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1 Introduction 

 

Linked datasets are datasets in which reports by respondents to a household survey on a 

variable such as earnings or another income component are linked to reports on the same 

variable in an administrative dataset (e.g. income tax or social security data) for the same 

respondents. Researchers have long used linked datasets to examine measurement errors in 

the variables of interest – to investigate whether they impart bias in the observed measures, 

how much spurious variation they account for, and whether errors are correlated with the 

‘true’ measure (a negative correlation means that low-earners over-report and high-earners 

under-report). In the first generation of studies, analysts assumed that the linked admistrative 

data provided error-free measures; all measurement errors arose in the survey reports. A 

small and more recent second generation of studies has allowed for errors in the 

administrative data as well.  

Finite mixture models (FMMs) are useful for analyzing linked datasets because they 

allow you to succinctly describe both the distribution of the ‘true’ (error-free) substantive 

variable of interest as well as the distributions of the various types of measurement error. 

Different combinations of error-ridden and/or error-free survey and administrative data 

observations characterize latent classes. Latent class probabilities depend on the probabilities 

of the different types of error. However, the FMMs needed for this analysis cannot be fitted 

using readily-available software such as Stata’s fmm suite of commands. In this article, we 

provide and illustrate Stata commands for fitting a general class of FMMs to linked data. We 

also provide post-estimation commands for assessment of reliability, marginal effects, data 

simulation, and prediction of hybrid earnings variables that combine information from both 

data sources. 

The FMMs we consider are our generalizations of the second generation models 

developed by Kapteyn and Ypma (2007, KY hereafter). KY’s model was the first to 

incorporate administrative data error in addition to survey measurement error. However, the 

characterization of administrative data error was restricted to linkage ‘mismatch’, i.e., the 

situation in which an individual’s survey response is incorrectly linked to the response for 

some other person in the administrative data. KY’s findings, based on linked earnings data 

for Swedish individuals aged 50+, showed that even a small amount of mismatch error was 

consequential (their linked administrative data were less reliable than their survey data), and 

they found no evidence that low-earners overreported and high-earners underreported their 

earnings (a striking contrast with the findings of first generation studies). However, KY did 
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not consider measurement error per se in the administrative data, i.e., error arising in its 

compilation (typically involving reporting by employers to tax or social security authorities).1 

We extend KY’s model in recent work to more general FMMs that include 

administrative measurement error in addition to linkage mismatch and survey measurement 

error (Jenkins and Rios-Avila, 2021b). Our second innovation is to allow the parameters 

describing the distributions in our FMMs to vary with individual characteristics. This 

provides a succinct way to address questions such as: does survey earnings measurement 

error differ between older and younger workers? How does administrative data error differ 

between private- and public-sector employees? Our third contribution is to extend the 

application of methods for earnings prediction proposed by Meijer, Rohwedder, and 

Wansbeek (2012, MRW hereafter) to our general models. MRW derived formulae for a 

number of hybrid earnings predictors that combined information from both survey and 

administrative data, and showed that they were more reliable than either the survey or the 

administrative data measure. However, MRW’s illustrations focused entirely on KY’s model 

and their estimates based on Swedish data.2  

In Section 2, we describe our FMMs and explain how to fit them using maximum 

likelihood. We present our new commands for estimation and post-estimation analysis in 

Section 3. In section 4, we illustrate the commands drawing on KY’s and MRW’s empirical 

analysis. For a more extensive illustration of our software, see Jenkins and Rios-Avila 

(2021b). Section 5 contains conclusions. The Appendix contains additional results that we 

draw on in the main text. 

 

 

2 FMMs for linked survey and administrative data 

 

We set out our FMMs in this section, and assume that the variable of interest is the logarithm 

of the labour earnings of employees (‘earnings’). For each of a large number of individuals in 

a linked dataset, we have an observation pair referring to the worker’s earnings derived from 

the survey and from the administrative data.  

 
1 There is a small number of second generation studies that allow for administrative data error in earnings: see 

Abowd and Stinson (2013, using data for the USA), Hyslop and Townsend (2020, New Zealand), and Bollinger 

et al. (2018, USA) who also allow for linkage mismatch. Jenkins and Rios-Avila (2020) fit KY models to linked 

data for the UK. Jenkins and Rios-Avila (2021b) fit the more general models considered in this article and 

review first and generation studies in more detail. 
2 Our replication of MRWs analysis using UK linked data (Jenkins and Rios-Avila, 2021a) was also restricted to 

KY models. 
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We assume, following KY, that there is a latent variable i that represents the true 

variable of interest (log earnings) for each individual i = 1, …, N. This variable is not 

observed directly but there are two measures of it, each potentially error-ridden: one from 

administrative data, ri, and one from survey data, si.  

 

2.1 Administrative data: three types of observation 

 

We assume the administrative data are a mixture of three types of observation. First, we 

distinguish between observations for whom the record linkage between administrative and 

survey data is correct, which occurs with probability r, and observations who are 

mismatched, with probability 1–r. The administrative data measure for mismatched 

observations is ߞ, the earnings of some other person in the administrative data. Second, 

among the correctly-matched observations, we suppose that the administrative data earnings 

measure is error-free with probability , or contains measurement error i with probability 

1–. (KY assumed  = 1.) Measurement error may be correlated with true earnings, with 

the correlation denoted by r. If r < 0, we have mean-reversion: high-earners under-report 

and low-earners over-report; if r > 0, the reverse occurs. The three types of observation, 

labelled R1, R2, and R3, are summarized in eq. (1). 

 

ݎ = ߦߦ} + ߦ)ߩ − క൯ߤ + ߞߥ       with probability      with probability      with probability ߨߨ௩   ߨሺͳ − ௩ሻͳߨ − ߨ  

ሺܴͳሻሺܴʹሻሺܴ͵ሻ (1) 

 

2.2 Survey data: three types of observation 

 

We assume the survey data are a mixture of three types of observation (following KY). Type 

S1 respondents are those who report their true earnings: si equals true latent earnings i with 

probability s. The survey earnings of type S2 respondents differ from true earnings by a 

measurement error component representing noise (i), plus a mean-reversion component 

allowing for a correlation (s) between true earnings and error. A third type, S3, contains 

observations with error-ridden survey earnings (as for type S2), except that there is additional 

‘contamination’ (i). The probability of contamination is . Type S2 occurs with probability 
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(1–s)(1–); type S3 occurs with probability (1–s). The three types of observation are 

summarized in eq. (2). 

 

ݏ = ߦߦ} + ߦ)௦ߩ − క൯ߤ + ߦߟ + ߦ)௦ߩ − క൯ߤ + ߟ + ߱ 
     with probability      with probability      with probability ߨ௦ሺͳ − ௦ሻሺͳߨ − 𝜔ሻሺͳߨ − 𝜔ߨ௦ሻߨ  

ሺܵͳሻሺܵʹሻሺܵ͵ሻ (2) 

 

In sum, observations in the linked dataset are a mixture of nine types (latent classes j 

= 1,…,9) depending on the combination of administrative and survey observation types. The 

latent class probabilities are j, j = 1,…,9. For example, group 1 contains observations with 

the combination (R1, S1) with probability 1 = rs, group 2 contains observations with the 

combination (R1, S2) with probability 2 = r(1–s)(1–), etc. The FMM specification is 

completed by assumptions about the latent class earnings densities, fj(ri, si) for each j = 1, …, 

9. 

We assume that true earnings (i), mismatched earnings (i), and errors (i, i, i) are 

each normally distributed with the exception that true earnings and reference period errors 

(i) are bivariate normal. We assume normality (as other researchers do) to fit models by 

maximum likelihood (see below) and because it facilitates post-estimation derivations. 

The distributions are identically distributed and mutually independent (assumptions 

we relax shortly). Thus, the distributions of the factors may be written as: 

( 𝜔ቁ,   ቆߤకߤ ߱ ) = Nቌቀߦ 𝜎కଶ 𝜔𝜎క𝜎𝜔ߩ𝜔𝜎క𝜎𝜔ߩ 𝜎𝜔ଶ ቇቍ, 

ߤ)ܰ~ ߞ , 𝜎ଶ൯, ߟ ~ܰ(ߤఎ, 𝜎ఎଶ൯, and 𝜐 ~ܰሺߤ𝜐 , 𝜎𝜐ଶሻ, (3) 

where ‘’ and ‘’ denote mean and standard deviation (SD), respectively, and  is the 

correlation between true earnings and contamination. Jenkins and Rios-Avila (2021b) argue 

there are grounds for expecting  < 0. (KY assumed  = 0.) We do not restrict error means 

to equal zero because errors may introduce systematic bias.  

Table 1 summarises the nine latent classes, their probabilities and densities.  

We allow distributions to vary with observed characteristics by writing 

transformations of model parameters as linear indices of characteristics, i.e., 

G( i) =   + Xi. (4) 
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For each model parameter with generic label i,   is a constant, Xi is a vector of 

observed characteristics for individual i. Transformation function G(.) is the identity function 

for means (), the logarithmic function for SDs (), the logistic function for probabilities (), 

and Fisher’s Z transformation for correlations ().3 See the next section for further details. 

Previous research has allowed the mean of true earnings () to vary characteristics, but not 

other parameters. 

Simpler versions of our general model can be fitted using our estimation commands, 

as we explain below, including several of KY’s models. 

