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ABSTRACT

Intercept Estimation in Nonlinear
Selection Models®

We propose various semiparametric estimators for nonlinear selection models, where
slope and intercept can be separately identifed. When the selection equation satisfies
a monotonic index restriction, we suggest a local polynomial estimator, using only
observations for which the marginal distribution of instrument index is close to one. Such
an estimator achieves a univariate nonparametric rate, which can range from a cubic to an
‘almost’ parametric rate. We then consider the case in which either the monotonic index
restriction does not hold and/ or the set of observations with propensity score close to one
is thin so that convergence occurs at most at a cubic rate. We explore the finite sample
behaviour in a Monte Carlo study, and illustrate the use of our estimator using a model for
count data with multiplicative unobserved heterogeneity.

JEL Classification: C14, C21, C24

Keywords: irregular identification, selection bias, local polynomial,
trimming, count data

Corresponding author:
Valentina Corradi
Department of Economics
University of Surrey
School of Economics
Guildford GU2 7XH
United Kingdom

E-mail: V.Corradi@surrey.ac.uk

* We are grateful to the Co-Editor, Simon Lee, and three anonymous referees for their very useful and constructive
comments. We also thank Christoph Breunig, Sarawata Chaudhuri, Xavier D'Haultfoeuille, Prosper Dovonon, Jean-
Marie Dufour, Bernd Fitzenberger, Mathieu Marcoux, Jeff Racine, Joao Santos Silva, Victoria Zinde-Walsh, and seminar
participants at the ESEM 2018, Kent, Frankfurt, ISNPS 2018, Surrey, Concordia University-Cireq, Humboldt University
Berlin, the Econometrics Study Group Meeting in Bristol 2017, and ESEM 2017 for useful comments and suggestions.



1 Introduction

The outcome equation intercept is of fundamental importance in selection models, when the aim is
to recover average treatment effects (see Heckman, 1979, 1990).! However, while the problem of
identification and estimation of the intercept has long been resolved in the parametric case, it is well
known that in the absence of parametric assumptions on the joint distribution of outcome and selection
equation error, the intercept cannot be separately identified from the selection bias term (Heckman,
1990). Still, as the probability of selection approaches one, the selection bias term converges towards
the unconditional mean of the outcome error, which typically satisfies a normalization condition (e.g.,
zero in the linear case). This is an example of an ‘identification at infinity’ argument (Chamberlain,
1986; Lewbel, 2007; D’Haultfoeuille and Maurel, 2013), which has been exploited by various authors
such as Andrews and Schafgans (1998), Schafgans and Zinde-Walsh (2002), Heckman (1990), and
more recently by Goh (2018), for the identification of the intercept in linear additive selection models.

Nevertheless, the problem of endogenous selection is not just confined to linear regression set-ups.
Count data for instance, which are typically modeled via multiplicative error models, may be subject
to non random sampling as well. A popular example is a count model that looks at the effect of private
medical insurance (Terza, 1998; Deb and Trivedi, 2006), or self-reported health status (Windmeijer
and Santos Silva, 1998), on the number of doctor visits.

Despite its relevance, nonlinear selection models have so far only been studied in specific parametric
settings (e.g., see Terza, 1998), and only recently Jochmans (2015) devised an estimator for the slope
coefficients of more flexible semiparametric, nonlinear selection models. However, to the best of our
knowledge, intercept identification and estimation in the nonlinear case has not yet been studied. We
aim at filling this gap in the literature by introducing simple-to-use intercept estimators for nonlinear
semiparametric selection models.

We focus on models in which the intercept and slope parameters can be separately identified, and
have a separable error term which is either multiplicative or additive. Leading examples of separable
multiplicative error models are, count data and accelerated failure time models. A prominent case of
a separable additive error in nonlinear models on the other hand, is the production function which is
used in the human capital formation models and is typically subject to non-random sample selection
(e.g., Olivetti, 2006).

We start with the case where the selection equation satisfies a monotonic index restriction. Since
slope and intercept parameters can be separately identified in these models, we recover the former
using an existing /n consistent estimator (Jochmans, 2015) in a preliminary step. This allows us
to transform the dependent variable and to isolate the intercept and the selection bias. Using the
transformed dependent variable, we then construct a nonparametric estimator of the intercept, which
is consistent, asymptotically normal, and attains a univariate nonparametric convergence rate. Nev-
ertheless, such rate may vary from a cubic to an ‘almost’ parametric rate, depending on the relative
thickness of the instrument index and selection error tails. In the linear additive case, the key differ-
ence with respect to Andrews and Schafgans (1998), Schafgans and Zinde-Walsh (2002), and Heckman

(1990) is that these papers construct the estimator by giving positive weight only to observations for

!Examples include, among others, testing for the difference in wages of unionized and non-unionized workers, or
estimating the ethnic (e.g., Schafgans, 1998) or gender wage gap (e.g., Schafgans, 2000).



which the index value from the selection equation is above a given threshold. By contrast, our first
estimator uses observations for which the marginal distribution of that index variable is close to one.?
Since our approach is implemented through a standard local polynomial estimator, the main advan-
tage of this approach is that the bandwidth can be chosen in a data driven manner, e.g. through
cross validation. However, it should be mentioned that in the additive case, our approach implicitly
requires that the propensity score has unbounded density in the neighborhood of one, and bounded
away from zero in the multiplicative case.

We then turn to the case in which either the monotonic index restriction does not hold or the density
of the propensity score is not bounded above zero in the proximity of one. In this case, we can no
longer rely on the marginal distribution of the instrument index. Instead, we first obtain an estimator
of the nonparametric propensity score, and then estimate the intercept via a nonparametric regression
using only those observations having a propensity score close but not too close to one. Formally, this
is implemented by introducing a trimming sequence that converges to zero at a sufficiently slow rate.
While we still require the propensity score to reach one in the limit, we no longer require that its
density at that point to be bounded away from zero. Thus, we can also accommodate the possibility
that observations are rather sparse in the proximity of one (thin density set), so that convergence
occurs at an irregular rate, see Khan and Tamer (2010). As a result of the trimming, this latter
estimator converges at most at a cubic rate.

We provide an extensive Monte Carlo study of the properties of our estimators in terms of mean
and median bias as well as Root Mean Squared Error (RMSE). In particular, when the monotonic
index restriction holds, we compare the finite sample properties of our estimator in the linear additive
error case with the estimator introduced by Heckman (1990) and formally developed by Schafgans and
Zinde-Walsh (2002), and with the estimator of Andrews and Schafgans (1998). in terms of mean and
median bias as well as Root Mean Squared Error (RMSE). Overall, when the bandwidth is chosen via
cross-validation our estimator performs at least on par with both of these estimators. Importantly, the
estimator appears to be relatively robust against a violation of the assumption about the tail behavior
of the propensity score density, at least for the chosen design. We also study our estimator in the
multiplicative error case. Generally, we find that the estimator based on an adaptive (cross-validated)
bandwidth performs at least as good as when based on a fixed bandwidth choice in terms of RMSE,
which is reassuring for practical applications. Finally, we also assess the performance of the estimator
when the monotonicity assumption is violated and an estimator of the nonparametric propensity score
is used. Also in this case, we find that the estimator exhibits good finite sample properties in terms of
RMSE. Moreover, an ad-hoc data-driven procedure to select the tuning parameters appears to work
well at least for the chosen design.

Finally, we provide an empirical illustration using a sample similar to Windmeijer and Santos Silva
(1998). The outcome variable (number of recent doctor visits), is modeled as a multiplicative function
of a binary observed (self-reported) health status variable, unobserved multiplicative heterogeneity,

and other observed covariates. We allow for endogenous selection into the status of health, as this self

2For linear additive error models, Goh (2018) provides a set of sufficient conditions under which the upper tail limit
point of the marginal distribution function of the index variable equals one only if the propensity score equals one at
that limit point. He develops an estimator for this case, but does not consider multiplicative error models or models
where the monotonicity of the index restriction may actually be violated (see Section 4).



reported status may not be independent of the error in the outcome equation. The results indicate
that for the particular sample used, the estimates of the effect of self reported health from using our
estimators are very similar to that from a fully parametric model estimator that treats self reported
health status as exogenous.

The rest of the paper is organized as follows. Section 2 outlines the set-up. Section 3 introduces the
estimators for the separable case with linear index restriction in the selection equation, and derives their
asymptotic properties. Section 4 studies the non-monotonic case, when the single index restriction in
the selection equation is violated and a nonparametric propensity score specification is used instead.
Section 5 provides the results of the small scale Monte Carlo simulation, while Section 6 contains our

empirical illustration. Finally, Section 7 concludes. All proofs are collected in an Appendix.

2 Set-up and Identification

We motivate our estimator using the standard sample selection model setup. The data generation
process for the separable case, where the slope and the intercept parameters can be separately identified
and estimated, is discussed next.

As it is customary in these models, we postulate that the outcome variable y; is observed if and
only if s;, a binary selection indicator equals one, while covariate(s) x; are observed for all individuals

in the sample. We initially impose the following linear index assumption for s;:
si = Hzno > v}, (1)

where 1{A} = 1 if the event A holds, and zero otherwise, and z; is a vector of observed covariates.
This type of index restriction is common in the sample selection literature (e.g., Heckman, 1979; Ahn
and Powell, 1993) and will be relaxed in Section 4. For the outcome equation, we consider additive as

well as multiplicative error nonlinear models of the form:

Elyi|zi, i) = ga1 (o) + gaz (¥ifoa) + & (2)

and

E [yilzi, €] = gar (Borr) - garz (258001) &3, (3)

respectively, where ga1(-), ga2(-), gm1(+), gar2(-) are known, real-valued functions. In fact, the standard
additive linear model follows as a special case when ga1(-) and gaa(-) are the identity functions. An
empirically important example of a separable multiplicative model as in (3) is the count data model,

where:

g1 (Boar) - gz (2580nr) = exp (Boar) exp (x5 Bom) (4)

and g; typically plays the role of unobserved individual heterogeneity. Sample selection issues can arise
if &; (or ;, respectively) are not independent of s;. For instance, y; could measure the number of credit
card defaults for each individual 7 in a given period of time, while s; could record whether person ¢
actually possesses such card(s) or not. Since credit card (non-)holders may differ in terms of their risk

attitude £;, which is unobserved and likely to be not-independent of v;, standard estimators for (semi-)



parametric count data models do not provide consistent estimators of 6yp; and Sgps. Another example
that fits within the set-up of (4) is the Accelerated Failure Time model applied to duration data,
where samples are often plagued by the presence of endogenous selection (e.g., Ham and Lal.onde,
1996). An example of a nonlinear additive sample selection model can be found in the human capital
formation literature (Olivetti, 2006). We therefore deem the separable case sufficiently relevant to be
considered in its own right. Moreover, note that the above set-up can easily be generalized to the
case of endogenous covariates (as illustrated by our empirical example, cf. Section 6), and also to
endogenous switching regressions.

