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ABSTRACT
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Identifying Marginal Treatment Effects in 
the Presence of Sample Selection*

This article presents identification results for the marginal treatment effect (MTE) when 

there is sample selection. We show that the MTE is partially identified for individuals who 

are always observed regardless of treatment, and derive uniformly sharp bounds on this 

parameter under three increasingly restrictive sets of assumptions. The first result imposes 

standard MTE assumptions with an unrestricted sample selection mechanism. The second 

set of conditions imposes monotonicity of the sample selection variable with respect to 

treatment, considerably shrinking the identified set. Finally, we incorporate a stochastic 

dominance assumption which tightens the lower bound for the MTE. Our analysis extends 

to discrete instruments. The results rely on a mixture reformulation of the problem where 

the mixture weights are identified, extending Lee’s (2009) trimming procedure to the MTE 

context. We propose estimators for the bounds derived and use data made available by 

Deb, Munkin, and Trivedi (2006) to empirically illustrate the usefulness of our approach. 
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1 Introduction

Many interesting applications in the treatment effects literature involve two simultaneous

identification challenges: endogenous selection into treatment and sample selection. For in-

stance, in labor economics, when a researcher wishes to evaluate the effect of a job training

program on wages, she has to consider the individuals’ decision to enroll in the training pro-

gram as well as their decision to participate in the labor market. In the health sciences, the

same identification challenges appear when analyzing the effect of a drug on well-being as the

outcome of interest — health status — is observed only for those who survive. Moreover, in

randomized control trials (RCTs), non-compliance and endogenous attrition in treated and

control groups lead to the same identification concerns. This double selection problem is also

present when analyzing the effect of attending college on wages, the effect of an educational

intervention on short- and long-term outcomes, and the effect of procedural laws on litigation

outcomes.1

In this paper, we derive novel uniformly sharp bounds on the marginal treatment effect

(MTE) for individuals who would self-select into the sample regardless of their treatment

status (MTEOO). To do so, we propose identification strategies under increasingly restrictive

sets of assumptions that extend the MTE identification to scenarios with endogenous sample

selection. Furthermore, the choice of treatment is allowed to be endogenous, and can be related

to the sample selection mechanism. To address both identification challenges described above,

we analyze a generalized sample selection model in which the realized outcome (e.g., wages)

is observed only if the individual self-selects into the sample (employment status), and the

treatment choice (training program participation) is observed for all individuals in the data

being analyzed.

The MTE and MTEOO provide important and intuitive measures of the treatment effect

1Training programs are studied by Heckman, LaLonde, and Smith (1999), Lee (2009) and Chen and Flores
(2015). The college wage premium is analyzed by Altonji (1993), Card (1999) and Carneiro, Heckman, and
Vytlacil (2011). Some education interventions are studied by Krueger andWhitmore (2001), Angrist, Bettinger,
and Kremer (2006), Angrist, Lang, and Oreopoulos (2009), Chetty et al. (2011) and Dobbie and Jr. (2015).
Medical treatments are analyzed by CASS (1984), Sexton and Hebel (1984) and U.S. Department of Health and
Human Services (2004). Litigation outcomes are discussed by Helland and Yoon (2017). RCTs with attrition
are illustrated by DeMel, McKenzie, and Woodruff (2013) and Angelucci, Karlan, and Zinman (2015).
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and its heterogeneity across the population. For example, consider a job training program.

Training influences both the likelihood of employment and wages, which are observed only for

individuals who are employed. The MTE reflects the returns to training for individuals with

different levels of the (latent) cost of attending the program. As a consequence, this parameter

sheds light on the heterogeneity of the training program’s effects, i.e., to understand who would

benefit from taking extra training. This knowledge can be used to design policies focusing on

targeting of the program, affordability and services offered. Common parameters evaluated

in the literature — such as the average treatment effect (ATE), the average treatment effect

on the treated (ATT ), the average treatment effect on the untreated (ATU), and the local

average treatment effect (LATE) — may not adequately capture this heterogeneity. For

example, they could be positive even when most people are affected adversely by a policy,

masking its effects.2 Similarly, the MTEOO reflects the training program’s effects at the

intensive margin, i.e., to the group of individuals that are more attached to the labor force,

and would be employed even if they had not attended the training program.

Our strategy to partially identify the MTEOO relies on standard assumptions regarding

selection into treatment. Those are the same conditions usually imposed for identification of

the MTE when there is no sample selection, i.e., there is an exogenous instrument excluded

from the outcome determination, treatment choice is monotone in the instrument, and the

propensity score is continuous.3 We add the requirement that the instrument is also excluded

from the sample selection mechanism. In the job training literature, a similar assumption

is frequently imposed when analyzing RCTs with imperfect compliance, as the interest fre-

quently lies on the effect on labor earnings and employment.

In this paper’s first contribution, the partial identification result for the MTEOO leaves

sample selection unrestricted, providing very general uniformly sharp bounds on that parame-

ter. Our second result tightens the bounds around theMTEOO by exploiting a “monotonicity

in selection” assumption. This condition is similar to the usual LATE monotonicity assump-

2The empirical relevance of the MTE is recently illustrated by Carneiro, Heckman, and Vytlacil (2011),
Kline and Walters (2016), Arnold, Dobbie, and Yang (2018), Cornelissen et al. (2018), Bhuller et al. (2019),
Humphries et al. (2019) and Mountjoy (2019) in different contexts.

3See Bjorklund and Moffitt (1987), Heckman and Vytlacil (1999, 2001a, 2005) and Andresen (2018) for a
detailed discussion.
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tion and requires individuals to be at least as likely to be observed in the sample if they are

treated. In the job training program example, this additional assumption imposes that the

treatment can induce workers to join the labor force, but not the opposite.

The identified set is further reduced by imposing a stochastic dominance assumption to

our third and final set of assumptions. This condition mandates that the subpopulation who

self-selects into the sample regardless of the treatment status has higher potential outcomes

if treated than the subpopulation who self-selects into the sample only when treated. Intu-

itively, workers with high attachment to the labor force (that would be employed regardless of

receiving job training), would earn higher wages after the extra training than those that would

choose to participate in the labor force only if they participated in the training program.

Identification relies on a reformulation of the potential outcomes’ conditional probabilities

as a mixture between the latent groups of individuals who are “always observed” and “observed

only when treated.” This reformulation extends to the MTE case the trimming procedure

proposed by Imai (2008), Lee (2009) and Chen and Flores (2015) in the context of identifying

the ATE and LATE. Crucially, since we are interested in the MTE, the trimming is based on

the distribution of the potential outcome conditional on unobserved individual characteristics

related to treatment receipt.

The results can be used to construct bounds for any treatment effect parameter that can

be written as a weighted average of the MTEOO. We derive new weights to obtain sharp

bounds on the ATE, the ATT, the ATU, any LATE (Imbens and Angrist, 1994) and any

policy-relevant treatment effect (PRTE, Heckman and Vytlacil, 2001b) within the always-

observed subpopulation. Differently from the weights for the case without sample selection

(Heckman and Vytlacil, 2005, Carneiro and Lee, 2009, and Carneiro, Heckman, and Vytlacil,

2011), the new weights must be integrated over the distribution of the latent heterogeneity

for the always-observed subpopulation instead of its unconditional distribution. Furthermore,

we show these weights are identified under the “monotonicity in selection” assumption if the

support of the propensity score is the full unit interval.

Moreover, we propose and discuss nonparametric and parametric estimators for the bounds
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around the MTEOO. The usefulness and feasibility of the parametric procedure is illustrated

in an empirical example using the data set organized by Deb, Munkin, and Trivedi (2006). We

find that the effect of insurance plan choice on ambulatory expenditures depends negatively

on the agents’ relative cost of choosing managed care plans over fee for service plans. This

corroborates the results found by Deb, Munkin, and Trivedi (2006), indicating that agents

endogenously self-select into managed care plans.

The main identification results are extended to the case where the researcher only has

access to multi-valued discrete instruments. In this context, we derive nonparametric sharp

bounds on a weighted average of the MTE. This result is conceptually similar to Chen and

Flores (2015), who provide an outer set for the LATE parameter when the instrument is

binary.4

This paper is organized as follows. Section 2 presents the structural model and sample

selection mechanism considered, followed by a discussion of the identifying assumptions. In

Section 3, we provide the identification results for the MTE bounds in the case of a contin-

uous instrument under each set of assumptions while Section 4 discusses general aspects of

estimation for the bounds. Section 5 illustrates an estimation procedure and the identifying

power of each set of assumptions using data made available by Deb, Munkin, and Trivedi

(2006). Section 6 presents identification results for the case of discrete instruments. Section

7 concludes. The proofs, sharp testable implications of the model, extensions to DMTE,

numerical example, proposed estimation methods’ details, Monte Carlo simulations for the

estimator’s performance, economic models illustrating our identifying assumptions, and an

alternative specification for our empirical example are presented in the appendix.

4An additional extension is presented in Appendix H, where we derive sharp bounds around a more general
object of interest: the distributional marginal treatment effect (DMTE), which captures the effect of the
treatment on the outcome’s distribution for individuals at the margin for participation. The DMTE can then
be used to derive bounds on the quantile version of the marginal treatment effect and many other parameters.
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2 Analytical Framework

Following Lee (2009), and Chen and Flores (2015), we consider the generalized sample

selection model, described in the potential outcomes framework:





Y ∗ = Y ∗
1 D + Y ∗

0 (1−D)

D = ✶ {V ≤ P (Z)}

S = S1D + S0(1−D)

Y = Y ∗S

(2.1)

where Z is a vector of observable instrumental variables (e.g., random assignment of cash

incentives for participation in a job training program) with support given by Z ⊂ R
dz , D

is the treatment status indicator (job training program enrollment). The variable Y ∗ is the

possibly censored realized outcome variable (wages) with support Y ⊂ R, while Y ∗
0 and

Y ∗
1 are the possibly censored potential outcomes when the person is untreated and treated,

respectively. Similarly, S is the realized sample selection indicator (employment status), and

S0 and S1 are potential sample selection indicators when individuals are untreated and treated.

Finally, Y is the uncensored observed outcome (labor earnings), and V represents unobserved

individual characteristics (cognitive or social costs of attending the job training program).

The researcher observes only the vector (Y,D, S, Z), while Y ∗
1 , Y

∗
0 , S1, S0 and V are latent

variables.5 This model is a generalization of that considered in Heckman and Vytlacil (1999,

2001a, 2005) to the sample selection setting.

The treatment status D is connected to the instrument Z and the unobserved charac-

teristics V through the unknown function P : Z → R. In this model, we assume that the

individual receives treatment when its idiosyncratic cost V is less than or equal to a thresh-

old P (Z). This assumption is equivalent to imposing monotonicity of the treatment in the

instrument Z (Imbens and Angrist, 1994) as shown by Vytlacil (2002). This setup is similar

5For simplicity, we drop exogenous covariates from the model. All results derived in the paper hold condi-
tionally on covariates.
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to the one proposed by Heckman and Vytlacil (2005) and leads to the definition of the MTE,

MTE(p) = E[Y ∗
1 − Y ∗

0 |V = p]

for any p ∈ [0, 1].

In the setting analyzed here, the task of learning about the MTE is further complicated

by the potential for nonrandom sample selection. As pointed out by Lee (2009), even in

the simpler case of the ATE, point identification is no longer possible even if the treatment

is randomly assigned, leading him to derive bounds for the ATE. This paper combines the

insights of these literatures to develop sharp bounds for the MTE under sample selection while

allowing for treatment to be endogenously determined.

Similarly to the compliance groups defined by Imbens and Angrist (1994), we define four

latent groups based on the potential sample selection indicators. The subpopulations are

defined as: always-observed (S0 = 1, S1 = 1), observed-only-when-treated (S0 = 0, S1 = 1),

observed-only-when-untreated (S0 = 1, S1 = 0), and never-observed (S0 = 0, S1 = 0).6 Those

subgroups are summarized in Table 1.

Table 1: Subgroups based on the sample selection status

subgroups S0 S1 Designation

OO 1 1 Always-observed
ON 1 0 Observed-only-when-untreated
NO 0 1 Observed-only-when-treated
NN 0 0 Never-observed

Following Zhang, Rubin, and Mealli (2008) and Lee (2009), we focus on the always-

observed subpopulation (S0 = 1, S1 = 1). Importantly, this subpopulation is the only group

whose censored potential outcomes are observed in both treatment arms. For the other

three subpopulations, treatment effect parameters are not point-identified or bounded in a

6Since the conditioning subpopulation is determined by post-treatment outcomes, our work is also connected
to the statistical literature known as principal stratification (Frangakis and Rubin, 2002), in which the four
latent groups would be called strata.
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non-trivial way without further parametric assumptions, since at least one of the potential

outcomes (Y ∗
0 or Y ∗

1 ) is never observed.
7 Since our focus is on a fully non-parametric identifi-

cation strategy, we do not discuss parametric identification of unconditional treatment effect

parameters or for treatment effect parameters associated with the latent groups ON , NO

and NN .

Our target parameter is the MTE function for the subpopulation who is always observed

(MTEOO : [0, 1] → R):

MTEOO (p) := E [Y ∗
1 − Y ∗

0 |V = p, S0 = 1, S1 = 1] , (2.2)

for any p ∈ [0, 1]. Note that this parameter captures the intensive margin of the treatment

effect.8 For example, when evaluating the effect of a job training program on wages, this

parameter captures the effect of the training program on the wage of a worker who is employed

regardless of her treatment status.9 In medical applications where selection is due to the death

of a patient, this parameter is the effect on health quality for the subpopulation who survives

regardless of treatment status. In the education literature where sample selection is due to

students quitting school, this parameter is the effect on test scores for the subpopulation who

does not drop out of school in any case. Moreover, the definition of the MTEOO does not

depend on the instrument being used, implying that our target parameter is policy-invariant.

This feature is an advantage in comparison with the LATEOO (Chen and Flores, 2015), which

is not policy-invariant. Although the MTEOO function shares the policy invariance property

with the usual MTE function, it has one important drawback: the definition of MTEOO

7In some applications, the potential censored outcome Y ∗
d is not even properly defined when Sd = 0 for

d ∈ {0, 1}, e.g., analyzing the impact of a medical treatment on a health quality measure where selection is
given by whether the patient is alive

8If the researcher is interested in the extensive margin of the treatment effect, captured by the MTE on
the observed outcome (E [Y1 − Y0 |V = p ]) and by the MTE on the selection indicator (E [S1 − S0 |V = p ]), she
can apply the identification strategies described by Heckman, Urzua, and Vytlacil (2006), Brinch, Mogstad,
and Wiswall (2017), Mogstad, Santos, and Torgovitsky (2018) and Andresen (2018).

9This conditional parameter is interesting for a policy maker and can offer meaningful information regarding
treatment and its targeting. For example, the effect of a training program on individuals’ wages reflects their
productivity and the overall economic welfare. If a training program only affects overall earnings by attracting
more participants to the labor market without any effect on productivity, the program’s targeting and overall
benefit to society should consider this aspect.
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conditions on a latent group (S0 = 1, S1 = 1) to simultaneously address the selection-into-

treatment and sample selection problems.

Analogously to Lee (2009), identification of MTEOO is complex because sample selection

is nonrandom and possibly impacted by the treatment. To address this issue, we consider

three sets of increasingly restrictive assumptions that allow partial identification of the target

parameter, shrinking the identified sets as the assumptions are strengthened.10

Assumptions 1-5 are sufficient to partially identify the MTEOO function.

Assumption 1 (Random Assignment). The vector of instruments Z is independent of all

latent variables, i.e., Z |= (Y ∗
0 , Y

∗
1 , S0, S1, V ).

Assumption 2 (Propensity Score is Continuous). P (z) is a nontrivial function of z and the

random variable P (Z) is absolutely continuous with support given by an interval P :=
[
p, p
]
⊆

[0, 1].11

Assumption 3 (Positive Mass). Both treatment groups and the always-observed subpopula-

tion exist, i.e., 0 < P [D = 1] < 1 and P [S0 = 1, S1 = 1|V = p] > 0 for any p ∈ P.

Assumption 4 (Finite Moments). The first population moment of the potential outcomes for

the always-observed subpopulation conditional on V is finite, i.e., E [ |Y ∗
d | |S0 = 1, S1 = 1, V = p] <

+∞ for any p ∈ P and d ∈ {0, 1}.

Assumption 5 (Uniform Distribution of V ). The unconditional distribution of V is uniform

over [0, 1], i.e., V ∼ U[0,1].

Assumption 1 is a modification of the IV independence assumption to account for sample

selection. Instead of assuming that the instrument is independent of the latent heterogeneity

and of the potential outcomes only (Heckman and Vytlacil, 2005), we also assume indepen-

dence of the potential sample selection indicators. Intuitively, we rely on changes in Z shifting

10According to Tamer (2010, p. 167), this approach to identification “characterizes the informational content
of various assumptions by providing a menu of estimates, each based on different sets of assumptions, some
of which are plausible and some of which are not.” Empirically, this approach is also illustrated by Kline and
Tartari (2016).

11The assumption that P is a interval is made for notational simplicity. All the proofs can be easily extended
to case when P is a set with a non-empty interior.
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treatment status and, hence, sample participation to identify the marginal treatment effect

bounds. Such an assumption is common in the empirical literature. A researcher interested

in analyzing the impact of a job training program on wages and employment status, usually

imposes a similar restriction on the marginal distributions of labor earnings and employment.

Assumption 2 is important for our bounding strategy of the MTE across values of the

latent variable, V . In Section 6, we relax this assumption to allow for discrete instruments,

and we show how our methodology can be used to bound the LATE, instead of the MTE.

Assumptions 3-5 are technical assumptions to ensure that the objects of interest are well-

defined and are common in the literature about MTE (Heckman, Urzua, and Vytlacil, 2006).

Assumption 3 is crucial for the identification results and requires that there are always-

observed individuals for all possible values of the unobserved heterogeneity V . This can be

restrictive in practice, ruling out the calculation of the MTE bounds for ranges of V in which

receipt of treatment determines sample participation heavily. Assumption 5 can be seen as a

normalization if one assumes that the latent variable V is absolutely continuous. Under the

same normalization, the image of the function P : Z → R is contained in the unit interval.

Assumptions 1-5 form our first set of assumptions required for partial identification of

the MTE for the always-observed individuals. Under those assumptions, the function P (z) is

identified and is equal to the propensity score P [D = 1|Z = z] (Heckman and Vytlacil, 2005,

p. 677). Indeed, P [D = 1|Z = z] = P [V ≤ P (z)|Z = z] = P [V ≤ P (z)] = P (z), where the

second equality holds under Assumption 1 and the last holds under Assumption 5. This first

set of restrictions partially identifies MTEOO, as presented in Section 3.3.

We also stress that the identified set can be substantially tightened by imposing that the

sample selection mechanism is monotone in the treatment.

Assumption 6 (Monotone Sample Selection). Treatment has a non-negative effect on the

sample selection indicator for all individuals, i.e., S1 ≥ S0.

This monotonicity assumption rules out the existence of the observed-only-when-untreated

subpopulation and is commonly used in the sample selection literature (Lee, 2009, Chen and

10



Flores, 2015).12 To obtain some intuition on the mechanisms behind this assumption, consider

the job training program example. An individual is employed when her job search skills

ϑ(D), a function of training take-up, are above a threshold US so that S = ✶ {ϑ(D) ≥ US} .

Additionally, suppose that attending the job training program does not decrease someone’s

job search skills, i.e., ϑ(1) ≥ ϑ(0), making it more likely that program’s trainees would be

observed in the data. In such a case, Assumption 6 holds. However, if attending the job

training program raises the agents’ reservation wages or if the lost labor market experience is

very costly in terms of job finding, this assumption may not hold.

Assumptions 1-6 form our second set of identification assumptions and lead to the bounds

forMTEOO that are the main result of this paper, presented in Proposition 2. This second set

of assumptions has a testable implication: the treatment positively affects sample selection,

i.e., E[S1 − S0|V = p] ≥ 0, implying

∂P [S = 1|P (Z) = p]

∂p
≥ 0 for all p ∈ P. (2.3)

In other words, the share of the population for which the outcome is observed rises with p.

We discuss further testable implications in Section 3, and formally characterize sharp testable

implications arising from those assumptions in Appendix B. In the job training example, this

testable implication means that the likelihood of employment increases with the probability

of attending the training program.

We can further shrink the identified set around the MTEOO, by adding Assumption 7

and completing the third set of identifying assumptions.

Assumption 7 (Stochastic Dominance). The distribution of the potential outcome when

treated for the always-observed subpopulation first-order stochastically dominates the distribu-

12As in Lee (2009), this assumption can be stated as S1 ≥ S0 with probability 1. For the sake of simplicity, we
assume it to hold for all individuals. Manski (1997) and Manski and Pepper (2000) refer to this assumption as
the “monotone treatment response” assumption. All results can be stated with some straightforward changes
if the inequality in Assumption 6 holds in the opposite direction.
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tion of the same random variable for the observed-only-when-treated subpopulation, i.e.,

P [Y ∗
1 ≤ y|V = p, S0 = 1, S1 = 1] ≤ P [Y ∗

1 ≤ y|V = p, S0 = 0, S1 = 1]

for any y ∈ Y and any p ∈ P.

This dominance assumption imposes that the always-observed subpopulation has higher

potential censored outcomes than the observed-only-when-treated group conditional on V .

This type of assumption is common in the literature (Imai, 2008, Blanco, Flores, and Flores-

Lagunes, 2013, Huber and Mellace, 2015, and Huber, Laffers, and Mellace, 2017) and is

intuitively based on the argument that some population sub-groups have more favorable

underlying characteristics than others.13 Naturally, the plausibility of Assumption 7 depends

on the empirical context. In some cases this stochastic dominance assumption could be hard to

interpret and motivate empirically. However, this challenge can be confronted constructively

in a layered policy analysis (Manski, 2011), since we can offer a menu of estimates based on

different assumptions, allowing the researcher to understand the continuum of information

that we can gather about a specific economic parameter, as advocated by Tamer (2010). In

Appendix D, we provide a simple economic model related to our job training example to

illustrate that Assumption 7 may hold under plausible economic restrictions.

Remark 1. Point identification of MTEOO is achieved if, in addition to assumptions 1-5,

we assume that the always-observed and never-observed subpopulations are the only exist-

ing groups, i.e., S0 = S1. This “no selection effect” assumption imposes that the treat-

ment has no impact on sample selection. This set of assumptions has a testable implication:

∂P[S=1|P (Z)=p]
∂p = 0 for all p ∈ P. In the job training program context, “no selection” implies

that workers’ employment status would not be affected by program take-up and the likelihood

of employment does not depend on the probability of attending the training program.

