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ABSTRACT

Finite Mixture Models for Linked Survey
and Administrative Data:
Estimation and Post-estimation

Researchers use finite mixture models to analyze linked survey and administrative data on
labour earnings (or similar variables), taking account of various types of measurement error
in each data source. Different combinations of error-ridden and/or error-free observations
characterize latent classes. Latent class probabilities depend on the probabilities of the
different types of error. We introduce a set of Stata commands to fit a general class of finite
mixture models to fit to linked survey-administrative data We also provide post-estimation
commands for assessment of reliability, marginal effects, data simulation, and prediction of
hybrid earnings variables that combine information from both data sources.
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1 Introduction

Linked datasets are datasets in which reports by respondents to a household survey on a
variable such as earnings or another income component are linked to reports on the same
variable in an administrative dataset (e.g. income tax or social security data) for the same
respondents. Researchers have long used linked datasets to examine measurement errors in
the variables of interest — to investigate whether they impart bias in the observed measures,
how much spurious variation they account for, and whether errors are correlated with the
‘true’ measure (a negative correlation means that low-earners over-report and high-earners
under-report). In the first generation of studies, analysts assumed that the linked admistrative
data provided error-free measures; all measurement errors arose in the survey reports. A
small and more recent second generation of studies has allowed for errors in the
administrative data as well.

Finite mixture models (FMMs) are useful for analyzing linked datasets because they
allow you to succinctly describe both the distribution of the ‘true’ (error-free) substantive
variable of interest as well as the distributions of the various types of measurement error.
Different combinations of error-ridden and/or error-free survey and administrative data
observations characterize latent classes. Latent class probabilities depend on the probabilities
of the different types of error. However, the FMMs needed for this analysis cannot be fitted
using readily-available software such as Stata’s £mm suite of commands. In this article, we
provide and illustrate Stata commands for fitting a general class of FMMs to linked data. We
also provide post-estimation commands for assessment of reliability, marginal effects, data
simulation, and prediction of hybrid earnings variables that combine information from both
data sources.

The FMMs we consider are our generalizations of the second generation models
developed by Kapteyn and Ypma (2007, KY hereafter). KY’s model was the first to
incorporate administrative data error in addition to survey measurement error. However, the
characterization of administrative data error was restricted to linkage ‘mismatch’, i.e., the
situation in which an individual’s survey response is incorrectly linked to the response for
some other person in the administrative data. KY’s findings, based on linked earnings data
for Swedish individuals aged 50+, showed that even a small amount of mismatch error was
consequential (their linked administrative data were less reliable than their survey data), and
they found no evidence that low-earners overreported and high-earners underreported their

earnings (a striking contrast with the findings of first generation studies). However, KY did



not consider measurement error per se in the administrative data, i.e., error arising in its
compilation (typically involving reporting by employers to tax or social security authorities).!

We extend KY’s model in recent work to more general FMMs that include
administrative measurement error in addition to linkage mismatch and survey measurement
error (Jenkins and Rios-Avila, 20215). Our second innovation is to allow the parameters
describing the distributions in our FMMs to vary with individual characteristics. This
provides a succinct way to address questions such as: does survey earnings measurement
error differ between older and younger workers? How does administrative data error differ
between private- and public-sector employees? Our third contribution is to extend the
application of methods for earnings prediction proposed by Meijer, Rohwedder, and
Wansbeek (2012, MRW hereafter) to our general models. MRW derived formulae for a
number of hybrid earnings predictors that combined information from both survey and
administrative data, and showed that they were more reliable than either the survey or the
administrative data measure. However, MRW’s illustrations focused entirely on KY’s model
and their estimates based on Swedish data.?

In Section 2, we describe our FMMs and explain how to fit them using maximum
likelihood. We present our new commands for estimation and post-estimation analysis in
Section 3. In section 4, we illustrate the commands drawing on KY’s and MRW’s empirical
analysis. For a more extensive illustration of our software, see Jenkins and Rios-Avila
(2021b). Section 5 contains conclusions. The Appendix contains additional results that we

draw on in the main text.

2 FMM s for linked survey and administrative data

We set out our FMMs in this section, and assume that the variable of interest is the logarithm
of the labour earnings of employees (‘earnings’). For each of a large number of individuals in
a linked dataset, we have an observation pair referring to the worker’s earnings derived from

the survey and from the administrative data.

! There is a small number of second generation studies that allow for administrative data error in earnings: see
Abowd and Stinson (2013, using data for the USA), Hyslop and Townsend (2020, New Zealand), and Bollinger
et al. (2018, USA) who also allow for linkage mismatch. Jenkins and Rios-Avila (2020) fit KY models to linked
data for the UK. Jenkins and Rios-Avila (20215) fit the more general models considered in this article and
review first and generation studies in more detail.

2 Our replication of MRWs analysis using UK linked data (Jenkins and Rios-Avila, 2021a) was also restricted to
KY models.



We assume, following KY, that there is a latent variable & that represents the true
variable of interest (log earnings) for each individual i = 1, ..., N. This variable is not
observed directly but there are two measures of it, each potentially error-ridden: one from

administrative data, r;, and one from survey data, si.

2.1 Administrative data: three types of observation

We assume the administrative data are a mixture of three types of observation. First, we
distinguish between observations for whom the record linkage between administrative and
survey data is correct, which occurs with probability 7, and observations who are
mismatched, with probability 1-7-. The administrative data measure for mismatched
observations is {;, the earnings of some other person in the administrative data. Second,
among the correctly-matched observations, we suppose that the administrative data earnings
measure is error-free with probability 7., or contains measurement error v with probability
1-7. (KY assumed 7, = 1.) Measurement error may be correlated with true earnings, with
the correlation denoted by pr. If pr < 0, we have mean-reversion: high-earners under-report
and low-earners over-report; if pr > 0, the reverse occurs. The three types of observation,

labelled R1, R2, and R3, are summarized in eq. (1).

$i with probability 7, (R1)
rp=14& + pr(fi — llg) +v;  with probability (1 — ;) (R2) (1)
¢ with probability 1 — 7, (R3)

2.2 Survey data: three types of observation

We assume the survey data are a mixture of three types of observation (following KY). Type
S1 respondents are those who report their true earnings: s: equals true latent earnings & with
probability 7. The survey earnings of type S2 respondents differ from true earnings by a
measurement error component representing noise (77i), plus a mean-reversion component
allowing for a correlation (ps) between true earnings and error. A third type, S3, contains
observations with error-ridden survey earnings (as for type S2), except that there is additional

‘contamination’ (@;). The probability of contamination is 7,. Type S2 occurs with probability



(1—75)(1—70); type S3 occurs with probability (1—7) 7,. The three types of observation are

summarized in eq. (2).