We now provide a set of sufficient high-level assumptions which ensure point identification of the

intercept parameters in (2) and (3):

A1l: (i) E[|lyi|] < oo; (ii) The functions gai(-), ga2(-), gmi(-), and gar2(-) are known; gai(-) as well as
gumi () are invertible almost everywhere, and gps1(+) and gpro(-) are non-zero almost everywhere; (iii)
The slope parameters Sya and Py are point identified up to a scale normalization; (iv) &; (&;) are
independent of z; and z;; (v) E[&;] =1 and E [g;] = 0.

A2: (i) 7 is uniquely identified up to a scale and location normalization; (ii) The marginal distribution
function of z/vp, Fuy(+), is continuously differentiable at least once, with non-zero derivative on
supp(z{70), the support of z/7p; (iii) It holds that supp(v;) C supp(z/7o); (iv) v; is independent of z;

and z;.

The invertibility of ga1(-) and gasi1(-) will be crucial for the identification of the intercept parameters
Ooar and Oy 4, respectively. Assumption A1(iii) on the other hand is a high-level condition on the
identification of the slope coefficients. Indeed, the point identification (and estimation) of the slope
parameters will require sufficient variation in x; and the existence of at least one component in z;
which is not in x; (cf. Jochmans, 2015).3 On the other hand, the identification and estimation of 6gy;
and 04, respectively, only rely implicitly on such an excluded variable in z; through the identification
of the slope parameters fya and Sops (cf. also Andrews and Schafgans, 1998; Schafgans and Zinde-
Walsh, 2002). Al(iv) is a standard assumption, which can be restrictive and will be relaxed in Section
4, while A1(v) is a normalization assumption in exponential and linear models with intercept.
Turning to A2, Assumption A2(i) is also a high-level condition, which is not restrictive as ~y can
be identified and estimated in a separate step. A sufficient condition for point identification of g
(cf. Theorem 1, Klein and Spady (1993)) is that the marginal distribution function of v; is strictly
increasing on the support of v; and that z; contains at least one element with non-zero coefficient that
has continuous density everywhere (cf. Assumption C.3b Klein and Spady, 1993). A2(ii) and A2(iii)
on the other hand imply that F.,(-), the marginal distribution function of 2}, is strictly increasing
and invertible on the support of the continuous random variable v;. This assumption is crucial for
the identification argument in the sequel as it ensures that identification can be achieved ‘at infinity’,
that is as F.r,,(2'70) — 1. Note that A2(iii) rules out that supp(v;) strictly contains supp(z;7yo),
a situation where identification of the intercept fails. Finally, A2(iv) is a standard identification
assumption for semiparametric binary choice models. In addition, note that A2(ii)-(iv) naturally
imply that Pr(s; = 1) > 0, while the independence in Al(iv) and A2(iv) will be relaxed in Section

3Honoré and Hu (2020) have recently examined semiparametric additive linear sample selection models without such
an exclusion restriction, and have derived sharp bounds for the parameters of this type of models.



4 to accommodate for instance some specific forms of conditional heteroskedasticity in the selection

error variance. The following theorem establishes identification of the intercept parameters:

Theorem 1: Under Assumptions A1 and A2, the intercept parameters 6y and Oypr from (2) and (3),
respectively, are (point) identified.

Similar to Goh (2018), and in contrast to Andrews and Schafgans (1998) and Schafgans and Zinde-
Walsh (2002), identification is not achieved using the index z/7o but its marginal distribution function.
Under the aforementioned conditions, the following is established in the proof of Theorem 1 for some
value z; = = and z; = z in their respective supports. Letting w; = 2/, under Al and A2 we have
that:

ANFy(w)) =Elgi|lx; =z, 2 = 2,8 = 1] = E[g;|Fyp(w;) = Fy(w), Fy(vi) < Fy(w)], (5)

and:
E [(yi — ga2 (2}B04))|xi = @, 2i = z,8i = 1] = ga1 (B0a) + MFu(w)),

for the additive model. Similarly, for the multiplicative model, we obtain:

X(Fw(w)) = E[6i|Fu(wi) = Fp(w), Fy(vi) < Fy(w)], (6)
and:
Yi =X, 2 = 2,8 = = A w)).
E m‘iﬁz— 5y < y Si 1 ng(GOM))‘(Fw( ))

The key insight of the proof of Theorem 1 is that under Assumptions A1l and A2 it holds that:

lim  A(Fp(w)) =0 and  lim A(Fy,(w)) = 1. 7

lm o ME@) =0 andlm X(F () 7)

As a result, the intercept parameters of the additive and of the multiplicative model can be (point)
‘identified at infinity’. That is, recalling that Syp4 and Sops are point identified by A1(iii):

. l(iuglﬁlE[(yi — ga2(ziBoa)) [ Fu(wi) = Fy(w), Fy(vi) < Fu(w)] = ga1(foa),
and

i B () = Fu(w), Fu(w) < Fu(w) | = gy (Bow).
This in turn implies point identification of the intercepts since gai(-) and gps1(-) are known and
invertible everywhere by A1(ii).

On the other hand, if the marginal distribution of v; is assumed to be continuous with a density
which is non-zero on supp(v;), the support of v;, a sufficient condition for A2(i), then an alternative
identification argument could have relied on the propensity score Pr(s; = 1|z;) = Fy,(zl70) = Fy(w;).
Using the propensity score instead of the marginal distribution function F,(-) is typically the more
common way to control for sample selection (e.g., Das et al., 2003). However, the key difference w.r.t.
the use of the propensity score is that under A2(ii), Fy,(w;) is uniformly distributed on [0, 1] with

marginal density equal to one. Indeed, it is immediate to see that whenever w — oo, both Fy,(w) and



the propensity score p = F,(w) approach one, thus ensuring identification at infinity. The advantage
of relying on Fy,(w;) rather than on Pr(s; = 1|w;) = F,(w;) is that the former has marginal density

equal to one regardless of whether lim,_,; f,(p) is zero, bounded or unbounded.

3 Estimation

Given Theorem 1, the next step is to derive the estimators of g4 and 6gps, and to establish their
consistency and asymptotic normality. In order to accomplish this, we first require estimators of the
unknown quantities g, Fi,(-), and the corresponding slope coefficients 54 and Soas, respectively. A
\/n-consistent estimator for the instrument parameter vector 7y can be obtained from Klein and Spady
(1993). From here onwards, we call this estimator 7.# This allows us to construct an estimator of the

cumulative distribution function of z}vy in a straightforward manner:
~ PSS | R,
Fon (27) = Fuw (W) = n Z H{w; < w;}.

Note that this step is common to both additive and multiplicative models. In a next step, we obtain
estimators for the slope coefficients, say E 4 and E - Given separability of the models in (2) and (3),
we can construct these independently of the intercepts at a parametric /n rate following Jochmans
(2015). As noted in the previous section, this will require at least one element from z; to be excluded
from x;. Next, we outline how to construct the estimators of the intercept parameters 4 and 6y,

starting with the additive model.

3.1 The Additive Model

Recall that the identification argument for this model (equation (2)) exploited the fact that:

le(gglﬁlE[(yz' — ga2(%}Boa)) [Fu(wi) = Fy(w), Fu(vi) < Fu(w)]

= gAl(H()A) + lim /\(Fw(w)) = gAl(Q()A).
Fu(w)—1
Heuristically, since gai(-) is known and invertible almost everywhere by Al(ii), we may estimate
gA1(6pa) through a nonparametric regression of (y; — gAg(x;B\ 4)) on ﬁw(@) at the upper limit point
one in the first place, and then recover fya through a simple inversion using the Delta method. That

is, denote the conditional expectation:

ma (1) =l B0 gna(e{B0n) Fuwi) = Fulw). Fy(v:) < Fu(w)]

which is the probability limit of the aforementioned nonparametric regression. In order to account

for the boundary issue when estimating m4 (1), we use a local polynomial estimator of odd order, for

“Since our theoretical results in Theorems 2 and 3 below demonstrate that the estimation error of a \/n-consistent
7 does not feature in the limiting distribution of our intercept estimator due to its slower than parametric convergence
rate, we do not discuss its estimation further here. See Klein and Spady (1993) for details on the estimation and on the
appropriate under-smoothing of the bandwidth.



which the order of the bias is the same in the interior and at the boundary (e.g., Ruppert and Wand,
1994; Fan and Gijbels, 1992). More specifically, define the local polynomial estimator of order ¢ as:

(@ao (1),...,a44 (1))

1 ~ ~ k
= arg min — Zsi Yi — gaz(ziBa) — Z ar (Fw(wi) - 1)
i=1

ak,kgq nh
(@) — 1
K <<wh>) , 0

where K (-) denotes a kernel function defined in E6 below, and & is a bandwidth parameter satisfying

h — 0 as n — oo. Setting ma(l) = aa0 (1), and given A1(ii), we obtain
0a = gai (Ma(1)) (9)

as an estimator of the intercept parameter 6y4. Indeed, to derive the asymptotic properties of (/9\,4,

note that under A1l and A2 we may, without loss of generality, write:

yi — 9a2(7;B0a) = ga1(0oa) + AN Fu(w;)) + u;,

where E[u;|Fyy(w;) = Fy(w)] = 0 by construction. We impose the following conditions in the sequel:

/

E1: The sample observations {y;, 27, 2}, s}/, are i.i.d. and E [y?] < oc.

E2: The parameter space of 8y, © 4, is compact and 6y 4 lies in its interior.
E3: (i) A(.) is r times differentiable on (0, 1) with » > 1 and Lipschitz continuous derivatives; (ii) A(.)

and the r derivatives are left continuous at the upper boundary point 1.

E4: There exist estimators of (i) 7o satisfying |7 — vl = O, (n_1/2), and (ii) foa satisfying ||§A -

Boall = Op (n~1/2), respectively, where || - || denotes the Euclidean norm.
E5: lirnFu,(w)—ﬂ E [Szu? ‘Fw(wi) = Fw(w),Fw(Ui) < Fw(w)] < 0.

E6: The kernel function K(-) is a continuously differentiable (with Lipschitz continuous deriva-

tive), non-negative, symmetric function around zero, with compact support on [—1,1] and satisfies

[ K (v)dv = 1.

