝐹(𝑥𝑥) − 𝐹𝐹(𝑎𝑎′)

1 − 𝐹𝐹(𝑎𝑎′)

  , 𝑥𝑥 ∈ [𝑎𝑎′,𝑏𝑏[ (2.9) 

𝑟𝑟𝑚𝑚𝑟𝑟ℎ𝑡𝑡 −  𝑠𝑠𝑚𝑚𝑑𝑑𝑒𝑒𝑑𝑑:

⎩
⎪
⎨

⎪
⎧𝑓𝑓𝑏𝑏′(x) =

𝑓𝑓(𝑥𝑥)
𝐹𝐹(𝑏𝑏′)

𝐹𝐹𝑏𝑏′(x) =
𝐹𝐹(𝑥𝑥)
𝐹𝐹(𝑏𝑏′)

  , 𝑥𝑥 ∈]𝑎𝑎, 𝑏𝑏′] (2.10) 
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Besides the support range, the Normal distribution may be specified via the distribution 

parameters p1 and p2 or via a set of at least two quantiles each given by the correspond-

ing quantile-probability pair (qi, αi). Note, the parameters of the Normal distribution are 

equivalent to the first and second statistical moment of the untruncated distribution, that 

is the mean or expectation value (i.e. 𝐸𝐸(𝑋𝑋) = 𝑝𝑝1) and the standard deviation 

(i.e. 𝑆𝑆𝑆𝑆(𝑋𝑋) =  𝑝𝑝2). In case the Normal distribution is truncated the simple random search 

approach needs to be applied. The Normal distribution as obtained in the visual output 

of SUSA is exemplified in the following Fig. 2.1. 

 

Fig. 2.1 The probability density function (A) and the cumulative distribution function 

(B) of a Normal distribution with mean p1 = 5 and standard deviation p2 = 1 

over the support [0, 10] 

2.1.1.2 Lognormal Distribution 

The logarithmic Normal distribution (also Lognormal distribution) is the distribution of a 

variable 𝑋𝑋 in case the transformation ln (𝑋𝑋) (natural logarithm of 𝑋𝑋) is normally distrib-

uted. An intuitive comparison between Normal and Lognormal distributions and handy 

explanation about their deeper understanding is provided in /LIM 01/. 

The Lognormal distribution of variable 𝑋𝑋 is defined via the density function as 

𝑓𝑓(𝑥𝑥) =
1

√2𝜋𝜋  𝑝𝑝2
∙

1
𝑥𝑥
∙ exp�−

1
2
�

ln (𝑥𝑥) − 𝑝𝑝1
𝑝𝑝2

�
2

� , 𝑥𝑥 ∈  ℝ>0 (2.11) 
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and via the cumulative distribution function as 

𝐹𝐹(𝑥𝑥) = � 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑡𝑡
𝑥𝑥

0
=   

1
2

+
1
2
∙ erf�

𝑙𝑙𝑚𝑚(𝑥𝑥) − 𝑝𝑝1
√2 ∙ 𝑝𝑝2

� , 𝑥𝑥 ∈  ℝ>0 (2.12) 

where ℝ>0 means the set of positive real numbers (exceeding zero). 

The Lognormal distribution is parametrized by the mean p1 and the standard deviation 

p2 > 0 (or variance p2
2) of ln (𝑋𝑋) (natural logarithm of 𝑋𝑋). The most remarkable intuitive 

property of the Lognormal distribution depicts its asymmetric, i.e. positively skewed 

shape, resulting from its bounded support, i.e. the distribution f(x) is only non-zero for 

positive x values. 

The Lognormal distribution can be truncated left-, right or two-sided and may be specified 

via the distribution parameters p1 and p2 or via a set of at least two quantiles each given 

by the corresponding quantile-probability pair (qi, αi).  

Another strategy to specify the Lognormal distribution is given by providing the first and 

second statistical moments as 

𝐸𝐸(𝑥𝑥) = exp�𝑝𝑝1 +
𝑝𝑝22

2 �
 (2.13) 

and 

𝑉𝑉𝑎𝑎𝑟𝑟(𝑥𝑥) = exp(2𝑝𝑝1 + 𝑝𝑝22) ∙ (exp(𝑝𝑝22) − 1)  (2.14) 

Based on these formulas the parameters p1 and p2 can then be analytically computed as 

follows: 

𝑝𝑝1 = ln�
𝐸𝐸(𝑥𝑥)

�𝑉𝑉𝑎𝑎𝑟𝑟(𝑥𝑥) + 𝐸𝐸(𝑥𝑥)2
� (2.15) 
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𝑝𝑝22 = ln �1 +
𝑉𝑉𝑎𝑎𝑟𝑟(𝑥𝑥)
𝐸𝐸(𝑥𝑥)2 �  (2.16) 

Another strategy arises from providing the median M and the factor k95. The median M 

is the 50 %-quantile of the distribution, i.e. F(M)=0.5 with F representing the cumulative 

distribution function. The factor k95 is defined as the ratio of the 95 %-quantile to the 

50 %-quantile. 

𝑝𝑝1 = ln(𝑀𝑀) (2.17) 

  𝑝𝑝2 =
ln (𝑘𝑘95)

1.645
 (2.18) 

Any kind of truncation can be applied via the formulas provided in Eqs. (2.8) – (2.10). 

 

Fig. 2.2 The probability density function (A) and the cumulative distribution function 

(B) of a Lognormal distribution with parameters p1 = 0 and p2 = 1 over the 

support [0, 10] 

2.1.1.3 Uniform Distribution 

The Uniform distribution may be assumed in case no a priori information about the un-

certainty of an input parameter is available. By providing the lower and upper bound of 

the support, i.e. 𝑥𝑥 ∈ [𝑀𝑀𝑚𝑚𝑚𝑚,𝑀𝑀𝑎𝑎𝑥𝑥], each value within this support is equally likely to occur 

as an alternative input value. Thus, a Uniform distribution is considered as the most con-

servative or least-informative uncertainty assumption. In other words, the Uniform 



12 

distribution is commonly used in case any value is as likely as any other within a support 

range. 

The Uniform distribution of a variable X is defined via the density function as 

𝑓𝑓(𝑥𝑥) =
1

𝑝𝑝2 − 𝑝𝑝1
,    𝑥𝑥 ∈ [𝑝𝑝1,𝑝𝑝2] ∈ ℝ  (2.19) 

and via the cumulative distribution function as 

𝐹𝐹(𝑥𝑥) =
x − 𝑝𝑝1
𝑝𝑝2 − 𝑝𝑝1

,    𝑥𝑥 ∈ [𝑝𝑝1,𝑝𝑝2] ∈ ℝ  (2.20) 

It is parametrized by the lower bound p1 = Min and the upper bound p2 = Max of the sup-

port of variable X, i.e. Min < Max. 

The Uniform distribution may be specified via the distribution parameters p1 (lower 

bound) and p2 (upper bound) or via two quantiles each given by the corresponding quan-

tile-probability pair (qi, αi). Since the support range can be flexibly adapted to any re-

striction of the support range no truncation option is provided in SUSA. 

 

Fig. 2.3 The probability density function (A) and the cumulative distribution function 

(B) of a Uniform distribution over the support [-5, 5] 

2.1.1.4 Loguniform Distribution 

The logarithmic Uniform distribution (also Loguniform distribution) is the distribution of a 

variable X in case the transformation ln(X) (natural logarithm) is uniformly distributed. 
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The Loguniform distribution is an alternative conservative uncertainty assumption in case 

where inputs cover large ranges of values, but little is known about their underlying dis-

tribution. Thus, the log-transformed input parameter is assumed to be uniformly distrib-

uted over a positive support range, i.e. 𝑥𝑥 ∈ [𝑀𝑀𝑚𝑚𝑚𝑚,𝑀𝑀𝑎𝑎𝑥𝑥]. Due to the log-transformation the 

support of the resulting Loguniform distribution encloses only positive values, i.e. 

0<Min<Max, and is of an asymmetric, i.e. positively skewed, shape. 

The Loguniform distribution of variable X is defined via the density function as 

𝑓𝑓(𝑥𝑥) =
1
𝑥𝑥
∙

1

ln �𝑝𝑝2𝑝𝑝1
�

,    𝑥𝑥 ∈ [𝑝𝑝1,𝑝𝑝2] ∈ ℝ>0  (2.21) 

and via the cumulative distribution function as 

𝐹𝐹(𝑥𝑥) =
ln � 𝑥𝑥𝑝𝑝1

�

ln �𝑝𝑝2𝑝𝑝1
�

,    𝑥𝑥 ∈ [𝑝𝑝1,𝑝𝑝2] ∈ ℝ>0  (2.22) 

It is parametrized by the positive lower bound p1 = Min and the positive upper bound 

p2 = Max of the support of variable X with 0 < Min < Max. 

The Loguniform distribution may be specified via the distribution parameters p1 (Min) and 

p2 (Max) or via two quantiles each given by the corresponding quantile-probability pair 

(qi, αi). Since the support range can be flexibly adapted to any restriction of the positive 

support range, no truncation option is provided in SUSA. 

 

Fig. 2.4 The probability density function (A) and the cumulative distribution function 

(B) of a Loguniform distribution over the support [0.5, 5.5] 
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2.1.1.5 Triangular Distribution 

The Triangular distribution is to a less conservative model of uncertainty, i.e. it encodes 

more information than the Uniform distribution. Besides the support range, the mode as 

the location of the highest probability density is used to describe a more informative dis-

tribution function. Since no further assumptions are made about the shape of the distri-

bution, a triangular form is considered as the most conservative formulation in this set-

ting.  

The Triangular distribution of variable X is defined via the density function as 

 𝑓𝑓(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ 2 ∙ (𝑥𝑥 −𝑀𝑀𝑚𝑚𝑚𝑚)

(𝑀𝑀𝑎𝑎𝑥𝑥 −𝑀𝑀𝑚𝑚𝑚𝑚) ∙ (𝑝𝑝1 −𝑀𝑀𝑚𝑚𝑚𝑚) ,𝑓𝑓𝑡𝑡𝑟𝑟 𝑀𝑀𝑚𝑚𝑚𝑚 ≤ 𝑥𝑥 ≤ 𝑝𝑝1

2 ∙ (𝑀𝑀𝑎𝑎𝑥𝑥 − 𝑥𝑥)
(𝑀𝑀𝑎𝑎𝑥𝑥 −𝑀𝑀𝑚𝑚𝑚𝑚) ∙ (𝑀𝑀𝑎𝑎𝑥𝑥 − 𝑝𝑝1) ,𝑓𝑓𝑡𝑡𝑟𝑟 𝑝𝑝1 < 𝑥𝑥 ≤ 𝑀𝑀𝑎𝑎𝑥𝑥

,𝑥𝑥 ∈ ℝ (2.23) 

and via the cumulative distribution function as 

𝐹𝐹(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ (𝑥𝑥 −𝑀𝑀𝑚𝑚𝑚𝑚)2

(𝑀𝑀𝑎𝑎𝑥𝑥 −𝑀𝑀𝑚𝑚𝑚𝑚) ∙ (𝑝𝑝1 −𝑀𝑀𝑚𝑚𝑚𝑚) ,𝑓𝑓𝑡𝑡𝑟𝑟 𝑀𝑀𝑚𝑚𝑚𝑚 ≤ 𝑥𝑥 ≤ 𝑝𝑝1

(𝑀𝑀𝑎𝑎𝑥𝑥 − 𝑥𝑥)2

(𝑀𝑀𝑎𝑎𝑥𝑥 −𝑀𝑀𝑚𝑚𝑚𝑚) ∙ (𝑀𝑀𝑎𝑎𝑥𝑥 − 𝑝𝑝1) ,𝑓𝑓𝑡𝑡𝑟𝑟 𝑝𝑝1 < 𝑥𝑥 ≤ 𝑀𝑀𝑎𝑎𝑥𝑥
, 𝑥𝑥 ∈ ℝ (2.24) 

It is parametrized by the lower bound Min and the upper bound Max of the support of 

variable X and the mode p1 with Min < p1 < Max. Depending on the mode value, the Tri-

angular distribution can be symmetric or asymmetric, i.e. skewed with respect to its tail 

behavior. 

The Triangular distribution may be specified via the support range Min, Max and the 

mode p1 or via two quantiles each given by the corresponding quantile-probability pair 

(qi, αi) and the mode p1. Since the support range can be flexibly adapted to any restriction 

of the support range, no truncation option is provided in SUSA. 
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Fig. 2.5 The probability density function (A) and the cumulative distribution function 

(B) of a Triangular distribution over the support [-5, 5] with mode 1 

2.1.1.6 Logtriangular Distribution 

The logarithmic Triangular distribution (also Logtriangular distribution) is the distribution 

of a variable X in case the transformation ln(x) is triangularly distributed. The Logtriangu-

lar distribution is – compared to the Loguniform distribution – a less conservative uncer-

tainty model in case where inputs cover large ranges of values, but little is known about 

the underlying distribution shape except the mode. Due to the log-transformation, the 

support [Min, Max] of the resulting Logtriangular distribution encloses only positive val-

ues, i.e. 0<Min<Max, and is of an asymmetric, i.e. positively skewed, shape. 

The Logtriangular distribution of variable X is defined via the density function as 

𝑓𝑓(𝑥𝑥) =

⎩
⎪⎪
⎨

⎪⎪
⎧ 2 ∙ 𝑙𝑙𝑚𝑚 � 𝑥𝑥

𝑀𝑀𝑚𝑚𝑚𝑚� 

ln �𝑀𝑀𝑎𝑎𝑥𝑥𝑀𝑀𝑚𝑚𝑚𝑚� ∙  𝑙𝑙𝑚𝑚 � 𝑝𝑝1𝑀𝑀𝑚𝑚𝑚𝑚� 
∙

1
𝑥𝑥

,𝑓𝑓𝑡𝑡𝑟𝑟 𝑀𝑀𝑚𝑚𝑚𝑚 ≤ 𝑥𝑥 ≤ 𝑝𝑝1

2 ∙ ln �𝑀𝑀𝑎𝑎𝑥𝑥𝑥𝑥 �

ln �𝑀𝑀𝑎𝑎𝑥𝑥𝑀𝑀𝑚𝑚𝑚𝑚� ∙ ln �𝑀𝑀𝑎𝑎𝑥𝑥𝑝𝑝1
�
∙

1
𝑥𝑥

,𝑓𝑓𝑡𝑡𝑟𝑟 𝑝𝑝1 < 𝑥𝑥 ≤ 𝑀𝑀𝑎𝑎𝑥𝑥

, 𝑥𝑥 ∈ ℝ>0 (2.25) 
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and via the cumulative distribution function as  

𝐹𝐹(𝑥𝑥) =

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑙𝑙𝑚𝑚2 � 𝑥𝑥

𝑀𝑀𝑚𝑚𝑚𝑚� 

ln �𝑀𝑀𝑎𝑎𝑥𝑥𝑀𝑀𝑚𝑚𝑚𝑚� ∙  𝑙𝑙𝑚𝑚 � 𝑝𝑝1𝑀𝑀𝑚𝑚𝑚𝑚� 
, 𝑓𝑓𝑡𝑡𝑟𝑟 𝑀𝑀𝑚𝑚𝑚𝑚 ≤ 𝑥𝑥 ≤ 𝑝𝑝1

1 −
ln2 �𝑀𝑀𝑎𝑎𝑥𝑥𝑥𝑥 �

ln �𝑀𝑀𝑎𝑎𝑥𝑥𝑀𝑀𝑚𝑚𝑚𝑚� ∙ ln �𝑀𝑀𝑎𝑎𝑥𝑥𝑝𝑝1
�

,𝑓𝑓𝑡𝑡𝑟𝑟 𝑝𝑝1 < 𝑥𝑥 ≤ 𝑀𝑀𝑎𝑎𝑥𝑥

, 𝑥𝑥 ∈ ℝ>0 (2.26) 

It is parametrized by the lower bound Min and the upper bound Max of the support of 

variable X and, additionally, by the mode p1 with 0 < Min < p1 < Max. 

The Logtriangular distribution may be specified via the support range Min, Max and the 

mode p1 or via two quantiles each given by the corresponding quantile-probability pair 

(qi, αi) and the mode p1. Since the support range can be flexibly adapted to any restriction 

to the positive support range, no truncation option is provided in SUSA. 

 

Fig. 2.6 The probability density function (A) and the cumulative distribution function 

(B) of a Logtriangular distribution over the support [0.5, 5.0] and with 

mode 1 
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2.1.1.7 Weibull Distribution 

The Weibull distribution is the limiting distribution of the smallest values among a sample 

of independent, identically distributed random variables (uncertain parameters). The 

Weibull distribution actually represents a family of distributions that can be flexibly mod-

elled. Thereby, the location, scale and shape parameters allow to adapt the distributions 

shape in order to describe different uncertainty assumptions. A common application of 

the Weibull distribution is the modelling of time to failure or length of life of a component 

from a specified time to its failure as required e.g. in the field of reliability analysis. More-

over, due its versatility in can be easily used to capture the empirical behavior of many 

physical quantities. Depending on its specification, the Weibull distribution can be used 

to model a variety of life or occurrence behaviors.  

The Weibull distribution of variable X is defined via the density function as  

𝑓𝑓(𝑥𝑥) =
𝑝𝑝1
𝑝𝑝2
∙ �
𝑥𝑥 − 𝑀𝑀𝑚𝑚𝑚𝑚

𝑝𝑝2
�
𝑝𝑝1−1

∙ exp�−�
𝑥𝑥 −𝑀𝑀𝑚𝑚𝑚𝑚

𝑝𝑝2
�
𝑝𝑝1

 � , 𝑥𝑥 ∈ ℝ≥𝑀𝑀𝑖𝑖𝑀𝑀 (2.27) 

and via the cumulative distribution function as  

𝐹𝐹(𝑥𝑥) = 1 − exp�−�
𝑥𝑥 −𝑀𝑀𝑚𝑚𝑚𝑚

𝑝𝑝2
�
𝑝𝑝1

 � , 𝑥𝑥 ∈ ℝ≥𝑀𝑀𝑖𝑖𝑀𝑀 (2.28) 

The Weibull distribution is parametrized by the location parameter Min, the shape pa-

rameter p1 > 0 and the scale parameter p2 > 0. Thereby, the location parameter specifies 

the lower bound of the support of the distribution, i.e. X ≥ Min, the shape parameter ba-

sically influences the mode of the distribution thus specifying the shape of the distribution 

and the scale parameter influences the width of the distribution. 

The Weibull distribution may be specified via the parameters shape p1, scale p2, and the 

lower bound Min of the support range or by a set of at least two quantiles each given by 

the corresponding quantile-probability pair (qi, αi) and the lower bound Min of the support 

range. The Weibull distribution can be only truncated right-sided. 
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Fig. 2.7 The probability density function (A, C, E) and the cumulative distribution 

function (B, D, F) of Weibull distributions over the joint support [-5, 5], with 

the scale parameter p2 = 1 and varying shape parameter p1 = 0.5 for (A, 

B), 1.0 for (C, D) and 1.5 for (E, F) 
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2.1.1.8 Beta Distribution 

The Beta distribution actually represents a family of distributions that can flexibly model 

variability patterns over a fixed range. Due to its versatility the Beta distribution can be 

closely fitted to most classical distributions and, thus, is frequently used in many areas 

of application. Commonly, it is used to describe the uncertainty of proportions, fractions 

and percentages. 

The Beta distribution of variable X is defined via the density function as 

𝑓𝑓(𝑥𝑥) =
(𝑀𝑀𝑎𝑎𝑥𝑥 −𝑀𝑀𝑚𝑚𝑚𝑚)1−𝑝𝑝1−𝑝𝑝2

𝐵𝐵1(𝑝𝑝1,𝑝𝑝2) ∙ (𝑥𝑥 −𝑀𝑀𝑚𝑚𝑚𝑚)𝑝𝑝1−1 ∙ (𝑀𝑀𝑎𝑎𝑥𝑥 − 𝑥𝑥)𝑝𝑝2−1,

𝑥𝑥 ∈ [𝑀𝑀𝑚𝑚𝑚𝑚,𝑀𝑀𝑎𝑎𝑥𝑥] ∈ ℝ 
(2.29) 

and via the cumulative distribution function as 

𝐹𝐹(𝑥𝑥) =
1

𝐵𝐵1(𝑝𝑝1,𝑝𝑝2) ∙ 𝐵𝐵 𝑥𝑥−𝑀𝑀𝑖𝑖𝑀𝑀
𝑀𝑀𝑎𝑎𝑥𝑥−𝑀𝑀𝑖𝑖𝑀𝑀

(𝑝𝑝1,𝑝𝑝2), 𝑥𝑥 ∈ [𝑀𝑀𝑚𝑚𝑚𝑚,𝑀𝑀𝑎𝑎𝑥𝑥] ∈ ℝ (2.30) 

𝐵𝐵𝑦𝑦(𝑝𝑝1,𝑝𝑝2) in Eq. (2.30) denotes the incomplete Beta function: 

𝐵𝐵𝑦𝑦(𝑝𝑝1,𝑝𝑝2) = � 𝑡𝑡𝑝𝑝1−1
𝑦𝑦

0
∙ (1 − 𝑡𝑡)𝑝𝑝2  𝑑𝑑𝑡𝑡 (2.31) 

𝐵𝐵1(𝑝𝑝1,𝑝𝑝2) in Eqs. (2.29) – (2.30) denotes the complete Beta function which is a special 

case of the incomplete Beta function (Eq. (2.31)) and is defined as 

𝐵𝐵1(𝑝𝑝1,𝑝𝑝2) = 𝐵𝐵(𝑝𝑝1,𝑝𝑝2) =
Γ(𝑝𝑝1) ∙ Γ(𝑝𝑝2)
Γ(𝑝𝑝1 + 𝑝𝑝2)

 (2.32) 

where Γ(𝑥𝑥) denotes the Gamma function as defined in Eq. (2.39). 
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The Beta distribution is parametrized by the shape parameters p1 > 0 and p2 > 0. In gen-

eral, the resulting distribution shape is symmetric in case p1 = p2 and skewed for p1 ≠ p2. 

The Beta distribution may be specified via the shape parameters p1, p2, and the bounds 

Min and Max of the support range or by a set of at least two quantiles each given by the 

corresponding quantile-probability pair (qi, αi) and the bounds Min and Max of the support 

range. Another strategy to specify the Beta distribution is given by providing the first and 

second statistical moments as 

𝐸𝐸(𝑥𝑥) = Min + (Max − Min) ∙
𝑝𝑝1

𝑝𝑝1 + 𝑝𝑝2
 (2.33) 

and 

𝑉𝑉𝑎𝑎𝑟𝑟(𝑥𝑥) = (Max − Min)2 ∙
𝑝𝑝1 ∙ 𝑝𝑝2

(𝑝𝑝1 + 𝑝𝑝2)2 ∙ (𝑝𝑝1 + 𝑝𝑝2 + 1)
 (2.34) 

The shape parameters p1 and p2 can then be analytically computed as  

𝑝𝑝1 = 𝐸𝐸(𝑥𝑥) ∙ �
𝐸𝐸(𝑥𝑥)
𝑉𝑉𝑎𝑎𝑟𝑟(𝑥𝑥) ∙ �1 − 𝐸𝐸(𝑥𝑥)� − 1� (2.35) 

and 

𝑝𝑝2 = �1 − 𝐸𝐸(𝑥𝑥)� ∙ �
𝐸𝐸(𝑥𝑥)
𝑉𝑉𝑎𝑎𝑟𝑟(𝑥𝑥) ∙ �1 − 𝐸𝐸(𝑥𝑥)� − 1� (2.36) 
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Fig. 2.8 The probability density function (A, C, E, G) and the cumulative distribution 

function (B, D, F, H) of Beta distributions over the joint support [-5, 5], with 

the shape parameters (p1, p2) = (0.5, 0.5) for (A, B), (2, 2) for (C, D), (2, 4) 

for (E, F) and (4, 1) for (G, H) 
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2.1.1.9 Gamma Distribution 

The shape of the Gamma distribution is similar to that of the Lognormal distribution but 

it is less positively skewed and less heavy-tailed. Thus, it may be used in situations sim-

ilar to those where the Lognormal distribution would be appropriate. The Gamma distri-

bution is particularly useful for describing the uncertainty on the time (or spaces) between 

events (items) that are not pure random processes. Quantities frequently exhibiting 

skewed distributions like the Gamma distribution are physical quantities as well as the 

time between malfunctions of components or the time required to complete maintenance 

of a component. 

The Gamma distribution is defined via the density function as 

𝑓𝑓(𝑥𝑥) =
1

Γ(𝑝𝑝1) ∙ 𝑝𝑝2
𝑝𝑝1 ∙ 𝑥𝑥𝑝𝑝1−1 ∙ 𝑒𝑒−𝑝𝑝2∙𝑥𝑥, 𝑥𝑥 ∈ ℝ>0 (2.37) 

and via the cumulative distribution function as 

𝐹𝐹(𝑥𝑥) =
Γ𝑝𝑝2∙𝑥𝑥(𝑝𝑝1)
Γ(𝑝𝑝1) , 𝑥𝑥 ∈ ℝ>0 (2.38) 

It is parametrized by the shape parameter p1 > 0, the rate (or inverse scale) parameter 

p2 > 0 and the Gamma function Γ(𝑝𝑝1). The incomplete Gamma function is denoted by  

Γ𝑦𝑦(𝑝𝑝1) = � 𝑡𝑡𝑝𝑝1−1
𝑦𝑦

0
∙ 𝑒𝑒−𝑡𝑡 𝑑𝑑𝑡𝑡 (2.39) 

with the complete Gamma function derived as Γ∞(𝑝𝑝1) = Γ(𝑝𝑝1). 

The Gamma distribution may be specified via the parameters p1 (shape) and p2 (rate) 

over the support range or by a set of at least two quantiles each given by the correspond-

ing quantile-probability pair (qi, αi) over the support range. Any kind of truncation can be 

applied via the formulas provided in Eqs. (2.8) – (2.10). 
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Fig. 2.9 The probability density function (A, C, E) and the cumulative distribution 

function (B, D, F) of Gamma distributions over the joint support [0, 20] with 

the parameter settings (p1, p2) = (1, 0.25) for (A, B), (2, 0.3) for (C, D) and 

(20, 2) for (E, F) 
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2.1.1.10 Extreme Value I Distribution 

In many engineering applications, the extreme values of random variables (uncertain 

parameters) are of particular importance. The largest or smallest values may dictate a 

particular component or system design, e.g. wind speed, earthquake loads or flood lev-

els. To construct an extreme value distribution, an underlying variable with a particular 

distribution is necessary. This underlying distribution governs the form of the correspond-

ing extreme value distribution. Further reading about extreme values and their distribu-

tional patterns in the context of engineered systems can be found in /HAL 00/ and 

/JOR 05/. 

The Extreme Value I distribution (aka Gumbel distribution) is a limiting distribution of the 

largest (or smallest) value among a sample of independent, identically distributed ran-

dom variables (uncertain parameters). Thus, the Extreme Value I distribution is used to 

model the distribution of the maximum (or the minimum) of a number of samples. This 

distribution might be used to represent the uncertainty of the maximum measurement 

outcome or the uncertainty of an extreme event such as an earthquake, flood or other 

natural disaster. The potential applicability of the Gumbel distribution to represent the 

uncertainty of the extreme value of a sample originates from the extreme value theory, 

which indicates that the Gumbel distribution is likely to be useful if the distribution of the 

underlying sample data is of the Normal or Exponential type. 

The Extreme Value I distribution is defined via the density function as 

𝑓𝑓(𝑥𝑥) =
1
𝑝𝑝2
∙ 𝑒𝑒𝑥𝑥𝑝𝑝 �−

𝑥𝑥 − 𝑝𝑝1
𝑝𝑝2

� ∙ exp �−𝑒𝑒𝑥𝑥𝑝𝑝 �
𝑥𝑥 − 𝑝𝑝1
𝑝𝑝2

� � , 𝑥𝑥 ∈ ℝ (2.40) 

and via the cumulative distribution function as 

𝐹𝐹(𝑥𝑥) = exp �−𝑒𝑒𝑥𝑥𝑝𝑝 �
𝑥𝑥 − 𝑝𝑝1
𝑝𝑝2

�  � , 𝑥𝑥 ∈ ℝ (2.41) 

It is parametrized by the location parameter p1 and the scale parameter p2 > 0. 
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The Extreme Value I distribution may be specified via the parameters p1 (location) and 

p2 (scale) or by a set of at least two quantiles each given by the corresponding quantile-

probability pair (qi, αi). Any kind of truncation can be applied via the formulas provided in 

Eqs. (2.8) – (2.10). 