$i with probability 7s (S1)
s; =18 T Ps (fi - #E) +7; with probability (1 —m5)(1 —m,,) (52) )
&+ Ps(fi — llg) +n; 4 w; With probability 1 -nym, (S3)

In sum, observations in the linked dataset are a mixture of nine types (latent classes j
=1,...,9) depending on the combination of administrative and survey observation types. The
latent class probabilities are 7, j = 1,...,9. For example, group 1 contains observations with
the combination (R1, S1) with probability 71 = m-7u7s, group 2 contains observations with the
combination (R1, $2) with probability m = 7 m(1—75)(1-7,), etc. The FMM specification is
completed by assumptions about the latent class earnings densities, fi(ri, si) foreach j=1, ...,
0.

We assume that true earnings (&), mismatched earnings (i), and errors (vi, 7i, @i) are
each normally distributed with the exception that true earnings and reference period errors
(i) are bivariate normal. We assume normality (as other researchers do) to fit models by
maximum likelihood (see below) and because it facilitates post-estimation derivations.

The distributions are identically distributed and mutually independent (assumptions

we relax shortly). Thus, the distributions of the factors may be written as:

$i He of Pw00w
(wi ) =N (.“w)' (pwafaw ol > ’ 3)
& ~N(ug, 0£).n;~N(uy, 7). and v; ~N (i, 02),
where ‘4 and ‘o’ denote mean and standard deviation (SD), respectively, and p, is the
correlation between true earnings and contamination. Jenkins and Rios-Avila (2021b) argue
there are grounds for expecting p» < 0. (KY assumed p, = 0.) We do not restrict error means
to equal zero because errors may introduce systematic bias.
Table 1 summarises the nine latent classes, their probabilities and densities.

We allow distributions to vary with observed characteristics by writing

transformations of model parameters as linear indices of characteristics, i.e.,

G(y) = ay + py Xi. 4)



For each model parameter with generic label yi, oy is a constant, X is a vector of
observed characteristics for individual i. Transformation function G(.) is the identity function
for means (u), the logarithmic function for SDs (o), the logistic function for probabilities (7),
and Fisher’s Z transformation for correlations (p).? See the next section for further details.
Previous research has allowed the mean of true earnings (z4) to vary characteristics, but not

other parameters.
Simpler versions of our general model can be fitted using our estimation commands,

as we explain below, including several of KY’s models.

3 Reversion to the mean in the models with a heterogeneous mean earnings function refers to reversion to the
mean among individuals with the same observed characteristics.



Table 1 Latent class probabilities and distributions

0

(1 + ps)?0f + of + 05 + 2p,0¢0,

Label,j Combination Latent class probability, 7; Latent class distribution densities, fi(7i, s
2
1 R1,51 Ty = T,T,TT N (Hf)’( 1 g2
3
of (1 + pg)a?
3 s/Y¢
2 R1,52 = 1- 1-— N ( )
mp =y (1 =) (1= 70) < Be + gy ((1 +p)of (14 pg)af + "r%)
o? (1+ ps)oZ + py,0z0,
3 s f w0&0w
3 R1.83 = 1,y (1 — N ( )
T3 = Mty (1= 75T < e + ”n T lo ((1 +p5)0¢ + puoga, (14 ps)?cf +ap + 0l + profaw)
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2.3 Estimation

We fit the FMM by maximum likelihood. The general shape of the log-likelihood function

for our finite mixture is:

N 9
logL(6,11) = Z logz m; f; (11, 5:16) , (5)
i=1 j=1

where we now write each latent class density as conditional on the set of parameters, &, that
describe the bivariate distributions, and Il = { 7z, 7, 7, 70} are the error probabilities that
characterize the class probabilities 7.

The FMM is identified by the assumptions about the relationships between the two
observed measures and true earnings and the non-normal error structure arising from the
mixture of distributions: see Kapteyn and Ypma (2007, 532). See also Yakowitz and Spragins
(1968) who prove that finite mixtures are identifiable if the mixture is of multivariate
Gaussian distributions, which is the case here.

The definition of the first latent class (group 1) also plays an important role.
Identification uses the assumption that the members of class 1 are ‘completely labeled’ (as
KY term it). These individuals correctly report their earnings in the survey data, are correctly
matched to their administrative data records, and there is no error in their administrative
earnings. Hence, both observed earnings measures equal true earnings, i.e., ri=si= & if i €
class 1. This assumption has two consequences for the log-likelihood function (Redner and
Walker 1984).

First, since ri = si, the class 1 distribution degenerates to a univariate normal

distribution with mean pg and variance 0'52. Second, because class membership is known for

observations in this group, the log-likelihood function becomes:

N

logt@ M = > mlog(Ai(&lO) + Y log| ) mfi(ri,sl0) ©)

ie€class1 i ¢class1 j=2

In principle, ug and 052 are fully identified using the sample of class 1 observations. In

practice, the sample of completely labeled observations may be too small for reliable



identification of these moments. KY’s strategy was to broaden the definition of equality to
include observations for which survey and administrative earnings were sufficiently ‘close’.

This is an empirical judgement call.*

3 The ky suite of commands for estimation and post-estimation

This section describes the commands for fitting our general FMM and special cases of it, and
commands for post-estimation analysis and prediction. We assume the linked dataset is in
wide format, i1.e., with one row per individual. There are variables corresponding to ri and si

and also (optionally) variables used to define explanatory variables in models with covariates.

3.1 Model estimation: ky fit

Command ky_£it fits the general FMM and special cases of it. The syntax for the command

is as follows:

ky fit r var s_var [cl_var] [if] [in] [fw pw aw iw] [, model (#)

options]

where r_var and s_var are required variables. They correspond to the administrative log
earnings measure 7i (r_var) and the survey log earnings measure si (s_var).

Optionally, you can refer to a binary variable c1_var that identifies observations that
belong to the completely labeled class. If c1_var is not declared, ky_£it creates a binary
indicator variable named 11 equal to one for observations for which abs (r_var-
s_var)<= #d. The default value of #d is O, but other values can be declared using
delta (#d) .

model (#) specifies which version of the FMM is fitted. Table 2 lists the model
variants available, showing for each model the parameter restrictions imposed relative to the
most general model, and the combinations of types of observation present in the
administrative and survey data. The default specification is model 1, which assumes error-

free administrative data and mean-reverting error in the survey data (without contamination).

4 In their application, KY defined an observation as completely labeled if earnings in the two data sources
differed by less than 1000 SEK (14.8% of their sample). Jenkins and Rios-Avila (2020), using UK data, assess
the sensitivity of parameter estimates to different assumptions, varying the fraction of completely labeled
observations from 0.25% to 16.93%.



The most general model, described in section 2, corresponds to model 8. KY’s ‘Full” model is
model 4. Jenkins and Rios-Avila (20215b) focus on models 4, 5, 7 and 8; model 5 is their best-

fitting model.