Assumptions E1-E2 and E5-E6 are standard and warrant no further discussion. E4 is a high-level
condition on the existence of appropriate estimators for the ‘first stage’ parameters Sp4 and vy, see e.g.
existing estimators such as Klein and Spady (1993) and Jochmans (2015). E4 naturally requires point
identification of Sy4 and 7, respectively, which holds under more primitive normalization conditions
and assumptions about the covariate space of z; and z; (e.g., Sherman, 1993). Finally, E3 requires
that the selection bias A(.) term is r times differentiable, with » > 1. Importantly, following Fan
and Guerre (2016), we can allow for r < ¢, where ¢ is the polynomial order used for estimation in
(8). Moreover, as discussed in Remark 1 below, E3 implicitly imposes conditions on the relative tail

behavior of the instrument index z}vp and of the selection error. In particular, when the conditional



expectation function E[g;|v;] is linear in v;, it implies that the density of the propensity score p becomes

unbounded as p — 1:

Remark 1: Here we consider an example where the outcome error is linearly related to the selection
error such that Ele;|v;] = pv;. Suppose that the marginal distribution function of v;, F,(+), is strictly
increasing and differentiable everywhere (a sufficient condition for A2(i)). Then, using integration by

parts and assuming that wF,(w) — 0 as w — —oo, we obtain:

Elgilv; <w] = p/w géi))dv
B Fiy (P (w)) - F,(v) .
- /oo <1 Fv(Fw1<Fw<w>>)> ¢
= /\(Fw(w))>

where we have used that w = F,*(F,(w)) by Assumption A2(ii)-(iii) with F,!(-) denoting the inverse

w

function of Fy,(-). Then, letting Vg, () A(Fy(w)) denote the derivative of A(-), note that:

folFy (P (w)) /Fw e e o)

Vruw A )= T e () (P (Fu(0))) oo

R [
P Fo(w)? () /OOF”( = o o )

where f(w) ~ g(w) as w — oo is defined as limy, oo % = 1. The last term in the above display

=

exists and is finite provided f,(w)w goes to zero at least as fast as f,(w). This in turn implies

that the density of the propensity score f,(p) = V,Fp(p) = J;;“((ﬁif ((;) )))) = ]}1:((;”))

p = Fy(w) — 1, where F, !(-) denotes again the inverse function of F,(-). For example, if ¢; and v;

tends to infinity as

are jointly normal, the former with variance ¢ and the latter with unit variance, we have for a given

w that:
Po(w) UQSU(FJI(Fw(w))) _ w
B,(w) 70, (Fu(Fu(w))) MEulw),

Elgilvi < w] = —po

where we used ¢(-) and ®(-) to denote the marginal density and distribution function of the standard
normal. Using the fact that V¢, (w)/¢,(w) = —w with V,,¢(w) denoting the derivative of ¢,(-), we

obtain: o () ( w /\(Fw(w))>‘

Oy(w) \ fwlw)  fulw)
Po(w)

Hence, for Vg, () A(Fuw(w)) to exist and be finite as w — oo, we need that Ftw) — 0 as w — oo

Y ruuw M(Fu(w) = po

Indeed, it is immediate to see that if w; is normal, then provided var (w;) > var (v;), all derivatives exist
and are finite. On the other hand, if var (w;) < var (v;) then Assumption E3 violated. Nevertheless, at
least for the case where v; and w; are normally distributed as reported in the Monte Carlo section, our
estimator has good and comparable finite sample properties to existing estimators from the literature
like Andrews and Schafgans (1998) or Schafgans and Zinde-Walsh (2002) even when E3 is violated.

Theorem 2: Let Assumptions A1-A2, and E1-E6 hold. If as n — oo, nh2™in{ratl}+1l 0 ¢ > 1



odd, and nh — oo, then

Vo, 941 (004)°

~ 21
nhn, (9,4 _ 90A> 4 N <0, JAU)
where Vg, ga1(-) denotes the derivative of gai(-), and:

ci(1) = lim E[sjuf |[Fu(w;) = Fu(w), Fu(v;) < Fy(w)] [M7'T1M7]

Fy(w)—1 00’

where [Algo denotes the upper left entry of the matriz A, and My as well as T'y are theoretical moments
of the kernel function defined at the beginning of the Appendiz.
a5 (1)

2
72 5 is given by ——4—— where:

A consistent estimator of the asymptotic variance ——4—~—
Vo 4941(004) Vo,941(04)

c4(1) = [M;1F1M;1]00

s n;m i % (yl T a2 (m;BA) B m(ﬁw(@))Y K (W)

i=1

with hy,1 — 0 as n — oo satisfying nh,1 — o0o. Moreover, note that the theoretical moments of the
kernel function in MflI‘lel can be computed analytically. For instance, if an ordinary second
order Epanechnikov kernel and a local linear estimator is used, the upper left element of this matrix
is approximately given by 4.498.

In addition, note that the rate of convergence of 5,4 depends on r < g or r > ¢, i.e. whether
the number of (left) derivatives r of A(:) is larger than the polynomial order ¢ used for estimation
or not. For example, if » = 1, regardless of the value of ¢, we obtain a cubic convergence rate (Fan
and Guerre, 2016). On the other hand, if » > ¢, we may improve the rate by choosing a polynomial
order closer to or as large as r. Thus, if we have a function with finite r derivatives, with » — oo,
then we may obtain a convergence rate arbitrarily close to y/n by setting ¢ = ¢, with ¢, — oo as
n — oo, see Hall and Racine (2015). Hence, under Assumption E3, we get a cubic rate if r = 1
and a rate which can be close to \/n if r and ¢ are sufficiently large. Thus, in the additive case,
our results mirror those in Andrews and Schafgans (1998, p.504), though they obtain a cubic rate
even in the case where the densities of selection error and the index w; have equal tails. Indeed, the
key advantage of our approach does not consist in improved convergence rates as also pointed out in
the discussion of Remark 1 above, but in the fact that we may use standard adaptive methods like
cross-validation to choose the bandwidth. That is, there are no adaptive selection procedures on how
to choose the threshold parameters from existing estimators such as Andrews and Schafgans (1998) or
Heckman (1990) and Schafgans and Zinde-Walsh (2002). In fact, the Monte Carlo findings below show
that, when the bandwidth is chosen via cross-validation, our estimator performs at least on par with
these estimators in terms of smaller RMSE and smaller bias. On the other hand, the two estimators
behave very similarly with non data-driven, fixed choices of both the bandwidth and the threshold

parameter(s).
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3.2 The Multiplicative Model

We now move to the multiplicative case (equation (3)). The key difference between the multiplicative
and the additive case is that, in the former the sample selection bias enters multiplicatively rather

than additively. Indeed, as outlined in the discussion of Theorem 1:

Yi

)= 1 El——
R R

Fy(w)—

| Fow(wi) = Fy(w), Fiy(vi) < Fy(w)] = gumi(fom),

Thus, similarly to the additive case, we may construct an estimator of this conditional expectation
in a first step, and then invert again gps1(-) to obtain an estimate of 6yys in a second step. That is,
given the invertibility of gar by A1(ii), foar = g7, (mar (1)) and thus it suffices to have a consistent
estimator of mp (1). Therefore, as with the additive case, we use a local polynomial estimator of odd

order defined as:

(@nro (1) ..., ang (1))

n

1 ; ~ k
= arg min —Zsj — % Z Qg (Fw(wj)—l)

ak<q nh =1 gM2 (iU;BM) 0<k<q
E,(@;) — 1
K <<wh>> (10

and let mas(1) = apro (1), where h — 0 as n — oo denotes again the bandwidth sequence. Given
A1(i), we can define

O = g]T/[ll (mM(l_)) and Ogps = g]T/[ll (mM (1_)) .
As before, to derive the asymptotic properties of §M, note that under Al and A2 we write, without

loss of generality, y; as:

B [ 3 . Ui
g ($;/80M) gm1 (GOM))\(FWO (U)OZ)) + gMQ(xQBOM) ,

where E[u;|x; = x, F\y(w;) = Fy(w)] = 0 by construction. Moreover, we impose the following condi-

tions in the sequel:

E1M: Same as E1.

E2M: As E2, but 04 replaced by 0gpr, and © 4 by O;y.

E3M: As E3, but A(.) replaced by A(.).

E4M: As E4, but B 4 and Bga replaced by EM and Boas, respectively.

E5M: Y
lim E Sith;

————— | Fy(w;) = Fy(w), Fyp(v;) < Fyp(w; < 00.
ppm 912\42(I§50M)| (wi) (w), Fu(vi) (ws)

E6M: Same as E6.

11



Assumption E3M is the multiplicative analog of E3 and it is discussed in Remark 2 below for the case
of the standard normal distribution. Moreover, Assumption E4M is again a high-level condition on the
existence of appropriate estimators for the ‘first stage’ parameters Boas and 7g. In fact, identification
and estimation of Syps is also treated in Jochmans (2015), and requires more primitive normalization
conditions and assumptions about the covariate space of x; and z; as outlined before.

Remark 2: To understand the implications of E3M, we look at a specific example using the normal
distribution. As we cannot simply assume joint normality of & and v; in the multiplicative case, let
g; = exp(e;) in the following. Then, if e; and v; are jointly normal (where v; has variance one and e;

has variance 02) so that e; = pv; + & with E[§;|v;] = 0, we have that:

02 v (W — PO
EfEilvi <w] = E [exp(eq) [vi < w] = exp (2) W

and thus

2

- (02 D (F (Fu(w)) — por)
)\(Fw(w)) = exp < ) o, (FJI (Fw(w))) ’

Then, by the same argument used for the additive case,

(R - P <¢v<w ~poe) <X<Fw<w>>¢v<w>> |

@, (w) fow)  fu(w)

For this derivative to exist and be finite, it has to be the case that the lead term, %ﬁ, exists

and is finite as w — oco. This is a weaker condition than in the additive case and allows for instance

for set-ups where fy,(w) goes to zero as fast as ¢, (w — poe).
The following theorem establishes the limiting distribution of 6, = gy (M(1)).

Theorem 3: Let Assumptions A1-A2, and EIM-E6M hold. If as nh2™in{nat13+l 5 0 ¢ > 1 odd,
and nh — oo, then
vnh (§M — 90M) LS N(0,02,,)

2

1
Iim E|—F"F21%+——
Voo, (901(00a1)))? Fu(w)—1 [912\42 («}Bonr)

|Fu(w;) = Fy(w), Fu(vi) < Fy(w) | [M7'T1M]

2
UOM:( 00’

with Vg,,gm1(-) denoting the derivative of gari(+), [A]y, denoting the upper left entry of matriz A, and
M; and I'y being defined in the Appendix.