 

 
3 Reversion to the mean in the models with a heterogeneous mean earnings function refers to reversion to the 

mean among individuals with the same observed characteristics. 
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Table 1 Latent class probabilities and distributions 

 
Label, j Combination Latent class probability, j Latent class distribution densities, fj(ri, si) 

1 R1,S1 ߨଵ = ܰ ௦ߨ௩ߨߨ ቌቀߤకߤకቁ , ቆ𝜎కଶ ͳͳ 𝜎కଶቇቍ 

2 R1,S2 ߨଶ = ௩ሺͳߨߨ − ௦ሻሺͳߨ − ܰ 𝜔ሻߨ ቌ( కߤకߤ + (ఎߤ , ቆ 𝜎కଶ ሺͳ + ௦ሻ𝜎కଶሺͳߩ + ௦ሻ𝜎కଶߩ ሺͳ + ௦ሻଶ𝜎కଶߩ + 𝜎ఎଶቇቍ 

3 R1,S3 ߨଷ = ௩ሺͳߨߨ − ܰ 𝜔ߨ௦ሻߨ ቌ( కߤకߤ + ఎߤ + (𝜔ߤ , ቆ 𝜎కଶ ሺͳ + ௦ሻ𝜎కଶߩ + 𝜔𝜎క𝜎𝜔ሺͳߩ + ௦ሻ𝜎కଶߩ + 𝜔𝜎క𝜎𝜔ߩ ሺͳ + ௦ሻଶ𝜎కଶߩ + 𝜎ఎଶ + 𝜎𝜔ଶ +  𝜔𝜎క𝜎𝜔ቇቍߩʹ

4 R2,S1 ߨସ = ሺͳߨ − ܰ ௦ߨ௩ሻߨ ቌ(ߤక + కߤఔߤ ) , ቆሺͳ + ሻଶ𝜎కଶߩ + 𝜎ఔଶ ሺͳ + ሻ𝜎కଶሺͳߩ + ሻ𝜎కଶߩ 𝜎కଶ ቇቍ 

5 R2,S2 
ହߨ = ሺͳߨ − ௩ሻሺͳߨ − −௦ሻ ሺͳߨ  𝜔ሻߨ

ܰ ቌ(ߤక + కߤఔߤ + (ఎߤ , ቆ ሺͳ + ሻଶ𝜎కଶߩ + 𝜎ఔଶ ሺͳ + ሻሺͳߩ + ௦ሻ𝜎కଶሺͳߩ + ሻሺͳߩ + ௦ሻ𝜎కଶߩ ሺͳ + ௦ሻଶ𝜎కଶߩ + 𝜎ఎଶ ቇቍ 

6 R2,S3 ߨ = ሺͳߨ − ௩ሻሺͳߨ − ܰ 𝜔ߨ௦ሻߨ ቌ( కߤ + కߤఔߤ + ఎߤ + (𝜔ߤ , ቆ ሺͳ + ሻ𝜎కଶߩ + 𝜎ఔଶ ሺͳ + ሻሺͳߩ + ௦ሻ𝜎కଶߩ + ሺͳ + 𝜔𝜎క𝜎𝜔ሺͳߩሻߩ + ሻሺͳߩ + ௦ሻ𝜎కଶߩ + ሺͳ + 𝜔𝜎క𝜎𝜔ߩሻߩ ሺͳ + ௦ሻଶ𝜎కଶߩ + 𝜎ఎଶ + 𝜎𝜔ଶ + 𝜔𝜎క𝜎𝜔ߩʹ ቇቍ 

7 R3,S1 ߨ = ሺͳ − ܰ ௦ߨሻߨ (ቀߤߤకቁ , ቆ𝜎ଶ ͲͲ 𝜎ఌଶቇ) 

8 R3,S2 
଼ߨ = ሺͳ − ሻሺͳߨ − −௦ሻሺͳߨ  𝜔ሻߨ

ܰ ቌ( కߤߤ + (ఎߤ , ቆ𝜎ଶ ͲͲ ሺͳ + ௦ሻଶ𝜎ఌଶߩ + 𝜎ఎଶቇቍ 

9 R3,S3 ߨଽ = ሺͳ − ሻሺͳߨ − ܰ 𝜔ߨ௦ሻߨ ቌ( కߤߤ + ఎߤ + (𝜔ߤ , ቆ𝜎ଶ ͲͲ ሺͳ + ௦ሻଶ𝜎కଶߩ + 𝜎ఎଶ + 𝜎𝜔ଶ +  𝜔𝜎క𝜎𝜔ቇቍߩʹ
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2.3 Estimation 

 

We fit the FMM by maximum likelihood. The general shape of the log-likelihood function 

for our finite mixture is: 

 

logℒሺߠ, Πሻ = ∑ log ∑ ଽߨ
=ଵ ݂ሺݎ , ሻ 𝑁ߠ|ݏ

=ଵ , (5) 

 

where we now write each latent class density as conditional on the set of parameters, , that 

describe the bivariate distributions, and  = {r, s, , } are the error probabilities that 

characterize the class probabilities j.  

The FMM is identified by the assumptions about the relationships between the two 

observed measures and true earnings and the non-normal error structure arising from the 

mixture of distributions: see Kapteyn and Ypma (2007, 532). See also Yakowitz and Spragins 

(1968) who prove that finite mixtures are identifiable if the mixture is of multivariate 

Gaussian distributions, which is the case here. 

The definition of the first latent class (group 1) also plays an important role. 

Identification uses the assumption that the members of class 1 are ‘completely labeled’ (as 

KY term it). These individuals correctly report their earnings in the survey data, are correctly 

matched to their administrative data records, and there is no error in their administrative 

earnings. Hence, both observed earnings measures equal true earnings, i.e., ri = si = i if i  

class 1. This assumption has two consequences for the log-likelihood function (Redner and 

Walker 1984). 

First, since ri = si, the class 1 distribution degenerates to a univariate normal 

distribution with mean ߤక and variance 𝜎కଶ. Second, because class membership is known for 

observations in this group, the log-likelihood function becomes: 

 

logℒሺߠ, Πሻ = ∑ ଵߨ log( ଵ݂ሺߦ|ߠሻ൯ + ∑ log ቌ∑ ߨ ݂ሺݎ , ሻ𝑁ߠ|ݏ
=ଶ ቍ ב class ଵ   א class ଵ  (6) 

 

In principle, ߤక and 𝜎కଶ are fully identified using the sample of class 1 observations. In 

practice, the sample of completely labeled observations may be too small for reliable 
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identification of these moments. KY’s strategy was to broaden the definition of equality to 

include observations for which survey and administrative earnings were sufficiently ‘close’. 

This is an empirical judgement call.4  

 

3 The ky suite of commands for estimation and post-estimation 

 

This section describes the commands for fitting our general FMM and special cases of it, and 

commands for post-estimation analysis and prediction. We assume the linked dataset is in 

wide format, i.e., with one row per individual. There are variables corresponding to ri and si 

and also (optionally) variables used to define explanatory variables in models with covariates. 

 

3.1 Model estimation: ky_fit  

 

Command ky_fit fits the general FMM and special cases of it. The syntax for the command 

is as follows: 

 ky_fit r_var s_var [cl_var] [if] [in] [fw pw aw iw] [, model(#) options] 
 

where r_var and s_var are required variables. They correspond to the administrative log 

earnings measure ri (r_var) and the survey log earnings measure si (s_var).  

Optionally, you can refer to a binary variable cl_var that identifies observations that 

belong to the completely labeled class. If cl_var is not declared, ky_fit creates a binary 

indicator variable named __ll__ equal to one for observations for which abs(r_var-s_var)<= #d. The default value of #d is 0, but other values can be declared using delta(#d). 

 model(#) specifies which version of the FMM is fitted. Table 2 lists the model 

variants available, showing for each model the parameter restrictions imposed relative to the 

most general model, and the combinations of types of observation present in the 

administrative and survey data. The default specification is model 1, which assumes error-

free administrative data and mean-reverting error in the survey data (without contamination). 

 
4 In their application, KY defined an observation as completely labeled if earnings in the two data sources 

differed by less than 1000 SEK (14.8% of their sample). Jenkins and Rios-Avila (2020), using UK data, assess 

the sensitivity of parameter estimates to different assumptions, varying the fraction of completely labeled 

observations from 0.25% to 16.93%.  
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The most general model, described in section 2, corresponds to model 8. KY’s ‘Full’ model is 

model 4. Jenkins and Rios-Avila (2021b) focus on models 4, 5, 7 and 8; model 5 is their best-

fitting model. 

 

Table 2. FMM variants and parameter restrictions 

Model Parameter restrictions Types of observation 

#  Administrative data Survey data 

𝜔ߤ 1 = Ͳ; 𝜎𝜔 = Ͳ; 𝜔ߨ = Ͳ; ߤఔ = Ͳ; 𝜎ఔ = Ͳ; ఔߨ = ͳ; ߤ = Ͳ; 𝜎 = Ͳ; ߨ = ͳ; ߩ = Ͳ; ߩ𝜔 = Ͳ 

R1  S1, S2 

ఔߤ 2 = Ͳ; 𝜎ఔ = Ͳ; ఔߨ = ͳ; ߤ = Ͳ; 𝜎 = Ͳ; ߨ = ͳ; ߩ = Ͳ; ߩ𝜔 = Ͳ 

R1 S1, S2, S3 

ఔߤ 3 = Ͳ; 𝜎ఔ = Ͳ; ఔߨ = ͳ; ߩ = Ͳ; ߤ𝜔 = Ͳ; 𝜎𝜔 = Ͳ; 𝜔ߨ = Ͳ; 𝜔ߩ = Ͳ 

R1, R2  S1, S2 

ఔߤ 4 = Ͳ; 𝜎௩ = Ͳ; ௩ߨ = ͳ; ߩ = Ͳ;  ߩ𝜔 = Ͳ 

R1, R3 S1, S2, S3 

𝜔ߩ 5 = Ͳ R1, R2, R3  S1, S2, S3 

𝜔ߤ 6 = Ͳ; 𝜎𝜔 = Ͳ; 𝜔ߨ = Ͳ; 𝜔ߩ = Ͳ R1, R2, R3 S1, S2 

ఔߤ 7 = Ͳ; 𝜎ఔ = Ͳ; ఔߨ = ͳ; ߩ = Ͳ R1, R3 S1, S2, S3 

8 No restrictions R1, R2, R3 S1, S2, S3 

 

Optionally, you can specify the parameters of any of the models listed in Table 2 as 

functions of covariates, as described by eq. (4). Table 3 provides a walkthrough of the 

estimated parameters, the parameter-specific options in ky_fit you use to declare the 

covariates, and the internal transformation used for maximization. If a model-specific 

parameter is constrained (as described by Table 2), a declaration of covariates for that 

parameter is ignored. Because parameters (apart from means) are fitted in a transformed 

metric, users wishing to see estimates in their ‘natural’ metrics need to back-transform them. 