 

Fig. 2.10 The probability density function (A) and the cumulative distribution function 

(B) of an Extreme Value I distribution over the support [-5, 20] for the loca-

tion parameter p1 = 1 and the scale parameter p2 = 2 

2.1.1.11 Extreme Value II Distribution 

The Extreme Value II distribution (aka Fréchet distribution, aka inverse Weibull distribu-

tion) is a limiting distribution of the largest (or smallest) value among a sample of inde-

pendent, identically distributed random variables (uncertain parameters). The Extreme 

Value II distribution is used to model the distribution of the maximum (or the minimum) 

of a number of samples. This distribution might be used to represent the uncertainty of 

the maximum measurement outcomes, since it captures the typical characteristics of 

asymmetric long tails. It is useful to represent the uncertainty of an extreme event such 

as an earthquake, flood or other natural disaster. The potential applicability of the Fréchet 

distribution to represent the distribution of the extreme value of a sample originates from 

the extreme value theory, which indicates that of the Fréchet distribution is likely to be 

useful, if the distribution of the underlying sample data is of the Cauchy or Lognormal 

type. 

The Extreme Value II distribution of variable X is defined via the density function as 

𝑓𝑓(𝑥𝑥) =
𝑝𝑝1
𝑝𝑝2
∙ �
𝑥𝑥 − 𝑀𝑀𝑚𝑚𝑚𝑚

𝑝𝑝2
�
−(𝑝𝑝1+1)

∙ exp�−�
𝑥𝑥 −𝑀𝑀𝑚𝑚𝑚𝑚

𝑝𝑝2
�
−𝑝𝑝1

� , 𝑥𝑥 ∈ ℝ>𝑀𝑀𝑖𝑖𝑀𝑀 (2.42) 



26 

and via the cumulative distribution function as 

𝐹𝐹(𝑥𝑥) = exp�−�
𝑥𝑥 −𝑀𝑀𝑚𝑚𝑚𝑚

𝑝𝑝2
�
−𝑝𝑝1

�    𝑥𝑥 ∈ ℝ>𝑀𝑀𝑖𝑖𝑀𝑀 (2.43) 

It is parametrized by the lower bound Min, i.e. X > Min, the shape parameter p1 > 0 and 

the scale parameter p2 > 0. 

 

Fig. 2.11 The probability density function (A,C,E) and the cumulative distribution 

function (B,D,F) of Extreme Value II distributions over the joint support [-5, 

20], i.e. Min = -5, for the shape and scale parameters (p1, p2) = (1, 1) for 

(A, B), (1, 2) for (C, D) and (2, 1) for (E, F) 
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The Extreme Value II distribution may be specified via the parameters p1 (shape) and p2 

(scale) over the support range bounded by Min or by a set of at least two quantiles each 

given by the corresponding quantile-probability pair (qi, αi) over the support range 

bounded by Min. It can be only truncated right-sided. 

2.1.1.12 Exponential Distribution 

The Exponential distribution is often used in reliability theory and reliability engineering. 

The distribution describes the uncertainty of the time between events in a Poisson pro-

cess, i.e. a process in which events occur continuously and independently at a constant 

average rate, e.g. failure rate of a system or component. Because of the memoryless 

property of this distribution, it is well-suited to model the constant hazard rate portion of 

the bathtub curve used in reliability theory. However, the exponential distribution is not 

appropriate to model the overall lifetime of technical devices, because realistic failure 

rates are not constant: more failures occur for very young and for very old systems. In 

physics, if you observe a gas at a fixed temperature and pressure in a uniform gravita-

tional field, the heights of the various molecules also follow an approximate exponential 

distribution, known as the Barometric formula. This correspondence is a consequence 

of the entropy property and is often used to justify the use of the Exponential distribution 

for certain physical quantities. 

The Exponential distribution is defined via the density function as 

𝑓𝑓(𝑥𝑥) = 𝑝𝑝1 ∙ 𝑒𝑒−𝑝𝑝1∙𝑥𝑥, 𝑥𝑥 ∈ ℝ>0  (2.44) 

and via the cumulative distribution function as 

𝐹𝐹(𝑥𝑥) = 1 − 𝑒𝑒−𝑝𝑝1∙𝑥𝑥, 𝑥𝑥 ∈ ℝ>0 (2.45) 

It is parametrized by the rate (or inverse scale) parameter p1 > 0 over a positive support 

range. 

The Exponential distribution may be specified via the parameter p1 (rate) or by a set of 

at least one quantile given by the corresponding quantile-probability pair (qi, αi). Any kind 

of truncation can be applied via the formulas provided in Eqs. (2.8) – (2.10). 
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Fig. 2.12 The probability density function (A,C,E) and the cumulative distribution 

function (B,D,F) of Exponential distributions over the joint support [0, 10] 

for the rate parameter p1 = 0.5 for (A, B), 1.0 for (C, D) and 1.5 for (E, F) 
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2.1.1.13 ChiSquared Distribution 

The ChiSquared (𝜒𝜒2) distribution describes the uncertainty of a squared random variable 

which itself is normally distributed. The 𝜒𝜒2-distribution is usually applied to the sum of 

square error between measured data and corresponding model predictions. 

 

Fig. 2.13 The probability density function (A, C, E) and the cumulative distribution 

function (B, D, F) of ChiSquared distributions over the joint support [0, 10] 

for the degree of freedom p1 = 1 for (A, B), 3 for (C, D) and 6 for (E, F) 
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The 𝜒𝜒2-distribution is defined via the density function as 

𝑓𝑓(𝑥𝑥) =
1

Γ �𝑝𝑝12 �
∙ 0.5

𝑝𝑝1
2 ∙ 𝑥𝑥

𝑝𝑝1
2  −1 ∙ exp �−

𝑥𝑥
2
� , 𝑥𝑥 ∈ ℝ>0 (2.46) 

and via the cumulative distribution function as 

𝐹𝐹(𝑥𝑥) =
Γ𝑥𝑥
2
�𝑝𝑝12 �

Γ �𝑝𝑝12 �
, 𝑥𝑥 ∈ ℝ>0 (2.47) 

It is parametrized by the degree of freedom 𝑝𝑝1 ∈ ℕ>0 over a positive support range. 

The 𝜒𝜒2-distribution may be specified via the degree of freedom parameter p1 or by a set 

of at least one quantile given by the corresponding quantile-probability pair (qi, αi). Any 

kind of truncation can be applied via the formulas provided in Eqs. (2.8) – (2.10). 

2.1.2 Nonparametric Distribution 

If, for any reason, it is not possible to represent the uncertainty of a variable by a para-

metric distribution, the specification of a nonparametric distribution may be appropriate. 

2.1.2.1 Discrete Distribution 

The selection of the Discrete distribution is appropriate, if the uncertainty can be mod-

elled in a discrete manner by assigning a probability (degree of belief) to each possible 

value of a parameter X, i.e. by specifying value-probability pairs (xi, pi) for parameter X.  

Based on the discrete support  𝑆𝑆 = {𝓏𝓏1,𝓏𝓏2, … ,𝓏𝓏𝑀𝑀} ∈ ℝ  where each parameter value 

𝓏𝓏𝑖𝑖 , 𝑚𝑚 = 1, … ,𝑚𝑚 and 𝑚𝑚 ∈ ℕ, is associated with a probability 𝑝𝑝𝑖𝑖 ∈ [0,1], the Discrete distribu-

tion is defined via the density function as 

𝑓𝑓(𝑥𝑥) = � 𝑝𝑝𝑖𝑖, 𝑓𝑓𝑡𝑡𝑟𝑟 𝑥𝑥 = 𝑧𝑧𝑖𝑖  ∨  𝑚𝑚 = 1, … ,𝑚𝑚 
0, 𝑒𝑒𝑙𝑙𝑠𝑠𝑒𝑒  (2.48) 
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and via the cumulative distribution function as 

𝐹𝐹(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧

 0, 𝑓𝑓𝑡𝑡𝑟𝑟 𝑥𝑥 < 𝑧𝑧1 

�𝑝𝑝𝑗𝑗

𝑖𝑖

𝑗𝑗=1

, 𝑓𝑓𝑡𝑡𝑟𝑟 𝑧𝑧𝑖𝑖 ≤ 𝑥𝑥 < 𝑧𝑧𝑖𝑖+1  ∨  𝑚𝑚 = 1, … ,𝑚𝑚 − 1

1, 𝑓𝑓𝑡𝑡𝑟𝑟 𝑥𝑥 ≥ 𝑧𝑧𝑀𝑀

  (2.49) 

Note, in order that these functional expressions satisfy the basic properties of a proba-

bility function (namely a probability measure as formulated within probability theory), the 

discrete probability values 𝑝𝑝𝑖𝑖   must lie in the interval [0, 1] and their total sum needs to 

be equal to one, i.e. 

�𝑝𝑝𝑖𝑖

𝑀𝑀

𝑖𝑖=1

= 1 ∨  𝑝𝑝𝑖𝑖 ∈ [0,1] (2.50) 

Moreover, for SUSA it is important that the provided parameter values are ordered, that 

is 𝓏𝓏1 < 𝓏𝓏2 < ⋯ < 𝓏𝓏𝑀𝑀, and are assigned with probability values 𝑝𝑝𝑖𝑖 > 0. Since the support 

range can be flexibly adapted to any restriction of the support range, no truncation option 

is provided in SUSA. 

 

Fig. 2.14 The probability density function (A) and the cumulative distribution function 

(B) of a Discrete distribution for the value-probability pairs {(-5, 0.04), 
(-3, 0.08), (-1, 0.40), (0, 0.20), (2, 0.06), (3, 0.12), (4, 0.08), (5, 0.02)} over 

the support [-5, 5] 
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2.1.2.2 Histogram Distribution 

The Histogram distribution allows for modelling a piecewise Uniform distribution shape 

from a set of discrete value-probability pairs. This might be reasonable in case constant 

probability values between successive parameter values can be assumed. 

Based on the discrete support 𝑆𝑆 = {𝓏𝓏1,𝓏𝓏2, … ,𝓏𝓏𝑀𝑀+1} ∈ ℝ  where each parameter value 𝓏𝓏𝑖𝑖 

for 𝑚𝑚 = 1, … ,𝑚𝑚 and 𝑚𝑚 ∈ ℕ is associated with a probability value 𝑝𝑝𝑖𝑖 ∈ [0,1] applicable to the 

interval [𝑧𝑧𝑖𝑖, 𝑧𝑧𝑖𝑖+1[,  the Histogram distribution can be defined via the density function as  

𝑓𝑓(𝑥𝑥) = � 

𝑝𝑝𝑖𝑖
𝑧𝑧𝑖𝑖+1 − 𝑧𝑧𝑖𝑖

, 𝑓𝑓𝑡𝑡𝑟𝑟 𝑥𝑥 ∈ [𝑧𝑧𝑖𝑖, 𝑧𝑧𝑖𝑖+1[ ∨  𝑚𝑚 = 1, … ,𝑚𝑚 
𝑝𝑝𝑀𝑀

𝑧𝑧𝑀𝑀+1 − 𝑧𝑧𝑀𝑀
, 𝑓𝑓𝑡𝑡𝑟𝑟 𝑥𝑥 = 𝑧𝑧𝑀𝑀+1

 (2.51) 

and via the cumulative distribution function as 

𝐹𝐹(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧  

𝑥𝑥 − 𝑧𝑧1
𝑧𝑧2 − 𝑧𝑧1

∙ 𝑝𝑝1, 𝑓𝑓𝑡𝑡𝑟𝑟 𝑥𝑥 ∈ [𝑧𝑧1, 𝑧𝑧2[ 

�𝑝𝑝𝑗𝑗 +
𝑥𝑥 − 𝑧𝑧𝑖𝑖
𝑧𝑧𝑖𝑖+1 − 𝑧𝑧𝑖𝑖

∙ 𝑝𝑝𝑖𝑖

𝑖𝑖−1

𝑗𝑗=1

, 𝑓𝑓𝑡𝑡𝑟𝑟 𝑥𝑥 ∈ [𝑧𝑧𝑖𝑖, 𝑧𝑧𝑖𝑖+1[  ∨  𝑚𝑚 = 2, … ,𝑚𝑚

1, 𝑓𝑓𝑡𝑡𝑟𝑟 𝑥𝑥 = 𝑧𝑧𝑀𝑀+1

 (2.52) 

In order to satisfy the basic properties of a probability function (leading to the definition 

as a measure within probability theory), the discrete probability values 𝑝𝑝𝑖𝑖   need to lie in 

the interval [0, 1] and their total sum needs to be equal to one as formulated in Eq. (2.50). 

Since the support range can be flexibly adapted to any restriction of the support range, 

no truncation option is provided in SUSA. 
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Fig. 2.15 The probability density function (A) and the cumulative distribution function 

(B) of a Histogram distribution for the value-probability pairs {(-5, 0.04), 
(-3, 0.08), (-1, 0.40), (0, 0.20), (2, 0.06), (3, 0.12), (4, 0.08), (5, 0.02)} over 

the support [-5, 6] 

2.1.2.3 Loghistogram Distribution 

The logarithmic Histogram distribution (also Loghistogram distribution) allows for model-

ling a piecewise-logarithmic decreasing, continuous distribution shape from a set of dis-

crete value-probability pairs. 

Based on the discrete support 𝑆𝑆 = {𝓏𝓏1,𝓏𝓏2, … ,𝓏𝓏𝑀𝑀+1} ∈ ℝ>0 where each parameter value 

𝓏𝓏𝑖𝑖 for 𝑚𝑚 = 1, … ,𝑚𝑚 and 𝑚𝑚 ∈ ℕ is associated with a probability value 𝑝𝑝𝑖𝑖 ∈ [0,1], the Loghis-

togram distribution can be defined via the density function as 

𝑓𝑓(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧

 

𝑝𝑝𝑖𝑖

x ∙ ln �𝑧𝑧𝑖𝑖 + 1
𝑧𝑧𝑖𝑖

�
, 𝑓𝑓𝑡𝑡𝑟𝑟 𝑥𝑥 ∈ [𝑧𝑧𝑖𝑖, 𝑧𝑧𝑖𝑖+1[ ∨  𝑚𝑚 = 1, … ,𝑚𝑚 

𝑝𝑝𝑀𝑀
𝑥𝑥 ∙ ln � 𝑧𝑧𝑀𝑀

𝑧𝑧𝑀𝑀+1
�

, 𝑓𝑓𝑡𝑡𝑟𝑟 𝑥𝑥 = 𝑧𝑧𝑀𝑀+1
 (2.53) 



34 

and via the cumulative distribution function as  

𝐹𝐹(𝑥𝑥) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

 
ln � 𝑥𝑥𝑧𝑧1

�

ln �𝑧𝑧2𝑧𝑧1
� 
∙ 𝑝𝑝1, 𝑓𝑓𝑡𝑡𝑟𝑟 𝑥𝑥 ∈ [𝑧𝑧1, 𝑧𝑧2[ 

�𝑝𝑝𝑗𝑗 +
ln �𝑥𝑥𝑧𝑧𝑖𝑖

�

ln �𝑧𝑧𝑖𝑖+1𝑧𝑧𝑖𝑖
� 
∙ 𝑝𝑝𝑖𝑖

𝑖𝑖−1

𝑗𝑗=1

, 𝑓𝑓𝑡𝑡𝑟𝑟 𝑥𝑥 ∈ [𝑧𝑧𝑖𝑖 , 𝑧𝑧𝑖𝑖+1[  ∨  𝑚𝑚 = 2, … ,𝑚𝑚

1, 𝑓𝑓𝑡𝑡𝑟𝑟 𝑥𝑥 = 𝑧𝑧𝑀𝑀+1

 (2.54) 

In order to satisfy the basic properties of a probability function (leading to the definition 

as a measure within probability theory), the discrete probability values 𝑝𝑝𝑖𝑖   need to lie in 

the interval [0, 1] and their total sum needs to be equal to one as formulated in Eq. (2.50). 

Since the support can be flexibly adapted to any restriction of the support range, no 

truncation option is provided in SUSA. 

 

Fig. 2.16 The probability density function (A) and the cumulative distribution function 

(B) of a Loghistogram distribution for the value-probability pairs {(1, 0.04), 

(3, 0.08), (5, 0.40), (6, 0.20), (8, 0.06), (9, 0.12), (10, 0.08), (11, 0.02)} over 

the support [1, 12] 

2.1.2.4 Polygonal Line Distribution 

In cases where it might be reasonable to assume a uniform or linear behavior of the 

probability density between successive discrete parameter values (i.e. piecewise linear 

density functions) a Polygonal Line distribution can be used. The Polygonal Line distri-

bution particularly allows for flexibly modeling multimodal distribution patterns without 

indicating specific or complex shape patterns. In that sense, the value-probability pairs 
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to be specified for the Polygonal Line distribution represent (x, y)-coordinates as the base 

points of simple linear spline functions.  

Based on the discrete support 𝑆𝑆 = {𝓏𝓏1,𝓏𝓏2, … ,𝓏𝓏𝑀𝑀+1} ∈ ℝ  where each parameter value 𝓏𝓏𝑖𝑖 

for 𝑚𝑚 = 1, … ,𝑚𝑚 + 1 and 𝑚𝑚 ∈ ℕ is associated with a value 𝑦𝑦𝑖𝑖 ∈ [0,1] (representing the rela-

tive height of the density function at value 𝓏𝓏𝑖𝑖), the Polygonal Line distribution can be 

defined via the density function as  

𝑓𝑓(𝑥𝑥) = 𝑝𝑝𝑖𝑖−1 + (𝑥𝑥 − 𝑧𝑧𝑖𝑖−1)
𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖−1
𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑖𝑖−1

, 𝑓𝑓𝑡𝑡𝑟𝑟 𝑥𝑥 ∈ [𝑧𝑧𝑖𝑖−1, 𝑧𝑧𝑖𝑖[ , 𝑚𝑚 = 2, … ,𝑚𝑚 (2.55) 

and via the cumulative distribution function as  

𝐹𝐹(𝑥𝑥) = 0.5 ∙��𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑗𝑗−1� ∙ �𝑝𝑝𝑗𝑗 + 𝑝𝑝𝑗𝑗−1�+ (𝑥𝑥 − 𝑧𝑧𝑖𝑖−1) ∙ (𝑓𝑓(𝑥𝑥) + 𝑝𝑝𝑖𝑖−1)
𝑖𝑖−1

𝑗𝑗=2

,

𝑓𝑓𝑡𝑡𝑟𝑟 𝑥𝑥 ∈ [𝑧𝑧𝑖𝑖−1, 𝑧𝑧𝑖𝑖[ , 𝑚𝑚 = 2, … ,𝑚𝑚 

(2.56) 

where 𝑝𝑝𝑖𝑖, i=1,…,n, is calculated from the given 𝑧𝑧𝑖𝑖 and 𝑦𝑦𝑖𝑖  values as 

𝑝𝑝𝑖𝑖 =
𝑦𝑦𝑖𝑖
𝐴𝐴

 (2.57) 

with 

𝐴𝐴 = �0.5 ∙ (𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑖𝑖−1) ∙ (𝑦𝑦𝑖𝑖 + 𝑦𝑦𝑖𝑖−1)
𝑀𝑀

𝑖𝑖=2

 (2.58) 

The discrete values 𝑦𝑦𝑖𝑖   need to lie in the interval [0, 1]. In order that the area enclosed 

by the polygonal line may be considered as a probability distribution, SUSA calculates 

the actual values 𝑝𝑝𝑖𝑖, i=1,…,n, of the density function according to Eqs. (2.57) – (2.58). 

Since the support range can be flexibly adapted to any restriction of the support range, 

a truncation option is not necessary. 
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Fig. 2.17 The probability density function (A) and the cumulative distribution function 

(B) of a Polygonal Line distribution for the (x, y)-coordinates {(-5, 0.04), 
(-3, 0.08), (-1, 0.40), (0, 0.20), (2, 0.06), (3, 0.12), (4, 0.08), (5, 0.02)} over 

the support [-5, 5] 

2.2 Dependency 

Besides the univariate probability distribution representing the experts’ degree of belief 

on the possible values of a parameter, the specification of dependencies between differ-

ent parameters may be important to appropriately model input uncertainties. In the con-

text of epistemic uncertainties, dependency has to be interpreted as knowledge or epis-

temic dependency meaning the dependency between the states of knowledge on two or 

more parameters due to a common contribution. For instance, the failure rates of two 

components which are nominally identical but physically different are completely de-

pendent, if the same data pool is used to estimate the failure rates /APO 81/. Two un-

certain parameters are dependent, if they represent measurements from the same meas-

uring instrument. These measurements are subject to an independent error and to a 

common uncertain bias term due to the measuring instrument. 

For the representation of knowledge dependency, SUSA offers a variety of approaches 

to correlate uncertain parameters. The pairwise dependency between two uncertain pa-

rameters can be quantified by measures of association (Pearson's ordinary correlation, 

Spearman's rank correlation, Blomqvist's medial correlation, and Kendall's rank correla-

tion), full dependency, conditional distributions or by inequalities. Additionally, a param-

eter can be specified as function of one or more other parameters. 
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In particular the measures of associations may be divided into two classes with respect 

to the sample of parameter values to be generated (experimental design /KRZ 88/): 

• population-related: experimental design complies with specified properties of 

a desired multivariate population 

• sample-related: experimental design complies with empirical properties 

Most of the association measures have an intuitive interpretation which facilitates the 

transfer of experts’ knowledge into knowledge dependency. In order to check whether 

the specified measure of association results in a bivariate sample that adequately meets 

the desired dependency pattern, the resulting bivariate sample in the plane of the support 

may be visualized as a scatter plot. 

Besides the measures of association which are mainly non-parametric (distribution-free) 

approaches, further flexibility for the experimental design may be accomplished by con-

sidering association of uncertain parameters by the following approaches: 

• full dependency: to model a completely positive or negative dependency be-

tween two parameters, 

• function of parameters: to model an explicit deterministic functional relationship 

between multiple parameters, 

• conditional distributions: to model a varying state of knowledge about one pa-

rameter for different parameter ranges of another parameter, or 

• inequality: to model a deterministic boundary condition within the parameter 

space of two parameters. 

All these approaches to model dependencies between the input uncertainties are moti-

vated by different practical challenges the analyst faces when confronted with the task 

to transfer experts’ knowledge into correlated mathematical/statistical expressions. To 

make optimal use of the provided dependency concepts, the basic mathematical/statis-

tical principles are explained and the interpretation of assumptions are described within 

a hypothetical parameter plane determined by the support plane of the distributions as 

defined in Section 2.1. 
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2.2.1 Population-related correlation 

Population-related correlation coefficients (measures of association) are used in case 

the sample of parameter values (experimental design) shall comply with the specified 

properties indicating the joint multivariate distribution of a population. These coefficients, 

here referred to as corr(X, Y), between two parameters X and Y have at least the following 

basic properties: 

− −1 ≤ 𝑐𝑐𝑡𝑡𝑟𝑟𝑟𝑟(𝑋𝑋,𝑌𝑌) ≤ +1 , i.e. symmetric measure 

− X, Y independent 
 
⇒ 𝑐𝑐𝑡𝑡𝑟𝑟𝑟𝑟(𝑋𝑋,𝑌𝑌) = 0 (the reverse does not hold generally) 

− 𝑐𝑐𝑡𝑡𝑟𝑟𝑟𝑟(𝑋𝑋,𝑌𝑌) = 1 (−1)
 
⇒ Y is an increasing (decreasing) function of X 

Apart from Pearson’s ordinary correlation coefficient, all population-related measures are 

scale (or ordinally) invariant. This is explained in more detail in the context of Blomqvist’s 

medial correlation coefficient (Section 2.2.1.2) but basically indicates, that the value of 

corr(X,Y) is not changing in case a monotone transformation is applied to the parameters 

X and Y. Due to the intuitive interpretation of such ordinal measures, i.e. measure without 

any specific metric, they are often considered as the most conservative approach to en-

code subjective judgements of complex parameter dependency. 

All population-related measures of association provided in SUSA are outlined based on 

their intentional design in order to highlight their different concepts. Even though, there 

is hardly one ‘correct’ choice for a measure of association, but some measure which is 

most reasonable in the context of the experts’ belief. SUSA offers a variety of measures 

of association each suitable to model another aspect of knowledge dependency as pre-

sented in the following. 

2.2.1.1 Pearson’s (Ordinary) correlation coefficient  

Pearson’s correlation coefficient (or Ordinary correlation coefficient) characterizes the 

bivariate Normal distribution and, therefore, is often employed to model dependency be-

tween two parameters 𝑋𝑋 and 𝑌𝑌. It is defined as: 

𝜌𝜌(𝑋𝑋,𝑌𝑌) =
𝐶𝐶𝑡𝑡𝐶𝐶(𝑋𝑋,𝑌𝑌)

�𝑉𝑉𝑎𝑎𝑟𝑟(𝑋𝑋) ∙ 𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌)
=
𝐸𝐸[(𝑋𝑋 − 𝐸𝐸[𝑋𝑋]) ∙ (𝑌𝑌 − 𝐸𝐸[𝑌𝑌])]

�𝑉𝑉𝑎𝑎𝑟𝑟(𝑋𝑋) ∙ 𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌)
 (2.59) 
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with the variances 𝑉𝑉𝑎𝑎𝑟𝑟(𝑋𝑋) and 𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌), the covariance 𝐶𝐶𝑡𝑡𝐶𝐶(𝑋𝑋,𝑌𝑌) and the expectations 

𝐸𝐸[𝑋𝑋] and 𝐸𝐸[𝑌𝑌] of the parameters 𝑋𝑋 and 𝑌𝑌. 

Next to the aforementioned general properties of correlation coefficients, Pearson’s cor-

relation coefficient offers a fundamental relation between two parameters: 

• 𝜌𝜌(𝑋𝑋,𝑌𝑌) = 1(−1)
 
⇔ Y is a linearly increasing (decreasing) function of X 

However, the practical interpretation of Pearson’s correlation coefficient apart from 

ρ(X, Y) = -1, 0 or 1 is only feasible for a very restricted setting: 

• Let Z, X’, Y’ be independent normally distributed parameters of equal variance 

related by 𝑋𝑋 = 𝑍𝑍 + 𝑋𝑋′ and 𝑌𝑌 = 𝑍𝑍 + 𝑌𝑌′. Given this setting, Pearson’s correlation 

coefficient is given by 𝜌𝜌(𝑋𝑋,𝑌𝑌) = 1
2
. 

Despite the fact that this interpretation as an additive structure does only hold for nor-

mally distributed parameters, the example finds an import correspondence in real set-

tings: 

• Let X and Y be measurements acquired by a common measuring instrument. That 

instrument may be biased, such that each unbiased measurement X’, Y’ is biased 

by an additive random term Z independent for each measurement. This depend-

ency may be described by Pearson’s correlation coefficient 𝜌𝜌(𝑋𝑋,𝑌𝑌) = 1
2
. 

But apart from this pragmatic use, the non-intuitive interpretation of arbitrary values of 

the measure of association makes Pearson’s correlation coefficient often not feasible. 

Moreover, a further disadvantage depicts its invariance properties: 

• Let 𝑋𝑋′ = 𝑟𝑟(𝑋𝑋) and 𝑌𝑌′ = ℎ(𝑌𝑌) with g and h being monotone increasing or decreas-

ing functions, then generally Pearson’s correlation coefficient is not scale (or or-

dinally) invariant, i.e. 𝜌𝜌(𝑋𝑋′,𝑌𝑌′) ≠ 𝜌𝜌(𝑋𝑋,𝑌𝑌).  

This is a big disadvantage of Pearson’s correlation coefficient, since a simple monotone 

transformation of the parameters potentially falsifies the modelled correlation patterns 

and may not comply with the experts’ belief anymore. Hence, SUSA offers further non-

parametric (distribution-free) measures of association that allow a simple interpretation 
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of arbitrary correlation values and are scale invariant in order to reliably model correlation 

patterns based on subjective judgements. 

 

Fig. 2.18  The Pearson’s (Ordinary) correlation coefficient for values of (A) strongly 

negative correlated ρ=-0.99, (B) uncorrelated ρ=0 and (C) strongly positive 

correlated ρ=0.99 parameters X and Y. These scatter plots exemplify the 

dependency assigned to the parameters X and Y 
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2.2.1.2 Blomqvist’s medial correlation coefficient 

Blomqvist’s medial correlation coefficient (or Blomqvist’s beta or population quadrant 

measure) is a practical approach to take into account a degree of association between 

parameters without structural information about the distribution of the corresponding pa-

rameters. This measure enables the analyst to practically take into account the experts’ 

belief about the effect of an increasing parameter X on a parameter Y relative to the 

medians mX and mY of the assigned distributions. 