Table 2. FMM variants and parameter restrictions

Model Parameter restrictions Types of observation
# Administrative data  Survey data
1 Uy = 0,0, =0;m, =0; R1 S1, S2

w =00, =0;m, =1;
u5=0;0'<=0;nr=1;

pPr="0; py =0
2 U, =0;0,=0;m, =1; R1 S1, 82, 83
e =00, =0;m. = 1;
pr=10; py, =0
3 U, =0;0,=0;m, =1;p,.=0; R1,R2 S1, 52
Ko = 0,04 = 0;my = 0;p, =0
4 u, =0;0,=0;m, =1;p, =0; R1, R3 S1, §2, 53
Pw =0
5 Pw =0 R1,R2,R3 S1, 82, 83
6 Uy =0,0,=0;,m,=0;p,=0 R1,R2,R3 S1, 852
7 U, =0;0,=0;m, =1;p, =0 R1,R3 S1, 82, 83
8 No restrictions R1,R2, R3 S1, 2, S3

Optionally, you can specify the parameters of any of the models listed in Table 2 as
functions of covariates, as described by eq. (4). Table 3 provides a walkthrough of the
estimated parameters, the parameter-specific options in ky_£it you use to declare the
covariates, and the internal transformation used for maximization. If a model-specific
parameter is constrained (as described by Table 2), a declaration of covariates for that
parameter is ignored. Because parameters (apart from means) are fitted in a transformed
metric, users wishing to see estimates in their ‘natural’ metrics need to back-transform them.

You can do this using margins: see Section 3.3.

10



Table 3. Options to allow parameters to be functions of covariates

Parameter | ky £it option Transformation
Ue mu_e (varlist) Identity
Of ln sig e(varlist) O = exp(ln_sig e)
Uy mu_w(varlist) Identity
Oy ln_sig w(varlist) 0, = exp(ln_sig w)
iy mu_n(varlist) Identity
o ln _sig n(varlist) 0y = exp(ln_sig_n)
U mu_v(varlist) Identity
oy ln_sig v(varlist) 0, = exp(ln_sig n)
He mu_t(varlist) Identity
o7 ln sig t(varlist) O; = exp(ln_sig_n)
Or arho_r(varlist) pr = tanh(arho_r)
Ps arho_s(varlist) ps = tanh(arho_s)
Po arho _w(varlist) P, = tanh(arho_w)
T, lpi_ r(varlist) T, = logistic(lpi_r)
v lpi_s(varlist) Ty = logistic(lpi_s)
Ty, lpi w(varlist) T, = logistic(lpi_w)
T, lpi_v(varlist) T, = logistic(lpi_v)

Our code fits models in sequential fashion using m1: we use the parameter estimates of
simpler (more restricted) models as starting values for more flexible models. Additional
restrictions on model specifications can be applied using constraint (). To use other initial
values, m1 options search() and repeat () are available. You can also provide specific
initial values for model parameters using option from() .

We recommend that users experiment with multiple sets of initial values in order to
check that the more complex models converge to a global maximum rather than some local
maximum. This is a well-known issue for FMM models and, in our own work (Jenkins and
Rios-Avila 2021b), has arisen when fitting models 4-8 with many covariates. Our sequential
fitting approach reduces the risk of convergence to local maxima but does not remove it
altogether.

ky fit also allows the use of maximization options technique (), trace, and
difficult.

Fweights, pweights, aweights, and iweights are allowed.

ky_£it reports standard errors derived from asymptotic theory by default but,

optionally, you may use robust and cluster (cluster_var).

11



3.2 Post-estimation tools: ky_estat

ky_estat is a post-estimation command that allows researchers to obtain summary statistics
for a fitted model. It is written to be integrated with Stata’s built-in post-estimation command

estat, and has the following syntax:

estat [pr_t pr_i pr_sr pr_all reliability xirel, sim reps(int 50)]

Option pr_t reports error probabilities 7, 7, 7y, and 7zw;
Option pr_j reports latent class probabilities 71 through m;
Option pr_sr reports the probabilities of each observation type S1-$3 and R1-R3.

Option pr_all reports all probabilities.

For models without covariates; estat reports error probabilities in their original
metric (rather than the metric used for estimation). If you specify error probabilities as
functions of covariates, estat reports average predicted probabilities.

If the error probabilities are modeled without covariates, option reliability
produces a full report of all unconditional probabilities. It also reports two reliability
summary statistics for each of the survey and administrative data, based on the analytically
predicted variances of the observed earnings data (7i, s:), and their covariances with (model-

specific) estimated true latent earnings (&). The two reliability statistics are:

RT — Cov(§,my) _ Cov(§;,s;)
1 Var(rp) ' 1 Var(s;)

r_ Cov(§ir)? | s — Cov(§;,5¢)*
2 var(E)var(@y) ' 2 T var(E)var(sy)

R1 is analogous to the reliability statistic often reported for the classical measurement error
model with mean-reversion, and is equal to the slope coefficient from a (hypothetical)
regression of true earnings on the observed earnings measure. (It may be greater than one.)
R>, proposed by MRW, is the squared correlation between true earnings and an observed
earnings measure. Analytical expressions for unconditional variance and covariances based

on unrestricted model 8 are presented in the Appendix.

12



If you model error probabilities as functions of covariates, option reliability
produces simulation-based reliability estimates. You can specify the number of replications
using the option reps (#), with the default being 50 replications. For reproducibility, set the
seed using seed (#) .

You can also request simulation-based reliability statistics using option sim even if
error probabilities have not been declared as functions of covariates.

The final post-estimation option is xirel. This uses simulated data to estimate the
reliability statistics, mean squared error (MSE), bias, and variance of bias of seven latent
earnings predictors, as proposed by MRW (see the next section). This option also produces
corresponding statistics for the observed administrative and survey measures. You can use

reps (#) and seed (#) to set the number of replications and seed.

3.3 Post-estimation predictions and marginal effects: xy p

ky_p is a post-estimation program that allows you to obtain predictions for all relevant

parameters of FMMs, and is integrated with Stata’s post-estimation commands predict and

margins. Table 4 lists the options available. The analytical formulae for the constructed

moments correspond to the ones listed in Table 1.

13



Table 4. ky_p options compatible with predict and margins

Option Description

Structural parameters

mean &, mean n, mean w, Conditional means of latent variables &, 7, w, and ¢,

mean_t respectively

sig e, sig n, sig w, sig t  (Conditional SDs of latent variables & 7, @, and ¢,
respectively

Pi_s, pi_r, pi_w, piv Error probabilities

rho_s, rho_r Mean-reversion parameters for survey data (ps) and
administrative data (or)

rho_w Conditional orrelation between latent true earnings (&)

and contamination (@)
Constructed moments

mean_rl, mean r2, mean_r3 Mean of administrative earnings: R1, R2, R3
respectively

sig_rl, sig_rl, sig rl SD of administrative earnings: R1, R2, R3 respectively

pi_rl, pi_r2, pi_r3 Probability of belonging to type R1, R2, R3
respectively

mean_sl, mean_s2, mean_s3 Mean of survey earnings: S1, S2, S3 respectively

sig_sl, sig_s2, sig_s3 SD of survey earnings: S1, $2, S3 respectively

pi_sl, pi_s2, pi_s3 Probability of belonging to type S1, S2, S3
respectively

pj_1, ..., P3_9 | Probability of belonging to latent class j= 1, ..., 9

Notes. When models 3, 4, and 6 are estimated, mean_r2, sig_r2, and pi_r2, produce estimates for R3,
because of type R2 observations are absent.

