

Initiated by Deutsche Post Foundation

DISCUSSION PAPER SERIES

IZA DP No. 14404

Finite Mixture Models for Linked Survey and Administrative Data: Estimation and Post-estimation

Stephen P. Jenkins Fernando Rios-Avila

MAY 2021

Initiated by Deutsche Post Foundation

DISCUSSION PAPER SERIES

IZA DP No. 14404

Finite Mixture Models for Linked Survey and Administrative Data: Estimation and Post-estimation

Stephen P. Jenkins LSE and IZA

Fernando Rios-Avila The Levy Institute

MAY 2021

Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity.

The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the world's largest network of economists, whose research aims to provide answers to the global labor market challenges of our time. Our key objective is to build bridges between academic research, policymakers and society.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.

ISSN: 2365-9793

IZA – Institute of Labor Economics

Schaumburg-Lippe-Straße 5–9	Phone: +49-228-3894-0	
53113 Bonn, Germany	Email: publications@iza.org	www.iza.org

ABSTRACT

Finite Mixture Models for Linked Survey and Administrative Data: Estimation and Post-estimation

Researchers use finite mixture models to analyze linked survey and administrative data on labour earnings (or similar variables), taking account of various types of measurement error in each data source. Different combinations of error-ridden and/or error-free observations characterize latent classes. Latent class probabilities depend on the probabilities of the different types of error. We introduce a set of Stata commands to fit a general class of finite mixture models to fit to linked survey-administrative data We also provide post-estimation commands for assessment of reliability, marginal effects, data simulation, and prediction of hybrid earnings variables that combine information from both data sources.

JEL Classification:	C81, C83, D31
Keywords:	linked survey and administrative data, measurement error, finite
	mixture models

Corresponding author:

Stephen P. Jenkins Department of Social Policy London School of Economics and Political Science Houghton Street London WC2A 2AE United Kingdom E-mail: s.jenkins@lse.ac.uk

1 Introduction

Linked datasets are datasets in which reports by respondents to a household survey on a variable such as earnings or another income component are linked to reports on the same variable in an administrative dataset (e.g. income tax or social security data) for the same respondents. Researchers have long used linked datasets to examine measurement errors in the variables of interest – to investigate whether they impart bias in the observed measures, how much spurious variation they account for, and whether errors are correlated with the 'true' measure (a negative correlation means that low-earners over-report and high-earners under-report). In the first generation of studies, analysts assumed that the linked admistrative data provided error-free measures; all measurement errors arose in the survey reports. A small and more recent second generation of studies has allowed for errors in the administrative data as well.

Finite mixture models (FMMs) are useful for analyzing linked datasets because they allow you to succinctly describe both the distribution of the 'true' (error-free) substantive variable of interest as well as the distributions of the various types of measurement error. Different combinations of error-ridden and/or error-free survey and administrative data observations characterize latent classes. Latent class probabilities depend on the probabilities of the different types of error. However, the FMMs needed for this analysis cannot be fitted using readily-available software such as Stata's **fmm** suite of commands. In this article, we provide and illustrate Stata commands for fitting a general class of FMMs to linked data. We also provide post-estimation commands for assessment of reliability, marginal effects, data simulation, and prediction of hybrid earnings variables that combine information from both data sources.

The FMMs we consider are our generalizations of the second generation models developed by Kapteyn and Ypma (2007, KY hereafter). KY's model was the first to incorporate administrative data error in addition to survey measurement error. However, the characterization of administrative data error was restricted to linkage 'mismatch', i.e., the situation in which an individual's survey response is incorrectly linked to the response for some other person in the administrative data. KY's findings, based on linked earnings data for Swedish individuals aged 50+, showed that even a small amount of mismatch error was consequential (their linked administrative data were less reliable than their survey data), and they found no evidence that low-earners overreported and high-earners underreported their earnings (a striking contrast with the findings of first generation studies). However, KY did

2

not consider measurement error per se in the administrative data, i.e., error arising in its compilation (typically involving reporting by employers to tax or social security authorities).¹

We extend KY's model in recent work to more general FMMs that include administrative measurement error in addition to linkage mismatch and survey measurement error (Jenkins and Rios-Avila, 2021*b*). Our second innovation is to allow the parameters describing the distributions in our FMMs to vary with individual characteristics. This provides a succinct way to address questions such as: does survey earnings measurement error differ between older and younger workers? How does administrative data error differ between private- and public-sector employees? Our third contribution is to extend the application of methods for earnings prediction proposed by Meijer, Rohwedder, and Wansbeek (2012, MRW hereafter) to our general models. MRW derived formulae for a number of hybrid earnings predictors that combined information from both survey and administrative data, and showed that they were more reliable than either the survey or the administrative data measure. However, MRW's illustrations focused entirely on KY's model and their estimates based on Swedish data.²

In Section 2, we describe our FMMs and explain how to fit them using maximum likelihood. We present our new commands for estimation and post-estimation analysis in Section 3. In section 4, we illustrate the commands drawing on KY's and MRW's empirical analysis. For a more extensive illustration of our software, see Jenkins and Rios-Avila (2021*b*). Section 5 contains conclusions. The Appendix contains additional results that we draw on in the main text.

2 FMMs for linked survey and administrative data

We set out our FMMs in this section, and assume that the variable of interest is the logarithm of the labour earnings of employees ('earnings'). For each of a large number of individuals in a linked dataset, we have an observation pair referring to the worker's earnings derived from the survey and from the administrative data.

¹ There is a small number of second generation studies that allow for administrative data error in earnings: see Abowd and Stinson (2013, using data for the USA), Hyslop and Townsend (2020, New Zealand), and Bollinger et al. (2018, USA) who also allow for linkage mismatch. Jenkins and Rios-Avila (2020) fit KY models to linked data for the UK. Jenkins and Rios-Avila (2021*b*) fit the more general models considered in this article and review first and generation studies in more detail.

² Our replication of MRWs analysis using UK linked data (Jenkins and Rios-Avila, 2021*a*) was also restricted to KY models.

We assume, following KY, that there is a latent variable ξ_i that represents the true variable of interest (log earnings) for each individual i = 1, ..., N. This variable is not observed directly but there are two measures of it, each potentially error-ridden: one from administrative data, r_i , and one from survey data, s_i .

2.1 Administrative data: three types of observation

We assume the administrative data are a mixture of three types of observation. First, we distinguish between observations for whom the record linkage between administrative and survey data is correct, which occurs with probability π_r , and observations who are mismatched, with probability $1-\pi_r$. The administrative data measure for mismatched observations is ζ_i , the earnings of some other person in the administrative data. Second, among the correctly-matched observations, we suppose that the administrative data earnings measure is error-free with probability π_v , or contains measurement error v_i with probability $1-\pi_v$. (KY assumed $\pi_v = 1$.) Measurement error may be correlated with true earnings, with the correlation denoted by ρ_r . If $\rho_r < 0$, we have mean-reversion: high-earners under-report and low-earners over-report; if $\rho_r > 0$, the reverse occurs. The three types of observation, labelled *R*1, *R*2, and *R*3, are summarized in eq. (1).

$$r_{i} = \begin{cases} \xi_{i} & \text{with probability } \pi_{r}\pi_{v} & (R1) \\ \xi_{i} + \rho_{r}(\xi_{i} - \mu_{\xi}) + \nu_{i} & \text{with probability } \pi_{r}(1 - \pi_{v}) & (R2) \\ \zeta_{i} & \text{with probability } 1 - \pi_{r} & (R3) \end{cases}$$
(1)

2.2 Survey data: three types of observation

We assume the survey data are a mixture of three types of observation (following KY). Type S1 respondents are those who report their true earnings: s_i equals true latent earnings ξ_i with probability π_s . The survey earnings of type S2 respondents differ from true earnings by a measurement error component representing noise (η_i), plus a mean-reversion component allowing for a correlation (ρ_s) between true earnings and error. A third type, S3, contains observations with error-ridden survey earnings (as for type S2), except that there is additional 'contamination' (ω_i). The probability of contamination is π_{ω} . Type S2 occurs with probability

 $(1-\pi_s)(1-\pi_{\omega})$; type S3 occurs with probability $(1-\pi_s)\pi_{\omega}$. The three types of observation are summarized in eq. (2).

$$s_{i} = \begin{cases} \xi_{i} & \text{with probability } \pi_{s} & (S1) \\ \xi_{i} + \rho_{s}(\xi_{i} - \mu_{\xi}) + \eta_{i} & \text{with probability } (1 - \pi_{s})(1 - \pi_{\omega}) & (S2) \\ \xi_{i} + \rho_{s}(\xi_{i} - \mu_{\xi}) + \eta_{i} + \omega_{i} & \text{with probability } (1 - \pi_{s})\pi_{\omega} & (S3) \end{cases}$$

In sum, observations in the linked dataset are a mixture of nine types (latent classes j = 1,...,9) depending on the combination of administrative and survey observation types. The latent class probabilities are π_j , j = 1,...,9. For example, group 1 contains observations with the combination (*R*1, *S*1) with probability $\pi_1 = \pi_r \pi_{\nu} \pi_s$, group 2 contains observations with the combination (*R*1, *S*2) with probability $\pi_2 = \pi_r \pi_{\nu}(1-\pi_s)(1-\pi_{\omega})$, etc. The FMM specification is completed by assumptions about the latent class earnings densities, $f_j(r_i, s_i)$ for each j = 1, ..., 9.

We assume that true earnings (ξ_i) , mismatched earnings (ζ_i) , and errors $(\upsilon_i, \eta_i, \omega_i)$ are each normally distributed with the exception that true earnings and reference period errors (ω_i) are bivariate normal. We assume normality (as other researchers do) to fit models by maximum likelihood (see below) and because it facilitates post-estimation derivations.

The distributions are identically distributed and mutually independent (assumptions we relax shortly). Thus, the distributions of the factors may be written as:

$$\begin{pmatrix} \xi_i \\ \omega_i \end{pmatrix} = N \left(\begin{pmatrix} \mu_{\xi} \\ \mu_{\omega} \end{pmatrix}, \begin{pmatrix} \sigma_{\xi}^2 & \rho_{\omega} \sigma_{\xi} \sigma_{\omega} \\ \rho_{\omega} \sigma_{\xi} \sigma_{\omega} & \sigma_{\omega}^2 \end{pmatrix} \right),$$

$$\sim N (\mu_{\zeta}, \sigma_{\zeta}^2), \eta_i \sim N (\mu_{\eta}, \sigma_{\eta}^2), \text{ and } v_i \sim N (\mu_{v}, \sigma_{v}^2),$$
(3)

where ' μ ' and ' σ ' denote mean and standard deviation (SD), respectively, and ρ_{ω} is the correlation between true earnings and contamination. Jenkins and Rios-Avila (2021*b*) argue there are grounds for expecting $\rho_{\omega} < 0$. (KY assumed $\rho_{\omega} = 0$.) We do not restrict error means to equal zero because errors may introduce systematic bias.

