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Research in Economics on COVID-19 posits an economy subject to disease dynamics, which
are often seriously misspecified in terms of speed and scale. Using a social planner problem,
we show that such misspecifications lead to misguided policy. Erroneously characterizing
a relatively slow-moving disease engenders dramatically higher death tolls and excessive
output loss relative to the correct benchmark. We delineate the latter, employing
epidemiological evidence on the timescales of COVID-19 transmission and clinical
progression. The resulting sound model is simple, transparent, and novel in Economics.
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COVID19: Erroneous Modelling and Its Policy Implications

1 Introduction

Since March 2020 there has been a rapidly expanding research effort dedicated
to COVID19 analysis across disciplines, inter alia, in Economics. A typical
analysis posits an economy, which is subject to a model of COVID19 dynam-
ics. One type of economic analysis describes a planner problem that seeks to
derive optimal policy. The latter trades off the costs of public health outcomes,
such as breach of ICU capacity and death, with the economic costs of suppres-
sion policy, including declines in production. Other papers model the decen-
tralized economy and the optimal decisions of agents, emphasizing individual
epidemic-related behavior, as well as externalities. In both cases the dynamics
of the disease and its features are at the core of the analysis.

This paper makes two contributions: one is to show that there is often seri-
ous misspecification of the model of the epidemic in Economics, with errors in
the set-up and in the parameterization, at odds with the epidemiological evi-
dence. The underlying cause for the misspecification is the failure to make the
distinction between two dynamic aspects of the disease: the epidemiological,
in particular, the timing and duration of the infectiousness period; and the clin-
ical, namely durations till symptoms onset, hospitalization, and death. Due to
erroneous modelling, wrong values are assigned to key parameters of disease
dynamics, while important parameters are omitted. As a consequence there is
misleading characterization of a relatively slow-moving disease.

Why should economists care about a model of disease dynamics? This is
important for the attempt to derive an optimal intervention plan. Getting the
speed of the disease wrong implies getting the timing of interventions wrong, in
a situation where timing is crucial. For example, in NYC, imposing lockdown a
week too late resulted in a five-fold increase of the epidemic, with over 750,000
people infected on the last week of March 2020. Issuing a stay-at-home order on
March 15th, or earlier, could have saved thousands of lives.! We place the issue
of policy timing at the center of the analysis. We use an optimal social planner
framework to analyze costs in terms of death tolls and output loss. These are
shown to depend on the timing of interventions and are significantly affected
by the erroneous modelling of disease dynamics.

The second contribution is to place the modelling of COVID 19 in Economics
on the foundations of an epidemiological analysis of the SARS-CoV-2 proper-
ties, particularly, its transmission timescales. The main elements of the ensuing
model are two blocks: an infection transmission block, where the number of
new cases is determined, and a clinical block, which characterizes the dynam-

I1Stadlbauer et al (2021), report that on March 29, 2020, the cumulative infection rate was 2.2%
and a week later, it was 10.1%. Seroprevalence tests require two weeks to detect the disease. This,
then, implies that if a stay-at-home order were issued a week before March 22, the actual time
of the policy decision, disease spread could have been significantly suppressed. The death toll
would have been reduced by 6,000 lives, based on the assumption of an Infection Fatality Rate
(TFR) of 0.8%.



ics within the health system — development of symptoms, hospitalization, ICU
admission, and recovery or death. We present models of these two different
dynamics, including the relevant parameterizations, based on epidemiological
and clinical evidence. The distinction between the two dynamic models is novel
in the Economics literature and accurate from the epidemiological perspective.
It results in a simple and transparent structure.

We proceed as follows. We start by specifying a model of COVID19, which
is sound in terms of epidemiology and contrast its dynamic properties with
the specifications prevalent in the Economics literature. We then show that a
widely-used specification is unable to reproduce the dynamics of the disease
observed in the data, while the correct model can replicate it well. Subse-
quently, we discuss the dynamics of the disease implied by each model. Finally,
we illustrate the implications of erroneous disease modelling for optimal policy.
To this end, we embed the correct model, as well as the alternative, prevalent
specifications in a simple planner problem and derive optimal lockdown tim-
ing. We find dramatic consequences of the specification errors here: they dis-
tort the policymaker decisions, under-estimate the scale of the epidemic, and
result in higher death tolls and excessive output losses. The magnitudes are
big; death tolls deteriorate by hundreds of thousands of people and output
losses increase by 20%. We note that the specification errors in question bear
no relation to assumptions about individual behavioral responses. They lie in a
different dimension, that of understanding fundamental disease properties and
distinguishing between its epidemiological and clinical aspects.

The analysis points economic researchers at the correct way to model the dy-
namics of the disease and will be useful for other epidemics beyond COVID19,
as the discussion is pertinent to other infectious diseases. Note, in this con-
text, that the set of epidemics since 1980 is quite large and includes, inter alia,
HIV/AIDS, SARS, H5N1, Ebola, H7N9, HIN1, Dengue fever, and Zika. We see
the analysis here as complementary to work on the importance of the correct
modelling of population heterogeneity, such as Ellison (2020).