Table 5 lists the options that are compatible with predict alone (because they are
functions of the variables ri and si), providing a description and definition. The options include
predictions of posterior class probabilities and Bayesian classifications based on the posterior
probabilities.

The posterior or conditional probability of observation i belonging to a given class,
say class 2, is defined as the product of the unconditional probability of belonging to class 2,
times the ratio of the likelihood of observation i belonging to class 2, divided by the sum of
the likelihoods of observation i belonging to all classes (2 through 9). You can then assign
observations to a latent class. Given the posterior probabilities, the Bayesian classifier assigns
each observation to the class for which the posterior probability is greatest. For all variants of
our FMMs, the conditional probability of belonging to class 1 is equal to 1 if the observation

belongs to the completely labeled group and O otherwise.

14



Table 5. ky p options compatible with predict only

Option Description Definition
pip_rl, pip r2, | Posterior probability of _ fr1(1;16)
pip_r3 belonging to R1, R2, or R3 gy (r) = TR; * Y3 fr, (1116)
pip_sl, pip_s2, | Posterior probability of _ fr1(1116)
pip_s3 belonging to R1, R2, or R3 Tis; (r) = Ts; * Y3 _ fr 1:16)
pip_ 1, pip_2, Posterior probability of (1, 5;)
-+ PR3 belonging to class j = 1,...,9 fi(ri,5:10)
DY AGIN))
bclass_r, Bayesian classification of bcX; = jif Tx; (x;) > my, (x;)
belass_s observation i to type R1, R2,0r | yh & X € {R,S} & x €
R3, and to type S1, S2, or S3, {r,s}
respectively
bclass Bayesian classification of bc; = jifmi(ry,s;) > mp (13, 5;)
observation i to class j=1,...,9 Vh # j

Finally, you can use predict to obtain seven different predictors of each individual’s
latent true earnings (&) using option star. The methods, proposed by MRW and extended by
us to our general FMM, combine information from both administrative and survey data. The

syntax of the option is as follows:

predict prefix, star [replace surv_only]

The new variables are named using prefix and consecutive integers from 1 to 7 and
are created as data type double. Option replace enables you to replace existing variable
values; surv_only requests the same predictors for the situation in which you have access to
survey data only (as well as model estimates).

The descriptions of the predictors (‘hybrid’ earnings variables) are provided in Table

6, with the derivation of the formulae presented in the Appendix. Predictors 1 to 6 uses two

within-class predictions for &. The first set ng] , used for predictors 1, 3, and 5, are such that
ain2
they minimize the Mean Squared Error (MSE), E ((Ei - Ei] ) |&, 1 €] ) The second set of

predictors, fin , used for cases 2, 5, and 6, are those that minimize the MSE conditional on
E(fi - écin lie] ) = 0. Predictors 1 and 2 provide weighted predictors using the

unconditional within-class probabilities 7;. Predictors 3 and 4 provide weighted predictors

using conditional or posterior within-class probabilities r;(;, ;). Finally, predictors 5 and 6

15



use the two-step Bayesian classification. The seventh predictor (;) is the system-wide

predictor that minimizes MSE under the assumption of linearity and imposing the condition

of unbiasedness.
Table 6. Seven predictors of latent true earnings
Variable Name Predictor description Definition
[prefix]1 Weighted unconditional ) °
$11 = Z m; §]
j=1
[prefix]2 Weighted unconditional and unbiased X K .
$2i = Z TTj fi J
j=1
[prefix]3 Weighted conditional X o »
$31 = Z (i, 50) &
j=1
[prefix]4 Weighted conditional and unbiased K4

541 = Zﬂj(ri»si) élU]

[prefix]5 Two-step

J=1
9
b= ) (bei =
=1
9

[prefix]6 Two-step unbiased . Ui
foi= ) (bei = NE
j=1
[prefix]7 System-wide, linear é7i = [ +Zgy Z;l[y — fy|x ],
y = [rirsi]

A N4 AlT 7
Note: fi’ is the within-class predictor that minimizes E ((fi — EL-J ) |éi,i €] ) fiu /is the within-class predictor

that minimizes MSE under the condition E(fl- - £ lU j |ie) ) = 0. Zgy is the covariance matrix between ¢; and
(73,5:). £5* corresponds to the variance-covariance matrix of (7, s;). fly|, is the system-wide expected value for
(1,5;). See MRW and the Appendix to this article for further details.

3.4 Data simulation: ky sim

ky_simis a utility command for simulating data based on the data generating process
characterized by the fitted FMM, as described in Section 2 and Table 2. The new dataset
contains simulated values of s; and r; for each individual.

ky_sim simulates the joint distribution of administrative and survey log earnings in
two ways. The first way allows you to simulate data by selecting the FMM that characterizes
the data generating function, setting the number of observations to be contained in the
simulated dataset, and providing values for each of the parameters that characterize the given
model variant. Model parameters are constant across observations — it corresponds to the

specification of models without covariates. The syntax for this option is as follows:
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ky sim, model (#) nobs(#) [ options]

model (#) specifies the model that characterizes the data generating function. You can

choose one of the 8 models listed in Table 2.

nobs (#) sets the number of observations in the dataset to be created.

seed (#) sets the random-number seed to be used for the simulation of the data.

If there is an unsaved dataset in memory, ky_sim will not generate the new simulated
data unless option clear is specified.

You must specify values for the following parameters, with the specification

depending on model selected:

Means: mean e (#) mean n(#) mean_t(#) mean w(#) mean v (#)
SDs: sig_e(#) sig n(#) sig_t(#) sig _w(#) sig v (#)
Correlations: rho _r(#) rho_s(#) rho w(#)

Error probabilities:  pi_s(#) pi_w(#) pi_r(#) pi_v(#)

If you specify a parameter value that is not required for the model selected, it is
ignored. For example, a value for rho_w (#) 1s ignored if data are simulated using any model
other than models 7 or 8.

When the program is used in this way, it also stores information in e (), SO you can
use the other post-estimation commands described earlier.

The second way to use ky_sim is as a post-estimation command. In this case, ky_sim
generates simulated data uses parameter estimates from from a previously-fitted model as

well as the data currently in memory. Command syntax in this case is:

ky sim [, options]

If ky_simis specified without any options directly after fitting a model with ky fit,
simulated data are created using the parameters from this previously-fitted model.

