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ABSTRACT
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May AI Revolution Be Labour-Friendly? 
Some Micro Evidence from the Supply 
Side*

This study investigates the possible job-creation impact of AI technologies, focusing on the 

supply side, namely the providers of the new knowledge base. The empirical analysis is 

based on a worldwide longitudinal dataset of 3,500 front-runner companies that patented 

the relevant technologies over the period 2000-2016. Obtained from GMM-SYS estimates, 

our results show a positive and significant impact of AI patent families on employment, 

supporting the labour-friendly nature of product innovation in the AI supply industries. 

However, this effect is small in magnitude and limited to service sectors and younger firms, 

which are the leading actors of the AI revolution. Finally, some evidence of increasing 

returns seems to emerge; indeed, the innovative companies which are more focused on AI 

technologies are those obtaining the larger impacts in terms of job creation.
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1. Introduction 

The past two decades have witnessed major developments in artificial intelligence (AI) 

technologies. Similar to previous technological revolutions - as the diffusion of the ICTs in the 

last decades of the past century - AI displays a remarkable disrupting potential across firms, 

industries, economies and societies.  

In particular, the possible adverse impact of AI diffusion and robotics on employment has 

generated concerns and vivid discussions in the academic debate and in the society as a whole. 

Indeed, the arrival of internet of things, self-driving autonomous cars and widespread robots 

has raised again a fear of a new wave of ‘technological unemployment’. In this vein, according 

to Brynjolfsson and McAfee (2011 and 2014), the root of the current employment problems is 

not the Great Recession, but rather a “Great Restructuring” having an ever-bigger impact on 

jobs, skills, and the whole economy. In fact, AI, self-learning algorithms and human-imitating 

robots can perform tasks usually requiring human beings’ intelligence and dexterity (such as 

speech recognition, decision-making advise, disease diagnostics, complex documents 

translation, performance of unhealthy and dangerous tasks and so forth; see Frey and Osborne 

2017). Moreover, Dobbs et al. (2015) from the McKinsey Global Institute estimate that, 

compared to the industrial revolution of the XIX century, automation and AI’s disruption of 
society is happening 10 times faster and at 300 times the scale. This kind of disruptive 

potentiality might affect each job and every task, although ‘matching tasks’ that are close 

substitutes for capabilities of AI are the most affected group so far (by, for instance, Uber, 

Airbnb, Linkedin, Amazon; see Ernst et al. 2018).  

However, one of the limitations of the current debate and the extant literature (see next section) 

is their sole focus on the demand side (that is the adoption of AI and robots as labour-saving 

process innovations in the downstream industries), while there is an obvious gap to be filled 

with regard to the supply side, that is the possible job-creation effect of AI technologies, 

conceived as product innovations in the upstream sectors. Indeed, if we adopt a Schumpeterian 

perspective (see Schumpeter, 1912; Porto et al., 2021), technological change cannot be reduced 

to labour-saving process innovation. The other side of the coin is the introduction of new 

products (both in manufacturing and services) which entail the raise of new branches of 

production and the creation of additional employment opportunities. 

As was the case of ICT, AI and robots may be seen at the same time as labour saving process 

innovations in the user sectors (think, for instance, to the massive adoption of robots in the 

automotive industry) and as labour-friendly product innovations in the supply industries (think, 

for instance, to the electronic industry, where robots are produced, or to the scientific and 

technical services, where AI algorithms are conceived). In this framework, AI products not 

only entail the emergence of entire new sectors or a substantial expansion of existing ones 

(such as those related to robotisation), but also the creation of brand-new employment 

opportunities such as those related to data processing, transactional procedures, 

customerization, remote collaboration, etc. 

The aim of this study is precisely to assess the possible job-creation impact of AI technologies, 

focusing on the supply side, namely the providers of the new knowledge base. In more detail, 

our analysis will be based on a worldwide set of 3,500 front-runner companies that patented 

the relevant technologies over the 2000-2016 time span. Controlling for the other main drivers 

of employment at the firm level - namely output, cost of labour and capital formation - our 
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purpose is to detect a possible labour-friendly impact of AI and robots, seen as product 

innovations within the supply side of the new technologies.1 

The paper is organised as follows. Section 2 summarises the extant literature, emphasising its 

limited focus on the labour-saving impact detectable in the adoption of new technologies. 

Section 3 describes the microeconometric methodology used in our analysis. Section 4 

discusses the data and the sample used for the empirical analysis. Section 5 presents and 

discusses the main results. Finally, Section 6 wraps up and puts forward some conclusions and 

tentative policy implications. 

 

2. The literature 

As mentioned above, the extant economic literature focuses on the possible labour-saving 

effect of AI and robots, conceived as process innovation in the user industries. In doing so, 

recent contributions belong to a long-lasting tradition of studies devoted to the controversial 

relationship between technology and employment (for a long-term historical analysis, see 

Staccioli and Virgillito, 2021; for a recent theoretical reprise of the issue, see Acemoglu and 

Restrepo, 2018 and 2019).  

Indeed, the relationship between innovation and employment is a ‘classical’ controversy, where 
a clash between two views can be singled out. One states that labour-saving innovations create 

technological unemployment, as a direct effect. The other view argues that product innovations 

and indirect (income and price) effects can counterbalance the direct effect of job destruction 

brought about by the process innovations incorporated in new machineries and equipment (for 

fully articulated surveys, see Pianta, 2005; Vivarelli, 2014; Calvino and Virgillito, 2018; Ugur 

et al., 2018; Barbieri et al., 2020). 

As far as the employment consequences of the current widespread diffusion of AI and robots 

are concerned, the empirical literature provides both macroeconomic forecasting scenarios and 

some sectoral and microeconomic evidence. 

As far as the macro scenarios are concerned, Frey and Osborne (2017), using a Gaussian 

process classifier applied to data from O*Net and US Department of Labor, predict that 47% 

of the occupational categories, mostly middle- and low-skilled professions, are at high risk of 

being substituted by AI algorithms and robots (including a wide range of service/white-

collar/cognitive tasks such as accountancy, health professions, logistics, legal works, 

translation and technical writing).  

However, Arntz et al. (2016 and 2017), proposing the same exercise but using also information 

on task-content of jobs at individual-level, conclude that only 9% of US jobs are at potential 

risk of automation. Their main message is that, within the same occupation, some tasks can be 

automatized while others cannot and therefore the associated job can be preserved. 