The structure of the paper is the following: Section 2 very briefly presents
the parts of the epidemiological and economics literatures relevant for the cur-
rent discussion. Section 3 discusses the epidemiological models, both the pre-
ferred model (including the appropriate parameterization), and widely-used
models, which are the subject of the current critique. Section 4 examines the
empirical fit of these models. Section 5 discusses the epidemic dynamics im-
plied by each model. Section 6 analyzes the economic policy implications of
using the different models, and the costs involved when employing erroneous
ones. Section 7 concludes.

2 Literature

This paper relates to two literatures.
One is the part of the Epidemiology literature, which has modelled epi-
demic dynamics using a compartmental approach. The approach was pio-



neered by the seminal work of Kermack and McKendrick (1927). The ensuing
family of models identifies epidemiological states and considers the flow rates
between compartments containing individuals in each disease state. In this pa-
per we explore three variants of this model. For reviews of this approach and
its underlying rationale, see Champredon, Dushoff, and Earn (2018). Within
this strand, pandemic or epidemic management policy is a key topic of study.
Prominent examples of such studies, pre-COVID 19, include Mills, Robins, and
Lipsitch (2004) and Wallinga, van Boven, and Lipsitch (2010).

The other is the Economics literature on COVID19. Avery et al (2020) discuss
its connections with the afore-cited Epidemiology literature. Many papers have
been making use of epidemiological models and are thus subject to the current
analysis. These include models in Macroeconomics, International Economics,
Public Economics, and Labor Economics. Within this burgeoning literature, we
briefly mention key papers which have examined optimal lockdown policy us-
ing the concept of a social planner. They study the health-related losses due to
the pandemic and the economic consequences of public health policy. In this
framework an objective function is defined, with values taking into account
economic losses and the value of statistical life. Thus, tradeoffs are measured
and alternative policies can be evaluated. The planner constraints include, inter
alia, the disease dynamics typically examined within the SIR epidemiological
model. Prominent contributions include Abel and Panageas (2020), Acemoglu,
Chernozhukov, Werning, and Whinston (2020), Alvarez, Argente, and Lippi
(2020), and Jones, Philippon, and Venkateswaran (2020). Depending on the ex-
act formulation, we show below how erroneous use might lead to work with
misspecified models, with substantial consequences for policy. Two key prop-
erties of disease dynamics, its scale and speed, are at the center of misspecifica-
tion.

3 Modelling the Epidemic

This section presents three models of the epidemic. We first present our pre-
ferred specification, which relies on up-to-date epidemiological evidence (sub-
section 3.1). We then present two alternative specifications, prevalent in the
afore-cited Economics literature (sub-section 3.2).

3.1 The Model

We analyze the dynamics of the epidemic within two complementary blocks
— infection transmission and clinical progression. The former block is charac-
terized by the SEIR-Erlang model and reflects the epidemiological properties
of COVID19. The clinical block characterizes the development of symptoms,
hospitalization, ICU admission, and recovery or death, and is needed to de-
scribe the dynamics in the public health system. This structure is novel and
proves extremely useful, as in COVID19 the infectiousness period and the clin-
ical progression of the disease follow different timescales, demonstrated below.
Separating them makes the model rich, yet simple and transparent, ensuring
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that each parameter has a clear empirical counterpart in the data. Moreover,
the shortcomings of prevalent specifications, that we present in sub-section 3.2,
are rooted in the inability of these models to capture both infection transmission
and clinical properties of COVID19 using a single set of parameters.

3.1.1 The SEIR-Erlang Block

Before contacting the disease for the first time, a person is Susceptible (S). Once
a person gets infected, disease progression is split into distinct compartments —
Exposed (E), Infectious (I), and Resolved (R). We denote by B(t) the infections
transmission rate, o, the transition rate from E to I, and 1, the transition rate
from I to R. An infected individual spends some time in each compartment
before moving on to the next one. The person is infectious only when in the I
compartment, but not when residing in the preceding E compartment. The time
durations spent in the E and I compartments are known as the latent and in-
fectious periods, respectively. Once people move to the Resolved stage, they no
longer participate in disease transmission. Graphically, this model is presented
in panel a of Figure 1. We provide references below to the durations noted in
the figure.



Figure 1: The Model
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Note that with Poisson transition rates between compartments, the resi-
dence times in each of them are distributed exponentially, and thus have zero
mode. Exponential distributions capture the mean but not the mode of the bio-
logically accurate distributions of residence times, because in reality what most
people spend in each stage is close to the mean of the distribution, rather than
zero. Therefore, we split the E and I compartments into two sub-compartments
and double the rate of transition. Now, the latent and infectious periods are
the sum of the time spent in the E; and E; or I; and I, sub-compartments, re-
spectively. Their distribution is the sum of exponentially distributed random
variables, a special case of the Gamma distribution, known as the Erlang distri-
bution. The means of Erlang distributions remain 1/¢ and 1/, but the modes
are now near the means, as they should be. In the remainder of the paper we
shall refer to this model as the SEIR model, without noting the number of sub-
compartments.

The following equations describe this block. Throughout, all stock variables
are expressed as a fraction of the population.