As before, a consistent estimator of U%M can be constructed as:

1
o2 = —
(VeM (9M1<6M)))2
2 N
1 « Yi PPN Eo(@;) — 1 . B
thvg ; <9Mz(1‘QBM) _mM(Fw(wz)))> K (%2) [Ml I''M; }00.

for some hy,2 — 0 as n — oo satisfying nh,s — oo, where [Ml_ll"lMl_l] 0o May again be computed as

12



in the previous section.

4 Non-Monotonicity and Irregular Support

In the previous section, we assumed that the probability of selection is a monotonic function of the
instrument index. Furthermore, Assumption E3 implicitly required (at least in the case where E[g;|v;]
is linear in v;) that the density of the propensity score is unbounded as p — 1 in the additive case,
while Assumption E3M in the multiplicative case imposed that it is bounded away from zero as p — 1.

In the sequel, we discuss how estimation of the intercept may still be carried out under weaker
conditions on the propensity score density in the neighborhood of one. We focus, for brevity reasons,
only on the multiplicative case. In addition, since misspecification of the selection equation is a
common concern in applied work and can lead to inconsistent estimators of the intercept, we also
consider a more flexible nonparametric specification of the propensity score using p(z;) = Pr(s; = 1|z)

defining the selection indicator as:
S; = 1{p(zi) > 51} (11)

in what follows (cf. Jochmans, 2015; Vytlacil, 2002). As a consequence, the marginal distribution
function of the propensity score might not necessarily be invertible in z; and so ‘marginalization’
as in the previous section is no longer possible. Before we turn to the estimation, a comment on
identification of fyys in this context is warranted for. That is, recalling that p(z;) = p;, we replace the

identification assumption A2 by:
A2*: (i) Assume that E[g;|z;, 2, s; = 1] = E[&;|ps]; (ii) limp—1 E[g;]p] = 1.

Assumption A2*(i) is equivalent to Assumption 2.1(i) in Das et al. (2003, p.35) for a multiplicative
model, while Assumption A2*(ii) is a high-level condition, which ensures that ‘identification at infinity’
holds. In particular, note that when the index restriction 2}~ of Section 3 is indeed satisfied, Assump-
tions Al and A2 from before imply A2*(i)-(ii). In addition, as in the set-up of Section 3, observe that
A2* does not explicitly require that z; contains an element which is not in x;, and so identification
will again only rely on such an exclusion restriction implicitly through A1(iii). On the other hand,
note that for estimation purposes we will require the existence of a continuous variable in z;, which
is not in x; (cf. the discussion of E8M further below). Finally, observe that A2*(i) together with the
selection equation in (11) is less restrictive than the full independence assumption of observables and
unobservables in Al(iv) and A2(iv), respectively. Indeed, as in Andrews and Schafgans (1998, Section
5, p.505), the present set-up allows for instance for situations where v; is conditionally heteroskedastic
with the conditional variance of v; determined by an index function of z;.
Thus, under Assumption A2*(i), it holds that:

Api) =E[g 2,5 =1 =E[& |pi],

and so by Al(iii):

E yil, lz; = 2,2 = 2,8, = 1| = gar1 (Boar)E [E [pi = p] = gar1(Oonr) A(p)
gm2 (2} Bonr)
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Thus, using also A2*(ii) we have that:

o e Yi L
iy 9) = i B[ = 6| = g o)

By A1(ii), this gives:
buas = g (it 6))

which establishes the identification of 6.

Turning to the estimation, note that we will work again with the following auxiliary equation:
yi = gm1(Bonr) garz (25 Bonr) Mpi) + i, (12)

where E[u;|x; = x,p; = p] = 0 by construction. As we do not impose a functional form of p(z;), the
conditional distribution function p(z;) needs to be estimated in a nonparametric manner. Thus, for
notational simplicity, hereafter we assume that all the components of z; and z; are continuous. The
extension to discrete covariates in boths vectors is immediate at the cost of more complicated notation
and more lengthy arguments in the proofs. Indeed, as pointed out by Li and Racine (2008), note
that typically only continuous regressors matter for the convergence rate of estimators of conditional
nonparametric distribution functions such as p(z;).

We begin by estimating the propensity score p(z;) using a standard local constant Nadaraya-Watson
(NW) estimator of the form:

- 2?21 SZ'K (Zih*le )
S K (32)

where K (+) denotes the product of d, univariate higher order kernel functions K(-), and h; is the

p(z) (13)

corresponding bandwidth sequence satisfying hy — 0 as n — co0. As s; is assumed to be observed for
every 1 in the sample, we can obtain this estimator in a separate preliminary first stage. Moreover,
note that, as before, we can estimate the slope parameters in Syys at a parametric y/n rate using e.g.
Jochmans (2015). We then obtain the transformed dependent variable as in the previous section to

construct an estimator of:

Yi
iy (9) = E [SigMz («!Bonr) Ipi = 5} ’

where 0 is a trimming sequence defined as 6 = 1 — H with H representing a deterministic sequence
H — 0 as n — oo (see below for a discussion). Formally, define the the local constant NW estimator

as:

n . Yi | <ﬁ(zi)*5>
P . Zl:l 8 gm2 (x;ﬁM) hp

Sk (B5E)

P

(14)

where h, — 0 as n — oo. In fact, three remarks are noteworthy about this estimator: firstly, as noted

above:

0.0t = lim g3y (3, (9))
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which suggests that we may construct an estimator of g s as:

0%, (0) = gy (7%, (9)7")

Secondly, note that we use a local constant rather than a local polynomial estimator in (14) since
estimation may be carried out under weaker assumptions than the differentiability of the selection bias
in E3 and E3M from the previous section (see below). Thirdly, observe that we will assume that h, =
o(H) in Theorem 4 below. In a nutshell, this is so since lim,_,1 f,(p) may indeed not be bounded away
from zero. That is, heuristically, even if identification at infinity holds and p; converges to one, it may
still often be the case that observations are very sparse in the neighborhood of one (‘thin density set’),
and so convergence occurs at an irregular rate (Khan and Tamer, 2010). To overcome this irregular
identification issue, we suggest the above local constant estimator which makes use of observations
with propensity score close but not too close to one. This is implemented by introducing a trimming
sequence, which approaches zero at a sufficiently slow rate. That is, instead of using observations with
a propensity score p; € (1 — hy,1) we use observations with p; € (1 — H — hy,1 — H + hy,), where
H > hy, and both h, and H go to zero as the sample size increases, but H approaches zero at a slower
rate. This allows in fact to accommodate cases where the marginal density of p;, fp(-), is not bounded
away from zero as p — 1. On the downside, this construction will not allow us to choose a data-driven
bandwidth through cross-validation. Heuristically, this is because, as shown in the proof of Theorem
4, the bias depends only on H, while the variance depends only on &, in the case of strong support,
and on both h, and H in the case of irregular support/thin set. Thus, even if we fix H, and we search
over all h, < H, there is no unique value of h, which minimizes the integrated mean squared error.

We make the following additional assumptions:

ETM: (i) SUPesupp(z) [P(2)—p(2)| = 0p(1); (ii) The estimated p(z) admits the following representation:

+hY

p(z) = p( dzz ( ]>¢g Zn(2) +0p

Z
1 j 1 fZ 7 nhcllz

for some 7 > max{d., 2}, where 1); is the influence function satisfying E[¢;|2;] = 0 and E[@Z)]2~|zj] < 00,
while K(-) denotes the product of d, univariate kernel functions K (-) with uniformly bounded deriva-
tive satisfying [ K (t)dt =1, [t K(t)dt = 0, for any positive integer [ with [ <7, and [¢" T K (t)dt <

00. Moreover, Sup,csupp(z;) [Zn(2)| = Op(h]), and:

|

where U, ; = Ui/ g2 (2 Bon)-

_ 2
8l

f2(2)

< oo, and E ]siﬂx’iEn(zi)P < 00

E8M: (i) There exist constants C1,Cy > 0 and 1,2 > 0 such that:

sup |fp(uhy +1—H) — fp(1 - H)| < Clhfal—i—n
u€e(0,1)
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sup [Pr(s=1p=uh,+1—H)—Pr(s=1lp=1—H)| < Coh3*™"
u€(0,1)

for some 0 <7 < 1.
(ii) The density function f,(-) is absolutely continuous on (0, 1), and there exists a constant ¢(1) > 0

such that:
fy (1= H) _1‘ Y

y
0| e(1)H?

H—0

for some 0 <7 < 1.

E9M: There exists a strictly positive, continuous function wg, , (U, 1) satisfying [ w2wg, ,(Us, 1)du, <

oo such that for some 0 <7 < 1:

wﬂw,p(ﬂwa 1)H"

sup

— 1‘ —0as H—0
ﬂzGSupP(ﬂz)

sup |Pr(s=1lu,,p=1—H)—1] —0as H — 0,
Ezesupp(ﬂz)

where u, was defined in E7M.
E10M: there exist positive constants C' such that:

sup ‘X(p) - 1‘ < CH'Y™™,
pe(1—H—hp,1—H+hyp)

for some 0 <n <1, and h, < H.

E7M represents a high level condition on the form of the propensity score. It requires the use of a
higher order kernel function, though as long as the number of continuous elements in z; does not exceed
three, a quartic kernel function is sufficient. Assumption E8M allows for so called irregular support, in
the sense that the density of the propensity score may not necessarily be bounded away from zero as
p — 1. More specifically, E8M(i)-(ii) regulate the behavior of the propensity score density as p — 1.
E8M(i) is a Lipschitz type condition tied to the fact that h, = o(H). Indeed, the first part of it will for
instance be satisfied by construction if the marginal density function f,(-) is continuously differentiable
everywhere and €; +71 < 1. E8SM(ii) on the other hand directly imposes conditions on the tail behavior
of the propensity score density in the neighborhood of one. In fact, when n = 0, limg_,¢ f,(1 — H)
is bounded away from zero, while n > 0 corresponds to the case of irregular support with a larger
value of 7 representing thinner tails. That is, if n > 0, we allow for a thin set of observations with a
propensity score close to one. E9M imposes smoothness on the joint density of the propensity score p;
and Uy ; = U;/gmz(2;Bonr) in proximity of the boundary point 1. Note that it requires that p; exhibits
continuous variation independently of u, ;. This in turn requires that z; includes at least one variable
which is not in z; and which has continuous density (conditional on the other elements) such that
the partial derivative of p; w.r.t. that element is non-zero with probability one. Finally, Assumption
E10M imposes another high-level Lipschitz condition on the behavior of the selection bias term A(-)
in proximity to one. Going back to the discussion of Assumption E3M in Remark 2, the condition is
satisfied if, as an example, we assume that z; is univariate with z; ~ N (0, i) (assume also that v = 1

for simplicity), while v; and e; are jointly normally distributed with variance one and o2, respectively.
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In this case, fp(p) = 922 () as 2 — 00, similar calculations to before yield that:

o(2)
2 ~1(p) — po.
Mp) = exp (06) @0 (2,7 (p) = po)

2 p
— ex 12 o, (Z - pae)
P\ D, (2)
Then, using the fact that (e.g., Feller, 1968):
9(2)
1—P(z2) ~
()~ 2

as z — oo and noting that E[g;] = E[exp(e;)] = exp (7>, we obtain indeed that:

2\ 1 — &7 Pd%e) 2
O¢ (1—H—poe) . O¢ 1-n
exp (2 ) - ¢”1(17H) exp <2 > <CH"™.