Extending the analysis to a multi-country approach, Nedelkoska and Quintini (2018) estimate 

the risk of automation for individual jobs in 32 OECD countries. Their evidence shows that 

 
1 Notice that our research purpose is to investigate the possible labour friendly nature of the new knowledge basis; 

therefore, our empirical sample does not aim to be representative but is deliberately limited to those companies 

that are active in AI and robotic patenting. 
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about 14% of jobs are highly automatable (probability of automation over 70%), while another 

32% of jobs present a risk of being substituted in between 50 and 70%, pointing to the 

possibility of significant changes in the way these jobs will be carried out as a result of 

automation.  

At the European level, Pouliakas (2018) - using data on tasks and skill needs collected by the 

European Skills and Jobs Survey (ESJS) - bundles jobs according to their estimated risk of 

automation. Following Frey and Osborne (2017) and Nedelkoska and Quintini (2018), the 

author utilises highly disaggregated job descriptions and shows that 14% of EU adult workers 

are found to face a very high risk of automation.  

Turning our attention to the sectoral and microeconomic evidence, the extant empirical 

literature has particularly focused on robotisation. 

For instance, Acemoglu and Restrepo (2020) investigate the employment effect of the exposure 

to robots, using the sectoral “International Federation of Robotics” (IFR) data (national 

penetration rates instrumented by European data). According to their 2SLS estimates, 

robotization has a significant negative impact on the change in employment and wages in each 

US local labour market over the period 1990 -2007. In more detail, they show that one more 

robot per thousand workers reduces the employment/population ratio by about 0.18/0.34%. 

Following the approach adopted by Acemoglu and Restrepo, Chiacchio et al. (2018) apply it 

in the context of EU labour markets. They assess the impact of industrial robots on employment 

and wages in 116 NUTS regions of six EU countries, namely Finland, France, Germany, Italy, 

Spain, and Sweden, largely representative of the European automation. Their results suggest 

that robot introduction is negatively associated with the employment rate (one more robot per 

thousand workers reducing the employment/population ratio by about 0.16/0.20%). 

Graetz and Michaels (2018) use panel data on robot adoption (IFR and EUKLEMS data to 

estimate robot density) within industries in 17 countries from 1993 to 2007. Dividing 

employees in three skills’ groups (namely high-, medium- and low-skilled workers), their 

estimated employment coefficients for the two higher-skilled groups result positive (but limited 

in magnitude and not always significant), while the coefficient for the low-skilled workers turns 

out to be large and negative. However, their main finding is at odds with the studies discussed 

above, since they conclude that robots do not significantly reduce total employment, although 

they do reduce the low-skilled workers’ employment share.  

Finally, Dauth et al. (2017) propose a local empirical exercise on Germany using IFR data over 

the 1994-2014 time-span, using a measure of local robot exposure for every region. They find 

no evidence that robots cause total job losses, although they provide evidence that robots do 

affect the composition of aggregate employment: while industrial robots have a negative 

impact on employment in the manufacturing sector, there are positive and significant spillover 

effects as employment in the non-manufacturing sectors increases and, overall, 

counterbalances the negative impact in manufacturing. 

As obvious on the basis of what discussed so far, the extant literature only focuses on the 

possibly negative employment impact of AI and (particularly) robots conceived as process 

innovations, while there is no evidence so far about the possible positive employment effect of 

these new technologies, considered as product innovations in the supply sectors. This is 

unfortunate, since product innovations are  theoretically considered as drivers of job creation 
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(see Katsoulacos, 1984; Vivarelli, 1995; Edquist et al., 2001) and several empirical studies 

have provided evidence in support of this view (see Freeman and Soete, 1987 and 1994; 

Bogliacino and Pianta, 2010; Bogliacino et al., 2012; Van Roy et al., 2018). 

However, the labour-friendly impact of product innovations may vary according to their nature. 

Indeed, new products may be either brand-new entities or substitutes of obsolete ones. If 

revenues from new products cannibalize the sales of old ones, the net result in terms of 

employment expansion might be ambiguous. For instance, a new AI algorithm might be 

alternatively an entire novelty or an advanced substitute of a previous version of a given 

software package. 

In other words the “welfare effect” should be compared with the “substitution effect” (using 

the terminology originally put forward by Katsoulacos, 1984 and 1986; see also Vivarelli, 1995 

and Dosi et al., 2021). Empirically, this means that the expected sign of the correlation between 

product innovation and employment is positive, but uncertain in magnitude. 

The aim of the next sections is to fill the discussed gap in the recent literature devoted to the 

employment impact of automation, providing some novel evidence on the link between product 

innovation and employment using longitudinal data from the front-runner companies in 

patenting AI and robot technologies worldwide. 

 

3. Econometric methodology  

Similarly to the prior microeconometric literature investigating the employment effects of 

technological change using longitudinal firm-level datasets (see Van Reenen, 1997; 

Lachenmaier and Rottmann, 2011; Bogliacino et al., 2012; Van Roy et al., 2018), we derive 

our empirical specification from a stochastic version of a standard labour demand, augmented 

with an innovation proxy. Along these lines, the labour demand function for a panel of firms i 

over time t is defined as: 

 𝒍࢏,𝒕 = ૚ࢼ 𝒚࢏,𝒕 + ૛ࢼ 𝒕,࢏࢝ + ૜ࢼ 𝑰࢏,𝒕 + 𝒕,࢏࢜࢕࢔࢔࢏ ૝ࢼ + 𝝁࢏ +             𝒕,࢏ࢿ
 

                 with:  i = 1, .., n;     t = 1, .., T 

(1) 

 

Lower case letters denote natural logarithms, l corresponds to labour (proxied by employment 

level), y to output (proxied by turnover), w to wages (proxied by labour cost per employee), 

and I to gross investments (proxied by growth in fixed capital). The labour demand function is 

augmented with a variable innov capturing technological change due to innovations. Lastly, 𝜇 

is an unobserved firm-specific and time-invariant effect and 𝜀 the usual error term.   