Alternatively, you can use parameters from a previously-fitted model that have been
stored in memory using estimates store or saved to disk using estimates save. If you
retrieve the stored or saved estimates to use with ky sim, and a model with covariates had

been fitted, all the relevant covariates must be available in the dataset currently in memory.
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newly-created variables. If nothing is declared, the program uses the variable name prefix .

The option prefix (str) enables you to specify the prefix for the names of the

Option replace, enables the program to overwrite variables if they already exist in the

dataset.

Depending on the model chosen, ky_sim creates the variables shown in Table 7.

Table 7. Variables created using ky sim

Variable name

Description

[prefix]e var
[prefix]n var
[prefix]w_var
[prefix]v_var
[prefix]t var
[prefix]pi_ri
[prefix]pi_vi
[prefix]pi_si
[prefix]pi wi
[prefix]r var
[prefix]s_var
[prefix]1l var

Latent true log(earnings)

Factor 7; (survey data measurement error)
Factor wi (survey data contamination)

Factor vi (administrative data measurement error)
Mismatched log earnings ¢

= 1 if data are linked correctly

= 1 if administrative data have no mean-reverting error
= 1 if survey data are reported correctly

= 1 if survey data contain contamination
Administrative log(earnings)

Survey log(earnings)

=1 if r; and s; are error free

Notes. prefix is empty if ky sim is used as a post-estimation command. If nothing is

specified, prefix = °_’ when using the second way to simulate data.

4. Illustrations: estimation and post-estimation

This section shows how to use the commands described in the previous section, revisiting the
pioneering second generation study by KY and MRW’s companion paper. Since we do not
have access to KY’s linked dataset, we simulate their data using the parameter estimates they
report, and then analyze the data using the commands described earlier.

We start by setting the parameter estimates for KY’s ‘Full’ model, reported in KY’s
Table C2, based on a sample of size 400. We use globals. Locals or scalars could also be

used.

global mean e 12.283
global mean t 9.187
global mean w (-0.304)
global mean n (-0.048)
global sig e 0.717
global sig_t 1.807
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global sig w 1.239
global sig n 0.099
global pi_r 0.959
global pi_s 0.152
global pi_w 0.156
global rho s (-0.013)

KY’s ‘Full’ model corresponds to model 4 of our FMM variants (see Table 2). We
use option model (4), and set the sample size with nobs (400) . Since ky_sim stores all the
information in e (), we can also store that information in memory with estimates store

and use it as a benchmark later.

ky sim, seed(101l) nobs(400) model (4) ///
mean_e ($mean_e) mean_t($mean_t) mean w($mean _w) ///
mean n($mean_n) sig e($sig_e) sig t($sig t) ///
sig w($sig w) sig n($sig n) ///
pi_r($pi_r) pi_s($pi_s) pi_w($pi_w) rho_s($rho_s) clear

estimates store modelO

Using the simulated dataset that is created, we can fit all of the (simpler) models that
are reported in KY’s Table C2 in addition to their Full model. KY’s ‘Basic’ model
corresponds to our model 1 with the additional restriction that z,; = 0. The ‘no-mismatch’ and

‘no-contamination’ models correspond to our models 2 and 3.

constraint 1 [mu _n] cons =0

ky fit r var s var 1 _var, model (1) constraint(1l)
estimates store modell

ky fit r var s_var 1 _var, model (2)

estimates store model2

ky fit r var s_var 1_var, model (3)

estimates store model3

ky fit r var s var 1 _var, model (4)

estimates store model4

estimates table model0 model4 model3 model2 modell

Table 8 shows that parameter estimates derived from the simulated data are close to those

reported by KY, so too are standard errors and log-likelihood values (not shown here). The

19



transformation of the mean-reversion correlation (arho_s) is large and statistically significant
in the Basic model, but is much smaller for other models. The largest difference across

models is in the estimate of In_sig_w. We attribute this to the random nature of the simulated

dataset.
Table 8. Estimates of KY models based on simulated data
KY Full Simulated data
Model
Full model No contamination No mismatch Basic Model

mu_e 12.283 12.349 (0.034) 12.306 (0.038) 12.240 (0.048) 12.246 (0.037)
mu_n -0.048 -0.061 (0.006) —0.062 (0.006) -0.059 (0.006) 0.000 )
mu_w -0.304 -0.344 (0.148) 0.479 (0.284)
mu_t 9.187 8.586 (0.678) 11.622 (0.256)
In_sig_e -0.333 -0.406 (0.036) -0.285 (0.036) -0.047 (0.035) -0.047 (0.035)
In_sig_n -2.313 2295 (0.048) 2270 (0.047) -2.268 (0.046) —0.449 (0.038)
In_sig_w 0.592 -0.026 (0.112) 0.731 (0.100)
In_sig_t 0.214  0.501 (0.315) 0.622 (0.098)
arho_s -0.013 -0.022 (0.010) -0.015 (0.010) -0.026 (0.010) —0.680 (0.054)
lpi_r 3.152  3.520 (0.335) 1.838 (0.159)
lpi_s -1.719 -1.844 (0.148) -1.708 (0.150) -1.879 (0.147) -1.879 (0.147)
lpi_w -1.688 —1.784 (0.189) -1.683 (0.161)
log¥ -543.0 -595.5 —695.5 -1041.8

Notes. Standard errors in parentheses. Sample size = 400.

Table 8 reports estimated parameters (other than means) in a transformed metric. We
use margins to obtain estimates of the parameters in their natural metric. To illustrate this,
we focus on the estimates from the Full model derived from simulated data.

margins, predict(mean_e) predict(sig e) ///

predict(mean_t) predict(sig_t) ///
predict (mean_w) predict(sig w) ///
predict(mean_n) predict(sig n) ///
predict(pi_r) predict(pi_s) ///
predict(pi_w) predict(rho_s)

[output partially omitted]

|

| Margin Std. Err. Z P>|z]| [95% Conf. Interval]

_____________ +________________________________________________________________
_predict |

1 12.34936 .0335341 368.26 0.000 12.28364 12.41509

2 .6659948 .023718 28.08 0.000 .6195083 .7124813

3 8.586231 .6782982 12.66 0.000 7.256791 9.915671

4 | 1.650615 .5192742 3.18 0.001 .6328562 2.668374

5 | -.3435237 .1479331 -2.32 0.020 -.6334672 -.0535803

6 | .9747349 .1089581 8.95 0.000 .7611809 1.188289

7 | -.0608566 .0063531 -9.58 0.000 -.0733084 -.0484048

8 | .1007999 .0048806 20.65 0.000 .091234 .1103657

9 | .9712426 .0093542 103.83 0.000 .9529088 .9895765

10 | .1365808 .0174403 7.83 0.000 .1023985 .1707632

11 | .1437948 .0233102 6.17 0.000 .0981077 .1894819

12 | -.0220813 .0097204 -2.27 0.023 -.041133 -.0030297
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If you specify a model in which a parameter depends on explanatory variables,
margins can also be used to obtain marginal mean estimates of the parameter. For example,
suppose your ky_£it command specifies that the log of the survey measurement error SD
depends on a binary indicator variable for the respondent’s sex using the option
1n_sig v (i.sex). The following margins commands provide estimates of o, first for the

sample as a whole and, second, separately by sex.

margins, predict(mean_v)

margins sex, predict(mean_v)

Let us now return to KY’s Full model estimates, and consider the reliability of the
survey and administrative data. MRW showed how to investigate reliability using a
simulation-based method as well as by using analytical solutions (implied by the estimated
model). MRW illustrated their methods using KY’s estimates, showing that their survey data
were more reliable than their administrative data, attributing this to the small but
consequential prevalence of linkage mismatch.