As mentioned before, the degree of trimming is controlled by the rate at which H goes to zero.
The slower the rate, the higher the degree of trimming as we are discarding all observations with
pi € (1 — H + hy,1]. Given Al, X(p) —1 = O, (H*™") for p € (1 — H — hyp,1 — H + h), and so the
bias of the intercept estimator cannot approach zero at a rate faster than H. We now establish the

limiting distribution of 6%,

Theorem 4 Let Assumptions Al, A2*, EIM-E6M, ETM-E10M hold. If as n — oo, hi,hy, H — 0
and H/h, — 0o, (i) nhyH>™" — 0, (ii) nh3"h,H" — 0 and (iii) nhcllzhz%H” — 00, then 0 <n < 1:

St/ (B = o) 5 N (0,1)

where )
K(v)3d 1 =~ pi — 0
By = I S K (ph >
v@]w.glM (9]’14) Pri=1 P
= Yi

Theorem 4 establishes the limiting distribution of the studentized statistic. Note that the convergence
rate can be at most \/nTLp, which given rate condition (i) is at most a cubic rate. Importantly, this
cubic rate is not due to the boundary, but to the trimming sequence outlined before. However, the
rate can be slower if the observations with p; € (1 — h, — H,1+ h, — H) grow at a rate slower than
nhy, which occurs if > 0. In this case, both \/nTLp (55\’4 — 90M> and @X/llm will diverge to infinity
at the same rate, and so the studentized statistic still remains bounded and converges to a standard
normal.

Since rate conditions (i)-(iii) in Theorem 4 hinge on the unknown ‘tuning parameter’ 7, a discussion

1
of its choice in practice is warranted. Setting H = h," for some € > 0 and letting 77 denote the
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_ _dde 1
maximum admissible value of 7, from (i) we obtain h, = n 3-7+< and H = n 3-7+< after some

calculations, which in turn implies that (ii) and (iii) can be restated as

L2 Lo dgmee
(ii) n3=7+<h{" — 0 and (iii) n3-7+< h{* — oo

We first consider the case of a strong support where 7 = € = 0 so that (ii) ngh%? — 0 and for (iii)
n%hilz — 00. In this case, for (ii) to be satisfied, we require that hy is of order smaller than n_%,
while (iii) is satisfied for d, < 3 if for instance 7 = 4 and h; = O(nfﬁ). In fact, (ii) holds for any
value of 7 < 1, while for e = 0.05 (iii) holds for 77 = 0.25 when d, = 1, for 7 = 0.15 when d, = 2, and
for 7 = 0.05 when d, = 3. On the other hand, if » = 0.25 and d, = 1 as in the simulations or the
empirical application, one can verify that the above conditions are also satisfied when hy = O(n_%),
suggesting that the first stage bandwidth maybe chosen through cross-validation. Finally, in practice,
we may choose hy(n) and H(n) = hp(n)l%f in an ad-hoc, data-driven manner from a grid of values
satisfying {0.05,0.1,0.15,...} such that f;,(l — H) lies for instance above some threshold value, say

0.1. We explore this data-driven choice further in the simulations of the next section.

5 Monte Carlo

In this section we evaluate the finite sample performance of the estimators proposed in Sections 3 and
4. In particular, we assess their robustness w.r.t. the choice of the main tuning parameter(s), and
different degrees of selection, and compare their performance with other estimators available in the
literature.

We start by outlining the Monte Carlo design, which shares some features with Jochmans (2015).
We consider (i) a standard linear design (CASE I) as well as (ii) a multiplicative Poisson design (CASE
IT) and a multiplicative model with non-monotonic propensity score design (CASE III). For CASE I

and II, we assume that the selection equation takes the form:

si = Hzjvo > v},

(0% F)

and 9 = (1,1)". The outcome equation for CASE I is given by:

where z; = (214, 29;)" with:

Elyilei, si = 1] = 0pa + €. (15)
On the other hand, in the multiplicative design of CASE II we consider:
Elyi|g;, si = 1] = exp(fon )E;- (16)

Selection is modelled in this set-up through the correlation between v; and ¢; (e; = log(g;) in the
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multiplicative design). Specifically, we model the joint distribution as:

=+ (G(2 7)) e @O 7)) o
U5 0 poe 1 (2 0 poe 1

where 0 < |p| < 1 and set 0. = 0. = 1/0.5. Note that the unconditional mean of &; in (16) is given by
exp(02/2). We therefore set foys equal to exp(—a2/2), so that the unconditional mean of the outcome
equation equals one, while 04 is set to one.

We consider two sample sizes n = {600; 1,000}, which, given an (unconditional) probability of
selection of approximately 0.5 in our designs, implies an effective sample size for the outcome equation
of around 300 and 500 observations, respectively. In what follows, we assess the performance of our and
other estimators under three different sample selection designs, namely p = 0 (no sample selection),
p = —0.5 (negative sample selection), and p = +0.5 (positive sample selection).

We start with CASE I, and assess the finite sample performance of the estimator from Section
3.1 under fixed and data-driven bandwidth schemes in terms of RMSE, Mean Bias (MBIAS), and
Median Bias (MDBIAS). Specifically, we use the distribution function estimator from Section 3 and
subsequently estimate 654 through a local linear estimator with second order Epanechnikov kernel
evaluated Fy,(w;) = 1. Since 79 may be estimated at rate \/n using the method of Klein and Spady
(1993), we set the index z/7 either equal to the ‘oracle’ index z/yo or estimate it using Klein and
Spady (1993). Indeed, the estimator of Klein and Spady (1993) as well as the local linear estimator
are constructed using routines from the np package in R of Hayfield and Racine (2008). This package
allows to provide the program with a fixed bandwidth for which we choose the values h = 0.15,
h = 0.10, and h = 0.05 (corresponding to giving a positive weight to observations F,,(w;) larger
0.85, 0.90, and 0.95, respectively). Alternatively, we use the automated cross-validation procedures
implemented in the np package and outlined in Li and Racine (2004) and Li and Racine (2008),
respectively. Likewise, the bandwidth for the estimator of Klein and Spady (1993) is also routinely
chosen by the np package through cross-validation.

We compare these estimates with the naive OLS estimator, which ignores sample selection alto-

gether®, as well as with the estimator first suggested by Heckman (1990) and formally developed by
Schafgans and Zinde-Walsh (2002):

Yoy Siyil{w; > 0}

HSZ(6,) = - — . 18
( ) Zizl sil{wi > (511} ( )
In addition, we also consider the estimator suggested by Andrews and Schafgans (1998):
i1 SiYitip(W; > O,
AS(5,, b) = Szt 510D > 0n) (19)

Z?:l Siﬁb(ﬂj\i > 5n> ’

5For the multiplicative design of CASE II, we estimate 6o as ln(é\OLs).
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where:
1 — exp (—ﬁ) forz € (0,b)

k() = €0 forz <0

1 forx >0

For the tuning parameter b, which determines the weight given to observations with w; > §,, we
choose b = 0.5 and b = 1 (e.g., Schafgans, 1998). Moreover, for the threshold parameter §,, we use
the 85%, 90%, and 95% unconditional quantile of w; from the selected sample, which corresponds to
the bandwidth choices h = 0.15, h = 0.10, and h = 0.05, respectively.

Turning to the results in Tables 1 to 3, note first that results are presented through five panels
in each table. Panels A through D use the ‘oracle’ index w;, and consider different ratios of the
unconditional variance of z/yy and v;. In particular, Panels A and B use a set-up where var(w;) <
var(v;) = 1, which, when the conditional mean is additive, violates the conditions of the estimator
for 64 outlined in Section 3 (cf. discussion of Remark 1). On the other hand, Panel C and D are
compatible with the conditions of Section 3 since in this case indeed % — 0 as w — oo. Finally,
Panel E is like Panel B, but replacing w; by the estimator of Klein and Spady (1993), w;.

Examining the finite sample performance of 5,4 for the fixed bandwidths h = 0.15, h = 0.10,
and h = 0.05 across Tables 1 to 3, we see little difference in the finite sample behavior relative the
competing estimators HZS(0.85) (AS(0.85,-)), HZS(0.90) (AS(0.90,-)), and HZS(0.95) (AS(0.95,)),
respectively. Unsurprisingly, the RMSE increases in a similar manner for all estimators as we decrease
the number of observations for each estimator. In addition, when p = 0 (Table 1) one can observe
that HZS(-) slightly outperforms the other two estimators in terms of RMSE, even though all have
fairly low bias. By contrast, when p = +0.5 (Table 2) or p = —0.5 (Table 3), 04 does a slightly
better job in terms of achieving a smaller average mean or median bias relative to HZS(+), though
not necessarily w.r.t. AS(:,-). Interestingly and contrary to theoretical predictions, the performance
é\A does not seem to depend much on the relationship of var(w;) and var(v;) in this design built on
joint normality. That is, observe that results in Panels A and B for each of the tables change only
marginally in terms of RMSE, mean and median bias relative to Panels C and D. In fact, interestingly,
in the case of sample selection (p = +0.5 or p = —0.5), we see that all estimators slightly deteriorate
in terms of RMSE and bias when var(v;) > var(w;) relative to the case when var(v;) < var(w;). This
suggests that at least in the normal case the discussion from Section 3 concerning the requirements
of the estimator presented there may not play a crucial role in finite sample considerations, at least
in the present set-up. Overall, for h = 0.15 64 behaves very similarly to HSZ(0.85), AS(0.85,0.5), and
AS(0.85,1) in terms of both RMSE and mean and median bias. The same applies for A = 0.1 and
h = 0.05. On the other hand, when we use E, §A performs at least on par with HSZ and AS in terms
of RMSE and in most cases delivers a smaller mean and median bias.

Next, we move to the multiplicative design with a separable Poisson model (CASE II), whose

results can be found in Table 4. For simplicity, we focus on the RMSE here exclusively.” We device

5We also experimented with b = 1.5 as value, but found the performance of the Andrews and Schafgans (1998)
estimator to be uniformly dominated by the versions with b = 0.5 and b = 1 (results available upon request).