S(t) —B(t) - (L(t) + L(t)) - S(t) 1)
Ei(t) = B(t) - (L(t)+ L(t))-S(t) —20E;(t) ()
Ex(t) = 20Ei(t) —20Ex(t) 3)
Li(t) = 20Ey(t) —2vL(t) 4)
Ir(t) 274 (t) —27L(t) ®)
R(t) 27Ix(t) (6)

An important parameter is the reproduction number R, which is the aver-
age number of people infected by a person, and is given by:

B(t)
Ry ) 7)
We use R; for the reproduction number at date t and denote the basic re-
production number by Ry at the initial stage, when S(0) = 1. We shall also be
discussing the effective reproduction number, defined as:

Re = S(H)Ry 8)

The path assumed for the reproduction parameter merits discussion. We
model a time-varying parameter, R;, reflecting both rational individual behav-
ior and the effects of suppression policy. We take into account that individuals
adjust to the new environment and behave differently, both with and without
policy interventions. In particular, as the epidemic unfolds, people become in-
creasingly aware of the risks and adjust their behavior. This adjustment is man-
ifested in avoiding or reducing social contact and taking precautions, such as
wearing masks. These changes happen in part as a direct result of government
Non-Pharmaceutical Interventions (NPIs) and in part as a voluntary response.
It is a rational choice to adopt new norms of behavior, even when restrictions



by the government are weakened or removed. As a result, the speed of disease
transmission declines relative to its value at the start of the epidemic. Specifi-
cally, when we discuss policy interventions below, the rate R; will depend on
the regime — either lockdown, to be denoted R, or out of lockdown, work, to
be denoted Ry . In Section 6 we elaborate on the empirically-based parameter-
ization of Ry, R and Ryy.

3.1.2 The Clinical Block

The clinical block describes the progression of the infected through the health-
care system, depending on the development and severity of symptoms.

We postulate the following. Once infected, a person enters an incubation
period, a P state, during which there are no symptoms. This period lasts for
1/0p on average.? Following the incubation period, a person either remains
asymptomatic (O) or develops symptoms (M). Denote the share of asymp-
tomatic cases by 7. The others (1 — 7 ) develop symptoms, and with probability
¢ are hospitalized (H). A given share 7t of patients become critically ill, that is
develop conditions requiring transition to ICU (denoted X). Once critically ill,
a fraction d(+) dies. We specify the death probability in this critical state X as:

I(X(t) > X) - (X(t) — X)

5(X(t),Y) =01+ X(t)

©)

where X denotes ICU capacity and I is the indicator function. At any stage, a
person may recover (C). The clinical block is represented graphically in panel b
of Figure 1.

The analytical description of the symptomatic branch is:

b(t) = B()-(L(t) + La(t)) - S() — 0p - P(t) (10)
M(t) = (1—1)-0p-P(t) — Our- M() (11
H(t) = &-0m-M(t) — 6y H(t) (12)
X(t) = 7-0y-H(t) — 0x - X(t) (13)
D) = 8(X(1),X)-x-X(1 (14)

The parameters 0p, 0y, 01, and 6x denote the average time that passes be-
tween the stages of infection, symptoms onset, hospitalization, ICU admission,
and death, respectively.

3.1.3 The Connection to Economic Analysis

We posit that the number of people who can work daily, N(¢), is given by:

N(t) = NS p- (1= D(t) = X(t) - H(t) — gM(t)) (15)

2Note that the incubation period is governed by 6p and is different from the latent period
which is governed by ¢. In fact, recent epidemiological evidence indicates that the average incu-
bation period can be twice as long as the average latent period (Bar-On et al. (2020)).



where N°° is steady state employment, 0 < p < 1 is the fraction able to work
given any policy restrictions, and 0 < ¢ < 1 is the fraction of people with
symptoms who do not work.

3.1.4 Parameterization

The parameterization of this model needs to be both epidemiologically- and
clinically-based. In Table 1 we present the relevant values for the two blocks,
where we rely on sources in the epidemiological and medical literatures pub-
lished in Science, Nature, the Lancet, and JAMA, as detailed in the table’s notes.

Table 1: Epidemiologically- and Clinically-based Parameterization

Interpretation Range of Estimates | Preferred Parameter
value used
] a. The Infection Transmission Block (SEIR) ‘
o | latent period duration 3 —5days 3 days 1/3
v | infectious period duration 4 — 5 days 4 days 1/4
] b. The Clinical Block ‘
Op incubation period 5 — 6 days 5 days 1/5
days from symptoms
Om till hospitalization 7 days 7 days 177
O | daysin hospital till ICU 2 days 2 days 1/2
Ox | daysin ICU before death 5.5 days 5.5 days 1/5.5
7 Prob. to be 20% — 50% 50% 0.5
asymptomatic
Prob. to get #Hospitalized 0.04
¢ hospitalized #Igf ected . 4% (1-05
when symptomatic = [2% — 4% =0.08
T Prob. of ICU admission 10% — 40% 40% 0.4
Notes:
1. Sources — for panel a: Bar-On et al (2020); He at al (2020); Li et al (2020);
Tian et al (2020);
For panel b — Bar-On et al (2020); Huang et al (2020); Richardson et al (2020);
Salje et al (2020).
Lo I . #Hospitalized
#H talized #H talized #S t t nfecte
2, Hopinid _ thopaiced ssmpomtc _ g (1 _y) — g e
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Note that the implied Infection Fatality Rate (IFR) is 0.8%, 3 consistent with
the estimates of the Imperial College COVID19 Response Team (2020). Addi-
tionally, based on Bar-On et al (2020), we set 6; = 0.5. In the U.S. economy, ICU
capacity is X = 1.8 x 1074, based on an estimate of approximately 58,100 ICU
beds by the Harvard Global Health Institute.* Finally, we set 6, = 0.5 to capture
the fact that with extreme loads on the public health system, the probability to
die increases to 1 for each patient in need of an ICU bed.