You can do this using margins: see Section 3.3. 
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Table 3. Options to allow parameters to be functions of covariates 

Parameter ky_fit option Transformation ߤక mu_e(varlist) Identity 𝜎క ln_sig_e(varlist) 𝜎క = exp(ln_sig_e) ߤ𝜔 mu_w(varlist) Identity 𝜎𝜔 ln_sig_w(varlist) 𝜎𝜔 = exp(ln_sig_w) ߤఎ mu_n(varlist) Identity 𝜎ఎ ln_sig_n(varlist) 𝜎ఎ = exp(ln_sig_n) ߤఔ mu_v(varlist) Identity 𝜎ఔ ln_sig_v(varlist) 𝜎ఔ = exp(ln_sig_n) ߤ  mu_t(varlist) Identity 𝜎 ln_sig_t(varlist) 𝜎 = exp(ln_sig_n) ߩ arho_r(varlist) ߩ = tanh(arho_r) ߩ௦ arho_s(varlist) ߩ௦ = tanh(arho_s) ߩ𝜔 arho_w(varlist) ߩ𝜔 = tanh(arho_w) ߨ  lpi_r(varlist) ߨ  = logistic(lpi_r) ߨ௦ lpi_s(varlist) ߨ௦ = logistic(lpi_s) ߨ𝜔 lpi_w(varlist) ߨ𝜔 = logistic(lpi_w) ߨఔ lpi_v(varlist) ߨఔ = logistic(lpi_v) 
 

Our code fits models in sequential fashion using ml: we use the parameter estimates of 

simpler (more restricted) models as starting values for more flexible models. Additional 

restrictions on model specifications can be applied using constraint(). To use other initial 

values, ml options search() and repeat() are available. You can also provide specific 

initial values for model parameters using option from().  

We recommend that users experiment with multiple sets of initial values in order to 

check that the more complex models converge to a global maximum rather than some local 

maximum. This is a well-known issue for FMM models and, in our own work (Jenkins and 

Rios-Avila 2021b), has arisen when fitting models 4–8 with many covariates. Our sequential 

fitting approach reduces the risk of convergence to local maxima but does not remove it 

altogether. ky_fit also allows the use of maximization options technique(), trace, and difficult. 

Fweights, pweights, aweights, and iweights are allowed. ky_fit reports standard errors derived from asymptotic theory by default but, 

optionally, you may use robust and cluster(cluster_var). 
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3.2 Post-estimation tools: ky_estat 

 ky_estat is a post-estimation command that allows researchers to obtain summary statistics 

for a fitted model. It is written to be integrated with Stata’s built-in post-estimation command estat, and has the following syntax: 

 estat [pr_t pr_i pr_sr pr_all reliability xirel, sim reps(int 50)] 
 

Option pr_t reports error probabilities r, s, , and ;  

Option pr_j reports latent class probabilities 1 through 9;  

Option  pr_sr reports the probabilities of each observation type S1–S3 and R1–R3.  

Option pr_all reports all probabilities.  

 

For models without covariates; estat reports error probabilities in their original 

metric (rather than the metric used for estimation). If you specify error probabilities as 

functions of covariates, estat reports average predicted probabilities. 

If the error probabilities are modeled without covariates, option reliability 

produces a full report of all unconditional probabilities. It also reports two reliability 

summary statistics for each of the survey and administrative data, based on the analytically 

predicted variances of the observed earnings data (ri, si), and their covariances with (model-

specific) estimated true latent earnings (i). The two reliability statistics are: 

 ܴଵ = 𝐶ݒሺߦ , ሻݎሺݎሻ𝑉ܽݎ  ;  ܴଵ௦ = 𝐶ݒሺߦ , ሻݏሺݎሻ𝑉ܽݏ  

ܴଶ = 𝐶𝑜௩ሺక,ሻమ𝑎ሺకሻ𝑎ሺሻ  ;  ܴଶ௦ = 𝐶𝑜௩ሺక ,௦ሻమ𝑎ሺకሻ𝑎ሺ௦ሻ. 
 

R1 is analogous to the reliability statistic often reported for the classical measurement error 

model with mean-reversion, and is equal to the slope coefficient from a (hypothetical) 

regression of true earnings on the observed earnings measure. (It may be greater than one.) 

R2, proposed by MRW, is the squared correlation between true earnings and an observed 

earnings measure. Analytical expressions for unconditional variance and covariances based 

on unrestricted model 8 are presented in the Appendix. 
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If you model error probabilities as functions of covariates, option reliability 

produces simulation-based reliability estimates. You can specify the number of replications 

using the option reps(#), with the default being 50 replications. For reproducibility, set the 

seed using seed(#). 

You can also request simulation-based reliability statistics using option sim even if 

error probabilities have not been declared as functions of covariates. 

The final post-estimation option is xirel. This uses simulated data to estimate the 

reliability statistics, mean squared error (MSE), bias, and variance of bias of seven latent 

earnings predictors, as proposed by MRW (see the next section). This option also produces 

corresponding statistics for the observed administrative and survey measures. You can use reps(#) and seed(#) to set the number of replications and seed. 

 

 

3.3 Post-estimation predictions and marginal effects: ky_p 

 ky_p is a post-estimation program that allows you to obtain predictions for all relevant 

parameters of FMMs, and is integrated with Stata’s post-estimation commands predict and margins. Table 4 lists the options available. The analytical formulae for the constructed 

moments correspond to the ones listed in Table 1. 
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Table 4. ky_p options compatible with predict and margins 
 

Option Description 

Structural parameters  mean_e, mean_n, mean_w, mean_t Conditional means of latent variables , , , and , 

respectively sig_e, sig_n, sig_w, sig_t Conditional SDs of latent variables , , , and , 

respectively pi_s, pi_r, pi_w, pi_v Error probabilities  rho_s, rho_r Mean-reversion parameters for survey data (s) and 

administrative data (r) rho_w Conditional orrelation between latent true earnings () 

and contamination ()  

Constructed moments  mean_r1, mean_r2, mean_r3 Mean of administrative earnings: R1, R2, R3 

respectively sig_r1, sig_r1, sig_r1 SD of administrative earnings: R1, R2, R3 respectively pi_r1, pi_r2, pi_r3 Probability of belonging to type R1, R2, R3 

respectively mean_s1, mean_s2, mean_s3 Mean of survey earnings: S1, S2, S3 respectively sig_s1, sig_s2, sig_s3 SD of survey earnings: S1, S2, S3 respectively pi_s1, pi_s2, pi_s3 Probability of belonging to type S1, S2, S3 

respectively pj_1, ..., pj_9 Probability of belonging to latent class j = 1, …, 9 
Notes. When models 3, 4, and 6 are estimated, mean_r2, sig_r2, and pi_r2, produce estimates for R3, 

because of type R2 observations are absent. 

Table 5 lists the options that are compatible with predict alone (because they are 

functions of the variables ri and si), providing a description and definition. The options include 

predictions of posterior class probabilities and Bayesian classifications based on the posterior 

probabilities.  

The posterior or conditional probability of observation ݅ belonging to a given class, 

say class 2, is defined as the product of the unconditional probability of belonging to class 2, 

times the ratio of the likelihood of observation i belonging to class 2, divided by the sum of 

the likelihoods of observation i belonging to all classes (2 through 9). You can then assign 

observations to a latent class. Given the posterior probabilities, the Bayesian classifier assigns 

each observation to the class for which the posterior probability is greatest. For all variants of 

our FMMs, the conditional probability of belonging to class ͳ is equal to 1 if the observation 

belongs to the completely labeled group and 0 otherwise.  
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Table 5. ky_p options compatible with predict only 

Option Description Definition pip_r1, pip_r2, pip_r3 Posterior probability of 

belonging to R1, R2, or R3 ߨோೕሺݎሻ = ோೕߨ ∗ ோ݂ଵሺݎ|ߠሻ ∑ ோ݂ೖሺݎ|ߠሻଷ=ଵ  pip_s1, pip_s2, pip_s3 Posterior probability of 

belonging to R1, R2, or R3  ߨௌೕሺݎሻ = ௌೕߨ ∗ ோ݂ଵሺݎ|ߠሻ ∑ ோ݂ೖሺݎ|ߠሻଷ=ଵ  pip_1, pip_2, ..., pip_9 Posterior probability of 

belonging to class j = 1,…,9 
ݎሺߨ , =ሻݏ ߨ ∗ ݂ሺݎ , ∑ ሻߠ|ݏ ݂ሺݎ , ሻଽ=ଶߠ|ݏ  bclass_r, bclass_s Bayesian classification of 

observation ݅ to type R1, R2, or 

R3, and to type S1, S2, or S3, 

respectively 

ܾܿ𝑋 = ݆ if ߨ𝑋ೕ ሺݔሻ > ሻ ∀ℎݔ𝑋ℎሺߨ ≠ ݆ & 𝑋 א {ܴ, ݔ & {ܵ ,ݎ}א  bclass Bayesian classification of   {ݏ

observation ݅ to class j = 1,…,9 

ܾܿ = ݆ if ߨሺݎ , ሻݏ > ݎℎሺߨ , ሻ ∀ℎݏ ≠ ݆  
 

Finally, you can use predict to obtain seven different predictors of each individual’s 

latent true earnings (i) using option star. The methods, proposed by MRW and extended by 

us to our general FMM, combine information from both administrative and survey data. The 

syntax of the option is as follows: 

 predict prefix, star [replace surv_only] 
 

The new variables are named using prefix and consecutive integers from 1 to 7 and 

are created as data type double. Option replace enables you to replace existing variable 

values; surv_only requests the same predictors for the situation in which you have access to 

survey data only (as well as model estimates).  