• A positive association in terms of decrease/increase in the parameter X goes with a 

decrease/increase in the parameter Y is also referred to as concordance. 

• A negative association in terms of decrease/increase in the parameter X goes with 

an increase/decrease in the parameter Y is also referred to as discordance. 

Given a fixed point in the support plane (X,Y) such as the median pair (mX, mY) the con-

cordance/discordance property of correlation provides an intuitive approach to make a 

subjective judgement about the association between two parameters as presented in the 

following Figure.  

 

Fig. 2.19 The principle of concordance and discordance exemplified for the parame-

ter pair (X, Y). The reference point for the order is taken as the medians 

(mX, mY) similar to the definition of Blomqvist’s correlation coefficient 
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Based on the idea of concordance/discordance, Blomqvist’s medial correlation coeffi-

cient β(X, Y) offers an intuitive formulation of association between two parameters X and 

Y: 

𝛽𝛽(𝑋𝑋,𝑌𝑌) = 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏�(𝑋𝑋 −𝑚𝑚𝑋𝑋) ∙ (𝑌𝑌 −𝑚𝑚𝑌𝑌) > 0� − 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏�(𝑋𝑋 −𝑚𝑚𝑋𝑋) ∙ (𝑌𝑌 −𝑚𝑚𝑌𝑌) < 0� (2.60) 

β(X, Y) is the difference between the probabilities (Prob(∙)) of concordance and discord-

ance of X and Y relative to the corresponding medians mX and mY. Another formulation 

of this measure of association is given by the conditional probability of Y being smaller 

than the median mY given that X is smaller than the median mX: 

𝛽𝛽(𝑋𝑋,𝑌𝑌) = 2 ∙ 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏(𝑌𝑌 < 𝑚𝑚𝑌𝑌|𝑋𝑋 < 𝑚𝑚𝑋𝑋) − 1 (2.61) 

In contrast to Pearson’s correlation coefficient Blomqvist’s medial correlation coefficient 

offers an intuitive interpretation and, more importantly, a beneficial advantage due to its 

invariance properties: 

• Let 𝑋𝑋′ = 𝑟𝑟(𝑋𝑋) and 𝑌𝑌′ = ℎ(𝑌𝑌) with g and h being monotone increasing or decreas-

ing functions, then Blomqvist’s medial correlation coefficient is scale (or ordinally) 

invariant such that 𝜌𝜌(𝑋𝑋′,𝑌𝑌′) = 𝜌𝜌(𝑋𝑋,𝑌𝑌) holds under monotone transformations. 

Clearly, Blomqvist’s medial correlation coefficient is a non-parametric (distribution-free) 

measure of association and therefore does not encode any structural information about 

the corresponding distributions of the parameters. Moreover, the property of concord-

ance is considered relative to an a priori given reference point, i.e. the medians (mX, mY), 

which may be regarded as a relatively arbitrary choice /KRU 58/. 

2.2.1.3 Kendall’s rank correlation coefficient 

Kendall’s rank correlation coefficient (or Kendall’s tau) is a practical approach to take into 

account a degree of association between two parameters X and Y and may be consid-

ered as an extension of Blomqvist’s medial correlation coefficient (Section 2.2.1.2). Both 

measures of association do have the same properties, only the choice of the reference 

point for the concordance deliberately differs. Instead of the fixed reference point in terms 

of the pair of medians (mX, mY) for Blomqvist’s measure, another bivariate parameter pair 



43 

(X2, Y2) is employed for Kendall’s measure. Accordingly, Kendall’s rank correlation coef-

ficient is defined by using two independent pairs (X1,Y1) and (X2,Y2) derived from the a 

priori assumed bivariate distribution of (X,Y): 

𝜏𝜏(𝑋𝑋,𝑌𝑌) = 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏�(𝑋𝑋1 − 𝑋𝑋2) ∙ (𝑌𝑌1 − 𝑌𝑌2) > 0� − 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏�(𝑋𝑋1 − 𝑋𝑋2) ∙ (𝑌𝑌1 − 𝑌𝑌2) < 0�  (2.62) 

thatτ(X, Y) is the difference between the probabilities of concordance and discordance of 

X1 and Y1 relative to another independent pair X2 and Y2. In this way, this measure of 

association is more flexible, i.e. less arbitrary and a more natural way of making use of 

a more detailed knowledge about the parameters (X,Y). That is per design the Kendall 

rank correlation coefficient is influenced by the bivariate distribution structure FXY 

/KRU 58/. Another formulation of this measure of association is given by the conditional 

probability of Y2 being smaller than Y1 given that X2 is smaller X1, that is 

𝜏𝜏(𝑋𝑋,𝑌𝑌) = 2 ∙ 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏(𝑌𝑌2 < 𝑌𝑌1|𝑋𝑋2 < 𝑋𝑋1) − 1 (2.63) 

Note, the presented formulation of Kendall’s rank correlation coefficient is the population 

analogue to the sample based Kendall’s rank correlation coefficient taking into account 

the concordant and discordant bivariate observations (x1,y1), (x2,y2),…,(xn,yn) as given in 

the following equation. 

𝜏𝜏 =  
𝑚𝑚𝑐𝑐 − 𝑚𝑚𝑑𝑑

1
2 ∙ 𝑚𝑚 ∙ (𝑚𝑚 − 1)

 (2.64) 

with the number of concordant pairs nc, the number of discordant pairs nd and the total 

number of pairs n. Since the denominator represents the total number of possible com-

binations of comparisons of the pairs (xi,yi) and (xj,yj) with i =1,…,n-1 and j=i+1,…,n, the 

correspondence between the empirical to the population based measure of association 

is obvious. 
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2.2.1.4 Spearman rank correlation coefficient 

Spearman’s rank correlation coefficient (or Spearman’s rho) is a practical approach to 

take into account a degree of association between two random parameters (X,Y) and 

may be considered as an extension of Kendall’s rank correlation coefficient (Section 

2.2.1.3). Both measures of association do have the same properties, only the choice of 

the reference point for the concordance deliberately differs. In contrast to Kendall’s 

measure, instead of the two bivariate independent observations (X1,Y1) and (X2,Y2) ob-

tained from an a priori assumed distribution of (X,Y) a third observation (X3,Y3) is em-

ployed for Spearman’s measure. Accordingly, Spearman’s rank correlation coefficient ρS 

is derived as indicated in the following equation. 

𝜌𝜌𝑆𝑆(𝑋𝑋,𝑌𝑌) = 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏�(𝑋𝑋2 − 𝑋𝑋1) ∙ (𝑌𝑌3 − 𝑌𝑌1) > 0� − 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏�(𝑋𝑋2 − 𝑋𝑋1) ∙ (𝑌𝑌3 − 𝑌𝑌1) < 0� (2.65) 

ρS is the difference between the probabilities of concordance and discordance of X2 and 

Y3, each from an independent pair (X2, Y2) and (X3, Y3), relative to a third independent 

pair 𝑋𝑋1 and 𝑌𝑌1. In contrast to Kendall’s rank correlation coefficient, Spearman’s rank cor-

relation coefficient ρS is per design influenced by the structures of the marginal distribu-

tions FX and FY /KRU 58/. Another formulation of this measure of association is given by 

the conditional probability of Y3 being smaller than Y1 given that X2 is smaller than X1. 

𝜌𝜌𝑆𝑆(𝑋𝑋,𝑌𝑌) = 6 ∙ 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏(𝑌𝑌3 < 𝑌𝑌1|𝑋𝑋2 < 𝑋𝑋1) − 3 (2.66) 

Note, the presented formulation of Spearman’s rank correlation coefficient ρS is the pop-

ulation analogue to (the sample based) Spearman’s sample rank correlation coefficient 

which is separately discussed in Section 2.2.2.1. 

2.2.2 Sample-related correlation 

As outlined in the previous Section, population-related measures of association are used 

in combination with a set of univariate distributions to design a population. The sample 

of parameter values which will be generated in this context can be considered as se-

lected from an a priori defined multivariate distribution satisfying the univariate marginal 

distributions and the measures of association specified for the parameters. In contrast to 

that, sample-related measures of association are used to design a sample without 
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consideration of the corresponding population properties. They are attained by a specific 

transformation a posteriori applied to a sample selected from a multivariate distribution 

satisfying only the univariate marginal distributions of the parameters and not the 

measures of association. The practical consequence for the analyst is therefore: 

• population-related measures of association: the input uncertainty specifications 

comply with population properties  

• sample-related measures of association: the input uncertainty specifications 

comply with empirical properties  

2.2.2.1 Spearman’s sample rank correlation coefficient 

The sample-related measure of association provided in SUSA is the empirical analogue 

to the Spearman’s rank correlation coefficient. The so-called Spearman’s sample rank 

correlation coefficient is formulated based on the ranking of two sets of parameter values 

(x1, x2, …, xn) and (y1, y2, …, yn) where each pair (xi, yi) is sampled from the according 

bivariate distribution of the parameter pair (X, Y). The ranking assigns the ranks r(xi) and 

r(yi) to the values xi and yi, respectively. The ranks correspond to the rank order of the 

values of X and Y. A simple example shall serve to clarify the ranking process: 

�
𝑥𝑥1 𝑦𝑦1
𝑥𝑥2 𝑦𝑦2
𝑥𝑥3 𝑦𝑦3

� =  �
2.5 10
1.8 8
0.5 12

�  
𝑟𝑟𝑎𝑎𝑀𝑀𝑟𝑟𝑖𝑖𝑀𝑀𝑟𝑟
�⎯⎯⎯⎯� �

𝑟𝑟(𝑥𝑥1) 𝑟𝑟(𝑦𝑦1)
𝑟𝑟(𝑥𝑥2) 𝑟𝑟(𝑦𝑦2)
𝑟𝑟(𝑥𝑥3) 𝑟𝑟(𝑦𝑦3)

� =  �
3 2
2 1
1 3

� (2.67) 

The average of ranks is used as the rank of respective parameter values, if the values 

are tied (even on magnitude). Tied values may be obtained for discrete distributions. 

Spearman’s sample rank correlation coefficient corresponds to the empirical analogue 

of Pearson’s correlation coefficient (Section 2.2.1.1) applied not to the values of (X, Y) 

themselves but to the assigned ranks (r(X),r(Y)). 
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(2.68) 

where ^ = estimator derived from a sample or empirical analogue, Var(∙) = variance, 

Cov(∙) = covariance, n = sample size, and r(∙)�����= average of n ranks. 

Similar to Pearson’s correlation coefficient, there is no intuitive interpretation for Spear-

man’s sample rank correlation coefficient as measure of association between two uncer-

tain parameters X and Y. The analyst can only provide the following properties for the 

sample to be generated: 

• The ranks and, consequently, the empirical distribution functions of the parame-

ters X and Y shall be correlated according to Pearson’s correlation coefficient 𝜌𝜌� 

with −1 ≤ 𝜌𝜌��𝑟𝑟(𝑋𝑋), 𝑟𝑟(𝑌𝑌)� ≤ −1.  

• 𝜌𝜌�(𝑟𝑟(𝑋𝑋), 𝑟𝑟(𝑌𝑌)) = 0: The ranks (empirical distribution functions) of the parameters 

X and Y shall be independent. 

• 𝜌𝜌�(𝑟𝑟(𝑋𝑋), 𝑟𝑟(𝑌𝑌)) = 1: The agreement between the ranks (empirical distribution func-

tions) shall be perfect, i.e. the ranks of the parameters X and Y shall be identical. 

• 𝜌𝜌�(𝑟𝑟(𝑋𝑋), 𝑟𝑟(𝑌𝑌)) = −1: The disagreement between the ranks (empirical distribution 

functions) shall be perfect, i.e. the ranks shall be reverse to each other. 

The application of Spearman’s sample rank correlation coefficient does not allow for de-

riving a sample in compliance with a joint multivariate distribution structure. 

2.2.3 Full Dependence 

The full (complete) positive (negative) dependency between the two parameters X and 

Y is interpreted in the sense that the uncertainty in Y completely derives from the 
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uncertainty in X, although an explicit functional relationship between X and Y is not 

known. Given the corresponding univariate distributions FX and FY as representations of 

the uncertainties in X and Y, respectively, intuitive formulations of the strict monotone 

increasing (decreasing) functional relationship between X and Y are the following positive 

Eq. (2.69) and negative Eq. (2.70) dependencies. 

𝑌𝑌 = 𝐹𝐹𝑌𝑌−1(𝐹𝐹𝑋𝑋(𝑋𝑋)) (2.69) 

𝑌𝑌 = 𝐹𝐹𝑌𝑌−1(1 − 𝐹𝐹𝑋𝑋(𝑋𝑋)) (2.70) 

Completely dependent parameters X and Y fulfilling the relationships in Eq. (2.69) or 

Eq. (2.70) exhibit the following properties: 

• X and Y are completely positively (negatively) dependent 
 
⇒ all scale (or ordinally) 

invariant measures of association equal to 1 (-1) (the reverse does not hold gen-

erally) 

• Pearson’s correlation coefficient equals to 1 (-1) 
 
⇒ X and Y are completely posi-

tively (negatively) dependent (the reverse does not hold generally) 

• X and Y are completely positively (negatively) dependent 
 
⇒ the sample rank cor-

relation coefficient of any bivariate sample (X,Y) equals to 1 (-1)  

The following comparative properties between the values of the completely positive (neg-

ative) dependent parameters X and Y may be of interest to the analyst: 

• values of X and Y in (X,Y) are of the same (reverse) order 

• values of X and Y have a strictly monotone increasing (decreasing) relationship 

• X and Y do have the same (complement) quantiles  

These rather descriptive properties are a direct consequence of the employed definition 

of complete dependence. The mathematical concept of full (complete) dependency as 

used in SUSA and consequences thereof are outlined in /KRZ 88/. 
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2.2.4 Conditional Distribution 

In case the experts’ knowledge about an uncertain parameter Y is different for ranges of 

the support SX = [min(X),max(X)] of uncertain parameter X, SUSA offers the option to 

specify conditional probability distributions for parameter Y on condition on the different 

ranges of the support of parameter X. 

As an example let X represent the (sub)model to be applied to simulate a specific phys-

ical phenomenon and let Y represent the uncertain correction factor which – multiplied 

with the corresponding model prediction – provides the true value. If two model alterna-

tives Ma (indicated by model index 1) and Mb (indicated by model index 2) are available 

and it is uncertain, which of the models is the best to simulate the phenomenon, param-

eter X is an uncertain parameter for which two values (1 and 2) may be true. If the un-

certainty on the correction factor Y is different for the two models, different distributions 

for Y may be specified on condition of the values of parameter X. For instance, the un-

certainty on Y may be represented by a Triangular distribution with support [0.8; 1.3] and 

mode = 1.0, if model Ma is the best model. A Uniform distribution with support [0.85; 1.15] 

may be used to represent the uncertainty on Y, if model Mb is the best. 

SUSA requires that the marginal distribution of parameter X is completely specified as 

indicated in Section 2.1. Instead of the marginal distribution of Y which cannot be speci-

fied, the conditional distributions FY|Xε Ik of Y on condition of X ε Ik, k=1,…,K must be spec-

ified, where I1, I2,…IK represent the partition of the support SX of X into K disjoint intervals. 

2.2.5 Function of Parameters 

An uncertain parameter Y may be associated to other uncertain parameters Xi, Xj,,… by 

an explicit functional relationship. SUSA offers the option to formulate such a relationship 

as a Fortran formula as exemplarily shown in Eq. (2.71). 

𝑌𝑌 =
𝑎𝑎 ∙ 𝑋𝑋𝑖𝑖 + 𝑏𝑏 ∙ 𝑋𝑋𝑗𝑗

�𝑋𝑋𝑟𝑟
  (2.71) 
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The values of uncertain parameter Y are derived from the explicit functional dependency 

on the parameters Xi, Xj,,… They are affected by the a priori specified marginal distribu-

tions FXi
, FXj

,… 

SUSA includes an internal compiler for formulas represented in Fortran language. This 

compiler can appropriately interpret all known arithmetic operators (+, -, *, /), the mathe-

matical bracket ‘()’ and the functions int, abs, min, max, sqrt, log, log10, exp, sin, cos, and 

tan. 

2.2.6 Inequality 

In some settings two uncertain parameters X and Y are associated to each other such 

that X or a·X, with a being a real-valued factor, determines a lower threshold for Y. This 

relationship may be described by the following inequality  

𝑌𝑌 ≥ 𝑎𝑎 ∙ 𝑋𝑋 (2.72) 

This inequality results in the restriction of the derived  sample values (y1,…, yn). The 

inequality modifies the joint support plane 𝑆𝑆𝑌𝑌 × 𝑆𝑆𝑋𝑋 as illustrated in the following figure. 

 

Fig. 2.20  The principle of dependency between uncertain parameters X and Y by the 

assumption of an inequality Y ≥ a·X. The blue shaded area marks the sup-

port plane in which the subjective association between X and Y implies that 

no sample pair (xi,yi) is accepted 
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In order to derive a sample element (xi,yi) in compliance with the above inequality, SUSA 

offers the following two options: 

− independent repeated sampling until a complete sample is generated that only 

contains values satisfying the inequality .  

In general, the marginal distributions FX and FY of the parameters X and Y are af-

fected by this kind of modification. The computational time of this brute force ap-

proach may be high.  

− value modifications according to the following equation 

𝑦𝑦𝑖𝑖′ = 𝑎𝑎 ∙ 𝑥𝑥𝑖𝑖 +
𝑦𝑦𝑖𝑖 − 𝑚𝑚𝑚𝑚𝑚𝑚(𝑌𝑌)

𝑚𝑚𝑎𝑎𝑥𝑥(𝑌𝑌) −𝑚𝑚𝑚𝑚𝑚𝑚(𝑌𝑌) ∙ (𝑚𝑚𝑎𝑎𝑥𝑥 (𝑌𝑌) − 𝑎𝑎 ∙ 𝑥𝑥𝑖𝑖) (2.73) 

The modification of Y according to Eq. (2.73) is applied only to sample elements 

(xi,yi) which do not fulfil the inequality. To ensure that the modified values y’i are 

larger than a·xi within the limits of the support SY=[min(Y),max(Y)], it is required that 

the relationship in Eq. (2.74) is fulfilled.  

max(X)amax(Y) ⋅≥  (2.74) 

In general, the marginal distribution FY of Y is affected by this kind of modification.  

Specification of the inequality Eq. (2.73) between the parameters X and Y is recom-

mended only, if the following relationships hold: 

− min(Y) < a·max(X)  

− max(Y) ≥ a·max(X)  
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Fig. 2.21 Relationship between parameters X and Y defined by the inequality Y ≥ a·X 

with a = 1 (n = 1000 data points (x, y)) 

2.3 Proportions 

Another aspect of uncertainty specification relates to the association of multiple uncertain 

parameters which represent the proportions (percentages) of a whole and, therefore, 

must sum up to 1.0 (100 %). An example of a joint group of uncertain parameters repre-

senting proportions of a whole depicts the probabilities of the branches at a branching 

point of an event tree. Another example are the proportions of the different age groups 

in a population:  

Age group (years) Percentage 
0   – 14  13 % 
15 – 24 10 % 
25 – 54 41 % 
55 – 64 14 % 
65 and over 22 % 

Total 100 % 
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All uncertain proportions of a whole required to sum up to 1 have to be grouped in a so-

called proportion group. The distribution to be quantified for an uncertain proportion in a 

proportion group must not be the distribution of the proportion itself but the distribution 

of a conditional proportion. This conditional proportion represents the corresponding pro-

portion relative to the remaining total after the contribution of all proportions specified 

prior to the current one were excluded (e. g. the proportion of age group 25 – 54 relative 

to the total of the population without all lower age groups). During the sample generation 

(Section 3), the conditional proportions are finally transformed into the actual proportions. 
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3 Sample Generation  

One major step of a probabilistic uncertainty and sensitivity analysis (Section 1) is the 

generation of a multivariate sample of values (experimental design) for the uncertain 

input parameters influencing the prediction of the applied computer code. The following 

two sampling procedures are implemented in SUSA: 

− Simple random sampling 

− Latin Hypercube sampling 

Both sampling procedures use a pseudorandom number generator providing values from 

a Uniform distribution. The pseudorandom number generators implemented in SUSA are 

delineated in Section 3.1. Sections 3.2 and 3.3 give a description of the simple random 

and the Latin Hypercube sampling procedure, respectively. The sample generation al-

gorithms accounting for specific dependences between uncertain parameters are de-

scribed in Sections 3.4 - 3.7. Section 3.8 shortly describes how the sample of computa-

tional results is generated. 

3.1 Pseudorandom number generators 

The random number generators in SUSA are pseudorandom number generators. The 

sequences of random numbers provided by these generators seem to be random alt-

hough they are calculated by a deterministic algorithm. They are completely determined 

by the initial value (initial seed, e.g. 123457) specified as input. That means they always 

produce the same sequence of random numbers when initialized with that value. Pseu-

dorandom number generators are often applied because of their speed in number gen-

eration and their reproducibility. 

Two pseudorandom number generators in SUSA are multiplicative congruential genera-

tors /HUL 62/ and recursively produce the sequence {xi} as indicated in the following 

equation. 

,...,,immod)xa(x ii 210=⋅=1+  (3.1) 

where mod means modulo, m ε {2,3,4,…}, a ε {1,2,3,…, m-1} and x0 ε {0,1,2,…, m-1}. 
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The period of these generators is at most m. The sequence {xi /m} is taken as the uniform 

random number sequence. 

The first multiplicative congruential generator in SUSA is characterized by 

− multiplier a = 16807 

− modulo m = 231-1 

The second multiplicative congruential generator is characterized by 

− multiplier a = 48271 

− modulo m = 231-1 

Both generators are frequently used in run-time libraries of various compilers, because 

they are fast and require minimal memory. Due to the serial correlation between succes-

sive values of the random number sequence, they should not be used for applications 

where high-quality randomness is required. 

A high quality of randomness is provided by the Mersenne Twister - the other pseudoran-

dom number generator in SUSA. This generator was developed by Makoto Matsumoto 

and Takuji Nishimura /MAT 98/. The Mersenne Twister Fortran algorithm implemented 

in SUSA is based on the algorithm MT19937 with improvements from 2002 considering 

Shawn Cokus' optimization, Matthew Bellew's simplification and Isaku Wada's real ver-

sion. The following link gives more information: 

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html 

The Mersenne Twister produces a sequence of 32-bit integers with the following proper-

ties: 

− It has a very long period P of 219937 − 1. 

− It passes numerous tests for statistical randomness. 

− It is k-distributed to 32-bit accuracy for every 1 ≤ k ≤ 623, i.e. each of the 2kv possi-

ble combinations of bits occurs the same number of times in the period P, except 

for the all-zero combination that occurs once less often. v represents the number of 

most significant leading bits of the produced integers. From this property, it follows 

http://www.math.sci.hiroshima-u.ac.jp/%7Em-mat/MT/MT2002/emt19937ar.html
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that there is a very low correlation between successive values of the random num-

ber sequence. 

3.2 Simple Random Sampling (SRS) 

The SRS procedure selects each set of parameter values at random from a multivariate 

distribution defined by the marginal probability distributions, association measures and 

other dependency models specified as input to quantify the knowledge on the parame-

ters and the corresponding (knowledge) dependencies (Section 2). 

Section 3.2.1 describes the procedure for SRS, if population-related correlations be-

tween parameters have to be considered. Section 3.2.2 explains the procedure, if sam-

ple-related correlations between parameters have to be taken into account. 

3.2.1 SRS with consideration of population-related correlations 

A simple random sample of size n for npar uncertain parameters (X1, X2,…,Xnpar) is ob-

tained by sampling the npar values of the parameter vector (X1, X2,…,Xnpar) independently 

n times according to the specified marginal distributions Fi. The sampling is performed 

by using a pseudorandom number generator providing values for uniformly distributed 

variables Ui, i = 1,…, npar, and by applying the inverse distribution function to these 

values Eq. (3.2). 

)(UF = X i
-1

ii  (3.2) 

If population-related correlation coefficients (Pearson, Blomqvist, Kendall or Spearman) 

between parameters have to be considered, the transformation of an appropriately cho-

sen multivariate Normal distribution is carried out. Instead of the specified marginal dis-

tribution Fi of parameter Xi, the standard Normal distribution Φ of parameter Zi is consid-

ered initially. 

)(U = Z i
-1

i Φ  (3.3) 
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The originally specified correlation coefficient 𝜃𝜃𝑖𝑖𝑗𝑗 between the parameters Xi and Xj is 

transformed to Pearson’s ordinary correlation coefficient ρij between the standard nor-

mally distributed parameters Zi and Zj. If 𝑍𝑍𝑖𝑖′ and 𝑍𝑍𝑗𝑗′ are two independent standard normally 

distributed parameters, Pearson’s ordinary correlation coefficient ρij between the param-

eters Zi and Zj is obtained, if the following relationships are fulfilled Eq. (3.4): 

𝑍𝑍𝑖𝑖 = 𝑍𝑍𝑖𝑖′ 

𝑍𝑍𝑗𝑗 = 𝜌𝜌𝑖𝑖𝑗𝑗 ∙ 𝑍𝑍𝑖𝑖′ + �1 − 𝜌𝜌𝑖𝑖𝑗𝑗2 ∙ 𝑍𝑍𝑗𝑗
′ 

(3.4) 

For any correlation coefficient 𝜃𝜃𝑖𝑖𝑗𝑗 between the parameters Xi and Xj, Pearson’s ordinary 

correlation coefficient ρij is mostly obtained by an appropriate iteration procedure apply-

ing the bisection method in combination with Monte Carlo simulation. In a few cases, an 

analytical formula is used to calculate ρij /JOH 78/. 

If the ordinary correlation coefficients ρij between concerned standard normally distrib-

uted parameters Zi and Zj are determined, the multivariate Normal distribution is defined 

and the parameter Xi with Xi ~ Fi can be obtained by Eq. (3.5). 

))Z((FX iii Φ1−=  (3.5) 

The steps of the iteration procedure to determine Pearson’s ordinary correlation coeffi-

cient ρij between the parameters Zi and Zj can be summarized as follows: 

1. In stage k of the iteration process, k = 0,1,2,…,K, the value rk of Pearson’s ordinary 

correlation coefficient ρij is specified to define the multivariate Normal distribution of 

the parameter vector (Zi, Zj). 

Stage 0: 

If the correlation type of 𝜃𝜃𝑖𝑖𝑗𝑗 is Pearson’s ordinary correlation, r0 is calculated as: 

ijr θ=0  (3.6) 
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If the correlation type of 𝜃𝜃𝑖𝑖𝑗𝑗 is Blomqvist’s correlation or Kendall’s correlation, r0 is 

calculated as: 

)sin(r ij 2
⋅=0
πθ  (3.7) 

If the correlation type of 𝜃𝜃𝑖𝑖𝑗𝑗 is Spearman’s rank correlation, r0 is calculated as: 

)sin(r ij 6
⋅2=0
πθ  (3.8) 

For stage k > 0, rk is calculated according to the bisection method as: 

2
+

= kk
k

bar  (3.9) 

ak and bk are determined as follows: 

k = 1: 

ak = rk-1 , bk = 1, if rk-1 > 0 

ak = rk-1 , bk = -1, if rk-1 < 0 

k > 1: 

ak = rk-1 , bk = bk-1, if �𝜃𝜃�𝑖𝑖𝑗𝑗� <|𝜃𝜃𝑖𝑖𝑗𝑗| 

ak = ak-1, bk = rk-1,  if �𝜃𝜃�𝑖𝑖𝑗𝑗� ≥|𝜃𝜃𝑖𝑖𝑗𝑗| 

2. n realizations (zi, zj) are sampled from the multivariate Normal distribution of (Zi, Zj) 

3. Each sample element (zi, zj) is transformed to (xi, xj) according to Eq. (3.5) and the 

sample correlation coefficient 𝜃𝜃�𝑖𝑖𝑗𝑗 is calculated. 

4. The following inequality is checked: 

|𝜃𝜃�𝑖𝑖𝑗𝑗 − 𝜃𝜃𝑖𝑖𝑗𝑗| < 𝜀𝜀 (3.10) 

If the inequality is fulfilled, the iteration procedure is finished. 
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If the inequality is not fulfilled, the iteration continues with step 1. 