3.2 Alternative Specifications

The overwhelming majority of Economics papers on COVID19 model both clin-
ical outcomes and infection dynamics within a single block. We proceed by pre-
senting the SIR model and its calibration, and a modification (SIRD), designed
to better capture the dynamic path to death. Panel c of Figure 1 provides a
graphical illustration.

3.2.1 The Widely-Used SIR Model

Economists modelling the dynamics of COVID19 have been using in many
cases versions of the SIR model with the following structure.

S(t) —B(t) - 1(t) - S(¢) (16)
I(t) B(t) - I(t) - S(t) — 7I(t) (17)
R(t) vI(t) (18)

Whenever numbers of deceased and recovered are needed the following
equations are used:

D(t) = wR(t) (19)
C(t) = (I-pR(H) (20)

where D is deceased, C is recovered and y is the infection fatality rate.
A prevalent calibration is given by:

1/y=18= v=1/18

This is derived as follows:

a. The duration of the disease till death is taken to be 18 days.

b. The latter is also taken to be the duration of the Infectious stage, and
given by 1/+. The infection transmission rate B(t) is then pinned down by a
given value of R; and the length of the infectious stage, 1/7.

3This rate is given by IFR = &- 71+ 77 - 6

4See https:/ /globalepidemics.org/our-data/hospital-capacity /

5Qur preferred value, given in Table 1 above, is 19.5 days, which is not very different from the
value here.
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The key point here is that the SIR model misses the clinical block. It con-
founds time to death (from the onset of infection) with the length of the Infec-
tious period. We show below that this mis-specification has profound implica-
tions for the speed and scale of the disease.

3.2.2 The SIRD Model

Some modelers modify the SIR model, to take into account the fact that the time
from infection until a person is no longer infectious is relatively short (7 days
on average), though it takes longer till one recovers or dies. They thus replace
equation (18) by:

R(t) = 71(t) — 8- R(¢) &)

where 6 defines the duration of the resolving stage R. Replacing equations (19)-
(20), one gets:

D(t) = u-0-R(t) @)
C(t) = (1—p)-0-R(H) 23)

This model is denoted SIRD and is usually calibrated with v = 1/7.

4 Empirical Fit

Before analyzing the properties of these models, we use data on COVID 19
deaths in NYC to examine their empirical fit, or lack thereof. We chose NYC
as the epidemic there reached a very significant scale. Moreover, this is a case
where both data, that we use, and empirical studies of the disease, that we cite,
are readily available. At the heart of the analysis is the derivation of estimates
of two values for the reproduction number R; — one during the early outbreak
(denoted by Rg) and the other during lockdown (denoted by R1). We explain
the method of derivation, present the ensuing estimates, and discuss model-
data fit.

4.1 Derivation of Reproduction Parameter Estimates

At the stage of the initial exponential growth of the disease, it can be shown
that there is a relation between the rate of exponential growth A and the repro-
duction number R.

For the case of the SIR model and SIRD the following relation obtains (see
equation 3.1 in Wallinga and Lipsitch (2007)):

Ro=1+72 (24)
%

For the SEIR model with m, n sub-compartments the relation is given by
(see equation 4 in Wearing et al (2005)):

12



A m
Ro = — et (25)

'y<1— (%Jrl)_n)

After the initial Ro, we use the effective reproduction number R., as discussed
in sub-section 3.1.1.

For our empirical exercise, we use data on daily deaths in NYC.® It covers
236 days, from the first death in mid March 2020 to the end of October 2020,
and is the sum of confirmed and probable deaths from COVID19. The death
count is smoothed using a 7-day centered moving average.

The following data-fitting exercise is undertaken. First we estimate the dis-
ease exponential growth or decline rate, A, based on the periods of initial erup-
tion and subsequent contraction using the smoothed death series. For both
these periods, we run a Poisson (log-linear) regression to estimate A:

log (daily death count) = const + At (26)

Second, based on the estimated A values we derive the corresponding val-
ues of Rg and R in each model using equations (24)-(25) for the initial outbreak
and lockdown periods, respectively.