The descriptions of the predictors (‘hybrid’ earnings variables) are provided in Table 

6, with the derivation of the formulae presented in the Appendix. Predictors 1 to 6 uses two 

within-class predictions for ߦ. The first set ̂ߦ , used for predictors 1, 3, and 5, are such that 

they minimize the Mean Squared Error (MSE), E ቀ(ߦ − ߦ|൯ଶߦ̂ , ݅ א 𝐽ቁ. The second set of 

predictors, ̂ߦ
, used for cases 2, 5, and 6, are those that minimize the MSE conditional on E(ߦ − ݅ |ߦ̂ א 𝐽൯ = Ͳ. Predictors 1 and 2 provide weighted predictors using the 

unconditional within-class probabilities j. Predictors 3 and 4 provide weighted predictors 

using conditional or posterior within-class probabilities ߨሺݎ ,  ሻ. Finally, predictors 5 and 6ݏ
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use the two-step Bayesian classification. The seventh predictor (̂ߦ) is the system-wide 

predictor that minimizes MSE under the assumption of linearity and imposing the condition 

of unbiasedness.  

 

Table 6. Seven predictors of latent true earnings  
Variable Name Predictor description Definition [prefix]1 Weighted unconditional  ̂ߦଵ = ∑ ଽߨ

=ଵ ଶߦ̂   [prefix]2 Weighted unconditional and unbiasedߦ̂ = ∑ ଽߨ
=ଵ ߦ̂

 [prefix]3 Weighted conditional  ̂ߦଷ = ∑ ݎሺߨ , ሻଽݏ
=ଵ ߦ̂  [prefix]4 Weighted conditional and unbiased  ̂ߦସ = ∑ ݎሺߨ , ሻଽݏ
=ଵ ߦ̂

 [prefix]5 Two-step  ̂ߦହ = ∑ሺܾܿ݅ = ݆ሻଽ
=ଵ ߦ̂   [prefix]6 Two-step unbiased  ̂ߦ = ∑ሺܾܿ݅ = ݆ሻଽ
=ଵ ߦ̂

 [prefix]7 System-wide, linear ̂ߦ = కߤ̂ + Σక௬  Σ௬−ଵ[ݕ − ݕ ,[ ௬|௫ߤ̂ = ݎ] ,  [ݏ
Note: ̂ߦ  is the within-class predictor that minimizes E ቀ(ߦ − ,ߦ|൯ଶߦ̂ ݅ א 𝐽ቁ. ̂ߦ

is the within-class predictor 

that minimizes MSE under the condition E(ߦ − ݅ |ߦ̂ א 𝐽൯ = Ͳ.  Σక௬ is the covariance matrix between ߦ and ሺݎ , ݎሻ. Σ௬−ଵ corresponds to the variance-covariance matrix of ሺݏ , ݎ௬|௫  is the system-wide expected value for ሺߤ̂ .ሻݏ ,  .ሻ. See MRW and the Appendix to this article for further detailsݏ
 

 

3.4 Data simulation: ky_sim 
 ky_sim is a utility command for simulating data based on the data generating process 

characterized by the fitted FMM, as described in Section 2 and Table 2. The new dataset 

contains simulated values of si and ri for each individual.  ky_sim simulates the joint distribution of administrative and survey log earnings in 

two ways. The first way allows you to simulate data by selecting the FMM that characterizes 

the data generating function, setting the number of observations to be contained in the 

simulated dataset, and providing values for each of the parameters that characterize the given 

model variant. Model parameters are constant across observations – it corresponds to the 

specification of models without covariates. The syntax for this option is as follows: 
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 ky_sim, model(#) nobs(#) [ options]  model(#) specifies the model that characterizes the data generating function. You can 

choose one of the 8 models listed in Table 2.  nobs(#) sets the number of observations in the dataset to be created. seed(#) sets the random-number seed to be used for the simulation of the data. 

If there is an unsaved dataset in memory, ky_sim will not generate the new simulated 

data unless option clear is specified. 

You must specify values for the following parameters, with the specification 

depending on model selected: 

 

Means:   mean_e(#) mean_n(#) mean_t(#) mean_w(#) mean_v(#) 
SDs:    sig_e(#) sig_n(#) sig_t(#) sig_w(#) sig_v(#) 
Correlations:   rho_r(#) rho_s(#) rho_w(#) 
Error probabilities:  pi_s(#) pi_w(#) pi_r(#) pi_v(#) 

 

If you specify a parameter value that is not required for the model selected, it is 

ignored. For example, a value for rho_w(#) is ignored if data are simulated using any model 

other than models 7 or 8. 

When the program is used in this way, it also stores information in e(), so you can 

use the other post-estimation commands described earlier. 

The second way to use ky_sim is as a post-estimation command. In this case, ky_sim 

generates simulated data uses parameter estimates from from a previously-fitted model as 

well as the data currently in memory. Command syntax in this case is: 

 ky_sim [, options] 
 

If ky_sim is specified without any options directly after fitting a model with ky_fit, 

simulated data are created using the parameters from this previously-fitted model.  

 Alternatively, you can use parameters from a previously-fitted model that have been 

stored in memory using estimates store or saved to disk using estimates save. If you 

retrieve the stored or saved estimates to use with ky_sim, and a model with covariates had 

been fitted, all the relevant covariates must be available in the dataset currently in memory.  
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The option prefix(str) enables you to specify the prefix for the names of the 

newly-created variables. If nothing is declared, the program uses the variable name prefix ‘_’. 

Option replace, enables the program to overwrite variables if they already exist in the 

dataset.  

Depending on the model chosen, ky_sim creates the variables shown in Table 7. 

 

Table 7. Variables created using ky_sim 

Variable name Description [prefix]e_var Latent true log(earnings) [prefix]n_var Factor i  (survey data measurement error) [prefix]w_var Factor i (survey data contamination) [prefix]v_var Factor i (administrative data measurement error) [prefix]t_var Mismatched log earnings i [prefix]pi_ri = 1 if data are linked correctly [prefix]pi_vi = 1 if administrative data have no mean-reverting error  [prefix]pi_si = 1 if survey data are reported correctly [prefix]pi_wi = 1 if survey data contain contamination  [prefix]r_var Administrative log(earnings) [prefix]s_var Survey log(earnings) [prefix]l_var = 1 if ri and si are error free 
Notes. prefix is empty if ky_sim is used as a post-estimation command. If nothing is 

specified, prefix = ‘_’ when using the second way to simulate data. 

 

 

4. Illustrations: estimation and post-estimation 

 

This section shows how to use the commands described in the previous section, revisiting the 

pioneering second generation study by KY and MRW’s companion paper. Since we do not 

have access to KY’s linked dataset, we simulate their data using the parameter estimates they 

report, and then analyze the data using the commands described earlier.  

We start by setting the parameter estimates for KY’s ‘Full’ model, reported in KY’s 

Table C2, based on a sample of size 400. We use globals. Locals or scalars could also be 

used. 

 global mean_e  12.283 global mean_t   9.187 global mean_w (-0.304) global mean_n (-0.048) global sig_e    0.717 global sig_t    1.807 
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global sig_w    1.239 global sig_n    0.099  global pi_r     0.959 global pi_s     0.152 global pi_w     0.156 global rho_s  (-0.013) 
 

KY’s ‘Full’ model corresponds to model 4 of our FMM variants (see Table 2). We 

use option model(4), and set the sample size with nobs(400). Since ky_sim stores all the 

information in e(), we can also store that information in memory with estimates store 

and use it as a benchmark later. 

 ky_sim, seed(101) nobs(400) model(4)   ///  mean_e($mean_e) mean_t($mean_t) mean_w($mean_w) /// mean_n($mean_n) sig_e($sig_e) sig_t($sig_t) ///  sig_w($sig_w) sig_n($sig_n)   /// pi_r($pi_r) pi_s($pi_s) pi_w($pi_w) rho_s($rho_s) clear  estimates store model0 
 

Using the simulated dataset that is created, we can fit all of the (simpler) models that 

are reported in KY’s Table C2 in addition to their Full model. KY’s ‘Basic’ model 

corresponds to our model 1 with the additional restriction that  = 0. The ‘no-mismatch’ and 

‘no-contamination’ models correspond to our models 2 and 3.  

 constraint 1 [mu_n]_cons = 0 ky_fit r_var s_var l_var, model(1) constraint(1) estimates store model1 ky_fit r_var s_var l_var, model(2)  estimates store model2 ky_fit r_var s_var l_var, model(3)  estimates store model3  ky_fit r_var s_var l_var, model(4)  estimates store model4  estimates table model0 model4 model3 model2 model1  
 

Table 8 shows that parameter estimates derived from the simulated data are close to those 

reported by KY, so too are standard errors and log-likelihood values (not shown here). The 
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transformation of the mean-reversion correlation (arho_s) is large and statistically significant 

in the Basic model, but is much smaller for other models. The largest difference across 

models is in the estimate of ln_sig_w. We attribute this to the random nature of the simulated 

dataset. 