13All of our results can be stated if the inequality in Assumption 7 holds in the opposite direction, as it is
the case if larger values of the outcome harms the agent. For example, the researcher might be interested on
the effect of a drug on cholesterol levels and the selection is based on whether the patient is alive.
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3 Identification Results

This section presents the main results of this paper, the identification forMTEOO(p) under

the three different sets of assumptions described in Section 2. As stepping stones, Subsection

3.1 shows identification of the conditional joint distribution of (Y ∗
d , Sd = 1)|V for any d ∈

{0, 1}, while Subsection 3.2 shows that the distribution of the potential outcomes can be seen

as a mixture of latent groups, an important feature of the model. In the following subsections,

we sharply bound theMTEOO under increasingly restrictive assumptions. First, we bound the

MTEOO without imposing any assumption on the selection mechanism (Subsection 3.3). We

then tighten those bounds by additionally imposing monotone sample selection (Subsection

3.4) and stochastic dominance (Subsection 3.5). For completeness, we also show that the

MTEOO is point-identified under the “no selection effect” assumption (Remark 1) at the end

of Subsection 3.5. Finally, in Subsection 3.6, we discuss how to sharply bound treatment

effect parameters that can be written as weighted averages of the MTEOO(p).

3.1 Identifying the Joint Distribution of Potential Outcome and Selection

Before we discuss the identification of theMTEOO, we point-identify the conditional joint

distribution of each potential outcome and sample selection for different levels of individual

heterogeneity, (Y ∗
d , Sd = 1)|V for d ∈ {0, 1}.

Under Assumptions 1-5, for any p ∈ int P and any Borel set A ⊆ Y, we have that

P [Y ∈ A,S = 1, D = 1|P (Z) = p] = P [Y ∗
1 ∈ A,S1 = 1, V ≤ p|P (Z) = p]

= P [Y ∗
1 ∈ A,S1 = 1, V ≤ p]

= P [Y ∗
1 ∈ A,S1 = 1|V ≤ p]P [V ≤ p]

=

(∫ p

0
P [Y ∗

1 ∈ A,S1 = 1|V = v]
fV (v)

P [V ≤ p]
dv

)
· P [V ≤ p]

=

∫ p

0
P [Y ∗

1 ∈ A,S1 = 1|V = v] dv,

where the second equality follows from Assumption 1, the third and fourth equalities follow
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from the Law of Iterated Expectations, and the last equality follows from Assumption 5. By

differentiating each side with respect to p, we point-identify the conditional distribution of

(Y ∗
1 , S1 = 1) given V = p as follows:

P [Y ∗
1 ∈ A,S1 = 1|V = p] =

∂P [Y ∈ A,S = 1, D = 1|P (Z) = p]

∂p
. (3.1)

Similarly, we can show that

P [Y ∗
0 ∈ A,S0 = 1|V = p] = −∂P [Y ∈ A,S = 1, D = 0|P (Z) = p]

∂p
. (3.2)

Note that since equations (3.1) and (3.2) reflect probabilities, they generate two testable

implications for Assumptions 1 and 5:

0 ≤ ∂E[✶ {Y ∈ A}SD|P (Z) = p]

∂p
≤ 1, (3.3)

0 ≤ −∂E[✶ {Y ∈ A}S(1−D)|P (Z) = p]

∂p
≤ 1, (3.4)

for all Borel sets A ⊂ R and p ∈ (0, 1). Intuitively, for people with observable characteristics

(Z) that indicate a higher likelihood of being treated, the share of treated (untreated) indi-

viduals that self-select into the sample increases (decreases) for any range of the outcome.14

Similarly to the local IV approach proposed by Heckman and Vytlacil (2005), equations

(3.1) and (3.2) can be used to point-identify the MTE on the probability of being observed

(E[S1 − S0|V = p]), capturing the extensive margin of the treatment. Note that, for A = Y,

P [S1 = 1|V = p] =
∂P [S = 1, D = 1|P (Z) = p]

∂p
, (3.5)

P [S0 = 1|V = p] = −∂P [S = 1, D = 0|P (Z) = p]

∂p
, (3.6)

implying that E[S1−S0|V = p] = ∂E[S|P (Z)=p]
∂p . This effect could be of interest in itself: for ex-

ample, the researcher may want to evaluate whether a training program increases employment

14A formal characterization of the sharp testable implications implied by our model is given in Appendix B.
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levels. We can also identify the MTE on the observed outcome,

E[Y ∗
1 S1 − Y ∗

0 S0|V = p] =
∂E[Y S|P (Z) = p]

∂p
.

We would like to disentangle the marginal treatment on the observed outcome into the

extensive margin and the intensive margin. While the extensive margin is point-identified,

we show that the intensive margin (MTEOO) is partially identified by considering that the

distribution of potential outcomes is a mixture of latent groups.

3.2 Potential Outcomes as Mixtures of Latent Groups

Fundamental to our identification strategy is recognizing that the observed treated (un-

treated) group is composed only by OO and NO (ON) types, as described in Table 1. Hence,

the conditional distribution Y ∗
1 |S1 = 1, V = p can be written as the mixture of these latent

distributions. For notational simplicity, let α(p) ≡ P[OO|V=p]
P[S1=1|V=p] be the share of always-observed

individuals among those for which S1 = 1 conditional on V = p. Naturally, the remainder,

P[NO|V=p]
P[S1=1|V=p] , can be described as 1− α(p). By the Law of Total Probability, we have that:

P [Y ∗
1 ∈ A|S1 = 1, V = p] = α(p) · P [Y ∗

1 ∈ A|S0 = 1, S1 = 1, V = p] (3.7)

+ (1− α (p)) · P [Y ∗
1 ∈ A|S0 = 0, S1 = 1, V = p] .

As a consequence, E[Y ∗
1 |S1 = 1, V = p] is also a mixture of the expectation of Y ∗

1 for the

always-observed and for observed-only-when-treated given V = p,

E [Y ∗
1 |S1 = 1, V = p] = α (p) · E [Y ∗

1 |S0 = 1, S1 = 1, V = p]

+ (1− α (p)) · E [Y ∗
1 |S0 = 0, S1 = 1, V = p] .

Similarly, the conditional distribution of Y ∗
0 |S0 = 1, V = p is the mixture of Y ∗

d |V = p
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for two latent groups, the always-observed and the observed-only-when-untreated group:

E [Y ∗
0 |S0 = 1, V = p] = β (p) · E [Y ∗

0 |S0 = 1, S1 = 1, V = p]

+ (1− β (p)) · E [Y ∗
0 |S0 = 1, S1 = 0, V = p] ,

where β(p) ≡ P[OO|V=p]
P[S0=1|V=p] .

We exploit these mixture representations to bound the marginal treatment response of the

censored treated outcome within the always-observed subpopulation (E [Y ∗
1 |S0 = 1, S1 = 1, V = p])

by considering the tails of the observed outcomes’ distribution for treated individuals. The

smallest attainable value of E[Y ∗
1 |S0 = 1, S1 = 1, V = p] is obtained when we consider the

scenario in which the always-observed individuals are contained entirely in the left tail of

mass α(p) of the outcome distribution, i.e., the lowest values of Y ∗
1 among the subpopulation

{S1 = 1} conditional on V being equal to p. Respectively, the largest attainable value of

E[Y ∗
1 |S0 = 1, S1 = 1, V = p] is obtained in the case that the always-observed individuals

would be the right tail of the same distribution, getting the highest values of Y ∗
1 on that

subpopulation. This is the same intuition behind the trimming procedure suggested by Lee

(2009) and Chen and Flores (2015), but, differently from them, the trimmed distribution is

conditional on a specific value for the latent heterogeneity variable. This type of trimming

approach, used in the current and above papers, relies on results derived in a more general

mixture model by Horowitz and Manski (1995).

Hence, E [Y ∗
1 |S0 = 1, S1 = 1, V = p] lies within the interval [LB1(p), UB1(p)], where

LB1(p) = E

[
Y ∗
1 |S1 = 1, V = p, Y ∗

1 ≤ F−1
Y ∗
1 |S1=1,V=p (α(p))

]
, (3.8)

UB1(p) = E

[
Y ∗
1 |S1 = 1, V = p, Y ∗

1 > F−1
Y ∗
1 |S1=1,V=p (1− α(p))

]
(3.9)

and F−1
Y ∗
d
|Sd=1,V=p(·) is the quantile function of the distribution of Y ∗

d given Sd = 1 and V = p.

Similarly, the conditional distribution of Y ∗
0 |S0 = 1, V = p can be written as the mixture

of Y ∗
d |V = p for two latent groups, the always-observed and the observed-only-when-untreated

group. Analogously to the treated outcome, the marginal treatment response of the untreated
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outcome within the always-observed subpopulation (E [Y ∗
0 |S0 = 1, S1 = 1, V = p]) lies within

the interval [LB0(p), UB0(p)], where

LB0(p) = E

[
Y ∗
0 |S0 = 1, V = p, Y ∗

0 ≤ F−1
Y ∗
0 |S0=1,V=p (β(p))

]
, (3.10)

UB0(p) = E

[
Y ∗
0 |S0 = 1, V = p, Y ∗

0 > F−1
Y ∗
0 |S0=1,V=p (1− β(p))

]
. (3.11)

Combining the bounds around E [Y ∗
1 |S0 = 1, S1 = 1, V = p] and E [Y ∗

0 |S0 = 1, S1 = 1, V = p],

we find that MTEOO (p) lies within the interval

[LB1(p)− UB0(p), UB1(p)− LB0(p)].

Remark 2. The issue central to identification of the target parameter is what can be learned

about the mixture weights (α(p), β(p)), and E [Y ∗
d |Sd = 1, V = p]. Note that the bounds on

the MTE of interest will be tighter for higher values of α(p) and β(p) because we learn about

E[Y ∗
1 − Y ∗

0 |S0 = 1, S1 = 1, V = p] by considering that the worst- and best-case outcomes

of observed treated and untreated individuals are fully attributed to the always-observed. So,

as α(p) increases, the share of the observed sample of treated individuals that are from our

group of interest increases, providing more information about their conditional expectation of

the outcomes. In the extreme case in which α(p) → 1, the E [Y ∗
1 |S0 = 1, S1 = 1, V = p] will

be point identified. Similarly, if α(p) → 0, the observed sample is uninformative about the

always-observed group. A similar intuition holds regarding β(p).

In the next subsections, we investigate the bounds that are generated under the alternative

sets of assumptions described in Section 2. Intuitively, those assumptions impose different

restrictions on the possible values of the mixture weights (α(p), β(p)), providing different sets

of information about E[Y ∗
1 − Y ∗

0 |S0 = 1, S1 = 1, V = p].

3.3 Identification with No Assumption on the Sample Selection Mechanism

Initially, consider the case in which the researcher is only willing to consider Assump-

tions 1-5, leaving the sample selection mechanism unrestricted. To learn about MTEOO,
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we need information about the share of always-observed individuals in the total population,

P [S0 = 1, S1 = 1] and, hence, the conditional joint distribution of (S0, S1)|V = p. How-

ever, we only have information about the conditional marginal distributions S0|V = p and

S1|V = p based on equations (3.5) and (3.6). According to Imai (2008) and Mullahy (2018),

the following Boole-Fréchet bounds are sharp around the share of always-observed individuals:

P [S0 = 1, S1 = 1|V = p] ∈ [max {P [S0 = 1|V = p] + P [S1 = 1|V = p]− 1, 0} ,

min {P [S0 = 1|V = p] ,P [S1 = 1|V = p]}] . (3.12)

Combining this information with Equations (3.5) and (3.6), leads to Lemma 1.

Lemma 1. Under Assumptions 1-5, the share of always-observed individuals is partially iden-

tified:

P [S0 = 1, S1 = 1|V = p]

∈
[
max

{
−∂P [S = 1, D = 0|P (Z) = p]

∂p
+
∂P [S = 1, D = 1|P (Z) = p]

∂p
− 1, 0

}
,

min

{
−∂P [S = 1, D = 0|P (Z) = p]

∂p
,
∂P [S = 1, D = 1|P (Z) = p]

∂p

}]

=: Υ (p) .

These bounds are sharp.

Note that, since Υ (p) provides the identified set of possible values for the share of always-

observed individuals, we can obtain the equivalent range of possible values for α(p) and β(p),

the mixture weights described in Subsection 3.2. For brevity, let P [S0 = 1, S1 = 1|V = p] take

any particular value, υ ∈ Υ(p). Define,

α (p, υ) := P [S0 = 1|S1 = 1, V = p] =
υ

P [S1 = 1|V = p]
=

υ
∂P[S=1,D=1|P (Z)=p]

∂p

,

β (p, υ) := P [S1 = 1|S0 = 1, V = p] =
υ

P [S0 = 1|V = p]
= − υ

∂P[S=1,D=0|P (Z)=p]
∂p

.
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Let the bounds in Equations (3.8)-(3.11), for specific values of α(p, υ) and β(p, υ) in the

identified set be written as:

LB1(p, υ) = E

[
Y ∗
1 |S1 = 1, V = p, Y ∗

1 ≤ F−1
Y ∗
1 |S1=1,V=p (α(p, υ))

]
,

UB1(p, υ) = E

[
Y ∗
1 |S1 = 1, V = p, Y ∗

1 > F−1
Y ∗
1 |S1=1,V=p (1− α(p, υ))

]
,

LB0(p, υ) = E

[
Y ∗
0 |S0 = 1, V = p, Y ∗

0 ≤ F−1
Y ∗
0 |S0=1,V=p (β(p, υ))

]
,

UB0(p, υ) = E

[
Y ∗
0 |S0 = 1, V = p, Y ∗

0 > F−1
Y ∗
0 |S0=1,V=p (1− β(p, υ))

]
.

Combining the bounds around E [Y ∗
1 |S0 = 1, S1 = 1, V = p] and E [Y ∗

0 |S0 = 1, S1 = 1, V = p],

we find thatMTEOO (p) lies within the interval [LB1(p, υ)−UB0(p, υ), UB1(p, υ)−LB0(p, υ)]

for a particular P [S0 = 1, S1 = 1|V = p] = υ.

To bound the target parameter, we find worst- and best-case scenarios by varying the

value υ. Explicitly, MTEOO (p) is partially identified and lies within the interval

[
min

υ∈Υ(p)
{LB1(p, υ)− UB0(p, υ)} , max

υ∈Υ(p)
{UB1(p, υ)− LB0(p, υ)}

]
.

Note that υ has a monotone relationship to the mixture weights, which define the trimming

points in the bounds. As previously discussed, higher values for α(p) (β(p)) indicate that a

bigger share of the observed treated (untreated) population belongs to the always-observed

latent group, thus providing more information and tighter bounds for the parameter of interest.

Hence, we only need to focus on the scenario that generates the wider bounds, that is, the

smallest admissible α(p) and β(p). Let υℓ be the lower bound of Υ(p). We have:

min
υ∈Υ(p)

LB1(p, υ)− max
υ∈Υ(p)

UB0(p, υ) ≤ min
υ∈Υ(p)

{LB1(p, υ)− UB0(p, υ)} ,

min
υ∈Υ(p)

LB1(p, υ) = LB1(p, υ
ℓ), and max

υ∈Υ(p)
UB0(p, υ) = UB0(p, υ

ℓ).
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Making the same argument to the upper bound, we can rewrite them as,

min
υ∈Υ(p)

{LB1(p, υ)− UB0(p, υ)} = LB1(p, υ
ℓ)− UB0(p, υ

ℓ),

max
υ∈Υ(p)

{UB1(p, υ)− LB0(p, υ)} = UB1(p, υ
ℓ)− LB0(p, υ

ℓ),

greatly simplifying our bounds, which need only to be evaluated at the end point of Υ(p).

We can combine these facts with equations (3.1), (3.2), (3.5) and (3.6) to propose the

first identification result for MTEOO, which does not impose meaningful restrictions on the

sample selection mechanism.

Proposition 1. Under Assumptions 1-5, the MTE is partially identified for the always-

observed, i.e.,

∆1 (p) ≤MTEOO (p) ≤ ∆1 (p)

for any p ∈ P, where ∆1 : P → R and ∆1 : P → R are given by

∆1 (p) := E

[
Ỹ1|S = 1, D = 1, P (Z) = p, Ỹ1 ≤ F−1

Ỹ1|S=1,D=1,P (Z)=p

(
α(p, υℓ)

)]

− E

[
Ỹ0|S = 1, D = 0, P (Z) = p, Ỹ0 > F−1

Ỹ0|S=1,D=0,P (Z)=p

(
1− β(p, υℓ)

)]
,

∆1 (p) := E

[
Ỹ1|S = 1, D = 1, P (Z) = p, Ỹ1 > F−1

Ỹ1|S=1,D=1,P (Z)=p

(
1− α(p, υℓ)

)]

− E

[
Ỹ0|S = 1, D = 0, P (Z) = p, Ỹ0 ≤ F−1

Ỹ0|S=1,D=0,P (Z)=p

(
β(p, υℓ)

)]

for any p ∈ P, the conditional distribution of Ỹd is given by

Ỹd|S = 1, D = d, P (Z) = p ∼ FỸd|S=1,D=d,P (Z)=p(y) =

∂P[Y≤y,S=1,D=d|P (Z)=p]
∂p

∂P[S=1,D=d|P (Z)=p]
∂p

for any d ∈ {0, 1}, and

α
(
p, υℓ

)
=

max
{
−∂P[S=1,D=0|P (Z)=p]

∂p + P [S=1,D=1|P (Z)=p]
∂p − 1, 0

}

∂P[S=1,D=1|P (Z)=p]
∂p

,
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β
(
p, υℓ

)
= −

max
{
−∂P[S=1,D=0|P (Z)=p]

∂p + P [S=1,D=1|P (Z)=p]
∂p − 1, 0

}

∂P[S=1,D=0|P (Z)=p]
∂p

.

Moreover, these bounds are uniformly sharp.

Remark 3. The definition of uniform sharpness (Firpo and Ridder, 2019) used in this article

states that, for any function δ : P → R such that δ (p) ∈
[
∆1 (p) ,∆1 (p)

]
for any p ∈ P, it

is possible to construct random variables (Ỹ ∗
0 , Ỹ

∗
1 , S̃0, S̃1, Ṽ , Z) that satisfy all the restrictions

imposed on the data by the underlying assumptions, induce the joint distribution on the data

(Y, S,D,Z) and achieve the candidate target parameter δ (p) = E

[
Ỹ ∗
1 − Ỹ ∗

0

∣∣∣ S̃0 = 1, S̃1 = 1, Ṽ = p
]

for every p ∈ P.

Remark 4. In the special case in which the treatment D is independent of the potential

outcomes for Y ∗ and S, and that Υ(p) = Υ for any p ∈ P = [0, 1], the MTE on the censored

outcome will be constant and equal to the ATE for the always-observed. Then, the bounds

derived in Proposition 1 simplify to those derived by Imai (2008, Proposition 1).

3.4 Bounds under the Monotonicity Assumption

In this subsection, we introduce monotonicity of sample selection in the treatment (As-

sumption 6), which can considerably shrink the identified set for MTEOO. As discussed in

Section 2, under the monotonicity assumption, individuals who self-select into the sample

when untreated (S0 = 1) would also be observed if they had been treated, ruling out the sub-

group ON . In other words, any untreated individuals observed on the sample are members of

the always-observed latent subpopulation (S0 = 1, S1 = 1). Formally, the following two events

are identical: {S0 = 1} = {S0 = 1, S1 = 1}, and the mixture weight for the untreated group,

β(p), equals one.

Consequently, P [S0 = 1, S1 = 1|V = p] is point-identified by equation (3.6), and we no

longer need to rely on the partial identification results in Lemma 1. Specifically, we have that

P [S0 = 1, S1 = 1|V = p] = −∂P [S = 1, D = 0|P (Z) = p]

∂p
(3.13)
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=
∂P [S = 1, D = 1|P (Z) = p]

∂p
− ∂P [S = 1|P (Z) = p]

∂p
.

This result connects the conditional share of always observed individuals to changes on the

conditional mass of observed untreated individuals when the propensity score increases. Look-

ing at the second equality, we find that the conditional probability of being always observed

is the difference between the increase in the share of observed treated individuals and the

increase in the share of observed individuals when the propensity score is equal to p.

Since {S0 = 1} = {S0 = 1, S1 = 1} (β(p) = 1), the distribution of (Y ∗
0 , S0 = 1, S1 = 1)|V

is equal to the distribution of (Y ∗
0 , S0 = 1)|V , implying that

P [Y ∗
0 ∈ A|S0 = 1, S1 = 1, V = p] =

P [Y ∗
0 ∈ A,S0 = 1|V = p]

P [S0 = 1, S1 = 1|V = p]
. (3.14)

Note that the right-hand side of equation (3.14) is point-identified according to equations

(3.2) and (3.13). Consequently, the expectation E[Y ∗
0 |S0 = 1, S1 = 1, V = p] is also point-

identified. Monotonicity also leads to point identification of the mixture weight, α(p) =

P [S0 = 1, S1 = 1|V = p]

P [S1 = 1|V = p]
by Equations (3.5) and (3.13).

Then, under monotonicity, the researcher has to obtain bounds only for the expected

potential outcomes under treatment, which still can be written as a mixture of the always-

observed and observed-only-when-treated latent subpopulations.

As discussed in Section 3.2, the expectation E[Y ∗
1 |S0 = 1, S1 = 1, V = p] lies in the interval

[LB1(p), UB1(p)], given in Equations (3.8)-(3.9). Combining the bounds and identification

results in equations (3.1), (3.2), (3.5), (3.13) and (3.14), the following proposition holds:

Proposition 2. Under Assumptions 1-6, the MTE is partially identified for the always-

observed, i.e.,

∆2 (p) ≤MTEOO (p) ≤ ∆2 (p)

for any p ∈ P, where ∆2 : P → R and ∆2 : P → R are given by

∆2 (p) := E

[
Ỹ1|S = 1, D = 1, P (Z) = p, Ỹ1 ≤ F−1

Ỹ1|S=1,D=1,P (Z)=p
(α(p))

]
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− E

[
Ỹ0|S = 1, D = 0, P (Z) = p

]
,

∆2 (p) := E

[
Ỹ1|S = 1, D = 1, P (Z) = p, Ỹ1 > F−1

Ỹ1|S=1,D=1,P (Z)=p
(1− α(p))

]

− E

[
Ỹ0|S = 1, D = 0, P (Z) = p

]

for any p ∈ P, the conditional distribution of Ỹd is given by

Ỹd|S = 1, D = d, P (Z) = p ∼ FỸd|S=1,D=d,P (Z)=p(y) =

∂P[Y≤y,S=1,D=d|P (Z)=p]
∂p

∂P[S=1,D=d|P (Z)=p]
∂p

for any d ∈ {0, 1}, and

α (p) = −
∂P[S=1,D=0|P (Z)=p]

∂p

∂P[S=1,D=1|P (Z)=p]
∂p

.