Table 1 summarises the nine latent classes, their probabilities and densities.

We allow distributions to vary with observed characteristics by writing transformations of model parameters as linear indices of characteristics, i.e.,

 ζ_i

$$G(\gamma_i) = \alpha_{\gamma} + \beta_{\gamma} X_i. \tag{4}$$

For each model parameter with generic label γ_i , α_{γ} is a constant, X_i is a vector of observed characteristics for individual *i*. Transformation function G(.) is the identity function for means (μ), the logarithmic function for SDs (σ), the logistic function for probabilities (π), and Fisher's *Z* transformation for correlations (ρ).³ See the next section for further details. Previous research has allowed the mean of true earnings (μ_{ξ}) to vary characteristics, but not other parameters.

Simpler versions of our general model can be fitted using our estimation commands, as we explain below, including several of KY's models.

³ Reversion to the mean in the models with a heterogeneous mean earnings function refers to reversion to the mean among individuals with the same observed characteristics.

Label, j	Combination	Latent class probability, π_j	Latent class distribution densities, $f_j(r_i, s_i)$
1	<i>R</i> 1, <i>S</i> 1	$\pi_1 = \pi_r \pi_v \pi_s$	$N\left(egin{pmatrix} \mu_{\xi} \ \mu_{\xi} \end{pmatrix},egin{pmatrix} \sigma_{\xi}^2 & 1 \ 1 & \sigma_{\xi}^2 \end{pmatrix} ight)$
2	<i>R</i> 1, <i>S</i> 2	$\pi_2 = \pi_r \pi_v (1 - \pi_s)(1 - \pi_\omega)$	$N\left(\begin{pmatrix}\mu_{\xi}\\\mu_{\xi}+\mu_{\eta}\end{pmatrix},\begin{pmatrix}\sigma_{\xi}^{2}&(1+\rho_{s})\sigma_{\xi}^{2}\\(1+\rho_{s})\sigma_{\xi}^{2}&(1+\rho_{s})^{2}\sigma_{\xi}^{2}+\sigma_{\eta}^{2}\end{pmatrix}\right)$
3	<i>R</i> 1, <i>S</i> 3	$\pi_3 = \pi_r \pi_v (1 - \pi_s) \pi_\omega$	$N\left(\begin{pmatrix} \mu_{\xi} \\ \mu_{\xi} + \mu_{\eta} + \mu_{\omega} \end{pmatrix}, \begin{pmatrix} \sigma_{\xi}^{2} & (1+\rho_{s})\sigma_{\xi}^{2} + \rho_{\omega}\sigma_{\xi}\sigma_{\omega} \\ (1+\rho_{s})\sigma_{\xi}^{2} + \rho_{\omega}\sigma_{\xi}\sigma_{\omega} & (1+\rho_{s})^{2}\sigma_{\xi}^{2} + \sigma_{\eta}^{2} + \sigma_{\omega}^{2} + 2\rho_{\omega}\sigma_{\xi}\sigma_{\omega} \end{pmatrix}\right)$
4	<i>R</i> 2, <i>S</i> 1	$\pi_4 = \pi_r (1 - \pi_v) \pi_s$	$N\left(\begin{pmatrix} \mu_{\xi} + \mu_{\nu} \\ \mu_{\xi} \end{pmatrix}, \begin{pmatrix} (1+\rho_{r})^{2}\sigma_{\xi}^{2} + \sigma_{\nu}^{2} & (1+\rho_{r})\sigma_{\xi}^{2} \\ (1+\rho_{r})\sigma_{\xi}^{2} & \sigma_{\xi}^{2} \end{pmatrix} \right)$
5	<i>R</i> 2, <i>S</i> 2	$\pi_{5} = \pi_{r}(1 - \pi_{v})(1 - \pi_{s}) (1 - \pi_{\omega}) (1 - \pi_{\omega})$	$N\left(\begin{pmatrix} \mu_{\xi} + \mu_{\nu} \\ \mu_{\xi} + \mu_{\eta} \end{pmatrix}, \begin{pmatrix} (1+\rho_{r})^{2}\sigma_{\xi}^{2} + \sigma_{\nu}^{2} & (1+\rho_{r})(1+\rho_{s})\sigma_{\xi}^{2} \\ (1+\rho_{r})(1+\rho_{s})\sigma_{\xi}^{2} & (1+\rho_{s})^{2}\sigma_{\xi}^{2} + \sigma_{\eta}^{2} \end{pmatrix} \right)$
6	<i>R</i> 2, <i>S</i> 3	$\pi_6 = \pi_r (1-\pi_v)(1-\pi_s)\pi_\omega$	$N\left(\begin{pmatrix} \mu_{\xi} + \mu_{\nu} \\ \mu_{\xi} + \mu_{\eta} + \mu_{\omega} \end{pmatrix}, \begin{pmatrix} (1+\rho_{r})\sigma_{\xi}^{2} + \sigma_{\nu}^{2} & (1+\rho_{r})(1+\rho_{s})\sigma_{\xi}^{2} + (1+\rho_{r})\rho_{\omega}\sigma_{\xi}\sigma_{\omega} \\ (1+\rho_{r})(1+\rho_{s})\sigma_{\xi}^{2} + (1+\rho_{r})\rho_{\omega}\sigma_{\xi}\sigma_{\omega} & (1+\rho_{s})^{2}\sigma_{\xi}^{2} + \sigma_{\eta}^{2} + \sigma_{\omega}^{2} + 2\rho_{\omega}\sigma_{\xi}\sigma_{\omega} \end{pmatrix}\right)$
7	R3,S1	$\pi_7 = (1 - \pi_r)\pi_s$	$N\left(\begin{pmatrix} \mu_{\zeta}\\ \mu_{\xi} \end{pmatrix}, \begin{pmatrix} \sigma_{\zeta}^2 & 0\\ 0 & \sigma_{\varepsilon}^2 \end{pmatrix}\right)$
8	<i>R</i> 3, <i>S</i> 2	$\pi_8 = (1 - \pi_r)(1 - \pi_s)(1 - \pi_\omega)$	$N\left(\begin{pmatrix} \mu_{\zeta} \\ \mu_{\xi} + \mu_{\eta} \end{pmatrix}, \begin{pmatrix} \sigma_{\zeta}^{2} & 0 \\ 0 & (1 + \rho_{s})^{2} \sigma_{\varepsilon}^{2} + \sigma_{\eta}^{2} \end{pmatrix} \right)$
9	R3,S3	$\pi_9 = (1-\pi_r)(1-\pi_s)\pi_\omega$	$N\left(\begin{pmatrix} \mu_{\zeta} \\ \mu_{\xi} + \mu_{\eta} + \mu_{\omega} \end{pmatrix}, \begin{pmatrix} \sigma_{\zeta}^{2} & 0 \\ 0 & (1 + \rho_{s})^{2}\sigma_{\xi}^{2} + \sigma_{\eta}^{2} + \sigma_{\omega}^{2} + 2\rho_{\omega}\sigma_{\xi}\sigma_{\omega} \end{pmatrix}\right)$

Table 1 Latent class probabilities and distributions

2.3 Estimation

We fit the FMM by maximum likelihood. The general shape of the log-likelihood function for our finite mixture is:

$$\log \mathcal{L}(\theta, \Pi) = \sum_{i=1}^{N} \log \sum_{j=1}^{9} \pi_j f_j(r_i, s_i | \theta) , \qquad (5)$$

where we now write each latent class density as conditional on the set of parameters, θ , that describe the bivariate distributions, and $\Pi = \{\pi_r, \pi_s, \pi_{\upsilon}, \pi_{\omega}\}$ are the error probabilities that characterize the class probabilities π_j .

The FMM is identified by the assumptions about the relationships between the two observed measures and true earnings and the non-normal error structure arising from the mixture of distributions: see Kapteyn and Ypma (2007, 532). See also Yakowitz and Spragins (1968) who prove that finite mixtures are identifiable if the mixture is of multivariate Gaussian distributions, which is the case here.

The definition of the first latent class (group 1) also plays an important role. Identification uses the assumption that the members of class 1 are 'completely labeled' (as KY term it). These individuals correctly report their earnings in the survey data, are correctly matched to their administrative data records, and there is no error in their administrative earnings. Hence, both observed earnings measures equal true earnings, i.e., $r_i = s_i = \xi_i$ if $i \in$ class 1. This assumption has two consequences for the log-likelihood function (Redner and Walker 1984).

First, since $r_i = s_i$, the class 1 distribution degenerates to a univariate normal distribution with mean μ_{ξ} and variance σ_{ξ}^2 . Second, because class membership is known for observations in this group, the log-likelihood function becomes:

$$\log \mathcal{L}(\theta, \Pi) = \sum_{i \in \text{class } 1} \pi_1 \log (f_1(\xi_i | \theta)) + \sum_{i \notin \text{class } 1} \log \left(\sum_{j=2}^N \pi_j f_j(r_i, s_i | \theta) \right)$$
(6)

In principle, μ_{ξ} and σ_{ξ}^2 are fully identified using the sample of class 1 observations. In practice, the sample of completely labeled observations may be too small for reliable

identification of these moments. KY's strategy was to broaden the definition of equality to include observations for which survey and administrative earnings were sufficiently 'close'. This is an empirical judgement call.⁴

3 The ky suite of commands for estimation and post-estimation

This section describes the commands for fitting our general FMM and special cases of it, and commands for post-estimation analysis and prediction. We assume the linked dataset is in wide format, i.e., with one row per individual. There are variables corresponding to r_i and s_i and also (optionally) variables used to define explanatory variables in models with covariates.

3.1 Model estimation: ky_fit

Command ky_fit fits the general FMM and special cases of it. The syntax for the command is as follows:

where **r_var** and **s_var** are required variables. They correspond to the administrative log earnings measure r_i (**r_var**) and the survey log earnings measure s_i (**s_var**).

Optionally, you can refer to a binary variable cl_var that identifies observations that belong to the completely labeled class. If cl_var is not declared, ky_fit creates a binary indicator variable named __ll__ equal to one for observations for which abs (r_vars_var) <= #d. The default value of #d is 0, but other values can be declared using delta (#d).

model (#) specifies which version of the FMM is fitted. Table 2 lists the model variants available, showing for each model the parameter restrictions imposed relative to the most general model, and the combinations of types of observation present in the administrative and survey data. The default specification is model 1, which assumes error-free administrative data and mean-reverting error in the survey data (without contamination).