The current settings for the aforementioned iteration procedure are as follows: 

− Number K of iteration stages: 50 

− Number n of sample elements: 2000 

− Epsilon-value ε of the stopping criterion: 0.01 

3.2.2 SRS with consideration of sample-related correlations 

First, a simple random sample of size n for npar uncertain parameters (X1, X2,…,Xnpar) is 

generated by sampling the npar values of the parameter vector (X1, X2,…,Xnpar) inde-

pendently n times according to the specified marginal distributions Fi and regardless of 

the specified rank correlations. Then, the n values obtained for each parameter Xi are 

permuted appropriately so that the (Spearman) rank correlation coefficients 𝜌𝜌�𝑆𝑆 between 

the parameters are very close to those specified as input.  

The steps to obtain a simple random sample with sample-related correlations can be 

summarized as follows (see also /IMA 82/): 

1. Generation of the matrix X = (xji) of parameter values with i=1,…, npar, j=1,… n and 

xji = element of the jth row and ith column of X. The rows of X are selected from a 

multivariate distribution which is only defined by the marginal distributions of the pa-

rameters without consideration of any correlation. 

2. Calculation of the matrix of ranks RX = (r(xji)), i=1,…, npar, j=1,…, n. The ranks are 

calculated separately for the values x1i, x2i,…, xni of each parameter Xi in column i of 

matrix X.  

Rank r(xji): If the jth sampled value xji is the smallest value of Xi and there is no other 

sample element with this value, the corresponding rank is r(xji)= 1. If the jth sampled 

value xji is the highest value of Xi and there is no other sample element with this 

value, the corresponding rank is r(xji)= n. The average of the respective ranks is used 

for tied values (even on magnitude). 
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3. Calculation of the empirical ordinary correlation matrix CS = �𝑐𝑐𝑖𝑖𝑗𝑗𝑆𝑆 � of matrix RX, i.e. 

calculation of Pearson’s ordinary correlation coefficients between column i and col-

umn j of matrix RX. This step is equivalent to the calculation of Spearman’s sample 

rank correlation coefficients between the values sampled for parameters Xi and Xj,  

i=1,…, npar, j=1,… npar 

∑∑
∑

22 −−

−−
=

k
Xkj

k
ki

k
Xkjki

S
ij

)r)x(r()r)x(r(

)r)x(r)(r)x(r(
c

jXi

jXi

 (3.11) 

4. Calculation of the lower triangular matrix TS with CS = TS  · TS’ (= Cholesky decompo-

sition of matrix CS) 

5. Calculation of the lower triangular matrix T of the matrix C of specified rank correla-

tions with C = T · T’ (= Cholesky decomposition of matrix C) 

6. Calculation of the matrix R’ = RX ∙ (T ∙ TS-1
). The ordinary correlation matrix of R’ cor-

responds to the specified rank correlation matrix. 

7. Calculation of the matrix RR’ of ranks from matrix R’. 

8. Permutation of the parameter values xji, j=1,…,n, in column i of matrix X according 

to column i of matrix RR’, i=1,…,npar. 

Remarks to the aforementioned procedure: 

− The Cholesky decomposition of matrix CS requires, that n > npar, i.e. the sample 

size n must be higher than the number npar of uncertain parameters. 

− The marginal distributions of the parameters are considered, however, a joint multi-

variate distribution of the uncertain parameters is not defined. Therefore, the sam-

ple elements finally provided cannot be considered as independently selected from 

such a multivariate distribution. 

− To increase the sample size, a new matrix X with a higher number n of rows must 

be generated. Results of Monte-Carlo simulation runs based on the original matrix 

X with a smaller number n of rows cannot be used in general. 
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3.3 Latin Hypercube Sampling (LHS) 

Latin Hypercube sampling may be considered as a special case of stratified sampling. 

First, the range of each parameter is divided into n distinct subintervals of equal proba-

bility 1/n which cover the parameter range. Then, one value is selected from each subin-

terval. Two options are available to select the value 𝑥𝑥�𝑗𝑗𝑖𝑖 of parameter Xi: 

− 𝑥𝑥�𝑗𝑗𝑖𝑖 = median of the conditional distribution of Xi on condition of Xi ε Ij 

− 𝑥𝑥�𝑗𝑗𝑖𝑖 = value randomly selected from the conditional distribution of Xi on condition of 

Xi ε Ij 

The n values finally obtained for each parameter are permuted randomly and combined 

to n parameter vectors of length npar. The value from each subinterval of each parameter 

is considered once and only once in the generated sample. If association measures have 

to be considered, the combinations of the n values of each parameter are modified ap-

propriately. Section 3.3.1 describes the procedure for LHS, if population-related correla-

tions between parameters have to be considered. Section 3.3.2 explains the procedure, 

if sample-related correlations between parameters have to be taken into account. 

McKay et al. /MCK 79/ showed that LHS is better than SRS for estimating the mean and 

the population distribution function of the computational result Y, if Y is a monotonic func-

tion of the uncertain parameters. 

3.3.1 LHS with consideration of population-related correlations 

Let 𝑋𝑋� = (𝑥𝑥�ji), i=1,…, npar, j=1,… n, be the matrix of parameter values selected from the 

subintervals of the range of each parameter. For each parameter Xi, the relationship 

between the selected parameter values is 𝑥𝑥�1i < 𝑥𝑥�2i < … < 𝑥𝑥�ni. 

All parameter values 𝑥𝑥�ji, j=1,… n, of parameter Xi are permuted according to the following 

procedure:  

1. Generation of the matrix X = (xji) of parameter values according to the simple random 

sampling procedure described in Section 3.2.1. 
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2. Calculation of the matrix of ranks RX = (r(xji)), i=1,…, npar, j=1,…, n. The ranks are 

calculated from the values x1i, x2i,…, xni of parameter Xi in column i of matrix X, i=1,…, 

npar. 

3. Permutation of the values 𝑥𝑥�1i < 𝑥𝑥�2i < … < 𝑥𝑥�ni of parameter Xi in column i of matrix 𝑋𝑋�, 

according to the ranks r(x1i), r(x2i), …, r(xni) in column i of matrix RX, i=1,…, npar. 

Since the LHS procedure uses the SRS procedure to generate corresponding values, 

even if instead of a random value, a conditional median is selected from each subinterval, 

a pseudorandom number generator is needed when the LHS procedure is applied. 

3.3.2 LHS with consideration of sample-related correlations 

Let 𝑋𝑋� = (𝑥𝑥�ji), i=1,…, npar, j=1,… n, be the matrix of parameter values selected from the 

subintervals of the range of each parameter. For each parameter Xi, the relationship 

between the selected parameter values is 𝑥𝑥�1i < 𝑥𝑥�2i < … < 𝑥𝑥�ni. 

All parameter values 𝑥𝑥�ji, j=1,… n, of parameter Xi are permuted according to the following 

procedure (see also /IMA 82/): 

1. Generation of a random rank matrix R = (rji), i=1,…, npar, j=1,… n. Each column i of 

R is a random permutation of {1,…,n}. The permutations in the columns are inde-

pendent and have the same probability prob=1
𝑀𝑀!

. 

2. Calculation of the correlation matrix 𝐶𝐶𝑅𝑅 = �𝑐𝑐𝑖𝑖𝑗𝑗𝑅𝑅� of R,  i=1,…, npar, j=1,… npar, com-

prising the ordinary correlations between the columns of R. 

3. Calculation of the lower triangular matrix TR of CR with CR= TR ∙ TR’(= Cholesky de-

composition of matrix CR). 

4. Calculation of the lower triangular matrix T of matrix C of specified rank correlations 

with C = T · T’ (= Cholesky decomposition of matrix C). 

5. Calculation of the matrix R’ = R ∙ (T · TR -1)’. The correlation matrix of matrix R’ com-

prising the ordinary correlations between the columns of R’ corresponds to specified 

rank correlation matrix. 

6. Calculation of the matrix RR’ of ranks from matrix R’.  
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7. Permutation of the values 𝑥𝑥�1i < 𝑥𝑥�2i < … < 𝑥𝑥�ni of parameter Xi in column i of matrix 𝑋𝑋�, 

according to the ranks r1i, r2i, …, rni in column i of the rank matrix RR’, i=1,…, npar. 

Remarks to the aforementioned procedure: 

− The Cholesky decomposition of CS and C requires, that each matrix is positive defi-

nite. 

− The sample size n must be higher than the number npar of uncertain parameters 

− A joint multivariate distribution of the uncertain parameters is not defined. There-

fore, the sample elements finally provided cannot be considered as independently 

selected from such a multivariate distribution. 

− To increase the sample size, a new matrix X with a higher number n of rows must 

be generated. Results of Monte-Carlo simulation runs based on the original matrix 

X with a smaller number n of rows cannot be used in general. 

3.4 Sample generation with consideration of complete dependencies 

Complete dependency between two parameters Xi and Xj is realized by simply taking the 

same uniformly distributed random number Ui (or (1.0 - Ui) for negative dependency) 

from the pseudorandom number generator when generating the values for Xi and Xj ac-

cording to the SRS procedure (Eq. (3.2)). 

3.5 Sample generation with consideration of conditional distributions 

The conditional distributions of parameter X2 on condition of the values of parameter X1 

(Section 2.2.4) are considered as follows: 

1. The sample X=(xji) with i=1,…, npar and j=1,… n is generated based on the marginal 

distributions and the correlations specified for the uncertain parameters X1, 

X2,…,Xnpar. Since the marginal distribution of parameter X2 is not specified, its values 

are initially set to zero. 

2. The sample V=(vjk) with k=1,…, K and j=1,… n is generated for K variables (V1, 

V2,…,Vk) distributed according to the conditional distributions FXj|Xiε Ik of parameter Xj 

on condition of Xi ε Ik, k =1,…, K. 
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3. The values of Xj are changed appropriately according to the values sampled for Xi: 

If xli ε Ik, then xlj = vlk, l=1,…,n , k= 1,…K. 

If the LHS procedure is applied, the Latin Hypercube structure cannot generally be 

reached for the values of parameter Xj. 

3.6 Sample generation with consideration of functional relationships 

The functional relationship between uncertain parameter Xi and the uncertain parame-

ters Xj,Xk,… (Section 2.2.5) is considered by applying the function indicated for parameter 

Xi to the values generated for parameters Xj,Xk,…. If the LHS procedure is applied, the 

Latin Hypercube structure cannot be reached for the values of parameter Xi. 

3.7 Sample generation with consideration of inequalities 

In order to consider a specific inequality relationship between two parameters (Section 

2.2.6), SUSA offers the following two options: 

− independent repeated sampling until a complete sample satisfying the specified 

inequalities is generated 

− value modifications according to equation Eq. (2.73) 

With the first option, the sampling step according to the SRS or LHS procedure may be 

repeated very often until the inequalities are fulfilled. The specified marginal distributions 

of the involved parameters may be changed. The latter drawback is also associated with 

the second option. If the LHS procedure is applied, another drawback of the second 

option is the generally unfulfillable Latin Hypercube structure of the parameter values 

derived from the modification function in Eq. (2.73). 

3.8 Computer code runs 

Each set of values sampled for the total of uncertain input parameters is supplied as 

input to a computer code run. When all runs are finished, a sample of values from the 

unknown probability distribution of the computational result is available. This sample can 

be analyzed by statistical methods in order to obtain indicators (indices) of the uncer-

tainty and sensitivity of the computational result. 
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4 Uncertainty Analysis 

The uncertainty of the computational result derives from the propagation of the uncer-

tainties of the input parameters through the computer model. Computer code runs 

(Monte Carlo simulation runs) each performed with a set of values sampled for the un-

certain input parameters provide a sample from the unknown probability distribution of 

the computational result. The statistical analysis of this sample provides estimators of 

the distribution and of its properties. 

Estimators which may be used to quantify the uncertainty of the computational result are 

the empirical cumulative distribution function, the empirical mean, the unbiased empirical 

standard deviation or variance and empirical quantiles (Section 4.1). Very useful estima-

tors especially for complex applications which don’t allow performing many Monte Carlo 

simulation runs are tolerance limits (Section 4.2). Interval limits estimated from the ine-

qualities of Chebychev and Cantelli may be adequate as well (Section 4.3). Another al-

ternative of uncertainty quantification is the indication of a parametrical probability distri-

bution well fitted to the empirical distribution of the computational result (Section 4.4). A 

further approach to derive uncertainty quantifications is the construction of a surrogate 

model and the application of the surrogate instead of the original complex model in order 

to be able to perform a huge number of Monte Carlo simulation runs (Section 4.5). From 

the large sample of values finally provided for the computational result, estimators of high 

accuracy can be derived to quantify the resulting uncertainty. 

Estimators available in SUSA to quantify the uncertainty for multiple computational re-

sults are described in Section 4.6. 

SUSA can perform the uncertainty analysis for a scalar as well as for a time/index-de-

pendent result. A result is denoted as scalar, if it has one single value per run. A result 

is time/index-dependent, if it has values at different points in time, space, etc. for each 

run (Fig. 4.1). A time/index-dependent result at a specific point in time, space, etc. may 

be considered as a scalar result. So, a time/index-dependent uncertainty analysis is 

equivalent to a scalar uncertainty analysis at each time/index step. 

Since a time/index-dependent analysis is computationally intensive, the number of op-

tions available for a time/index-dependent uncertainty analysis is smaller than that avail-

able for a scalar uncertainty analysis. The fitting of parametrical distributions (Sec-

tion 4.4) and the construction and application of a surrogate model (Section 4.5) can only 
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be performed in the scalar analysis. Also the calculation of tolerance limits based on the 

assumption of a Normal or Lognormal distribution for the computational result (Sec-

tion 4.2.2) is restricted to the scalar analysis. 

 

Fig. 4.1 Uncertainty of a time-dependent result represented by the time histories 

obtained from 100 Monte Carlo simulation runs  

To perform the time/index-dependent analysis, the computational result must be availa-

ble at the same series of time/index steps for all computer code runs. Since this require-

ment is usually not fulfilled, the following analysis steps have to be performed: 

• SUSA either generates equidistant time/index steps of the minimal time range com-

mon to all computer code runs or the user defines the time/index steps of interest. 

• SUSA performs stepwise linear interpolations with respect to two successive time/in-

dex steps tik and tik+1 and the corresponding results y(tik) and y(tik+1) provided by each 

run i, i=1,..,n to derive y(tl) at each equidistant or user-defined time/index step tl with 

tik<tl ≤tik+1. 

In the following, variable Y represents an uncertain scalar computational result and 

(𝑦𝑦1,𝑦𝑦2 … ,𝑦𝑦𝑀𝑀) denotes a sample of values (i.e. realizations) provided for Y via n (e.g. 

n = 100) computer code runs.  
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4.1 Basic statistics 

From the sample (𝑦𝑦1,𝑦𝑦2 … , 𝑦𝑦𝑀𝑀)  obtained for variable Y, SUSA calculates the cumulative 

empirical distribution function 𝐹𝐹�(𝑦𝑦) as follows: 

𝐹𝐹�(𝑦𝑦) =
# {𝑦𝑦𝑖𝑖|𝑦𝑦𝑖𝑖 ≤ 𝑦𝑦}

𝑚𝑚
=

1
𝑚𝑚
�1{𝑦𝑦𝑖𝑖≤𝑦𝑦}

𝑀𝑀

𝑖𝑖=1

 (4.1) 

where # is the cardinality symbol meaning the number of elements of a set {}. 

Additionally, SUSA provides the following basic statistics as indicators of the uncertainty 

of Y. 

− Minimum(𝑦𝑦1,𝑦𝑦2 … , 𝑦𝑦𝑀𝑀) 

− Maximum(𝑦𝑦1,𝑦𝑦2 … ,𝑦𝑦𝑀𝑀) 

− Empirical percentiles (i.e. simple estimators of 1 %-quantile, 2 %-quantile,…, 99 %-

quantile): 𝑦𝑦⌊𝑀𝑀∙0.01⌋:𝑀𝑀 ≤  𝑦𝑦⌊𝑀𝑀∙0.02⌋:𝑀𝑀 ≤ ⋯ ≤ 𝑦𝑦⌊𝑀𝑀∙0.99⌋:𝑀𝑀 with ⌊ ⌋ being the floor function 

and 𝑦𝑦𝑗𝑗:𝑀𝑀 indicating value No. j of the ordered sample 𝑦𝑦1:𝑀𝑀 ≤  𝑦𝑦2:𝑀𝑀 ≤ ⋯ ≤ 𝑦𝑦𝑀𝑀:𝑀𝑀. 

− Empirical (sample) mean: 

∑1
= iy

n
y  (4.2) 

− Empirical median: 

m= 𝑦𝑦⌊𝑀𝑀∙0.50⌋:𝑀𝑀 

− Unbiased empirical (sample) variance s2 and standard deviation s: 

2

22

=

−
1−

1
= ∑

ss

)yy(
n

s i  (4.3) 
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Fig. 4.2 Cumulative empirical distribution function of a scalar computational result 

(Consequence 1) together with the distribution support (cyan-colored hori-

zontal line), the 3 empirical quartiles 𝒚𝒚⌊𝒏𝒏∙𝟎𝟎.𝟐𝟐𝟐𝟐⌋:𝒏𝒏 ≤  𝒚𝒚⌊𝒏𝒏∙𝟎𝟎.𝟐𝟐𝟎𝟎⌋:𝒏𝒏 ≤  𝒚𝒚⌊𝒏𝒏∙𝟎𝟎.𝟕𝟕𝟐𝟐⌋:𝒏𝒏 

(blue diamonds) and the empirical mean (maroon triangle) 

 

Fig. 4.3 Cumulative empirical distribution (red) and density (green) function of a 

scalar computational result (Consequence 1) 



69 

4.2 Tolerance limits 

β∙100 %/γ∙100 % tolerance limits are estimators of the left and/or right endpoint of a two-

sided, left-sided or right-sided closed interval (tolerance interval) covering a proportion 

of at least β∙100 % (e.g., β = 0.95) of the values of a variable Y at a confidence level of 

at least γ∙100 % (e.g., γ = 0.95). β is called the minimal coverage (probability) or the tol-

erance proportion and γ is the statistical confidence level. Usually, high values ≥ 0.90 are 

chosen for β and γ. 

The confidence level γ accounts for the variability of tolerance limits from sample to sam-

ple and gives the probability (percentage) of all samples of the same size n for which the 

respective tolerance interval covers a proportion of at least β∙100 %. 

The upper (lower) β∙100 %/γ∙100 % tolerance limit TLu (TLl) is a one-sided upper (lower) 

statistical confidence limit for the β∙100 % ((1-β)∙100 %) quantile at a confidence level of 

at least γ∙100 %. The probability for the upper (lower) β∙100 %/γ∙100 % tolerance limit to 

be at least the β∙100 % ((1-β)∙100 %) quantile is γ∙100 % or higher. 

The general formula for the β∙100 %/γ∙100 % tolerance limits is given in Eq. (4.4). 

𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏(𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏( 𝑌𝑌 ∈ [𝑇𝑇𝑇𝑇𝑙𝑙,𝑇𝑇𝑇𝑇𝑢𝑢] ≥ 𝛽𝛽)) ≥ 𝛾𝛾 (4.4) 

where Prob(·) means probability, i.e. coverage probability or probability in the sense of 

confidence level. If TLl =-∞, then TLu is the one-sided upper β∙100 %/γ∙100 % tolerance 

limit. Analogously, if TLu =+∞, then TLl is the one-sided lower β∙100 %/γ∙100 % tolerance 

limit. 

4.2.1 Wilks non-parametrical tolerance limits 

The approach of Wilks /WIL 41/, /WIL 42/ to calculate tolerance limits does not require 

any assumption on the distribution of the considered variable Y and, therefore, is a non-

parametrical approach. Wilks’ lower and upper tolerance limits TLl and TLu are deter-

mined by appropriately chosen order statistics. 
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Let Y1:n< Y2:n <…< Yn:n be the order statistics (ordered by increasing size) associated with 

the sample (Y1, Y2,…, Yn) of size n of a random variable Y and let f(y) be the density function 

of Y. Then, the coverage (probability) of the region between the order statistics Yr:n and 

Ys:n with 0 ≤ r < s ≤ n+1 has a Beta distribution with parameters (s-r) and n-(s-r)+1 and, 

therefore, the following relationship in Eq. (4.5) is true for any 𝛽𝛽 ∈ (0, 1). 

𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏� � 𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦

𝑌𝑌𝑠𝑠:𝑛𝑛

𝑌𝑌𝑟𝑟:𝑛𝑛

≥ 𝛽𝛽� =
∫ 𝑢𝑢𝑠𝑠−𝑟𝑟−11
𝛽𝛽 (1 − 𝑢𝑢)𝑀𝑀−(𝑠𝑠−𝑟𝑟)𝑑𝑑𝑢𝑢

𝐵𝐵(𝑠𝑠 − 𝑟𝑟,𝑚𝑚 − (𝑠𝑠 − 𝑟𝑟) + 1)
 (4.5) 

where 𝐵𝐵(𝑠𝑠 − 𝑟𝑟,𝑚𝑚 − (𝑠𝑠 − 𝑟𝑟) + 1) represents the complete Beta function. 

The Beta distribution of the coverage probability is independent of the distribution of Y 

and only depends on the orders r and s. 

Between the Beta distribution and the Binomial distribution, the following well-known re-

lationship holds: 1. - Betak,n-k+1(β) = Binomialn,β(k-1). That means 

∫ 𝑢𝑢𝑟𝑟−11
𝛽𝛽 (1 − 𝑢𝑢)𝑀𝑀−𝑟𝑟𝑑𝑑𝑢𝑢

𝐵𝐵(𝑘𝑘,𝑚𝑚 − 𝑘𝑘 + 1)
= ��𝑚𝑚𝑚𝑚 �𝛽𝛽

𝑖𝑖(1 − 𝛽𝛽)𝑀𝑀−𝑖𝑖
𝑟𝑟−1

𝑖𝑖=0

 (4.6) 

Due to Eqs. (4.5) – (4.6), the relationship in Eq. (4.7) can be applied to determine the 

order statistics Yr:n and Ys:n representing the lower and upper tolerance limit TLl and TLu, 

respectively. 

𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏� � 𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦

𝑌𝑌𝑠𝑠:𝑛𝑛

𝑌𝑌𝑟𝑟:𝑛𝑛

≥ 𝛽𝛽� = � �𝑚𝑚𝑚𝑚 �𝛽𝛽
𝑖𝑖(1 − 𝛽𝛽)𝑀𝑀−𝑖𝑖 ≥ 𝛾𝛾

𝑠𝑠−𝑟𝑟−1

𝑖𝑖=0

 (4.7) 

To obtain a one-sided tolerance limit, the following definitions are made:  

𝑌𝑌0:𝑀𝑀 ≔ −∞        𝑌𝑌𝑀𝑀+1:𝑀𝑀 ≔ +∞ 
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From these definitions, it follows that  

− s must be set to (n+1) in order to determine the one-sided lower tolerance limit TLl 

− r must be set to zero in order to determine the one-sided upper tolerance limit TLu 

Fig. 4.4 compares Wilks’ one-sided upper 95 %/95 % tolerance limit with the empirical 

95 %-quantile and the true 95 %-quantile. Both estimators, i.e. the tolerance limit and the 

empirical quantile are calculated from each of 1000 different samples of size n = 100. 

Each of the 1000 samples is selected from the standard Normal distribution with the 

95 %-quantile being equal to 1.6448. While in most cases (≥ γ∙100 % = 95 %) the one-

sided upper tolerance limit exceeds the true 95 %-quantile, the empirical quantile is be-

low or above the true 95 %-quantile with a probability of 0.5. In most cases, the tolerance 

limit is very conservative compared to the true 95 %-quantile as well as to the empirical 

quantile. But there is a chance of at most 5 %((1-γ)∙100 %), that the tolerance limit re-

mains below the true 95 %-quantile. 

 

Fig. 4.4 Wilks’ one-sided upper 95 %/ 95 % tolerance limit (yellow triangles) com-

pared with the empirical 95 %-quantile (magenta) calculated in each of 

1000 different samples of size n=100 from a standard Normal distribution 

with the 95 %-quantile = 1.6448 (blue horizontal line) 

The minimum sample size to determine the β∙100 %/ γ∙100 % tolerance interval can be 

derived from Eq. (4.8) for the one-sided lower or upper tolerance interval or from Eq. (4.9) 

for the two-sided tolerance interval. Both equations follow from Eq. ((4.7). 
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1 − 𝛽𝛽𝑀𝑀 ≥ 𝛾𝛾 (4.8) 

1 − 𝛽𝛽𝑀𝑀 − 𝑚𝑚 ∙ (1 − 𝛽𝛽) ∙ 𝛽𝛽𝑀𝑀−1 ≥ 𝛾𝛾 (4.9) 

Tab. 4.1 Minimum sample size to determine the β∙100 %/ γ∙100 %  tolerance inter-

val for selected coverage probabilities β and confidence levels γ 

One-sided statistical tolerance limits 

γ              β 0.90 0.95 0.99 

0.90 22 45 230 

0.95 29 59 299 

0.99 44 90 459 

Two-sided statistical tolerance limits 

γ              β 0.90 0.95 0.99 

0.90 38 77 388 

0.95 46 93 473 

0.99 64 130 662 

Fig. 4.5 shows different cumulative Beta distribution functions of the coverage probability 

P of the interval (-∞, TLu] right-sided closed by Wilks’ upper 95 %/95 % tolerance limit 

TLu for different sample sizes n. TLu is identical to an appropriately chosen order statistic 

Ys:n where s depends on β (=0.95), γ (=0.95), and on the sample size n. Each distribution 

is an indicator of the conservativeness of the 95 %/95 % tolerance limit TLu. As can be 

seen, the probability is 0.95 (i.e. the confidence level is 95 %), that the coverage of the 

interval (-∞, Ys:n] with s=n=59 exceeds a proportion of 95 % (i.e. a probability P of 0.95). 

Simultaneously, the coverage of this interval exceeds  

− a proportion of 96 % with a confidence level of 91 % 

− a proportion of 97 % with a confidence level of 83 % 

− a proportion of 98 % with a confidence level of 76 % 

− a proportion of 99 % with a confidence level of 45 % 
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On the other side, the confidence level is 5 %, that the coverage of the interval (-∞, Ys:n] 

with s=n=59 does not exceed a proportion of 95 % (i.e. a probability P of 0.95). The 

coverage of this interval does not exceed even  

− a proportion of 94 % with a confidence level of 2.6 % 

− a proportion of 93 % with a confidence level of 1.4 % 

 

Fig. 4.5 Cumulative Beta distribution functions of the coverage probability P of the 

interval (−∞, Ys:n] right-sided closed by Wilks’ upper 95 %/ 95 % tolerance 

limit Ys:n for different orders s and different sample sizes n  

Fig. 4.5 shows, that the quality of the 95 %/95 % tolerance interval is getting better with 

increasing sample size n and an appropriately adapted order s. That means the degree 

of conservativeness decreases with increasing sample size. While the coverage of the 

interval (-∞,Ys:n] with s=n=59 exceeds a proportion of 99 % with a confidence level of 

45 %, this confidence level is 

− 24 % with n= 93 and s= 92 

− 12 % with n=124 and s=122 

−  7 % with n=153 and s=150 

With n ≥ 234, the confidence level is getting vanishingly low. 
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Fig. 4.6 Cumulative empirical distribution function of a scalar computational result 

(Peak Cladding Temperature) and Wilks’ two-sided tolerance limits (green 

squares on the x-axis)  

 

Fig. 4.7 Wilks’ two-sided tolerance limits of a time-dependent computational result 

(Cladding Temperature) 
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4.2.2 Tolerance limits in case of a Normal or Lognormal distribution 

If it can be assumed that the considered variable Y has a Normal distribution, then the 

lower and upper tolerance limits TLl and TLu can be derived from Eq. (4.10) and 

Eq. (4.11), respectively. 

𝑇𝑇𝑇𝑇𝑙𝑙 = 𝑦𝑦� − 𝑘𝑘 ∙ 𝑠𝑠 (4.10) 

𝑇𝑇𝑇𝑇𝑢𝑢 = 𝑦𝑦� + 𝑘𝑘 ∙ 𝑠𝑠 (4.11) 

𝑦𝑦� is the empirical mean (Eq. (4.2)) and 𝑠𝑠 is the unbiased empirical standard deviation 

(Eq. (4.3)). 𝑘𝑘 is appropriately determined for one and two-sided tolerance limits. 