Third, we try to fit the entire death series by minimizing the squared devia-
tions of the simulated series of daily deaths from the corresponding data series,
refining our derived values of Ry and R, from the first step. Within this proce-
dure, we need to derive a value also for Ry, one that captures disease growth
after the initial (and harshest) measures have been removed. In particular, we
solve the following minimization problem:

tend

min D(t)—D t—10))* dt 27
i [TD (6) = Dugsar (= 70) @7)

where D, is the data death series and D(t) is the death series predicted by
the model; 7y is the time needed to adjust the death series to model dynamics,
given the duration from infection to death; lockdown is imposed between Ty
and Ty, such that:

Ro t<Ty
R = R To<t<Th
Rw Ty <t

®Source is in data page
https:/ /wwwl.nyc.gov/site/doh/covid/covid-19-data.page
and the data set is to be found at
https:/ /github.com/nychealth/coronavirus-data/blob/master/archive/probable-
confirmed-dod.csv
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4.2 Data Estimates and Model-Data Fit

Table 2 presents the resulting estimates for the As (the exponential growth and
decline rates) and the corresponding estimated values of Ry and R, for the

second step above.

Table 2: Parameter Estimates for NYC Data

] dates \ \ point estimates \ 95% Confidence interval ‘
| March 14 - April 02 | Exponential Growth | A =020 | [0.18,0.22] ‘
] | Reproduction number | Ro \ ‘
SEIR 2.76 [2.53,3.00]
SIRD 2.40 [2.26,2.54]
SIR 4.60 [4.24,4.96]
| April12-May 05 | Exponential Decline | A =—0.059 | [—0.060, —0.058] |
] \ Reproduction number \ Rr \ ‘
SEIR 0.81 [0.80,0.81]
SIRD 0.69 [0.68,0.70]
SIR N/A N/A

Some of the problems with the SIR model are apparent in Table 2. Under
exponential growth, one obtains the implausibly high estimate of Ry = 4.60,
which does not conform most estimates in the literature. In the exponential
decline phase, the decline is too steep to be matched by the SIR model; there is
no positive R that can account for the observed exponential decline in fatalities
during lockdown, so there is no R value that can be derived. In other words,
the case of NYC shows that the widely-used SIR specification cannot reproduce
the observed decline in fatalities.

For the SIRD model, the estimates in Table 2 are in line with the Fernandez-
Villaverde and Jones (2020) estimates,’ produced from the same dataset, and
which are not far from the preferred SEIR model estimates.

The findings of Table 2 can be summed up as follows.

The exponential growth rate A is estimated between March 14 and April 2 to
be 0.20 . Under SEIR, these values correspond to Rg = 2.76 , under SIRD to
Ro = 2.40, and, under SIR, to the substantially higher and implausible value
of Ro = 4.60.

"Their estimates are somewhat attenuated, as they use the HP filter to further smooth the
data.

8As external validation of these estimates, R; values computed from the site
http:/ /metrics.covid19-analysis.org/ for NY county in the state of NY, in the same period, start
at around 2.50. This website and the associated R; analysis was developed by Xihong Lin’s
Group in the Department of Biostatistics at the Harvard Chan School of Public Health.
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The exponential decline rate A is estimated between April 12 and May 5 to be
—0.059. At the beginning of exponential decline, around April 12th, we postu-
late that 15% of the population is already infected,’and thus R, = R./0.85.
Under SEIR, these A values correspond to R; = 0.81 and under SIRD to
Ri = 0.69. As noted, such a decline is too steep to be matched by the SIR
model.

Next, as explained above, looking at the entire series of fatalities in NYC
from mid March to the end of October 2020, we refine our parameterization of
Ry and R}, and obtain a value for R0 Minimizing the distance between the
data and the fatalities series implied by the SEIR model, now we get Rg = 2.70
at the outbreak, before March 23, and R = 0.70 during lockdown, lasting till
April 20.11

Panel a of Figure 2 plots the daily death flow (both the raw data and the
smoothed series).

9Based on the seroprevalence tests findings of Stadlbauer et al. (2021) and seroconversion
timescales reported in Kai-Wang To et al. (2020), the infection rates in NYC as of April 12, 2020
were at least 15%. Additionally, our postulated assumptions are later confirmed by the simula-
tion results (reported below).

1OWe keep using the ICU capacity constraint for the U.S., as in Table 1. The same source gives a
somewhat higher capacity for NYC alone, but we prefer to take the more conservative estimate.
In any event, both estimates produce very similar results.

1Stay-at-home orders went into effect on March 22, 2020. The policy lasted until May 15, 2020
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In the period after lockdown, our procedure identifies a reproduction pa-
rameter (Ry) which is lower than the initial value (Rp) and higher than the
lockdown value (Rp), i.e., Rw = 1.10.12 At the release of lockdown, time T;
(see panel a in Figure 2), around 20% of the population had been infected, so
S(T;) = 0.80. This value of Ry = 1.10 generates an effective R, = 0.80 * Ryy =
0.88 leading to a gradual decline of the daily death series, as seen in the figure.

Panel b of Figure 2 shows an excellent fit of the resulting simulated se-
ries to the data series (correlation of 0.999). Thus, the correctly-specified SEIR
model fits NYC fatality data extremely well. Under the SIRD specification (not
shown), the NYC death data are also well captured. The SIR specification fails
to do so in a fundamental way, not producing a simulated dynamic path, as its
time-scales are unable to generate a path similar to the data.