⁴ In their application, KY defined an observation as completely labeled if earnings in the two data sources differed by less than 1000 SEK (14.8% of their sample). Jenkins and Rios-Avila (2020), using UK data, assess the sensitivity of parameter estimates to different assumptions, varying the fraction of completely labeled observations from 0.25% to 16.93%.

The most general model, described in section 2, corresponds to model 8. KY's 'Full' model is model 4. Jenkins and Rios-Avila (2021*b*) focus on models 4, 5, 7 and 8; model 5 is their best-fitting model.

Table 2. FMM variants and parameter restrictions						
Model	Parameter restrictions	Types of obse	rvation			
#		Administrative data	Survey data			
1	$\mu_{\omega}=0;\sigma_{\omega}=0;\pi_{\omega}=0;$	<i>R</i> 1	<i>S</i> 1, <i>S</i> 2			
	$\mu_{ u} = 0; \sigma_{ u} = 0; \pi_{ u} = 1;$					
	$\mu_{\zeta}=0;\sigma_{\zeta}=0;\pi_{r}=1;$					
	$ ho_r=0;~ ho_\omega=0$					
2	$\mu_{ u} = 0; \sigma_{ u} = 0; \pi_{ u} = 1;$	<i>R</i> 1	<i>S</i> 1, <i>S</i> 2, <i>S</i> 3			
	$\mu_{\zeta}=0;\sigma_{\zeta}=0;\pi_{r}=1;$					
	$ ho_r=0;\ ho_\omega=0$					
3	$\mu_{ u}=0;\sigma_{ u}=0;\pi_{ u}=1; ho_{r}=0;$	<i>R</i> 1, <i>R</i> 2	<i>S</i> 1, <i>S</i> 2			
	$\mu_{\omega}=0$; $\sigma_{\omega}=0$; $\pi_{\omega}=0$; $ ho_{\omega}=0$					
4	$\mu_{ u}=0;\sigma_{ u}=0;\pi_{ u}=1; ho_{r}=0;$	<i>R</i> 1, <i>R</i> 3	<i>S</i> 1, <i>S</i> 2, <i>S</i> 3			
	$ ho_{\omega}=0$					
5	$ ho_\omega=0$	<i>R</i> 1, <i>R</i> 2, <i>R</i> 3	<i>S</i> 1, <i>S</i> 2, <i>S</i> 3			
6	$\mu_{\omega}=0$; $\sigma_{\omega}=0$; $\pi_{\omega}=0$; $ ho_{\omega}=0$	<i>R</i> 1, <i>R</i> 2, <i>R</i> 3	<i>S</i> 1, <i>S</i> 2			
7	$\mu_{ u}=0;\sigma_{ u}=0;\pi_{ u}=1; ho_{r}=0$	<i>R</i> 1, <i>R</i> 3	<i>S</i> 1, <i>S</i> 2, <i>S</i> 3			
8	No restrictions	<i>R</i> 1, <i>R</i> 2, <i>R</i> 3	<i>S</i> 1, <i>S</i> 2, <i>S</i> 3			

5 $\rho_{\omega} = 0$ R1, R2, R3 S1, S2, S36 $\mu_{\omega} = 0; \sigma_{\omega} = 0; \pi_{\omega} = 0; \rho_{\omega} = 0$ R1, R2, R3 S1, S27 $\mu_{\nu} = 0; \sigma_{\nu} = 0; \pi_{\nu} = 1; \rho_{r} = 0$ R1, R3 S1, S2, S38 No restrictions R1, R2, R3 S1, S2, S3Optionally, you can specify the parameters of any of the models listed in Table 2 as functions of covariates, as described by eq. (4). Table 3 provides a walkthrough of the estimated parameters, the parameter-specific options in ky_fit you use to declare the

estimated parameters, the parameter-specific options in ky_fit you use to declare the covariates, and the internal transformation used for maximization. If a model-specific parameter is constrained (as described by Table 2), a declaration of covariates for that parameter is ignored. Because parameters (apart from means) are fitted in a transformed metric, users wishing to see estimates in their 'natural' metrics need to back-transform them. You can do this using margins: see Section 3.3.

Parameter	ky fit option	Transformation
μ_{ξ}	mu_e(varlist)	Identity
σ_{ξ}	<pre>ln_sig_e(varlist)</pre>	$\sigma_{\xi} = \exp(\ln_{sig})$
μ_{ω}	mu_w(varlist)	Identity
σ_{ω}	<pre>ln_sig_w(varlist)</pre>	$\sigma_\omega=$ exp(ln_sig_w)
μ_η	<pre>mu_n(varlist)</pre>	Identity
σ_η	<pre>ln_sig_n(varlist)</pre>	$\sigma_\eta =$ exp(ln_sig_n)
μ_{v}	<pre>mu_v(varlist)</pre>	Identity
σ_{v}	<pre>ln_sig_v(varlist)</pre>	$\sigma_{\nu} = \exp(\ln_{jn})$
μ_{ζ}	<pre>mu_t(varlist)</pre>	Identity
σ_{ζ}	<pre>ln_sig_t(varlist)</pre>	$\sigma_{\zeta} = \exp(\ln_{j})$
$ ho_r$	arho_r(varlist)	$\rho_r = $ tanh(arho_r)
$ ho_s$	arho_s(varlist)	$ ho_{\scriptscriptstyle S}=$ tanh(arho_s)
$ ho_\omega$	arho_w(varlist)	$ ho_\omega=$ tanh(arho_w)
π_r	lpi_r(varlist)	π_r = logistic(lpi_r)
π_s	lpi_s(varlist)	π_s = logistic(lpi_s)
π_{ω}	lpi_w(varlist)	π_{ω} = logistic(lpi_w)
π_{v}	lpi_v(varlist)	$\pi_{v} = \text{logistic(lpi_v)}$

 Table 3. Options to allow parameters to be functions of covariates

Our code fits models in sequential fashion using m1: we use the parameter estimates of simpler (more restricted) models as starting values for more flexible models. Additional restrictions on model specifications can be applied using constraint(). To use other initial values, m1 options search() and repeat() are available. You can also provide specific initial values for model parameters using option from().

We recommend that users experiment with multiple sets of initial values in order to check that the more complex models converge to a global maximum rather than some local maximum. This is a well-known issue for FMM models and, in our own work (Jenkins and Rios-Avila 2021*b*), has arisen when fitting models 4–8 with many covariates. Our sequential fitting approach reduces the risk of convergence to local maxima but does not remove it altogether.

ky_fit also allows the use of maximization options technique(), trace, and difficult.

Fweights, pweights, aweights, and iweights are allowed.

ky_fit reports standard errors derived from asymptotic theory by default but, optionally, you may use **robust** and **cluster(cluster_var)**.

3.2 Post-estimation tools: ky_estat

ky_estat is a post-estimation command that allows researchers to obtain summary statistics for a fitted model. It is written to be integrated with Stata's built-in post-estimation command **estat**, and has the following syntax:

Option pr_t reports error probabilities π_r , π_s , π_v , and π_ω ; Option pr_j reports latent class probabilities π_1 through π_0 ; Option pr_sr reports the probabilities of each observation type S1-S3 and R1-R3. Option pr all reports all probabilities.

For models without covariates; estat reports error probabilities in their original metric (rather than the metric used for estimation). If you specify error probabilities as functions of covariates, estat reports average predicted probabilities.

If the error probabilities are modeled without covariates, option <u>reliability</u> produces a full report of all unconditional probabilities. It also reports two reliability summary statistics for each of the survey and administrative data, based on the analytically predicted variances of the observed earnings data (r_i , s_i), and their covariances with (modelspecific) estimated true latent earnings (ξ_i). The two reliability statistics are:

$$R_{1}^{r} = \frac{Cov(\xi_{i}, r_{i})}{Var(r_{i})} ; R_{1}^{s} = \frac{Cov(\xi_{i}, s_{i})}{Var(s_{i})}$$
$$R_{2}^{r} = \frac{Cov(\xi_{i}, r_{i})^{2}}{Var(\xi_{i})Var(r_{i})} ; R_{2}^{s} = \frac{Cov(\xi_{i}, s_{i})^{2}}{Var(\xi_{i})Var(s_{i})}.$$

 R_1 is analogous to the reliability statistic often reported for the classical measurement error model with mean-reversion, and is equal to the slope coefficient from a (hypothetical) regression of true earnings on the observed earnings measure. (It may be greater than one.) R_2 , proposed by MRW, is the squared correlation between true earnings and an observed earnings measure. Analytical expressions for unconditional variance and covariances based on unrestricted model 8 are presented in the Appendix. If you model error probabilities as functions of covariates, option <u>reliability</u> produces simulation-based reliability estimates. You can specify the number of replications using the option **reps(#)**, with the default being 50 replications. For reproducibility, set the seed using **seed(#)**.

You can also request simulation-based reliability statistics using option sim even if error probabilities have not been declared as functions of covariates.

The final post-estimation option is **xirel**. This uses simulated data to estimate the reliability statistics, mean squared error (MSE), bias, and variance of bias of seven latent earnings predictors, as proposed by MRW (see the next section). This option also produces corresponding statistics for the observed administrative and survey measures. You can use **reps (#)** and **seed (#)** to set the number of replications and seed.

3.3 Post-estimation predictions and marginal effects: ky_p

ky_p is a post-estimation program that allows you to obtain predictions for all relevant parameters of FMMs, and is integrated with Stata's post-estimation commands **predict** and **margins**. Table 4 lists the options available. The analytical formulae for the constructed moments correspond to the ones listed in Table 1.

Option	Description
Structural parameters	
<pre>mean_e, mean_n, mean_w, mean_t</pre>	Conditional means of latent variables ξ , η , ω , and ζ , respectively
<pre>sig_e, sig_n, sig_w, sig_t</pre>	Conditional SDs of latent variables ξ , η , ω , and ζ , respectively
pi_s, pi_r, pi_w, pi_v	Error probabilities
rho_s, rho_r	Mean-reversion parameters for survey data (ρ_s) and administrative data (ρ_r)
rho_w	Conditional orrelation between latent true earnings (ξ) and contamination (ω)
Constructed moments	
<pre>mean_r1, mean_r2, mean_r3</pre>	Mean of administrative earnings: <i>R</i> 1, <i>R</i> 2, <i>R</i> 3 respectively
sig_r1, sig_r1, sig_r1	SD of administrative earnings: R1, R2, R3 respectively
pi_r1, pi_r2, pi_r3	Probability of belonging to type <i>R</i> 1, <i>R</i> 2, <i>R</i> 3 respectively
<pre>mean_s1, mean_s2, mean_s3</pre>	Mean of survey earnings: S1, S2, S3 respectively
<pre>sig_s1, sig_s2, sig_s3</pre>	SD of survey earnings: S1, S2, S3 respectively
pi_s1, pi_s2, pi_s3	Probability of belonging to type <i>S</i> 1, <i>S</i> 2, <i>S</i> 3 respectively
pj_1,, pj_9	Probability of belonging to latent class $j = 1,, 9$

Table 4. ky_p options compatible with predict and margins

Notes. When models 3, 4, and 6 are estimated, **mean_r2**, **sig_r2**, and **pi_r2**, produce estimates for *R*3, because of type *R*2 observations are absent.