For one-sided tolerance intervals and n ≤ 200, 𝑘𝑘 = 𝑘𝑘1 is determined according to 

Eq. (4.12) /GUT 70/. 

𝑘𝑘1 =
𝑡𝑡𝛾𝛾,𝑀𝑀−1,𝛿𝛿

√𝑚𝑚
 (4.12) 

where 𝑡𝑡𝛾𝛾,𝑀𝑀−1,𝛿𝛿 is the γ∙100 %-quantile of the non-central Student t distribution with pa-

rameter (n-1) and non-centrality parameter δ defined as 

𝛿𝛿 = 𝑧𝑧𝛽𝛽 ∙ √𝑚𝑚 (4.13) 

For one-sided tolerance intervals and n > 200, 𝑘𝑘 = 𝑘𝑘1 is determined according to 

Eq. (4.14) /NAT 63/. 

𝑘𝑘1 =
𝑧𝑧𝛽𝛽 + �𝑧𝑧𝛽𝛽2 − 𝑎𝑎 ∙ 𝑏𝑏

𝑎𝑎
 

(4.14) 

where 𝑧𝑧𝛽𝛽 denotes the β∙100 %-quantile of the standard Normal distribution and 
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𝑎𝑎 = 1 −
𝑧𝑧𝛾𝛾2

2 ∙ (𝑚𝑚 − 1)
 (4.15) 

𝑏𝑏 = 𝑧𝑧𝛽𝛽2 −
𝑧𝑧𝛾𝛾2

𝑚𝑚
 (4.16) 

For two-sided tolerance intervals, 𝑘𝑘= 𝑘𝑘2 is determined according to Eq. (4.17) /HOW 69/. 

𝑘𝑘2 =
(𝑚𝑚 − 1)(𝑚𝑚 + 1)

𝑚𝑚 + 𝑧𝑧(1−𝛽𝛽)/2
2

𝑥𝑥1−𝛾𝛾,𝑀𝑀−1
2  (4.17) 

where 𝑧𝑧(1−𝛽𝛽)/2
2  is the (1- β)/2∙100 %-quantile of the standard Normal distribution and 

𝑥𝑥1−𝛾𝛾,𝑀𝑀−1 is the (1-γ)∙100 %-quantile of the Χ2 distribution with parameter (𝑚𝑚 − 1). 

If it can be assumed that the considered variable Y has a Lognormal distribution, then 

the lower and upper tolerance limits TLl and TLu can be derived by the following steps: 

• ln-transformation (natural logarithm) of Y. 

• Calculation of the tolerance limits TL’l and TL’u for the normally distributed variable 

ln(Y) 

• Retransformation of the tolerance limits TL’l and TL’u, i.e.  

TLl = exp(TL’l) and TLu = exp(TL’u) 

4.2.3 Bootstrapped tolerance limits 

Another approach to compute a tolerance interval of the computational result 𝑌𝑌 offers 

the nested (or double) bootstrapping of confidence intervals, in the following referred to 

as BTI. This approach may be selected, if  

− no information about the distribution of the computational result is available 

− not as many computations as required for Wilks’ distribution-free/non-parametric 

approach can be afforded 



77 

− Wilks approach is considered to be too conservative /FER 01/ 

An intuitive motivation of the BTI idea provides the underlying approach of k-factors. Let 

�⃗�𝑦 = (𝑦𝑦1, … , 𝑦𝑦𝑀𝑀 ) ∈ ℝ𝑀𝑀 be a random sample following a distribution function 𝐹𝐹 such that 

𝑦𝑦𝑖𝑖.𝑚𝑚𝑚𝑚𝑑𝑑~ 𝐹𝐹. An interval [𝑇𝑇𝑇𝑇𝑙𝑙,𝑇𝑇𝑇𝑇𝑢𝑢] is called a 𝛽𝛽-content, 𝛾𝛾-confidence tolerance interval for a 

cumulative distribution function 𝐹𝐹, if the statistics 𝑇𝑇𝑇𝑇𝑙𝑙 and 𝑇𝑇𝑇𝑇𝑢𝑢 satisfies 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏 (𝐹𝐹(𝑇𝑇𝑇𝑇𝑢𝑢) −

𝐹𝐹(𝑇𝑇𝑇𝑇𝑙𝑙) ≥ 𝛽𝛽) ≥ 𝛾𝛾 while the statistics 𝑇𝑇𝑇𝑇𝑙𝑙, 𝑇𝑇𝑇𝑇𝑢𝑢 are called tolerance limits. 

Let’s assume that a (non-symmetric) tolerance interval 𝑇𝑇𝑇𝑇 can be generally formulated 

as 𝑇𝑇𝑇𝑇 =  [𝑦𝑦 +  𝑘𝑘1𝑠𝑠;  𝑦𝑦  + 𝑘𝑘2𝑠𝑠] with the sample mean 𝑦𝑦 (Eq. (4.2)), the sample standard 

deviation 𝑠𝑠 (Eq. (4.3)) and the factors 𝑘𝑘1 < 𝑘𝑘2. 𝑦𝑦 and 𝑠𝑠 are estimated from the random 

sample �⃗�𝑦 = (𝑦𝑦1, … ,𝑦𝑦𝑀𝑀 ). Based on this vague formulation, the definition of a tolerance 

interval can be reformulated with respect to the predictor variable 𝑍𝑍 (any future observa-

tion from the underlying population) as 

𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏(𝐹𝐹(𝑦𝑦 +  𝑘𝑘2𝑠𝑠) − 𝐹𝐹(𝑦𝑦 + 𝑘𝑘1𝑠𝑠) ≥ 𝛽𝛽) 

         = 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏(𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏(𝑘𝑘1 <
𝑍𝑍 − 𝑦𝑦
𝑠𝑠

< 𝑘𝑘2| {𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑀𝑀 ) ≥ 𝛽𝛽) 

        ≥ 𝛾𝛾  
(4.18) 

Via the formulation in Eq. (4.18), it becomes clear that two probabilistic expressions need 

to be iterated to derive a tolerance interval via a common bootstrapping approach. 

The idea to derive a tolerance interval via nested bootstrapping is based on the work of 

/EFR 86/, /SHO 05/ and /REB 07/.  

The basic steps of the algorithm can be summarized as described in the following: 

• Bootstrap (i.e. resample with replacement) the complete sample of the computa-

tional result 𝑌𝑌 and generate 𝐵𝐵 independent bootstrap samples �⃗�𝑦(1)∗,⋯ , �⃗�𝑦(𝐵𝐵)∗ with 

𝑦𝑦𝑖𝑖
(𝑏𝑏)∗𝑚𝑚𝑚𝑚𝑑𝑑

∼ 𝐹𝐹� and 𝐹𝐹� being the empirical distribution function derived from �⃗�𝑦 = (𝑦𝑦1, … ,𝑦𝑦𝑀𝑀 ). 

For the sake of clarity, (∙)∗ indicates a bootstrap sample and any estimator derived 

from it; 

• For each 𝑏𝑏, 𝑏𝑏 = 1, … ,𝐵𝐵, repeat the following steps: 

− Sample 𝑃𝑃 future observations 𝑧𝑧(1)∗,⋯ , 𝑧𝑧(𝑃𝑃)∗ with 𝑧𝑧(𝑖𝑖)∗ 𝑚𝑚𝑚𝑚𝑑𝑑∼  𝐹𝐹� with replacement 

from the sample �⃗�𝑦 = (𝑦𝑦1, … ,𝑦𝑦𝑀𝑀 ) 
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− For each 𝑝𝑝,𝑝𝑝 = 1, … ,𝑃𝑃, calculate predictor statistic 𝑇𝑇(𝑏𝑏,𝑝𝑝)∗ = 𝑧𝑧(𝑝𝑝)∗−𝑦𝑦(𝑏𝑏)∗

𝑠𝑠(𝑏𝑏)∗  with the 

sample mean 𝑦𝑦(𝑏𝑏)∗ and the unbiased standard deviation 𝑠𝑠(𝑏𝑏)∗ derived from the 

corresponding bootstrap sample �⃗�𝑦(𝑏𝑏)∗ 

− Localize the quantiles �̂�𝑡𝑏𝑏(𝛽𝛽1) and �̂�𝑡𝑏𝑏(𝛽𝛽2) of �𝑇𝑇(𝑏𝑏,𝑝𝑝)∗�𝑝𝑝=1
𝑃𝑃

 with 𝛽𝛽2 − 𝛽𝛽1 = 𝛽𝛽; here, a 

simple symmetric algorithm is employed that iteratively removes the interval with 

the smallest lowest limit, then with largest upper limit, etc.; 

• Find 𝑘𝑘1 and 𝑘𝑘2 such that a 𝛾𝛾-portion of the mean coverage intervals of 

{[�̂�𝑡𝑏𝑏(𝛽𝛽1), �̂�𝑡𝑏𝑏(𝛽𝛽2) ]}B
𝑏𝑏 = 1are completely included in [𝑘𝑘1;𝑘𝑘2]. 

• Calculate the bootstrapped β∙100 %/γ∙100 % tolerance interval as 

[𝑦𝑦 + 𝑘𝑘1𝑠𝑠;  𝑦𝑦 + 𝑘𝑘2𝑠𝑠]. 

Another strategy to calculate BTI depicts the well-known content-corrected tolerance in-

tervals which try to relax the assumption of normality (proof that asymptotic normality is 

sufficient). However, this strategy only ensures that the specified confidence level 𝛾𝛾 

holds, but not the specified content or coverage probability 𝛽𝛽. Nevertheless, it serves as 

the only setting in which the performance of a BTI can be compared to its analytical/the-

oretical counterpart for multiple (non-normal as well as asymmetric) distributional 

shapes. 

4.3 Interval limits from Chebychev and Chebychev-Cantelli inequalities 

The Chebychev and/or Chebychev-Cantelli inequalities may be applied to estimate a 

two-sided interval and/or one-sided closed intervals covering at least a proportion of 

β∙100 %. Since these inequalities are applicable to any distribution, the interval estima-

tors are conservative in general. 

The application of the Chebychev-Cantelli inequality provides one-sided left- or right-

closed intervals covering at least a proportion of β∙100 % (Eq. (4.19)). 

𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏(𝑌𝑌 ≥  𝐸𝐸(𝑌𝑌) + 𝑡𝑡) ≤
𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌)

𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌) + 𝑡𝑡2
,       𝑡𝑡 ≥ 0 (4.19) 
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𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏(𝑌𝑌 ≤  𝐸𝐸(𝑌𝑌) −   𝑡𝑡) ≤
𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌)

𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌) + 𝑡𝑡2
,     𝑡𝑡 ≥ 0 

where 𝐸𝐸(𝑌𝑌) denotes the expected value and 𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌) denotes the variance of Y. 

With 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏(𝑌𝑌 ≥  𝐸𝐸(𝑌𝑌) + 𝑡𝑡) ≤ 1 − 𝛽𝛽, the upper limit of a right-closed interval covering a 

proportion of at least β∙100 % is given by  𝐸𝐸(𝑌𝑌) +� 𝛽𝛽
1−𝛽𝛽

∙ √𝑉𝑉𝑎𝑎𝑟𝑟𝑌𝑌. 

With 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏(𝑌𝑌 ≤  𝐸𝐸(𝑌𝑌) − 𝑡𝑡) ≤ 1 − 𝛽𝛽, the lower limit of a left-closed interval covering a pro-

portion of at least β∙100 % is given by  𝐸𝐸(𝑌𝑌) −� 𝛽𝛽
1−𝛽𝛽

∙ √𝑉𝑉𝑎𝑎𝑟𝑟𝑌𝑌. 

The application of the Chebychev inequality provides a two-sided closed interval cover-

ing a proportion of at least β∙100 % (Eq. (4.20)). 

𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏(|𝑌𝑌 −  𝐸𝐸(𝑌𝑌)| ≥ 𝑡𝑡) ≤
𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌)
𝑡𝑡2

,     𝑡𝑡 ≥ 0 (4.20) 

With 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏(|𝑌𝑌 −  𝐸𝐸(𝑌𝑌)| ≥ 𝑡𝑡) ≤ 1 − 𝛽𝛽, the limits of a two-sided closed interval covering a 

proportion of at least β∙100 % are given by  𝐸𝐸(𝑌𝑌) ± � 1
1−𝛽𝛽

∙ √𝑉𝑉𝑎𝑎𝑟𝑟𝑌𝑌. 

If 𝐸𝐸(𝑌𝑌) and √𝑉𝑉𝑎𝑎𝑟𝑟𝑌𝑌 are estimated by the empirical mean 𝑦𝑦�  (Eq. (4.2)) and the unbiased 

empirical standard deviation 𝑠𝑠 (Eq. (4.3)), respectively, appropriate estimators of the in-

tervals can be derived. However, these interval estimators are not associated with a sta-

tistical confidence level. 

4.4 Parametric distribution fitting 

The uncertainty of a variable Y may be quantified by an appropriate parametric probability 

distribution. Uncertainty quantifications using quantiles or intervals covering a proportion 

of β∙100 % can easily be derived from such a distribution.  
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If the sample values 𝑦𝑦1, … ,𝑦𝑦𝑀𝑀 are available for variable Y, an appropriate parametric dis-

tribution may be found by the following steps: 

− Selection of a distribution type (Normal, Uniform, Beta, etc.) 

− Estimation of the parameters of the selected distribution from the sample values 

𝑦𝑦1, … , 𝑦𝑦𝑀𝑀  either by the maximum likelihood /KOT 88/ or by the moment-matching 

method (method of moments) /KOT 88/ 

− Goodness-of-fit test (Kolmogorov-Smirnov, Lilliefors) for the selected distribution 

defined by the estimated parameters 

4.4.1 Kolmogorov-Smirnov goodness-of-fit test 

The Kolmogorov-Smirnov goodness-of-fit test /KOT 88/ is a non-parametrical statistical 

test of the equality of two continuous probability distributions. The corresponding one-

sample goodness-of-fit test can be used to compare the empirical distribution derived 

from the sample values 𝑦𝑦1, … ,𝑦𝑦𝑀𝑀 with a reference parametrical distribution (e.g. Normal 

distribution or any other continuous distribution). In this case, the hypothesis is tested, 

that the sample values are selected from the indicated reference distribution.  

The one-sample Kolmogorov-Smirnov test statistic 𝑆𝑆𝑀𝑀 quantifies the distance between 

the empirical cumulative distribution function 𝐹𝐹𝑀𝑀(𝑦𝑦) and the cumulative distribution func-

tion 𝐹𝐹(𝑦𝑦) of the reference parametrical distribution. 

𝑆𝑆𝑀𝑀 = sup𝑦𝑦 |𝐹𝐹𝑀𝑀(𝑦𝑦) − 𝐹𝐹(𝑦𝑦)| (4.21) 

where sup𝑦𝑦 is the supremum of the set of distances obtained for variable Y . 

If 𝐹𝐹𝑀𝑀(𝑦𝑦) is the empirical distribution function of a sample selected from the distribution 

𝐹𝐹(𝑦𝑦), then 𝑆𝑆𝑀𝑀 converges to 0 almost surely with n approaching infinity. The distribution 

of 𝑆𝑆𝑀𝑀 is called Kolmogorov-Smirnov distribution. 

Let 𝑑𝑑 denote a realization of the maximum distance 𝑆𝑆𝑀𝑀 between the empirical cumulative 

distribution function 𝐹𝐹𝑀𝑀(𝑦𝑦) and the cumulative distribution function 𝐹𝐹(𝑦𝑦). If the sample is 

selected from the reference distribution, then the probability to exceed 𝑑𝑑 is very small, if 
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𝑑𝑑 is high. This probability is higher, if 𝑑𝑑 is smaller. Therefore, the following conclusions 

may be drawn: 

− If 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏(𝑆𝑆𝑀𝑀 > 𝑑𝑑) ≤ 0.05  (or 0.01), the null hypothesis is rejected at the significance 

level of 0.05 (or 0.01), that the considered sample of variable 𝑌𝑌 is selected from the 

reference parametrical distribution. 

− If 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏(𝑆𝑆𝑀𝑀 > 𝑑𝑑) > 0.05  (or 0.01), the null hypothesis cannot be rejected at the sig-

nificance level of 0.05 (or 0.01), that the considered sample of variable 𝑌𝑌 is se-

lected from the reference parametrical distribution. But a large probability 

𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏(𝑆𝑆𝑀𝑀 >  𝑑𝑑) may justify assuming, that the sample is selected from the refer-

ence distribution. 

In practice, the Kolmogorov-Smirnov goodness-of-fit test requires a relatively large sam-

ple size in order to properly reject the null hypothesis. If either the distribution type or the 

distribution parameters are determined from the sample, the Kolmogorov-Smirnov test 

result may not be reliable, especially for small sample sizes. 

4.4.2 Lillifors goodness-of-fit test 

The Lilliefors goodness-of-fit test /LIL 67/, /LIL 69/ uses the same test statistic 𝑆𝑆𝑀𝑀 

(Eq. (4.21)) as the Kolmogorov-Smirnov goodness-of-fit test. Whereas the Kolmogorov-

Smirnov test is applicable to any parametrical continuous probability distribution, the 

Lilliefors test is applicable only to the Normal, Lognormal and Exponential distribution. 

Therefore, the corresponding Lilliefors distribution of 𝑆𝑆𝑀𝑀 is stochastically smaller than the 

Kolmogorov–Smirnov distribution of 𝑆𝑆𝑀𝑀. That means the Lilliefors goodness-of-fit test 

would reject the null hypothesis, that the considered variable has a Normal distribution 

(or Lognormal or Exponential distribution), more likely than the Kolmogorov-Smirnov 

goodness-of-fit test. 
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Tables of the critical values for selected levels of significance may be found in /LIL 67/, 

/LIL 69/. For SUSA, these tables were extended to cover sample sizes 𝑚𝑚 with 30 <  𝑚𝑚 ≤ 60 

and more levels of significance. For sample sizes 𝑚𝑚 > 60, the approximation of the critical 

value 𝑐𝑐𝑀𝑀 in Eq. (4.22) is used: 

𝑐𝑐𝑀𝑀 = c60 ∙ �
60
𝑚𝑚

 (4.22) 

 

Fig. 4.8 Cumulative empirical distribution function of a scalar computational result 

(Peak Cladding Temperature) and fitted Normal distribution. The level of 

significance of the Lilliefors test is 0.16, i.e. the hypothesis cannot be re-

jected that Y has a Normal distribution. 

4.5 Construction and application of a surrogate model 

If the computer code is complex and slowly-running, the number of Monte-Carlo simula-

tion runs, which can be performed within an acceptable time period, may be relatively 

small. Consequently, the sample of values 𝑦𝑦1,𝑦𝑦2 … ,𝑦𝑦𝑀𝑀 which can be obtained for the 

computational result is relatively small and does not allow for estimating distribution pa-

rameters and other characteristics useful for uncertainty quantifications with high 
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accuracy. Even the calculation of Wilks’ tolerance limits may not be possible, because 

the minimum sample size to calculate these limits cannot be reached.  

For complex computer codes, one way to obtain uncertainty quantifications for the com-

putational result is the replacement of the code by a fast-running simpler surrogate code 

and the use of this fast-running code to perform many Monte-Carlo simulation runs.  

From the large sample of values finally available for the computational result, more ac-

curate estimators including Wilks’ tolerance limits can be calculated. 

SUSA allows constructing a surrogate model and assessing its goodness-of-fit based on 

a comparison of its results with the results of the original model. The surrogate model is 

constructed from the vectors 𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑀𝑀 (each of length 𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟) sampled for the uncertain 

input parameters 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟 and the corresponding results 𝑦𝑦1,𝑦𝑦2, … , 𝑦𝑦𝑀𝑀  provided by 

the n runs with the original model. For the construction process, SUSA applies a forward 

stepwise regression algorithm which successively inserts uncertain parameters into or 

removes them from the regression function according to the results of partial F-tests with 

the level of significance α = 0.05. The user may control the parameter selection process 

by forcing parameters into the regression function or by excluding parameters from the 

analysis when the input of the uncertainty analysis is prepared. Parameters forced into 

the regression cannot be removed during the selection process. 

The additional forward stepwise rank regression algorithm uses, instead of the original 

values, the rank transformed values 𝑟𝑟(𝑥𝑥𝑗𝑗1), 𝑟𝑟(𝑥𝑥𝑗𝑗2), … , 𝑟𝑟(𝑥𝑥𝑗𝑗𝑀𝑀) of each parameter 

𝑋𝑋𝑗𝑗, 𝑗𝑗 =  1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, and the rank transformed values 𝑟𝑟(𝑦𝑦1), 𝑟𝑟(𝑦𝑦2), … , 𝑟𝑟(𝑦𝑦𝑀𝑀) of the result Y 

(Eq. (2.67)).  

After the model construction process, an ordinary regression model as indicated in 

Eq. (4.23) or a rank regression model as indicated in Eq. (4.24) is available. 

𝑌𝑌� = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + ⋯+ 𝛽𝛽𝑟𝑟𝑋𝑋𝑟𝑟 (4.23) 

𝑟𝑟𝑌𝑌� = 𝛽𝛽′0 + 𝛽𝛽′1𝑟𝑟(𝑋𝑋1) +⋯+ 𝛽𝛽′𝑙𝑙𝑟𝑟(𝑋𝑋𝑙𝑙) (4.24) 

With the constructed ordinary or rank regression model, new Monte-Carlo simulation 

runs may be performed. To this purpose, a new sample of parameter values must be 
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generated first. Since the corresponding runs are very fast, the size n1 of the new param-

eter sample may be larger than the original parameter sample size n. 

The results 𝑦𝑦�1,𝑦𝑦�2, … ,𝑦𝑦�𝑀𝑀1 of an ordinary regression model are obtained by simply using 

the new parameter values as input parameters of the regression model. In case of a rank 

regression model, the results 𝑦𝑦�1,𝑦𝑦�2, … , 𝑦𝑦�𝑀𝑀1 are obtained by the following steps: 

• The vectors 𝑟𝑟𝑥𝑥1, 𝑟𝑟𝑥𝑥2, … , 𝑟𝑟𝑥𝑥𝑀𝑀1 (each of length npar) of rank transformed parameter 

values are successively provided as input to the rank regression model to calculate 

n1 𝑟𝑟𝑦𝑦�-values (Eq. (4.24)). 

• To obtain the actual result 𝑦𝑦� for the calculated 𝑟𝑟𝑦𝑦�-value, piecewise linear interpola-

tions (extrapolations) are performed with respect to two successive ranks 𝑟𝑟(𝑦𝑦𝑟𝑟) and 

𝑟𝑟(𝑦𝑦𝑙𝑙) with 𝑟𝑟(𝑦𝑦𝑟𝑟)  < 𝑟𝑟𝑦𝑦� ≤ 𝑟𝑟(𝑦𝑦𝑙𝑙) and the corresponding values 𝑦𝑦𝑟𝑟 and 𝑦𝑦𝑙𝑙 derived from 

the runs with the original code. 

The Kolmogorov-Smirnov two-sample goodness-of-fit test /KOT 88/ is applied to test the 

hypothesis that the two samples 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑀𝑀 and 𝑦𝑦�1,𝑦𝑦�2, … ,𝑦𝑦�𝑀𝑀1   come from the same prob-

ability distribution (see Section 4.4.1). The corresponding test statistic 𝑆𝑆𝑀𝑀𝑞𝑞 quantifies the 

distance between the two empirical cumulative distribution functions 𝐹𝐹𝑀𝑀 and 𝐹𝐹𝑀𝑀1 at 𝑚𝑚𝑞𝑞= 13 

selected empirical quantiles 𝑞𝑞1, … , 𝑞𝑞𝑀𝑀𝑞𝑞 (1 %, 5 %, 10 %,…, 90 %, 95 %, 99 %). 

𝑆𝑆𝑀𝑀𝑞𝑞 = sup𝑞𝑞1…𝑞𝑞𝑛𝑛𝑞𝑞  |𝐹𝐹𝑀𝑀(𝑞𝑞𝑖𝑖) − 𝐹𝐹𝑀𝑀1(𝑞𝑞𝑖𝑖)| (4.25) 

Let 𝑑𝑑 denote a realization of the maximum distance 𝑆𝑆𝑀𝑀𝑞𝑞 between the two empirical cu-

mulative distribution functions 𝐹𝐹𝑀𝑀(𝑦𝑦) and 𝐹𝐹𝑀𝑀1(𝑦𝑦�). If the two samples are from the same 

distribution, then the probability to exceed 𝑑𝑑 is very small, if 𝑑𝑑 is high. This probability is 

higher, if 𝑑𝑑 is smaller. Therefore, the following conclusions may be drawn: 

− If 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏 �𝑆𝑆𝑀𝑀𝑞𝑞 > 𝑑𝑑� ≤ 0.05  (or 0.01), the null hypothesis is rejected at the signifi-

cance level of 0.05 (or 0.01), that the considered samples are selected from the 

same distribution. 

− If 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏 �𝑆𝑆𝑀𝑀𝑞𝑞 > 𝑑𝑑� > 0.05  (or 0.01), the null hypothesis cannot be rejected at the 

significance level of 0.05 (or 0.01), that the considered samples are selected from 
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the same distribution. But a large probability 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏 �𝑆𝑆𝑀𝑀𝑞𝑞 > 𝑑𝑑� may justify assuming, 

that the samples are selected from the same distribution. 

4.6 Uncertainty quantifications for multiple variables 

SUSA offers two options to derive uncertainty quantifications simultaneously relating to 

two and more computational results (figures of merit). These uncertainty quantifications 

are useful, for instance, to prove the simultaneous compliance of several safety limits in 

the design and licensing process of nuclear power plants. 

The first option provides simultaneous multiple tolerance limits with a common confi-

dence level. The second option provides an estimator of the probability of compliance of 

multiple limiting values. 

4.6.1 Simultaneous multiple tolerance limits 

Simultaneous multiple tolerance limits can be derived based on the inequality of Bonfer-

roni (Eq. (4.26)). This inequality gives the lower limit of the probability that the events 

𝐸𝐸1,𝐸𝐸2, … ,𝐸𝐸𝑚𝑚 from any finite or countable set of events occur simultaneously. 

𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏(�𝐸𝐸𝑟𝑟

𝑚𝑚

𝑟𝑟=1

) ≥ 1 −�(1 − 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏(𝐸𝐸𝑟𝑟)
𝑚𝑚

𝑟𝑟=1

) (4.26) 

If 𝐸𝐸𝑟𝑟 denotes the event that the coverage (probability) of the tolerance interval for variable 

𝑌𝑌𝑟𝑟 is at least β, simultaneous occurrence of the events 𝐸𝐸1,𝐸𝐸2, … ,𝐸𝐸𝑚𝑚 (⋂ 𝐸𝐸𝑟𝑟𝑚𝑚
𝑟𝑟=1 ) means that 

the coverages of the multiple tolerance intervals for the variables 𝑌𝑌1,𝑌𝑌2 … ,𝑌𝑌𝑚𝑚 are simul-

taneously at least β. The probability 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏(𝐸𝐸𝑟𝑟) is identical to the confidence level 𝛾𝛾𝑟𝑟 of 

the individual tolerance interval of variable 𝑌𝑌𝑟𝑟 ,𝑘𝑘 = 1, … ,𝑚𝑚, and the probability 

𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏(⋂ 𝐸𝐸𝑟𝑟𝑚𝑚
𝑟𝑟=1 ) is the so-called common confidence level 𝛾𝛾′ of the simultaneous multiple 

tolerance intervals. 
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Based on the inequality of Bonferroni, simultaneous multiple tolerance intervals charac-

terized by an identical coverage probability β (e.g. β = 0.95) and a common confidence 

level 𝛾𝛾′ (e.g.  𝛾𝛾′ = 0.95) are given by the individual β∙100 %/ 𝛾𝛾 100 % tolerance intervals 

of the variables 𝑌𝑌1,𝑌𝑌2 … ,𝑌𝑌𝑚𝑚 with 𝛾𝛾 = 𝛾𝛾1 = ⋯ = 𝛾𝛾𝑚𝑚  derived from Eq. (4.27). 

𝛾𝛾 = 1 −
1 − 𝛾𝛾′

𝑚𝑚
   (4.27) 

The individual β∙100 %/ 𝛾𝛾 100 % tolerance limits may be derived according to Wilks ap-

proach or by assuming a Normal or Lognormal distribution (see Sections 4.2.1 and 

4.2.2). 