We subsequently move from this static expression (1) to a dynamic specification as in (2) in 

order to account for viscosity in labour demand (see Arellano and Bond, 1991; Van Reenen, 

1997): 

 𝒍࢏,𝒕 = 𝒕−૚,࢏𝒍 ࢻ + ૚ࢼ 𝒚࢏,𝒕 + ૛ࢼ 𝒕,࢏࢝ + ૜ࢼ 𝑰࢏,𝒕 + 𝒕,࢏࢜࢕࢔࢔࢏ ૝ࢼ + 𝝁࢏ +  𝒕         (2),࢏ࢿ
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  i = 1, .., n;    t = 1, .., T    :ࢎ𝒕࢏࢝            

 

As measure for technological change, we use AI and non-AI patent families (respectively 

denoted by 𝑃𝑎𝑡𝑖,𝑡𝐴𝐼 and 𝑃𝑎𝑡𝑖,𝑡𝑁௢௡−𝐴𝐼), as outlined in specification (3). In essence, this specification 

aims to proxy for the technological progress brought about by firms through the development 

of innovative and marketable (and hence patentable) technologies in AI and non-AI related 

fields: 

𝒕,࢏࢜࢕࢔࢔࢏૝ࢼ  = 𝒕𝑨𝑰,࢏𝑷𝒂𝒕 ࢽ +                                                              𝑨𝑰−࢔࢕𝒕𝑵,࢏𝑷𝒂𝒕 ࢾ
  i = 1, .., n;     t = 1, .., T  :ࢎ𝒕࢏࢝                

(3) 

 

Dynamic labour demand specifications as in (2) suffer from simultaneity and endogeneity 

problems, which may lead to a biased estimation of the different covariates if they are not 

accounted for by the empirical model.2 To tackle both problems, we use a system GMM 

approach as developed by Blundell and Bond (1998, 2000). The system GMM model employs 

instrumental variables to provide consistent and efficient estimates when dealing with dynamic 

panel data, as is the case for our data. In a system of equations (i.e. in level equations and 

equations in differences), lagged and differenced lagged variables are used to solve for 

persistency in times series and endogeneity. 

Unfortunately, possible problems of endogeneity are not confined to the lagged dependent 

variable. Other explanatory variables of the labour demand function may also be affected as 

pointed out in prior literature (e.g. Bogliacino et al., 2012; Van Roy et al., 2018). It might be 

the case that wage and employment are simultaneously decided, while the output and 

investment decisions may be jointly affected by a temporary shock. Therefore, in line with 

previous studies, all the explanatory variables have been considered as potentially endogenous 

to labour demand and instrumented when needed. 

In more detail, in the level equation, we used differenced values of the explanatory variables 

as instruments, i.e. twice-lagged or thrice-lagged differences in labour demand, AI and non-AI 

patent families, gross investments and cost of labour. The level equations also include a set of 

sector, country and year dummies. In the equations in differences we employed twice-lagged 

or thrice-lagged values of the above-mentioned right-hand side variables as instruments. The 

lag limits of the instruments were chosen both to satisfy the outcomes of the autocorrelation 

tests3 and to limit instrument proliferation, as highlighted in Roodman (2009a, b). 

 

 

 
2 For instance, a pooled ordinary least squares (POLS) estimation of the labour demand leads to a biased 

coefficient estimate of the lagged dependent variable, as the firm-specific part of the error term is positively 

correlated with the lagged dependent variable. 
3 Reported in the relevant tables. 
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4. Data and sample 

4.1 Data 

Our novel dataset is based on a worldwide panel of firms patenting in AI. While traditionally 

considered as a proper measure of a commercially valuable innovation output (Griliches, 1990; 

Ernst, 1995), limitations of patents in capturing innovations are well known (e.g. Hussinger, 

2006; Hall et al., 2014): for instance, the fact that companies may prefer not to patent their 

inventions to keep them secret. Moreover, patents better proxy product rather than process 

innovations, which are often embodied in machineries and can be more easily kept secret than 

products (Levin et al., 1987; Lissoni et al., 2013). Yet, patents have the appealing advantage 

to allow identifying on a global scale firms that innovate in AI. Accordingly, an increasing 

number of studies relies on patents to track and analyse the development and adoption of AI 

technologies in production processes and their economic consequences (Webb et al., 2018; 

WIPO, 2019; Baruffaldi et al., 2020; Van Roy et al., 2020; Damioli et al., 2021; Martinelli et 

al., 2021). 

However, the identification of patents related to AI technologies is a challenging task. There 

are neither an established definition of the boundaries of the AI technological domain, nor an 

agreed methodology to empirically singling it out. On the one hand, conceptual definitions of 

AI typically insist on the ability of a system to perform human-like cognitive functions 

(learning, understanding, reasoning and interacting) aiming to obtain rational outcomes (Ertel, 

2018; Russell and Norvig, 2016). On the other hand, albeit AI technologies focus on a core of 

software technologies including, inter alia, machine learning, neural networks, logic 

programming and speech recognition, various studies consider a broader definition of AI 

including a combination of software and hardware components, as well as functional 

applications such as robots and “big data” (European Commission, 2018; Fujii and Managi, 

2018; WIPO, 2019).  

Van Roy et al. (2020), on which this study relies upon for the selection of patents, follow the 

latter more comprehensive view by applying a keyword-based approach consisting in the 

search for specific terms in the title or the abstract of patents. An analogous approach to select 

AI patents has been pursued in previous studies on AI and robotics technologies (Keisner et 

al., 2015; De Prato et al., 2019; European Commission, 2018; Cockburn et al., 2019; WIPO, 

2019; Baruffaldi et al., 2020). Some of these studies applied their keywords’ search to patents 
falling in pre-selected technological classes (Keisner et al., 2015; Cockburn et al., 2019; WIPO, 

2019), while others relied on all patents falling in specific technological classes mapping to AI 

technology areas (e.g. Inaba and Squicciarini, 2017; Fujii and Managi, 2018; OECD, 2017).4  

In this study, we rather prefer unrestricting our patents to pre-determined technological classes 

in reason of the transversal nature of AI technologies that, as any other general-purpose 

technology, cut through many scientific disciplines and technological domains (Bianchini et 

al., 2020; WIPO, 2019).  Our list of keywords takes stock of the findings of prior relevant 

literature and is shown in Table A1 in Appendix A.  

 
4 Recent studies (e.g., Bianchini et al., 2020, Baruffaldi et al., 2020) also developed machine learning techniques 

to parse the corpus of publications and patents in order to identify AI-related content. Yet, such an approach is 

considered to be still at an initial stage of development requiring further improvements in order to able to provide 

robust results (Baruffaldi et al., 2020). 