The key take away point is that in NYC data, the prevalent SIR specifica-
tion runs into problems when trying to reproduce observed disease dynamics.
It manages to capture the initial fast growth phase only by assuming an implau-
sibly high reproduction number, and it is fundamentally unable to capture the
fast subsequent decline in fatalities. The SEIR and SIRD models fit the data
dynamics well.

5 Disease Dynamics

We now turn to discuss the dynamics of the epidemic that are implied by the
three models. This discussion does not depend on the specific data set or empir-
ical findings of the preceding section and applies universally. It uses simulation,
relying on the epidemiological parameters discussed for each model in Section
3 and the initial value of the reproduction parameter, Ry, at 2.50, which is a
widespread estimate!® Note that this analysis focuses on the basic, unmitigated
properties of the disease as implied by the different specifications. In contrast,
in real world data, one observes a disease, which is subject to suppression mea-
sures.

Figure 3 illustrates the development of the disease, as measured by the stock
of infectious and exposed people (panel a) and the critically ill (panel b), under
the three models. The SEIR model is shown by the red line (dash-dotted); the
SIR model by the black line (dashed); and the SIRD model by the blue line
(dotted). Table 3 presents the numerical values of the parameters and indicators
which describe these dynamics.

12Recall that we have defined, in sub-section 3.1.1, two regimes — lockdown Ry and out of
lockdown, work Ry, reflecing changes in behavior relative to Ro.

BThe approach of this section is different from the one used in the preceding Section 4, which
had derived R; from daily death data for NYC. The values used below, though, are close.
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Table 3: Properties of the Three Models

] \ SEIR \ SIR \ SIRD
] Parameterization
o 1/3 — —
24 1/4 1/18 1/7
0 —@ —@ 1/11
Scale® [Ey+E,+L+1 I I
Implied transmission rate given Ry = 2.50
B \ Ro-1/4 =0.625 \ Ro-1/18 =0.139 \ Ro-1/7 =0.357
] Implied growth rate, doubling time and disease scale at peak given Ry= 2.50
A 0.18 0.08 0.21
t) 3.91 8.32 3.23
Scale*®) 0.27 0.23 0.23
Notes:

(a) there is no duration for the R state in these models.
(b) scale of the disease — the number of people who are either infectious or

exposed (i.e., will become infectious).
(c) exponential growth rate.
(d) doubling time.
(e) scale of the disease at the peak.

19




The key difference between the models lies in the implied transmission rate
B(t), as seen in the fourth row of Table 3. Specifications that assume a long
infectious period (%) have to posit a low transmission rate S(t) in order to
match the particular value of Ry used, while specifications that assume the
epidemiologically-grounded short infectious period, posit a relatively high B(t)
(see equation (7)).

We draw from Figure 3 and Table 3 the following key lessons.

a. The disease in the widely-used SIR model is much slower than in the SEIR model.
A specification with a very long infectious period , as in the SIR model with
1/v = 18, implies a much lower transmission rate () and therefore much
slower disease progression. It implies a growth rate of 8% and a doubling
time of 8.3 days. As a result, the epidemic is spread out in time and it takes
almost 330 days for it to die out. By contrast, the correctly-specified SEIR model
implies much faster dynamics. The epidemic starts aggressively with growth
rates of 18%, and cases rise very fast, doubling every 3.9 days. The epidemic
also dies off quickly under SEIR; the entire episode ends twice as fast as under
the SIR model specification.

b. The disease in SIRD is somewhat faster than in SEIR. Ignoring the short
latent period (E), as in SIRD, has moderate effects on epidemic dynamics. In
SIRD, relative to the SEIR model, the epidemic develops somewhat faster at
the beginning, because there is no delay between the moment a person becomes
infected and the moment he or she starts spreading the disease.

c. Widely-used SIR and SIRD imply a much lower disease scale than SEIR. At the
peak, in both SIR and SIRD specifications, the number of infectious/exposed
people reaches 23% of the population, whereas in the SEIR model, a higher
level of disease is reached. There is a difference of 3.5 percentage points relative
to the other models, or 11.6 million people in the case of the entire U.S. economy.
This can be seen in the higher peak of the red line of E 4 I in Figure 3 and in the
numbers presented in Table 3.

d. Substantially delayed pressure on ICU capacity in SIR. Panel b of Figure 3
shows that with a slow moving disease, implied by a long infectious period
as in the widely-used SIR model, ICU capacity is breached on day 82, and
peak demand exceeds capacity by a factor of 7, whereas in the epidemiological-
grounded SEIR model it is breached much earlier, on day 41, and peak demand
exceeds capacity by a factor of 14. The SIRD specification performs close to
SEIR in this case.

e. Implications for initial conditions. Under equal initial conditions, it takes
much more time for the epidemic to gain pace under the SIR model than under
SEIR so that the peak arrives almost two months later relative to the correct
model, and is more moderate in scale relative to SEIR . One can try to ‘circum-
vent’ this problem by assuming a higher initial seed of the infection. Panel ¢ of
Figure 3 compares the SEIR model with initial seed of 10~* and the SIR model
with initial seed of 1072. It shows that assuming a higher initial seed places
SIR on a relatively similar timescale as SEIR in terms of the timing of the peak.
However, two serious problems remain. First, at peak, the implied number of
infectious individuals is still significantly lower under SIR, which distorts the
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problem of a policymaker constrained by a number of ICU beds. Second, as-
suming a seed of 1% of the population implies, in terms of the U.S. economy,
that the epidemic has started when over 3.3 million people were infected. This
is a highly implausible assumption, given actual data on the path of known
cases and on deaths.