The reliability statistics reported in MRW’s Table 6, can be obtained using our post-
estimation commands and the estimates reported by KY. For this illustration, we compare
simulation-based and analytical reliability statistics using estat reliability and estat
reliability, sim. We also use Ben Jann’s esttab utility (part of his estout package on
SSC) for reporting results. We first show the code. Table 9 summarizes the results.

ky sim, seed(10l) nobs(400) model (4) ///

mean_e ($mean_e) mean_t($mean_t) mean w($mean _w) ///

mean n($mean_n) sig e($sig_e) sig t($sig_ t) ///

sig w($sig w) sig n($sig n) ///

pi_r($pi_r) pi_s($pi_s) pi_w($pi_w) rho_s($rho_s) clear
quietly: estat reliability

matrix rel analytical = r(rel)

quietly: estat reliability, sim reps(100) seed(10)
matrix rel simulation = r(rel)

esttab matrix(rel_analytical, fmt(4))
mtitle ("Analytical Statistics")
esttab matrix(rel_simulation, fmt(4))
mtitle ("Simulation Statistics")
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Table 9. Reliability statistics: replication of MRW?’s Table 6

Derivation method Var Cov Rell Rel2
Analytical
Administrative data 1.0038 0.4930 0.4912 0.4710
Survey data 0.7257 0.5084 0.7006 0.6929
Simulation
Administrative data 0.9947 0.4866 0.4892 0.4662
Survey data 0.7169 0.5055 0.7051 0.6981

Table 9 shows that corresponding analytical and simulation-based statistics are
similar. According to both derivation methods, we conclude that the survey data are more
reliable than the administrative data, even though the mismatch probability is only 4.1%. The
‘analytical’ statistics are the same as those reported in MRW’s Table 6.

MRW’s main contribution was derivation of expressions for multiple predictors of
latent true log earnings that combine information from survey and administrative measures
with FMM estimates. You can obtain observation-specific values for MRW’s seven
predictors using the star option to predict. To evaluate the statistical performance of the
various predictors (assuming the data generating process represented by model estimates is
correct), we use post-estimation command estat xirel. Internally, this calls on ky_sim to

simulate data, and predict, star to obtain the predictions.

estat xirel, seed(10) reps(1000)

Rell Rel2 MSE E(Bias) Var (Bias)

r var 0.5040 0.4847 0.5492 -0.1267 0.5331
s_var 0.7033 0.6954 0.2293 -0.0803 0.2228
el 0.5632 0.5400 0.4358 -0.1192 0.4216

e 2 0.5627 0.5428 0.4356 -0.1181 0.42106

e 3 1.0007 0.9776 0.0115 0.0001 0.0115

e 4 0.9866 0.9720 0.0146 0.0001 0.01406

e 5 0.9866 0.9724 0.0144 -0.0010 0.0144

e 6 0.9780 0.9681 0.0169 -0.0014 0.0169

e 7 1.0012 0.7593 0.1241 0.0004 0.1241

The outputs for e_1 to e_7 correspond closely to what is shown in MRW’s Table 6. Observe
the extremely good statistical performance of these predictors, especially e_3 through e_6

(see our Table 6 for details of their definitions).
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5. Summary and conclusions

This paper introduces a new set of commands to facilitate estimation of FMMs for
application to linked survey and administrative data on earnings or similar variables. The
FMM specifications are those proposed by Jenkins and Rios-Avila (20215) that extend the
ones proposed by KY. In particular, we allow for measurement error in the administrative
data, as well as linkage mismatch and measurement error in the survey data. We also provide
a suite of post-estimation commands for simulation, assessing reliability, and deriving highly-
reliable hybrid earnings predictors of latent true earnings, building on the work of MRW. As
Abowd and Stinson have pointed out, such predictors ‘could be used by statistical agencies to
produce a measure of “true earnings” ..., a valuable measure for researchers that would allow
agencies to release information from administrative data while limiting confidentiality
concerns (2013, 1467).

We hope that our software will help researchers compare measurement error
processes over time and across countries using a common approach that is based on a
relatively general model. Linked datasets are becoming more commonly available. One
limitation of our models is that they refer to cross-sectional data; we do not exploit the
additional information provided by longitudinal linked datasets, as done in different ways by,

e.g., Abowd and Stinson (2013), Bollinger et al. (2018), and Hyslop and Townsend (2020).
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8. Appendix

This appendix contains three sections. The first discusses the relationship between

conditional and unconditional correlations for a pair of random variables. The second
provides expressions for expected values (means), variances, and covariances for the
components in our general FMM. The third provides expressions for hybrid earnings

predictors of latent true earnings for our general model, building on MRW’s work.
A1l. Unconditional and conditional correlations between variables

Consider two random variables e; and u; defined as follows:
€ = Ueix T Eies Ui = Uyjx T &y

gilu N (O 0—62 po—eo—u>

fie  \0'po,o, o
where py x = E(k;|X). For ki € {ei, ui} and X is a vector of observed characteristics for
individual i = 1,...,N. Based on the law of total variance, and assuming (si,u, ei,e) are
independently distributed from X, we have:
Var(e;) = E(Var(eiIX)) + Var(E(eiIX))
Var(e;) = o2 + Var(uex)
Similarly, using the law of total covariance we have:
Cov(e;,u;) = E(Cov(el-, u; IX)) + Cov(E(el- 1X), E (u; |X))
Cov(e;, uy) = poeay, + Cov(lieix, ty|x)
Thus, even if e; and u; are conditionally uncorrelated, their unconditional correlation may be

non-zero.
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A2 Expected values, variances, and covariances for the general FMM

We provide expressions for the moments in turn of the administrative data and the survey

data.

A2.1 Administrative data

The data structure for administrative data is:

i = Si with probability r; = TrTty
=" =&+ pr(fi — /,tﬂx) + v; with probability 7@, = 7, (1 — )
r3; = (; with probability 7, = 1 — 7,
The data generating process for the latent variables is:
Hex
( = x|,
He|x

where p,,x can be expressed as a linear function of X, for each y € {§,v, {}.