Table 5 lists the options that are compatible with predict alone (because they are functions of the variables r_i and s_i), providing a description and definition. The options include predictions of posterior class probabilities and Bayesian classifications based on the posterior probabilities.

The posterior or conditional probability of observation *i* belonging to a given class, say class 2, is defined as the product of the unconditional probability of belonging to class 2, times the ratio of the likelihood of observation *i* belonging to class 2, divided by the sum of the likelihoods of observation *i* belonging to all classes (2 through 9). You can then assign observations to a latent class. Given the posterior probabilities, the Bayesian classifier assigns each observation to the class for which the posterior probability is greatest. For all variants of our FMMs, the conditional probability of belonging to class 1 is equal to 1 if the observation belongs to the completely labeled group and 0 otherwise.

Option	Description	Definition
<pre>pip_r1, pip_r2, pip_r3</pre>	Posterior probability of belonging to <i>R</i> 1, <i>R</i> 2, or <i>R</i> 3	$\pi_{R_j}(r_i) = \pi_{R_j} * \frac{f_{R_1}(r_i \theta)}{\sum_{k=1}^3 f_{R_k}(r_i \theta)}$
<pre>pip_s1, pip_s2, pip_s3</pre>	Posterior probability of belonging to <i>R</i> 1, <i>R</i> 2, or <i>R</i> 3	$\pi_{S_j}(r_i) = \pi_{S_j} * \frac{f_{R1}(r_i \theta)}{\sum_{k=1}^3 f_{R_k}(r_i \theta)}$
<pre>pip_1, pip_2, , pip_9</pre>	Posterior probability of belonging to class $j = 1,,9$	$\pi_j(r_i, s_i) = \pi_j * \frac{f_j(r_i, s_i \theta)}{\sum_{k=2}^9 f_k(r_i, s_i \theta)}$
bclass_r, bclass_s	Bayesian classification of observation <i>i</i> to type <i>R</i> 1, <i>R</i> 2, or <i>R</i> 3, and to type <i>S</i> 1, <i>S</i> 2, or <i>S</i> 3, respectively	$bcX_i = j \text{ if } \pi_{X_j}(x_i) > \pi_{X_h}(x_i)$ $\forall h \neq j \& X \in \{R, S\} \& x \in \{r, s\}$
bclass	Bayesian classification of observation i to class $j = 1,,9$	$bc_i = j \text{ if } \pi_j(r_i, s_i) > \pi_h(r_i, s_i)$ $\forall h \neq j$

Table 5. ky_p options compatible with predict only

Finally, you can use **predict** to obtain seven different predictors of each individual's latent true earnings (ξ_i) using option **star**. The methods, proposed by MRW and extended by us to our general FMM, combine information from both administrative and survey data. The syntax of the option is as follows:

predict prefix, star [replace surv_only]

The new variables are named using **prefix** and consecutive integers from 1 to 7 and are created as data type **double**. Option **replace** enables you to replace existing variable values; **surv_only** requests the same predictors for the situation in which you have access to survey data only (as well as model estimates).

The descriptions of the predictors ('hybrid' earnings variables) are provided in Table 6, with the derivation of the formulae presented in the Appendix. Predictors 1 to 6 uses two within-class predictions for ξ . The first set $\hat{\xi}_i^j$, used for predictors 1, 3, and 5, are such that they minimize the Mean Squared Error (MSE), $E\left(\left(\xi_i - \hat{\xi}_i^j\right)^2 | \xi_i, i \in J\right)$. The second set of predictors, $\hat{\xi}_i^{Uj}$, used for cases 2, 5, and 6, are those that minimize the MSE conditional on $E\left(\xi_i - \hat{\xi}_i^{Uj} | i \in J\right) = 0$. Predictors 1 and 2 provide weighted predictors using the unconditional within-class probabilities π_j . Predictors 3 and 4 provide weighted predictors using the using conditional or posterior within-class probabilities $\pi_i(r_i, s_i)$. Finally, predictors 5 and 6

use the two-step Bayesian classification. The seventh predictor $(\hat{\xi}_{7i})$ is the system-wide predictor that minimizes MSE under the assumption of linearity and imposing the condition of unbiasedness.

Table 6. Seven predictors of latent true earnings					
Variable Name	Predictor description	Definition			
[prefix]1	Weighted unconditional	$\hat{\xi}_{1i} = \sum_{j=1}^{9} \pi_j \hat{\xi}_i^j$			
[prefix]2	Weighted unconditional and unbiased	$\hat{\xi}_{2i} = \sum_{j=1}^{9} \pi_j \hat{\xi}_i^{Uj}$			
[prefix]3	Weighted conditional	$\hat{\xi}_{3i} = \sum_{i=1}^{9} \pi_j(r_i, s_i) \hat{\xi}_i^j$			
[prefix]4	Weighted conditional and unbiased	$\hat{\xi}_{4i} = \sum_{i=1}^{9} \pi_j(r_i, s_i) \hat{\xi}_i^{Uj}$			
[prefix]5	Two-step	$\hat{\xi}_{5i} = \sum_{i=1}^{j-1} (bc_i = j) \hat{\xi}_i^j$			
[prefix]6	Two-step unbiased	$\hat{\xi}_{6i} = \sum_{i=1}^{J-1} (bc_i = j) \hat{\xi}_i^{Uj}$			
[prefix]7	System-wide, linear	$\hat{\xi}_{7i} = \hat{\mu}_{\xi} + \sum_{\xi y} \sum_{y}^{-1} [y - \hat{\mu}_{y x}],$ $y = [r_i, s_i]$			

Note: $\hat{\xi}_i^j$ is the within-class predictor that minimizes $E\left(\left(\xi_i - \hat{\xi}_i^j\right)^2 | \xi_i, i \in J\right)$. $\hat{\xi}_i^{Uj}$ is the within-class predictor that minimizes MSE under the condition $E\left(\xi_i - \hat{\xi}_i^{Uj} | i \in J\right) = 0$. $\Sigma_{\xi y}$ is the covariance matrix between ξ_i and (r_i, s_i) . Σ_y^{-1} corresponds to the variance-covariance matrix of (r_i, s_i) . $\hat{\mu}_{y|x}$ is the system-wide expected value for (r_i, s_i) . See MRW and the Appendix to this article for further details.

3.4 Data simulation: ky_sim

ky_sim is a utility command for simulating data based on the data generating process characterized by the fitted FMM, as described in Section 2 and Table 2. The new dataset contains simulated values of s_i and r_i for each individual.

ky_sim simulates the joint distribution of administrative and survey log earnings in two ways. The first way allows you to simulate data by selecting the FMM that characterizes the data generating function, setting the number of observations to be contained in the simulated dataset, and providing values for each of the parameters that characterize the given model variant. Model parameters are constant across observations – it corresponds to the specification of models without covariates. The syntax for this option is as follows:

ky_sim, model(#) nobs(#) [options]

model (#) specifies the model that characterizes the data generating function. You can choose one of the 8 models listed in Table 2.

nobs (#) sets the number of observations in the dataset to be created.

seed(#) sets the random-number seed to be used for the simulation of the data.

If there is an unsaved dataset in memory, ky_sim will not generate the new simulated data unless option clear is specified.

You must specify values for the following parameters, with the specification depending on model selected:

Means:	<pre>mean_e(#) mean_n(#) mean_t(#) mean_w(#) mean_v(#)</pre>
SDs:	<pre>sig_e(#) sig_n(#) sig_t(#) sig_w(#) sig_v(#)</pre>
Correlations:	rho_r(#) rho_s(#) rho_w(#)
Error probabilities:	pi_s(#)

If you specify a parameter value that is not required for the model selected, it is ignored. For example, a value for **rho_w(#)** is ignored if data are simulated using any model other than models 7 or 8.

When the program is used in this way, it also stores information in e(), so you can use the other post-estimation commands described earlier.

The second way to use ky_sim is as a post-estimation command. In this case, ky_sim generates simulated data uses parameter estimates from from a previously-fitted model as well as the data currently in memory. Command syntax in this case is:

ky_sim [, options]

If ky_sim is specified without any options directly after fitting a model with ky_fit, simulated data are created using the parameters from this previously-fitted model.

Alternatively, you can use parameters from a previously-fitted model that have been stored in memory using estimates store or saved to disk using estimates save. If you retrieve the stored or saved estimates to use with ky_sim, and a model with covariates had been fitted, all the relevant covariates must be available in the dataset currently in memory.

The option **prefix**(str) enables you to specify the prefix for the names of the newly-created variables. If nothing is declared, the program uses the variable name prefix '_'. Option **replace**, enables the program to overwrite variables if they already exist in the dataset.

Depending on the model chosen, ky_sim creates the variables shown in Table 7.

100	
Variable name	Description
[prefix]e_var	Latent true log(earnings)
[prefix]n_var	Factor η_i (survey data measurement error)
[prefix]w_var	Factor ω_i (survey data contamination)
[prefix]v_var	Factor v_i (administrative data measurement error)
[prefix]t_var	Mismatched log earnings ζ_i
[prefix]pi_ri	= 1 if data are linked correctly
[prefix]pi_vi	= 1 if administrative data have no mean-reverting error
[prefix]pi_si	= 1 if survey data are reported correctly
[prefix]pi_wi	= 1 if survey data contain contamination
[prefix]r_var	Administrative log(earnings)
[prefix]s_var	Survey log(earnings)
[prefix]l_var	= 1 if r_i and s_i are error free

Table 7. Variables created using ky sim

Notes. **prefix** is empty if **ky_sim** is used as a post-estimation command. If nothing is specified, **prefix** = '_' when using the second way to simulate data.

4. Illustrations: estimation and post-estimation

This section shows how to use the commands described in the previous section, revisiting the pioneering second generation study by KY and MRW's companion paper. Since we do not have access to KY's linked dataset, we simulate their data using the parameter estimates they report, and then analyze the data using the commands described earlier.