"Unreported results (available from the authors upon request) for the estimators examined in Tables 4 and 5 show
that the (mean and median) bias are generally small and change slowly, so that RMSE results are mainly driven by a
reduction in variance.
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the results into two panels using the ‘oracle’ index w; (Panel A) as well as the estimated index wj
(Panel B). Moreover, since in the multiplicative case Assumptions E3M are indeed compatible with
duw(w) = ¢p(w) as w — oo, we only consider this design throughout. Turning to the results, note
that, as expected, the variance of the estimator measured by the RMSE is generally higher than in
the additive case. Moreover, as expected by Theorem 3, the first step estimation of 5 does not appear
to contribute to this variance. Turning to the estimates of 0y using a cross-validated bandwidth (/ﬁ),
we see that the estimator generally performs well in terms of RMSE relative to the case where a fixed
bandwidth is used. In a final step we compare the latter estimator also with an estimator where the
propensity score is used instead of F\w(@) (p), and its bandwidth is determined by cross-validation.
As can be seen in Table 4, the RMSE is generally larger than when we use ﬁw() This does of course
not come as a surprise given the nonparametric nature of the propensity score estimator, and further
underscores the advantage of using the estimator in Section 3 when its assumptions are satisfied.
Finally, in Table 5, we explore the finite sample behavior of the estimator proposed in Section 4

for the non-monotonic multiplicative model (CASE III). More specifically, we set:

s; = 1{p(2i) > v}

as in Section 4, and model p(z;) as p(z;) = 2 -sin(1.5z;) with z; ~ N(0, 1), while the joint distribution
of e; and v; is left as in (17) before. This yields a propensity score with a highly non-monotonic
pattern in z;, and thus violates the conditions of the estimator §M from Theorem 3. On the contrary,
to construct QAﬁ/[(é), we proceed as follows: first, we estimate the propensity score p(z;) via a local
constant estimator with second order Epanechnikov kernel and cross-validated bandwidth from the
np package. Next, we construct the estimator outlined in Section 4. Specifically, the first three
columns of Table 5 display the estimator’s performance for fixed choices of § and hyp, namely (8, hy) =
(0.925,0.075), (8, hp) = (0.95,0.05), (6, hp) = (0.975,0.025).% Finally, in the last column, we use the
data-driven method suggested at the end of the last section (we set the threshold to 0.1 and use
{0.05,0.1,...,0.45,0.5} as grid for ). Turning to the results, we find that the estimator has a RMSE
that is rather low and that increases as & increases and h, decreases, respectively.? Interestingly,
observe that the data-driven choice of § and h, generally leads to good and comparable bias and

variance results, which is encouraging for pratical applications.

8We have also experimented with setting h,, slightly smaller than H, specifically (6, h,) = (0.925,0.070), (6, hp) =
(0.95,0.045), (4, hp) = (0.975,0.020). However, results do not vary qualitatively and so we only present the specifications
from the main text.

9Similarly and as expected, results available upon request demonstrate that the estimator generally decreases in terms
MBias and MEDBias when § increases and h, decreases, which is particularly pronounced for the case of p = —0.5.
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Table 4: Multiplicative Error Model
p=0
n Panel A: Oracle Index (w;)
OLS | h=0.15 h=0.10 h=0.05 h D
n =600 RMSE | 0.072 0.209 0.255 0.397 0.242 | 0.254
n=1,000 RMSE | 0.058 0.157 0.187 0.265 0.187 | 0.198
n Panel B: Klein-Spady Index (w;)
OLS | h=0.15 h=0.10 h=0.05 h D
n =600 RMSE | 0.074 | 0.209 0.254 0.407  0.239 | 0.387
n=1,000 RMSE | 0.058 0.156 0.186 0.264 0.168 | 0.212
p=+05
n Panel A: Oracle Index (w;)
OLS | h=0.15 h=0.10 h=0.05 h D
n =600 RMSE | 0.235 0.204 0.254 0.382 0.260 | 0.308
n=1,000 RMSE | 0.230 | 0.159 0.189 0.278  0.195 | 0.261
Panel B: Klein-Spady Index (2}7)
OLS | h=0.15 h=0.10 h=0.05 h D
n =600 RMSE | 0.234 0.205 0.253 0.382 0.284 | 0.325
n=1,000 RMSE | 0.232 0.159 0.189 0.276 0.193 | 0.229
p=-—0.5
n Panel A: Oracle Index (w;)
OLS | h=0.15 h=0.10 h=0.05 h D
n =600 RMSE | 0.192 | 0.213 0.255 0.378  0.225 | 0.268
n=1,000 RMSE | 0.186 0.158 0.190 0.270 0.198 | 0.229
Panel B: Klein-Spady Index (;)
n OLS [h=0.15 h=010 h=005 & P
n =600 RMSE | 0.194 0.214 0.254 0.386 0.243 | 0.314
n=1,000 RMSE | 0.184 0.158 0.190 0.269 0.197 | 0.242

Notes: (1) Number of Monte Carlo replications: 1,500; (2) columns h = 0.15,0.10,0.05 correspond
to the estimator 0, using a fixed bandwidth size; (3) h and p correspond to the estimator 6, with
cross-validated bandwidth choice (h) or the nonparametric propensity score (p)
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Table 5: Non-monotonic Model

p=20
(0, hp) | (0.925,0.075) (0.95,0.05) (0.975,0.025) (6, hy)
n =600 RMSE 0.097 0.110 0.212 0.112
n =1,000 RMSE 0.073 0.081 0.147 0.103
p=+0.5
(0, hp) | (0.925,0.075) (0.95,0.05) (0.975,0.025) (4, hyp)
n =600 RMSE 0.114 0.121 0.218 0.123
n =1,000 RMSE 0.095 0.093 0.156 0.108
p=-—0.5
(0, hp) | (0.925,0.075) (0.95,0.05) (0.975,0.025) (4, hy)
n =600 RMSE 0.100 0.110 0.206 0.109
n =1,000 RMSE 0.079 0.083 0.142 0.105

Notes: (1) Number of Monte Carlo replications: 1,500; (2) columns (d,h,) = (0.925,0.075),
(0, hp) = (0.95,0.05), and (4, h,) = (0.975,0.025) correspond to the estimator @K/[(d) using a fixed
d-hy, combination; (3) § and ﬁp correspond to the estimator 5%(5) using the data-driven choice of the
tuning parameters.

6 Emprirical Illustration

We now turn to the empirical illustration on the use of the estimator outlined in Section 3. The sample
for the analysis is drawn from the second round of the British Health and Lifestyle Survey 1991-92
(HALS2) which was used in the illustration provided in Windmeijer and Santos Silva (1998).10 As we
were not able to find all the relevant survey reports in order to re-construct the exact sample used by
Windmeijer and Santos Silva (1998), we have created an almost identical sample except for a minor
difference in the number of observations used in the estimation. We have 4,820 individuals in our
estimation sample compared to 4,814 used in Windmeijer and Santos Silva (1998). The descriptive
statistics of our variables match those provided in Table 1 of Windmeijer and Santos Silva (1998), to
first or second decimal place.

The outcome variable of interest is the number of visits to or by a doctor (general practitioner), in
the last month prior to the interview, DOCV IS. The objective is to model the demand for medical
care as a function of factors such as income and education, but also as a function of individual’s health
status. We follow Windmeijer and Santos Silva (1998) and use a binary self-reported health-status
variable HS as a measure of this unobserved health-status and allow this to be dependent on other
unobserved individual characteristics in the outcome equation. That is, we treat HS; as an endogenous
regressor in the outcome equation. H.S; takes the value of 1 if health is poor or fair, and 0 if good or
excellent.

We start with a general specification for DOCV IS; and discuss how the models we estimate below

are related. That is, adopting an exponential regression framework, we write the conditional mean

0The data and accompanying documents are available for free download for academic users, from the website of the
UK Data Service: www.ukdataservice.ac.uk. Accessed on 22 November 2020.
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function as:!!

E[DOCVIS;|z;, &) = exp(Bom + }Bom + aoH S;)e;, (20)

where:
HS; =1{z{n0 > vi}, (21)

and &; is the multiplicative unobserved heterogeneity.'> As a robustness check, we also estimate the

model in (20), but with a nonparametric propensity score:
HS; =1 {p(zz) > 51} (22)

as in Section 4 (see Model 4 below). The choice of variables to include in z and x are based on Wind-
meijer and Santos Silva (1998). However, for computational reasons (in particular for the estimation
of the single index coefficient vector using Klein and Spady (1993)), we drop those variables with
estimated coefficients that were always insignificant in the models estimated. The variables included
in x are: sex, education, income, and short-term health status. The excluded instrumental variables in
z are variables that explain individual’s health, but are likely to affect the demand for doctor services
only via the health status. These variables are: current work status, alcohol consumption, smoking
behavior, social class and accommodation, as well as long term disability or infirmity. The definitions
and the summary statistics for the variables are provided in Table 7 in the Appendix. A more detailed
discussion of these variables is provided in Windmeijer and Santos Silva (1998).

We estimate the following four models:

e Model 1: a standard Poisson (P) specification where H.S; is treated as exogeneous. This model

does not contain unobserved heterogeneity &; .

e Model 2: A Negative binomial (NB2) model with H.S; treated as exogenous w.r.t. unobserved

hetergeneity ¢; and &; is assumed to follow a Gamma distribution with Gamma (1, %)

e Model 3: A general exponential model (ACG-1) where HS; is treated as endogenous according
to (21) and the distribution of &; and v; are left unspecified.

e Model 4: A general exponential model (ACG-2) where HS; is treated as endogenous according
to (22) and the distribution of &; and v; are left unspecified.

The parameter 7 in Model 2 is sometimes called the over-dispersion parameter. This particular model
is commonly used in the case of over-dispersed count variable data as it is the case with our variable
DOCVIS, which has an unconditional mean of 0.402 and a variance of 0.634. It does however, impose
independence between &; and variables in z;. Model 3 on the other hand, allows for dependence
between unobserved heterogeneity &; and the health-status variable H.S;, while Model 4 relaxes in

addition the index restriction z/vp and is thus robust against mis-specification of the propensity score.

1 As discussed in Mullahy (1997), the following exponential regression framework is applicable in the general case of
a non-negative dependent variable which is not necessarily a count.