Unconditional moments by data type (class)

Class 1: 1 ; = &;
Expected value:
E(rii) = ue
Variance:
Var(ry;) = Var(§) = of + Var(ugx)
Covariance with ¢;:

Cov(&, ;) =Var(§) = 052 + Var(“EIX)

Class 2: 15; = & + Pr(fi - :“EIX) +vi

Expected value:

E(ry;) = E(& + pr(& — ueix) +vi)
= Mgt 1y

Variance:

Var(rz_i) = Var(fi + Pr(fi - ll€|X) + Vi)
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= Var(uex + (1 +p) (& — pepx) +vi)
= Oﬁﬂx + (1 + p)20f +Var(vy) + 2Cov(ugx, tyix)
Covariance with &;:
COU(Eifrl,i) = COV(fi' &+ Pr(fi - .“E|X) + Vi)
=Var(§) + Prafz + CO”(”fIX' "‘VIX)
= Var(.“ﬂx) +(1+ pr)ag + COV(Hﬂx: ﬂv|x)
Class 3:13; = {;
Expected value:
E(rs;) =E(() = ue
Variance:

Var(rs;) = Var(() = Var(ugx) + of

Covariance with &;:

Cov(§;,13;) = Cov(§;,§) = Cov(pe x, teix)

Moments for administrative data, overall:

Expected value:
E(r;) = nrlE(rl’i) + nrzE(rz,i) + nr3E(r3'i)
=y e + 10, (g + 1) + i

= (T[rl + T[rz).uf + Ty, Uy + T g
Variance:
3
Var(r;) = Z Ty, Var(rj,i) + Var (E(rjl))
j=1

where:

var (E(5.)) = )., (E() ~ D)

Jj=1
Covariance with &;:

3

Cov(§;,n) = Z ”rjcov(fi' rj.i)

J
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A2.2 Survey data

The data structure for survey data is:

S1i = & with probability Ts1 = s
s;=1S2i =&+ ps(fi - .U§|x) +n; with probability s, = (1 — m)(1 —m,,)
3= & +ps(& — :ule) +1; + w; With probability 7s; = (1-nym,

The data generating process for the latent variables is:
$i Hex of 0 Puog0w
(ﬂi) =N me], 0 o2 0
Wi Pw0¢0y

Ho|x 0 0-02)
where (1, x can be expressed as a linear function of X, for each y = {£,v,{}.

Unconditional moments by data class

Class 1: s1; = &;
Expected value:
E(rii) = pg
Variance:
Var(ry;) = Var(§) = of + Var(ugx)
Covariance with &;:

Cov(fi,slli) =Var(§) = 032 + VC”’(/‘EIX)

Class 2: sp; = & + ps(’fi - :“EIX) T

Expected value:

E(sy:) = E(& + ps(& — pex) + 1)
= Mg Tty

Variance:
Var(sz,i) = Va?”(fi + Ps(fi - .U§|x) + ﬂi)
= Var(ugx + (1 + p) (& — 1gix) + 1)
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=0f,, 1+ ps)?af + Var(n;) + 2Cov(pg x, by x)
Covariance with &;:
Cov(&;,52;:) = Cov(&, & + ps(& — peyx) + i)
= Var(§,) + psaf + Cov(ugx, tyx)

= Var(ugx) + (1 +ps)og + Cov(pg iy, o)

Class 3: s3; = &; + Ps('fi - l«l$|x) + 10+ w;

Expected value:
E(ss;) = E(& + ps(& — pepx) +mi + w;)
= pg + iy + o
Variance:
Var(ss;) = Var(& + ps(& — ueix) +mi + w;)
= Var(ugx + (1 + po) (& — pepx) +mi + ;)
= aﬂzﬂx + (1 + ps)?af + Var(n,) + Var(w;) + 2Cov(ug x, ty)x)
+ ZCov(,uﬂX,uwp() +2(1 + ps)p,0:0, + ZCOU(Hw|X, u,”X)
Covariance with &;:
Cov(&;,55;) = Cov(&, & + ps(& — pepx) + i + w;)
= Var(&) + psof + Cov(ug x, tyix) + Cov(ie x, toix) + Pw0e0e
= Var(pgx) + (1 + po)og + Cov(ugyx, tyix) + Covigix talx)

+ pwafaw

Moments for survey data, overall:

Expected value:
E(s;) = ﬂle(Sl,i) + ﬂszE(Sz,i) + 7Ts3E(53,i)
= T g + 7, (g + tty) + 705, (g + 11y + 1)

= He + (T[Sz + 7-[53)“77 + TssHo

Variance:
3

vartoy = 3 Var(s,) + var (5(5,)

Jj=1

where:
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T, E(s]l) E(s))

Mw

Var E(
j=1

Covariance with &;
3

Cov($y,s;) = Z 7Ts,-C(W(fi’Sj,i)

J
A2.3 Conditional moments by data class

Table A1. Mean and variance of r; and s;, conditional on X, by class

Data type EC|X) orux Var(.|X) Cov(¢;,.1X)
T1,i Uex 052 052
T2 Hepx + Hyix (1+p.)%0¢ + o) (1 +pr)o?
T3 Ueix o? 0
S1,i Hex 052 052
S2,i Hex + tyix (1+ps)?af + oy (1 + p5)a?

S Hex tigx THoix (L4 p)?0f +of +05  (1+ ps)af + p,0ga,

+ 2(1 + ps)pwafaw

Table A2. Covariance between r; and s;, conditional on X, by class

Cov(.1X) S Sy S3,i
oF of (1 + ps)of (1 + ps)a¢ + py,0:0,,
T A +p)af (A+p)A+p)a¢  (1+p)(A+ pg)a? + (1+ pr)p,0s0o,
o 0 0 0

Overall covariance conditional on X

3 3
Cov(r;, s;|X) = Z z Ty, T, Cov(rhll-, sk,ilX)

h=1k=1

=1, [nslafz + g, (1+ ps)ag + 1, ((1 + ps)of2 + pwo'fo'w)]
+ 1, [7151(1 + pr)ag2 +m,,(1+ p )1+ ps)g{;2

+ 75, (14 p) (1 + py)a? + (1 + p)pyoea, )|
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= nrl[(l + (nSZ + ns3)ps)0§ + nsgpwafaw]

+ 1, [(1+ (g, + 75, )ps) (L + pr)of + s, (1 + p)pey0e0y, |

Overall unconditional covariance:
Cov(ry,s;) = Cov(ry, s;1X) + Cov(py x, ths)x)
where
prix = EMilX) = (1, + 00 ) pex + T by x + T Heix

Usix = Hex + (T[sz + 7-[53)#17|X + Mo low|x-
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A3 Predictors of latent true earnings

Following MRW, we differentiate between within-class predictors and a system-wide
predictor. For the second case, we consider the simplest scenario of prediction under

linearity.