We start by setting the parameter estimates for KY's 'Full' model, reported in KY's Table C2, based on a sample of size 400. We use globals. Locals or scalars could also be used.

```
global mean_e 12.283
global mean_t 9.187
global mean_w (-0.304)
global mean_n (-0.048)
global sig_e 0.717
global sig t 1.807
```

global sig_w	1.239
global sig_n	0.099
global pi_r	0.959
global pi_s	0.152
global pi_w	0.156
global rho_s	(-0.013)

KY's 'Full' model corresponds to model 4 of our FMM variants (see Table 2). We use option model (4), and set the sample size with nobs (400). Since ky_sim stores all the information in e(), we can also store that information in memory with estimates store and use it as a benchmark later.

```
ky_sim, seed(101) nobs(400) model(4) ///
mean_e($mean_e) mean_t($mean_t) mean_w($mean_w) ///
mean_n($mean_n) sig_e($sig_e) sig_t($sig_t) ///
sig_w($sig_w) sig_n($sig_n) ///
pi_r($pi_r) pi_s($pi_s) pi_w($pi_w) rho_s($rho_s) clear
```

```
estimates store model0
```

Using the simulated dataset that is created, we can fit all of the (simpler) models that are reported in KY's Table C2 in addition to their Full model. KY's 'Basic' model corresponds to our model 1 with the additional restriction that $\mu_{\eta} = 0$. The 'no-mismatch' and 'no-contamination' models correspond to our models 2 and 3.

```
constraint 1 [mu_n]_cons = 0
ky_fit r_var s_var l_var, model(1) constraint(1)
estimates store model1
ky_fit r_var s_var l_var, model(2)
estimates store model2
ky_fit r_var s_var l_var, model(3)
estimates store model3
ky_fit r_var s_var l_var, model(4)
estimates store model4
estimates table model0 model4 model3 model2 model1
```

Table 8 shows that parameter estimates derived from the simulated data are close to those reported by KY, so too are standard errors and log-likelihood values (not shown here). The

transformation of the mean-reversion correlation (arho_s) is large and statistically significant in the Basic model, but is much smaller for other models. The largest difference across models is in the estimate of ln_sig_w. We attribute this to the random nature of the simulated dataset.

	Table 6. Estimates of KT models based on simulated data								
	KY Full		Simulated data						
	Model								
_		Full 1	model	No contamination		No mismatch		Basic Model	
mu_e	12.283	12.349	(0.034)	12.306	(0.038)	12.240	(0.048)	12.246	(0.037)
mu_n	-0.048	-0.061	(0.006)	-0.062	(0.006)	-0.059	(0.006)	0.000	(.)
mu_w	-0.304	-0.344	(0.148)			0.479	(0.284)		
mu_t	9.187	8.586	(0.678)	11.622	(0.256)				
ln_sig_e	-0.333	-0.406	(0.036)	-0.285	(0.036)	-0.047	(0.035)	-0.047	(0.035)
ln_sig_n	-2.313	-2.295	(0.048)	-2.270	(0.047)	-2.268	(0.046)	-0.449	(0.038)
ln_sig_w	0.592	-0.026	(0.112)			0.731	(0.100)		
ln_sig_t	0.214	0.501	(0.315)	0.622	(0.098)				
arho_s	-0.013	-0.022	(0.010)	-0.015	(0.010)	-0.026	(0.010)	-0.680	(0.054)
lpi_r	3.152	3.520	(0.335)	1.838	(0.159)				
lpi_s	-1.719	-1.844	(0.148)	-1.708	(0.150)	-1.879	(0.147)	-1.879	(0.147)
lpi_w	-1.688	-1.784	(0.189)			-1.683	(0.161)		
$\log \mathscr{L}$		-543.0		-595.5		-695.5		-1041.8	

Table 8. Estimates of KY models based on simulated data

Notes. Standard errors in parentheses. Sample size = 400.

Table 8 reports estimated parameters (other than means) in a transformed metric. We use margins to obtain estimates of the parameters in their natural metric. To illustrate this, we focus on the estimates from the Full model derived from simulated data.

```
margins, predict(mean_e) predict(sig_e) ///
    predict(mean_t) predict(sig_t) ///
    predict(mean_w) predict(sig_w) ///
    predict(mean_n) predict(sig_n) ///
    predict(pi_r) predict(pi_s) ///
    predict(pi_w) predict(rho_s)
```

```
[output partially omitted]
```

1		Delta-method	t			
	Margin	Std. Err.	Z	₽> z	[95% Conf.	Interval]
predict						
1	12.34936	.0335341	368.26	0.000	12.28364	12.41509
2	.6659948	.023718	28.08	0.000	.6195083	.7124813
3	8.586231	.6782982	12.66	0.000	7.256791	9.915671
4	1.650615	.5192742	3.18	0.001	.6328562	2.668374
5	3435237	.1479331	-2.32	0.020	6334672	0535803
6	.9747349	.1089581	8.95	0.000	.7611809	1.188289
7	0608566	.0063531	-9.58	0.000	0733084	0484048
8	.1007999	.0048806	20.65	0.000	.091234	.1103657
9	.9712426	.0093542	103.83	0.000	.9529088	.9895765
10	.1365808	.0174403	7.83	0.000	.1023985	.1707632
11	.1437948	.0233102	6.17	0.000	.0981077	.1894819
12	0220813	.0097204	-2.27	0.023	041133	0030297

If you specify a model in which a parameter depends on explanatory variables, margins can also be used to obtain marginal mean estimates of the parameter. For example, suppose your ky_{fit} command specifies that the log of the survey measurement error SD depends on a binary indicator variable for the respondent's sex using the option $ln_{sig_v(i.sex)}$. The following margins commands provide estimates of σ_v , first for the sample as a whole and, second, separately by sex.

```
margins, predict(mean_v)
margins sex, predict(mean_v)
```

Let us now return to KY's Full model estimates, and consider the reliability of the survey and administrative data. MRW showed how to investigate reliability using a simulation-based method as well as by using analytical solutions (implied by the estimated model). MRW illustrated their methods using KY's estimates, showing that their survey data were more reliable than their administrative data, attributing this to the small but consequential prevalence of linkage mismatch.

The reliability statistics reported in MRW's Table 6, can be obtained using our postestimation commands and the estimates reported by KY. For this illustration, we compare simulation-based and analytical reliability statistics using estat reliability and estat reliability, sim. We also use Ben Jann's esttab utility (part of his estout package on SSC) for reporting results. We first show the code. Table 9 summarizes the results.

```
ky_sim, seed(101) nobs(400) model(4) ///
	mean_e($mean_e) mean_t($mean_t) mean_w($mean_w) ///
	mean_n($mean_n) sig_e($sig_e) sig_t($sig_t) ///
	sig_w($sig_w) sig_n($sig_n) ///
	pi_r($pi_r) pi_s($pi_s) pi_w($pi_w) rho_s($rho_s) clear
	quietly: estat reliability
	matrix rel_analytical = r(rel)
	quietly: estat reliability, sim reps(100) seed(10)
	matrix rel_simulation = r(rel)
	estab matrix(rel_analytical, fmt(4)) using table9, ///
		mtitle("Analytical Statistics") rtf replace b(4)
	estab matrix(rel_simulation, fmt(4)) using table9, ///
		mtitle("Simulation Statistics") rtf append b(4)
```

Derivation method	Var	Cov	Rel1	Rel2
Analytical				
Administrative data	1.0038	0.4930	0.4912	0.4710
Survey data	0.7257	0.5084	0.7006	0.6929
Simulation				
Administrative data	0.9947	0.4866	0.4892	0.4662
Survey data	0.7169	0.5055	0.7051	0.6981

Table 9. Reliability statistics: replication of MRW's Table 6

Table 9 shows that corresponding analytical and simulation-based statistics are similar. According to both derivation methods, we conclude that the survey data are more reliable than the administrative data, even though the mismatch probability is only 4.1%. The 'analytical' statistics are the same as those reported in MRW's Table 6.

MRW's main contribution was derivation of expressions for multiple predictors of latent true log earnings that combine information from survey and administrative measures with FMM estimates. You can obtain observation-specific values for MRW's seven predictors using the star option to predict. To evaluate the statistical performance of the various predictors (assuming the data generating process represented by model estimates is correct), we use post-estimation command estat xirel. Internally, this calls on ky_sim to simulate data, and predict, star to obtain the predictions.

estat xirel, seed(10) reps(1000)

	Rel1	Rel2	MSE	E(Bias)	Var(Bias)
r_var	0.5040	0.4847	0.5492	-0.1267	0.5331
s_var	0.7033	0.6954	0.2293	-0.0803	0.2228
_e_1	0.5632	0.5406	0.4358	-0.1192	0.4216
e_2	0.5627	0.5428	0.4356	-0.1181	0.4216
e_3	1.0007	0.9776	0.0115	0.0001	0.0115
e_4	0.9866	0.9720	0.0146	0.0001	0.0146
e_5	0.9866	0.9724	0.0144	-0.0010	0.0144
e_6	0.9780	0.9681	0.0169	-0.0014	0.0169
e_7	1.0012	0.7593	0.1241	0.0004	0.1241

The outputs for e_1 to e_7 correspond closely to what is shown in MRW's Table 6. Observe the extremely good statistical performance of these predictors, especially e_3 through e_6 (see our Table 6 for details of their definitions).

5. Summary and conclusions

This paper introduces a new set of commands to facilitate estimation of FMMs for application to linked survey and administrative data on earnings or similar variables. The FMM specifications are those proposed by Jenkins and Rios-Avila (2021*b*) that extend the ones proposed by KY. In particular, we allow for measurement error in the administrative data, as well as linkage mismatch and measurement error in the survey data. We also provide a suite of post-estimation commands for simulation, assessing reliability, and deriving highly-reliable hybrid earnings predictors of latent true earnings, building on the work of MRW. As Abowd and Stinson have pointed out, such predictors 'could be used by statistical agencies to produce a measure of "true earnings" ..., a valuable measure for researchers that would allow agencies to release information from administrative data while limiting confidentiality concerns (2013, 1467).

We hope that our software will help researchers compare measurement error processes over time and across countries using a common approach that is based on a relatively general model. Linked datasets are becoming more commonly available. One limitation of our models is that they refer to cross-sectional data; we do not exploit the additional information provided by longitudinal linked datasets, as done in different ways by, e.g., Abowd and Stinson (2013), Bollinger et al. (2018), and Hyslop and Townsend (2020).

6. Acknowledgements

Thanks to the FRS team at the UK Department of Work and Pensions (DWP) for facilitating this project as part of their 'secure data pilot' initiative.

7. References

- Abowd, J. and Stinson, M. (2013). Estimating measurement error in annual job earnings: a comparison of survey and administrative data. Review of Economics and Statistics, 95 (2): 1451–1467.
- Bollinger, C. R., Hirsch, B. T., Hokayem, C. M., and Ziliak, J. P. (2018). The good, the bad and the ugly: measurement error, non-response and administrative mismatch in the

CPS. Working Paper, Gatton College of Business, University of Kentucky.