12We model unobserved heterogeneity explicitly by adopting a multiplicative model where the observed and unobserved
heterogeneity enter the conditional mean of the outcome variable in the same way. This is in contrast to Windmeijer
and Santos Silva (1998), who consider an additive model without unobserved heterogeneity.
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The estimation steps for Model 3 are as follows:

e Step 1: Estimate 7y using the estimator of Klein and Spady (1993) from the np package of
Hayfield and Racine (2008). The bandwidth parameter is chosen via a built-in cross-validation
procedure, and F Z/q(zfy\) is constructed subsequently using the distribution function estimator
outlined in Section 3. In addition, we also estimate the propensity score p(z,7) via the local
constant estimator from the np package with second order Epanechnikov kernel and cross-
validated bandwidth.

e Step 2: Estimate [Bgjps for the entire sample using the one-step estimator proposed in Jochmans

(2015) with the author’s recommended plug-in bandwidth and a second order Gaussian kernel.!3

e Step 3: As outlined in Section 3.2, estimate the intercept 6py; and (6gps + «) separately for the
subsample with HS; = 0 and HS; = 1, respectively, using a local linear estimator from the np

package with second order Epanechnikov kernel and cross-validated bandwidth.'4

e Step 4: Compute the standard errors for the intercept estimators of Step 3 with the estimator
outlined after Theorem 3 and bandwidth choice h,o = 0.25 (we also experimented with slightly

different choices for h,2, but results remain qualitatively similar).

On the other hand, Model 4 parameters are estimated by first estimating the nonparametric propensity
score p(z;) via the local constant estimator from the np package with fourth order Epanechnikov
kernel.'®> We then follow Steps 3 and 4 as outlined above, but replacing the estimators from Section
3.2 with the ones of Section 4. The standard errors for the intercept estimator of Model 4 is determined
as outlined in Section 4, and the threshold value is set to 0.1 when H(n) and h,(n) are determined in
an ad-hoc data-driven manner as outlined at the of Section 4

The estimates of 0pp; and «, which are our main parameters of interest, are reported in Table 6
for all four models. The standard errors reported for Models 1 and 2 are robust standard errors based
on the pseudo maximum likelihood estimator (Gourieroux et al., 1984).

As expected, the estimated a does not differ much between Models 1 and 2. Under the required
assumptions, even if unobserved heterogeneity is not accounted for in the Poisson model (Model 1),
the estimator is still consistent. However, when we relax some of the parametric assumptions and
also account for possible endogeneity of HS; due to dependence between &; and v; as in Model 3
(ACG-1), the estimate of « increases to 0.727. This point estimate is significant at the 5% level, albeit

13Changing the order of the kernel as well as the bandwidth did not alter results substantially.

“More specifically, we construct foar = In (E [% ‘ﬁw(@) = O]) using the subsample with HS; = 0, and & =
exp(z; By

In (E [y77) ‘ﬁw(i@) = 1]) —1In (E [yi’ ‘ﬁw(ﬁ}l) = O]), where the first term is only estimated for HS; = 1.

exp(z)Bar exp () Bar)
The cross-validated bandwidth chosen for the estimation of foas using the subsample HS; = 0 was 0.052 (211 observations
with a positive weight), while the cross-validated bandwidth for the estimation of foas + @ using the subsample HS; = 1
was 0.074 (274 observations with positive weight).
5Note that except for the variable ‘Wine’ (Number of units of wine consumption last week) all variables in z; are
binary, and hence the rate conditions for continuous covariates of Section 4 apply for the case d. = 1 (recall that discrete
covariates do not matter for the convergence rate of estimators of conditional nonparametric distribution functions such
as p(z;) (Li and Racine, 2008)). Indeed, to reduce computational complexity, we follow the method outlined in Racine
(1993) and conduct cross-validation on random subsets of the data (size n = 500), to select the median values over 50
replications.
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the significance is less pronounced than in the case of Models 1 and 2 owed primarily to the reduced
number of observations with positive weight (cf. footnote 13).

We next turn to the results of Model 4, which is robust against violations of monotonicity due
to the nonparametric nature of the propensity score. For this estimator, we consider the sensitivity
of the results to two different ways of choosing the tuning parameters 6 = 1 — H and hy: The first
uses the data-driven ad-hoc procedure described at the end of Section 4 setting ¢ = 0.1, which yields
(Ho, hyo) = (0.028,0.020) for HS; = 0 and (Hy, hy1) = (0.073,0.056) for HS; = 1, respectively. The
second uses fixed choices for the tuning parameters, which are identical across health status, namely
(H, hy) =(0.05, 0.05) and (H, h,) = (0.025,0.025), respectively.'®

As results in Table 6 show, using the data-driven ad-hoc choice for the tuning parameters yields
an estimate of « of 0.560, which is very similar to Models 1 and 2 estimates where the health status
variable H.S; is treated as exogenous in the outcome equation. On the contrary, when fixed values for
the tuning parameters are used, the estimated « is higher at 0.664 and 0.849, respectively. Since the
data-driven choice of (H 1,31,1) is larger than of (ﬁo,ﬁpo), and of the fixed choices, the sensitivity of
the point estimates may primarily be due to the sparsity of observations with propensity score value
close to one for HS; = 1.

We next turn to the comparison of the estimates across the different models estimated in terms of
the extra visits to the doctor implied by these estimates. The raw difference in the average number
of doctor visits between individuals with HS; = 0 and HS; = 1, is 0.43 (0.73 - 0.29). However, the
estimated extra doctor visits across the four conditional models and the two variants are respectively:
1.7, 1.7, 2.1, 1.8, 1.9, and 2.3. We conclude that, for this particular sample and the models considered

above, these numbers are very similar across the different estimations.

Table 6: Estimation Results

P NB2 | ACG-1 ACG-2
(H,hp) | (0.05,0.05) | (0.025,0.025)
Q 0.534 0.549 0.727 0.560 0.664 0.849
s.e. (robust) (0.064) | (0.062)
s.e. (hys = 0.25) (0.351)
se. (H, hy) (0.294) | (0.182) (0.285)
Oons —1.111 | —1.102 | —1.468 | —1.116 —1.094 —1.194
s.e. (robust) (0.053) | (0.052)
s.e. (hy2 =0.25) (0.305)
s.e. (H,hy) (0.251) | (0.054) (0.179)

Notes: (1) Columns P and NB2 represent the output for Model 1 and Model 2, respectively, with
robust standard errors; (2) Column ACG-1 provides the estimates of Model 3 with cross-validated
bandwidth choice (cf. footnote 13). Standard errors are computed as in Step 4; (3) Columns ACG-2
provide estimates of Model 4 using ad-hoc, data-driven (f[,/f;p) or fixed ((0.05,0.05) & (0.025,0.025))
tuning parameters. Standard errors are computed as in Step 4.

6 As in the previous section note that setting h, slightly smaller than H did not really affect the results qualitatively.
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7 Conclusion

Identification and estimation of the intercept is crucial for the evaluation of average treatment ef-
fects in non-experimental settings where the treatment selection is often dependent on unobservables
(Heckman, 1990). While various estimators for linear additive sample selection models exist, many
other data types, which are also affected by endogenous selection, are modeled nonlinearly. This
paper introduces estimators of the intercept in nonlinear semiparametric selection models, where the
joint distribution of the error terms remains unknown and the intercept and slope parameters can
be separately identified. We consider multiplicative and general non-additive models and propose
two different types of estimators depending on whether the selection equation satisfies a linear index
restriction or not: in the first case where the index restriction holds, our estimator is a standard local
polynomial estimator, and the bandwidth may be selected through cross-validation. In the second
case, we relax the index restriction in the selection equation and base our estimator on a more flexible
nonparametric specification of the propensity score, that does not require that the marginal density
function of the propensity score is bounded away from zero at the upper limit point. The resulting
estimator is a local constant estimator, which uses observations close but not too close to the bound-
ary. This estimator is robust against mis-specification of the first stage, and converges at a cubit rate.
Finally, we investigate the effect of self-reported health on the number of recent doctor visits modeling
doctor visits as a multiplicative function of a binary (self-reported) health status variable, unobserved
heterogeneity, and other observed covariates. Our findings suggest that for the particular sample used,
the estimates of the effect of self reported health from using our estimators are very similar to that

from a fully parametric model estimator that treats self reported health status as exogenous.
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8 Appendix

In the following, for 0 < ¢t < 2g, let:
as well as

Also, define the (¢ + 1) x (¢ + 1) dimensional matrix:
pro(K) oo pg(K)
M, = . (23)
p1q(K) oo pa2e(K)
The matrix T'! is defined accordingly, but contains elements ~; (k) instead of 1 ;(k).

Proof of Theorem 1: We start with the identification of fgn, and then comment on the identification of fga. First,
recall that w; = 2}70, and note that:

Elgi|zi = @, 2i = 2,8 = 1] = E[&i|wi = w,vi <w] = E[&i|Fu(wi) = Fu(w), Fu(vi) < Fu(w)],

where the first equality follows from Al(iv), A2(i), A2(iv) and the selection model in (1), while the second equality
follows from A2(ii)-(iv). In addition, using Assumption A1(iii), we obtain:

Elyilei = 2,20 = 2,8 =1] = Elyil2ifom = 2’ Bom, Fu(wi) = Fu(w ) Foy(vi) < Fu(w)]
= g1 (Bom)gmz (2’ Bom)E[Ei| Fo (wi) = Fou(w), Fu(vi) < Fu(w)]
= g1 (Bon)gniz (2 Bost) A (Fuw (w)).
Thus, without loss of generality, we may write:
yi = gu1 (Bom) gniz (2 Bow) A (Fo (wi)) + s,

where E[u;|z; = x, Fu(wi) = Fuw(w)] = 0 by construction. Moreover, by Al(ii), it holds that:

~ 2 w = gm OM~ w(w)).
E{m [P (wi) = Fu(w), Fu(vi) < Fu )] it (o) N(Fou (w))

Now, observe that under A2(ii)-(iii):

lim (ng(QoM)X(Fw (w))) = gv (Bom)E[E:] = gmi(Bom),

Fy(w)—1

where the last equality follows from E[g;] = 1 in Al(v). Finally, since gmi(+) is known and invertible by A1(ii), this
establishes the unique identification of Gon.
For the additive case, note that by A1(ii) and (iii), it holds similarly that:

E[(yi — gaz(zifoa))|zi,si = 1] = ga1(foa) + Elei| Fu(wi) = Fu(w), Fu(vi) < Fu(w;)]
and therefore:

lim  E[(y; — gaz(2iBoa))| Fu(wi) = Fu(w), Fu(vi) < Fu(w)] = gai(6oa) + Eles] = ga1(6oa),

Fy(w)—1

where the last equality follows from E[e;] = 0 in Al(v). Finally, since gai(-) is known and invertible by A1(ii), this
establishes the unique identification of 6pa. [J

Proof of Theorem 2: We first show that under A1-A2, E1-E6 and the rate conditions in the statement of the theorem,
Vinh (4 (1) = gai (f04)) = N (0,054(1)) (24)
where
o4(1) = lim E [si] [Fo (Fu), Fu (vi) < Fo(w)] [M7'TiM; ]
Fop—1 1 Wqg w w)yLw 7 w 1 1 00’
with [A],, denoting the upper left entry of matrix A, M; and I'" are defined above.