Moreover, these bounds are uniformly sharp.

Remark 5. By adding the monotonicity assumption, we increase the lower bound and decrease

the upper bound stated in Proposition 1. The length of the identified set here is strictly shorter

than the length of the identified set in Proposition 1 when the mixture weights are not point

identified.15 This improvement shows the identifying power of Assumption 6.

Remark 6. In the special case in which the treatment D is independent of the potential

outcomes for Y ∗ and S, and α(p) = α for any p ∈ P = [0, 1], the MTE will be constant and

equal to the average treatment effect for the always-observed and the bounds in Proposition 2

simplify to the ones proposed by Lee (2009, Proposition 1a).

3.5 Bounds under the Monotonicity and Dominance Assumptions

In this section, we add the stochastic mean dominance assumption to tighten the identified

set for MTEOO under Assumptions 1-7. Stochastic dominance and equation (3.7) imply that

P [Y ∗
1 ≤ y|S1 = 1, V = p] ≥ P [Y ∗

1 ≤ y|S0 = 1, S1 = 1, V = p]

15That is, the set Υ (p) in Lemma 1 is not a singleton and the distributions of Y ∗
0 |S1 = 1, V and Y ∗

1 |S1 = 1, V
are not degenerate.
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for any y ∈ Y. As a consequence, the following inequality holds

E [Y ∗
1 |S1 = 1, V = p] ≤ E [Y ∗

1 |S0 = 1, S1 = 1, V = p] .

This tightens the lower bound for E[Y ∗
1 |S0 = 1, S1 = 1, V = p] as we no longer need to

focus on the lowest α(p) mass of outcomes as the lower bound, since the stochastic dominance

assumption guarantees that the expectation of outcomes for the always observed subpopula-

tion will be larger than the one of the observed treated individuals which mixes OO and NO

types. Hence, E[Y ∗
1 |S0 = 1, S1 = 1, V = p] lies within the interval [LB3(p), UB3(p)], where

LB3(p) = E [Y ∗
1 |S1 = 1, V = p] ,

UB3(p) = E

[
Y ∗
1 |S1 = 1, V = p, Y ∗

1 > F−1
Y ∗
1 |S1=1,V=p (1− α(p))

]
.

The upper bound remains unchanged. Naturally, that leads to tighter identified sets relative

to the ones in Proposition 2, which are presented in the following proposition.

Proposition 3. Under Assumptions 1-7, the MTE is partially identified for the always-

observed, i.e.,

∆3 (p) ≤MTEOO (p) ≤ ∆3 (p)

for any p ∈ P, where ∆3 (p) : P → R and ∆3 (p) : P → R are given by

∆3 (p) := E

[
Ỹ1|S = 1, D = 1, P (Z) = p

]
− E

[
Ỹ0|S = 1, D = 0, P (Z) = p

]
,

∆3 (p) := E

[
Ỹ1|S = 1, D = 1, P (Z) = p, Ỹ1 > F−1

Ỹ1|S=1,D=1,P (Z)=p
(1− α(p))

]

− E

[
Ỹ0|S = 1, D = 0, P (Z) = p

]

for any p ∈ P, where the conditional distribution of Ỹd is given by

Ỹd|S = 1, D = d, P (Z) = p ∼ FỸd|S=1,D=d,P (Z)=p(y) =

∂P[Y≤y,S=1,D=d|P (Z)=p]
∂p

∂P[S=1,D=d|P (Z)=p]
∂p
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for any d ∈ {0, 1}. and

α (p) = −
∂P[S=1,D=0|P (Z)=p]

∂p

∂P[S=1,D=1|P (Z)=p]
∂p

.

Moreover, these bounds are uniformly sharp.

Remark 7. The lower bound proposed here is strictly greater than the one in Proposition 2

when α (p) ∈ (0, 1) and the distribution of Y ∗
1 |S1 = 1, V is not degenerate. This improvement

shows the identifying power of Assumption 7.

Remark 8. In the special case in which the treatment D is independent of the potential

outcomes for Y ∗ and S, and α(p) = α for any p ∈ P = [0, 1], the MTE will be constant and

equal to the average treatment effect for the always-observed and the bounds in Proposition 3

simplify to those proposed in Imai (2008, Equation (8)).

For completeness in the identification discussion, note that point identification ofMTEOO

is achieved if, in addition to assumptions 1-5, we assume that the always-observed and never-

observed subpopulations are the only existing groups, i.e., S0 = S1. This “no selection effect”

assumption imposes that the treatment has no impact on sample selection. In the job training

program context, this implies that workers’ employment would not be affected by the program.

Under Assumptions 1-5 and “no selection effect”, the distributions of Y ∗
d |S1 = 1, V for

d ∈ {0, 1} are exclusively composed of always-observed individuals (α(p) = β(p) = 1). Then,

P [Y ∗
d ∈ A|S0 = 1, S1 = 1, V = p] =

P [Y ∗
d ∈ A,Sd = 1|V = p]

P [S0 = 1|V = p]
for d = {0, 1},

where point-identification follows from equations (3.1), (3.2), (3.5) and (3.6). The expectations

E[Y ∗
d |S0 = 1, S1 = 1, V = p] are also point-identified. Then, MTEOO (p) =

∂E[Y S|P (Z)=p]
∂p

∂E[SD|P (Z)=p]
∂p

.

Alternatively, point-identification of the unconditional MTE is achieved if potential sample

selection status and outcomes are independent given the unobserved characteristics,(S0, S1) |= (Y ∗
0 , Y

∗
1 )|V .

In this case, the distributions P [Y ∗
d ≤ y|V = p] are point-identified from Equations (3.1) and
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(3.2), and the unconditional MTE is point-identified as:

E[Y ∗
1 − Y ∗

0 |V = p] =

∂E[Y SD|P (Z)=p]
∂p

∂E[SD|P (Z)=p]
∂p

−
∂E[Y S(1−D)|P (Z)=p]

∂p

∂E[S(1−D)|P (Z)=p]
∂p

.

3.6 Empirical Relevance of Bounds for the MTEOO

The partial identification results for the MTEOO are relevant for a vast array of empirical

objectives. First, bounds for the MTEOO can illuminate the treatment effect’s heterogeneity,

allowing researchers to better understand who would benefit from a specific treatment. This

feature is important because common parameters (e.g., ATE, ATT , ATU , and LATE within

the always-observed subpopulation) can be positive even when most people are adversely

affected by a policy. Moreover, knowing, even partially, the MTEOO function can be useful

to design policies that provide incentives to agents to take some treatment.

Second, the MTEOO bounds can be used to partially identify alternative treatment effect

parameters that are described as a weighted integral of MTEOO because

∫

P
(∆t (p) · ω (p)) dp ≤

∫

P

(
MTEOO (p) · ω (p)

)
dp ≤

∫

P

(
∆t (p) · ω (p)

)
dp,

where t ∈ {1, 2, 3}, ∆t and ∆t are described in Propositions 1-3, and ω(·) is a known or

identifiable weighting function. Those bounds are sharp, as summarized in Proposition 4.16

Proposition 4. Let ωTE : P → R be a known or identifiable weighting function and define

the treatment effect parameter TE :=
∫
P MTEOO (p) · ωTE (p) dp. Under Assumptions 1-6,

the treatment effect parameter TE is partially identified:

∫

P
(∆2 (p) · ωTE (p)) dp ≤ TE ≤

∫

P

(
∆2 (p) · ωTE (p)

)
dp.

Moreover, these bounds are sharp.

Under Assumptions 1-6, Table 2 shows the most relevant treatment effect parameters that

16We focus on the case under the monotonicity restriction (Assumptions 1-6) for brevity. Similar results
hold under our other identifying sets of assumptions.
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are partially identified using Proposition 4. The weights in Table 3 are derived in Appendix

A.6 and are identified if the support of the propensity score is the full unit interval, i.e.,

P = [0, 1].

Table 2: Treatment Effects as Weighted Integrals of the MTEOO

ATEOO = E [Y ∗
1 − Y ∗

0 |S0 = 1, S1 = 1] =
∫ 1
0 MTEOO (p) · ωATE (p) dp

ATTOO = E [Y ∗
1 − Y ∗

0 |D = 1, S0 = 1, S1 = 1] =
∫ 1
0 MTEOO (p) · ωATT (p) dp

ATUOO = E [Y ∗
1 − Y ∗

0 |D = 0, S0 = 1, S1 = 1] =
∫ 1
0 MTEOO (p) · ωATU (p) dp

LATEOO(p, p) = E
[
Y ∗
1 − Y ∗

0

∣∣V ∈
[
p, p
]
, S0 = 1, S1 = 1

]
=
∫ p
p MTEOO (p) · ωLATE (p) dp

PRTEOO =
E
[
Y ∗
a − Y ∗

a′ |S0 = 1, S1 = 1
]

∫ 1
0

(
FPa′

(p)− FPa (p)
)
· fV |S0=1,S1=1 (p) dp

=
∫ 1
0 MTEOO (p) · ωPRTE (p, a, a′) dp

for two policies a and a′ that affect only Z (See notational details in Appendix A.6.)

Importantly, note that, differently from the weights for the case without sample selection

(Heckman and Vytlacil, 2005, Carneiro and Lee, 2009, and Carneiro, Heckman, and Vytlacil,

2011), these weights must be integrated over the distribution of the latent heterogeneity for

the always-observed subpopulation instead of its unconditional distribution.

4 Estimation

This section describes the general estimation steps for the bounds proposed in Proposi-

tion 2, while details on two proposed methods are provided in Appendix E and G. For brevity,

we focus on the bounds identified under monotonicity of sample selection in the treatment

(Assumptions 1-6), as it is the most relevant (and feasible) case empirically. Estimators for

the bounds in Proposition 1 and Proposition 3 are natural extensions. Appendix F presents

a Monte Carlo Simulation that evaluates the small sample properties of the estimator.

To estimate the bounds in Proposition 2, it is useful to focus on the building blocks that

are the foundation for the identification results. In particular, we need the CDFs:

Ỹd|S = 1, D = d, P (Z) = p ∼ FỸd|S=1,D=d,P (Z)=p(y) =

∂P[Y≤y,S=1,D=d|P (Z)=p]
∂p

∂P[S=1,D=d|P (Z)=p]
∂p
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Table 3: Weights

ωATE (p) =

∂P [S = 1, D = 0|P (Z) = p]

∂p∫
1

0

∂P [S = 1, D = 0|P (Z) = p]

∂p
dp

ωATT (p) =

(∫ 1
p fP (Z) (u) du

)
· ∂P [S = 1, D = 0|P (Z) = p]

∂p∫
1

0

(∫ 1
p fP (Z) (u) du

)
· ∂P [S = 1, D = 0|P (Z) = p]

∂p
dp

ωATU (p) =

(∫ p
0 fP (Z) (u) du

)
· ∂P [S = 1, D = 0|P (Z) = p]

∂p∫
1

0

(∫ p
0 fP (Z) (u) du

)
· ∂P [S = 1, D = 0|P (Z) = p]

∂p
dp

ωLATE (p) =

∂P [S = 1, D = 0|P (Z) = p]

∂p∫
p

p

∂P [S = 1, D = 0|P (Z) = p]

∂p
dp

ωPRTE (p, a, a′) =

(
FPa′

(p)− FPa (p)
)
· ∂P [S = 1, D = 0|P (Z) = p]

∂p∫
1

0

(
FPa′

(p)− FPa (p)
)
· ∂P [S = 1, D = 0|P (Z) = p]

∂p
dp

for any d ∈ {0, 1} and

α (p) = −
∂P[S=1,D=0|P (Z)=p]

∂p

∂P[S=1,D=1|P (Z)=p]
∂p

.

Consequently, we need to estimate:

Γ1 (p, y) :=
∂P [Y ≤ y, S = 1, D = 1|P (Z) = p]

∂p
, π1 (p) :=

∂P [S = 1, D = 1|P (Z) = p]

∂p
,

Γ0 (p, y) := −∂P [Y ≤ y, S = 1, D = 0|P (Z) = p]

∂p
, π0 (p) := −∂P [S = 1, D = 0|P (Z) = p]

∂p
.

Furthermore, the estimation of the propensity score, P (Z), is necessary to obtain the moments

of the conditional distribution of the observed outcome.
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Each of these components can be estimated by standard approaches, and multiple pro-

cedures might be valid depending on the assumptions and model structure the researcher

is willing to impose. For example, one could resort to nonparametric methods to esti-

mate P (Z), π0(p), π1(p), Γ0(p, y), and Γ1(p, y), avoiding functional form choices as dis-

cussed in Appendix E. While appealing, nonparametric estimation can be quite challeng-

ing in practice especially when covariates are added, as illustrated in the empirical ap-

plication. Alternatively, we could estimate the parameters based on parametric functions

for P (Z), P [S = 1, D = d|P (Z) = p], and a partition of the outcome’s support γd(p, k) =

P [yk−1 ≤ Y < yk, S = 1, D = d|P (Z) = p] for d = {0, 1}, p ∈ [0, 1], k ∈ {1, . . . ,K}. The

choice of estimator should be guided by the nature of the problem being studied and the data

available to the researcher.

With estimates P̂ (Z), π̂0(p), π̂1(p), Γ̂d(p, y), and γ̂d(p, y) at hand, we can estimate α (p),

by its sample analog α̂ (p) :=
π̂0 (p)

π̂1 (p)
. Finally, the estimated bounds LB2(p), UB2(p), can be

obtained as

L̂B2(p) :=

KN∑

k=2

yk · ✶
{
F̂1 (p, yk) ≤ α̂ (p)

}
· f̂1(p, k)
α̂ (p)

(4.1)

ÛB2(p) :=

KN∑

k=2

yk · ✶
{
1− F̂1 (p, yk) < α̂ (p)

}
· f̂1(p, k)
α̂ (p)

, (4.2)

where f̂1(p, k) := γ̂1(p,k)
π̂1(p)

, F̂1 (p, yk) :=
∑k

j=2 f̂1(p, j) and yk is the center point of each bin

[yk−1, yk] for any k ∈ {2, . . . ,KN}. Moreover, we can estimate E
[
Ỹ0|S = 1, D = 0, P (Z) = p

]

in Proposition 2 using Ξ̂OO,0(p) :=
∑KN

k=2 yk · f̂0(p, k), where f̂0(p, k) := γ̂0(p,k)
π̂0(p)

. Naturally,

the estimated MTEOO bounds can then be obtained by ∆̂2 (p) := L̂B2(p) − Ξ̂OO,0(p) and

∆̂2 (p) := ÛB2(p)− Ξ̂OO,0(p).

We summarize the estimation procedure in the following steps:

Step 1. Estimate P(D = 1|Z = z) and obtain P̂i = P̂(Zi) for all observations.

Step 2. Estimate γ̂0(p, yk), γ̂1(p, yk), π̂0(p) and π̂1(p) for the value p of interest.

Step 3. Estimate α̂(p) for p.
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Step 4. Implement L̂B2(p), ÛB2(p) and Ξ̂OO,0(p).

Step 5. Calculate the bounds for MTEOO(p) using ∆̂2 (p) and ∆̂2 (p).

5 Empirical Illustration: Managed Care and Ambulatory Expenditures

To illustrate the empirical usefulness of our partial identification strategy in a concrete

application, we analyze the impact of insurance plan choice on ambulatory expenditures us-

ing the data set made available by Deb, Munkin, and Trivedi (2006) through the Journal of

Applied Econometrics’ Data Archive.17 We simplify their analyzes in two important dimen-

sions. To enforce a binary treatment, we follow Papadoulos and Silva (2012) and combine

Health Maintenance Organizations (HMO) and Preferred Provider Organization (PPO) in

one treatment category (managed care) while the control group contains all individuals who

choose fee-for-service (FFS) plans. Second, while Deb, Munkin, and Trivedi (2006) analyze

ambulatory and hospital expenditures, we focus only on the former since the large share of

zero hospital expenditures (Deb, Munkin, and Trivedi, 2006, Table 1) imply that bounds

around the MTEOO would be very wide as explained in Appendix C.

In this application, the treatment variable D is equal to one if the person chooses a

managed care plan and equal to zero if the person chooses an FFS plan. Y ∗
0 and Y ∗

1 repre-

sent the potential ambulatorial expenditures in dollars, that is only observed if the person

seeks care. S0 and S1 represent the potential indicators for seeking care, i.e., for spending a

positive amount of money on ambulatory services. The latent heterogeneity V in our treat-

ment choice model (Equation (2.1)) can be interpreted as the individual’s relative cost of

choosing a managed care plan over FFS plan. Importantly, our treatment effect of interest
(
MTEOO (p) := E [Y ∗

1 − Y ∗
0 |V = p, S0 = 1, S1 = 1]

)
captures the intensive margin of the im-

pact of managed care plans on ambulatory expenditures, that is, the increased intensity in use

of services by those individuals that would seek ambulatory care in both insurance scenarios.

We use data from the 1996-2001 waves of the Medical Expenditure Panel Survey (MEPS)

made available by Deb, Munkin, and Trivedi (2006). The sample is restricted to employed

17The Journal of Applied Econometrics’ Data Archive can be accessed at http://qed.econ.queensu.ca/jae/.

30



individuals who bought a private insurance plan and whose age is between 21 and 64 years. In

this data set, we observe 24 covariates.18 Moreover, our instruments are spouse’s age (Z1) and

spouse’s insurance plan type in the previous year (Z2).
19 The discussion about instruments’

validity follows Deb, Munkin, and Trivedi (2006). Regarding instrument relevance, the argu-

ment is that insurance plans cover an entire family, so spouse’s age and lagged choice of the

spouse’s insurance plan should be a determinant of plan choice. The instruments’ indepen-

dence relies on the assertion that conditional on own age and other individual characteristics,

spouse’s age should not affect personal medical expenditures directly. Moreover, since lagged

spouse’s choice was pre-determined, it should not impact personal medical expenditures di-

rectly either. Therefore, conditioning on covariates is crucial for the instrument’s credibility

and can be more clearly dealt by specifying parametric functions for the probabilities under-

lying the DGP.

We calculate bounds for MTEOO (p, x) based on parametric estimates for the functions

P [S = 1, D = d|X = x, P (Z) = p], and P [yk−1 ≤ Y < yk, S = 1, D = d|X = x, P (Z) = p] for

d = {0, 1}, p ∈ [0, 1], k ∈ {1, . . . ,K} and covariate values x. These probabilities are modeled

as logit functions that depend on a linear index of the covariates and a quadratic function

of the propensity score, using 20 grid points for the outcome variable. The propensity score

is also estimated using a logit model that depends linearly on covariate and instrumental

variables. To enforce the common support assumption, we trim the top and bottom 1% of

the overlapping estimated propensity score distribution. After estimating those probabili-

ties, we estimate α (p, x), β (p, x) and the bounds around MTEOO (p, x) for each covariate

value x. Then, following Deb, Munkin, and Trivedi (2006), we assume that the covariates

are independent of (S0, S1, V ) and average the bounds for MTEOO (p, x) across the sample

using observed covariates values. By doing so, we recover the bounds for the unconditional

18The covariate variables are family size, age, squared age, years of schooling, income, female indicator,
interaction term between age and female, African-American indicator, Hispanic indicator, marriage indicator,
three geographic region dummies, metropolitan area indicator, three subjective health dummies, physical
limitation indicator, number of chronic conditions, injury indicator and four year dummies. The descriptive
statistics of all variables can be found in Table 1 in Deb, Munkin, and Trivedi (2006).

19Differently from Deb, Munkin, and Trivedi (2006), we also combine the spouse’s insurance plan choice in
a binary variable that is equal to one if the spouse chose a managed care plan and equal to zero if the spouse
chose a FFS plan.
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MTEOO(p).20 For details on this parametric approach, see Appendix G.

We estimate bounds around the MTEOO function under three sets of assumptions: (i)

no restrictions on the sample selection mechanism (Assumptions 1-5), (ii) “monotonicity of

sample selection in the treatment” (Assumptions 1-6), and (iii) “monotonicity of sample

selection in the treatment” and “stochastic dominance” (Assumptions 1-7). We are interested

in understanding how the different sets of assumptions impact the identified set for MTEOO

and interpreting the heterogeneity captured by the MTE.

First, we analyze the MTEOO bounds based only on Assumptions 1-5 (Subsection 3.3).

Subfigures 1(a) and 1(b) show the estimated proportion of the always-observed subpopulation

within the observed-when-treated and observed-when-untreated groups, that is, α
(
p, υℓ

)
and

β
(
p, υℓ

)
in Proposition 1. Importantly, in some regions of the support those proportions are

equal to one or zero, implying that MTEOO is point-identified or not-identified, respectively.

Subfigure 2(a) shows the estimated bounds. For most of the propensity score’s support, the

bounds without restrictions on the sample selection mechanism are very wide or identification

is lost. The estimated bounds do not rule out the possibility of homogeneous treatment effects,

i.e., we can still place a constant function inside the bounds in Subfigure 2(a).

In order to tighten those bounds, we consider restrictions on the sample selection mech-

anism. The “monotonicity of sample selection in the treatment” condition (Assumption 6)

imposes that agents who would spend a positive amount of money on ambulatory services if

allocated to a FFS plan would also have positive ambulatory expenditures if allocated to a

managed care plan. This assumption’s direction is in accordance with the results described by

Deb, Munkin, and Trivedi (2006), who found that individuals enrolled in HMOs and PPOs are

more likely to seek care than FFS enrollees. Note that, under Assumption 6, β(p) is always

equal to 1. Subfigure 1(c) shows that, under Assumptions 1-6, the estimated proportion of

20By averaging with respect to the observed density of the covariates, we compute bounds around
a summary measure of the conditional MTE for the always-observed subgroup: SCMTEOO (p) :=
∫

E [Y ∗
1 − Y ∗

0 |V = p, S0 = 1, S1 = 1, X = x′] dFX (x′). If X |= (V = p, S0 = 1, S1 = 1) holds, then
SCMTEOO (p) = MTEOO (p), implying that the summary bounds are valid for the unconditional
MTE function for the always-observed subgroup. Importantly, Deb, Munkin, and Trivedi (2006) assumed
that the covariates are fully exogenous, implying that X |= (V = p, S0 = 1, S1 = 1) holds. Carneiro and Lee
(2009) assume a similar exogeneity assumption. Alternatively, we can analyze the conditional MTEOO

function for pre-specified values of the covariates. These results are available upon request.
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the always-observed subpopulation within the observed-when-treated group (α (p)) is strictly

positive everywhere in this example. Consequently, the MTEOO function is at least partially

identified for the entire support of the propensity score, as can be seen in the bounds reported

Subfigure 2(b), illustrating the identifying power of the “monotonicity of sample selection in

the treatment” assumption. As a result of tighter bounds, we can rule out the possibility of

homogeneous treatment effects, i.e., we cannot fit a constant function inside the bounds in

Subfigure 2(b). Interestingly, the upper bound under monotonicity is decreasing. Hence, if the

MTEOO function followed the pattern from the upper bound, our results would suggest that

the agents who are more likely to enroll in a managed care plan are the ones who incur larger

additional ambulatory expenses due to their choice of insurance coverage. This interpretation

is compatible with individuals taking into account their potential expenditures when selecting

their insurance plans, at least among those for which those expenditures will be positive re-

gardless of their plan (always-observed), and provides extra support for the selectivity result

found by Deb, Munkin, and Trivedi (2006).