The separation of the infection generation block from the clinical block lies
at the heart of the differences between the prevalent SIR set up and the bench-
mark SEIR model. Targeting two separate timescales with one parameter (7y)
leads to severe distortions of the implied dynamics of the disease. The SIRD
model presented in sub-section 3.2.2 alleviates the problem somewhat by adding
a parameter 6 thus enabling separate targeting of R based on the duration of
infectiousness period and of duration-till-death. This makes the dynamic prop-
erties of SIRD relatively close to those of the correct SEIR model. But, as shown
above, its scale distortion is substantial and, as we show below, it remains prob-
lematic when coming to formulate policy.

6 Erroneous Modelling: Implications for Optimal Policy

A key aim of this paper is to show the implications of the modelling of the
disease for policy responses and to highlight how erroneous modelling is costly.
To do so, we use an optimizing planner model of the kind used in the papers
cited in Section 2. We simulate optimal policy undertaken when the planner
uses each of the three models discussed above, but actual disease dynamics are
given by the afore-cited SEIR model. We set up a planner model and calibrate it
(6.1); we then explain the simulation methodology (6.2) and present the results
(6.3).

6.1 The Planner Model and Its Calibration

The planner minimizes the following loss function:

Ty Ss
min V = /e—” <11\/755 (N* — N (1)) + xY*°D (t)) dt + Rp(Ty) + Ry(Tv)
=
: @8)
subject to equations (1)-(15).

The loss function is minimized in PDV terms (r is the discount rate), where
at finite point Ty (which we set at 540 days) a vaccine is found and the pool of
susceptibles drops to zero, so that the disease stops growing.!*After time Ty,
there is a residual death toll Rp(Ty) and residual output loss Ry (Ty), which
accompany the decline of the epidemic.

14We make the assumption of Ty = 540 given the progress actually made in 2020 and the
start of vaccination in December 2020. In terms of the model, Ty refers to the time of sufficient
vaccination; with logistics, production times, gradual take-up rates, etc. an expected 540 days
seems reasonable at the time of writing (March 2021).
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The loss function includes two terms. One is lost output %, due to a decline
in employment N relative to steady state N*; equation (15) provides the con-
nection between employment and the epidemiological states. Essentially, em-
ployment declines because of lockdown measures (expressed in the parameter
p) and because people fall ill or die. The second term is the value of lost life.
This is a function of the flow of fatalities D (¢) translated into lost output terms
using the value of statistical life (with the parameter x). This flow is affected by
the breach of ICU modelled in equation (9) above. To work within a realistic
but simple set-up, we let the planner decide on when to start (Tp) and stop (1)
a full lockdown.

To calibrate the model, we use the parameterization of Table 1. For the val-
ues of the time-varying R under different planner policies — see the discussion
in sub-section 3.1.1 above — we use data estimates for the U.S. as follows.!

i) Initial level. We set

Ro = 2.50 (29)

We get the value of 2.50 in equation (29) by using the methodology of Fernandez-
Villaverde and Jones (2020), adapted to our model, and U.S. daily death flow
data taken from Johns Hopkins University CSSE (2020). This yields estimates of
Ro values of 2.67 on March 17, 2020 and 2.48 on March 18, 2020. This is the re-
production number during the initial phase of the epidemic, before significant
lockdowns were imposed in the U.S.

ii) Subsequent values. To reflect the fact that over the course of the initial
outbreak and following it, individuals change their modes of behavior and
economic activity, including compliance with NPIs, we allow the reproduction
number in subsequent periods to be lower than the initial Rg. As noted above,
we posit that there is a value of R; during times of lockdown, to be denoted
R, and another value at other times, denoted Ry (“work”). Both are lower
than Ry to take into account the fact that individuals have adjusted to the new
environment and are taking more precautions. When lockdowns are in place,
policy and individual responses together engender R < Ry .

For their calibration, we rely on two sets of estimates.

First, Karin et al (2020) review the literature and estimate values for R and
Rw.! These relate to developed countries with a population density of over
100 people per square km. The estimates indicate a value of 1.50 for R as the
upper bound; the estimates for R range from 0.6 to 0.9 with a value of 0.80 as
the estimate for NYC, the only U.S. location examined.

Second, we use the U.S. estimates of Fernandez-Villaverde and Jones (2020)
for the biggest 15 states in the U.S., covering 65% of the U.S. population” We
look at the minimal and maximal values of the estimated R series from April

I5Note that in Section 4 we have derived estimates of the reproduction parameter for NYC
only.