4.6.2 Probability of compliance of multiple limiting values 

Let 𝑌𝑌1,𝑌𝑌2 … ,𝑌𝑌𝑚𝑚 be variables which are required to fulfil the respective conditions 

𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑚𝑚 . 𝐶𝐶𝑟𝑟 ,𝑘𝑘 = 1, … ,𝑚𝑚, may be one of the following conditions: 

• Y𝑟𝑟  ≥  y𝑟𝑟𝑙𝑙  

• Y𝑟𝑟  ≤  y𝑟𝑟𝑢𝑢  

• y𝑟𝑟𝑙𝑙 < Y𝑟𝑟  ≤  y𝑟𝑟𝑢𝑢  

Furthermore, let 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑀𝑀 be 𝑚𝑚 vectors of length 𝑚𝑚 each simultaneously sampled for 

the variables 𝑌𝑌1,𝑌𝑌2 … ,𝑌𝑌𝑚𝑚. Vector 𝑦𝑦𝑖𝑖 may represent the values of the different computa-

tional results (figures of merit) 𝑌𝑌1,𝑌𝑌2 … ,𝑌𝑌𝑚𝑚 simultaneously obtained via the Monte Carlo 

simulation run No. 𝑚𝑚, 𝑚𝑚 = 1, … ,𝑚𝑚. 

The probability 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏(⋂ 𝐶𝐶𝑟𝑟𝑚𝑚
𝑟𝑟=1 ) that the variables 𝑌𝑌1,𝑌𝑌2 … ,𝑌𝑌𝑚𝑚 simultaneously fulfil the re-

quired conditions can be estimated from the sample 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑀𝑀. An appropriate estima-

tor is the lower γ∙100 % confidence limit 𝑝𝑝𝑙𝑙 of the probability. According to the approach 

of Clopper and Pearson /CLO 34/, 𝑝𝑝𝑙𝑙 is derived by determining the number 𝑠𝑠 of runs (of 

the total of n runs) where the corresponding vector 𝑦𝑦𝑖𝑖 fulfils the required conditions and 

by solving Eq. (4.28) for an appropriately selected 𝛾𝛾-value (e.g. 𝛾𝛾=0.95). 



87 

��𝑚𝑚𝑚𝑚 �𝑝𝑝𝑙𝑙
𝑖𝑖(1 − 𝑝𝑝𝑙𝑙)𝑀𝑀−𝑖𝑖

𝑀𝑀

𝑖𝑖=𝑠𝑠

= 1 − 𝛾𝛾 (4.28) 

��𝑚𝑚𝑚𝑚 �𝑝𝑝𝑙𝑙
𝑖𝑖(1 − 𝑝𝑝𝑙𝑙)𝑀𝑀−𝑖𝑖

𝑠𝑠−1

𝑖𝑖=0

= 1 − 𝑃𝑃𝑟𝑟𝑡𝑡𝑏𝑏 �𝐹𝐹 ≤
𝑚𝑚 − 𝑠𝑠 + 1

𝑠𝑠
𝑝𝑝𝑙𝑙

1 − 𝑝𝑝𝑙𝑙
� (4.29) 

Based on Eq. (4.29) with 𝐹𝐹 being a random variable distributed according to the 𝐹𝐹-distri-

bution with 2 ∙ 𝑠𝑠 and 2∙(𝑚𝑚 − 𝑠𝑠 + 1) degrees of freedom, 𝑝𝑝𝑙𝑙 can be determined as follows: 

𝑝𝑝𝑙𝑙 =
𝑠𝑠 ∙ 𝐹𝐹2𝑠𝑠,2(𝑀𝑀−𝑠𝑠+1),1−𝛾𝛾

(𝑚𝑚 − 𝑠𝑠 + 1) + 𝑠𝑠 ∙ 𝐹𝐹2𝑠𝑠,2(𝑀𝑀−𝑠𝑠+1),1−𝛾𝛾
 (4.30) 

with 𝐹𝐹2𝑠𝑠,2(𝑀𝑀−𝑠𝑠+1),1−𝛾𝛾 being the (1-γ)∙100 %-quantile of the F-distribution with 2 ∙ 𝑠𝑠 and 

2∙(𝑚𝑚 − 𝑠𝑠 + 1) degrees of freedom.  

Since 𝐹𝐹2𝑠𝑠,2(𝑀𝑀−𝑠𝑠+1),1−𝛾𝛾 = 1
𝐹𝐹2(𝑛𝑛−𝑠𝑠+1),2𝑠𝑠,𝛾𝛾

, 𝑝𝑝𝑙𝑙 can also be determined via Eq. (4.31): 

𝑝𝑝𝑙𝑙 =
𝑠𝑠

(𝑚𝑚 − 𝑠𝑠 + 1) ∙ 𝐹𝐹2(𝑀𝑀−𝑠𝑠+1),2𝑠𝑠,𝛾𝛾 + 𝑠𝑠
 (4.31) 





89 

5 Sensitivity Analysis 

A sensitivity analysis or, more precisely, an uncertainty importance analysis helps to 

identify those uncertain input parameters which mainly contribute to the uncertainty of 

the computational result /HOF 99/, /SAL 00/. Improvements of the state of knowledge on 

these parameters may help to reduce the uncertainty of the result most effectively. 

Like the uncertainty analysis, the sensitivity analysis can be performed for a scalar as 

well as for a time/index-dependent computational result (see introduction of Section 4). 

Sensitivity indices appropriate for computationally intensive computer codes which don’t 

allow performing many Monte Carlo simulation runs are those related to statistical cor-

relations. These sensitivity indices can be calculated from the same sample data as al-

ready generated for the uncertainty analysis. The correlation related indices applicable 

to individual parameters are described in Section 5.1 and those applicable to parameter 

groups are explained in Section 5.2. 

Besides correlation related sensitivity measures, the classical correlation ratio from orig-

inal and rank transformed data may serve as sensitivity index (Section 5.3). The square 

of the correlation ratio is equivalent to the variance based first order sensitivity index also 

known as Sobol’s first order index. The procedure to calculate this index is described in 

Section 5.4. 

Other types of sensitivity indices implemented in SUSA are the association measures 

from 2x2 contingency tables (Section 5.5) and the regression coefficients derived from a 

stepwise (rank) regression (Section 5.6). 

In the following, variable 𝑌𝑌 represents an uncertain scalar computational result and 

(𝑦𝑦1,𝑦𝑦2 … ,𝑦𝑦𝑀𝑀) denotes a sample of values (i.e. realizations) provided for variable 𝑌𝑌 via 𝑚𝑚 

(e.g. 𝑚𝑚 = 100) computer code runs. Input to each computer code run 𝑚𝑚 is a vector 

𝑥𝑥𝑖𝑖 =  (𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖 𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟) , 𝑚𝑚 = 1, … ,𝑚𝑚,  sampled for the npar uncertain input parameters 

𝑋𝑋1,𝑋𝑋2 … ,𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟. 
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5.1 Correlation based sensitivity indices 

The following types of correlation based sensitivity indices are implemented in SUSA: 

− Pearson's correlation (Section 5.1.1) 

− Spearman's rank correlation (Section 5.1.2) 

− Blomqvist’s medial correlation (Section 5.1.3) 

− Kendall's rank correlation (Section 5.1.4) 

For each correlation type, statistical estimators of the ordinary and partial correlation 

coefficient as well as of the standardized regression coefficient can be calculated. An 

estimator of the coefficient of determination is additionally provided to inform on the use-

fulness of these correlation and regression coefficients as sensitivity indices /HOF 99/, 

/KLO 12/. 

Since the ordinary and partial correlation coefficient and the standardized regression co-

efficient apply only to individual parameters, the multiple correlation coefficient is calcu-

lated, when the sensitivity indices shall be applied to parameter groups. This coefficient 

can be provided for each correlation type. 

5.1.1 Pearson's correlation 

5.1.1.1 Ordinary correlation coefficient 

Pearson’s ordinary correlation coefficient 𝐶𝐶𝐶𝐶𝑃𝑃(𝑋𝑋𝑗𝑗,𝑌𝑌) between uncertain parameter 𝑋𝑋𝑗𝑗, 𝑗𝑗 =

1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, and the computational result 𝑌𝑌 is defined as 

𝐶𝐶𝐶𝐶𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌� = 𝜌𝜌�𝑋𝑋𝑗𝑗,𝑌𝑌� =
𝐶𝐶𝑡𝑡𝐶𝐶(𝑋𝑋𝑗𝑗 ,𝑌𝑌)

�𝑉𝑉𝑎𝑎𝑟𝑟(𝑋𝑋𝑗𝑗) ∙ 𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌)
   (5.1) 

with the variances 𝑉𝑉𝑎𝑎𝑟𝑟(𝑋𝑋𝑗𝑗) and 𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌) and the covariance 𝐶𝐶𝑡𝑡𝐶𝐶(𝑋𝑋𝑗𝑗,𝑌𝑌) of 𝑋𝑋𝑗𝑗 and 𝑌𝑌. 
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Pearson’s ordinary correlation coefficient 𝐶𝐶𝐶𝐶𝑃𝑃(𝑋𝑋𝑗𝑗,𝑌𝑌) has the following well-known prop-

erties: 

− −1 ≤ 𝐶𝐶𝐶𝐶𝑃𝑃(𝑋𝑋𝑗𝑗,𝑌𝑌) ≤ 1  

− 𝑋𝑋𝑗𝑗 and 𝑌𝑌 are independent → 𝐶𝐶𝐶𝐶𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌� = 0  

− 𝐶𝐶𝐶𝐶𝑃𝑃(𝑋𝑋𝑗𝑗,𝑌𝑌) measures the degree of linear dependency between 𝑋𝑋𝑗𝑗 and 𝑌𝑌 

− |𝐶𝐶𝐶𝐶𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌�| = 1 ↔ complete linear dependency between 𝑋𝑋𝑗𝑗 and 𝑌𝑌 

− 𝐶𝐶𝐶𝐶𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌� is not invariant under monotone transformations, i.e. 𝐶𝐶𝐶𝐶𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌� is not or-

dinally invariant. 

𝐶𝐶𝐶𝐶𝑃𝑃(𝑋𝑋𝑗𝑗,𝑌𝑌) may not necessarily reveal the true degree of sensitivity of 𝑌𝑌 with respect to 

the individual parameter 𝑋𝑋𝑗𝑗. This may happen, if 𝑌𝑌 is affected by uncertain parameters 

correlated with 𝑋𝑋𝑗𝑗. In this case, 𝐶𝐶𝐶𝐶𝑃𝑃(𝑋𝑋𝑗𝑗,𝑌𝑌) quantifies the degree of sensitivity of 𝑌𝑌 with 

respect to the individual parameter 𝑋𝑋𝑗𝑗 plus the contributions of the parameters correlated 

with 𝑋𝑋𝑗𝑗. 

𝐶𝐶𝐶𝐶𝑃𝑃2�𝑋𝑋𝑗𝑗,𝑌𝑌� represents the fraction of the variability of 𝑌𝑌 explained by 𝑋𝑋𝑗𝑗, if 

− the functional relationship between 𝑋𝑋𝑗𝑗 and 𝑌𝑌 can be approximated by a linear func-

tion 

− 𝑋𝑋𝑗𝑗  is not correlated with another uncertain parameter 𝑋𝑋𝑟𝑟 ,𝑘𝑘 ≠ 𝑗𝑗. 

Based on the sample (𝑦𝑦1,𝑦𝑦2 … ,𝑦𝑦𝑀𝑀) of the computational result 𝑌𝑌 and the corresponding 

sample (𝑥𝑥1𝑗𝑗, 𝑥𝑥2𝑗𝑗 … , 𝑥𝑥𝑀𝑀𝑗𝑗) of the uncertain parameter 𝑋𝑋𝑗𝑗; 𝑗𝑗 = 1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, 𝐶𝐶𝐶𝐶𝑃𝑃(𝑋𝑋𝑗𝑗,𝑌𝑌) is esti-

mated as  

𝐶𝐶𝐶𝐶�𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌� =
∑ (𝑥𝑥𝑖𝑖𝑗𝑗 − 𝑥𝑥.𝑗𝑗) (𝑦𝑦𝑖𝑖𝑀𝑀
𝑖𝑖=1 − 𝑦𝑦)

�∑ (𝑥𝑥𝑖𝑖𝑗𝑗 − 𝑥𝑥.𝑗𝑗) 2𝑀𝑀
𝑖𝑖=1 ∙ ∑ (𝑦𝑦𝑖𝑖𝑀𝑀

𝑖𝑖=1 − 𝑦𝑦)2
  (5.2) 

with 𝑥𝑥.𝑗𝑗 and 𝑦𝑦 representing the empirical means (Section 4.1) derived from 

(𝑥𝑥1𝑗𝑗, 𝑥𝑥2𝑗𝑗 … , 𝑥𝑥𝑀𝑀𝑗𝑗) and (𝑦𝑦1,𝑦𝑦2 … ,𝑦𝑦𝑀𝑀), respectively. 
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Fig. 5.1 Pearson's ordinary correlation coefficients as sensitivity indices of a scalar 

computational result (Peak Cladding Temperature) with respect to 56 un-

certain input parameters 

5.1.1.2 Partial correlation coefficient  

Let 𝑌𝑌�|𝑟𝑟≠𝑗𝑗 denote the linear regression of 𝑌𝑌 on all uncertain parameters but parameter 𝑋𝑋𝑗𝑗 

and let 𝑋𝑋�𝑗𝑗 denote the linear regression of 𝑋𝑋𝑗𝑗 on all uncertain parameters different from 

𝑋𝑋𝑗𝑗, 𝑗𝑗 = 1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, i.e.: 

𝑌𝑌�|𝑟𝑟≠𝑗𝑗 = �𝑎𝑎𝑟𝑟
(𝑗𝑗)𝑋𝑋𝑟𝑟

𝑟𝑟≠𝑗𝑗

 (5.3) 

𝑋𝑋�𝑗𝑗 = �𝑏𝑏𝑟𝑟
(𝑗𝑗)𝑋𝑋𝑟𝑟

𝑟𝑟≠𝑗𝑗

 (5.4) 

The 𝑎𝑎𝑟𝑟
(𝑗𝑗)-values in Eq. (5.3) and the 𝑏𝑏𝑟𝑟

(𝑗𝑗)values in Eq. (5.4) with 𝑘𝑘 = 1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, 𝑘𝑘 ≠ 𝑗𝑗, are 

the regression coefficients which minimize the corresponding mean square errors. 
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If 𝑅𝑅𝑌𝑌�|𝑘𝑘≠𝑗𝑗and 𝑅𝑅𝑋𝑋�𝑗𝑗denote the residuals (𝑌𝑌 − 𝑌𝑌�|𝑟𝑟≠𝑗𝑗) and (𝑋𝑋𝑗𝑗 − 𝑋𝑋�𝑗𝑗), respectively, then the par-

tial correlation coefficient 𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃(𝑋𝑋𝑗𝑗,𝑌𝑌) relating to Pearson’s correlation between parame-

ter 𝑋𝑋𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, and computational result 𝑌𝑌 is defined as the ordinary correlation 

coefficient (Eq. (5.1)) between these residuals, i.e.: 

𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃(𝑋𝑋𝑗𝑗,𝑌𝑌)  = 𝜌𝜌(𝑅𝑅𝑋𝑋�𝑗𝑗 ,𝑅𝑅𝑌𝑌�|𝑘𝑘≠𝑗𝑗) (5.5) 

𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌� measures the degree of linear association between 𝑋𝑋𝑗𝑗 and 𝑌𝑌 after having 

removed, from both variables, all linear effects of the uncertain parameters different from 

 𝑋𝑋𝑗𝑗. 

From Eq. (5.5) it can be concluded that −1 ≤ 𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃(𝑋𝑋𝑗𝑗,𝑌𝑌) ≤ 1. 

Since the partial correlation coefficient 𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃(𝑋𝑋𝑗𝑗,𝑌𝑌) measures the degree of linear de-

pendency between the residuals 𝑅𝑅𝑌𝑌�|𝑘𝑘≠𝑗𝑗 and 𝑅𝑅𝑋𝑋�𝑗𝑗, it may give misleading information. A 

large 𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃(𝑋𝑋𝑗𝑗,𝑌𝑌) does not mean a high sensitivity of 𝑌𝑌 with respect to 𝑋𝑋𝑗𝑗 but a high 

sensitivity of 𝑅𝑅𝑌𝑌�|𝑘𝑘≠𝑗𝑗 with respect to 𝑅𝑅𝑋𝑋�𝑗𝑗. That means 𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃(𝑋𝑋𝑗𝑗,𝑌𝑌) may be large, even if 

only a small residual 𝑅𝑅𝑌𝑌�|𝑘𝑘≠𝑗𝑗 of 𝑌𝑌 is well explained by the residual 𝑅𝑅𝑋𝑋�𝑗𝑗 of 𝑋𝑋𝑗𝑗.  

The partial correlation coefficient is calculated from the inverse 𝐶𝐶𝐶𝐶𝑃𝑃−1 of Pearson’s (pop-

ulation) correlation matrix 𝐶𝐶𝐶𝐶𝑃𝑃 of the entire parameter vector (𝑋𝑋1,𝑋𝑋2 … ,𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟) plus the 

corresponding computational result 𝑌𝑌. 𝐶𝐶𝐶𝐶𝑃𝑃 and 𝐶𝐶𝐶𝐶𝑃𝑃−1 are defined as follows: 

𝐶𝐶𝐶𝐶𝑃𝑃  =

⎝

⎜
⎛

𝐶𝐶𝐶𝐶𝑃𝑃(𝑋𝑋1,𝑋𝑋1) … 𝐶𝐶𝐶𝐶𝑃𝑃�𝑋𝑋1,𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟� 𝐶𝐶𝐶𝐶𝑃𝑃(𝑋𝑋1,𝑌𝑌)
⋮ ⋮ ⋮

𝐶𝐶𝐶𝐶𝑃𝑃�𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟,𝑋𝑋1�… 𝐶𝐶𝐶𝐶𝑃𝑃�𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟,𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟�   𝐶𝐶𝐶𝐶𝑃𝑃�𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟,𝑌𝑌�
𝐶𝐶𝐶𝐶𝑃𝑃( 𝑌𝑌,𝑋𝑋1) …       𝐶𝐶𝐶𝐶𝑃𝑃� 𝑌𝑌,𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟�        𝐶𝐶𝐶𝐶𝑃𝑃( 𝑌𝑌,𝑌𝑌) ⎠

⎟
⎞

 

(5.6) 

𝐶𝐶𝐶𝐶𝑃𝑃−1  =

⎝

⎜
⎛

𝑇𝑇𝐶𝐶𝑃𝑃(𝑋𝑋1,𝑋𝑋1) … 𝑇𝑇𝐶𝐶𝑃𝑃�𝑋𝑋1,𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟� 𝑇𝑇𝐶𝐶𝑃𝑃(𝑋𝑋1,𝑌𝑌)
⋮ ⋮ ⋮

𝑇𝑇𝐶𝐶𝑃𝑃�𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟,𝑋𝑋1�… 𝑇𝑇𝐶𝐶𝑃𝑃�𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟,𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟� 𝑇𝑇𝐶𝐶𝑃𝑃�𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟,𝑌𝑌�
𝑇𝑇𝐶𝐶𝑃𝑃( 𝑌𝑌,𝑋𝑋1) …       𝑇𝑇𝐶𝐶𝑃𝑃� 𝑌𝑌,𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟�        𝑇𝑇𝐶𝐶𝑃𝑃( 𝑌𝑌,𝑌𝑌) ⎠

⎟
⎞

 

(5.7) 

Based on the definition in Eq. (5.7), the partial correlation coefficient 𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌� between 

𝑋𝑋𝑗𝑗, 𝑗𝑗 = 1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, and 𝑌𝑌 is calculated as: 
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𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌� = −
𝑇𝑇𝐶𝐶𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌�

(𝑇𝑇𝐶𝐶𝑃𝑃�𝑋𝑋𝑗𝑗,𝑋𝑋𝑗𝑗� ∙ 𝑇𝑇𝐶𝐶𝑃𝑃( 𝑌𝑌,𝑌𝑌))1 2�
   

(5.8) 

The estimator 𝑃𝑃𝐶𝐶𝐶𝐶�𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌� of the partial correlation coefficient is derived from the inverse 

of the sample correlation matrix which includes the corresponding estimators 𝐶𝐶𝐶𝐶�𝑃𝑃(∙,∙) 

calculated according to Eq. (5.2) instead of Pearson’s population correlation coefficients. 

To be able to calculate 𝑃𝑃𝐶𝐶𝐶𝐶�𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌�, the sample size 𝑚𝑚 must exceed 𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟 + 1. Otherwise, 

the sample correlation matrix is not positive definite and, therefore, its inverse cannot be 

derived. For sample sizes 𝑚𝑚 close to (𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟 + 1), the accuracy of 𝑃𝑃𝐶𝐶𝐶𝐶�𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌� is not sat-

isfactory. 

5.1.1.3 Standardized regression coefficient  

Let 𝑋𝑋𝑗𝑗′ and 𝑌𝑌′ denote the standardized version of the uncertain parameter 𝑋𝑋𝑗𝑗, 

𝑗𝑗 =  1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, and the computational result 𝑌𝑌. For instance, 𝑋𝑋𝑗𝑗′ is defined as: 

𝑋𝑋𝑗𝑗′ =
𝑋𝑋𝑗𝑗 − 𝐸𝐸(𝑋𝑋𝑗𝑗)

�𝑉𝑉𝑎𝑎𝑟𝑟(𝑋𝑋𝑗𝑗)
 

(5.9) 

with the expectation 𝐸𝐸(𝑋𝑋𝑗𝑗) and the variance 𝑉𝑉𝑎𝑎𝑟𝑟(𝑋𝑋𝑗𝑗) of 𝑋𝑋𝑗𝑗. 

If 𝑌𝑌′�  denotes the linear regression of the standardized variable 𝑌𝑌′ on all standardized 

parameters 𝑋𝑋1′ ,𝑋𝑋2′ , … ,𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟′  (Eq. (5.10)), then the standardized regression coefficient 

𝑆𝑆𝑅𝑅𝐶𝐶𝑃𝑃(𝑋𝑋𝑗𝑗,𝑌𝑌) between uncertain parameter 𝑋𝑋𝑗𝑗, 𝑗𝑗 = 1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, and the computational re-

sult 𝑌𝑌 is given by the regression coefficient 𝑎𝑎𝑗𝑗 associated with 𝑋𝑋𝑗𝑗′:  

𝑌𝑌′�  = � 𝑎𝑎𝑗𝑗𝑋𝑋𝑗𝑗′
𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟

𝑗𝑗=1

 (5.10) 

𝑆𝑆𝑅𝑅𝐶𝐶𝑃𝑃(𝑋𝑋𝑗𝑗,𝑌𝑌) indicates how many standard deviation changes of 𝑌𝑌 correspond to one 

standard deviation change of 𝑋𝑋𝑗𝑗, all other 𝑋𝑋𝑗𝑗,𝑘𝑘 ≠ 𝑗𝑗, kept constant.  
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Based on the specific elements 𝑇𝑇𝐶𝐶𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌� and 𝑇𝑇𝐶𝐶𝑃𝑃( 𝑌𝑌,𝑌𝑌) of the inverse of the population 

correlation matrix (Eq. (5.7)), the standardized regression coefficient 𝑆𝑆𝑅𝑅𝐶𝐶𝑃𝑃(𝑋𝑋𝑗𝑗,𝑌𝑌) be-

tween 𝑋𝑋𝑗𝑗, 𝑗𝑗 = 1, … , 𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, and 𝑌𝑌 can be calculated as 

𝑆𝑆𝑅𝑅𝐶𝐶𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌� = −
𝑇𝑇𝐶𝐶𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌�
𝑇𝑇𝐶𝐶𝑃𝑃( 𝑌𝑌,𝑌𝑌) (5.11) 

The estimator 𝑆𝑆𝑅𝑅𝐶𝐶� 𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌� of the standardized regression coefficient is derived from the 

inverse of the sample correlation matrix instead of the population correlation matrix. To 

be able to calculate 𝑆𝑆𝑅𝑅𝐶𝐶� 𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌�, the sample size 𝑚𝑚 must exceed 𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟 + 1 (see Section 

5.1.1.2 for more information).  

It can be shown that 

𝑆𝑆𝑅𝑅𝐶𝐶𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌� = 𝐶𝐶𝐶𝐶𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌� −�𝑆𝑆𝑅𝑅𝐶𝐶𝑃𝑃(𝑋𝑋𝑟𝑟,𝑌𝑌) ∙
𝑟𝑟≠𝑗𝑗

𝐶𝐶𝐶𝐶𝑃𝑃(𝑋𝑋𝑟𝑟,𝑌𝑌) (5.12) 

Comparing Eq. (5.8) and (5.11), it can be concluded that 

𝑆𝑆𝑅𝑅𝐶𝐶𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌� = 𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌� ∙ �
𝑇𝑇𝐶𝐶𝑃𝑃(𝑌𝑌,𝑌𝑌)
𝑇𝑇𝐶𝐶𝑃𝑃� 𝑋𝑋𝑗𝑗,𝑋𝑋𝑗𝑗�

  (5.13) 

Eq. (5.13) indicates that 𝑆𝑆𝑅𝑅𝐶𝐶𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌� is not restricted to values between -1 and 1. 

|𝑆𝑆𝑅𝑅𝐶𝐶𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌�| > 1, if 𝐼𝐼𝐼𝐼𝑃𝑃(𝑌𝑌,𝑌𝑌)
𝐼𝐼𝐼𝐼𝑃𝑃� 𝑋𝑋𝑗𝑗,𝑋𝑋𝑗𝑗�

> 1 and 𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃�𝑋𝑋𝑗𝑗,𝑌𝑌� > �𝐼𝐼𝐼𝐼𝑃𝑃�𝑋𝑋𝑗𝑗,𝑋𝑋𝑗𝑗�
𝐼𝐼𝐼𝐼𝑃𝑃( 𝑌𝑌,𝑌𝑌) . 
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Fig. 5.2 Standardized regression coefficients (with respect to Pearson's ordinary 

correlation) as sensitivity indices of a time-dependent computational result 

(Cladding Temperature) with respect to 56 uncertain parameters 

5.1.1.4 Coefficient of determination 

The coefficient of determination 𝑅𝑅𝑃𝑃2 is defined as the square of the population correlation 

coefficient between the code result 𝑌𝑌 and the variable 𝑌𝑌� obtained from linear regression 

 of 𝑌𝑌 on the parameters 𝑋𝑋1,𝑋𝑋2 … ,𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟: 

𝑅𝑅𝑃𝑃2 = 𝜌𝜌2�𝑌𝑌,𝑌𝑌�� (5.14) 

It can be shown that 𝑅𝑅𝑃𝑃2 is the proportion of the total variation of code result 𝑌𝑌 explained 

by the overall influence of the uncertain parameters 𝑋𝑋1,𝑋𝑋2 … ,𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟 as modelled by a 

linear regression of Y on the parameters, i.e.: 

𝑅𝑅𝑃𝑃2 =
𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌�)
𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌)

 (5.15) 
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𝑅𝑅𝑃𝑃2 is useful to assess the quality of the ordinary and partial correlation coefficient as well 

as the standardized regression coefficient as sensitivity indices. 

𝑅𝑅𝑃𝑃2 ranges between 0 and 1. 

If 𝑇𝑇𝐶𝐶𝑃𝑃( 𝑌𝑌,𝑌𝑌) denotes the last element of the inverse matrix 𝐶𝐶𝐶𝐶𝑃𝑃−1 of the correlation matrix 

(Eq. (5.7)), 𝑅𝑅𝑃𝑃2 can be calculated as 

𝑅𝑅𝑃𝑃2 = 1 −
1

𝑇𝑇𝐶𝐶𝑃𝑃( 𝑌𝑌,𝑌𝑌)   (5.16) 

The estimator 𝑅𝑅�𝑃𝑃2 of the coefficient of determination is derived from the inverse of the 

sample correlation matrix instead of the population correlation matrix. To be able to cal-

culate 𝑅𝑅�𝑃𝑃2, the sample size 𝑚𝑚 must exceed 𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟 + 1 (see Section 5.1.1.2 for more infor-

mation). 