- Hyslop, D. R. and Townsend, W. (2020). Earnings dynamics and measurement error in matched survey and administrative data. Journal of Business and Economic Statistics, 38 (2): 457–469.
- Jenkins, S. P. and Rios-Avila, F. (2020). Modelling errors in survey and administrative data on labour earnings: sensitivity to the fraction assumed to have error-free earnings. Economics Letters, 192: 109253.
- Jenkins, S. P. and Rios-Avila, F. (2021*a*). Measurement error in earnings data: replication of Meijer, Rohwedder, and Wansbeek's mixture model approach to combining survey and register data, Journal of Applied Econometrics, online first.
- Jenkins, S. P. and Rios-Avila, F. (2021*b*). Reconciling reports: modelling employment earnings and measurement errors using linked survey and administrative data. IZA Discussion Paper, forthcoming.
- Kapteyn, A. and Ypma, J. Y. (2007). Measurement error and misclassification: a comparison of survey and administrative data. Journal of Labor Economics, 25 (3): 513–551.
- Meijer, E., Rohwedder, S. and Wansbeek T. (2012). Measurement error in earnings data: using a mixture model approach to combine survey and register data. Journal of Business & Economic Statistics, 30 (2): 191–201.
- Yakowitz, S. J. and Spragins, J. D. (1968). On the identifiability of finite mixtures. Annals of Mathematical Statistics, 39 (1): 209–214.

8. Appendix

This appendix contains three sections. The first discusses the relationship between conditional and unconditional correlations for a pair of random variables. The second provides expressions for expected values (means), variances, and covariances for the components in our general FMM. The third provides expressions for hybrid earnings predictors of latent true earnings for our general model, building on MRW's work.

A1. Unconditional and conditional correlations between variables

Consider two random variables e_i and u_i defined as follows:

$$e_{i} = \mu_{e|X} + \varepsilon_{i,e}; u_{i} = \mu_{u|X} + \varepsilon_{i,u}$$
$$\varepsilon_{i,u} \sim N \begin{pmatrix} 0 & \sigma_{e}^{2} & \rho \sigma_{e} \sigma_{u} \\ 0' & \rho \sigma_{e} \sigma_{u} & \sigma_{u}^{2} \end{pmatrix}$$

where $\mu_{k|X} = E(k_i|X)$. For $k_i \in \{e_i, u_i\}$ and X is a vector of observed characteristics for individual i = 1, ..., N. Based on the law of total variance, and assuming $(\varepsilon_{i,u}, \varepsilon_{i,e})$ are independently distributed from X, we have:

$$Var(e_i) = E(Var(e_i|X)) + Var(E(e_i|X))$$
$$Var(e_i) = \sigma_e^2 + Var(\mu_{e|X})$$

Similarly, using the law of total covariance we have:

$$Cov(e_i, u_i) = E(Cov(e_i, u_i|X)) + Cov(E(e_i|X), E(u_i|X))$$
$$Cov(e_i, u_i) = \rho\sigma_e\sigma_u + Cov(\mu_{e|X}, \mu_{u|X})$$

Thus, even if e_i and u_i are conditionally uncorrelated, their unconditional correlation may be non-zero.

A2 Expected values, variances, and covariances for the general FMM

We provide expressions for the moments in turn of the administrative data and the survey data.

A2.1 Administrative data

The data structure for administrative data is:

$$r_{i} = \begin{cases} r_{1,i} = \xi_{i} & \text{with probability } \pi_{r_{1}} = \pi_{r}\pi_{v} \\ r_{2,i} = \xi_{i} + \rho_{r}(\xi_{i} - \mu_{\xi|X}) + v_{i} \text{ with probability } \pi_{r_{2}} = \pi_{r}(1 - \pi_{v}) \\ r_{3,i} = \zeta_{i} & \text{with probability } \pi_{r_{3}} = 1 - \pi_{r} \end{cases} \end{cases}$$

The data generating process for the latent variables is:

$$\begin{pmatrix} \xi_i \\ \nu_i \\ \zeta_i \end{pmatrix} = N \left(\begin{bmatrix} \mu_{\xi|X} \\ \mu_{\nu|X} \\ \mu_{\zeta|X} \end{bmatrix}, \begin{bmatrix} \sigma_{\xi}^2 & 0 & 0 \\ 0 & \sigma_{\nu}^2 & 0 \\ 0 & 0 & \sigma_{\zeta}^2 \end{bmatrix} \right)$$

where $\mu_{\gamma|X}$ can be expressed as a linear function of *X*, for each $\gamma \in \{\xi, \nu, \zeta\}$.

Unconditional moments by data type (class)

Class 1: $r_{1,i} = \xi_i$

Expected value:

$$E(r_{1,i}) = \mu_{\xi}$$

Variance:

$$Var(r_{1,i}) = Var(\xi_i) = \sigma_{\xi}^2 + Var(\mu_{\xi|X})$$

Covariance with ξ_i :

$$Cov(\xi_i, r_{1,i}) = Var(\xi_i) = \sigma_{\xi}^2 + Var(\mu_{\xi|X})$$

Class 2: $r_{2,i} = \xi_i + \rho_r (\xi_i - \mu_{\xi|X}) + \nu_i$

Expected value:

$$E(r_{2,i}) = E(\xi_i + \rho_r(\xi_i - \mu_{\xi|X}) + \nu_i)$$
$$= \mu_{\xi} + \mu_{\nu}$$

Variance:

$$Var(r_{2,i}) = Var(\xi_i + \rho_r(\xi_i - \mu_{\xi|X}) + \nu_i)$$

$$= Var(\mu_{\xi|X} + (1 + \rho_r)(\xi_i - \mu_{\xi|X}) + \nu_i)$$

= $\sigma_{\mu_{\xi|X}}^2 + (1 + \rho_r)^2 \sigma_{\xi}^2 + Var(\nu_i) + 2Cov(\mu_{\xi|X}, \mu_{\nu|X})$

Covariance with ξ_i :

$$Cov(\xi_{i}, r_{1,i}) = Cov(\xi_{i}, \xi_{i} + \rho_{r}(\xi_{i} - \mu_{\xi|X}) + v_{i})$$

= $Var(\xi_{i}) + \rho_{r}\sigma_{\xi}^{2} + Cov(\mu_{\xi|X}, \mu_{\nu|X})$
= $Var(\mu_{\xi|X}) + (1 + \rho_{r})\sigma_{\xi}^{2} + Cov(\mu_{\xi|X}, \mu_{\nu|X})$

Class 3: $r_{3,i} = \zeta_i$

Expected value:

$$E(r_{3,i}) = E(\zeta_i) = \mu_{\zeta}$$

Variance:

$$Var(r_{3,i}) = Var(\zeta_i) = Var(\mu_{\zeta|X}) + \sigma_{\zeta}^2$$

Covariance with ξ_i :

$$Cov(\xi_i, r_{3,i}) = Cov(\xi_i, \zeta_i) = Cov(\mu_{\xi|X}, \mu_{\zeta|X})$$

Moments for administrative data, overall:

Expected value:

$$E(r_i) = \pi_{r_1} E(r_{1,i}) + \pi_{r_2} E(r_{2,i}) + \pi_{r_3} E(r_{3,i})$$
$$= \pi_{r_1} \mu_{\xi} + \pi_{r_2} (\mu_{\xi} + \mu_{\nu}) + \pi_{r_3} \mu_{\zeta}$$
$$= (\pi_{r_1} + \pi_{r_2}) \mu_{\xi} + \pi_{r_2} \mu_{\nu} + \pi_{r_3} \mu_{\zeta}$$

Variance:

$$Var(r_i) = \sum_{j=1}^{3} \pi_{r_j} Var(r_{j,i}) + Var(E(r_{j,i}))$$

where:

$$Var\left(E(r_{j,i})\right) = \sum_{j=1}^{3} \pi_{r_j} \left(E(r_{j,i}) - E(r_i)\right)^2$$

Covariance with ξ_i :

$$Cov(\xi_i, r_i) = \sum_{j}^{3} \pi_{r_j} Cov(\xi_i, r_{j,i})$$

A2.2 Survey data

The data structure for survey data is:

$$s_{i} = \begin{cases} s_{1,i} = \xi_{i} & \text{with probability } \pi_{s1} = \pi_{s} \\ s_{2,i} = \xi_{i} + \rho_{s}(\xi_{i} - \mu_{\xi|X}) + \eta_{i} & \text{with probability } \pi_{s2} = (1 - \pi_{s})(1 - \pi_{\omega}) \\ s_{3,i} = \xi_{i} + \rho_{s}(\xi_{i} - \mu_{\xi|X}) + \eta_{i} + \omega_{i} \text{ with probability } \pi_{s3} = (1 - \pi_{s})\pi_{\omega} \end{cases}$$

The data generating process for the latent variables is:

$$\begin{pmatrix} \xi_i \\ \eta_i \\ \omega_i \end{pmatrix} = N \begin{pmatrix} \begin{bmatrix} \mu_{\xi|X} \\ \mu_{\eta|X} \\ \mu_{\omega|X} \end{bmatrix}, \begin{bmatrix} \sigma_{\xi}^2 & 0 & \rho_{\omega}\sigma_{\xi}\sigma_{\omega} \\ 0 & \sigma_{\nu}^2 & 0 \\ \rho_{\omega}\sigma_{\xi}\sigma_{\omega} & 0 & \sigma_{\omega}^2 \end{bmatrix} \end{pmatrix}$$

where $\mu_{\gamma|X}$ can be expressed as a linear function of *X*, for each $\gamma = \{\xi, \nu, \zeta\}$.