8 

 

Text-mining searches have been conducted to retrieve the keywords in either the patent title or 

the abstract of the Spring 2018 edition of the PATSTAT database of the European Patent Office 

covering more than 90 patent authorities including all the major countries. (see Van Roy et al., 

2020 for additional details). We grouped retrieved patents in patent families to avoid double 

counting of the same or similar inventions filed in different patent offices. We then obtained 

key company characteristics of AI patent applicants through Bureau van Dijk Electronic 

Publishing (BvD) ORBIS databases. While the issues of coverage and data availability are 

known limitations of ORBIS, these are by far outweighed by its advantage of offering a 

comprehensive cross-country micro-level dataset for scientific research purposes (e.g. Gal, 

2013; Hallak and Harasztosi, 2019). We used patent application numbers to track applicant 

firms in the ORBIS Intellectual Property database, which we also exploited to retrieve all other 

non-AI patent applications of such firms, and matched location and economic information from 

the ORBIS Companies database. Figure A1 in Appendix A shows a synopsis chart illustrating 

the data collection process.  

 

4.2 Variables and sample 

After excluding observations with missing values in employment, value added, fixed assets or 

cost of labour and outliers in both levels and growth rates5, our final dataset covers 3,510 firms 

(resulting in 26,137 observations) active in AI patenting over the years 2000–2016. It provides 

a worldwide coverage and includes firms belonging to manufacturing and service sectors. It 

comprises information on firms’ patenting activities in AI and non-AI related fields, accounting 

information (including employment, turnover, value added, capital formation, and cost of 

labour), year of birth or consolidation, country location, and industrial activity (NACE sector 

at 2-digit level).  

Our dependent variable is the natural logarithm of the number of firm employees in head 

counts.6 Explanatory variables are derived from a standard labour demand function and include 

the natural logarithm of firm turnover, labour cost per employee and gross investments 

measured as the annual change in fixed assets. We expect a positive impact on labour demand 

of turnover and gross investments and a negative impact of labour cost. The models also control 

for industry-, year- and country-specific differences in employment dynamics. 

The key explanatory variable of interest is the natural logarithm of the number of AI patent 

families, which measure the development and adoption of the AI technology as broadly defined 

in the previous sub-section. In addition to AI patent families, we also take into account 

innovative efforts in non-AI related fields through the number of non-AI patent families.  

Since patents can differ both in economic and technological value, simple patent count may 

give a distorted measure of a firm's technological basis. Therefore, other indicators have been 

proposed to correct for quality or value of patents, such as forward citation-weighted patents 

and family size (Harhoff et al., 2003; Hall et al., 2005; Gambardella et al., 2008; Neuhäusler 

et al., 2011; Squicciarini et al., 2013; Van Roy et al., 2018). Weighting patents with forward 

citations is particularly difficult in the case of AI, as the real take-off of AI patenting activities 

take place relatively late (since the late 2000s), and boomed only from 2015 onwards 

 
5 Data cleaning and outlier treatment are described in Appendix A. 
6 The description of the variables used in the empirical analysis is summarised in Table B1 of Appendix B. 
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(Cockburn et al., 2019; WIPO, 2019; Van Roy et al., 2020). We therefore resume to using 

patent family size, i.e. the number of countries in which an invention is protected by a patent. 

Given the costs of acquiring patents in multiple jurisdictions, patent family size is often used 

to approximate the value that applicant attribute to the invention (Harhoff et al., 2003; Lanjouw 

and Schankerman, 2004; Johnstone et al., 2012). To get a measure at the firm level, we took 

the family size of the patent application as the average size of all applications a company made 

in each year, and we computed it separately for AI and non-AI patents. Before log 

transformation, all variables were shifted positively by 1 in order to accommodate 0 values. 

Table 1 reports the summary statistics of the dependent and explanatory variables used in the 

estimations. Firms in the sample report an average of over 4,200 employees, due to the large 

presence of big corporations. AI patent families are relatively low, about 1 AI-related family 

per year every three firms in the sample, due to a highly skewed distribution with a large 

number of firm-year pairs without any AI family (about 86% of all observations). By contrast, 

non-AI patent activity is considerable, 30 yearly patent families on average per each firm, 

which confirm that the sample includes highly innovative companies. As for patent family size, 

non-AI patents are filed in more patent offices than AI applications, even after conditioning on 

the firm-year pairs with at least one application: the conditioned average of the family size is 

1.8 for AI patents and 2.5 for non-AI patents. 

 

Table 1: Summary statistics of the dependent and explanatory variables in the full sample  

Variable name  Mean SD Min Max 

Employment 4,247 16,501 1 218,598 

Turnover 1.26E+09 5.30E+09 0 7.14E+10 

Gross investments 23.5 80.6 -100 894.2 

Cost of labour per employee 34,945.8 32,298.8 2.3 422,000.0 

AI patent families 0.3 1.6 0 78.0 

Non-AI patent families 30.0 107.9 0 1,391.0 

AI patent family size 0.3 1.0 0 51.5 

Non-AI patent family size 1.5 2.2 0 44.5 

Notes: the full sample includes 26,137 observations and 3,510 firms. Employment is the number of employees. 

Turnover, cost of labour per employee, fixed assets are expressed in EURs. Gross investments are shown as yearly 

percentage changes.  

 

Table 2 displays the distribution of firms according to their main activity, age and AI intensity, 

which are the subsamples of particular interest for the following analyses.7 The majority of the 

firms in the sample are active in manufacturing (55%, vs. 45% of active in services), have been 

founded or consolidated after 1990 (67%) and are small or medium enterprises (SMEs, 66%). 

The largest share of firms belongs to electronics (22%) and machinery (15%) manufacturing 

industries, and telecommunication (20%) and scientific services (10%). We refer to Table B2 

in Appendix B for a more detailed distribution of firms across sectors. We also consider 

intensity in AI patenting measured by the ratio of AI patents over the total number of patents 

 
7 We also run other estimations using additional splits (based, for instance, on firm’s size and on a more granular 
sectoral belonging), but we did not obtain relevant results (results available from the authors upon request). 
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in the period. In particular, we consider AI-specialized companies those with the ratio of AI 

patents over total patents above the revealed median in our sample (4.8%).8  

In terms of geographical distribution, the majority of firms are located in Asia (61%). This 

large percentage is driven by the dominating AI patenting activity of Japanese and South-

Korean firms as highlighted in prior studies (WIPO, 2019; Van Roy et al., 2020). About 31% 

of the firms are located in Europe, with highest percentages in Germany, France and the United 

Kingdom. Lastly, firms in the United States constitute around 6% of the sample.9 

 

Table 2: Distribution of firms across sectors, age, AI intensity and firm size 

  Full sample 
 Observations Firms 

  Numbers Perc. Numbers Perc. 