 

Fig. 5.3 Coefficients of determination with respect to Pearson's ordinary correlation 

for a time-dependent computational result (Cladding Temperature) influ-

enced by 56 uncertain parameters 
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5.1.2 Spearman's rank correlation 

Spearman’s rank correlation coefficient 𝐶𝐶𝐶𝐶𝑆𝑆(𝑋𝑋𝑗𝑗,𝑌𝑌) between uncertain parameter 𝑋𝑋𝑗𝑗 with 

𝑗𝑗 = 1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟 and the computational result 𝑌𝑌 is defined as 

𝐶𝐶𝐶𝐶𝑆𝑆�𝑋𝑋𝑗𝑗,𝑌𝑌� = 𝜌𝜌 �𝐹𝐹𝑋𝑋𝑗𝑗 ,𝐹𝐹𝑌𝑌� (5.17) 

where 𝐹𝐹𝑋𝑋𝑗𝑗 and 𝐹𝐹𝑌𝑌 denote the cumulative distribution functions of 𝑋𝑋𝑗𝑗 and 𝑌𝑌, respectively, 

and 𝜌𝜌 denotes Pearson’s ordinary correlation coefficient defined in Eq. (5.1). 

Eq. (5.17) indicates that Spearman’s rank correlation coefficient between the two varia-

bles 𝑋𝑋𝑗𝑗 and 𝑌𝑌 is equivalent to Pearson’s ordinary correlation coefficient applied on the 

distribution functions of the two variables. 

Spearman’s rank correlation coefficient 𝐶𝐶𝐶𝐶𝑆𝑆(𝑋𝑋𝑗𝑗,𝑌𝑌) has the following well-known proper-

ties: 

− −1 ≤ 𝐶𝐶𝐶𝐶𝑆𝑆(𝑋𝑋𝑗𝑗 ,𝑌𝑌) ≤ 1  

− 𝑋𝑋𝑗𝑗 and 𝑌𝑌 are independent → 𝐶𝐶𝐶𝐶𝑆𝑆�𝑋𝑋𝑗𝑗,𝑌𝑌� = 0  

− 𝐶𝐶𝐶𝐶𝑆𝑆(𝑋𝑋𝑗𝑗,𝑌𝑌) only detects monotonic dependence structures and measures the de-

gree of monotonic dependency between 𝑋𝑋𝑗𝑗 and 𝑌𝑌 

− 𝐶𝐶𝐶𝐶𝑆𝑆(𝑋𝑋𝑗𝑗,𝑌𝑌) indicates whether upper (lower) quantiles of 𝑋𝑋𝑗𝑗 lead in tendency to upper 

(lower) quantiles of 𝑌𝑌 

− �𝐶𝐶𝐶𝐶𝑆𝑆�𝑋𝑋𝑗𝑗,𝑌𝑌�� = 1 ↔ complete dependency between 𝑋𝑋𝑗𝑗 and 𝑌𝑌 

− 𝐶𝐶𝐶𝐶𝑆𝑆(𝑋𝑋𝑗𝑗,𝑌𝑌) is ordinally invariant 

− 𝐶𝐶𝐶𝐶𝑆𝑆(𝑋𝑋𝑗𝑗,𝑌𝑌) is not affected by outliers 
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Based on the sample (𝑦𝑦1,𝑦𝑦2 … ,𝑦𝑦𝑀𝑀) of the computational result 𝑌𝑌 and the corresponding 

sample (𝑥𝑥1𝑗𝑗, 𝑥𝑥2𝑗𝑗 … , 𝑥𝑥𝑀𝑀𝑗𝑗) of the uncertain parameter 𝑋𝑋𝑗𝑗 with 𝑗𝑗 = 1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, 𝐶𝐶𝐶𝐶𝑆𝑆(𝑋𝑋𝑗𝑗,𝑌𝑌) is 

estimated as follows 

𝐶𝐶𝐶𝐶�𝑆𝑆�𝑋𝑋𝑗𝑗,𝑌𝑌� =
∑ (𝑟𝑟(𝑥𝑥𝑖𝑖𝑗𝑗) − 𝑟𝑟𝑥𝑥𝑗𝑗) (𝑟𝑟(𝑦𝑦𝑖𝑖)𝑀𝑀
𝑖𝑖=1 − 𝑟𝑟𝑦𝑦)

�∑ (𝑟𝑟(𝑥𝑥𝑖𝑖𝑗𝑗) − 𝑟𝑟𝑥𝑥𝑗𝑗) 2𝑀𝑀
𝑖𝑖=1 ∙ ∑ (𝑟𝑟(𝑦𝑦𝑖𝑖)𝑀𝑀

𝑖𝑖=1 − 𝑟𝑟𝑦𝑦)2
 

                      =
∑ (𝑟𝑟(𝑥𝑥𝑖𝑖𝑗𝑗) − 𝑚𝑚 + 1

2 ) (𝑟𝑟(𝑦𝑦𝑖𝑖)𝑀𝑀
𝑖𝑖=1 − 𝑚𝑚 + 1

2 )
𝑚𝑚(𝑚𝑚2 − 1)

12

  

(5.18) 

with 𝑟𝑟(∙) representing the rank of the corresponding value in a sample of size 𝑚𝑚 (see Eq. 

(2.67), and 𝑟𝑟𝑥𝑥𝑗𝑗 and 𝑟𝑟𝑦𝑦 representing the empirical means (see Section 4.1) derived from 

(𝑟𝑟(𝑥𝑥1𝑗𝑗), 𝑟𝑟(𝑥𝑥2𝑗𝑗) … , 𝑟𝑟(𝑥𝑥𝑀𝑀𝑗𝑗)) and (𝑟𝑟(𝑦𝑦1), 𝑟𝑟(𝑦𝑦2) … , 𝑟𝑟(𝑦𝑦𝑀𝑀)), respectively. 

5.1.3 Blomqvist’s medial correlation 

Blomqvist’s medial correlation coefficient 𝐶𝐶𝐶𝐶𝐵𝐵(𝑋𝑋𝑗𝑗,𝑌𝑌) between uncertain parameter 

𝑋𝑋𝑗𝑗, 𝑗𝑗 =  1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, and the computational result 𝑌𝑌 is defined as 

𝐶𝐶𝐶𝐶𝐵𝐵�𝑋𝑋𝑗𝑗,𝑌𝑌� = 𝜌𝜌 �𝑠𝑠𝑟𝑟𝑚𝑚(𝑋𝑋𝑗𝑗 −𝑀𝑀𝑋𝑋𝑗𝑗), 𝑠𝑠𝑟𝑟𝑚𝑚(𝑌𝑌 −𝑀𝑀𝑌𝑌)� (5.19) 

where 𝑀𝑀𝑋𝑋𝑗𝑗 and 𝑀𝑀𝑌𝑌 are the medians of the distributions of 𝑋𝑋𝑗𝑗 and 𝑌𝑌, respectively. 𝜌𝜌 de-

notes Pearson’s ordinary correlation coefficient defined in Eq. (5.2) and 𝑠𝑠𝑟𝑟𝑚𝑚 denotes the 

signum function defined as: 

𝑠𝑠𝑚𝑚𝑟𝑟𝑚𝑚(𝑥𝑥) = �
   1    𝑥𝑥 > 0
   0   𝑥𝑥 = 0
−1  𝑥𝑥 < 0

 (5.20) 

Eq. (5.19) indicates that Blomqvist’s medial correlation coefficient between the two vari-

ables 𝑋𝑋𝑗𝑗 and 𝑌𝑌 is equivalent to Pearson’s ordinary correlation coefficient applied on the 

transformations 𝑠𝑠𝑟𝑟𝑚𝑚(𝑋𝑋𝑗𝑗 −𝑀𝑀𝑋𝑋𝑗𝑗) and 𝑠𝑠𝑟𝑟𝑚𝑚(𝑌𝑌 −𝑀𝑀𝑌𝑌). 



100 

Blomqvist’s medial correlation coefficient 𝐶𝐶𝐶𝐶𝐵𝐵(𝑋𝑋𝑗𝑗,𝑌𝑌) has the following well-known prop-

erties: 

− −1 ≤ 𝐶𝐶𝐶𝐶𝐵𝐵(𝑋𝑋𝑗𝑗,𝑌𝑌) ≤ 1  

− 𝑋𝑋𝑗𝑗 and 𝑌𝑌 are independent → 𝐶𝐶𝐶𝐶𝐵𝐵�𝑋𝑋𝑗𝑗,𝑌𝑌� = 0  

− 𝐶𝐶𝐶𝐶𝐵𝐵(𝑋𝑋𝑗𝑗,𝑌𝑌) provides the difference between the probabilities of concordance and 

discordance of 𝑋𝑋𝑗𝑗 and 𝑌𝑌 relative to the corresponding medians 𝑀𝑀𝑋𝑋𝑗𝑗 and 𝑀𝑀𝑌𝑌 (Fig. 

2.19) 

− �𝐶𝐶𝐶𝐶𝐵𝐵�𝑋𝑋𝑗𝑗,𝑌𝑌�� = 1 ↔ complete concordance or complete discordance between 𝑋𝑋𝑗𝑗 

and 𝑌𝑌 relative to the corresponding medians 𝑀𝑀𝑋𝑋𝑗𝑗 and 𝑀𝑀𝑌𝑌 

− 𝐶𝐶𝐶𝐶𝐵𝐵(𝑋𝑋𝑗𝑗,𝑌𝑌) is ordinally invariant 

− 𝐶𝐶𝐶𝐶𝐵𝐵(𝑋𝑋𝑗𝑗,𝑌𝑌) is not affected by outliers 

Based on the sample (𝑦𝑦1,𝑦𝑦2 … ,𝑦𝑦𝑀𝑀) of the computational result 𝑌𝑌 and the corresponding 

sample (𝑥𝑥1𝑗𝑗, 𝑥𝑥2𝑗𝑗 … , 𝑥𝑥𝑀𝑀𝑗𝑗) of the uncertain parameter 𝑋𝑋𝑗𝑗 with 𝑗𝑗 = 1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, 𝐶𝐶𝐶𝐶𝐵𝐵(𝑋𝑋𝑗𝑗,𝑌𝑌) is 

estimated as follows 

𝐶𝐶𝐶𝐶�𝐵𝐵�𝑋𝑋𝑗𝑗,𝑌𝑌� =
1
𝑚𝑚
�𝑠𝑠𝑟𝑟𝑚𝑚(
𝑀𝑀

𝑖𝑖=1

𝑥𝑥𝑖𝑖𝑗𝑗 − 𝑚𝑚𝑥𝑥𝑗𝑗)𝑠𝑠𝑟𝑟𝑚𝑚(𝑦𝑦𝑖𝑖 − 𝑚𝑚𝑦𝑦) (5.21) 

with 𝑚𝑚𝑥𝑥𝑗𝑗 and 𝑚𝑚𝑦𝑦 representing the empirical medians (see Section 4.1) derived from 

(𝑥𝑥1𝑗𝑗, 𝑥𝑥2𝑗𝑗 … , 𝑥𝑥𝑀𝑀𝑗𝑗) and (𝑦𝑦1,𝑦𝑦2 … ,𝑦𝑦𝑀𝑀), respectively. 



101 

5.1.4 Kendall's rank correlation 

Kendall’s rank correlation coefficient 𝐶𝐶𝐶𝐶𝐾𝐾(𝑋𝑋𝑗𝑗,𝑌𝑌) between the uncertain parameter 

𝑋𝑋𝑗𝑗,  𝑗𝑗 =  1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, and the computational result 𝑌𝑌 is defined as 

𝐶𝐶𝐶𝐶𝐾𝐾�𝑋𝑋𝑗𝑗,𝑌𝑌� = 𝜌𝜌�𝑠𝑠𝑟𝑟𝑚𝑚(𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑗𝑗′), 𝑠𝑠𝑟𝑟𝑚𝑚(𝑌𝑌 − 𝑌𝑌′)� (5.22) 

where (𝑋𝑋𝑗𝑗′ ,𝑌𝑌′) is another pair of variables distributed like the pair (𝑋𝑋𝑗𝑗,𝑌𝑌). 𝜌𝜌 is defined in 

Eq. (5.2). 𝑠𝑠𝑟𝑟𝑚𝑚 denotes the signum function defined in Eq. (5.6). 

Eq. (5.22) indicates that Kendall’s medial correlation coefficient between the two varia-

bles 𝑋𝑋𝑗𝑗 and 𝑌𝑌 is equivalent to Pearson’s ordinary correlation coefficient applied on the 

the transformations 𝑠𝑠𝑟𝑟𝑚𝑚(𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑗𝑗′) and 𝑠𝑠𝑟𝑟𝑚𝑚(𝑌𝑌 − 𝑌𝑌′). 

Kendall’s rank correlation coefficient 𝐶𝐶𝐶𝐶𝐾𝐾(𝑋𝑋𝑗𝑗,𝑌𝑌) has the following well-known properties: 

− −1 ≤ 𝐶𝐶𝐶𝐶𝐾𝐾(𝑋𝑋𝑗𝑗,𝑌𝑌) ≤ 1  

− 𝑋𝑋𝑗𝑗 and 𝑌𝑌 are independent → 𝐶𝐶𝐶𝐶𝐾𝐾�𝑋𝑋𝑗𝑗,𝑌𝑌� = 0  

− 𝐶𝐶𝐶𝐶𝐾𝐾(𝑋𝑋𝑗𝑗,𝑌𝑌) provides the difference between the probabilities of concordance and 

discordance of 𝑋𝑋𝑗𝑗 and 𝑌𝑌 relative to the variables 𝑋𝑋𝑗𝑗′ and 𝑌𝑌′, respectively, with the 

pair (𝑋𝑋𝑗𝑗′,𝑌𝑌′) distributed like the pair �𝑋𝑋𝑗𝑗 ,𝑌𝑌� 

− �𝐶𝐶𝐶𝐶𝐾𝐾�𝑋𝑋𝑗𝑗,𝑌𝑌�� = 1 ↔ complete concordance or complete discordance between 𝑋𝑋𝑗𝑗 

and 𝑌𝑌 relative to the variables 𝑋𝑋𝑗𝑗′ and 𝑌𝑌′ 

− 𝐶𝐶𝐶𝐶𝐾𝐾(𝑋𝑋𝑗𝑗,𝑌𝑌) is ordinally invariant 

− 𝐶𝐶𝐶𝐶𝐾𝐾(𝑋𝑋𝑗𝑗,𝑌𝑌) is not affected by outliers 
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Based on the sample (𝑦𝑦1,𝑦𝑦2 … ,𝑦𝑦𝑀𝑀) of the computational result 𝑌𝑌 and the corresponding 

sample (𝑥𝑥1𝑗𝑗, 𝑥𝑥2𝑗𝑗 … , 𝑥𝑥𝑀𝑀𝑗𝑗) of the uncertain parameter 𝑋𝑋𝑗𝑗 with 𝑗𝑗 = 1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, 𝐶𝐶𝐶𝐶𝐾𝐾(𝑋𝑋𝑗𝑗,𝑌𝑌) is 

estimated as follows 

𝐶𝐶𝐶𝐶�𝐾𝐾�𝑋𝑋𝑗𝑗,𝑌𝑌� =
1

�𝑚𝑚2�
� � 𝑠𝑠𝑟𝑟𝑚𝑚(

𝑀𝑀

𝑟𝑟=𝑖𝑖+1

𝑥𝑥𝑖𝑖𝑗𝑗 − 𝑥𝑥𝑟𝑟𝑗𝑗)𝑠𝑠𝑟𝑟𝑚𝑚(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑟𝑟)
𝑀𝑀−1

𝑖𝑖=1
 (5.23) 

5.1.5 Partial correlation coefficient, standardized regression coefficient and 
coefficient of determination relating to Spearman’s, Blomqvist’s and 
Kendall’s correlations 

The correlation coefficients of Spearman (Eq. (5.17)), Blomqvist (Eq. (5.19)) and Kendall 

(Eq. (5.22)) can be formulated as Pearson’s ordinary correlation coefficient applied on 

appropriate transformations of the considered uncertain parameter 𝑋𝑋𝑗𝑗, 𝑗𝑗 = 1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, 

and the computational result 𝑌𝑌. That means the matrix 𝐶𝐶𝐶𝐶 consisting of the population 

correlation coefficients of any of the three correlation types is equivalent to the ordinary 

population correlation matrix 𝐶𝐶𝐶𝐶𝑃𝑃 of appropriately transformed variables 𝑋𝑋𝑗𝑗 and 𝑌𝑌 

(Eq. (5.6)). Therefore, the partial correlation coefficient 𝑃𝑃𝐶𝐶𝐶𝐶(𝑋𝑋𝑗𝑗,𝑌𝑌), the standardized re-

gression coefficient 𝑆𝑆𝑅𝑅𝐶𝐶�𝑋𝑋𝑗𝑗,𝑌𝑌� and the coefficient of determination 𝑅𝑅2  relating to any of 

the three correlation types can be derived from elements of the respective inverse matrix 

𝐶𝐶𝐶𝐶−1. Eqs. (5.8), (5.11), and (5.16) give the basic formulas used to calculate 𝑃𝑃𝐶𝐶𝐶𝐶(𝑋𝑋𝑗𝑗 ,𝑌𝑌), 

𝑆𝑆𝑅𝑅𝐶𝐶�𝑋𝑋𝑗𝑗,𝑌𝑌� and 𝑅𝑅2 . Of course, the expressions in the equations which refer to Pearson’s 

population correlation matrix must be appropriately replaced by the corresponding ex-

pressions referring either to Spearman’s, Blomqvist’s or to Kendall’s population correla-

tion matrix. 

𝑃𝑃𝐶𝐶𝐶𝐶(𝑋𝑋𝑗𝑗 ,𝑌𝑌) and 𝑆𝑆𝑅𝑅𝐶𝐶�𝑋𝑋𝑗𝑗,𝑌𝑌� with respect to Spearman’s, Blomqvist’s or Kendall’s correla-

tion are ordinally invariant. 

The estimators 𝑃𝑃𝐶𝐶𝐶𝐶�(𝑋𝑋𝑗𝑗,𝑌𝑌), 𝑆𝑆𝑅𝑅𝐶𝐶� �𝑋𝑋𝑗𝑗,𝑌𝑌� and 𝑅𝑅�2  relating to any of the correlation types are 

derived from the inverse of the respective sample correlation matrix. Dependent on the 

correlation type, this sample correlation matrix includes the corresponding estimators of 

the (population) correlation coefficients (Eqs. (5.18), (5.21), and (5.23)).  
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To be able to calculate 𝑃𝑃𝐶𝐶𝐶𝐶�(𝑋𝑋𝑗𝑗,𝑌𝑌), 𝑆𝑆𝑅𝑅𝐶𝐶� �𝑋𝑋𝑗𝑗,𝑌𝑌� and 𝑅𝑅�2  for any of the correlation types, 

the sample size 𝑚𝑚 must exceed 𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟 + 1. Otherwise, the sample correlation matrix is not 

positive definite and, therefore, its inverse cannot be derived. 

5.2 Multiple correlation coefficients 

5.2.1 Pearson’s multiple correlation 

The multiple correlation coefficient 𝑅𝑅𝑃𝑃2(𝑋𝑋(𝐺𝐺),𝑌𝑌) between the group 𝑋𝑋(𝐺𝐺) of 𝑚𝑚𝐺𝐺 uncertain 

parameters - without loss of generality 𝑋𝑋(𝐺𝐺) = 𝑋𝑋1,𝑋𝑋2 … ,𝑋𝑋𝑀𝑀𝐺𝐺- and the computational result 

𝑌𝑌 is defined as 

𝑅𝑅𝑃𝑃2(𝑋𝑋(𝐺𝐺),𝑌𝑌) = (𝜌𝜌(𝑋𝑋1,𝑌𝑌), … ,𝜌𝜌�𝑋𝑋𝑀𝑀𝐺𝐺 ,𝑌𝑌� ∙ 𝐶𝐶𝐶𝐶𝑃𝑃𝑋𝑋𝑛𝑛𝐺𝐺
−1 ∙ �

𝜌𝜌(𝑋𝑋1,𝑌𝑌)
⋮

𝜌𝜌�𝑋𝑋𝑀𝑀𝐺𝐺 ,𝑌𝑌�
� (5.24) 

where 𝜌𝜌 denotes Pearson’s ordinary correlation coefficient (Eq. (5.1)) and 𝐶𝐶𝐶𝐶𝑃𝑃𝑋𝑋𝑛𝑛𝐺𝐺
−1  de-

notes the inverse of the ordinary 𝑚𝑚𝐺𝐺 × 𝑚𝑚𝐺𝐺 correlation matrix of the parameters 

𝑋𝑋1,𝑋𝑋2 … ,𝑋𝑋𝑀𝑀𝐺𝐺 of the group 𝑋𝑋(𝐺𝐺). 

𝑅𝑅𝑃𝑃2(𝑋𝑋(𝐺𝐺),𝑌𝑌) has the following well-known properties: 

− 0 ≤ 𝑅𝑅𝑃𝑃2(𝑋𝑋(𝐺𝐺),𝑌𝑌) ≤ 1  

− Each parameter 𝑋𝑋𝑗𝑗, 𝑗𝑗 = 1, … ,𝑚𝑚𝐺𝐺 , of the group 𝑋𝑋(𝐺𝐺) and 𝑌𝑌 are independent →

𝑅𝑅𝑃𝑃2(𝑋𝑋(𝐺𝐺),𝑌𝑌) = 0  

− 𝑅𝑅𝑃𝑃2(𝑋𝑋(𝐺𝐺),𝑌𝑌) = 1 ↔ complete linear dependency of 𝑌𝑌 from 𝑋𝑋(𝐺𝐺) = 𝑋𝑋1,𝑋𝑋2 … ,𝑋𝑋𝑀𝑀𝐺𝐺 

− 𝐶𝐶𝐶𝐶𝑃𝑃(𝑋𝑋𝑗𝑗,𝑌𝑌) measures the degree of multiple linear dependency between 𝑌𝑌 and the 

parameters of the group 𝑋𝑋(𝐺𝐺). 

− If the parameter group 𝑋𝑋(𝐺𝐺) includes all parameters 𝑋𝑋1,𝑋𝑋2 … ,𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟, then the multi-

ple correlation coefficient 𝑅𝑅𝑃𝑃2(𝑋𝑋(𝐺𝐺),𝑌𝑌) corresponds to the coefficient of determina-

tion 𝑅𝑅𝑃𝑃2 (Section 5.1.1.4), i.e. 𝑋𝑋(𝐺𝐺) = 𝑋𝑋1,𝑋𝑋2 … ,𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟 → 𝑅𝑅𝑃𝑃2(𝑋𝑋(𝐺𝐺),𝑌𝑌) = 𝑅𝑅𝑃𝑃2. 
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The estimator 𝑅𝑅�𝑃𝑃2(𝑋𝑋(𝐺𝐺),𝑌𝑌) of the multiple correlation coefficient between the group 𝑋𝑋(𝐺𝐺) 

of uncertain parameters and the computational result 𝑌𝑌 is obtained by considering in 

Eq. (5.24) 

− the sample correlation coefficients 𝐶𝐶𝐶𝐶�𝑃𝑃(𝑋𝑋1,𝑌𝑌), … ,𝐶𝐶𝐶𝐶�𝑃𝑃�𝑋𝑋𝑀𝑀𝐺𝐺 ,𝑌𝑌� according to Pearson 

(Eq. (5.2)) instead of Pearson’s ordinary correlation coefficients 

𝜌𝜌(𝑋𝑋1,𝑌𝑌), … ,𝜌𝜌�𝑋𝑋𝑀𝑀𝐺𝐺 ,𝑌𝑌�  

− the inverse of Pearson’s 𝑚𝑚𝐺𝐺 × 𝑚𝑚𝐺𝐺 sample correlation matrix of the parameters 

𝑋𝑋1,𝑋𝑋2 … ,𝑋𝑋𝑀𝑀𝐺𝐺 of the group 𝑋𝑋(𝐺𝐺) instead of the inverse of Pearson’s correlation matrix 

𝐶𝐶𝐶𝐶𝑃𝑃𝑋𝑋𝑛𝑛𝐺𝐺
−1  

To be able to calculate 𝑅𝑅�𝑃𝑃2(𝑋𝑋(𝐺𝐺),𝑌𝑌), the sample size 𝑚𝑚 must exceed the number 𝑚𝑚𝐺𝐺 of 

parameters of the group 𝑋𝑋(𝐺𝐺). Otherwise, the 𝑚𝑚𝐺𝐺 × 𝑚𝑚𝐺𝐺 sample correlation matrix is not 

positive definite and, therefore, its inverse cannot be derived. 

5.2.2 Spearman’s, Blomqvist’s and Kendall’s multiple correlations 

The correlation coefficients of Spearman (Eq. (5.17)), Blomqvist (Eq. (5.19)) and Kendall 

(Eq. (5.22)) can be formulated as Pearson’s ordinary correlation coefficient applied on 

appropriate transformations of the considered uncertain parameters 𝑋𝑋𝑗𝑗 and the compu-

tational result 𝑌𝑌. So, the formula of the multiple correlation coefficient 𝑅𝑅2 (𝑋𝑋(𝐺𝐺),𝑌𝑌) ac-

cording to any of the three correlation types is obtained, if in Eq. (5.24) Pearson’s ordi-

nary correlation coefficient is applied on the appropriately transformed variables. Also 

the 𝑚𝑚𝐺𝐺 × 𝑚𝑚𝐺𝐺 correlation matrix in Eq. (5.24) must be applied on the respective transfor-

mations of the parameters of the group 𝑋𝑋(𝐺𝐺). 

The estimator 𝑅𝑅�2 (𝑋𝑋(𝐺𝐺),𝑌𝑌) relating to any of the three correlation types is derived by 

considering in Eq. (5.24) 

− the sample correlation coefficients 𝐶𝐶𝐶𝐶� (𝑋𝑋1,𝑌𝑌), … ,𝐶𝐶𝐶𝐶��𝑋𝑋𝑀𝑀𝐺𝐺 ,𝑌𝑌� according to Spearman, 

Blomqvist or Kendall (Eqs. (5.18), (5.21), or (5.23)) instead of Pearson’s ordinary 

correlation coefficients 𝜌𝜌(𝑋𝑋1,𝑌𝑌), … ,𝜌𝜌�𝑋𝑋𝑀𝑀𝐺𝐺 ,𝑌𝑌�  

− the inverse of the 𝑚𝑚𝐺𝐺 × 𝑚𝑚𝐺𝐺 sample correlation matrix (according to Spearman, 

Blomqvist or Kendall) of the parameters of the group 𝑋𝑋(𝐺𝐺) instead of the inverse of 

Pearson’s correlation matrix 𝐶𝐶𝐶𝐶𝑃𝑃𝑋𝑋𝑛𝑛𝐺𝐺
−1 .  
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To be able to calculate 𝑅𝑅�2 (𝑋𝑋(𝐺𝐺),𝑌𝑌) for any of the correlation types, the sample size 𝑚𝑚 

must exceed 𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟 + 1. 

5.3 Correlation ratio 

The correlation ratio 𝐶𝐶𝑅𝑅(𝑋𝑋𝑗𝑗,𝑌𝑌) between uncertain parameter 𝑋𝑋𝑗𝑗, 𝑗𝑗 = 1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, and the 

computational result 𝑌𝑌 is defined as 

𝐶𝐶𝑅𝑅�𝑋𝑋𝑗𝑗,𝑌𝑌� = �𝑉𝑉𝑎𝑎𝑟𝑟 �𝐸𝐸�𝑌𝑌�𝑋𝑋𝑗𝑗��
𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌)   (5.25) 

with 𝑉𝑉𝑎𝑎𝑟𝑟( ) denoting the variance of a variable and 𝐸𝐸�𝑌𝑌�𝑋𝑋𝑗𝑗� denoting the conditional 

expectation of 𝑌𝑌 conditioned on 𝑋𝑋𝑗𝑗. 

𝐶𝐶𝑅𝑅(𝑋𝑋𝑗𝑗,𝑌𝑌) is based on the following well-known variance decomposition /MCK 96/: 

𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌) = 𝐸𝐸 �𝑉𝑉𝑎𝑎𝑟𝑟�𝑌𝑌�𝑋𝑋𝑗𝑗�� + 𝑉𝑉𝑎𝑎𝑟𝑟 �𝐸𝐸�𝑌𝑌�𝑋𝑋𝑗𝑗�� (5.26) 

where 𝐸𝐸( ) and 𝑉𝑉𝑎𝑎𝑟𝑟( ) denote the expectation and variance of a variable; 𝐸𝐸�𝑌𝑌�𝑋𝑋𝑗𝑗� and 

𝑉𝑉𝑎𝑎𝑟𝑟�𝑌𝑌�𝑋𝑋𝑗𝑗� are the conditional expectation and variance of 𝑌𝑌 conditioned on 𝑋𝑋𝑗𝑗. 