In order to further tighten the bounds around the MTEOO function, we impose the

stochastic dominance assumption (Assumption 7). To interpret this assumption, recall that

the “always-observed” (OO) individuals are those for whom ambulatory expenditures would

be positive regardless of their insurance plans, while the “observed-only-when-treated”(NO)

population encompasses people who would incur expenses only if enrolled in managed care

plans. Assumption 7 compares the (counterfactual) expenditures that would take place if all

employees were enrolled in a managed care plan (Y ∗
1 ) between those two groups. Formally,

it says that for any particular level of expenditures, say 1000✩, the share of individuals that

spend less than 1000✩ will be larger for theNO group compared to the OO type. Alternatively,

it implies that the average expenditures among the lowest 25% (or any particular quantile)

of spenders, will be smaller for the NO than for the OO subgroup. Intuitively, if everyone

had a managed care plan, typical patients who would go to ambulatories only if insured by a

managed care plan spend less in services than those that would go regardless of their plan. In

Appendix D.2, we provide a simple theoretical framework in which this assumption holds.21

21As pointed out by a referee, this assumption is hard to interpret and motivate empirically. However, in a
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Importantly, Assumption 7 has no impact on the information about α(p). Consequently, it

only impacts the results by increasing the lower bound for theMTEOO, which is much tighter

as can be seen in Subfigure 2(c), illustrating the identifying power of the stochastic dominance

assumption. If we consider Assumption 7 plausible, we find that the lower bound is positive

for most values of the propensity score. This finding reinforces the results in Deb, Munkin,

and Trivedi (2006), who obtained a positive effect of PPO choice on ambulatory expenditures

and a zero effect of HMO choice after controlling for selection. Furthermore, our results also

suggest that the choice of managed care plan reduces ambulatory expenditures for individuals

who face high latent costs.
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Notes: Solid lines are the parametric estimated proportions of the always-observed group.

Figure 1: Unconditional Proportion of the Always-Observed Group

6 Extension: Identification with discrete instruments

This section extends Proposition 2 to the case with multi-valued discrete instruments,

sharply bounding many LATE parameters for the always-observed subpopulation. We focus

on the case under the monotonicity restriction (Assumption 1-6). Similar results hold under

our other identifying sets of assumptions.

In many applications, the only instruments available are discrete, e.g., treatment eligibility,

number of children in the household and quarter of birth. In this section, we provide sharp

layered policy analysis (Manski, 2011), we offer a menu of estimates based on different assumptions, that may
or may not be plausible according to each researcher’s own expertise and beliefs (Tamer, 2010).
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(c) Under Assumptions 1-7

Notes: The solid red (blue) line is the estimated lower (upper) bound of the MTEOO.

Figure 2: Unconditional Bounds around the MTEOO

identification results when the instrument is multi-valued discrete, implying the support of

the propensity score is finite. The results here can be seen as an extension of Chen and Flores

(2015), who provide an outer set for the LATE parameter when the instrument is binary.

Assumption 8. The instrument Z is discrete with support {z1, z2, . . . , zK} and the propensity

score pℓ ≡ P [D = 1|Z = zℓ] satisfies 0 < p1 < p2 < . . . < pK < 1.

Assumption 8 requires that one can rank the probabilities of receiving treatment for the

points of P (Z) that are available, allowing the researcher to partition the [0, 1] interval into

regions [pℓ − pℓ−1] for ℓ = 2, ...,K. The researcher can only identify an average of the MTE

within each region, i.e., a LATE. Naturally, if the instrument has more points of positive

mass (providing finer partitions of the probabilities), one could obtain averages of the MTE

for more specific ranges of the unobservable characteristic V .22

The identification argument is similar to the one presented for the continuous instrument

case in Subsection 3.4. Under Assumption 1, we have pℓ = P [V ≤ P (zℓ)] and P [P (zℓ−1) < V ≤ P (zℓ)] =

pℓ − pℓ−1. If Assumptions 1 and 5 hold, then P (zℓ) = pℓ. To ease the exposition, we use the

shorthand P := P (Z).

We have P [Y ∈ A,S = 1, D = 1|P = pℓ] = P [Y ∗
1 ∈ A,S1 = 1, V ≤ pℓ]. Therefore,

P [Y ∗
1 ∈ A,S1 = 1, pℓ−1 < V ≤ pℓ] = P [Y ∈ A,S = 1, D = 1|P = pℓ]

22If for some values of Z, the probabilities are the same, pℓ = pℓ−1, we cannot refine the partition of the unit
interval describing the probabilities and, hence, cannot improve on the detail level of the MTE identified.
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−P [Y ∈ A,S = 1, D = 1|P = pℓ−1] ,

which implies that

P [Y ∗
1 ∈ A,S1 = 1|pℓ−1 < V ≤ pℓ] =

P [Y ∈ A,S = 1, D = 1|P = pℓ]− P [Y ∈ A,S = 1, D = 1|P = pℓ−1]

pℓ − pℓ−1
.

Similarly, we have

P [Y ∗
0 ∈ A,S0 = 1|pℓ−1 < V ≤ pℓ] =

−P [Y ∈ A,S = 1, D = 0|P = pℓ]− P [Y ∈ A,S = 1, D = 0|P = pℓ−1]

pℓ − pℓ−1
.

Thus for A = Y, we can write

P [S1 = 1|pℓ−1 < V ≤ pℓ] =
P [S = 1, D = 1|P = pℓ]− P [S = 1, D = 1|P = pℓ−1]

pℓ − pℓ−1
,

P [S0 = 1|pℓ−1 < V ≤ pℓ] = −P [S = 1, D = 0|P = pℓ]− P [S = 1, D = 0|P = pℓ−1]

pℓ − pℓ−1
.

We know that P [Y ∗
d ∈ A|Sd = 1, pℓ−1 < V ≤ pℓ] =

P[Y ∗
d
∈A,Sd=1|pℓ−1<V≤pℓ]

P[Sd=1|pℓ−1<V≤pℓ]
for d ∈ {0, 1}. Un-

der Assumption 6, we identify P [S0 = 1, S1 = 1|pℓ−1 < V ≤ pℓ] = P [S0 = 1|pℓ−1 < V ≤ pℓ].

To implement the trimming in this setting, we define the discrete case analog of α(p),

denoted by α̃(pℓ−1, pℓ),

α̃(pℓ−1, pℓ) :=
P [S0 = 1, S1 = 1|pℓ−1 < V ≤ pℓ]

P [S1 = 1|pℓ−1 < V ≤ pℓ]
=

E[S(1−D)|P = pℓ−1]− E[S(1−D)|P = pℓ]

E[SD|P = pℓ]− E[SD|P = pℓ−1]
.

To find bounds around E[Y ∗
1 − Y ∗

0 |S0 = 1, S1 = 1, pℓ−1 < V ≤ pℓ], we follow the steps in

Subsection 3.4 to derive the following proposition:

Proposition 5. Under Assumptions 1, 3-6 and 8, the LATE parameters are partially iden-
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tified for the always-observed, i.e.,

∆LATE (ℓ) ≤ LATEOO (ℓ) ≤ ∆LATE (ℓ)

for any ℓ ∈ {2, . . . ,K}, where LATEOO : {2, . . . ,K} → R, ∆LATE : {2, . . . ,K} → R and

∆LATE : {2, . . . ,K} → R are given by

LATEOO (ℓ) := E[Y ∗
1 − Y ∗

0 |S0 = 1, S1 = 1, pℓ−1 < V ≤ pℓ],

∆LATE (ℓ) := E

[
Y ∗
1 |S1 = 1, pℓ−1 < V ≤ pℓ, Y

∗
1 ≤ F−1

Y ∗
1 |S1=1,pℓ−1<V≤pℓ

(α̃(pℓ−1, pℓ))
]

− E[Y ∗
0 |S0 = 1, S1 = 1, pℓ−1 < V ≤ pℓ], and

∆LATE (ℓ) := E

[
Y ∗
1 |S1 = 1, pℓ−1 < V ≤ pℓ, Y

∗
1 > F−1

Y ∗
1 |S1=1,pℓ−1<V≤pℓ

(1− α̃(pℓ−1, pℓ))
]

− E[Y ∗
0 |S0 = 1, S1 = 1, pℓ−1 < V ≤ pℓ].

Moreover, these bounds are uniformly sharp.

As mentioned above, the quantity for which we derive bounds in Proposition 5 is an

average of the MTE(p) evaluated at levels of p in the interval (pℓ−1, pℓ], i.e., we partially

identify a LATE. More can be said about the MTE if additional assumptions are made. For

example, if we assume that the MTE is flat within each interval, then Proposition 5 provides

sharp bounds on the MTE for the always-observed. This result is related to previous work in

which discrete instruments are used to identify MTE in the absence of sample selection. For

example, Brinch, Mogstad, and Wiswall (2017) leverages additional functional structure for

identification, while Mogstad, Santos, and Torgovitsky (2018) provided partial identification

results for the MTE. An extension of their results to the current framework is an interesting

topic for future research.

7 Conclusion

This paper derives sharp bounds for the marginal treatment effect for the always-observed

individuals when there is sample selection. We achieve partial identification results under
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three increasingly restrictive sets of assumptions. First, we impose standard MTE assump-

tions without any restrictions to the sample selection mechanism. The second case, which is

our main result, imposes monotonicity of the sample selection variable with respect to the

treatment, considerably shrinking the identified set. Finally, we consider a strong stochastic

dominance assumption which tightens the lower bound for the MTE.

All the results rely on the insight that observed individuals in the sample are a mixture

of two possible groups, the ones that would always be observed regardless of treatment sta-

tus and the ones that would self-select into the sample only when (un)treated. The mixture

weights can be identified, leading to a trimming procedure that partially identifies the target

parameter, extending Imai (2008), Lee (2009) and Chen and Flores (2015) results to the con-

text of MTE. Moreover, we derive testable implications of our identifying assumptions, and

provide extensions to bound LATE parameters with multi-valued discrete instruments. A

feasible estimator is proposed and implemented in an empirical illustration analyzing the im-

pacts of managed health care options on health related expenditures, following Deb, Munkin,

and Trivedi (2006) and highlighting the practical relevance of the results.
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Supporting Information
(Online Appendix)

A Proofs

A.1 Proof of Lemma 1

The validity of the bounds is proven in the main text. It remains to show that the bounds

are uniformly sharp. Given the restrictions that Assumptions 1-5 impose on the data, we

need to find a joint distribution on (S̃0, S̃1, Ṽ , Z) that satisfies these restrictions and achieves

any value υ : [0, 1] → [0, 1] such that υ (p) ∈ Υ(p) for any p ∈ P = [p, p].

Define

υ(p) =





υ (p) ∈ Υ(p) if p ∈ [p, p]

ǫ0 ∈ [0, 1] if p < p

ǫ1 ∈ [0, 1] if p > p

We need to define the joint density (mass) function of (S̃0, S̃1, Ṽ , Z). To do so, we will define

the density function fṼ , define the mass function π̃(S̃0,S̃1)|Ṽ and use the density function of Z

— fZ — to define f(S̃0,S̃1),Ṽ ,Z = π̃(S̃0,S̃1)|Ṽ · fṼ · fZ . Note that, by construction, Assumption

1 holds. With this goal in mind, fix (s0, s1, p, z) ∈ {0, 1}2 × R
2 arbitrarily. Define fṼ (p) =

✶ {p ∈ [0, 1]}, ensuring that Assumption 5 holds by construction. For brevity, denote the

strata by OO = always observed, NO = observed only when treated, ON = observed only

when untreated and NN = never observed, and the probability of the stratum k conditional

on Ṽ = p by π̃k|p. We now propose the following DGP:

P

(
S̃1 = s1|Ṽ = p

)
=





∂P(S=s1,D=1|P (Z)=p)
∂p if p ∈ [p, p]

P(S=s1,D=1|P (Z)=p)
p if p < p

υ (p) · ✶{s1 = 1}+ (1− υ (p)) · ✶{s1 = 0} if p > p
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and

P

(
S̃0 = s0|Ṽ = p

)
=





−∂P(S=s0,D=0|P (Z)=p)
∂p if p ∈ [p, p]

υ (p) · ✶{s0 = 1}+ (1− υ (p)) · ✶{s0 = 0} if p < p

P(S=s0,D=0|P (Z)=p)
1−p if p > p

.

Define

π̃OO|p = υ(p)

π̃NO|p = P

(
S̃1 = 1|Ṽ = p

)
− υ(p)

π̃ON |p = P

(
S̃0 = 1|Ṽ = p

)
− υ(p)

π̃NN |p = 1− π̃OO|p − π̃NO|p − π̃ON |p.

We are going to show that the proposed joint distribution satisfies all restrictions on the

unconditional joint distribution of (S0, S1) and the marginals of S0 and S1. We define the

correspondence G between the unobservables (S0, S1) and the observables (S,D):

G{(0, 0)} = {(0, 0), (0, 1)}, G{(0, 1)} = {(0, 0), (1, 1)},

G{(1, 0)} = {(1, 0), (0, 1)}, G{(1, 1)} = {(1, 0), (1, 1)}.

By Galichon and Henry (2011, Theorem 1), we have that all restrictions on the unconditional

joint distribution of (S0, S1) and the marginals of S0 and S1 are given by: for all A ⊂

{(0, 0), (0, 1), (1, 0), (1, 1)},

P((S,D) ∈ A|Z = z) ≤ P(G(S0, S1) ∩A 6= ∅|Z = z)

= P(G(S0, S1) ∩A 6= ∅), ∀z ∈ Z,

that is:
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for singletons,

P(S = 1, D = 1|Z = z) ≤ πNO + πOO, (A.1)

P(S = 0, D = 1|Z = z) ≤ πNN + πON , (A.2)

P(S = 1, D = 0|Z = z) ≤ πOO + πON , (A.3)

P(S = 0, D = 0|Z = z) ≤ πNN + πNO; (A.4)

for pairs,

P(S = 1, D = 1|Z = z) + P(S = 1, D = 0|Z = z) ≤ πOO + πNO + πON , (A.5)

P(S = 1, D = 1|Z = z) + P(S = 0, D = 1|Z = z) ≤ 1, (A.6)

P(S = 1, D = 1|Z = z) + P(S = 0, D = 0|Z = z) ≤ πOO + πNN + πNO, (A.7)

P(S = 1, D = 0|Z = z) + P(S = 0, D = 1|Z = z) ≤ πNN + πOO + πON , (A.8)

P(S = 1, D = 0|Z = z) + P(S = 0, D = 0|Z = z) ≤ 1, (A.9)

P(S = 0, D = 1|Z = z) + P(S = 0, D = 0|Z = z) ≤ πNN + πNO + πON ; (A.10)

for triplets,

P(S = 1, D = 1|Z = z) + P(S = 1, D = 0|Z = z) + P(S = 0, D = 1|Z = z) ≤ 1,(A.11)

P(S = 1, D = 1|Z = z) + P(S = 1, D = 0|Z = z) + P(S = 0, D = 0|Z = z) ≤ 1,(A.12)

P(S = 1, D = 1|Z = z) + P(S = 0, D = 1|Z = z) + P(S = 0, D = 0|Z = z) ≤ 1,(A.13)

P(S = 1, D = 0|Z = z) + P(S = 0, D = 1|Z = z) + P(S = 0, D = 0|Z = z) ≤ 1.(A.14)

Restrictions (A.6), (A.9), (A.11)-(A.14) are redundant. We only need to check that π̃ satisfies

(A.1)-(A.4), (A.5), (A.7), (A.8), and (A.10). We have

π̃OO + π̃NO =

∫ 1

0
π̃OO|p + π̃NO|pdp =

∫ 1

0
P

(
S̃1 = 1|Ṽ = p

)
dp,

= P(S = 1, D = 1|P (Z) = p) + ǫ1(1− p),
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≥ P(S = 1, D = 1|P (Z) = p) = sup
p∈P

{P(S = 1, D = 1|P (Z) = p)} ,

= sup
P (z)∈P

{P(S = 1, D = 1|P (Z) = P (z))} = sup
z∈Z

{P(S = 1, D = 1|Z = z)}

because P(S = 1, D = 1|P (Z) = p) is increasing in p. Hence, condition (A.1) is satisfied.

Similarly, we can show that

π̃NN + π̃ON =

∫ 1

0
P

(
S̃1 = 0|Ṽ = p

)
dp,

= P(S = 0, D = 1|P (Z) = p) + (1− ǫ1)(1− p),

≥ sup
z∈Z

{P(S = 0, D = 1|Z = z)} .

Therefore, π̃ satisfies condition (A.2). Moreover, we have:

π̃OO + π̃ON =

∫ 1

0
π̃OO|p + π̃ON |pdp =

∫ 1

0
P

(
S̃0 = 1|Ṽ = p

)
dp,

= P(S = 1, D = 0|P (Z) = p) + ǫ0p,

≥ P(S = 1, D = 0|P (Z) = p) = sup
p∈P

{P(S = 1, D = 0|P (Z) = p)} ,

= sup
P (z)∈P

{P(S = 1, D = 0|P (Z) = P (z))} = sup
z∈Z

{P(S = 1, D = 0|Z = z)}

because P(S = 1, D = 0|P (Z) = p) is decreasing in p. Thus, condition (A.3) is satisfied.

Similarly, we have

π̃NN + π̃NO =

∫ 1

0
P

(
S̃0 = 0|Ṽ = p

)
dp,

= P(S = 0, D = 0|P (Z) = p) + (1− ǫ0)p,

≥ sup
z∈Z

{P(S = 0, D = 0|Z = z)} .

Hence, condition (A.4) is verified.

Condition (A.5) is equivalent to πNN ≤ P(S = 0, D = 1|Z = z) + P(S = 0, D = 0|Z = z). By

definition,

π̃NN |p = 1− P(S̃1 = 1|Ṽ = p)− P(S̃0 = 1|Ṽ = p) + υ(p),

47



=





P(S̃1 = 0|Ṽ = p)− P(S̃0 = 1|Ṽ = p) + υ(p)

P(S̃0 = 0|Ṽ = p)− P(S̃1 = 1|Ṽ = p) + υ(p)

≤





P(S̃1 = 0|Ṽ = p)

P(S̃0 = 0|Ṽ = p)

since υ(p) ≤ min
{
P(S̃1 = 1|Ṽ = p),P(S̃0 = 1|Ṽ = p)

}
. Thus,

π̃NN |p ≤ min
{
P(S̃1 = 0|Ṽ = p),P(S̃0 = 0|Ṽ = p)

}
,

≤ P(S̃1 = 0|Ṽ = p)λ(z) + P(S̃0 = 0|Ṽ = p)(1− λ(z)) for all λ(z) ∈ [0, 1],

≤ P(S̃1 = 0|Ṽ = p)✶{p ≤ P (z)}+ P(S̃0 = 0|Ṽ = p)✶{p > P (z)} for λ(z) = ✶{p ≤ P (z)},

which implies

∫ 1

0
π̃NN |pdp ≤

∫ 1

0
P(S̃1 = 0|Ṽ = p)✶{p ≤ P (z)}dp+

∫ 1

0
P(S̃0 = 0|Ṽ = p)✶{p > P (z)}dp,

= P(S = 0, D = 1|P (Z) = P (z)) + P(S = 0, D = 0|P (Z) = P (z)),

= P(S = 0, D = 1|Z = z) + P(S = 0, D = 0|Z = z).

Hence, π̃NN ≤ P(S = 0, D = 1|Z = z) + P(S = 0, D = 0|Z = z) for all z ∈ Z and Condition

(A.5) holds.

Condition (A.10) is equivalent to πOO ≤ P(S = 1, D = 1|Z = z)+P(S = 1, D = 0|Z = z).

We have π̃OO|p = υ(p) ≤ min
{
P(S̃1 = 1|Ṽ = p),P(S̃0 = 1|Ṽ = p)

}
. Using a reasoning similar

to the previous derivation, we obtain π̃OO ≤ P(S = 1, D = 1|Z = z)+P(S = 1, D = 0|Z = z).

Condition (A.7) is equivalent to πON ≤ P(S = 1, D = 0|Z = z)+P(S = 0, D = 1|Z = z), while

condition (A.8) is equivalent to πNO ≤ P(S = 0, D = 0|Z = z) + P(S = 1, D = 1|Z = z). We

are going to show that (A.8) is satisfied, and similar derivation holds for (A.7). By definition,

π̃NO|p = P(S̃1 = 1|Ṽ = p)− υ(p),

≤





P(S̃1 = 1|Ṽ = p) since υ(p) ≥ 0

P(S̃0 = 0|Ṽ = p) since υ(p) ≥ P(S̃1 = 1|Ṽ = p) + P(S̃0 = 1|Ṽ = p)− 1
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≤ min
{
P(S̃1 = 1|Ṽ = p),P(S̃0 = 0|Ṽ = p)

}
,

≤ P(S̃1 = 1|Ṽ = p)✶{p ≤ P (z)}+ P(S̃0 = 0|Ṽ = p)✶{p > P (z)}.

Therefore, by taking the integral of each side over [0,1], the result follows as for π̃NO:

π̃NO ≤ P(S = 1, D = 1|Z = z) + P(S = 0, D = 0|Z = z).

A.2 Proof of Proposition 1

The validity of the bounds is proven in the main text. It remains to show that the bounds

are uniformly sharp. Given the restrictions that Assumptions 1-5 impose on the data (i.e.,

equations (3.1) and (3.2)), we need to find a joint distribution on (Ỹ ∗
0 , Ỹ

∗
1 , S̃0, S̃1, Ṽ , Z) that

satisfies these restrictions, induces the joint distribution on the data (Y, S,D,Z), and achieves

any value δ ∈
[
∆1,∆1

]
. To do so, assume that Y ∗ is absolutely continuous and has a strictly

positive density.