Sector     

   Services    10,871 41.59 1,573 44.81 

   Manufacturing 15,266 58.41 1,937 55.19 

Age of firm   

   Founded before 1990 9,933 38.00 1,165 33.19 

   Founded after 1990 16,204 62.00 2,345 66.81 

AI intensity   

   AI-specialized 12994 49.71 1,839 52.39 

   Non-AI-specialized 13,143 50.29 1,671 47.61 

Firm size     

   SME 15,995 61.20 2,306 65.70 

   Large  10,142 38.80 1,422 40.51 

Total 26,137 100.00 3,510 100.00 

Notes: Age is defined based on the year of foundation or consolidation of the firm. AI-specialized companies are 

those with the share of AI patents over total patents in the period above the median. SMEs are defined following 

the EC recommendation in which SMEs are denoted as firms with a number of employees below 250 and a 

turnover equal to or below € 50 million (European Commission, 2003). The number of SMEs and large firms does 

not sum up to the total number of firms because 218 firms have changed size category over the period.   

 

Correlations among the log-normal variables are presented in  

 

 

 

Table 3 for the full sample. We note the positive correlations between explanatory variables 

are low and indicate no issue of multicollinearity.10 

 
8 We also tried alternative thresholds for defining a firm as AI-specialized, namely to have the ratio above 10% 

or above the sample mean (14.4%), and found results analogous to those reported in the following tables. 
9 The low share of firms based in the United States and China depend on a recognised bias in ORBIS, that is its 

low coverage of these countries. Given this limitation in our data, we nevertheless opted to include U.S. and China 

to enhance the geographic coverage of the sample. We refer to Table B3 in Appendix B for a more detailed 

distribution of firms across regions and countries. 
10 The relative high correlations between patent families and family size of the same kind (AI vs. non-AI) do not 

constitute an issue, since we enter them separately in different models.    
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Table 3: Correlation matrix 

    [1] [2] [3] [4] [5] [6] [7] [8] [9] 

[1] Employment t 1                 

[2] Employment t-1 0.991 1               

[3] Turnover 0.935 0.932 1             

[4] Gross investments 
-

0.046 

-

0.071 

-

0.044 
1     

      

[5] 
Labour cost per 

employee 
0.154 0.166 0.259 -0.081 1   

      

[6] AI patent families 0.147 0.143 0.143 0.021 -0.048 1       

[7] AI patent family size 0.141 0.138 0.135 0.015 0.009 0.792 1     

[8] Non-AI patent families 0.644 0.640 0.634 -0.020 0.097 0.349 0.283 1  

[9] 
Non-AI patent family 

size 
0.487 0.483 0.495 -0.013 0.2401 0.13 0.181 0.637 1 

Notes: N=26,137 observations. Values expressed as natural logs, apart from gross investments that is expressed 

as the log difference of fixed assets between time t and t-1. Industry, country and year dummies are omitted due 

to space limitation. 

 

5. Econometric results 

5.1 Model selection 

To support the chosen methodology, Table B4 in Appendix B reports the estimation 

coefficients for pooled ordinary least square (POLS), fixed-effects (FE) and system generalized 

method of moments (SYS-GMM) models. Lagged employment is highly significant in all three 

different estimations tested. Its magnitude ranges from 0.495 in the FE estimation, to 0.854 in 

the POLS estimations. While FE tends to underestimate the impact of the lagged dependent 

variable, POLS, by contrast, overestimates it. Solving for persistency and endogeneity, it is 

therefore to be expected that the SYS-GMM estimates for the lagged dependent variable fall 

within these two boundaries. In fact, the coefficient for lagged employment, obtained from the 

one-step SYS-GMM at 0.523, meets the above methodological expectation. This finding 

applies to the standard setup as well as to an alternative one where, for reflecting patent quality, 

family size is used instead of patent counts (with FE estimates for lagged employment at 0.500, 

SYS-GMM at 0.532 and POLS at 0.857). Unsurprisingly, labour demand is persistent and 

autoregressive, confirming its path dependency. 

As per diagnostics for the baseline SYS-GMM model, the Wald test on the overall significance 

of the regressions and the LM tests on AR(1) and AR(2) autocorrelation dynamics confirm the 

robustness of the model. For the Hansen test on the adequate instruments, however, the null 

hypothesis is rejected. Blundell and Bond (2000) and Roodman (2009a) demonstrated that, for 

very large samples, the Hansen test tends to over-reject the null hypothesis. Following the 

extant literature, the model was re-estimated on random sub-samples comprising 10% of the 

baseline observations, where the null of the Hansen test was never rejected, suggesting the 
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validity of the selected instruments.11 Finally, given the observation that a high number of 

instruments may imply a downward bias in the standard errors for two-step SYS-GMM models 

(Roodman, 2009b), we opted for the more conservative one-step methodology.  

 

5.2 Baseline results 

The baseline estimation reported in Table 4 (applying the one-step SYS-GMM estimation on 

the full sample of 26,137 observations from 3,510 firms active in AI patenting) provides results 

that are in line with prior studies of similar setup (Bogliacino et al., 2012; Van Roy et al., 2018; 

Pellegrino et al., 2019). The coefficients of the explanatory variables are significant and have 

the expected sign. The large positive effect of lagged employment (0.52) confirms the 

persistence of labour demand.  The positive effect of turnover is large (0.26) and highly 

significant, while the effect of gross investments – which can also incorporate the adoption of 

process innovations – is more contained (0.03), but still significant at the customary 5% level. 

The labour cost per employee inhibits as expected labour demand with a strong negative effect 

(-0.52).  

Regarding our key innovation variables, model estimates show positive and highly significant 

effects of AI and non-AI patent families on employment. They imply a similarly moderate 

elasticity of labour demand to AI and non-AI patent families equal to about 3-4%. This finding 

supports the employment friendly nature of product innovation in general, and provides novel 

evidence for AI technological development. When patent family size is used, only AI patent 

families provide a significant positive effect on employment, while the effect of non-AI patent 

does not reach customary levels of statistical significance.  

 

5.3 Sample splits 

In order to enrich our understanding of the impact of AI innovation on employment, results for 

three sample splits are presented in Table 4 and 5, namely:  sector of main economic activity, 

age and AI intensity as defined in Section 4.2. We note that the overlaps between the groups 

singled out in the three splits are sufficiently limited to allow differentiated findings.12 

In all the considered subsamples, the main control variables in our specification - i.e., lagged 

employment, turnover, gross investments, and labour cost per employee - are significant and 

have the expected sign as in the baseline model.  