Since  

𝐶𝐶𝑅𝑅2�𝑋𝑋𝑗𝑗,𝑌𝑌� =
𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌) − 𝐸𝐸 �𝑉𝑉𝑎𝑎𝑟𝑟�𝑌𝑌�𝑋𝑋𝑗𝑗��

𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌)
 (5.27) 

𝐶𝐶𝑅𝑅(𝑋𝑋𝑗𝑗,𝑌𝑌) is an indicator of the expected reduction in the variance of 𝑌𝑌, if 𝑋𝑋𝑗𝑗 could be 

fixed. 
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It can be shown that 

𝐶𝐶𝑅𝑅�𝑋𝑋𝑗𝑗,𝑌𝑌� = 𝜌𝜌�𝑌𝑌,𝐸𝐸(𝑌𝑌|𝑋𝑋𝑗𝑗)� (5.28) 

That means 𝐶𝐶𝑅𝑅(𝑋𝑋𝑗𝑗 ,𝑌𝑌) is equivalent to Pearson’s ordinary correlation coefficient between 

𝑌𝑌 and its conditional expectation 𝐸𝐸(𝑌𝑌|𝑋𝑋𝑗𝑗) conditioned on 𝑋𝑋𝑗𝑗. 

𝐶𝐶𝑅𝑅(𝑋𝑋𝑗𝑗,𝑌𝑌) has the following properties: 

− 0 ≤ 𝐶𝐶𝑅𝑅(𝑋𝑋𝑗𝑗,𝑌𝑌) ≤ 1  

− 𝑋𝑋𝑗𝑗 and 𝑌𝑌 are independent → 𝐶𝐶𝑅𝑅(𝑋𝑋𝑗𝑗 ,𝑌𝑌) = 0  

− 𝐶𝐶𝑅𝑅�𝑋𝑋𝑗𝑗 ,𝑌𝑌� = 1 ↔  𝑌𝑌 is a function of 𝑋𝑋𝑗𝑗 

 

Fig. 5.4 Correlation ratios as sensitivity indices of a scalar computational result 

(Peak Cladding Temperature) with respect to 56 uncertain input parame-

ters 
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Following procedure is applied to estimate 𝐶𝐶𝑅𝑅(𝑋𝑋𝑗𝑗 ,𝑌𝑌) from the sample (𝑦𝑦1,𝑦𝑦2 … ,𝑦𝑦𝑀𝑀) of the 

computational result 𝑌𝑌 and the sample (𝑥𝑥1𝑗𝑗, 𝑥𝑥2𝑗𝑗 … , 𝑥𝑥𝑀𝑀𝑗𝑗) of the uncertain parameter 

𝑋𝑋𝑗𝑗; 𝑗𝑗 =  1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟 /KEN 73/: 

− The sample (𝑥𝑥1𝑗𝑗, 𝑥𝑥2𝑗𝑗 … , 𝑥𝑥𝑀𝑀𝑗𝑗) is ordered by increasing size. 

− The range of the ordered sample (𝑥𝑥1:𝑀𝑀 𝑗𝑗, 𝑥𝑥2:𝑀𝑀 𝑗𝑗 … , 𝑥𝑥𝑀𝑀:𝑀𝑀 𝑗𝑗) is divided into 𝑚𝑚𝑋𝑋 = �√𝑚𝑚� 

subsets where each subset 𝑇𝑇𝑟𝑟,𝑘𝑘 = 1, …, 𝑚𝑚𝑋𝑋, consists of at least 𝑚𝑚𝑟𝑟 = 𝑚𝑚𝑋𝑋 successive 

values of 𝑋𝑋𝑗𝑗 (�√𝑚𝑚� means the greatest integer smaller than or equal to √𝑚𝑚). 

− The mean 𝑦𝑦�  of all 𝑦𝑦-values and the means 𝑦𝑦�1,𝑦𝑦�2, … ,𝑦𝑦�𝑀𝑀𝑋𝑋  of the 𝑦𝑦-values corre-

sponding to the 𝑥𝑥𝑗𝑗-values of the subsets 𝑇𝑇1, 𝑇𝑇2, … , 𝑇𝑇𝑀𝑀𝑋𝑋, respectively, are calculated. 

− The estimator of the correlation ratio 𝐶𝐶𝑅𝑅�𝑋𝑋𝑗𝑗 ,𝑌𝑌� is determined as 

𝐶𝐶𝑅𝑅��𝑋𝑋𝑗𝑗,𝑌𝑌� = �
∑ 𝑚𝑚𝑟𝑟 ∙ (𝑦𝑦�𝑟𝑟 − 𝑦𝑦�)2𝑀𝑀𝑋𝑋
𝑟𝑟=1

∑ ∑ (𝑦𝑦𝑟𝑟𝑙𝑙 − 𝑦𝑦�)2𝑀𝑀𝑘𝑘
𝑙𝑙=1

𝑀𝑀𝑋𝑋
𝑟𝑟=1

   (5.29) 

𝐶𝐶𝑅𝑅��𝑋𝑋𝑗𝑗,𝑌𝑌� can be determined, even if the number of parameters exceeds the sam-

ple size. 

5.3.1 Correlation ratio on ranks 

Instead on the original variables 𝑋𝑋𝑗𝑗 , 𝑗𝑗 = 1, … , 𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, and 𝑌𝑌, the correlation ratio on ranks 

𝐶𝐶𝑅𝑅𝑅𝑅(𝑋𝑋𝑗𝑗,𝑌𝑌) is applied on the corresponding distribution functions 𝐹𝐹𝑋𝑋𝑗𝑗 and 𝐹𝐹𝑌𝑌, i.e.: 

𝐶𝐶𝑅𝑅𝑅𝑅(𝑋𝑋𝑗𝑗,𝑌𝑌) = �
𝑉𝑉𝑎𝑎𝑟𝑟 �𝐸𝐸 �𝐹𝐹𝑌𝑌�𝐹𝐹𝑋𝑋𝑗𝑗��

𝑉𝑉𝑎𝑎𝑟𝑟 �𝐹𝐹𝑋𝑋𝑗𝑗�
  (5.30) 

Following procedure is applied to estimate 𝐶𝐶𝑅𝑅𝑅𝑅(𝑋𝑋𝑗𝑗,𝑌𝑌) from the sample (𝑦𝑦1,𝑦𝑦2 … ,𝑦𝑦𝑀𝑀) of 

the computational result 𝑌𝑌 and the sample (𝑥𝑥1𝑗𝑗, 𝑥𝑥2𝑗𝑗 … , 𝑥𝑥𝑀𝑀𝑗𝑗) of the uncertain parameter 𝑋𝑋𝑗𝑗; 

𝑗𝑗 = 1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟: 

− The sample (𝑥𝑥1𝑗𝑗, 𝑥𝑥2𝑗𝑗 … , 𝑥𝑥𝑀𝑀𝑗𝑗) is ordered by increasing size. 
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− The range of the ordered sample (𝑥𝑥1:𝑀𝑀 𝑗𝑗, 𝑥𝑥2:𝑀𝑀 𝑗𝑗 … , 𝑥𝑥𝑀𝑀:𝑀𝑀 𝑗𝑗) is divided into 𝑚𝑚𝑋𝑋 = �√𝑚𝑚� 

subsets where each subset 𝑇𝑇𝑟𝑟,𝑘𝑘 = 1, …, 𝑚𝑚𝑋𝑋, consists of 𝑚𝑚𝑟𝑟 successive values of 𝑋𝑋𝑗𝑗  

− The ranks of the 𝑦𝑦-values corresponding to the ordered sample 

(𝑥𝑥1:𝑀𝑀 𝑗𝑗, 𝑥𝑥2:𝑀𝑀 𝑗𝑗 … , 𝑥𝑥𝑀𝑀:𝑀𝑀 𝑗𝑗) are determined and appropriately assigned to the subsets 

𝑇𝑇1, 𝑇𝑇2, … , 𝑇𝑇𝑀𝑀𝑋𝑋. For instance, 𝑟𝑟𝑟𝑟𝑙𝑙(𝑦𝑦) is the rank of the 𝑦𝑦-value corresponding to the 𝑙𝑙𝑡𝑡ℎ 

largest 𝑥𝑥𝑗𝑗-value in subset 𝑇𝑇𝑟𝑟. 

− The mean rank �̅�𝑟 = 𝑀𝑀(𝑀𝑀+1)
2

 and the mean ranks �̅�𝑟1(𝑦𝑦), �̅�𝑟2(𝑦𝑦), … , �̅�𝑟𝑀𝑀𝑋𝑋(𝑦𝑦) of the 𝑦𝑦-values 

corresponding to the 𝑥𝑥𝑗𝑗-values in the subsets 𝑇𝑇1, 𝑇𝑇2, … , 𝑇𝑇𝑀𝑀𝑋𝑋, respectively, are calcu-

lated. 

− The estimator of the correlation ratio 𝐶𝐶𝑅𝑅𝑅𝑅�𝑋𝑋𝑗𝑗,𝑌𝑌� is determined as 

𝐶𝐶𝑅𝑅�𝑅𝑅�𝑋𝑋𝑗𝑗,𝑌𝑌� = �
∑ 𝑚𝑚𝑟𝑟 ∙ (�̅�𝑟𝑟𝑟(𝑦𝑦) − �̅�𝑟)2𝑀𝑀𝑋𝑋
𝑟𝑟=1

∑ ∑ (𝑟𝑟𝑟𝑟𝑙𝑙(𝑦𝑦) − �̅�𝑟)2𝑀𝑀𝑘𝑘
𝑙𝑙=1

𝑀𝑀𝑋𝑋
𝑟𝑟=1

   (5.31) 

 

Fig. 5.5 Correlation ratios on ranks as sensitivity indices of a time-dependent com-

putational result (Cladding Temperature) with respect to 56 uncertain pa-

rameters 
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5.4 Sobol indices 

A well-known approach to calculate sensitivity indices offers the framework of the Sobol 

indices (SI) as variance-based sensitivity measures /SOB 99/. The SIs describe the sen-

sitivity patterns of a model via the full decomposition of the variance of the model re-

sponse into terms depending on the model input parameters and their interactions. 

Given the model 𝑌𝑌 = 𝑓𝑓�𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟� with the uncertain input parameters 𝑋𝑋1, … ,𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟, 

it can be shown that the variance 𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌) of the response 𝑌𝑌 can be decomposed as 

indicated in Eq. (5.26). The functional decomposition is based on the ANOVA framework 

and given in condensed form in e.g. /SAL 10/.  

Sobol’s first order sensitivity index or uncertainty importance measure with respect to 

parameter 𝑋𝑋𝑗𝑗 is defined as 

𝑆𝑆𝑗𝑗 =
𝑉𝑉𝑎𝑎𝑟𝑟 �𝐸𝐸�𝑌𝑌�𝑋𝑋𝑗𝑗��

𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌) =
𝑆𝑆𝑗𝑗
𝑆𝑆

 (5.32) 

with the conditional expectation 𝐸𝐸�𝑌𝑌�𝑋𝑋𝑗𝑗� of 𝑌𝑌 conditioned on 𝑋𝑋𝑗𝑗, the partial variance 𝑆𝑆𝑗𝑗 

and the total variance 𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌) = 𝑆𝑆. 𝑉𝑉𝑎𝑎𝑟𝑟 �𝐸𝐸�𝑌𝑌�𝑋𝑋𝑗𝑗�� can be interpreted as the expected 

reduction in the variance 𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌), if 𝑋𝑋𝑗𝑗 could be fixed. 

The square root of Sobol’s first order sensitivity index is equivalent to the correlation ratio 

defined in Section 5.3. 

𝑆𝑆𝑗𝑗 has the following properties: 

− 0 ≤ 𝑆𝑆𝑗𝑗 ≤ 1 

− A high 𝑆𝑆𝑗𝑗 value indicates that parameter 𝑋𝑋𝑗𝑗 strongly influences the variance 𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌). 

Sobol’s total sensitivity index (or total effect index) with respect to parameter 𝑋𝑋𝑗𝑗 is defined 

as 
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𝑆𝑆𝑇𝑇𝑗𝑗 =
𝐸𝐸 �𝑉𝑉𝑎𝑎𝑟𝑟�𝑌𝑌�𝑋𝑋~𝑗𝑗��

𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌)  

        = 1 −
𝑉𝑉𝑎𝑎𝑟𝑟 �𝐸𝐸�𝑌𝑌�𝑋𝑋~𝑗𝑗��

𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌)  

        = 𝑆𝑆𝑗𝑗 + � 𝑆𝑆𝑗𝑗𝑟𝑟
1≤𝑗𝑗<𝑟𝑟≤𝑝𝑝

=
𝑆𝑆𝑗𝑗
𝑆𝑆

+ �
𝑆𝑆𝑗𝑗𝑟𝑟
𝑆𝑆

1≤𝑗𝑗<𝑟𝑟≤𝑝𝑝

 

(5.33) 

with 𝑋𝑋~𝑗𝑗 denoting all parameters but parameter 𝑋𝑋𝑗𝑗. 𝐸𝐸 �𝑉𝑉𝑎𝑎𝑟𝑟�𝑌𝑌�𝑋𝑋~𝑗𝑗�� can be interpreted as 

the expected remaining variance, if all parameters but parameter 𝑋𝑋𝑗𝑗 could be fixed. 

𝑆𝑆𝑇𝑇𝑗𝑗 quantifies the total effect of parameter 𝑋𝑋𝑗𝑗 on the variance 𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌). 

The computation of Sobol’s first order sensitivity index 𝑆𝑆𝑗𝑗 requires the analytical or nu-

merical approximation of 𝑉𝑉𝑎𝑎𝑟𝑟 �𝐸𝐸�𝑌𝑌�𝑋𝑋𝑗𝑗��. The implemented algorithm introduced in 

/SAL 02/ and based on the original approach of /SOB 99/, may basically be described 

via the following steps: 

• Create a 2𝑚𝑚 × 𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟 sample matrix and define two sample (reference) matrices 𝐴𝐴,𝐵𝐵, 

and a (composite) matrix 𝐶𝐶𝑗𝑗, 𝑗𝑗 = 1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, based on reference matrix 𝐵𝐵: 

𝐴𝐴 = �
𝑥𝑥1

(1) ⋯ 𝑥𝑥𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟
(1)

⋮ ⋮
𝑥𝑥1

(𝑀𝑀) ⋯ 𝑥𝑥𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟
(𝑀𝑀)

�    𝐵𝐵 = �
𝑥𝑥1

(𝑀𝑀+1) ⋯ 𝑥𝑥𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟
(𝑀𝑀+1)

⋮ ⋮
𝑥𝑥1

(2𝑀𝑀) ⋯ 𝑥𝑥𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟
(2𝑀𝑀)

� 

𝐶𝐶𝑗𝑗 = 𝐵𝐵𝐴𝐴
(𝑗𝑗) =  �

𝑥𝑥1
(𝑀𝑀+1)

⋮
𝑥𝑥1

(2𝑀𝑀)

⋯

⋯
 
𝑥𝑥𝑗𝑗

(1)

⋮
𝑥𝑥𝑗𝑗

(𝑀𝑀)

⋯

⋯

𝑥𝑥𝑟𝑟
(𝑀𝑀+1)

⋮
𝑥𝑥𝑟𝑟

(2𝑀𝑀)
� 

(5.34) 

The matrix 𝐶𝐶𝑗𝑗 is identical to the matrix 𝐵𝐵 with the exception that the 𝑗𝑗𝑡𝑡ℎ column in-

cluding the values sampled for parameter 𝑋𝑋𝑗𝑗 is taken from matrix 𝐴𝐴. Note, the formu-

lation of the matrix triplet should be consistent, but can be arbitrarily chosen (i.e. 

𝐶𝐶𝑗𝑗: = 𝐴𝐴(𝑗𝑗)
𝐵𝐵 ) in case pure Monte Carlo samples are employed. 
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• Compute the 𝑚𝑚 model responses �⃗�𝑦𝐴𝐴 = 𝑓𝑓(𝐴𝐴), �⃗�𝑦𝐵𝐵 =  𝑓𝑓(𝐵𝐵) and �⃗�𝑦𝐼𝐼𝑗𝑗 = 𝑓𝑓�𝐶𝐶𝑗𝑗� by evaluat-

ing the model at the input values from 𝐴𝐴,𝐵𝐵, and 𝐶𝐶𝑗𝑗, 𝑗𝑗 = 1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟. These computa-

tions require a total of 𝑚𝑚(𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟 + 2) simulation runs. 

• Calculate the estimates for all terms of 𝑆𝑆𝑗𝑗 and 𝑆𝑆𝑇𝑇𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟 (with ∑: =� )𝑀𝑀
𝑖𝑖=1 : 

− Sobol’s first order sensitivity index: 

�̂�𝑆𝑗𝑗 =
1
𝑚𝑚∑𝑦𝑦𝐴𝐴,𝑖𝑖 ∙ 𝑦𝑦𝐼𝐼𝑗𝑗,𝑖𝑖 −

1
𝑚𝑚∑𝑦𝑦𝐴𝐴,𝑖𝑖 ∙

1
𝑚𝑚∑𝑦𝑦𝐵𝐵,𝑖𝑖

1
𝑚𝑚∑𝑦𝑦𝐴𝐴,𝑖𝑖 ∙ 𝑦𝑦𝐴𝐴,𝑖𝑖 −

1
𝑚𝑚∑𝑦𝑦𝐴𝐴,𝑖𝑖 ∙

1
𝑚𝑚∑𝑦𝑦𝐵𝐵,𝑖𝑖

 (5.35) 

− Sobol’s total sensitivity index (or total effect index): 

�̂�𝑆𝑇𝑇𝑗𝑗 = 1 −
1
𝑚𝑚∑𝑦𝑦𝐵𝐵,𝑖𝑖 ∙ 𝑦𝑦𝐼𝐼𝑗𝑗,𝑖𝑖 −

1
𝑚𝑚∑𝑦𝑦𝐴𝐴,𝑖𝑖 ∙

1
𝑚𝑚∑𝑦𝑦𝐵𝐵,𝑖𝑖

1
𝑚𝑚∑𝑦𝑦𝐴𝐴,𝑖𝑖 ∙ 𝑦𝑦𝐴𝐴,𝑖𝑖 −

1
𝑚𝑚∑𝑦𝑦𝐴𝐴,𝑖𝑖 ∙

1
𝑚𝑚∑𝑦𝑦𝐵𝐵,𝑖𝑖

 (5.36) 

Alternative estimates are based on Jansen’s proposal /JAN 99/: 

�̂�𝑆𝑗𝑗 = 1 −
1

2𝑚𝑚∑(𝑦𝑦𝐴𝐴,𝑖𝑖 − 𝑦𝑦𝐼𝐼𝑗𝑗,𝑖𝑖)2

1
𝑚𝑚∑𝑦𝑦𝐴𝐴,𝑖𝑖 ∙ 𝑦𝑦𝐴𝐴,𝑖𝑖 −

1
𝑚𝑚∑𝑦𝑦𝐴𝐴,𝑖𝑖 ∙

1
𝑚𝑚∑𝑦𝑦𝐵𝐵,𝑖𝑖

 (5.37) 

− Sobol’s total sensitivity index (or total effect index): 

�̂�𝑆𝑇𝑇𝑗𝑗 =
1

2𝑚𝑚∑(𝑦𝑦𝐵𝐵,𝑖𝑖 − 𝑦𝑦𝐼𝐼𝑗𝑗,𝑖𝑖)2

1
𝑚𝑚∑𝑦𝑦𝐴𝐴,𝑖𝑖 ∙ 𝑦𝑦𝐴𝐴,𝑖𝑖 −

1
𝑚𝑚∑𝑦𝑦𝐴𝐴,𝑖𝑖 ∙

1
𝑚𝑚∑𝑦𝑦𝐵𝐵,𝑖𝑖

 (5.38) 
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5.5 Goodman/Kruskal coefficients from 2x2 contingency tables 

The Goodman/Kruskal coefficient 𝛾𝛾(𝑋𝑋𝑗𝑗 ,𝑌𝑌) /GOO 63/ is obtained as follows: 

− The ranges of the parameter 𝑋𝑋𝑗𝑗, 𝑗𝑗 = 1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, and of the computational result 𝑌𝑌 

are divided into two disjoint intervals each: 

− 𝑋𝑋𝑗𝑗: 𝑇𝑇𝑗𝑗1 = (−∞,𝑎𝑎𝑗𝑗] and 𝑇𝑇𝑗𝑗2 = (𝑎𝑎𝑗𝑗, +∞). 

− 𝑌𝑌: 𝑇𝑇𝑌𝑌1 = (−∞,𝑎𝑎𝑌𝑌] and 𝑇𝑇𝑌𝑌2 = (𝑎𝑎𝑌𝑌, +∞). 

− The following 2x2 contingency table is built, and the probabilities 𝑝𝑝11,…,𝑝𝑝22 of the 

four table cells are calculated: 

𝑋𝑋𝑗𝑗/𝑌𝑌 𝑇𝑇𝑌𝑌1 𝑇𝑇𝑌𝑌2 

𝑇𝑇𝑗𝑗1 𝑝𝑝11 𝑝𝑝12 

𝑇𝑇𝑗𝑗2 𝑝𝑝21 𝑝𝑝22 

− 𝛾𝛾(𝑋𝑋𝑗𝑗,𝑌𝑌) is calculated as 

𝛾𝛾(𝑋𝑋𝑗𝑗,𝑌𝑌)  =
𝑝𝑝11𝑝𝑝22 − 𝑝𝑝12𝑝𝑝21
𝑝𝑝11𝑝𝑝22 + 𝑝𝑝12𝑝𝑝21

  (5.39) 

The Goodman/Kruskal coefficient 𝛾𝛾(𝑋𝑋𝑗𝑗 ,𝑌𝑌) has the following properties: 

− −1 ≤ 𝛾𝛾(𝑋𝑋𝑗𝑗,𝑌𝑌) ≤ 1  

− 𝑋𝑋𝑗𝑗 and 𝑌𝑌 are independent → 𝛾𝛾(𝑋𝑋𝑗𝑗 ,𝑌𝑌) = 0  

− Monotone increasing relationship → 𝛾𝛾(𝑋𝑋𝑗𝑗,𝑌𝑌) = +1 

− Monotone decreasing relationship → 𝛾𝛾(𝑋𝑋𝑗𝑗,𝑌𝑌) = -1  
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Based on the sample (𝑦𝑦1,𝑦𝑦2 … ,𝑦𝑦𝑀𝑀) of the computational result 𝑌𝑌 and the corresponding 

sample (𝑥𝑥1𝑗𝑗, 𝑥𝑥2𝑗𝑗 … , 𝑥𝑥𝑀𝑀𝑗𝑗) of the uncertain parameter 𝑋𝑋𝑗𝑗; 𝑗𝑗 = 1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, 𝛾𝛾(𝑋𝑋𝑗𝑗 ,𝑌𝑌) is esti-

mated as 

𝛾𝛾�(𝑋𝑋𝑗𝑗,𝑌𝑌)  =
𝑚𝑚11𝑚𝑚22 − 𝑚𝑚12𝑚𝑚21

𝑚𝑚11𝑚𝑚22 + 𝑚𝑚12𝑚𝑚21
  (5.40) 

− 𝑚𝑚11= number of data pairs (𝑥𝑥𝑖𝑖𝑗𝑗, 𝑦𝑦𝑖𝑖) in the cell 𝑇𝑇𝑗𝑗1 × 𝑇𝑇𝑌𝑌1 

− 𝑚𝑚12= number of data pairs (𝑥𝑥𝑖𝑖𝑗𝑗, 𝑦𝑦𝑖𝑖) in the cell 𝑇𝑇𝑗𝑗1 × 𝑇𝑇𝑌𝑌2 

− 𝑚𝑚21= number of data pairs (𝑥𝑥𝑖𝑖𝑗𝑗, 𝑦𝑦𝑖𝑖) in the cell 𝑇𝑇𝑗𝑗2 × 𝑇𝑇𝑌𝑌1 

− 𝑚𝑚22= number of data pairs (𝑥𝑥𝑖𝑖𝑗𝑗, 𝑦𝑦𝑖𝑖) in the cell 𝑇𝑇𝑗𝑗2 × 𝑇𝑇𝑌𝑌2 

The estimator 𝛾𝛾��𝑋𝑋𝑗𝑗,𝑌𝑌�, 𝑗𝑗 = 1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, is calculated for three different 2x2 contingency 

tables. These tables are defined by the different values considered for 𝑎𝑎𝑗𝑗 and 𝑎𝑎𝑌𝑌 which 

divide the ranges of 𝑋𝑋𝑗𝑗 and 𝑌𝑌 into two disjoint intervals. In the first 2x2 contingency table, 

𝑎𝑎𝑗𝑗 and 𝑎𝑎𝑌𝑌 correspond to the lower sample quartile; in the second table, 𝑎𝑎𝑗𝑗 and 𝑎𝑎𝑌𝑌 corre-

spond to the sample median, and in the last table, 𝑎𝑎𝑗𝑗 and 𝑎𝑎𝑌𝑌 correspond to the upper 

sample quartile of the respective variable. 

5.6 Results from stepwise regression 

To identify only those uncertain parameters which contribute most significantly to the 

uncertainty of the computational result 𝑌𝑌, a forward stepwise regression may be per-

formed. The corresponding regression algorithm implemented in SUSA successively in-

serts uncertain parameters into or removes them from the regression function according 

to the results of partial F-tests with the level of significance α = 0.05. The user may con-

trol the parameter selection process by forcing parameters into the regression function 

or by excluding parameters from the analysis when the input of the sensitivity analysis is 

prepared. Parameters forced into the regression cannot be removed during the selection 

process. 

The additional forward stepwise rank regression algorithm uses, instead of the original 

values, the rank transformed values r(xj1), r(xj2),…, r(xjn) of each parameter 
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𝑋𝑋𝑗𝑗, 𝑗𝑗 =  1, … ,𝑚𝑚𝑝𝑝𝑎𝑎𝑟𝑟, and the rank transformed values r(y1), r(y2),…,r(yn) of the result 𝑌𝑌 

(see Eq. (2.67)). 

For each uncertain parameter 𝑋𝑋𝑗𝑗 identified as important via the ordinary forward stepwise 

regression, the estimators of the ordinary (Eq. (5.10)) and standardized (Eq. (5.11)) re-

gression coefficient are provided. Additionally, the estimator of the coefficient of deter-

mination 𝑅𝑅𝑃𝑃2 is calculated (Eq. (5.16). All estimators are derived from the reduced ordi-

nary correlation matrix considering only those parameters identified as most important 

(Eqs. (5.6) – (5.7)). 

If the forward stepwise rank regression algorithm is applied, the estimators of the ordi-

nary and standardized rank regression coefficient are calculated. Additionally, the esti-

mator of the coefficient of determination is calculated. All estimators are derived from the 

reduced correlation matrix with respect to Spearman (Section 5.1.5). 

For the regression model constructed by the ordinary forward stepwise regression (not 

rank!), 𝑃𝑃𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆 (predicted residual error sum of squares) statistics can be calculated to 

get information on the stability of the model. They can help to identify data points influ-

encing the model. 

The 𝑃𝑃𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆𝑟𝑟 statistics, 𝑘𝑘 = 1,…, 𝑚𝑚, is calculated as follows: 

− Based on the regression model constructed by the ordinary forward stepwise re-

gression, new regression coefficients are calculated from a reduced sample where 

the 𝑘𝑘𝑡𝑡ℎ sample element 𝑥𝑥𝑟𝑟 = (𝑥𝑥𝑟𝑟1,𝑥𝑥𝑟𝑟2, … , 𝑥𝑥𝑟𝑟 𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟)   of the npar uncertain input pa-

rameters 𝑋𝑋1,𝑋𝑋2 … ,𝑋𝑋𝑀𝑀𝑝𝑝𝑎𝑎𝑟𝑟 and the corresponding 𝑘𝑘𝑡𝑡ℎ sample element 𝑦𝑦𝑟𝑟 of the com-

putational result 𝑌𝑌 are not considered. 

− The regression function with the new regression coefficients is applied on each pa-

rameter vector 𝑥𝑥𝑖𝑖 to calculate 𝑦𝑦�𝑟𝑟𝑖𝑖, 𝑚𝑚 = 1, … ,𝑚𝑚. 

− 𝑃𝑃𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆𝑟𝑟 = ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦
∧
𝑟𝑟𝑖𝑖)2𝑖𝑖  (𝑃𝑃𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆 value of the 𝑘𝑘𝑡𝑡ℎ sample element) 

The total 𝑃𝑃𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆 statistics is calculated as 

𝑃𝑃𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆 = �𝑃𝑃𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆𝑟𝑟

𝑀𝑀

𝑟𝑟=1

  
(5.41) 
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