Unconditional moments by data class

Class 1: $s_{1,i} = \xi_i$

Expected value:

$$E(r_{1,i}) = \mu_{\xi}$$

Variance:

$$Var(r_{1,i}) = Var(\xi_i) = \sigma_{\xi}^2 + Var(\mu_{\xi|X})$$

Covariance with ξ_i :

$$Cov(\xi_i, s_{1,i}) = Var(\xi_i) = \sigma_{\xi}^2 + Var(\mu_{\xi|X})$$

Class 2: $s_{2,i} = \xi_i + \rho_s (\xi_i - \mu_{\xi|X}) + \eta_i$

Expected value:

$$E(s_{2,i}) = E(\xi_i + \rho_s(\xi_i - \mu_{\xi|X}) + \eta_i)$$
$$= \mu_{\xi} + \mu_{\eta}$$

Variance:

$$Var(s_{2,i}) = Var(\xi_i + \rho_s(\xi_i - \mu_{\xi|X}) + \eta_i)$$

= $Var(\mu_{\xi|X} + (1 + \rho_s)(\xi_i - \mu_{\xi|X}) + \eta_i)$

$$= \sigma_{\mu_{\xi|X}}^{2} + (1 + \rho_{s})^{2} \sigma_{\xi}^{2} + Var(\eta_{i}) + 2Cov(\mu_{\xi|X}, \mu_{\eta|X})$$

Covariance with ξ_i :

$$Cov(\xi_i, s_{2,i}) = Cov(\xi_i, \xi_i + \rho_s(\xi_i - \mu_{\xi|X}) + \eta_i)$$

= $Var(\xi_i) + \rho_s \sigma_{\xi}^2 + Cov(\mu_{\xi|X}, \mu_{\eta|X})$
= $Var(\mu_{\xi|X}) + (1 + \rho_s)\sigma_{\xi}^2 + Cov(\mu_{\xi|X}, \mu_{\eta|X})$

Class 3: $s_{3,i} = \xi_i + \rho_s(\xi_i - \mu_{\xi|X}) + \eta_i + \omega_i$

Expected value:

$$E(s_{3,i}) = E(\xi_i + \rho_s(\xi_i - \mu_{\xi|X}) + \eta_i + \omega_i)$$
$$= \mu_{\xi} + \mu_{\eta} + \mu_{\omega}$$

Variance:

$$Var(s_{3,i}) = Var(\xi_{i} + \rho_{s}(\xi_{i} - \mu_{\xi|X}) + \eta_{i} + \omega_{i})$$

= $Var(\mu_{\xi|X} + (1 + \rho_{s})(\xi_{i} - \mu_{\xi|X}) + \eta_{i} + \omega_{i})$
= $\sigma_{\mu_{\xi|X}}^{2} + (1 + \rho_{s})^{2}\sigma_{\xi}^{2} + Var(\eta_{i}) + Var(\omega_{i}) + 2Cov(\mu_{\xi|X}, \mu_{\eta|X})$
+ $2Cov(\mu_{\xi|X}, \mu_{\omega|X}) + 2(1 + \rho_{s})\rho_{\omega}\sigma_{\xi}\sigma_{\omega} + 2Cov(\mu_{\omega|X}, \mu_{\eta|X})$

Covariance with ξ_i :

$$Cov(\xi_{i}, s_{3,i}) = Cov(\xi_{i}, \xi_{i} + \rho_{s}(\xi_{i} - \mu_{\xi|X}) + \eta_{i} + \omega_{i})$$

$$= Var(\xi_{i}) + \rho_{s}\sigma_{\xi}^{2} + Cov(\mu_{\xi|X}, \mu_{\eta|X}) + Cov(\mu_{\xi|X}, \mu_{\omega|X}) + \rho_{\omega}\sigma_{\xi}\sigma_{\omega}$$

$$= Var(\mu_{\xi|X}) + (1 + \rho_{s})\sigma_{\xi}^{2} + Cov(\mu_{\xi|X}, \mu_{\eta|X}) + Cov(\mu_{\xi|X}, \mu_{\omega|X})$$

$$+ \rho_{\omega}\sigma_{\xi}\sigma_{\omega}$$

Moments for survey data, overall:

Expected value:

$$E(s_i) = \pi_{s_1} E(s_{1,i}) + \pi_{s_2} E(s_{2,i}) + \pi_{s_3} E(s_{3,i})$$

= $\pi_{s_1} \mu_{\xi} + \pi_{s_2} (\mu_{\xi} + \mu_{\eta}) + \pi_{s_3} (\mu_{\xi} + \mu_{\eta} + \mu_{\omega})$
= $\mu_{\xi} + (\pi_{s_2} + \pi_{s_3}) \mu_{\eta} + \pi_{s_3} \mu_{\omega}$

Variance:

$$Var(s_i) = \sum_{j=1}^{3} \pi_{s_j} Var(s_{j,i}) + Var(E(s_{j,i}))$$

where:

$$Var\left(E(r_{j,i})\right) = \sum_{j=1}^{3} \pi_{s_j} \left(E(s_{j,i}) - E(s_i)\right)^2$$

Covariance with ξ_i

$$Cov(\xi_i, s_i) = \sum_{j}^{3} \pi_{s_j} Cov(\xi_i, s_{j,i})$$

A2.3 Conditional moments by data class

Table A1. Mean and variance of r_i and s_i , conditional on X, by class

Data type	$E(. X)$ or $\mu_{. X}$	Var(. X)	$Cov(\xi_i, . X)$
<i>r</i> _{1,<i>i</i>}	$\mu_{\xi X}$	σ_{ξ}^2	σ_{ξ}^2
r _{2,i}	$\mu_{\xi X} + \mu_{\nu X}$	$(1+\rho_r)^2\sigma_\xi^2+\sigma_\nu^2$	$(1+\rho_r)\sigma_{\xi}^2$
r _{3,i}	$\mu_{\zeta X}$	σ_{ζ}^2	0
<i>S</i> _{1,<i>i</i>}	$\mu_{\xi X}$	σ_{ξ}^2	σ_{ξ}^2
<i>S</i> _{2,<i>i</i>}	$\mu_{\xi X} + \mu_{\eta X}$	$(1+ ho_s)^2\sigma_\xi^2+\sigma_\eta^2$	$(1+\rho_s)\sigma_{\xi}^2$
<i>S</i> _{3,<i>i</i>}	$\mu_{\xi X} + \mu_{\eta X} + \mu_{\omega X}$	$(1+\rho_s)^2\sigma_\xi^2+\sigma_\eta^2+\sigma_\omega^2$	$(1+\rho_s)\sigma_\xi^2+\rho_\omega\sigma_\xi\sigma_\omega$
		$+ 2(1 + \rho_s)\rho_\omega\sigma_\xi\sigma_\omega$	

Table A2. Covariance between r_i and s_i , conditional on X, by class

Cov(. X)	<i>S</i> _{1,<i>i</i>}	s _{2,i}	s _{3,i}
<i>r</i> _{1,<i>i</i>}	σ_{ξ}^2	$(1+\rho_s)\sigma_{\xi}^2$	$(1+\rho_s)\sigma_{\xi}^2+\rho_{\omega}\sigma_{\xi}\sigma_{\omega}$
r _{2,i}	$(1+\rho_r)\sigma_\xi^2$	$(1+\rho_r)(1+\rho_s)\sigma_\xi^2$	$(1+\rho_r)(1+\rho_s)\sigma_{\varepsilon}^2+(1+\rho_r)\rho_{\omega}\sigma_{\xi}\sigma_{\omega}$
<i>r</i> _{3,<i>i</i>}	0	0	0

Overall covariance conditional on X

$$Cov(r_{i}, s_{i}|X) = \sum_{h=1}^{3} \sum_{k=1}^{3} \pi_{r_{h}} \pi_{s_{k}} Cov(r_{h,i}, s_{k,i}|X)$$

= $\pi_{r_{1}} \left[\pi_{s_{1}} \sigma_{\xi}^{2} + \pi_{s_{2}} (1 + \rho_{s}) \sigma_{\xi}^{2} + \pi_{s_{3}} \left((1 + \rho_{s}) \sigma_{\xi}^{2} + \rho_{\omega} \sigma_{\xi} \sigma_{\omega} \right) \right]$
+ $\pi_{r_{2}} \left[\pi_{s_{1}} (1 + \rho_{r}) \sigma_{\xi}^{2} + \pi_{s_{2}} (1 + \rho_{r}) (1 + \rho_{s}) \sigma_{\xi}^{2} + \pi_{s_{3}} \left((1 + \rho_{r}) (1 + \rho_{s}) \sigma_{\xi}^{2} + (1 + \rho_{r}) \rho_{\omega} \sigma_{\xi} \sigma_{\omega} \right) \right]$

$$= \pi_{r_1} [(1 + (\pi_{s_2} + \pi_{s_3})\rho_s)\sigma_{\xi}^2 + \pi_{s_3}\rho_{\omega}\sigma_{\xi}\sigma_{\omega}] + \pi_{r_2} [(1 + (\pi_{s_2} + \pi_{s_3})\rho_s)(1 + \rho_r)\sigma_{\xi}^2 + \pi_{s_3}(1 + \rho_r)\rho_{\omega}\sigma_{\xi}\sigma_{\omega}]$$

Overall unconditional covariance:

$$Cov(r_i, s_i) = Cov(r_i, s_i | X) + Cov(\mu_{r|X}, \mu_{s|X})$$

where

$$\mu_{r|X} = E(r_i|X) = (\pi_{r_1} + \pi_{r_2})\mu_{\xi|X} + \pi_{r_2}\mu_{\nu|X} + \pi_{r_3}\mu_{\zeta|X}$$
$$\mu_{s|X} = \mu_{\xi|X} + (\pi_{s_2} + \pi_{s_3})\mu_{\eta|X} + \pi_{s_3}\mu_{\omega|X}.$$

A3 Predictors of latent true earnings

Following MRW, we differentiate between within-class predictors and a system-wide predictor. For the second case, we consider the simplest scenario of prediction under linearity.

System-wide predictor under linearity

Consider two measures r_i and s_i , which are manifest measures of latent true earnings, ξ_i , but are measured with error. Without loss of generality, assume that $\mu_k = \mu_{k|X} = 0$. A predictor for the latent variable, $\hat{\xi}_i$, can be derived as a linear combination as follows:

$$\hat{\xi}_i = \theta_1 r_i + \theta_2 s_i \tag{A1}$$

The system-wide predictor will be characterized given a set of weights θ_1 and θ_2 that minimize the MSE between the predictor and the true latent variable ξ_i .

$$\min_{\theta_1, \theta_2} MSE = E\left(\left[\xi_i - \hat{\xi}_i\right]^2\right) = E\left(\left[\xi_i - (\theta_1 r_i + \theta_2 s_i)\right]^2\right)$$
(A2)

The first-order conditions are:

$$\frac{\partial MSE}{\partial \theta_1} = E([\xi_i - \theta_1 r_i - \theta_2 s_i]r_i)$$

= $E(\xi_i r_i - \theta_1 r_i^2 - \theta_2 r_i s_i)$
= $Cov(\xi_i, r_i) - \theta_1 Var(r_i) - \theta_2 Cov(r_i, s_i) = 0$ (A3)

$$\frac{\partial MSE}{\partial \theta_2} = E([\xi_i - \theta_1 r_i - \theta_2 s_i]s_i)$$

$$= E(\xi_i s_i - \theta_1 r_i s_i - \theta_2 s_i^2)$$

$$= Cov(\xi_i, s_i) - \theta_1 Cov(r_i, s_i) - \theta_2 Var(s_i^2) = 0$$
(A4)

Solving the system of equations given by (A3) and (A4) we have:

$$\begin{bmatrix} Cov(\xi_i, r_i) \\ Cov(\xi_i, s_i) \end{bmatrix} = \begin{bmatrix} Var(r_i) & Cov(r_i, s_i) \\ Cov(r_i, s_i) & Var(s_i) \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$$

$$\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} Var(r_i) & Cov(r_i, s_i) \\ Cov(r_i, s_i) & Var(s_i) \end{bmatrix}^{-1} \begin{bmatrix} Cov(\xi_i, r_i) \\ Cov(\xi_i, s_i) \end{bmatrix}$$
(A5)

Given solutions for θ_1 and θ_2 , we can substitute them into (A1), which provides the systemwide predictor for $\hat{\xi}_i$.

$$\hat{\xi}_i = \begin{bmatrix} \theta_1 & \theta_2 \end{bmatrix} \begin{bmatrix} r_i \\ s_i \end{bmatrix}$$
(A6)

$$\hat{\xi}_{i} = \begin{bmatrix} Cov(\xi_{i}, r_{i}) & Cov(\xi_{i}, s_{i}) \end{bmatrix} \begin{bmatrix} Var(r_{i}) & Cov(r_{i}, s_{i}) \\ Cov(r_{i}, s_{i}) & Var(s_{i}) \end{bmatrix}^{-1} \begin{bmatrix} r_{i} \\ s_{i} \end{bmatrix}$$

This is the same predictor as given by MRW's equation (11), page 96. We label this predictor 7 in the main text.