First, we show that the lower bound ∆1 : P → R is attainable. We need to define the joint

density (mass) function of (Ỹ ∗
0 , Ỹ

∗
1 , S̃0, S̃1, Ṽ , Z). To do so, we will define the density functions

f Ỹ ∗
0 |S̃0,S̃1,Ṽ

, f Ỹ ∗
1 |S̃0,S̃1,Ṽ

and fṼ , define the mass function π̃(S̃0,S̃1)|Ṽ and use the density func-

tion of Z — fZ — to define fỸ ∗
0 ,Ỹ ∗

1 ,(S̃0,S̃1),Ṽ ,Z = f Ỹ ∗
0 |S̃0,S̃1,Ṽ

·f Ỹ ∗
1 |S̃0,S̃1,Ṽ

·π̃(S̃0,S̃1)|Ṽ ·fṼ ·fZ . Note

that, by construction, Assumption 1 holds. With this goal in mind, fix (s0, s1, y0, y1, p, z) ∈

{0, 1}2 × R
4 arbitrarily. Define fṼ (p) = ✶ {p ∈ [0, 1]}, ensuring that Assumption 5 holds by

construction. Define

υ(p) =





υ(p) = argminυ∈Υ(p) {LB1(p, υ)− UB0(p, υ)} if p ∈ [p, p]

ǫ0 ∈ [0, 1] if p < p

ǫ1 ∈ [0, 1] if p > p

where LB1(p, υ) and UB0(p, υ) are defined in Subsection 3.3. For brevity, denote the strata

by OO = always observed, NO = observed only when treated, ON = observed only when

untreated and NN = never observed, and the probability of the stratum k conditional on
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Ṽ = p by π̃k|p. Define

P

(
S̃1 = s1|Ṽ = p

)
=





∂P(S=s1,D=1|P (Z)=p)
∂p if p ∈ [p, p]

P(S=s1,D=1|P (Z)=p)
p if p < p

υ(p) · ✶{s1 = 1}+ (1− υ(p)) · ✶{s1 = 0} if p > p

and

P

(
S̃0 = s0|Ṽ = p

)
=





−∂P(S=s0,D=0|P (Z)=p)
∂p if p ∈ [p, p]

υ(p) · ✶{s0 = 1}+ (1− υ(p)) · ✶{s0 = 0} if p < p

P(S=s0,D=0|P (Z)=p)
1−p if p > p

The probabilities π̃k|p are given by:

π̃OO|p = υ(p)

π̃NO|p = P

(
S̃1 = 1|Ṽ = p

)
− υ(p)

π̃ON |p = P

(
S̃0 = 1|Ṽ = p

)
− υ(p)

π̃NN |p = 1− π̃OO|p − π̃NO|p − π̃ON |p.

Note that the above quantities are positive according to Lemma 1 and add up to 1 by con-

struction.

Define

P

(
Ỹ ∗
1 ≤ y1, S̃1 = s1|Ṽ = p

)
=





∂P(Y≤y1,S=s1,D=1|P (Z)=p)
∂p if p ∈ [p, p]

P(Y≤y1,S=s1,D=1|P (Z)=p)
p if p < p

(υ(p) · ✶{s1 = 1}+ (1− υ(p)) · ✶{s1 = 0})P(Y ≤ y1) if p > p
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and

P

(
Ỹ ∗
0 ≤ y0, S̃0 = s0|Ṽ = p

)
=





−∂P(Y≤y0,S=s0,D=0|P (Z)=p)
∂p if p ∈ [p, p]

(υ(p) · ✶{s0 = 1}+ (1− υ(p)) · ✶{s0 = 0})P(Y ≤ y0) if p < p

P(Y≤y0,S=s0,D=0|P (Z)=p)
1−p if p > p

Now, we define f Ỹ ∗
0 |S̃0,S̃1,Ṽ

(y0| k, p) = ∂P(Ỹ ∗
0 ≤y0|k,Ṽ=p)

∂y0
and f Ỹ ∗

1 |S̃0,S̃1,Ṽ
(y1| k, p) = ∂P(Ỹ ∗

1 ≤y1|k,Ṽ=p)
∂y1

for any k ∈ {OO,NO,ON,NN}, where we only need to define
∂P(Ỹ ∗

0 ≤y0|k,Ṽ=p)
∂y0

and
∂P(Ỹ ∗

1 ≤y1|k,Ṽ=p)
∂y1

.

Note that the data restriction imposed by equation (3.1) is satisfied by (Ỹ ∗
1 , S̃1, Ṽ , Z), imply-

ing that F Ỹ1,S̃1|Ṽ is a proper C.D.F.. Note also that the data restriction imposed by equation

(3.2) is satisfied by (Ỹ ∗
0 , S̃0, Ṽ , Z) , implying that F Ỹ0,S̃0|Ṽ is a proper C.D.F.. Suppose that

Ỹ0 ∼ FỸ ∗
0 |S̃0=1,Ṽ=p and Ỹ1 ∼ FỸ ∗

1 |S̃1=1,Ṽ=p. Define

P(Ỹ ∗
1 ≤ y1|OO, Ṽ = p) = P

(
Ỹ1 ≤ y1|Ỹ1 ≤ F−1

Ỹ1

(
π̃OO|p

π̃OO|p + π̃NO|p

))
,

P(Ỹ ∗
1 ≤ y1|NO, Ṽ = p) = P

(
Ỹ1 ≤ y1|Ỹ1 > F−1

Ỹ1

(
π̃OO|p

π̃OO|p + π̃NO|p

))
,

P(Ỹ ∗
1 ≤ y1|k, Ṽ = p) =

P(Ỹ ∗
1 ≤ y1, S̃1 = 1|Ṽ = p)

P(S̃1 = 1|Ṽ = p)
, k ∈ {ON,NN}

P(Ỹ ∗
0 ≤ y0|OO, Ṽ = p) = P

(
Ỹ0 ≤ y0|Ỹ0 > F−1

Ỹ0

(
π̃ON |p

π̃OO|p + π̃ON |p

))
,

P(Ỹ ∗
0 ≤ y0|ON, Ṽ = p) = P

(
Ỹ0 ≤ y0|Ỹ0 ≤ F−1

Ỹ0

(
π̃ON |p

π̃OO|p + π̃ON |p

))
,

P(Ỹ ∗
0 ≤ y0|k, Ṽ = p) =

P(Ỹ ∗
0 ≤ y0, S̃0 = 1|Ṽ = p)

P(S̃0 = 1|Ṽ = p)
, k ∈ {NO,NN} .

Notice that the lower bound in Proposition 1 is attained by the distributions of Ỹ ∗
0

∣∣∣OO, Ṽ

and Ỹ ∗
1

∣∣∣OO, Ṽ , i.e.,

∆1 (p) = E

[
Ỹ ∗
1 − Ỹ ∗

0 |OO, Ṽ = p
]

for any p ∈ P. Finally, we show that the joint distribution of (Ỹ ∗
0 , Ỹ

∗
1 , S̃0, S̃1, Ṽ , Z) induces the

joint distribution on the data (Y, S,D,Z). Define D̃ = ✶

{
Ṽ ≤ P (Z)

}
. For any (y, z) ∈ R×Z,

P

(
Ỹ ≤ y, S̃ = 1, D̃ = 1

∣∣∣Z = z
)
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= P

(
Ỹ ∗
1 ≤ y, S̃1 = 1, Ṽ ≤ P (z)

∣∣∣Z = z
)

= P

(
Ỹ ∗
1 ≤ y, S̃1 = 1, Ṽ ≤ P (z)

)

=

∫ P (z)

0
P

(
Ỹ ∗
1 ≤ y, S̃1 = 1

∣∣∣ Ṽ = v
)
dv

=

∫ p

0

P(Y ≤ y, S = 1, D = 1|P (Z) = p)

p
dv +

∫ P (z)

p

∂P(Y ≤ y, S = 1, D = 1|P (Z) = v)

∂p
dv

= P (Y ≤ y, S = 1, D = 1|P (Z) = P (z))

= P (Y ≤ y, S = 1, D = 1|Z = z)

where the last equality is a testable implication of the model (see Appendix B). Analogously,

P

(
Ỹ ≤ y, S̃ = 1, D̃ = 0

∣∣∣Z = z
)
= P (Y ≤ y, S = 1, D = 0|Z = z) ,

P

(
S̃ = 0, D̃ = 1

∣∣∣Z = z
)
= P (S = 0, D = 1|Z = z) ,

P

(
S̃ = 0, D̃ = 0

∣∣∣Z = z
)
= P (S = 0, D = 0|Z = z) .

Similar reasoning holds for the upper bound, ∆1. To attain any function δ ∈
(
∆1,∆1

)
,

we can use convex combinations of the joint distributions that achieve the lower and upper

bounds, where the weights of the convex combination may depend on the value p ∈ P.

A.3 Proof of Proposition 2

The validity of the bounds is proven in the main text. It remains to show that the bounds

are uniformly sharp. Given the restrictions that Assumptions 1-6 impose on the data (i.e.,

equations (3.1) and (3.2)), we need to find a joint distribution on (Ỹ ∗
0 , Ỹ

∗
1 , S̃0, S̃1, Ṽ , Z) that

satisfies these restrictions, induces the joint distribution on the data (Y, S,D,Z), and achieves

any value δ ∈
[
∆2,∆2

]
. Assume that Y ∗ is absolutely continuous with strictly positive density.

First, we show that the lower bound ∆2 : P → R is attainable. We need to define the

joint density (mass) function of (Ỹ ∗
0 , Ỹ

∗
1 , S̃0, S̃1, Ṽ , Z). To do so, define the density functions

f Ỹ ∗
0 |S̃0,S̃1,Ṽ

, f Ỹ ∗
1 |S̃0,S̃1,Ṽ

and fṼ , define the mass function π̃(S̃0,S̃1)|Ṽ and use the density func-

tion of Z — fZ — to obtain fỸ ∗
0 ,Ỹ ∗

1 ,(S̃0,S̃1),Ṽ ,Z = f Ỹ ∗
0 |S̃0,S̃1,Ṽ

· f Ỹ ∗
1 |S̃0,S̃1,Ṽ

· π̃(S̃0,S̃1)|Ṽ · fṼ · fZ .
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Then, by construction, Assumption 1 holds. Fix (s0, s1, y0, y1, p, z) ∈ {0, 1}2 ×R
4 arbitrarily.

Define fṼ (p) = ✶ {p ∈ [0, 1]}, ensuring Assumption 5 holds by construction. For brevity,

denote the strata by OO = always observed, NO = observed only when treated and NN =

never observed, and the probability of the stratum k conditional on Ṽ = p by π̃k|p. Define

P

(
Ỹ ∗
1 ≤ y1, S̃1 = 1|Ṽ = p

)
=





∂P(Y≤y1,S=1,D=1|P (Z)=p)
∂p if p ∈ [p, p]

P(Y≤y1,S=1,D=1|P (Z)=p)
p if p < p

P(Y≤y1,S=1,D=0|P (Z)=p)
1−p if p > p

P

(
S̃1 = 0|Ṽ = p

)
=





∂P(S=0,D=1|P (Z)=p)
∂p if p ∈ [p, p]

P(S=0,D=1|P (Z)=p)
p if p < p

P(S=0,D=0|P (Z)=p)
1−p if p > p

P

(
Ỹ ∗
0 ≤ y0, S̃0 = 1|Ṽ = p

)
=





−∂P(Y≤y0,S=1,D=0|P (Z)=p)
∂p if p ∈ [p, p]

ǫ
P(Y≤y0,S=1,D=1|P (Z)=p)

p if p < p

P(Y≤y0,S=1,D=0|P (Z)=p)
1−p if p > p

P

(
S̃0 = 0|Ṽ = p

)
=





−∂P(S=0,D=0|P (Z)=p)
∂p if p ∈ [p, p]

1− ǫ
P(S=1,D=1|P (Z)=p)

p if p < p

P(S=0,D=0|P (Z)=p)
1−p if p > p

where ǫ ∈ (0, 1).

The probabilities π̃k|p are given by:

π̃OO|p = P(S̃0 = 1|Ṽ = p)

π̃NO|p = P(S̃1 = 1|Ṽ = p)− P(S̃0 = 1|Ṽ = p)
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π̃NN |p = P(S̃1 = 0|Ṽ = p).

Under Assumptions 1-6, the above quantities are positive, and add to one. For p ∈ P,

π̃OO|p + π̃NO|p = P(S̃1 = 1|Ṽ = p)

=
∂P(S = 1, D = 1|P (Z) = p)

∂p
,

implying that

π̃OO|p + π̃NO|p + π̃NN |p =
∂P(S = 0, D = 1|P (Z) = p)

∂p
+
∂P(S = 1, D = 1|P (Z) = p)

∂p
,

=
∂P(D = 1|P (Z) = p)

∂p
.

We also have

P(D = 1|P (Z) = p) = P(V ≤ p|P (Z) = p) by definition,

= P(V ≤ p) under Assumption 1,

= p under Assumption 5.

Therefore, π̃OO|p,z + π̃NO|p,z + π̃NN |p,z = 1. The same result holds for p < p and p > p from

the fact that P(D = 1|P (Z) = p) = p and P(D = 0|P (Z) = p) = 1− p.

Now, define f Ỹ ∗
0 |S̃0,S̃1,Ṽ

(y0| k, p) = ∂P(Ỹ ∗
0 ≤y0|k,Ṽ=p)

∂y0
and f Ỹ ∗

1 |S̃0,S̃1,Ṽ
(y1| k, p) = ∂P(Ỹ ∗

1 ≤y1|k,Ṽ=p)
∂y1

for any k ∈ {OO,NO,NN}, where we only need to characterize
∂P(Ỹ ∗

0 ≤y0|k,Ṽ=p)
∂y0

and
∂P(Ỹ ∗

1 ≤y1|k,Ṽ=p)
∂y1

.

The data restriction imposed by equation (3.1) is satisfied by (Ỹ ∗
1 , S̃1, Ṽ , Z), implying that

F Ỹ1,S̃1|Ṽ is a proper CDF. Similarly, the data restriction imposed by equation (3.2) is satisfied

by (Ỹ ∗
0 , S̃0, Ṽ , Z), and F Ỹ0,S̃0|Ṽ is a proper CDF. Suppose that Ỹ1 ∼ FỸ ∗

1 |S̃1=1,Ṽ=p. Define

P(Ỹ ∗
1 ≤ y1|OO, Ṽ = p) = P

(
Ỹ1 ≤ y1|Ỹ1 ≤ F−1

Ỹ1

(
π̃OO|p

π̃OO|p + π̃NO|p

))
, (A.15)

P(Ỹ ∗
1 ≤ y1|NO, Ṽ = p) = P

(
Ỹ1 ≤ y1|Ỹ1 > F−1

Ỹ1

(
π̃OO|p

π̃OO|p + π̃NO|p

))
, (A.16)
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P(Ỹ ∗
1 ≤ y1|NN, Ṽ = p) =

P(Ỹ ∗
1 ≤ y1, S̃1 = 1|Ṽ = p)

P(S̃1 = 1|Ṽ = p)
,

P(Ỹ ∗
0 ≤ y0|k, Ṽ = p) =

P(Ỹ ∗
0 ≤ y0, S̃0 = 1|Ṽ = p)

P(S̃0 = 1|Ṽ = p)
, k ∈ {OO,NO,NN} .

Notice that the lower bound in Proposition 2 is attained by the distributions of Ỹ ∗
0

∣∣∣OO, Ṽ

and Ỹ ∗
1

∣∣∣OO, Ṽ because

∆2 (p) = E

[
Ỹ ∗
1 − Ỹ ∗

0 |OO, Ṽ = p
]
for any p ∈ P.

Finally, the joint distribution of (Ỹ ∗
0 , Ỹ

∗
1 , S̃0, S̃1, Ṽ , Z) induces the joint distribution on the

data (Y, S,D,Z) by construction. The proof is identical to the proof in Appendix A.2.

Similar reasoning holds for the upper bound, ∆2. To attain any function δ ∈
(
∆2,∆2

)
,

we can use convex combinations of the joint distributions that achieve the lower and upper

bounds, where the weights of the convex combination may depend on the value p ∈ P.

A.4 Proof of Proposition 3

The validity of the bounds is proven in the main text. It remains to show that the bounds

are sharp. Given the restrictions that Assumptions 1-7 impose on the data (i.e., equations

(3.1) and (3.2)), we need to find joint distributions on (Ỹ ∗
0 , Ỹ

∗
1 , S̃0, S̃1, Ṽ , Z) that satisfy these

restrictions, satisfy the stochastic dominance assumption, induce the joint distribution on the

data (Y, S,D,Z), and achieve any value δ ∈
[
∆3,∆3

]
.

The proof of Proposition 3 is very similar to the one in Appendix A.3. We only have to

modify equations (A.15) and (A.16) to:

P(Ỹ ∗
1 ≤ y1|OO, Ṽ = p) = P

(
Ỹ1 ≤ y1

)
,

P(Ỹ ∗
1 ≤ y1|NO, Ṽ = p) = P

(
Ỹ1 ≤ y1

)
.

These changes ensure that the joint distribution of (Ỹ ∗
0 , Ỹ

∗
1 , S̃0, S̃1, Ṽ , Z) satisfy the Stochastic

Dominance Assumption by construction.
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A.5 Proof of Proposition 4

The validity of the bounds is proven in the main text. We first prove that the bounds

around TE under Assumptions (1)-(6) are sharp. Pick any treatment effect parameter TE :=
∫
P MTEOO (p) · ω (p) dp, where the weighting function ω : P → R is known or identified.

Given the restrictions that Assumptions (1)-(6) impose on the data (i.e., equations (3.1)

and (3.2)), we need to find a joint distribution on (Ỹ ∗
0 , Ỹ

∗
1 , S̃0, S̃1, Ṽ , Z) that satisfies these

restrictions, induces the joint distribution on the data (Y, S,D,Z), and achieves any value

δ ∈
[∫

P (∆2 (p) · ω (p)) dp,
∫
P (∆2 (p) · ω (p)) dp

]
. To do so, assume that Y ∗ is absolutely

continuous and has a strictly positive density.

First, we show that the lower bound ∆2 : P → R is attainable. The joint density (mass)

function of (Ỹ ∗
0 , Ỹ

∗
1 , S̃0, S̃1, Ṽ , Z) is defined as the same distribution used for Proposition 2.

Now, observe that the lower bound
∫
P (∆2 (p) · ω (p)) dp in Proposition 4 is attained by

the distributions of Ỹ ∗
0

∣∣∣OO, Ṽ and Ỹ ∗
1

∣∣∣OO, Ṽ because

∆2 (p) = E

[
Ỹ ∗
1 − Ỹ ∗

0 |OO, Ṽ = p
]
for any p ∈ P, and

∫

P
(∆2 (p) · ω (p)) dp =

∫

P

(
E

[
Ỹ ∗
1 − Ỹ ∗

0 |OO, Ṽ = p
]
· ω (p)

)
dp.

Finally, the joint distribution of (Ỹ ∗
0 , Ỹ

∗
1 , S̃0, S̃1, Ṽ , Z) induces the joint distribution on the

data (Y, S,D,Z) by construction. The proof is identical to the proof in Appendix A.3.

Similar reasoning holds for the upper bound,
∫
P
(
∆2 (p) · ω (p)

)
dp. To attain any value

δ ∈
(∫

P (∆2 (p) · ω (p)) dp,
∫
P
(
∆2 (p) · ω (p)

)
dp
)
, we can use convex combinations of the joint

distributions that achieve the lower and upper bounds, where the weights of the convex

combination does not depend on the value p ∈ P.

The proofs that the bounds around TE under Assumptions 1-5 and 1-7 are similar to the

proof above and they use the distributions described in Appendices A.2 and A.4.
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A.6 Deriving Identifiable Weights for ATEOO, ATTOO, ATUOO, LATEOO and

PRTEOO (Tables 2 and 3)

In this section, we refer to the Law of Iterated Expectations using its acronym, LIE.

A.6.1 ATE within the always-observed population

Observe that

ATEOO := E [Y ∗
1 − Y ∗

0 |S0 = 1, S1 = 1]

= E [E [Y ∗
1 − Y ∗

0 |V, S0 = 1, S1 = 1]|S0 = 1, S1 = 1] (LIE)

=

∫ 1

0
MTEOO (p) · fV |S0=1,S1=1 (p) dp (Equation (2.2) and the expectation operator)

=

∫ 1

0

MTEOO (p) · P [S0 = 1, S1 = 1|V = p]

P [S0 = 1, S1 = 1]
· fV (p) dp (Bayes’ rule)

=

∫ 1

0

MTEOO (p) · P [S0 = 1, S1 = 1|V = p]

P [S0 = 1, S1 = 1]
dp (Assumption 5)

=

∫
1

0

MTEOO (p) · P [S0 = 1, S1 = 1|V = p]∫ 1
0 P [S0 = 1, S1 = 1|V = p] dp

dp (Assumption 5)

=

∫
1

0

MTEOO (p) ·




∂P [S = 1, D = 0|P (Z) = p]

∂p∫
1

0

∂P [S = 1, D = 0|P (Z) = p]

∂p
dp


 dp (Equation (3.13)),

implying that ωATE (p) =

∂P [S = 1, D = 0|P (Z) = p]

∂p∫
1

0

∂P [S = 1, D = 0|P (Z) = p]

∂p
dp

.
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A.6.2 ATT within the always-observed population

Observe that

ATTOO := E [Y ∗
1 − Y ∗

0 |D = 1, S0 = 1, S1 = 1]

= E [Y ∗
1 − Y ∗

0 |V ≤ P (Z) , S0 = 1, S1 = 1] (Equation (2.1))

=
E [✶ {V ≤ P (Z)} · (Y ∗

1 − Y ∗
0 )|S0 = 1, S1 = 1]

P [V ≤ P (Z)|S0 = 1, S1 = 1]

=
E [✶ {V ≤ P (Z)} · (Y ∗

1 − Y ∗
0 )|S0 = 1, S1 = 1]

P [V ≤ P (Z) , S0 = 1, S1 = 1]

P [S0 = 1, S1 = 1]

(by the definition of a conditional expectation)

=
E [✶ {V ≤ P (Z)} · E [Y ∗

1 − Y ∗
0 |V, P (Z) , S0 = 1, S1 = 1]|S0 = 1, S1 = 1]

E [✶ {V ≤ P (Z)} · P [S0 = 1, S1 = 1|V, P (Z)]]

P [S0 = 1, S1 = 1]

(LIE)

=

∫ 1
0

∫ 1
p E [Y ∗

1 − Y ∗
0 |V = p, P (Z) = u, S0 = 1, S1 = 1] · fP (Z),V |S0=1,S1=1 (u, p) du dp∫ 1

0

∫ 1
p P [S0 = 1, S1 = 1|V = p, P (Z) = u] · fP (Z),V (u, p) du dp

P [S0 = 1, S1 = 1]

=

∫ 1
0

∫ 1
p E [Y ∗

1 − Y ∗
0 |V = p, S0 = 1, S1 = 1] · fP (Z) (u) · fV |S0=1,S1=1 (p) du dp∫ 1

0

∫ 1
p P [S0 = 1, S1 = 1|V = p] · fP (Z) (u) · fV (p) du dp

P [S0 = 1, S1 = 1]

(Assumption 1)

=

∫ 1
0 MTEOO (p) ·

(∫ 1
p fP (Z) (u) du

)
· fV |S0=1,S1=1 (p) dp

∫ 1
0

(∫ 1
p fP (Z) (u) du

)
· P [S0 = 1, S1 = 1|V = p] dp

P [S0 = 1, S1 = 1]

by Assumption 5, definition (2.2) and the linearity of the integral operator,
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=

∫
1

0
MTEOO (p) ·

(∫ 1
p fP (Z) (u) du

)
· P [S0 = 1, S1 = 1|V = p]

P [S0 = 1, S1 = 1]
dp

∫ 1
0

(∫ 1
p fP (Z) (u) du

)
· P [S0 = 1, S1 = 1|V = p] dp

P [S0 = 1, S1 = 1]

by the argument outlined in Appendix A.6.1,

=

∫
1

0

MTEOO (p) ·

(∫ 1
p fP (Z) (u) du

)
· P [S0 = 1, S1 = 1|V = p]

∫ 1
0

(∫ 1
p fP (Z) (u) du

)
· P [S0 = 1, S1 = 1|V = p] dp

dp

=

∫
1

0

MTEOO (p) ·




(∫ 1
p fP (Z) (u) du

)
· ∂P [S = 1, D = 0|P (Z) = p]

∂p∫
1

0

(∫ 1
p fP (Z) (u) du

)
· ∂P [S = 1, D = 0|P (Z) = p]

∂p
dp


 dp

by Equation (3.13),

implying that ωATT (p) =

(∫ 1
p fP (Z) (u) du

)
· ∂P [S = 1, D = 0|P (Z) = p]

∂p∫
1

0

(∫ 1
p fP (Z) (u) du

)
· ∂P [S = 1, D = 0|P (Z) = p]

∂p
dp

.