 

Table 8. Estimates of KY models based on simulated data 
 KY Full 

Model 

Simulated data 

  Full model No contamination No mismatch Basic Model 

mu_e 12.283 12.349 (0.034) 12.306 (0.038) 12.240 (0.048) 12.246 (0.037) 

mu_n –0.048 –0.061 (0.006) –0.062 (0.006) –0.059 (0.006) 0.000 (.) 

mu_w –0.304 –0.344 (0.148)   0.479 (0.284)   

mu_t 9.187 8.586 (0.678) 11.622 (0.256)     

ln_sig_e –0.333 –0.406 (0.036) –0.285 (0.036) –0.047 (0.035) –0.047 (0.035) 

ln_sig_n –2.313 –2.295 (0.048) –2.270 (0.047) –2.268 (0.046) –0.449 (0.038) 

ln_sig_w 0.592 –0.026 (0.112)   0.731 (0.100)   

ln_sig_t 0.214 0.501 (0.315) 0.622 (0.098)     

arho_s –0.013 –0.022 (0.010) –0.015 (0.010) –0.026 (0.010) –0.680 (0.054) 

lpi_r 3.152 3.520 (0.335) 1.838 (0.159)     

lpi_s –1.719 –1.844 (0.148) –1.708 (0.150) –1.879 (0.147) –1.879 (0.147) 

lpi_w –1.688 –1.784 (0.189)   –1.683 (0.161)   

logℒ  –543.0  –595.5  –695.5  –1041.8  

Notes. Standard errors in parentheses. Sample size = 400. 

 

Table 8 reports estimated parameters (other than means) in a transformed metric. We 

use margins to obtain estimates of the parameters in their natural metric. To illustrate this, 

we focus on the estimates from the Full model derived from simulated data. 

 margins, predict(mean_e) predict(sig_e) /// predict(mean_t) predict(sig_t) /// predict(mean_w) predict(sig_w) /// predict(mean_n) predict(sig_n)  /// predict(pi_r) predict(pi_s) /// predict(pi_w) predict(rho_s)  [output partially omitted] 
 ------------------------------------------------------------------------------              |            Delta-method              |     Margin   Std. Err.      Z    P>|z|     [95% Conf. Interval] -------------+----------------------------------------------------------------     _predict |           1  |   12.34936   .0335341   368.26   0.000     12.28364    12.41509           2  |   .6659948    .023718    28.08   0.000     .6195083    .7124813           3  |   8.586231   .6782982    12.66   0.000     7.256791    9.915671           4  |   1.650615   .5192742     3.18   0.001     .6328562    2.668374           5  |  -.3435237   .1479331    -2.32   0.020    -.6334672   -.0535803           6  |   .9747349   .1089581     8.95   0.000     .7611809    1.188289           7  |  -.0608566   .0063531    -9.58   0.000    -.0733084   -.0484048           8  |   .1007999   .0048806    20.65   0.000      .091234    .1103657           9  |   .9712426   .0093542   103.83   0.000     .9529088    .9895765          10  |   .1365808   .0174403     7.83   0.000     .1023985    .1707632          11  |   .1437948   .0233102     6.17   0.000     .0981077    .1894819          12  |  -.0220813   .0097204    -2.27   0.023     -.041133   -.0030297 ------------------------------------------------------------------------------ 
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If you specify a model in which a parameter depends on explanatory variables, margins can also be used to obtain marginal mean estimates of the parameter. For example, 

suppose your ky_fit command specifies that the log of the survey measurement error SD 

depends on a binary indicator variable for the respondent’s sex using the option ln_sig_v(i.sex). The following margins commands provide estimates of  , first for the 

sample as a whole and, second, separately by sex. 

 margins, predict(mean_v)  margins sex, predict(mean_v) 
 

Let us now return to KY’s Full model estimates, and consider the reliability of the 

survey and administrative data. MRW showed how to investigate reliability using a 

simulation-based method as well as by using analytical solutions (implied by the estimated 

model). MRW illustrated their methods using KY’s estimates, showing that their survey data 

were more reliable than their administrative data, attributing this to the small but 

consequential prevalence of linkage mismatch.  

The reliability statistics reported in MRW’s Table 6, can be obtained using our post-

estimation commands and the estimates reported by KY. For this illustration, we compare 

simulation-based and analytical reliability statistics using estat reliability and estat reliability, sim. We also use Ben Jann’s esttab utility (part of his estout package on 

SSC) for reporting results. We first show the code. Table 9 summarizes the results.  ky_sim, seed(101) nobs(400) model(4) /// mean_e($mean_e) mean_t($mean_t) mean_w($mean_w) /// mean_n($mean_n) sig_e($sig_e) sig_t($sig_t) /// sig_w($sig_w) sig_n($sig_n) /// pi_r($pi_r) pi_s($pi_s) pi_w($pi_w) rho_s($rho_s) clear  quietly: estat reliability matrix rel_analytical = r(rel) quietly: estat reliability, sim reps(100) seed(10) matrix rel_simulation = r(rel) esttab matrix(rel_analytical, fmt(4)) using table9, /// mtitle("Analytical Statistics") rtf replace b(4) esttab matrix(rel_simulation, fmt(4)) using table9, /// mtitle("Simulation Statistics") rtf append b(4) 
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Table 9. Reliability statistics: replication of MRW’s Table 6 

 

Derivation method Var Cov Rel1 Rel2 

Analytical     

  Administrative data 1.0038 0.4930 0.4912 0.4710 

  Survey data 0.7257 0.5084 0.7006 0.6929 

Simulation 

  Administrative data 0.9947 0.4866 0.4892 0.4662 

  Survey data 0.7169 0.5055 0.7051 0.6981 

 

 Table 9 shows that corresponding analytical and simulation-based statistics are 

similar. According to both derivation methods, we conclude that the survey data are more 

reliable than the administrative data, even though the mismatch probability is only 4.1%. The 

‘analytical’ statistics are the same as those reported in MRW’s Table 6. 

 MRW’s main contribution was derivation of expressions for multiple predictors of 

latent true log earnings that combine information from survey and administrative measures 

with FMM estimates. You can obtain observation-specific values for MRW’s seven 

predictors using the star option to predict. To evaluate the statistical performance of the 

various predictors (assuming the data generating process represented by model estimates is 

correct), we use post-estimation command estat xirel. Internally, this calls on ky_sim to 

simulate data, and predict, star to obtain the predictions.  

 estat xirel, seed(10) reps(1000) 
             Rel1       Rel2        MSE    E(Bias)  Var(Bias) r_var     0.5040     0.4847     0.5492    -0.1267     0.5331 s_var     0.7033     0.6954     0.2293    -0.0803     0.2228   e_1     0.5632     0.5406     0.4358    -0.1192     0.4216   e_2     0.5627     0.5428     0.4356    -0.1181     0.4216   e_3     1.0007     0.9776     0.0115     0.0001     0.0115   e_4     0.9866     0.9720     0.0146     0.0001     0.0146   e_5     0.9866     0.9724     0.0144    -0.0010     0.0144   e_6     0.9780     0.9681     0.0169    -0.0014     0.0169   e_7     1.0012     0.7593     0.1241     0.0004     0.1241 

 

The outputs for e_1 to e_7 correspond closely to what is shown in MRW’s Table 6. Observe 

the extremely good statistical performance of these predictors, especially e_3 through e_6 

(see our Table 6 for details of their definitions).  
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5. Summary and conclusions 

 

This paper introduces a new set of commands to facilitate estimation of FMMs for 

application to linked survey and administrative data on earnings or similar variables. The 

FMM specifications are those proposed by Jenkins and Rios-Avila (2021b) that extend the 

ones proposed by KY. In particular, we allow for measurement error in the administrative 

data, as well as linkage mismatch and measurement error in the survey data. We also provide 

a suite of post-estimation commands for simulation, assessing reliability, and deriving highly-

reliable hybrid earnings predictors of latent true earnings, building on the work of MRW. As 

Abowd and Stinson have pointed out, such predictors ‘could be used by statistical agencies to 

produce a measure of “true earnings” …, a valuable measure for researchers that would allow 

agencies to release information from administrative data while limiting confidentiality 

concerns (2013, 1467). 

We hope that our software will help researchers compare measurement error 

processes over time and across countries using a common approach that is based on a 

relatively general model. Linked datasets are becoming more commonly available. One 

limitation of our models is that they refer to cross-sectional data; we do not exploit the 

additional information provided by longitudinal linked datasets, as done in different ways by, 

e.g., Abowd and Stinson (2013), Bollinger et al. (2018), and Hyslop and Townsend (2020).  
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8. Appendix  

 

This appendix contains three sections. The first discusses the relationship between 

conditional and unconditional correlations for a pair of random variables. The second 

provides expressions for expected values (means), variances, and covariances for the 

components in our general FMM. The third provides expressions for hybrid earnings 

predictors of latent true earnings for our general model, building on MRW’s work. 