Within Class Predictors

For the estimates that rely on within-class predictors (predictors 1–6 in the main text), MRW discuss two estimators: linear estimators that minimize the within-class MSE $\hat{\xi}_i^j$, and the estimator that minimizes the MSE conditional on the estimator being unbiased $\hat{\xi}_{Ui}^j$.

The general form for the within class predictor $\hat{\xi}_i^j$ follows the same structure as equation (A2), and so is not discussed further here. However, the unbiased estimator depends on the specific class.

The solutions for classes 1, 2, 3, 4, and 7 are straightforward to derive, as they assume that either r_i or s_i are error-free measures of ξ_i . Thus, we concentrate on the predictors corresponding to classes 5, 6, 8 and 9.

Classes 8 and 9

These two classes assume that only s_i contains information that can be used to construct the predictor for ξ . We refer here to the predictor for class 9, as the more general case. Without loss of generality, we assume that the unconditional and conditional (on *X*) means of all variables in the model are equal to zero.

Under these assumptions, the predictor $\hat{\xi}$ for class 9 is a linear transformation of s_i given by:

$$\hat{\xi}_{Ui}^9 = \theta s_{3,i} \tag{A7}$$

where θ is selected so it minimizes the within-class MSE, conditional on the predictor being unbiased estimate for ξ . We start with the second condition:

$$E(\xi_i - \theta s_{3,i} | \xi_i) = 0$$

= $E(\xi_i - \theta(\xi_i + \rho_s \xi_i + \eta_i + \omega_i) | \xi_i)$
= $E(\xi_i | \xi_i) - \theta(1 + p_s) E(\xi_i | \xi_i) - \theta E(\eta_i | \xi_i) - \theta E(\omega_i | \xi_i)$
= $\xi_i - \theta(1 + p_s) \xi_i - 0 - \theta \rho_\omega \frac{\sigma_\omega}{\sigma_\xi} \xi_i$
 $\Rightarrow 1 - \theta(1 + p_s) - \theta \rho_\omega \frac{\sigma_\omega}{\sigma_\xi} = 0$

$$\Rightarrow \theta = \frac{1}{1 + p_s + \rho_\omega \frac{\sigma_\omega}{\sigma_\xi}} \tag{A8}$$

Thus, the ξ unbiased predictor for class 9 is

$$\hat{\xi}_{Ui}^9 = \theta s_{3,i} = \frac{s_{3,i}}{1 + p_s + \rho_\omega \frac{\sigma_\omega}{\sigma_\xi}} \tag{A9}$$

and the unbiased predictor for class 8 is

$$\hat{\xi}_{Ui}^8 = \theta s_{2,i} = \frac{s_{2,i}}{1+p_s} \tag{A10}$$

Equations (A9) and (A10) imply that the unbiased predictors for classes 8 and 9 are defined uniquely by imposing the unbiasedness assumption.

Classes 5 and 6

For classes 5 and 6, there are two measures that can be used as proxies for ξ , each with its own sources of errors. We refer here to the solution for class 6, as the more general case. Consider first the unbiased predictors that could be derived using data from r_{2i} or s_{3i} , which follow the same structure as equations A3 and A4:

$$\hat{\xi}_{Ui}^{6r^2} = \frac{r_{2,i}}{1+p_r} = \theta_{r2} r_{2,i} \tag{A11}$$

$$\hat{\xi}_{Ui}^{6s3} = \frac{s_{3,i}}{1 + p_s + \rho_\omega \frac{\sigma_\omega}{\sigma_\xi}} = \theta_{s3} s_{3,i}$$
(A12)

An unbiased ξ predictor for class 6 that combines the information from both sources can be obtained using a weighted average between both predictors:

$$\hat{\xi}_{Ui}^{6} = \delta \hat{\xi}_{Ui}^{6r} + (1 - \delta) \hat{\xi}_{Ui}^{6s}$$

$$\hat{\xi}_{Ui}^{6} = \delta \theta_{r2} r_{2,i} + (1 - \delta) \theta_{s3} s_{3,i}$$
(A13)

To determine the optimal weight, we need to find the value δ that minimizes the MSE, which is given by:

$$\min_{\delta} E\left(\left[\xi_i - \delta\theta_{r2}r_{2,i} - (1-\delta)\theta_{s3}s_{3,i}\right]^2\right).$$

The first order condition is:

$$\frac{\partial MSE}{\partial \delta} = E\left(\left(\xi_i - \delta\theta_{r2}r_{2,i} - (1-\delta)\theta_{s3}s_{3,i}\right)\left(\theta_{r2}r_{2,i} - \theta_{s3}s_{3,i}\right)\right) = 0$$

$$\theta_{r2}Cov(\xi_{i}, r_{2,i}) - \theta_{s3}Cov(\xi_{i}, s_{3,i}) - \delta\theta_{r2}^{2}Var(r_{2,i}) + \delta\theta_{r2}\theta_{s3}Cov(r_{2,i}, s_{3,i}) - (1 - \delta)\theta_{r2}\theta_{s3}Cov(r_{2,i}, s_{3,i}) + (1 - \delta)\theta_{s3}^{2}Var(s_{3,i}) = 0$$
(A14)

Finally, solving for δ , we have:

$$\delta = \frac{\theta_{r2} Cov(\xi_{i}, r_{2,i}) - \theta_{s3} Cov(\xi_{i}, s_{3,i}) - \theta_{r2} \theta_{s3} Cov(r_{2,i}, s_{3,i}) + \theta_{s3}^{2} Var(s_{3,i})}{\theta_{r2}^{2} Var(r_{2,i}) - 2\theta_{r2} \theta_{s3} Cov(r_{2,i}, s_{3,i}) + \theta_{s3}^{2} Var(s_{3,i})}$$
(A15)

Substituting (A15) into (A12) provides the unbiased predictor for class 6.

To summarize, Table A3 presents the expressions for the within-class predictions for all 9 classes assuming that our general model (model 8) describes the data generating process. The expressions for the other models are simplified versions of the expressions in the table.

Class (j)	r	S	$\hat{\xi}^{j}$	$\hat{\xi}^j_U$
1	<i>r</i> _{1,<i>i</i>}	<i>s</i> _{1,<i>i</i>}	$\frac{1}{2}(r+s)$	$\frac{1}{2}(r+s)$
2	$r_{1,i}$	<i>S</i> _{2,<i>i</i>}	r	r
3	$r_{1,i}$	s _{3,i}	r	r
4	$r_{2,i}$	$S_{1,i}$	S	S
5	r _{2,i}	s _{2,i}	$\mu_{\xi X} + \Sigma'_{\xi,5} \Sigma_6^{-1} \begin{bmatrix} r_i - \mu_{r_2 X} \\ s_i - \mu_{s_2 X} \end{bmatrix}$	$\mu_{\xi X} + \begin{bmatrix} \delta_{r_2,s_2} \theta_{r_2} \\ (1 - \delta_{r_2,s_2}) \theta_{s_2} \end{bmatrix}' \begin{bmatrix} r_i - \mu_{r_2 X} \\ s_i - \mu_{s_2 X} \end{bmatrix}$
6	r _{2,i}	S _{3,i}	$\mu_{\xi X} + \Sigma'_{\xi,6} \Sigma_6^{-1} \begin{bmatrix} r_i - \mu_{r_2 X} \\ s_i - \mu_{s_3 X} \end{bmatrix}$	$\mu_{\xi X} + \begin{bmatrix} \delta_{r_2,s_3}\theta_{r_2} \\ (1 - \delta_{r_2,s_3})\theta_{s_3} \end{bmatrix}' \begin{bmatrix} r_i - \mu_{r_2 X} \\ s_i - \mu_{s_3 X} \end{bmatrix}$
7	$r_{3,i}$	<i>S</i> _{1,<i>i</i>}	S	S
8	r _{3,i}	<i>S</i> _{2,i}	$\mu_{\xi X} + \frac{Cov(\xi_{i}, s_{2,i} X)}{Var(s_{2,i} X)} (s_i - \mu_{s_2 X})$	$\mu_{\xi X} + \frac{1}{\theta_{s2}} \left(s_i - \mu_{s2 X} \right)$
9	r _{3,i}	s _{3,i}	$\mu_{\xi X} + \frac{Cov(\xi_{i}, s_{3,i} X)}{Var(s_{3,i} X)} (s_i - \mu_{s_3 X})$	$\mu_{\xi X} + \frac{1}{\theta_{s3}} \left(s_i - \mu_{s3 X} \right)$

Table A3. Expressions for the within-class predictors as functions of the parameters (general FMM)

Notes. $\Sigma'_{\xi,j}$ represents the covariances between ξ_i and (r_i, s_i) , conditional on characteristics X and class j. Σ_j^{-1} represents the variance covariance matrix between r_i and s_i , conditional on characteristics X and class j.

Also,
$$\delta_{r_{j},s_{k}} = \frac{\theta_{r_{j}} Cov(\xi_{i},r_{j,i}) - \theta_{s_{k}} Cov(\xi_{i},s_{k,i}) - \theta_{r_{j}} \theta_{s_{k}} Cov(r_{j,i},s_{k,i}) + \theta_{s_{k}}^{2} Var(s_{k,i})}{\theta_{r_{j}}^{2} Var(r_{j,i}) - 2\theta_{r_{j}} \theta_{s_{k}} Cov(r_{j,i},s_{k,i}) + \theta_{s_{k}}^{2} Var(s_{k,i})}; \theta_{r_{2}} = \frac{1}{1 + \rho_{r}}; \theta_{s_{2}} = \frac{1}{1 + \rho_{s}}; \text{and } \theta_{s_{3}} = \frac{1}{1 + \rho_{s} + \rho_{\omega} \frac{\sigma_{\omega}}{\sigma_{\xi}}}$$