Given Assumptions A2(i)-(iii), limp, 1 E [s; |Fuw (Fw) , Fw (vi) < Fuw(w)] = 1. Moreover, let ma(1) be defined as ma(1)
in the text, with Fy,(w;) replaced by F,,(w;), which we will abbreviate by Fj replaced by Fj in what follows. Finally, we
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write K; (1) = K((F; —1)/h), P;(1) = (1, (Fj—1),....(F; - 1)‘1%)’, and Y; = y; — gaa(ajBa), and let K; (1), P;(1),

and Y; be defined accordingly with F\j and B\ 4 replaced again by Fj and Soa.
First, letting ¢’ = (1,0, ...,0)" denote a vector of dimension ((q + 1) x 1), note that m (1) is defined as the first element
of the ((¢+ 1) x 1) vector

ma(l)=e <nlh Zsiﬁiu)fg (1) 732-(1)’> (nlh Z s Pi(1) K (1) 32-) ,

while m (1) is the first element of the corresponding ((g + 1) x 1) vector, i.e.

ma( ( s ZS i Pi( 1) P; (1)’) (nlh ;Szpz(l)Kz (1)%) .

Also note that gai (foa) is the probability limit of ma(1). Given Assumption E5 and recalling assumptions A2(i) and
E1, the empirical process

satisfies a central limit for i.i.d. random variables. Thus, standard mean value expansion arguments (joint with the fact
that for any two symmetric, nonsingular matrices A; and As it holds that A7' — A;' = A7 (A2 — A1) AT!) yield that:

Vnh (ma(1) —ma(1)) = op(1).

Then, recalling that the density of F,, (w;) is uniform on (0,1), note that by E1, E6, and a Law of Large Numbers for
triangular arrays:

% 3G s P K (1) Pi(1) B My,
i=1

where M; was defined before, and the ((¢ + 1) x (¢ + 1)) diagonal matrix is given by:

1 0 ... O
G, = 0 h
0 ... ... ht

Next, using the fact that min{r,q+ 1} (left) derivatives of A(-) exist and are finite by Assumption E3, we obtain after
standard arguments for local polynomial estimators:

Vnh (ma(1) — ga (90A))

= ¢M; (14 0,(1

K (1) uy

ML (14 0p(1) k(1) (é (VI 21 )

min{r, q + 1}!

Z h SJPJ
! iGﬁlsj
x(Fj—1)mi““vq+1}) 7

—|—6'M1_1(1—|—op(1))\/%jinglsjP(l)Kj(l)sn(l)

= In,h"_l-[n,h +I-IIn,ha

where VTin{T‘q+1}/\(Fj)|Fj:1 denotes the min{r,q + 1}-th left derivative of \(-) evaluated at F; = 1, while (see e.g.
Masry (1996, p.575)):

1
i 1
(1 _ F—1 mln{r,q+1}/ min{r, q+1})\ ) L -
&€ ( ) ( J ) o mln{r q+1}'v ])’ijl T(F;—1)

1

min{r,q+1}
mv a )\ |F =1) (1—T)d’7'
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Now, given E1, E5-E6, by a CLT for triangular arrays, we have that:

Lun 35 N (0,6%(1)), (25)

where 0% (1) was defined in Theorem 2. Note that II, ; and III, j, on the other hand, characterize the bias term. In
particular, note that our estimator is computed at the boundary, but that for local polynomial estimators of odd order,
the bias is of the same order in the interior and on the boundary, see e.g. Fan and Gijbels (1996). Thus, starting with
the case of r > ¢+ 1, and using similar arguments to the ones used for Proposition 2 and Theorem 4 of Masry (1996),

it follows that:
[ ZGh s;P(1)K;(1 )en(l)] = o(h™)

and:
1 =
‘FZGh s;P(1)K;(1)en(1) — E L/E;Gh SjP(l)Kj(l)En(l):H

thOp (%) = Op(hqﬂ)»

n%hz
where we note that the last term does not involve a In(n) term as in Masry (1996) since we are dealing with the pointwise
(and not the uniform) case. Moreover, note that for IT, p:

I S it pn (g (9 )

x (Fj — 1)(q+1)) — Bt

1
= @) _
? (n%h%>

where the ((g+ 1) x 1) vector B(gy1) is defined as:

p—(a+1)

ff’l VI K (v)dy
BM+U:: S
f?l V2K (v)dy
For the case of r < g, we follow Fan and Guerre (2016). Define

(@ao ( ,Gaq (1))
= arg min B s (yz gaz(zifoa) = > ar (Fulw:) — 1)* K(%) ,
ik 0<k<q
where T4 (1) = @a0 (1). Now,
Vinh (ia(1) = gai (foa)) = Vh (a(1) = @ao (1)) + Vah (@ao (1) = gar (foa)) (26)

where the first term on the RHS of (26) has indeed the same limiting distribution as in (25) regardless of r being larger
than ¢ or not. Hence, it suffices to consider the second term on (26). Our Assumption E3 is equivalent to Assumption
S2 in Fan and Guerre (which in turn implies their S1), while our Assumption E6 corresponds to their Assumption K.
Finally, their Assumption X holds since F,(w;) has marginal density equal to one everywhere on (0,1). Thus, it follows
from Theorem 1 in Fan and Guerre (2016), that

[@ao (1) — ga1 (6oa)| < CH"

and so the bias is of order A" whenever r < q.
Finally, to complete the proof, recall that ma(1) =aa(1) and moa(1) = aao(1), Given Al(ii), we can define

04 = ga1(@a(1)) and foa = g1 (aa0(1))

and by a mean value expansion, for 04 € (67,4, 00A>

@a0(1) = aao(1) = g (8a) = 9 (60a) = Va9 (94) (6a — 04 )
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Hence,

vk (04— 004 )

1 ~
= m\/?ﬁ (@a0(1) — aao(1))

and (24), it follows that

Vnh (5,4 - 90A> 4N (O, Vejj((;zA)2> .
O

Proof of Theorem 3: By a similar argument as in the proof of Theorem 2,

Vnh (M (1) — garn (Boar)) 4N (05012\/1(1)) )

where Uif(l) was defined in Theorem 3. The statement in the Theorem then follows by an application of a standard

delta method argument as in the proof of Theorem 2. [J

Proof of Theorem 4: First, note that, the auxiliary model writes as

yi = g1 (Boar) garz ( ZBOIM) A(ps) + s,

and let:

1 n ) ys p(zi)—4
nhy, HT 2im Si 7 )K( hoy

gnr2 (=) Bar
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We first show that _
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where var (.) denotes the estimated variance. Then, by a standard delta method argument:

4 N(0,1)
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where 0opr = mb, (1) . Now,
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and because of Assumption E1I0M and the non-negativity of the kernel function:
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by rate condition (i). As for the denominator of I/, pn,,m, letting u = = =3

= [ S ()

- ol (525 e [ e (5

1
= i/ Pr (s =1|p = uhp + 0) K (u) fp (uhp + 9) du
Hn [,

= H "Pr(s=1lp=1-H)f, 1 —H)+o0(1) =c(1) + o(1)

where the second last equality follows from Assumption E8M(i), and the last equality from E8M(ii). Also, recall that
¢(1) = fp(1) when n =0. B
As for the limiting distribution of the numerator in Il p, m, recalling that u,,; = % and v = %

gnr2 (@) Bar
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where the last equality follows from Assumption EOM. Hence, as nh, H” — 0o, using standard arguments together with
E7M, it follows that:
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E i=1 Silg, iK (%) d
— N(0,1),

\/IK JRCD 1ﬂ (ﬁ;;é)

which gives the limiting distribution of the re-scaled I In,hw m. It remains to show that

Vnhy H (i (8) —miy (6)) = op(1),

as this implies that
V nhy, HM (917/111 (mﬁxf (6)) - 9;411 (7%11?\4 (6))) = Op(l)-

Given Assumption E4M, and recalling that nh, H>~" — 0, to this end, it suffices to show that
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Given Assumption ETM,
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where the 0,(1) term follows because of E6M, ESM, sup, |=,(2)] = O(R]), T > max{2,d.}, nhpyhi" H? — 0 as well as
standard change of variables and integration by parts arguments. Now,
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For the first term I;?yhl,hp, note that:
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by Assumptions E6M, E7M, and bandwidth condition (iii). For the second term on the RHS of I,y n,, InB,hl,hp7 can
be written as a second order U-statistic:
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Given that %, ; has conditional mean zero, it follows that E [\I’i,j,n|si,xi,zi,pi] = 0, and hence that the U-statistic is
degenerate. Also, by change of variables and standard arguments, from nhfz hiH T — oo and ETM we have that:

E [\Ilf]n] = o(n).
Hence, by Lemma 3.1 in Powell et al. (1989) and the degeneracy of the U-statistic, we can conclude that the second term

(”(i\/_ﬁl) ZZ (Pigin + \Ijj’i’”)) = op(1),

i=1 j>i

which completes the proof. [J

37



Table 7: Descriptive Statistics

Variable Description Mean | Std. Dev. | Min | Max
Dependent variable: DOCVIS Number of doctor visits/seen in the last month 0.401 0.796 0 9
Endogeneous covariate: H Self-reported health is poor or fair 0.252 0.434 0 1
Male Sex=male 0.437 0.496 0 1
Edu Highest educational qualification: GCSE OL or higher | 0.557 0.497 0 1
Inc Post-tax weekly presonal income is at least £250 0.185 0.389 0 1
Tempsick Out of work as temporarily sick 0.004 0.064 0 1
Hlim Activities in last month limited by health 0.109 0.312 0 1
Excluded Covariates (not in ;)

Perm_Sick Current work status - permanently sick 0.029 0.167 0 1
Retired Current work status - retired 0.276 0.447 0 1
Soc3 Social class - other non manual 0.192 0.394 0 1
Soc4 - skilled manual 0.336 0.472 0 1
Soch - semi skilled manual and personal services 0.150 0.357 0 1
Soc6 - unskilled 0.049 0.216 0 1
Accom Accommodation - Bungalow 0.106 0.308 0 1
Wine Number of units of wine consumption last week 1.483 3.677 0 53
Winesq wine squared /100 15.718 87.877 0 2809
Crntsmkr Current smoker 0.286 0.452 0 1
Disab Has long standing disability 0.343 0.475 0 1
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