A.6.3 ATU within the always-observed population

Analogously to Appendix A.6.2, we have that

ATUOO := E [Y ∗
1 − Y ∗

0 |D = 0, S0 = 1, S1 = 1]

=

∫
1

0

MTEOO (p) ·




(∫ p
0 fP (Z) (u) du

)
· ∂P [S = 1, D = 0|P (Z) = p]

∂p∫
1

0

(∫ p
0 fP (Z) (u) du

)
· ∂P [S = 1, D = 0|P (Z) = p]

∂p
dp


 dp
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implying that ωATU (p) =

(∫ p
0 fP (Z) (u) du

)
· ∂P [S = 1, D = 0|P (Z) = p]

∂p∫
1

0

(∫ p
0 fP (Z) (u) du

)
· ∂P [S = 1, D = 0|P (Z) = p]

∂p
dp

.

A.6.4 LATE within the always-observed population

Observe that, for any
(
p, p
)
∈ [0, 1]2 ,

LATEOO(p, p) = E
[
Y ∗
1 − Y ∗

0

∣∣V ∈
[
p, p
]
, S0 = 1, S1 = 1

]
,

=

∫ p

p
E [Y ∗

1 − Y ∗
0 |V = p, S0 = 1, S1 = 1] fV |S0=1,S1=1 (p) dp.

The proof is similar to that of ATEOO, except that the integral is over
[
p, p
]
instead of [0, 1].

Consequently, we have that ωLATE (p) =

∂P [S = 1, D = 0|P (Z) = p]

∂p∫
p

p

∂P [S = 1, D = 0|P (Z) = p]

∂p
dp

.

A.6.5 PRTE within the always-observed population

First, we need to define a policy. A policy a is a reassignment of the treatment based on

Da = ✶ {V ≤ Pa}, where the random variable Pa is distributed according to the density fPa

and to the cumulative distribution function FPa . The new random variable Pa is still assumed

to be independent of (V, Y ∗
0 , Y

∗
1 , S0, S1). Moreover, we define the possibly censored outcome

under policy a as Y ∗ := DaY
∗
1 + (1−Da)Y

∗
0 .

Now, observe that, for a policy a,

E [Y ∗
a |S0 = 1, S1 = 1]

= E [E [Y ∗
a |Pa, S0 = 1, S1 = 1]|S0 = 1, S1 = 1] (LIE)

=

∫ 1

0
E [Y ∗

a |Pa = u, S0 = 1, S1 = 1] · fPa|S0=1,S1=1 (u) du

=

∫ 1

0
E [Y ∗

a |Pa = u, S0 = 1, S1 = 1] · fPa (u) du

because Pa ⊥⊥ (V, Y ∗
0 , Y

∗
1 , S0, S1) ,
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=

∫ 1

0
E [DaY

∗
1 + (1−Da)Y

∗
0 |Pa = u, S0 = 1, S1 = 1] · fPa (u) du (by definition)

=

∫ 1

0
E [✶ {V ≤ u} · Y ∗

1 |Pa = u, S0 = 1, S1 = 1] · fPa (u) du

+

∫ 1

0
E [✶ {u < V } · Y ∗

0 |Pa = u, S0 = 1, S1 = 1] · fPa (u) du

=

∫ 1

0
E [✶ {V ≤ u} · Y ∗

1 |S0 = 1, S1 = 1] · fPa (u) du

+

∫ 1

0
E [✶ {u < V } · Y ∗

0 |S0 = 1, S1 = 1] · fPa (u) du

because Pa ⊥⊥ (V, Y ∗
0 , Y

∗
1 , S0, S1) ,

=

∫ 1

0
E [✶ {V ≤ u} · E [Y ∗

1 |V, S0 = 1, S1 = 1]|S0 = 1, S1 = 1] · fPa (u) du

+

∫ 1

0
E [✶ {u < V } · E [Y ∗

0 |V, S0 = 1, S1 = 1]|S0 = 1, S1 = 1] · fPa (u) du (LIE)

=

∫ 1

0

[∫ u

0
E [Y ∗

1 |V = p, S0 = 1, S1 = 1] · fV |S0=1,S1=1 (p) dp

]
· fPa (u) du

+

∫ 1

0

[∫ 1

u
E [Y ∗

0 |V = p, S0 = 1, S1 = 1] · fV |S0=1,S1=1 (p) dp

]
· fPa (u) du

=

∫ 1

0
E [Y ∗

1 |V = p, S0 = 1, S1 = 1] ·
(∫ 1

p
fPa (u) du

)
· fV |S0=1,S1=1 (p) dp

+

∫ 1

0
E [Y ∗

0 |V = p, S0 = 1, S1 = 1] ·
(∫ p

0
fPa (u) du

)
· fV |S0=1,S1=1 (p) dp

by Assumption 4 and Fubini’s Theorem,

=

∫ 1

0
E [Y ∗

1 |V = p, S0 = 1, S1 = 1] · (1− FPa (p)) · fV |S0=1,S1=1 (p) dp

+

∫ 1

0
E [Y ∗

0 |V = p, S0 = 1, S1 = 1] · FPa (p) · fV |S0=1,S1=1 (p) dp (by definition)

=

∫ 1

0
E [Y ∗

1 |V = p, S0 = 1, S1 = 1] · fV |S0=1,S1=1 (p) dp

−
∫ 1

0
MTEOO (p) · FPa (p) · fV |S0=1,S1=1 (p) dp (Equation (2.2)).

Analogously, we have that, for a policy a′,

E [Y ∗
a′ |S0 = 1, S1 = 1]

=

∫ 1

0
E [Y ∗

1 |V = p, S0 = 1, S1 = 1] · fV |S0=1,S1=1 (p) dp
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−
∫ 1

0
MTEOO (p) · FPa′

(p) · fV |S0=1,S1=1 (p) dp.

Combining the last two results, we have that

PRTEOO :=
E
[
Y ∗
a − Y ∗

a′ |S0 = 1, S1 = 1
]

∫ 1
0

(
FPa′

(p)− FPa (p)
)
· fV |S0=1,S1=1 (p) dp

=

∫ 1
0 MTEOO (p) ·

(
FPa′

(p)− FPa (p)
)
· fV |S0=1,S1=1 (p) dp∫ 1

0

(
FPa′

(p)− FPa (p)
)
· fV |S0=1,S1=1 (p) dp

=

∫ 1
0 MTEOO (p) ·

(
FPa′

(p)− FPa (p)
)
· P [S0 = 1, S1 = 1|V = p] dp

∫ 1
0

(
FPa′

(p)− FPa (p)
)
· P [S0 = 1, S1 = 1|V = p] dp

by the argument outlined in Appendix A.6.1,

=

∫
1

0

MTEOO (p) ·




(
FPa′

(p)− FPa (p)
)
· ∂P [S = 1, D = 0|P (Z) = p]

∂p∫
1

0

(
FPa′

(p)− FPa (p)
)
· ∂P [S = 1, D = 0|P (Z) = p]

∂p
dp


 dp

by Equation (3.13),

implying that ωPRTE (p, a, a′) =

(
FPa′

(p)− FPa (p)
)
· ∂P [S = 1, D = 0|P (Z) = p]

∂p∫
1

0

(
FPa′

(p)− FPa (p)
)
· ∂P [S = 1, D = 0|P (Z) = p]

∂p
dp

.

A.7 Proof of Proposition 5

This proof is similar to that of Proposition 2. It is given for completeness. The validity

of the bounds is proven in the main text. It remains to show that the bounds are uniformly

sharp. Given the restrictions that Assumptions 1, 5, 6 and 8 impose on the data, we need to

find a joint distribution on (Ỹ ∗
0 , Ỹ

∗
1 , S̃0, S̃1, Ṽ , Z) that satisfies these assumptions, induces the
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joint distribution on the data (Y, S,D,Z), and achieves any value δ ∈
[
∆LATE ,∆LATE

]
. To

do so, assume that Y ∗ is absolutely continuous and has a strictly positive density.

First, we show that the lower bound ∆LATE : {2, . . . ,K} → R is attainable. We need

to define the joint density (mass) function of (Ỹ ∗
0 , Ỹ

∗
1 , S̃0, S̃1, Ṽ , Z). To do so, we will define

the density functions f Ỹ ∗
0 |S̃0,S̃1,Ṽ

, f Ỹ ∗
1 |S̃0,S̃1,Ṽ

and fṼ , define the mass function π̃(S̃0,S̃1)|Ṽ and

use the density function of Z — fZ — to define fỸ ∗
0 ,Ỹ ∗

1 ,(S̃0,S̃1),Ṽ ,Z = f Ỹ ∗
0 |S̃0,S̃1,Ṽ

· f Ỹ ∗
1 |S̃0,S̃1,Ṽ

·

π̃(S̃0,S̃1)|Ṽ · fṼ · fZ . Note that, by construction, Assumption 1 holds. Fix (y0, y1, p, z) ∈ R
4

arbitrarily. Define fṼ (p) = ✶ {p ∈ [0, 1]}, ensuring that Assumption 5 holds by construction.

For brevity, denote the strata by OO = always observed, NO = observed only when treated

and NN = never observed, and the probability of the stratum k conditional on Ṽ = p by π̃k|p.

The probabilities π̃k|p are given by

π̃OO|p =
K∑

ℓ=2

✶ {pℓ−1 < p ≤ pℓ} ·
(
−P(S = 1, D = 0|P = pℓ)− P(S = 1, D = 0|P = pℓ−1)

pℓ − pℓ−1

)

+ ✶ {p ≤ p1} ·
P(S = 1, D = 1|P = p1)

p1
+ ✶ {pK < p} · P(S = 1, D = 0|P = pK)

1− pK
,

π̃NO|p =
K∑

ℓ=2

✶ {pℓ−1 < p ≤ pℓ} ·
(
P(S = 1|P = pℓ)− P(S = 1|P = pℓ−1)

pℓ − pℓ−1

)
,

π̃NN |p =

(
K∑

ℓ=2

✶ {pℓ−1 < p ≤ pℓ} ·
P(S = 0, D = 1|P = pℓ)− P(S = 0, D = 1|P = pℓ − 1)

pℓ − pℓ−1

)

+ ✶ {p ≤ p1} ·
(
1− P(S = 1, D = 1|P = p1)

p1

)

+ ✶ {pK < p} ·
(
1− P(S = 1, D = 0|P = pK)

1− pK

)
.

Under Assumptions 1, 5, and 6, the above quantities are positive, and sum up to one.

Indeed, for any p ∈ [pℓ−1, pℓ] such that ℓ ∈ {2, . . . ,K}.

π̃OO|p + π̃NO|p =
P(S = 1, D = 1|P = pℓ)− P(S = 1, D = 1|P = pℓ−1)

pℓ − pℓ−1
,
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implying that

π̃OO|p + π̃NO|p + π̃NN |p =
P(D = 1|P = pℓ)− P(D = 1|P = pℓ−1)

pℓ − pℓ−1
,

=
pℓ − pℓ−1

pℓ − pℓ−1
= 1.

Now, define f Ỹ ∗
0 |S̃0,S̃1,Ṽ

(y0| k, p) = ∂P(Ỹ ∗
0 ≤y0|k,Ṽ=p)

∂y0
and f Ỹ ∗

1 |S̃0,S̃1,Ṽ
(y1| k, p) = ∂P(Ỹ ∗

1 ≤y1|k,Ṽ=p)
∂y1

for any k ∈ {OO,NO,NN}. Define

P(Ỹ ∗
1 ≤ y1, S̃1 = 1|Ṽ = p) =

K∑

ℓ=2

✶ {pℓ−1 < p ≤ pℓ}

·
(
P(Y ≤ y1, S = 1, D = 1|P = pℓ)− P(Y ≤ y1, S = 1, D = 1|P = pℓ−1)

pℓ − pℓ−1

)

+✶ {p ≤ p1} ·
P(Y ≤ y1, S = 1, D = 1|P = p1)

p1

+✶ {pK < p} · P(Y ≤ y1, S = 1, D = 0|P = pK)

1− pK
,

P(Ỹ ∗
0 ≤ y0, S̃0 = 1|Ṽ = p) =

K∑

ℓ=2

✶ {pℓ−1 < p ≤ pℓ}

·
(
−P(Y ≤ y0, S = 1, D = 0|P = pℓ)− P(Y ≤ y0, S = 1, D = 0|P = pℓ−1)

pℓ − pℓ−1

)

+✶ {p ≤ p1} ·
P(Y ≤ y0, S = 1, D = 1|P = p1)

p1

+✶ {pK < p} · P(Y ≤ y0, S = 1, D = 0|P = pK)

1− pK
, and

P(Ỹ ∗
0 ≤ y0|S0 = 1, S1 = 1, Ṽ = p) = P(Ỹ ∗

0 ≤ y0|S̃0 = 1, Ṽ = p).

Define Ỹ1 ∼ FỸ ∗
1 |S̃1=1,Ṽ=p. Define also

P(Ỹ ∗
1 ≤ y1|OO, Ṽ = p) = P

(
Ỹ1 ≤ y1|Ỹ1 ≤ F−1

Ỹ1

(
π̃OO|p

π̃OO|p + π̃NO|p

))
,

P(Ỹ ∗
1 ≤ y1|NO, Ṽ = p) = P

(
Ỹ1 ≤ y1|Ỹ1 > F−1

Ỹ

(
π̃OO|p

π̃OO|p + π̃NO|p

))
,

P(Ỹ ∗
1 ≤ y1|NN, Ṽ = p) = P(Ỹ ∗

1 ≤ y1, S̃1 = 1|Ṽ = p),

P(Ỹ ∗
0 ≤ y0|k, Ṽ = p) = P(Ỹ ∗

0 ≤ y0, S̃0 = 1|Ṽ = p) for k ∈ {NO,NN} .
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Notice that the lower bound in Proposition 5 is attained by the distributions of Ỹ ∗
0

∣∣∣OO, Ṽ

and Ỹ ∗
0

∣∣∣OO, Ṽ because

∆LATE (ℓ) = E

[
Ỹ ∗
1 − Ỹ ∗

0

∣∣∣OO, pℓ−1 < V ≤ pℓ

]

for any ℓ ∈ {2, . . . ,K}.

Finally, we show that the joint distribution of (Ỹ ∗
0 , Ỹ

∗
1 , S̃0, S̃1, Ṽ , Z) induces the joint dis-

tribution on the data (Y, S,D,Z). Let D̃ = ✶

{
Ṽ ≤ P (Z)

}
. For any (y, ℓ) ∈ R× {2, . . . ,K},

P

(
Ỹ ≤ y, S̃ = 1, D̃ = 1

∣∣∣Z = zℓ

)
= P

(
Ỹ ∗
1 ≤ y, S̃1 = 1, Ṽ ≤ pℓ

∣∣∣Z = zℓ

)

= P

(
Ỹ ∗
1 ≤ y, S̃1 = 1, Ṽ ≤ pℓ

)
=

∫ pℓ

0
P

(
Ỹ ∗
1 ≤ y, S̃1 = 1

∣∣∣ Ṽ = v
)
dv

=

∫
pℓ

0




∑ℓ
k=2 ✶ {pk−1 < v ≤ pk} · P(Y≤y1,S=1,D=1|P=pk)−P(Y≤y1,S=1,D=1|P=pk−1)

pk−pk−1

+✶ {v ≤ p1} ·
P(Y ≤ y1, S = 1, D = 1|P = p1)

p1


 dv

= P (Y ≤ y, S = 1, D = 1|P = pℓ) = P (Y ≤ y, S = 1, D = 1|Z = zℓ)

and, analogously,

P

(
Ỹ ≤ y, S̃ = 1, D̃ = 0

∣∣∣Z = zℓ

)
= P (Y ≤ y, S = 1, D = 0|Z = zℓ) ,

P

(
S̃ = 0, D̃ = 1

∣∣∣Z = zℓ

)
= P (S = 0, D = 1|Z = zℓ) ,

P

(
S̃ = 0, D̃ = 0

∣∣∣Z = zℓ

)
= P (S = 0, D = 0|Z = zℓ) .

Similar reasoning holds for the upper bound, ∆LATE . To attain any function δ ∈
(
∆LATE ,∆LATE

)
,

we can use convex combinations of the joint distributions that achieve the lower and upper

bounds, where the weights of the convex combination may depend on the value ℓ ∈ {2, . . . ,K}.
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B Sharp testable implications for Assumptions 1, 5 and 6

Suppose that Z contains at least one continuous instrument. Whenever Assumptions 1, 5

and 6 hold, inequalities (3.3), (3.4) and (2.3) must hold, i.e.,

0 ≤ ∂E[✶ {Y ∈ A}SD|P (Z) = p]

∂p
≤ 1, (B.1)

0 ≤ −∂E[✶ {Y ∈ A}S(1−D)|P (Z) = p]

∂p
≤ 1, (B.2)

0 ≤ ∂P(S = 1|P (Z) = p)

∂p
≤ 1 (B.3)

for all borel sets A ⊂ R and p ∈ (0, 1), where the last inequality holds because

P(NO|V = p) =
∂P(S = 1|P (Z) = p)

∂p
.

In addition to the inequalities above, the following equalities must hold:

P(Y ∈ A,S = 1, D = 1|Z = z) = P(Y ∈ A,S = 1, D = 1|P (Z) = P (z)), (B.4)

P(Y ∈ A,S = 1, D = 0|Z = z) = P(Y ∈ A,S = 1, D = 0|P (Z) = P (z)), (B.5)

P(S = 0, D = 1|Z = z) = P(S = 0, D = 1|P (Z) = P (z)), (B.6)

P(S = 0, D = 0|Z = z) = P(S = 0, D = 0|P (Z) = P (z)). (B.7)

These equalities hold trivially when P (z) is strictly monotone in z.

Proposition 6. Consider the model (2.1).

(i) If Assumptions 1, 5 and 6 hold, then inequalities (B.1) to (B.3) and equalities (B.4) to

(B.7) hold.

(ii) If inequalities (B.1) to (B.3) and equalities (B.4) to (B.7) hold, then there exists a vector

(Ỹ ∗
0 , Ỹ

∗
1 , Ṽ , S̃0, S̃1, , Z) that satisfies model (2.1) and Assumptions 1, 5 and 6.

These testable implications are identical to those in Heckman and Vytlacil (2005) when

there is no sample selection, i.e., S = 1 almost surely. If the instrument Z is binary, these
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testable implications become

0 ≤ P(Y ∈ A,S = 1, D = 1|Z = 1)− P(Y ∈ A,S = 1, D = 1|Z = 0)

P (1)− P (0)
≤ 1,

0 ≤ −(P(Y ∈ A,S = 1, D = 0|Z = 1)− P(Y ∈ A,S = 1, D = 0|Z = 0))

P (1)− P (0)
≤ 1,

0 ≤ P(S = 1|Z = 1)− P(S = 1|Z = 0)

P (1)− P (0)
≤ 1.

These latter inequalities generalize those in Balke and Pearl (1997) and Heckman and Vytlacil

(2005) to the sample selection case, and can therefore be tested using the procedures proposed

by Machado, Shaikh, and Vytlacil (2018), Mourifié and Wan (2017), Kitagawa (2015), Huber

and Mellace (2015) or Laffers and Mellace (2017).

Proof. (i) Inequalities (B.1) to (B.3) have been shown in the main text. It remains to show

equalities (B.4) to (B.7). We show (B.4) and the proofs for the other equalities can be

obtained similarly.

P(Y ∈ A,S = 1, D = 1|Z = z) = P(Y ∗
1 ∈ A,S1 = 1, V ≤ P (z)|Z = z),

= P(Y ∗
1 ∈ A,S1 = 1, V ≤ P (z)),

= P(Y ∗
1 ∈ A,S1 = 1, V ≤ P (z)|P (Z) = P (z)),

= P(Y ∗
1 ∈ A,S1 = 1, V ≤ P (Z)|P (Z) = P (z)),

= P(Y ∗
1 ∈ A,S1 = 1, D = 1|P (Z) = P (z)),

= P(Y ∈ A,S = 1, D = 1|P (Z) = P (z)),

where the second and third equalities hold under Assumption 1.