System-wide predictor under linearity
Consider two measures 1; and s;, which are manifest measures of latent true earnings, &;, but

are measured with error. Without loss of generality, assume that i, = pyx = 0. A predictor

for the latent variable, fi, can be derived as a linear combination as follows:
& = 017 + 05 (A1)
The system-wide predictor will be characterized given a set of weights 6, and 6, that

minimize the MSE between the predictor and the true latent variable ;.

. A2
min MSE = E ([& - &]°) = E(& — 0271 + 0,501 (A2)
1,Y2
The first-order conditions are:
OMSE
= E([§ — 6,17 — O,5:]17)
00,

= E(§ir; — 0,17 — 0,135)) (A3)
= Cov(¢;, 1) — 0 Var(r;) — 6,Cov(ry,s;) =0

OMSE
=E([§ — 011; — O35:]sy)
a0,

A4
= E(§;5; — 01738; — 6,57) (A9
= Cov(§;,5;) — 0:Cov(ry,s;) — B,Var(sf) =0

Solving the system of equations given by (A3) and (A4) we have:
COU(fi;Ti)] _ [ Var(r;) COU(Ti,Si)] [91]
Cov(é, sl LCov(ry,s)  Var(s) 116,

(AS)

91] _ [ Var(r;) Cov(ri,sl-)]_1 [Cov(fi,ri)
0,1 lCov(ry,s) Var(s)) Cov(&;, s;)

Given solutions for 8; and 8,, we can substitute them into (A1), which provides the system-

wide predictor for &;.

=10 1[4 (A6)
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-1
& =[Cov(&, 1) Cov(§;,s))] var(n) Cov(ri’Si)] [Z]

Cov(ry,s;)) Var(s;

This is the same predictor as given by MRW’s equation (11), page 96. We label this predictor

7 in the main text.

Within Class Predictors

For the estimates that rely on within-class predictors (predictors 1-6 in the main text), MRW

discuss two estimators: linear estimators that minimize the within-class MSE él] , and the
estimator that minimizes the MSE conditional on the estimator being unbiased & l]]i.

The general form for the within class predictor EALJ follows the same structure as
equation (A2), and so is not discussed further here. However, the unbiased estimator depends
on the specific class.

The solutions for classes 1, 2, 3, 4, and 7 are straightforward to derive, as they assume
that either r; or s; are error-free measures of §;. Thus, we concentrate on the predictors
corresponding to classes 5, 6, 8 and 9.

Classes 8 and 9

These two classes assume that only s; contains information that can be used to
construct the predictor for . We refer here to the predictor for class 9, as the more general
case. Without loss of generality, we assume that the unconditional and conditional (on X)
means of all variables in the model are equal to zero.

Under these assumptions, the predictor & for class 9 is a linear transformation of s;
given by:

$0i = 053, (A7)
where 0 is selected so it minimizes the within-class MSE, conditional on the predictor being

unbiased estimate for {. We start with the second condition:
E(& — 0s3;1§) = 0
=E(§; =00 + psi + 1 + w1
= E(§i1§) — 0(1 + p)E(i1§) — OE(m;lS) — OF (w;il§))

o
=& —60(1+pg)é—0 —pra_?fi

g,
=>1-0(1+p)—0p,— =0
3
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=0 =
o, A8
14 ps+ pey a_? (A8)
Thus, the ¢ unbiased predictor for class 9 is
a S3i
&0 = 0s3; = —
14 ps + po, 0—‘;’ (A9)
and the unbiased predictor for class 8 is
28 SZ,i
=fs, = —=t
Sui =082 =77 o (A10)

Equations (A9) and (A10) imply that the unbiased predictors for classes 8 and 9 are defined

uniquely by imposing the unbiasedness assumption.

Classes 5 and 6

For classes 5 and 6, there are two measures that can be used as proxies for &, each with its
own sources of errors. We refer here to the solution for class 6, as the more general case.
Consider first the unbiased predictors that could be derived using data from 75; or s3;, which

follow the same structure as equations A3 and A4:

. To
bt =1 +;0r = 0,575, (A11)
£6s3 S3,i
25 = = 0.2S%;
Ui o §3°3,1
1 + ps +pa)o-_(; (A12)

An unbiased ¢ predictor for class 6 that combines the information from both sources can be
obtained using a weighted average between both predictors:
$oi = 0807 + (1 — )85

$hi = 6615 + (1= 80353, (A13)
To determine the optimal weight, we need to find the value § that minimizes the MSE, which
is given by:

. 2
m(slnE ([fi — 80,1 — (1 — 5)95353,i] )

The first order condition is:

OMSE

a5 =E ((fl — 80,1 — 1- 6)95353,i)(9r2r2,i - 95353,i)) =0
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OTZCov(El-, rz,i) — 053 Cov(fi,s&i) - 59rszar(r2'i)
+ 80,5053C0v (15, 53;) — (1 — 8)0,,053Cov(1y;, 53,) (A14)
+(1-8)0%Var(ss;) =0
Finally, solving for §, we have:

_ QrZCOU(fi’rz,i) - 9336077(51"53,1') - 9r2933COV(T2,i’53,i) + 9523VC””(53,i)

10)
0LVar(ry;) — 20,,053Cov(ry;,53;) + 0%5Var(ss;)

(A15)

Substituting (A15) into (A12) provides the unbiased predictor for class 6.
To summarize, Table A3 presents the expressions for the within-class predictions for
all 9 classes assuming that our general model (model 8) describes the data generating process.

The expressions for the other models are simplified versions of the expressions in the table.
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Table A3. Expressions for the within-class predictors as functions of the parameters (general FMM)

Class(j) r s & é‘l{’
1 1

1 Ti S > (r+s) 3 (r+s)

2 Ti Sz r r

3 T S3i

4 Toi S S s

6r50r2 1 i — Ur1x
b owen [T T Bl + 22 bl
> Tai Sai Mex +Zgs X6 [Si - .us;X] Al (1= 6,5,)652] [sl B ‘u52|X]

67’2'53 0r2 | , [ri — U, |X]

i — U
’ -1t 2| X Uu + —
° Tai Sai Mgt e % [Si - H53|x] i (1= 8r,5,) 053] L5t 7 Hsalx
7 T3i Sii s
Cov El,s l|X 1

Cov(fls il1X) 1
9 T3i S3; Hegx T Var(s, 3|X) ( ﬂs3|X) Hex +9_53(5i _/"53IX)

Notes. Zé‘ j represents the covariances between &; and (73, s;), conditional on characteristics X and class j. X j"l
represents the variance covariance matrix between 7; and s;, conditional on characteristics X and class j.

9rjCOV(fi'Tj,i)—9skCOV(fir5k,i)—9rj9skC0U(7’j,i:5k,i)+952kVaT(5k,i) 1 1 1
AlSO, 67‘ Sk = ; HTZ =— 952 =—— and 953 = —
g 1+ps 1+ps+pw¥

93]. var(rj;) —26r; 05, Cov (7}, i) +65, Var (si,) 1+pr
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