When distinguishing companies by sectoral belonging, the coefficients for AI and non-AI 

patents are only significant among service sector firms, but not for manufacturing ones (we 

recall that about 45% of the companies in the sample are in services, about three-quarters in 

what could be considered as knowledge-intensive sectors).13 Compared with the baseline 

estimations, the employment impact for firms in service industries is stronger in magnitude and 

 
11 Results are available from the authors upon request. 
12 As shown in the Venn diagram in Figure B1 in the Appendix, about 83% of the companies from the full sample 

are included in the union of the three groups (services, established after 1990 and AI-intensive), and about 25% 

of the firms are in the intersection of the three. 
13 The lack of significance of any of the patent variables in manufacturing companies is also observed when further 

distinguishing high-tech and low-tech manufacturing sectors (results available from the authors upon request). 
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applies for AI and non-AI patents defined according to both patent measures. In fact, it is only 

among services that the coefficient of both AI and non-AI patent family size is significant (0.05 

and 0.03, at 1% and 5% significance levels, respectively).  

Recognizing that many of today’s AI and robotics innovations goes back to the booming of the 

ICT revolution since the 1990s, we further investigated heterogeneous effects for sub-samples 

comprising firms established before and after 1990.14 The results for the focal patent variables 

show that AI and non-AI patents are only significant for the younger companies (around 2/3rd 

of the firms in the sample). The effects observed for these firms turn out to be highly significant 

for both AI and non-AI patent counts, while patent family size leads to significant coefficients 

only for AI technologies, similarly to the baseline scenario.  

Some companies stand out even among the technologically active firms constituting our 

sample, based on the relative importance of their AI patents.15 The estimation results show that 

AI and non-AI patents are only significant for the set of AI-specialized companies (in this case, 

the choice of the patent measure - count or family size - does not make any difference with 

regard to the level of significance). This is an important result, hinting at the magnitude of 

potential job creation by the leading front-runner product innovators in AI; moreover, the 

positive and significant effect of their non-AI patents on labour demand underlines the fact 

that, even for AI-specialized firms, AI turns out to be complementary to other labour friendly 

innovations.  

Finally, in all the estimations reported in Table 4 and 5 (with the only exception of patent 

counts in services) the labour-friendly impact of AI technologies is larger in magnitude - and 

sometimes more significant - than the labour-friendly effect of non-AI innovations. If we 

jointly take into account this outcome and the observed role of AI-intensive firms in driving 

the detected job-creating effects (see above), we may conclude that the emerging AI 

technologies are those that drive the overall positive employment impact of product innovation 

in the investigated companies. 

 

 

 
14 1990 may be an arbitrary threshold; we note however that adjusting it by 5 years has limited impact on the 

findings (results available from the authors upon request). 
15 Recall that we refer to those specializing in AI as the firms that are above the median in the relative share of AI 

technologies among their patent portfolios. 
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Table 4: Results from GMM-SYS analysis: baseline estimations and estimations split by industry and age  

  
Baseline 

Industry Age of firm 

  Services Manufacturing Founded before 1990 Founded after 1990 

Employment t-1 0.523*** 0.532*** 0.539*** 0.552*** 0.479*** 0.487*** 0.274*** 0.285*** 0.553*** 0.567*** 

 (0.034) (0.035) (0.045) (0.046) (0.047) (0.048) (0.063) (0.065) (0.038) (0.039) 

Turnover 0.257*** 0.264*** 0.205*** 0.211*** 0.256*** 0.264*** 0.386*** 0.383*** 0.210*** 0.225*** 

 (0.041) (0.041) (0.048) (0.048) (0.053) (0.054) (0.114) (0.113) (0.037) (0.037) 

Gross investments 0.033** 0.033** 0.024* 0.024* 0.053* 0.055* 0.086* 0.086* 0.028*** 0.027*** 

 (0.015) (0.015) (0.013) (0.013) (0.030) (0.031) (0.051) (0.051) (0.010) (0.010) 

Labour cost per empl. -0.518*** -0.528*** -0.433*** -0.448*** -0.569*** -0.574*** -0.650*** -0.664*** -0.465*** -0.472*** 

 (0.035) (0.036) (0.044) (0.044) (0.057) (0.058) (0.107) (0.106) (0.034) (0.034) 

AI patent families 0.034***  0.047**  0.019  0.014  0.044***  

 (0.013)  (0.021)  (0.015)  (0.022)  (0.015)  
Non-AI patent families 0.028***  0.052***  0.010  0.007  0.035***  

 (0.009)  (0.015)  (0.011)  (0.019)  (0.010)  
AI pat. family size  0.028***  0.048***  0.014  -0.003  0.042*** 

  (0.010)  (0.015)  (0.012)  (0.016)  (0.012) 

Non-AI pat. family size  0.014  0.035**  -0.002  0.005  0.013 

  (0.009)  (0.014)  (0.011)  (0.017)  (0.010) 

Wald test 92,449*** 555,160*** 3,897*** 3,640*** 337,965*** 13,370*** 329.4*** 349.4*** 461,221*** 374,500*** 

Hansen test (p-value) 6.56e+08*** 2.88e+13*** 1,106*** 585.9*** 33.36*** 30.96*** 4.32e+10*** 1.84e+10*** 51.35*** 2.05e+24*** 

AR (1) -11.160*** -11.040*** -8.674*** -8.646*** -7.346*** -7.276*** -3.924*** -3.953*** -11.320*** -11.170*** 

AR (2) -1.992** -2.116** -0.943 -1.030 -1.797* -1.937* -1.444 -1.615 -0.705 -0.803 

AR (3) -0.585 -0.430   -0.510 -0.323     

Instruments 108 108 83 83 90 90 92 92 98 98 

Obs. 26,137 26,137 10,871 10,871 15,266 15,266 9,933 9,933 16,204 16,204 

N. of firms 3,510 3,510 1,573 1,573 1,937 1,937 1,165 1,165 2,345 2,345 

Notes: All variables are taken in natural logs, apart from gross investments that is expressed as the log difference of fixed assets between time t and t-1. All models include industry, 

country and year dummies. One-step GMM robust standard errors are reported in parentheses. Instrumental variables compromise 2-year lags. *** p<0.01, ** p<0.05, * p<0.1 
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Table 5: Results from GMM-SYS analysis: baseline estimations and estimations split by AI intensity  

  
Baseline 

AI intensity 

  AI specialized Non-AI-specialised 

Employment t-1 0.523*** 0.532*** 0.579*** 0.583*** 0.440*** 0.446*** 

 (0.034) (0.035) (0.037) (0.036) (0.052) (0.054) 