(ii) Define P (z) = P(D = 1|Z = z), and π̃k|p,z the probability of the stratum k given

(Ṽ = p, Z = z).
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Define

P

(
Ỹ ∗
1 ≤ y1, S̃1 = 1|Ṽ = p

)
=





∂P(Y≤y1,S=1,D=1|P (Z)=p)
∂p if p ∈ [p, p]

P(Y≤y1,S=1,D=1|P (Z)=p)
p if p < p

P(Y≤y1,S=1,D=0|P (Z)=p)
1−p if p > p

P

(
S̃1 = 0|Ṽ = p

)
=





∂P(S=0,D=1|P (Z)=p)
∂p if p ∈ [p, p]

P(S=0,D=1|P (Z)=p)
p if p < p

P(S=0,D=0|P (Z)=p)
1−p if p > p

P

(
Ỹ ∗
0 ≤ y0, S̃0 = 1|Ṽ = p

)
=





−∂P(Y≤y0,S=1,D=0|P (Z)=p)
∂p if p ∈ [p, p]

ǫ
P(Y≤y0,S=1,D=1|P (Z)=p)

p if p < p

P(Y≤y0,S=1,D=0|P (Z)=p)
1−p if p > p

and

P

(
S̃0 = 0|Ṽ = p

)
=





−∂P(S=0,D=0|P (Z)=p)
∂p if p ∈ [p, p]

1− ǫ
P(S=1,D=1|P (Z)=p)

p if p < p

P(S=0,D=0|P (Z)=p)
1−p if p > p

where ǫ ∈ (0, 1).

Define the distribution on the strata:

π̃OO|p = P(S̃0 = 1|Ṽ = p)

π̃NO|p = P(S̃1 = 1|Ṽ = p)− P(S̃0 = 1|Ṽ = p)

π̃NN |p = P(S̃1 = 0|Ṽ = p).

Inequalities (B.1) to (B.3) imply that the above quantities are positive and sum up to
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one. Define

P(Ỹ ∗
1 ≤ y1|k, Ṽ = p, Z = z) = P(Ỹ ∗

1 ≤ y1|S̃1 = 1, Ṽ = p), k ∈ {OO,NO,NN}

and

P(Ỹ ∗
0 ≤ y0|k, Ṽ = p, Z = z) = P(Ỹ ∗

0 ≤ y0|S̃0 = 1, Ṽ = p), k ∈ {OO,NO,NN} .

Define the joint conditional distribution of (Ỹ ∗
0 , Ỹ

∗
1 , S̃0, S̃1) given (Ṽ = p, Z = z):

P(Ỹ ∗
0 ≤ y0, Ỹ

∗
1 ≤ y1, (S̃0, S̃1) = k, |Ṽ = p, Z = z) = P(Ỹ ∗

0 ≤ y0|k, Ṽ = p, Z = z) ·

P(Ỹ ∗
1 ≤ y1|k, Ṽ = p, Z = z) · π̃k|p,

k ∈ {OO,NO,NN} ,

P(Ṽ ≤ p|Z = z) = p.

Finally, define





Ỹ ∗ = Ỹ ∗
1 D̃ + Ỹ ∗

0 (1− D̃)

D̃ = ✶

{
Ṽ ≤ P (Z)

}

S̃ = S̃1D̃ + S̃0(1− D̃)

Ỹ = Ỹ ∗S̃

(B.8)

We can show that (Ỹ , S̃, D̃, Z) has the same joint distribution as (Y, S,D,Z).

P(Ỹ ≤ y, S̃ = 1, D̃ = 1|Z = z) = P(Ỹ ∗
1 ≤ y, S̃1 = 1, Ṽ ≤ P (z)|Z = z),

= P(Ỹ ∗
1 ≤ y, S̃1 = 1|Ṽ ≤ P (z), Z = z)P(Ṽ ≤ P (z)|Z = z),

= P(Ỹ ∗
1 ≤ y, S̃1 = 1|Ṽ ≤ P (z), Z = z)P (z),

=

[∫ P (z)

0
P(Ỹ ∗

1 ≤ y, S̃1 = 1|Ṽ = v, Z = z)
fṼ |Z=z(v)

P (z)
dv

]
· P (z),

=

∫ P (z)

0
P(Ỹ ∗

1 ≤ y, S̃1 = 1|Ṽ = v, Z = z)dv,
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=

∫ P (z)

0
P(Ỹ ∗

1 ≤ y, S̃1 = 1|Ṽ = v)dv,

=

∫ p

0

P
(
Y ≤ y1, S = 1, D = 1|P (Z) = p

)

p
dv

+

∫ P (z)

p

∂P (Y ≤ y1, S = 1, D = 1|P (Z) = p)

∂p
dv,

= P(Y ≤ y, S = 1, D = 1|P (Z) = P (z))

= P(Y ≤ y, S = 1, D = 1|Z = z).

Similarly,

P(Ỹ ≤ y, S̃ = 1, D̃ = 0|Z = z) = P(Y ≤ y, S = 1, D = 1|Z = z),

P(S̃ = 0, D̃ = 1|Z = z) = P(S = 0, D = 1|Z = z),

P(S̃ = 0, D̃ = 0|Z = z) = P(S = 0, D = 0|Z = z).

Finally, by construction, Assumptions 1, 5 and 6 hold.

C Numerical Illustration

In this appendix, we highlight the feasibility and usefulness of the bounds proposed in

Section 3 by considering a numerical illustration of a simple structural model with endogenous

treatment and sample selection. In Appendix C.1, we present the bounds for MTEOO based

on Propositions 1 and 2. The illustration provides insights on the functioning of the bounds

as well as the mechanisms driving how informative those bounds are. In Appendix C.2,

we discuss what is identified by the local instrumental variable (LIV) estimand (Heckman

and Vytlacil, 1999) when directly applied to the selected sample and explain its limitations.

Appendix C.3 details the data-generating process used in this numerical illustration.
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C.1 Illustrating the Bounds around MTEOO

Consider the following data generating process (DGP):





Y = Y ∗S

Y ∗ = Y ∗
1 D + Y ∗

0 (1−D)

S = ✶ {US ≤ δ0 + δ1D}

D = ✶ {V ≤ Φ(Z)}

(C.1)

we set





V = Φ(θ)

US = 1√
2
(θ + ǫS)

Y ∗
0 = T · β0,1θ + (1− T ) · (−β0,0θ)

Y ∗
1 = T · β1,1θ + (1− T ) · (−β1,0θ)

(C.2)

where (θ, ǫS , Z, ξ)
′ ∼ N(0, I), T = ✶ {ξ ≥ 0}, I is the identity matrix, Φ(.) is the standard

normal CDF, and Φ−1(·) its inverse. The potential outcomes equations has random coefficients

in this illustration. Intuitively, there are two sets of individuals that might face different

returns to treatment due to, for example, their gender or race. From a technical standpoint,

this choice guarantees reasonable overlap for treated and untreated groups in the observed

population over the support of the outcome conditional on V .

We present the bounds for the MTEOO described in Proposition 1 (∆1,∆1) in Figure 3,

and Proposition 2 (∆2,∆2) in Figure 4 for parameters δ0 = 0.1, δ1 = 0.4, β0,0 = β0,1 = β1,0 = 1

and β1,1 = 5.23

As can be seen on Subfigure 3(a), the bounds based on Proposition 1 are not very in-

formative for a large part of the support of V . In this DGP, when the propensity score is

small (p is close to zero), υℓ — the lower bound on the proportion of the always-observed

(P [S0 = 1|V = p] + P [S1 = 1|V = p]− 1) — approaches 1 and the MTEOO is almost point-

identified as the bounds are close to each other. On the other hand, when p is larger than

0.664, the lower bound on the proportion of the always-observed becomes exactly zero, the

23Note that these bounds can be computed using numeric integration. See Appendix C.3 for more details.
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Notes: The solid lines are the true values of the MTEOO. The red dotted lines and the blue dashed lines are,
respectively, the values of the upper and lower bounds around the MTEOO computed by numerical integration
using 100,000 simulated points for each value of the propensity score.

Figure 3: Numerical Bounds based on Proposition 1

MTEOO is not identified and the bounds diverge. Nevertheless, the sign of MTEOO is iden-

tified for propensity scores smaller than 0.28.

Subfigure 3(b) plots the identified interval for MTEOO against υℓ on the horizontal axis,

emphasizing the important role of the lower bound on the proportion of the always-observed.

As υℓ increases, the expectation of the observed outcomes conditional on V = p becomes

heavily composed by the always-observed group, leading to point identification of theMTEOO

when it reaches one.

Figure 4 plots the MTEOO and its bounds based on Proposition 2, i.e., with the addition

of the monotonicity assumption. The bounds presented on Subfigure 4(a) are in general

informative. As discussed above, when the propensity score is small (p is close to zero),

the proportion of the always-observed (α (p)) approaches 1 and the MTEOO identified set

is very tight. When p is close to 1, the proportion of the always-observed decreases and

the identified set around the MTEOO expands. The sign of the MTEOO is identified for
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p < 0.409, illustrating that Assumption 6 allow us to identify the sign of MTEOO in more

cases than in Figure 3.

Subfigure 4(b) plots the same curves with α(p) on the horizontal axis, emphasizing the

trimming proportion’s importance. As α(p) → 1 , the observed expectation of the outcomes

conditional on V = p is fully composed by the always-observed group, leading to point iden-

tification of the MTEOO. Moreover, under Assumption 6, α(p) never reaches zero, allowing

us to non-trivially bound the MTEOO for all values of the propensity score.

Figure 5 is a zoomed version of Subfigures 3(a) and 4(a). Note that the bounds based on

Proposition 2 are much tighter than the bounds based on Proposition 1, especially for larger

values of p. This is expected as the difference in trimming proportions in Proposition 1 and

Proposition 2 increases with the propensity score for this DGP.24
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Notes: The solid lines are the true values of the MTEOO. The red dotted lines and the blue dashed lines are,
respectively, the values of the upper and lower bounds around the MTEOO computed by numerical integration
using 1,000,000 simulated points for each value of the propensity score.

Figure 4: Numerical Bounds based on Proposition 2

24Assumption 7 holds with equality in this DGP, implying that the lower bound is equal to the true MTEOO

for the case considered in Proposition 3.
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Figure 5: Comparing Proposition 1 and Proposition 2

C.2 Understanding the LIV Estimand in the Selected Sample

A researcher may believe that sample selection is not a problem and decide to apply

the local instrumental variable (LIV) estimator (Heckman and Vytlacil, 1999) directly to the

selected sample (S = 1). Similarly to the issues generated by sample selection when trying to

identify ATE or LATE parameters (Heckman, 1979; Lee, 2009; Chen and Flores, 2015), the

LIV estimand applied directly to the selected sample will not identify our target parameter

(MTEOO). The LIV estimand in this case can be described as:

LIVS=1 (p) :=
∂E [Y |P (Z) = p, S = 1]

∂p

=
∂

∂p

{
E [Y · S|P (Z) = p]

E [S|P (Z) = p]

}

=
1

E [S|P (Z) = p]
· ∂E [Y · S|P (Z) = p]

∂p
− E [Y · S|P (Z) = p]

(E [S|P (Z) = p])2
· ∂E [S|P (Z) = p]

∂p

=
E [Y1 − Y0|V = p]

E [S|P (Z) = p]
− E [Y · S|P (Z) = p]

(E [S|P (Z) = p])2
· E [S1 − S0|V = p] (C.3)

74



for any p ∈ P such that E [S|P (Z) = p] 6= 0. As Equation (C.3) illustrates, the LIV estimand

captures a linear combination of the marginal treatment effect on the non-censored outcome

variable (E [Y1 − Y0|V = p]) and of the marginal treatment effect on the sample selection

(E [S1 − S0|V = p]). Since the weights on this linear combination can be negative, the LIV

estimand does not identify an interpretable treatment effect parameter when applied directly

to the selected sample. For instance, observe that in the job training example and in the

health insurance example (Section 5), the weight on the marginal treatment effect on the

sample selection

(
−E [Y · S|P (Z) = p]

(E [S|P (Z) = p])2

)
must be negative, since Y and S are non-negative.

Note also that, even when there is no differential sample selection (E [S1 − S0|V = p] = 0),

the LIV estimand still does not have a clear interpretation. In this case, it will capture the

marginal treatment effect on the non-censored outcome variable magnified by the probability

of being selected into the sample.

Figure 6 illustrates the differences between the LIV estimand and our target parameter

— marginal treatment effect for the always-observed subpopulation (MTEOO). In Subfigure

6(a), the dashed line is the MTEOO function explained in Appendix C.1, while the solid

line is the LIV estimand described in Equation (C.3). Note that the target parameter is

monotone and highly heterogeneous, assuming large positive and negative values. However,

the LIV estimand is non-monotone and only assumes small positive values, hiding important

aspects related to the heterogeneity captured by the MTEOO. As a consequence, the LIV

estimand’s bias
(
LIVS=1 (p)−MTEOO (p)

)
is large as illustrated in Subfigure 6(b). To have

a better understanding of the relevance of the LIV estimand’s bias, we can compare this

estimand against the bounds based on Proposition 2. These bounds are depicted in Subfigure

6(a) as dotted lines. Note that LIV estimand’s bias is so large that this estimand is outside

the bounds based on Proposition 2 for most values of the propensity score.

Since the LIV estimand applied directly to the selected sample does not capture an

intepretable treatment effect parameter and would be biased as a measure for the MTEOO,

we do not recommend using it when there is sample selection. When faced with selection-

into-treatment and sample selection, the researcher should use a methodology that addresses
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Notes: In Subfigure 6(a), the solid line is the LIV estimand (Equation (C.3)) computed by numerical integration
using 600,000 simulated points while the dashed line is the true value of the MTEOO. The dotted lines are
the upper and lower bounds around the MTEOO from Subfigure 4(a). In Subfigure 6(b), the solid line is the
LIV estimand’s bias in comparison with the target parameter (MTEOO).

Figure 6: Understanding the LIV Estimand in the Selected Sample

both challenges.

C.3 Details on the Numerical Illustration

This appendix lists the relevant densities, expectations and objects of interest implied by

the DGP used in Appendices C and F. We have that

P [S0 = 1, S1 = 1|V = p] = Φ
(
δ0
√
2− Φ−1 (p)

)
,

P [S0 = 1|V = p] = Φ
(
δ0
√
2− Φ−1 (p)

)
,

P [S1 = 1|V = p] = Φ
(
δ0
√
2 + δ1

√
2− Φ−1 (p)

)
,

α
(
p, υℓ

)
= max

{
1 +

Φ
(
δ0
√
2− Φ−1 (p)

)
− 1

Φ
(
δ0
√
2 + δ1

√
2− Φ−1 (p)

) , 0
}
,

β
(
p, υℓ

)
= max

{
1 +

Φ
(
δ0
√
2 + δ1

√
2− Φ−1 (p)

)
− 1

Φ
(
δ0
√
2− Φ−1 (p)

) , 0

}
,
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α (p) =
Φ
(
δ0
√
2− Φ−1 (p)

)

Φ
(
δ0
√
2 + δ1

√
2− Φ−1 (p)

) ,

E [Y ∗
1 − Y ∗

0 |T = 1, S0 = 1, S1 = 1, V = p] = (β1,1 − β0,1) · Φ−1(p),

E [Y ∗
1 − Y ∗

0 |T = 0, S0 = 1, S1 = 1, V = p] = (β0,0 − β1,0) · Φ−1(p),

E [Y ∗
1 − Y ∗

0 |S0 = 1, S1 = 1, V = p] = (β1,1 − β1,0 − β0,1 + β0,0) ·
Φ−1(p)

2
,

P [Y ∗
0 ≤ y|T = 1, S0 = 1, V = p] = Φ

(
y − β0,1Φ

−1 (p)
)
,

P [Y ∗
1 ≤ y|T = 1, S1 = 1, V = p] = Φ

(
y − β1,1Φ

−1 (p)
)
,

P [Y ∗
0 ≤ y|T = 0, S0 = 1, V = p] = Φ

(
y + β0,0Φ

−1 (p)
)
,

P [Y ∗
1 ≤ y|T = 0, S1 = 1, V = p] = Φ

(
y + β1,0Φ

−1 (p)
)
,

P [Y ∗
0 ≤ y|S0 = 1, V = p] =

1

2
Φ
(
y − β0,1Φ

−1 (p)
)
+

1

2
Φ
(
y + β0,0Φ

−1 (p)
)
,

P [Y ∗
1 ≤ y|S1 = 1, V = p] =

1

2
Φ
(
y − β1,1Φ

−1 (p)
)
+

1

2
Φ
(
y + β1,0Φ

−1 (p)
)
.

D Two Economic Models Satisfying Assumptions 1-7

D.1 Model 1: Job Training Program

To better understand the intuition behind the stochastic dominance assumption, we pro-

vide a simple economic model of a worker deciding to enroll in a job training program that

satisfies assumptions 1-7.

Let Y ∗
0 be the untreated wage whose support satisfy Y∗

0 = [0, c0 · y), where c0 ∈ (1,+∞)

and y ∈ R++. Let Ṽ ∼ FṼ be the training program’s effect on wages whose support satisfy

V = [0, v], where v ∈ R++, and whose cumulative distribution function is strictly increasing

in its support. To simplify our argument, assume that Ṽ ⊥⊥ Y ∗
0 . Define Y ∗

1 := Y ∗
0 + Ṽ as

the treated wage. Let Z be the training program’s cash allowance whose support is given by

Z = R+ and whose cumulative distribution function is continuous. To further simplify our

argument, assume that the support of the joint distribution of Ṽ and Z satisfy supp
(
Ṽ , Z

)
=

Z × V . The worker enrolls in the training program if its total benefits are larger than its

non-random and homogeneous cost, cD ∈ R++. Formally, define D := ✶

{
Z + Ṽ ≥ cD

}
=
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✶

{
F−Ṽ (Z − cD) ≥ F−Ṽ

(
−Ṽ

)}
= ✶ {P (Z) ≥ V }, where P (Z) = F−Ṽ (Z − cD) and V =

F−Ṽ

(
−Ṽ

)
. Moreover, the worker is hired if her productivity is high enough, i.e., Sd :=

✶ {Y ∗
d ≥ y} for any d ∈ {0, 1}. Finally, assume that the cash allowance is randomly chosen so

that Assumption 1 holds by design.

Now, we check whether Assumptions 2-7 hold in this economic model. First, observe that

Assumption 6 holds because V = R+ and S1 = ✶

{
Y ∗
0 + Ṽ ≥ y

}
. Assumption 2 holds because

FṼ is a strictly increasing function and Z is a absolutely continuous random variable. For

Assumption 3, note that supp
(
Ṽ , Z

)
= [0, v] × R+ and cD > 0 imply P

[
Z + Ṽ ≥ cD

]
> 0

and P

[
Z + Ṽ < cD

]
> 0, and because S1 ≥ S0, Y∗

0 = [0, c0 · y), c0 > 1 and Ṽ ⊥⊥ Y ∗
0 imply

that P [S0 = 1, S1 = 1|V = p] = P [S0 = 1|V = p] = P [Y ∗
0 ≥ y|V = p] = P [Y ∗

0 ≥ y] > 0 for

any p ∈ P. Assumption 4 holds because sup |Y∗
0 | = c0 ·y < +∞ and sup |Y∗

1 | = c0 ·y+v < +∞,

while Assumption 5 holds by definition.

Finally, we discuss whether the stochastic dominance assumption (Assumption 7) holds.

Since Ṽ ⊥⊥ Y ∗
0 , we have, for any y ∈ R+ and p ∈ P, that

P [Y ∗
1 ≤ y|V = p, S0 = 1, S1 = 1] = P

[
Y ∗
1 ≤ y|F−Ṽ

(
−Ṽ

)
= p, Y ∗

0 ≥ y
]

= P

[
Y ∗
0 − F−1

−Ṽ
(p) ≤ y

∣∣∣F−Ṽ

(
−Ṽ

)
= p, Y ∗

0 ≥ y
]

= P

[
Y ∗
0 ≤ y + F−1

−Ṽ
(p)
∣∣∣Y ∗

0 ≥ y
]

and

P [Y ∗
1 ≤ y|V = p, S0 = 0, S1 = 1] = P

[
Y ∗
0 ≤ y + F−1

−Ṽ
(p)
∣∣∣ y + F−1

−Ṽ
(p) ≤ Y ∗

0 < y
]
.

As a consequence, we have that

1. if y ≤ y, then P [Y ∗
1 ≤ y|V = p, S0 = 1, S1 = 1] = 0 and P [Y ∗

1 ≤ y|V = p, S0 = 0, S1 = 1] =

0;

2. if y > y and y + F−1
−Ṽ

(p) ≤ y, then P [Y ∗
1 ≤ y|V = p, S0 = 1, S1 = 1] = 0 and

P [Y ∗
1 ≤ y|V = p, S0 = 0, S1 = 1] ∈ (0, 1]; and
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3. if y > y and y + F−1
−Ṽ

(p) > y, then P [Y ∗
1 ≤ y|V = p, S0 = 1, S1 = 1] ∈ (0, 1] and

P [Y ∗
1 ≤ y|V = p, S0 = 0, S1 = 1] = 1.

We can, then, conclude that Assumption 7 holds in this simple economic model.

D.2 Model 2: Managed Care and Ambulatory Expenditures

Suppose that an individual’s decision to choose a managed care plan (HMO or PPO) is

based on a cost-benefit analysis, such that she decides to enroll in a managed care plan if

its cost V is less than its benefit P (Z), i.e., D = ✶{V < P (Z)}. The individual’s potential

ambulatory expenditure when she enrolls in a managed care plan is Y ∗
1 , and her potential

ambulatory expenditure when she enrolls in a fee-for-service plan is Y ∗
0 , where Y

∗
d ≥ 0 with

P(Y ∗
d = 0) > 0 for all d. We observe the individual’s ambulatory expenditure when Y ∗ =

Y ∗
1 D+ Y ∗

0 (1−D) is positive, i.e., S = ✶{Y ∗ > 0}, and the observed ambulatory expenditure

is Y = Y ∗S. Suppose now that Y ∗
1 = Y ∗

0 + ε, where ε |= Y ∗
0 |V , and ε|V = p ∼ U[0,1/p].

We are going to show that Assumptions 6 and 7 hold in this framework. By definition,

S0 = ✶{Y ∗
0 > 0} and S1 = ✶{Y ∗

1 > 0} = ✶{Y ∗
0 + ε > 0}. We can see that {S0 = 1} implies

{S1 = 1} since ε ≥ 0. Therefore, Assumption 6 holds. We now show that

P(Y ∗
1 ≤ y|V = p, S0 = 1, S1 = 1) ≤ P(Y ∗

1 ≤ y|V = p, S0 = 0, S1 = 1).