 

A1. Unconditional and conditional correlations between variables  

 

Consider two random variables ݁ and ݑ defined as follows: ݁ = 𝑒|𝑋ߤ + ;,𝑒ߝ ݑ = ௨|𝑋ߤ + ,𝑒ߝ,௨ߝ ,௨ߝ ~ܰ (ͲͲ, 𝜎𝑒ଶ 𝜎𝑒𝜎௨ߩ𝜎𝑒𝜎௨ߩ 𝜎௨ଶ ) 

where ߤ|𝑋 = 𝐸ሺ݇|𝑋ሻ. For ki  {ei, ui} and X is a vector of observed characteristics for 

individual i = 1,…,N. Based on the law of total variance, and assuming (ߝ,௨,  ,𝑒൯ areߝ

independently distributed from 𝑋, we have: 𝑉ܽݎሺ݁ሻ = 𝐸(𝑉ܽݎሺ݁|𝑋ሻ൯ + 𝑉ܽݎ(𝐸ሺ݁|𝑋ሻ൯ 𝑉ܽݎሺ݁ሻ = 𝜎𝑒ଶ + 𝑉ܽߤ)ݎ𝑒|𝑋൯ 

Similarly, using the law of total covariance we have: 𝐶ݒሺ݁ , ሻݑ = 𝐸(𝐶ݒሺ݁ , |𝑋ሻ൯ݑ + 𝐶ݒ(𝐸ሺ݁|𝑋ሻ, 𝐸ሺݑ|𝑋ሻ൯ 𝐶ݒሺ݁ , ሻݑ = 𝜎𝑒𝜎௨ߩ + 𝐶ߤ)ݒ𝑒|𝑋,  ௨|𝑋൯ߤ

Thus, even if ݁ and ݑ are conditionally uncorrelated, their unconditional correlation may be 

non-zero. 
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A2 Expected values, variances, and covariances for the general FMM 

 

We provide expressions for the moments in turn of the administrative data and the survey 

data.  

 

A2.1 Administrative data 

 

The data structure for administrative data is: 

ݎ = ଵ,ݎ} = ଶ,ݎߦ = ߦ + ߦ)ߩ − క|𝑋൯ߤ + ଷ,ݎߥ = ߞ  with probability with probability with probability 
భߨ = మߨ௩ߨߨ = ሺͳߨ − యߨ௩ሻߨ = ͳ − ߨ } 

The data generating process for the latent variables is: 

(ߞߥߦ)  = ܰ ൮[ߤక|𝑋ߤఔ|𝑋ߤ|𝑋] , [𝜎కଶ Ͳ ͲͲ 𝜎ఔଶ ͲͲ Ͳ 𝜎ଶ]) 

where ߤఊ|𝑋 can be expressed as a linear function of X, for each  ߛ א ,ߦ} ,ߥ  .{ߞ

 

Unconditional moments by data type (class) 

 

Class 1: ݎଵ, = ߦ  
Expected value:  𝐸(ݎଵ,൯ = కߤ   
Variance: 𝑉ܽݎ)ݎଵ,൯ = 𝑉ܽݎሺߦሻ = 𝜎కଶ + 𝑉ܽߤ)ݎక|𝑋൯ 

Covariance with ߦ :  𝐶ߦ)ݒ , ଵ,൯ݎ = 𝑉ܽݎሺߦሻ = 𝜎కଶ + 𝑉ܽߤ)ݎక|𝑋൯ 

 

Class 2: ݎଶ, = ߦ + ߦ)ߩ − క|𝑋൯ߤ + ߥ  
Expected value:  𝐸(ݎଶ,൯ = 𝐸(ߦ + ߦ)ߩ − క|𝑋൯ߤ + = ൯ߥ కߤ + ఔߤ   
Variance: 𝑉ܽݎ)ݎଶ,൯ = 𝑉ܽߦ)ݎ + ߦ)ߩ − క|𝑋൯ߤ +  ൯ߥ
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= 𝑉ܽߤ)ݎక|𝑋 + ሺͳ + ߦ)ሻߩ − క|𝑋൯ߤ + = ൯ߥ 𝜎ఓ𝜉|𝑋ଶ + ሺͳ + ሻଶ𝜎కଶߩ + 𝑉ܽݎሺߥሻ + ʹ𝐶ߤ)ݒక|𝑋,  ఔ|𝑋൯ߤ

Covariance with ߦ : 𝐶ߦ)ݒ , ଵ,൯ݎ = 𝐶ߦ)ݒ , ߦ + ߦ)ߩ − క|𝑋൯ߤ + = ൯ߥ 𝑉ܽݎሺߦሻ + 𝜎కଶߩ + 𝐶ߤ)ݒక|𝑋, = ఔ|𝑋൯ߤ 𝑉ܽߤ)ݎక|𝑋൯ + ሺͳ + ሻ𝜎కଶߩ + 𝐶ߤ)ݒక|𝑋,  ఔ|𝑋൯ߤ

Class 3: ݎଷ, = ߞ  
Expected value:  𝐸(ݎଷ,൯ = 𝐸ሺߞሻ = ߤ  

Variance:  𝑉ܽݎ)ݎଷ,൯ = 𝑉ܽݎሺߞሻ = 𝑉ܽߤ)ݎ|𝑋൯ + 𝜎ଶ  
Covariance with ߦ :  𝐶ߦ)ݒ , ଷ,൯ݎ = 𝐶ݒሺߦ , ሻߞ = 𝐶ߤ)ݒక|𝑋,  |𝑋൯ߤ

 

Moments for administrative data, overall: 

Expected value: 𝐸ሺݎሻ = ଵ,൯ݎ)భ𝐸ߨ + ଶ,൯ݎ)మ𝐸ߨ + = ଷ,൯ݎ)య𝐸ߨ కߤభߨ + కߤ)మߨ + ఔ൯ߤ + ߤయߨ  = భߨ) + కߤమ൯ߨ + ఔߤమߨ + ߤయߨ  

Variance: 

𝑉ܽݎሺݎሻ = ∑ ೕߨ
ଷ

=ଵ 𝑉ܽݎ)ݎ,൯ + 𝑉ܽݎ ቀ𝐸(ݎ,൯ቁ 

where: 

𝑉ܽݎ ቀ𝐸(ݎ,൯ቁ = ∑ ೕߨ
ଷ

=ଵ ቀ𝐸(ݎ,൯ − 𝐸ሺݎሻቁଶ
 

Covariance with ߦ : 𝐶ݒሺߦ , ሻݎ = ∑ ߦ)ݒೕ𝐶ߨ , ,൯ଷݎ
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A2.2 Survey data 

 

The data structure for survey data is: 

 

ݏ = ଵ,ݏ} = ଶ,ݏߦ = ߦ + ߦ)௦ߩ − క|𝑋൯ߤ + ଷ,ݏߟ = ߦ + ߦ)௦ߩ − క|𝑋൯ߤ + ߟ + ߱ 
with probability with probability with probability ߨ௦ଵ = ௦ଶߨ௦ߨ = ሺͳ − ௦ሻሺͳߨ − ௦ଷߨ𝜔ሻߨ = ሺͳ − 𝜔ߨ௦ሻߨ } 

 

The data generating process for the latent variables is: 

( (߱ߟߦ = ܰ ൮[ߤక|𝑋ߤఎ|𝑋ߤ𝜔|𝑋] , [ 𝜎కଶ Ͳ 𝜔𝜎క𝜎𝜔Ͳߩ 𝜎ఔଶ Ͳߩ𝜔𝜎క𝜎𝜔 Ͳ 𝜎𝜔ଶ ]) 

 

where ߤఊ|𝑋  can be expressed as a linear function of X, for each ߛ = ,ߦ} ,ߥ  .{ߞ

 

Unconditional moments by data class 

 

Class 1: ݏଵ, = ߦ  
Expected value:  𝐸(ݎଵ,൯ = కߤ   
Variance: 𝑉ܽݎ)ݎଵ,൯ = 𝑉ܽݎሺߦሻ = 𝜎కଶ + 𝑉ܽߤ)ݎక|𝑋൯ 

Covariance with ߦ :  𝐶ߦ)ݒ , ଵ,൯ݏ = 𝑉ܽݎሺߦሻ = 𝜎కଶ + 𝑉ܽߤ)ݎక|𝑋൯ 

 

Class 2: ݏଶ, = ߦ + ߦ)௦ߩ − క|𝑋൯ߤ + ߟ  
Expected value:  𝐸(ݏଶ,൯ = 𝐸(ߦ + ߦ)௦ߩ − క|𝑋൯ߤ + = ൯ߟ కߤ + ఎߤ   
Variance: 𝑉ܽݏ)ݎଶ,൯ = 𝑉ܽߦ)ݎ + ߦ)௦ߩ − క|𝑋൯ߤ + = ൯ߟ 𝑉ܽߤ)ݎక|𝑋 + ሺͳ + ߦ)௦ሻߩ − క|𝑋൯ߤ +  ൯ߟ
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= 𝜎ఓ𝜉|𝑋ଶ + ሺͳ + ௦ሻଶ𝜎కଶߩ + 𝑉ܽݎሺߟሻ + ʹ𝐶ߤ)ݒక|𝑋,  ఎ|𝑋൯ߤ

Covariance with ߦ : 𝐶ߦ)ݒ , ଶ,൯ݏ = 𝐶ߦ)ݒ , ߦ + ߦ)௦ߩ − క|𝑋൯ߤ + = ൯ߟ 𝑉ܽݎሺߦሻ + ௦𝜎కଶߩ + 𝐶ߤ)ݒక|𝑋, = ఎ|𝑋൯ߤ 𝑉ܽߤ)ݎక|𝑋൯ + ሺͳ + ௦ሻ𝜎కଶߩ + 𝐶ߤ)ݒక|𝑋,  ఎ|𝑋൯ߤ

 

Class 3: ݏଷ, = ߦ + ߦ)௦ߩ − క|𝑋൯ߤ + ߟ + ߱  
Expected value:  𝐸(ݏଷ,൯ = 𝐸(ߦ + ߦ)௦ߩ − క|𝑋൯ߤ + ߟ + ߱൯ = కߤ + ఎߤ +  𝜔ߤ

Variance: 𝑉ܽݏ)ݎଷ,൯ = 𝑉ܽߦ)ݎ + ߦ)௦ߩ − క|𝑋൯ߤ + ߟ + ߱൯ = 𝑉ܽߤ)ݎక|𝑋 + ሺͳ + ߦ)௦ሻߩ − క|𝑋൯ߤ + ߟ + ߱൯ = 𝜎ఓ𝜉|𝑋ଶ + ሺͳ + ௦ሻଶ𝜎కଶߩ + 𝑉ܽݎሺߟሻ + 𝑉ܽݎሺ߱ሻ + ʹ𝐶ߤ)ݒక|𝑋, +ఎ|𝑋൯ߤ ʹ𝐶ߤ)ݒక|𝑋, 𝜔|𝑋൯ߤ + ʹሺͳ + 𝜔𝜎క𝜎𝜔ߩ௦ሻߩ + ʹ𝐶ߤ)ݒ𝜔|𝑋,  ఎ|𝑋൯ߤ