Turnover 0.257*** 0.264*** 0.207*** 0.210*** 0.219*** 0.241*** 

 (0.041) (0.041) (0.043) (0.043) (0.084) (0.086) 

Gross investments 0.033** 0.033** 0.022* 0.021 0.052* 0.054* 

 (0.015) (0.015) (0.013) (0.013) (0.027) (0.028) 

Labour cost per empl. -0.518*** -0.528*** -0.495*** -0.498*** -0.532*** -0.543*** 

 (0.035) (0.036) (0.039) (0.039) (0.059) (0.059) 

AI patent families 0.034***  0.046***  0.029  

 (0.013)  (0.016)  (0.021)  
Non-AI patent families 0.028***  0.040***  -0.001  

 (0.009)  (0.010)  (0.014)  
AI pat. family size  0.028***  0.039***  0.011 

  (0.010)  (0.015)  (0.013) 

Non-AI pat. family size  0.014  0.031***  -0.013 

  (0.009)  (0.010)  (0.015) 

Wald test 92,449*** 555,160*** 49,771*** 63,761*** 6.38e+06*** 4.42e+06*** 

Hansen test (p-value) 6.56e+08*** 2.88e+13*** 48.91*** 1.68e+10*** 3.12e+11*** 35.42*** 

AR (1) -11.160*** -11.040*** -10.330*** -10.140*** -6.688*** -6.586*** 

AR (2) -1.992** -2.116** -2.090** -2.203** -0.926 -1.118 

AR (3) -0.585 -0.430 -0.981 -1.003   

Instruments 108 108 101 101 96 96 

Obs. 26,137 26,137 12,994 12,994 13,143 13,143 

N. of firms 3,510 3,510 1,839 1,839 1,671 1,671 

Notes: All variables are taken in natural logs, apart from gross investments that is expressed as the log difference of fixed 

assets between time t and t-1. All models include industry, country and year dummies. One-step GMM robust standard errors 

are reported in parentheses. Instrumental variables compromise 2-year lags. *** p<0.01, ** p<0.05, * p<0.1 

  

6. Conclusions 

In contrast with a literature solely devoted to forecast and assess the possible labour-saving impact of 

automation in the user sectors, this paper departs from a view considering AI devices (including robots) 

only as process innovations and investigates the possible labour-friendly nature of these technologies, 

seen as product innovations in the supply industries. Our main results can be summarised as follows. 

Our estimates reveal a positive and significant impact of AI patent families on employment, supporting 

the labour-friendly nature of product innovation in the AI supply industries. Interestingly enough, this 

positive employment impact is additional and larger when compared to the job creation effect of other 

patenting activities. 

However, the labour-friendly employment effect of patenting in AI technologies is small in magnitude 

(the estimated elasticity being equal to 3/4%) and unlikely able to compensate the possible labour-saving 

impact in the downstream user industries (see the studies surveyed in Section 2). 

Moreover, the positive employment impact is limited to service sectors and younger firms, which are the 

leading actors of the AI revolution. 

Finally, some evidence of increasing returns seems to emerge; indeed, the innovative companies which 

are more focused on AI technologies are those obtaining the larger effects in terms of job creation.  
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Putting together our results, we can conclude that the possible employment benefits of AI technologies 

are, at least so far, mainly coming from companies that are at the core of the current technological 

revolution. 

These pieces of evidence suggest that technological leaders within the emergence of the AI paradigm can 

realize (modest) labour-friendly outcomes; however, heterogeneity is also detected, with manufacturing, 

older and less innovative companies unable to couple product innovation with job creation. 

In terms of (tentative) policy implications, these findings call for a cautious aptitude in considering the 

actual magnitude of the job creation effect of new technologies: compared with the labour-saving impact 

implied by the usage of the AI technologies (massive according to some studies, see Section 2), the 

labour-friendly extent in the supply industries appears limited in magnitude and scope.  

Nevertheless, industrial and innovation policies should consider promoting these new and emerging 

sectors, being sure to achieve positive complementary targets in terms of employment creation. In 

particular, the revealed evidence of possible increase returns might support an increase in subsidies 

targeted to those companies already fully engaged in AI patenting. 

At the same time, safety nets and active labour market policies keep to being necessary to deal with the 

employment displacement due to the widespread diffusion of AI technologies in the user industries. 

Obviously enough, this study is affected by some limitations that might be overcome by future research. 

In particular, our results are micro-based and focusing on companies active in AI patenting, as discussed 

in Section 3. On the one hand, this means that our findings cannot be generalized at a more aggregate 

and macroeconomic level; on the other hand, this study does not claim to be representative of the entire 

population of firms, but rather to investigate the link between product innovation and employment within 

the sub-population of companies actively engaged in AI technologies. Further research is needed to 

assess the employment impact of the new knowledge basis at the level of the entire economy, taking into 

account both innovators, non-innovators and user firms. 
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Appendix A: Data collection and data cleaning  

Data collection 

Figure A1 presents a synoptic chart illustrating the data collection process. The Tools for Innovation 

Monitoring (TIM), which is an analytics tool developed by the Joint Research Centre to support policy 

making in the field of innovation and technological development, has been used for the patent search. 

TIM provides access to patent documents of the PATSTAT database from the European Patent Office 

and allows for text-mining searches. TIM contains patents from more than 90 patent authorities including 

all the major patenting countries and regroups patent documents per patent family when at least one of 

the members of the family is in English. 

To retrieve AI patents, text-mining techniques have been used to detect the keywords presented in Table 

A1 in either the patent title or the abstract. 

Once the relevant patent families in AI have been retrieved with this text-mining technique, the patent 

family number has been linked with the ORBIS Intellectual Property database. Subsequently, patent 

applicants have been linked to their BVD ID number to obtain account information on turnover, 

employment, fixed capital and sector. 

In a final step, the complete patent portfolio of the identified AI-active companies was retrieved to 

populate the dataset on non-AI patent families. 