We have

P(Y ∗
1 ≤ y|V = p, S0 = 0, S1 = 1) = P(Y ∗

1 ≤ y|V = p, Y ∗
0 = 0, Y ∗

1 > 0),

= P(ε ≤ y|V = p, ε > 0) since ε |= Y ∗
0 |V,

=

{
p.y if y ≥ 0

0 if y < 0

and

P(Y ∗
1 ≤ y|V = p, S0 = 1, S1 = 1) =

∫

y0>0
P(Y ∗

1 ≤ y|V = p, Y ∗
0 > 0, Y ∗

0 = y0, Y
∗
1 > 0) ·

fY ∗
0 |V=p,Y ∗

0 >0,Y ∗
1 >0(y0)dy0,
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=

∫

y0>0
P(ε ≤ y − y0|V = p, ε > −y0) ·

fY ∗
0 |V=p,Y ∗

0 >0,Y ∗
1 >0(y0)dy0 since ε |= Y ∗

0 |V,

=

∫

y0>0
P(ε ≤ y − y0|V = p) · fY ∗

0 |V=p,Y ∗
0 >0,Y ∗

1 >0(y0)dy0

and

P(ε ≤ y − y0|V = p) =

{
p(y − y0) if y > y0

0 if y ≤ y0

≤
{
p.y if y ≥ 0 and y0 > 0

0 if y < 0

Therefore,

P(Y ∗
1 ≤ y|V = p, S0 = 1, S1 = 1) ≤

{ ∫
y0>0 p.yfY ∗

0 |V=p,Y ∗
0 >0,Y ∗

1 >0(y0)dy0 if y ≥ 0

0 if y < 0

=

{
p.y if y ≥ 0

0 if y < 0

= P(Y ∗
1 ≤ y|V = p, S0 = 0, S1 = 1).

Hence, Assumption 7 holds.

E Estimation Details

This appendix presents the details on how to estimate the bounds proposed in Proposition

2, building upon the discussion on Section 4 on the main text. For brevity, we focus on the

bounds identified under monotonicity of sample selection in the treatment (Assumptions 1-6),

as it is the most relevant (and feasible) case empirically. Estimators for the bounds proposed

in Propositions 1 and 3 are natural extensions of the estimator discussed here.

The following subsections (E.1-E.4) present the details on a suggested non(semi)parametric

estimation approach that could be implemented with a large and informative dataset.25 Nat-

25Appendix F presents a Monte Carlo Simulation that evaluates the small sample properties of this estimator.
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urally, parametric alternatives are available as long as the researcher is willing to specify

functional forms for the probabilities described below, imposing some structure to the model.

This can be an useful alternative which greatly simplifies estimation, especially when condi-

tioning on covariates. For concreteness, we present the details of the particular parametric

estimation procedure implemented in the empirical application (Section 5) at Appendix G.

Recall from Section 4 that we need estimates for:

Ỹd|S = 1, D = d, P (Z) = p ∼ FỸd|S=1,D=d,P (Z)=p(y) =

∂P[Y≤y,S=1,D=d|P (Z)=p]
∂p

∂P[S=1,D=d|P (Z)=p]
∂p

for any d ∈ {0, 1} and

α (p) = −
∂P[S=1,D=0|P (Z)=p]

∂p

∂P[S=1,D=1|P (Z)=p]
∂p

.

Consequently, we need to estimate:

Γ1 (p, y) :=
∂P [Y ≤ y, S = 1, D = 1|P (Z) = p]

∂p
, π1 (p) :=

∂P [S = 1, D = 1|P (Z) = p]

∂p
,

Γ0 (p, y) := −∂P [Y ≤ y, S = 1, D = 0|P (Z) = p]

∂p
, π0 (p) := −∂P [S = 1, D = 0|P (Z) = p]

∂p
.

Furthermore, the estimation of the propensity score P (Z) is necessary to obtain the moments

of the conditional distribution of the observed outcome.

E.1 Estimating the Propensity Score P (Z)

The procedures proposed by Carneiro and Lee (2009) to estimate P (z) = P(D = 1|Z = z)

apply directly, since treatment status D is observed for all individuals, and are summa-

rized here. We suggest to model the probability as a partially linear additive regression

model to improve precision of the estimates while avoiding the curse of dimensionality:

P [D = 1|Z = z] = zpcϑ +
∑d

j=1 ϕj(z
c
j), where z is composed by nonparametric (zc) and

parametric (zpc) components, zc is a continuous random vector of dimension d, ϑ is a vector

of unknown parameters and ϕj(·) are unknown functions.

Let {pκ : κ = 1, 2...} be the basis for smooth functions that we will use to approximate ϕj(·)
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more closely as the number of approximating functions increases. For a given κ > 0, define

Pκ(z) = [zpc, p1(z
c
1), . . . , pκ(z

c
1), . . . , p1(z

c
d), . . . , pκ(z

c
d)]

′. Then, using Carneiro and Lee (2009)

notation, we have that P̃(Zi) = Pκ(Zi)
′θ̂κ, where θ̂κ = [

∑n
i=1 Pκ(Zi)Pκ(Zi)

′]−1 [
∑n

i=1 Pκ(Zi)Di].

As discussed in Carneiro and Lee (2009), the estimated probabilities might fall outside of the

[0, 1] interval in finite samples. As a consequence, it is preferable to use the trimmed version,

P̂i ≡ P̂(Zi) = P̃(Zi)+ (1−λ− P̃(Zi))✶(P̃(Zi) > 1)+ (λ− P̃(Zi))✶(P̃(Zi) < 0), for a suitably

small positive λ. Alternatively, a typical conditional probability estimator of P (·) based on a

logit or probit model could be used, so that the fitted probability is always between 0 and 1.

E.2 Estimating π1 (p), π0 (p) and α (p)

To estimate π1 (p) and π0 (p), consider the local polynomial estimators (Fan and Gijbels,

1996):

π̂1(p) := e2 argmin
c0,c1,c2

n∑

i=1

[
SiDi − c0 − c1(P̂i − p)− c2(P̂i − p)2

]2
K

(
P̂i − p

h

)
,

π̂0(p) := −e2 argmin
c0,c1,c2

n∑

i=1

[
Si(1−Di)− c0 − c1(P̂i − p)− c2(P̂i − p)2

]2
K

(
P̂i − p

h

)

where eg is a conformable row vector of zeros with g-th element equal to one, K(·) is a kernel

function and h is a bandwidth. When implementing these estimators, we recommend using

recent developments in Calonico, Cattaneo, and Farrell (2018, 2019a) for optimal coverage

error bandwidth and kernel selection methods that are nonparametric robust bias-corrected

(RBC). We suggest implementing the RBC version of these estimators with optimal bandwidth

choice as conveniently implemented in the software R, using the package nprobust (Calonico,

Cattaneo, and Farrell, 2019b).

To estimate α (p), we simply take its sample analog: α̂ (p) :=
π̂0 (p)

π̂1 (p)
.

E.3 Estimating Γ1 (p, y) and Γ0 (p, y)

In order to estimate Γ1 (p, y) and Γ0 (p, y), we choose a grid for the outcome variable

({y1, . . . , yKn}) and estimate the conditional density of the outcome for each bin in the grid,
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leading to the following local polynomial regression (Fan and Gijbels, 1996),

γ̂1(p, k) := e2 argmin
c0,c1,c2

n∑

i=1

[
✶ {yk−1 ≤ Yi ≤ yk}SiDi − c0 − c1(P̂i − p)− c2(P̂i − p)2

]2
K

(
P̂i − p

h

)
,

γ̂0(p, k) := −e2 argmin
c0,c1,c2

n∑

i=1

[
✶ {yk−1 ≤ Yi ≤ yk}Si(1−Di)− c0 − c1(P̂i − p)− c2(P̂i − p)2

]2
K

(
P̂i − p

h

)

for any k ∈ {2, . . . ,Kn}. Similarly to the estimation of π̂0 and π̂1, we implement the optimal

bandwidth selector and RBC procedures mentioned previously.

For simplicity, let f̂d(p, k) = γ̂d(p,k)
π̂d(p)

for any k ∈ {2, . . . ,Kn}. Natural estimators for

F1 (p, y) :=
Γ1(p,y)
π1(p)

and F0 (p, y) :=
Γ0(p,y)
π0(p)

are given by F̂1 (p, yk) :=
∑k

j=2 f̂1(p, j) and F̂0 (p, yk) :=

∑k
j=2 f̂0(p, j).

The estimation of γ̂d(p, k) is a crucial step and can be adversely affected by several features

of the population DGP and the available data. For example, these estimators will perform well

in situations for which the available data about the observed outcome covers the whole range

of possible values of Y for the values of p being considered among both treated and untreated

individuals. One can mitigate the challenges to feasibility of the estimator by choosing wider

bins [yk−1 ≤ Yi ≤ yk], at the cost of obtaining a coarse description of the distribution of

Y ∗
d |V = p. That can be particularly harmful in the region around the trimming points, and

should be considered carefully.

E.4 Estimating MTEOO(p) Bounds

The estimators for the bounds LB2(p) and UB2(p) can be obtained as

L̂B2(p) :=

Kn∑

k=2

yk · ✶
{
F̂1 (p, yk) ≤ α̂ (p)

}
· f̂1(p, k)
α̂ (p)

(E.1)

ÛB2(p) :=

Kn∑

k=2

yk · ✶
{
1− F̂1 (p, yk) < α̂ (p)

}
· f̂1(p, k)
α̂ (p)

, (E.2)

where yk is the center point of each bin [yk−1, yk] for any k ∈ {2, . . . ,Kn}. Moreover, we can

estimate E
[
Ỹ0|S = 1, D = 0, P (Z) = p

]
in Proposition 2 using Ξ̂OO,0(p) :=

∑Kn

k=2 yk · f̂0(p, k).

Note that the estimators for L̂B2(p), ÛB2(p) and Ξ̂OO,0(p) rely on the estimates for den-
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sities and trimming points obtained in previous steps, not using on the original data for the

observed outcomes.

Naturally, the estimated MTEOO bounds can, then, be obtained by ∆̂2 (p) := L̂B2(p) −

Ξ̂OO,0(p) and ∆̂2 (p) := ÛB2(p)− Ξ̂OO,0(p).

Analyzing the inference procedures and asymptotic properties of the proposed estimators

is beyond the scope of this paper and an exciting area for future work.

F Monte Carlo Simulation

In this appendix, we use the DGP described in Appendix C to produce Monte Carlo

simulations using the estimator proposed in the main text. We analyze two sets of parameters:

(i) δ0 = 0.75, δ1 = 1.5, β00 = β01 = β10 = 0.1, β11 = 0.2 and (ii) δ0 = 0.2, δ1 = 2.0,

β00 = β01 = β10 = 0.1, β11 = 0.2. The first set of parameters is ideal for the proposed

estimator in the sense that the effective sample size is large since the trimming proportion α (p)

is never small and the sample selection problem is not severe. The second set of parameters

intentionally decreases the trimming proportion α (p), reducing the effective sample size and

worsening the sample selection problem. We find that our estimator performs adequately in

both DGPs when the sample size is equal to n = 10, 000.

Based on the nonparametric estimation procedure described in the Appendix E, we need

to specify the propensity score estimator, the grid points for the observed outcome variable

({y1, . . . , yKn}) and the evaluation points for the unobserved characteristic V . We estimate

the propensity score with a logit estimator whose index is linear in the instrument Z, implying

that the propensity score estimator is misspecified. For the grid points ({y1, . . . , yKn}), we

choose the sample percentiles 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, implying

that Kn = 11. For the evaluation points of the the unobserved characteristic V , we choose

p ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

In this simulation, we focus on the performance of six estimators: α̂ (p), Ξ̂OO,0 (p), L̂B2 (p),

ÛB2 (p), ∆̂2 (p) and ∆̂2 (p). Table D.1 reports the true value of their estimands for the first

and second sets of parameters in Panel A and B, respectively. The important distinction
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between Panels A and B is the value of α (p).

Table D.2 reports the average bias, while Table D.3 presents the mean squared error

(MSE) after normalizing it by the sample size (n = 10, 000). For the first set of parameters

(Panel A), the estimators’ average bias and MSE is smaller for intermediate values of the

propensity score. In this DGP, the treatment is determined by D = ✶ {V ≤ Φ(Z)}, implying

that the data becomes sparser at low (high) values of the propensity score for the (un)treated

group. As a consequence, performance is worse when the propensity score is either small or

large. Moreover, when the propensity score is large, the sample selection problem reduces the

effective sample size, worsening the estimator’s performance. Despite those challenges, the

estimator’s average bias and MSE are reasonably small for both set of parameters.
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Û
B

1
(p
)

53
6.
17

8
1
.0
4

91
.7
9

28
2.
78

18
7.
07

25
9.
52

32
1.
22

54
8.
54

29
56

.3
2

(1
04

7.
25

)
(1
9
5
.5
2)

(1
70

.8
1)

(2
11

.7
3)

(2
50

.0
2)

(2
48

.5
3)

(3
21

.1
9)

(6
94

.0
2)

(4
37

7.
82

)

∆̂
2
(p
)

1
51

7
.3
7

4
63

.0
7

15
7.
49

20
3.
19

21
9.
32

29
2.
6

34
7.
73

53
3.
7

20
75

.6
9

(2
21

9
.0
3)

(5
57

.2
2)

(2
08

.9
1)

(2
58

.6
6)

(2
44

.9
3)

(3
02

.0
2)

(3
77

.3
3)

(6
84

.1
4)

(2
89

4.
41

)

∆̂
2
(p
)

15
39

.3
4

2
8
9.
9
2

14
1.
24

32
8.
43

23
8.
21

32
1.
69

39
2.
97

63
5.
88

31
80

.7
(2
4
64

.0
2)

(5
07

.7
5)

(2
42

.4
4)

(3
11

.5
)

(3
18

.0
6)

(3
35

.8
3)

(4
11

.5
7)

(8
30

.9
3)

(4
59

6.
81

)

P
an

el
B
:
δ 0

=
0.
2,
δ 1

=
2.
0,
β
0
0
=
β
0
1
=
β
1
0
=

0.
1,
β
1
1
=

0.
2

α̂
(p
)

87
.3
8

47
.1
8

10
.2
5

8.
52

7.
62

5.
71

4.
27

4.
73

14
.2
9

(2
03

.6
8)

(5
3
.3
5)

(1
5)

(1
2.
27

)
(1
1.
64

)
(8
.2
2)

(6
.3
)

(6
.5
9)

(2
0.
35

)

Ξ̂
O
O
,0
(p
)

8
32

.7
3

1
57

.0
1

55
.6

48
.6

54
.8
5

59
.3
2

74
.1

11
5.
4

66
6.
71

(1
19

2
.0
8)

(2
26

.5
9)

(8
1.
12

)
(7
1.
15

)
(8
0.
75

)
(8
6.
91

)
(1
19

.0
1)

(1
71

.6
3)

(9
79

.2
1)

L̂
B

1
(p
)

66
7.
96

17
7
.7
8

96
.8
9

14
7.
49

20
0.
67

26
4.
66

35
0.
65

76
1.
64

80
61

.6
4

(7
40

.5
8)

(3
3
2.
8
5)

(1
23

.8
9)

(1
70

.5
6)

(2
17

.5
3)

(2
69

.9
1)

(4
16

.6
5)

(1
13

6.
95

)
(8
25

4.
23

)

Û
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G Empirical Illustration: Additional Details and Results

In this appendix, we present the parametric specification and estimation details for the

results in Section 5.

As mentioned in the main text, to properly account for covariates, we calculate bounds

for MTEOO (p, x) based on parametric estimates for the functions P [D = 1|X = x, Z = z],

P [S = 1, D = d|X = x, P (Z) = p], and P [yk−1 ≤ Y < yk, S = 1, D = d|X = x, P (Z) = p] for

d = {0, 1}, p ∈ [0, 1], k ∈ {1, . . . ,K} and covariate value x observed in the sample.

In particular, the probabilities above are modeled as logit functions that depend on a linear

index of the covariates, instruments (for the propensity score), and a quadratic function of

the propensity score (for the last two equations), while using K = 20 grid points (yk) for the

outcome variable in the last case. Let Λ(·) and λ(·) be the logistic distribution’s CDF and

PDF respectively, then:

P [D = 1|X = x, Z = z] = Λ(xψd
X + zψZ)

P [S = 1, D = d|X = x, P (Z) = p] = Λ(δd1p+ δd2p
2 + xδdX),

P [yk−1 ≤ Y < yk, S = 1, D = d|X = x, P (Z) = p] = Λ(θd1p+ θd2p
2 + xθdX).

The coefficients in the index function can then be estimated using a standard logit estimator,

where the estimated p̂i = Λ(xiψ̂
d
X + ziψ̂Z) replace pi in the estimation for the last two terms.

To enforce the common support assumption, we trim the bottom 1% and top 1% of the

overlapping estimated propensity score distribution.

Hence, the estimates for the partial derivatives of these functions, πd(p, x) and γd(p, x, k),

can be obtained by plugging in the relevant estimates:

π̂d(p, x) = λ(δ̂d1p+ δ̂d2p
2 + xδ̂dX)(δ̂d1 + 2δ̂d2p)(−1)1−d,

γ̂d(p, x, k) = λ(θ̂d1p+ θ̂d2p
2 + xθ̂dX)(θ̂d1 + 2θ̂d2p)(−1)1−d.

The values for α(p, x) and β(p, x) depend on the assumptions being considered. For
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the case in which the sample selection mechanism is unrestricted we can obtain α(p, υℓ, x)

and β(p, υℓ, x) by plugging in π̂d(p, x) in the formulas in Lemma 1. In the leading case of

“monotonicity of sample selection in the treatment” (Assumptions 1-6), α̂ (p, x) =
π̂0 (p, x)

π̂1 (p, x)
.

After estimating α (p, x), β (p, x), the bounds around MTEOO (p, x) for each covariate

value x, can be obtained. Below we focus on the “monotonicity of sample selection in the

treatment” case, but the other situations can be handled analogously. For simplicity, let

f̂d(p, x, k) =
γ̂d(p,x,k)
π̂d(p,x)

. Then, estimates of the bounds in Proposition 2 are given by,

L̂B2(p, x) :=

Kn∑

k=2

yk · ✶
{
F̂1 (p, x, k) ≤ α̂ (p, x)

}
· f̂1(p, x, k)
α̂ (p, x)

(G.1)

ÛB2(p, x) :=

Kn∑

k=2

yk · ✶
{
1− F̂1 (p, x, k) < α̂ (p, x)

}
· f̂1(p, x, k)
α̂ (p, x)

, (G.2)

where yk is the center point of each bin [yk−1, yk] for any k ∈ {2, . . . ,Kn}, and F̂1 (p, x, k) :=

∑k
j=2 f̂1(p, x, j) and F̂0 (p, x, k) :=

∑k
j=2 f̂0(p, x, j) for any k ∈ {2, . . . ,Kn}. Moreover, we

can estimate E

[
Ỹ0|S = 1, D = 0, X = x, P (Z) = p

]
in Proposition 2 using Ξ̂OO,0(p, x) :=

∑Kn

k=2 yk · f̂0(p, x, k).

Finally, the MTEOO(p, x) estimated bounds are given by ∆̂2 (p) := L̂B2(p) − Ξ̂OO,0(p)

and ∆̂2 (p) := ÛB2(p)− Ξ̂OO,0(p).

To summarize the treatment effects, we average the bounds for MTEOO (p, x) across the

sample using observed covariates values. By averaging with respect to the observed density

of the covariates, we compute bounds around the summary measure of the conditional MTE

for the always-observed subgroup:

SCMTEOO (p) :=

∫
E
[
Y ∗
1 − Y ∗

0 |V = p, S0 = 1, S1 = 1, X = x′
]
dFX

(
x′
)
.

If X |= (V = p, S0 = 1, S1 = 1) holds (i.e., the covariates are exogenous), then

SCMTEOO (p) =

∫
E
[
Y ∗
1 − Y ∗

0 |V = p, S0 = 1, S1 = 1, X = x′
]
dFX|V=p,S0=1,S1=1

(
x′
)

= E [Y ∗
1 − Y ∗

0 |V = p, S0 = 1, S1 = 1]
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=MTEOO (p) ,

implying that the summary bounds are valid for the unconditional MTE function for the

always-observed subgroup. Importantly, Deb, Munkin, and Trivedi (2006) assumed that the

covariates are fully exogenous, implying that X |= (V = p, S0 = 1, S1 = 1) holds. Carneiro and

Lee (2009) used a similar exogeneity assumption.

H Extension: Bounds for the distributional marginal treatment effect (DMTE)

In this appendix, we extend Proposition 2 to uniformly and sharply bound the distri-

butional marginal treatment effect for the always-observed sub-population. As discussed by

Carneiro and Lee (2009), policy-makers may care about distributional effects of a policy in-

stead of the average effects, as individuals could respond differently to it depending on their

position in the outcome distribution. For example, people at the bottom of the income dis-

tribution may not have the same response to a policy that increases college accessibility as

people at the top of the income distribution. The distributional marginal treatment effect for

the always-observed for any set A and any p ∈ [0, 1] is defined as

DMTEOO(A; p) := P [Y ∗
1 ∈ A|S0 = 1, S1 = 1, V = p]− P [Y ∗

0 ∈ A|S0 = 1, S1 = 1, V = p] .

Carneiro and Lee (2009) show point identification results for P [Y ∗
1 ∈ A|V = p]−P [Y ∗

0 ∈ A|V = p]

when there is no sample selection. However, in the presence of sample selection, theDMTEOO (A; p)

is only partially identified.

Combining Equation (3.7) and Corollary 1.2 by Horowitz and Manski (1995), we obtain

sharp bounds on the DMTEOO(A; p) for any set A.

Proposition 7. For any set A, bounds on the DMTEOO(A; p) under Assumptions 1-6 are

given by

∆A
2 (p) ≤ DMTEOO(A; p) ≤ ∆

A
2 (p)
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for any p ∈ P, where ∆A
2 := P → R and ∆

A
2 := P → R are given by

∆A
2 (p) := max

{
0,

P [Y ∗
1 ∈ A|S1 = 1, V = p]− (1− α(p))

α(p)

}
− P [Y ∗

0 ∈ A|S0 = 1, S1 = 1, V = p] ,

∆
A
2 (p) := min

{
1,

P [Y ∗
1 ∈ A|S1 = 1, V = p]

α(p)

}
− P [Y ∗

0 ∈ A|S0 = 1, S1 = 1, V = p]

for any p ∈ P. Moreover, these bounds are sharp.
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