Covariance with ߦ : 𝐶ߦ)ݒ , ଷ,൯ݏ = 𝐶ߦ)ݒ , ߦ + ߦ)௦ߩ − క|𝑋൯ߤ + ߟ + ߱൯ = 𝑉ܽݎሺߦሻ + ௦𝜎కଶߩ + 𝐶ߤ)ݒక|𝑋, ఎ|𝑋൯ߤ + 𝐶ߤ)ݒక|𝑋, 𝜔|𝑋൯ߤ + = 𝜔𝜎క𝜎𝜔ߩ 𝑉ܽߤ)ݎక|𝑋൯ + ሺͳ + ௦ሻ𝜎కଶߩ + 𝐶ߤ)ݒక|𝑋, ఎ|𝑋൯ߤ + 𝐶ߤ)ݒక|𝑋, +𝜔|𝑋൯ߤ  𝜔𝜎క𝜎𝜔ߩ

 

Moments for survey data, overall: 

Expected value: 𝐸ሺݏሻ = ଵ,൯ݏ)௦భ𝐸ߨ + ଶ,൯ݏ)௦మ𝐸ߨ + ௦యߨ 𝐸(ݏଷ,൯ = కߤ௦భߨ + ௦మߨ కߤ) + ఎ൯ߤ + ௦యߨ కߤ) + ఎߤ + = 𝜔൯ߤ కߤ + ௦మߨ) + ఎߤ௦య൯ߨ + ௦యߨ  𝜔ߤ

Variance: 

𝑉ܽݎሺݏሻ = ∑ ௦ೕߨ
ଷ

=ଵ 𝑉ܽݏ)ݎ,൯ + 𝑉ܽݎ ቀ𝐸(ݏ,൯ቁ 

where: 
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𝑉ܽݎ ቀ𝐸(ݎ,൯ቁ = ∑ ௦ೕߨ
ଷ

=ଵ ቀ𝐸(ݏ,൯ − 𝐸ሺݏሻቁଶ
 

Covariance with ߦ  𝐶ݒሺߦ , ሻݏ = ∑ ߦ)ݒ௦ೕ𝐶ߨ , ,൯ଷݏ
  

 

A2.3 Conditional moments by data class 

 

Table A1. Mean and variance of ࢘𝒊 and ࢙𝒊, conditional on 𝑿, by class 

Data type 𝐸ሺ. |𝑋ሻ or ߤ.|𝑋 𝑉ܽݎሺ. |𝑋ሻ 𝐶ݒሺߦ , . |𝑋ሻ ݎଵ, ߤక|𝑋 𝜎కଶ 𝜎కଶ ݎଶ, ߤక|𝑋 + ఔ|𝑋 ሺͳߤ + ሻଶ𝜎కଶߩ + 𝜎ఔଶ ሺͳ + |𝑋ߤ ଷ,ݎ ሻ𝜎కଶߩ  𝜎ଶ Ͳ ݏଵ, ߤక|𝑋 𝜎కଶ 𝜎కଶ ݏଶ, ߤక|𝑋 + ఎ|𝑋 ሺͳߤ + ௦ሻଶ𝜎కଶߩ + 𝜎ఎଶ ሺͳ + క|𝑋ߤ ଷ,ݏ ௦ሻ𝜎కଶߩ + ఎ|𝑋ߤ + 𝜔|𝑋 ሺͳߤ + ௦ሻଶ𝜎కଶߩ + 𝜎ఎଶ + 𝜎𝜔ଶ+ ʹሺͳ +  𝜔𝜎క𝜎𝜔ߩ௦ሻߩ

ሺͳ + ௦ሻ𝜎కଶߩ +  𝜔𝜎క𝜎𝜔ߩ

 

Table A2. Covariance between ࢘𝒊 and ࢙𝒊, conditional on 𝑿, by class 𝐶ݒሺ. |𝑋ሻ  ݏଵ, ݏଶ, ݏଷ, ݎଵ, 𝜎కଶ ሺͳ + ௦ሻ𝜎కଶ ሺͳߩ + ௦ሻ𝜎కଶߩ + ଶ, ሺͳݎ 𝜔𝜎క𝜎𝜔ߩ + ሻ𝜎కଶ ሺͳߩ + ሻሺͳߩ + ௦ሻ𝜎కଶ ሺͳߩ + ሻሺͳߩ + ௦ሻ𝜎ఌଶߩ + ሺͳ +  ଷ, Ͳ Ͳ Ͳݎ 𝜔𝜎క𝜎𝜔ߩሻߩ

 

Overall covariance conditional on 𝑋 

𝐶ݒሺݎ , |𝑋ሻݏ = ∑ ∑ ௦ೖߨℎߨ
ଷ

=ଵ 𝐶ݎ)ݒℎ, , ,|𝑋൯ଷݏ
ℎ=ଵ  

= భߨ ௦భ𝜎కଶߨ] + ௦మߨ ሺͳ + ௦ሻ𝜎కଶߩ + ௦యߨ ቀሺͳ + ௦ሻ𝜎కଶߩ + +[𝜔𝜎క𝜎𝜔ቁߩ మߨ ௦భߨ] ሺͳ + ሻ𝜎కଶߩ + ௦మሺͳߨ + ሻሺͳߩ + +௦ሻ𝜎కଶߩ ௦యߨ ቀሺͳ + ሻሺͳߩ + ௦ሻ𝜎ఌଶߩ + ሺͳ +  [𝜔𝜎క𝜎𝜔ቁߩሻߩ
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= భ[(ͳߨ + ௦మߨ) + ௦యߨ ൯ߩ௦൯𝜎కଶ + ௦యߨ +[𝜔𝜎క𝜎𝜔ߩ మ[(ͳߨ + ௦మߨ) + ௦൯ሺͳߩ௦య൯ߨ + ሻ𝜎కଶߩ + ௦యሺͳߨ +  [𝜔𝜎క𝜎𝜔ߩሻߩ
 

Overall unconditional covariance: 𝐶ݒሺݎ , ሻݏ = 𝐶ݒሺݎ , |𝑋ሻݏ + 𝐶ߤ)ݒ|𝑋,  ௦|𝑋൯ߤ

where ߤ|𝑋 = 𝐸ሺݎ|𝑋ሻ = భߨ) + క|𝑋ߤమ൯ߨ + ఔ|𝑋ߤమߨ + ௦|𝑋ߤ |𝑋ߤయߨ = క|𝑋ߤ  + ௦మߨ) + ఎ|𝑋ߤ௦య൯ߨ +  .𝜔|𝑋ߤ௦యߨ
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A3 Predictors of latent true earnings 

 

Following MRW, we differentiate between within-class predictors and a system-wide 

predictor. For the second case, we consider the simplest scenario of prediction under 

linearity. 

 

System-wide predictor under linearity 

Consider two measures ݎ and ݏ, which are manifest measures of latent true earnings, ߦ , but 

are measured with error. Without loss of generality, assume that ߤ = |𝑋ߤ = Ͳ. A predictor 

for the latent variable, ̂ߦ , can be derived as a linear combination as follows: ̂ߦ = ݎଵߠ +   (A1)ݏଶߠ

The system-wide predictor will be characterized given a set of weights ߠଵ and ߠଶ that 

minimize the MSE between the predictor and the true latent variable ߦ . minఏభ,ఏమ 𝐸ܵܯ =  𝐸 ቀ[ߦ − ]ଶቁߦ̂ = 𝐸ሺ[ߦ − ሺߠଵݎ +  ሻ]ଶሻ (A2)ݏଶߠ

The first-order conditions are: ߲ܵܯ𝐸߲ߠଵ = 𝐸ሺ[ߦ − ݎଵߠ − = ሻݎ[ݏଶߠ 𝐸ሺߦݎ − ଶݎଵߠ − = ሻݏݎଶߠ 𝐶ݒሺߦ , ሻݎ − ሻݎሺݎଵ𝑉ܽߠ − ݎሺݒଶ𝐶ߠ , ሻݏ = Ͳ 
 

(A3) 

ଶߠ𝐸߲ܵܯ߲ = 𝐸ሺ[ ߦ − ݎଵߠ − = ሻݏ[ݏଶߠ 𝐸ሺߦݏ − ݏݎଵߠ − = ଶሻݏଶߠ 𝐶ݒሺߦ , ሻݏ − ݎሺݒଵ𝐶ߠ , ሻݏ − ଶሻݏሺݎଶ𝑉ܽߠ = Ͳ 

(A4) 

Solving the system of equations given by (A3) and (A4) we have: [𝐶ݒሺߦ , ߦሺݒሻ𝐶ݎ , [ሻݏ = [ 𝑉ܽݎሺݎሻ 𝐶ݒሺݎ , ݎሺݒሻ𝐶ݏ , ሻݏ 𝑉ܽݎሺݏሻ ]  [ଶߠଵߠ]

[ଶߠଵߠ] = [ 𝑉ܽݎሺݎሻ 𝐶ݒሺݎ , ݎሺݒሻ𝐶ݏ , ሻݏ 𝑉ܽݎሺݏሻ ]−ଵ [𝐶ݒሺߦ , ߦሺݒሻ𝐶ݎ ,  ሻ] (A5)ݏ

 

Given solutions for ߠଵ and ߠଶ, we can substitute them into (A1), which provides the system-

wide predictor for ̂ߦ ߦ̂ . = ଵߠ] [ଶߠ  (A6) [ݏݎ]
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ߦ̂ = [𝐶ݒሺߦ , ሻݎ 𝐶ݒሺߦ , [ሻݏ [ 𝑉ܽݎሺݎሻ 𝐶ݒሺݎ , ݎሺݒሻ𝐶ݏ , ሻݏ 𝑉ܽݎሺݏሻ ]−ଵ  [ݏݎ]

 

This is the same predictor as given by MRW’s equation (11), page 96. We label this predictor 

7 in the main text. 