 

Figure A1: Data matching procedure 
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Table A1: List of keywords related to Artificial Intelligence 

Artificial intelligence Face recognition Random Forest 

Artificial intelligent Facial recognition Reinforcement learning 

Artificial reality  Gesture recognition Robotics 

Augmented realities Holographic display Self driv 

Augmented reality Humanoid robot Sentiment analysis 

Automatic classification Internet of things Smart glasses 

Autonomous car Knowledge Representation Speech Recognition 

Autonomous vehicle Machine intelligence Statistical Learning 

Bayesian modelling Machine learn Supervised learning 

Big data Machine to machine Transfer Learning 

Computational neuroscience Mixed reality  Unmanned Aerial Vehicle 

Computer Vision Natural Language Processing Unmanned aircraft system 

Data mining Neural Network Unsupervised learning 

Data science Neuro-Linguistic Programming Virtual reality  

Decision tree Object detection Voice recognition 

Deep learn Predictive modeling  
Evolutionary Computation Probabilistic modeling   

 

Data cleaning  

Data cleaning was carried out in 3 steps. The first step was the identification of the most common clerical 

errors or typos in the key economic variables (number of employees, turnover, fixed assets and cost of 

employees) from the Orbis database (for instance, missing 000’s). Moreover, we used the imputation 

procedure put forward by Hallak and Harasztosi (2019); in particular, data for number of employees 

missing in a year between two known time points (not more than 4 years apart) were imputed applying 

a linear interpolation. No imputation was carried out for missing gross investments and cost of employees 

figures due to high annual fluctuation.  

In a second step, outliers in year-on-year growth rates for the key economic variables were removed (we 

decided to use growth rates in order to take into account firm’s size: i.e. an additional increase of 10 

employees may imply doubling the size of a small firm, while growing by a few percentage points for a 

large corporation). The thresholds applied corresponded to trimming a bit less than the bottom and top 

1% of the growth distributions of the different variables. 

Finally, in a third step, the top 1 percentile in levels were also trimmed with regard both the key economic 

variables as well as the patent variables.  
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Appendix B. Additional statistics 

 

Table B1: Description of the variables 

Variable name Variable definition 

Employment Natural logarithm of the number of employees expressed in head counts 

Turnover Natural logarithm of the turnover expressed in EURs 

Gross investments 
Natural logarithm of fixed assets expressed in EURs in t - natural logarithm of fixed 

assets expressed in EURs in t-1 

Labour cost per employee 
Natural logarithm of labour cost per employee (labour cost expressed in EURs/number of 

employees) 

AI patent families Natural logarithm of the number of AI patent families 

Non-AI patent families Natural logarithm of the number of non-AI patent families 

AI patent family size Natural logarithm of the average size of AI patent families 

Non-AI patent family size Natural logarithm of the average size of non-AI patent families 

 

Table B2: Distribution of firms across industries  

  Observations Firms 

 Numbers Perc. Numbers Perc. 

Manufacturing 15,266 58.4 1,937 55.2 

Primary 184 0.7 20 0.6 
Food 65 0.2 11 0.3 
Textile 112 0.4 16 0.5 
Paper 105 0.4 14 0.4 
Chemistry 784 3.0 90 2.6 
Pharmaceutical 364 1.4 39 1.1 
Minerals 157 0.6 18 0.5 
Metal 1086 4.2 129 3.7 
Electronics 5688 21.8 789 22.5 
Machinery 4254 16.3 516 14.7 
Transport 1468 5.6 167 4.8 
Other Manufacturing 999 3.8 128 3.6 

Services 10,871 41.6 1,573 44.8 

Construction 812 3.1 107 3.0 
Electricity/Water 153 0.6 17 0.5 
Retail trade 1,601 6.1 215 6.1 
Transport Services 84 0.3 13 0.4 
Hotel & Catering 29 0.1 4 0.1 
Telecommunication 4,538 17.4 696 19.8 
Finance 132 0.5 17 0.5 
Real Estate & Rental 74 0.3 14 0.4 
Scientific 2,536 9.7 348 9.9 
Administration/Education 756 2.9 114 3.2 
Other services 156 0.6 28 0.8 

Total 26,137 100 3,510 100 
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Table B3: Distribution of firms across regions and countries 

  Observations Firms 

 Numbers Perc. Numbers Perc. 

Asia 14,719 56.3 2,131 60.7 

   Japan 10,684 40.9 1,476 42.1 

   South-Korea 2,782 10.6 485 13.8 

   Taiwan 1,111 4.3 148 4.2 

   Rest of Asia 142 0.5 22 0.6 

Europe 10,105 38.7 1,104 31.5 

   Germany 2,338 8.9 286 8.1 

   France 1,846 7.1 177 5.0 

   United Kingdom 1,548 5.9 150 4.3 

   Italy 1,224 4.7 119 3.4 

   Spain 667 2.6 73 2.1 

   Sweden 511 2.0 59 1.7 

   Rest of Europe 1971 7.5 240 6.8 

United States 950 3.6 223 6.4 

Rest of World 363 1.4 52 1.5 

Total 26,137 100 3,510 100 
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Table B4: Model selection  

 Pooled OLS Fixed effects SYS-GMM (one-step) 

Employment t-1 0.854*** 0.495*** 0.523*** 

  (0.010) (0.027) (0.034) 

Turnover 0.107*** 0.208*** 0.257*** 

  (0.009) (0.028) (0.041) 

Gross investments 0.100*** 0.058*** 0.033** 

  (0.012) (0.009) (0.015) 

Labour cost per employee -0.094*** -0.231*** -0.518*** 

  (0.007) (0.016) (0.035) 

AI patent families 0.002 0.020*** 0.034*** 

  (0.006) (0.006) (0.013) 

Non-AI patent families 0.017*** 0.035*** 0.028*** 

  (0.002) (0.004) (0.009) 

Constant 0.611*** 1.346***  
  (0.121) (0.354)  
R-squared 0.986 0.636  
F test  (22, 3509)  
   213.2***  
Hansen test   6.560e+08*** 

Wald test   92449*** 

AR(1)   -11.16*** 

AR(2)   -1.992** 

AR(3)   -0.585 

Instruments   108 

Observations 26,137 26,137 26,137 

Number of firms 3,510 3,510 3,510 

Notes: All variables are taken in natural logs, apart from gross investments that is expressed as the log difference of fixed 

assets between time t and t-1. All models include year dummies. Pooled OLS and SYS-GMM models also include industry 

and country dummies. Robust standard errors are reported in parentheses. For GMM estimation, instrumental variables 

compromise 2-year lags. *** p<0.01, ** p<0.05, * p<0.1;  

 

Figure B1: Distribution of firms across sub-samples  

 
Notes: N=3,510 

252 (7%)    343    113 (10%)   (3%)  865 (25%) 468 (13%)            669               192 (5%) (19%) Rest: 608 (17%) Services Founded after 1990 AI-specialized 
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