 

Within Class Predictors 

For the estimates that rely on within-class predictors (predictors 1–6 in the main text), MRW 

discuss two estimators: linear estimators that minimize the within-class MSE ̂ߦ , and the 

estimator that minimizes the MSE conditional on the estimator being unbiased ̂ߦ
.  

The general form for the within class predictor ̂ߦ  follows the same structure as 

equation (A2), and so is not discussed further here. However, the unbiased estimator depends 

on the specific class. 

The solutions for classes 1, 2, 3, 4, and 7 are straightforward to derive, as they assume 

that either ݎ or ݏ are error-free measures of ߦ . Thus, we concentrate on the predictors 

corresponding to classes 5, 6, 8 and 9. 

Classes 8 and 9 

These two classes assume that only ݏ contains information that can be used to 

construct the predictor for ߦ. We refer here to the predictor for class 9, as the more general 

case. Without loss of generality, we assume that the unconditional and conditional (on 𝑋) 

means of all variables in the model are equal to zero. 

Under these assumptions, the predictor ̂ߦ for class 9 is a linear transformation of ݏ 
given by: ̂ߦଽ =  ଷ, (A7)ݏߠ

where ߠ is selected so it minimizes the within-class MSE, conditional on the predictor being 

unbiased estimate for ߦ. We start with the second condition: 𝐸(ߦ − ൯ߦ|ଷ,ݏߠ = Ͳ = 𝐸ሺߦ − ߦሺߠ + ߦ௦ߩ + ߟ + ߱ሻ|ߦሻ = 𝐸ሺߦ|ߦሻ − ሺͳߠ + ሻߦ|ߦ௦ሻ𝐸ሺ − ሻߦ|ߟ𝐸ሺߠ − = ሻߦ|𝐸ሺ߱ߠ ߦ − ሺͳߠ + ߦ௦ሻ − Ͳ − 𝜔ߩߠ 𝜎𝜔𝜎క ⇒ ߦ ͳ − ሺͳߠ + ௦ሻ − 𝜔ߩߠ 𝜎𝜔𝜎క = Ͳ 
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⇒ ߠ = ͳͳ + ௦ + 𝜔ߩ 𝜎𝜔𝜎క  
(A8) 

Thus, the ߦ unbiased predictor for class 9 is ̂ߦଽ = ଷ,ݏߠ = ଷ,ͳݏ + ௦ + 𝜔ߩ 𝜎𝜔𝜎క  
(A9) 

and the unbiased predictor for class 8 is ̂ߦ଼ = ଶ,ݏߠ = ଶ,ͳݏ +  ௦ (A10)

Equations (A9) and (A10) imply that the unbiased predictors for classes 8 and 9 are defined 

uniquely by imposing the unbiasedness assumption. 

 

Classes 5 and 6 

For classes 5 and 6, there are two measures that can be used as proxies for ߦ, each with its 

own sources of errors. We refer here to the solution for class 6, as the more general case. 

Consider first the unbiased predictors that could be derived using data from ݎଶ or ݏଷ, which 

follow the same structure as equations A3 and A4: ̂ߦଶ = ଶ,ͳݎ +  = ௦ଷߦ̂ ଶ, (A11)ݎଶߠ = ଷ,ͳݏ + ௦ + 𝜔ߩ 𝜎𝜔𝜎క =  ଷ, (A12)ݏ௦ଷߠ

An unbiased ߦ predictor for class 6 that combines the information from both sources can be 

obtained using a weighted average between both predictors: ̂ߦ = ߦ̂ߜ + ሺͳ − ߦ̂  ௦ߦሻ̂ߜ = ଶ,ݎଶߠߜ  + ሺͳ −  ଷ, (A13)ݏ௦ଷߠሻߜ

To determine the optimal weight, we need to find the value ߜ that minimizes the MSE, which 

is given by: minఋ 𝐸 ቀ[ߦ − ଶ,ݎଶߠߜ − ሺͳ −  .ଷ,]ଶቁݏ௦ଷߠሻߜ

The first order condition is: ߲ܵܯ𝐸߲ߜ = 𝐸 ቀ(ߦ − ଶ,ݎଶߠߜ − ሺͳ − ଶ,ݎଶߠ)ଷ,൯ݏ௦ଷߠሻߜ − ଷ,൯ቁݏ௦ଷߠ = Ͳ 
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ߦ)ݒଶ𝐶ߠ , ଶ,൯ݎ − ߦ)ݒ௦ଷ𝐶ߠ , ଷ,൯ݏ − ଶଶߠߜ 𝑉ܽݎ)ݎଶ,൯+ ଶ,ݎ)ݒ௦ଷ𝐶ߠଶߠߜ , ଷ,൯ݏ − ሺͳ − ଶ,ݎ)ݒ௦ଷ𝐶ߠଶߠሻߜ , +ଷ,൯ݏ ሺͳ − ௦ଷଶߠሻߜ 𝑉ܽݏ)ݎଷ,൯ = Ͳ 

(A14) 

Finally, solving for ߜ, we have: ߜ = ߦ)ݒଶ𝐶ߠ , ଶ,൯ݎ − ߦ)ݒ௦ଷ𝐶ߠ , ଷ,൯ݏ − ଶ,ݎ)ݒ௦ଷ𝐶ߠଶߠ , ଷ,൯ݏ + ௦ଷଶߠ 𝑉ܽݏ)ݎଷ,൯ߠଶଶ 𝑉ܽݎ)ݎଶ,൯ − ଶ,ݎ)ݒ௦ଷ𝐶ߠଶߠʹ , ଷ,൯ݏ + ௦ଷଶߠ 𝑉ܽݏ)ݎଷ,൯  (A15) 

 

Substituting (A15) into (A12) provides the unbiased predictor for class 6. 

To summarize, Table A3 presents the expressions for the within-class predictions for 

all 9 classes assuming that our general model (model 8) describes the data generating process. 

The expressions for the other models are simplified versions of the expressions in the table. 
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Table A3. Expressions for the within-class predictors as functions of the parameters (general FMM) 

 Class ሺ݆ሻ ߦ̂ ݏ ݎ ߦ̂   ͳ ݎଵ, ݏଵ, ͳʹ ሺݎ + ʹሻ ͳݏ ሺݎ + క|𝑋ߤ ଶ,ݏ ଶ,ݎ ͷ ݏ ݏ ଵ,ݏ ଶ,ݎ Ͷ ݎ ݎ ଷ,ݏ ଵ,ݎ ͵ ݎ ݎ ଶ,ݏ ଵ,ݎ ʹ ሻݏ + 𝛴క,ହ′  𝛴−ଵ ݎ] − ݏమ|𝑋ߤ − క|𝑋ߤ  [௦మ|𝑋ߤ + [ ଶ(ͳߠమ,௦మߜ − ′[௦ଶߠమ,௦మ൯ߜ ݎ] − ݏమ|𝑋ߤ − క|𝑋ߤ ଷ,ݏ ଶ,ݎ ௦మ|𝑋]  ߤ + 𝛴క,′  𝛴−ଵ ݎ] − ݏమ|𝑋ߤ − క|𝑋ߤ  [௦య|𝑋ߤ + [ ଶ(ͳߠమ,௦యߜ − ′[௦ଷߠమ,௦య൯ߜ ݎ] − ݏమ|𝑋ߤ − క|𝑋ߤ ଶ,ݏ ଷ,ݎ ͺ ݏ ݏ ଵ,ݏ ଷ,ݎ ௦య|𝑋]  ߤ + 𝐶𝑜௩(క ,௦మ,|𝑋൯𝑎(௦మ,|𝑋൯ ݏ) − క|𝑋ߤ  ௦ଶ|𝑋൯ߤ + ଵఏೞమ ݏ) − క|𝑋ߤ ଷ,ݏ ଷ,ݎ ௦ଶ|𝑋൯  ͻߤ + 𝐶𝑜௩(క ,௦య,|𝑋൯𝑎(௦య,|𝑋൯ ݏ) − క|𝑋ߤ  ௦ଷ|𝑋൯ߤ + ଵఏೞయ ݏ) −   ௦ଷ|𝑋൯ߤ
 

Notes. 𝛴క,′  represents the covariances between ߦ  and ሺݎ ,  ሻ, conditional on characteristics 𝑋 and class ݆. 𝛴−ଵݏ

represents the variance covariance matrix between ݎ and ݏ, conditional on characteristics 𝑋 and class ݆. 

Also, ߜೕ,௦ೖ = ఏೝೕ𝐶𝑜௩(క,݆,൯−ఏೞೖ𝐶𝑜௩(క,௦ೖ,൯−ఏೝೕఏೞೖ𝐶𝑜௩(ೕ,,௦ೖ,൯+ఏೞೖమ 𝑎(௦ೖ,൯ఏೝೕమ 𝑎(ೕ,൯−ଶఏೝೕఏೞೖ𝐶𝑜௩(ೕ,,௦ೖ,൯+ఏೞೖమ 𝑎(௦ೖ,൯ మߠ ;  = ଵଵ+𝜌ೝ; ߠ௦మ = ଵଵ+𝜌ೞ; and ߠ௦య = ଵͳ+߱ߩ+ݏߩ𝜎𝜎ߦ . 