16The full details of their analysis, including references and the code, are found at:
www.github.com/milo-lab/

17Due to insuffiicent estimates, we exclude the state of New Jersey. As noted, these authors
infer R from daily death flow data taken from Johns Hopkins University CSSE (2020).
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1, 2020 till September 30, 2020. According to the Oxford Stringency Index this
period covers lockdowns and release in all of the states, at different points in
time. These R; values are indicative of R and Ry: R cannot be lower than
the minimal data value, and Ry cannot be higher than the maximal data value.
The median (average) minimal value across the 15 states is 0.68 (0.61) and the
median (average) maximal value across the 15 states is 1.42 (1.49).

Given these two sets of estimates we posit values that are conservative, in
the sense that R and Ry are calibrated at relatively high values:

_J1.50 Rw, work
Re= {0.80 RL,lockdown} (30)

(iii) Dynamics of the reproduction parameter. To capture the gradual nature
of learning and adjustment of individual behavior, we posit that a certain mini-
mal time should pass under lockdown before the reproduction number declines
from its initial value R to Rw. To calibrate the path at this time span, we look
at two sources..

a. Using the Fernandez-Villaverde and Jones (2020) methodology applied to
our model, we get that it takes 8 days to get from R; = 2.48 to R; = 1.50. This
decline took place in the third week of March, when lockdowns only started
to unfold. Thus, we interpret this decline mainly as the rational adjustment of
behavior.

b. We use Imperial College COVID-19 Response Team (2020) estimates R;
for U.S. states since the start of the epidemic. We focus on the initial decline
of Rt when suppression measures have been undertaken across the US and
assume a log-linear decay function'®

INR(TS) = InR(TS) — a8~ . (T3 — T3 (31)
f D(iog —linear
?X\log —linear _ 1 S (32)

We obtain two alternative estimates for the average speed @'~/ of a R,

decline, depending on the definition of the decline in period Tj to T5:
log —linear

a. The speed & = 0.027 per day was obtained when T = the day of
the first R; observation in the state, and T; = end of the decline (i.e., the point

In(2.5)—In(1.5)
0.027

where R; is not statistically different from 1 at 5%). It thus takes
19.2 days to get from 2.50 to 1.50.

b. The speed &%~ — 0,065 per day was obtained when T = the day
the highest R; observed in the state; T} as in (a). It takes % = 7.9 days
to get from 2.50 to 1.50.

180ut of the fifty states and DC, six were not included in this analysis (AK, HI, MT, ND, SD,
WY) because their initial values of the reproduction number were already below unity at the
start of the epidemic.
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The decay time of R; is 8 days based on Fernandez-Villaverde and Jones
(2020) national death data, or 8 or 19 days based on the state-level data, Imperial
model estimates. Again, we adopt a conservative calibration and assume that
14 days must pass before R declines from 2.50 to 1.50.

Referring to the U.S. economy, as we do throughout, we use p = 0.65 for the
fraction of workers able to work in a lockdown, consistent with the values used
in Kaplan, Moll, and Violante (2020)," and x = 85.7 for the value of lost life.?’

6.2 Simulation Methodology

To analyze the costs of basing policy on a mis-specified model, we proceed as
follows. We assume that the disease always behaves according to the epidemi-
ologically based SEIR model of sub-section 3.1.1 above. But the planner uses
one of the three models discussed above, i.e., the correct one or one of the two
erroneous ones, when deriving the optimal intervention timings Ty and Tj.

In particular, we use the two specifications discussed above: (1) SIR with
v = 1/18, and (2) SIRD with v = 1/7. For each model, we simulate optimal
policy while the disease in fact behaves according to SEIR, and record ensuing
deaths and ICU breaches.

To derive an optimal policy under each epidemiological model, we use a
numerical solver in Mathematica (NDSolve, see Abell and Braselton (2016)).
We find the values of control variables (Tp, T1) that minimize the cost function
in (28) by conducting an exhaustive search of the control variables space. First,
this is done using a hierarchical search on a coarse grid of integer values such
that 0 < Tp < T7 < 540 and Ty and T; are multiples of 8. For each combina-
tion of Ty and T; we solve the continuous time system of ODE describing the
stocks dynamics in each model, according to the calibration described above.
Initial values for this system are set from a seed of 0.01% of the population
(100 people per million). Infectious (and latent in SEIR) compartments (and
subcompartments in SEIR) are initialized so they are consistent with an expo-
nential growth rate of the disease; susceptibles (S(t)) form the rest of the pool.
The clinical block is initialized to O at t = 0.

Using the solution of the ODE system — a set of interpolated functions de-
scribing stocks dynamics — we are able to evaluate the planner’s objective (28),
which is a function of these stocks (through death D(t) and employment N (t)).
To find the global minimum of the objective function (28), we maintain a set of

19This value is reinforced by the findings in Dingel and Neiman (2020) about remote work. We
set ¢ = 0.
20We compute the value of life as follows:

expected years remaining - value of statistical life
X = Y
POP

14 * 400, 000
= ———— =857
65,351 8

The resulting value conforms the high end of the estimates discussed in Hall, Jones, and
Klenow (2020).
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the best possible minima, spanning the control variables space. We then recur-
sively refine the grid, until the desired granularity of 1 day is reached for both
T() and Tl.

6.3 Results

For each model, we present both the planned outcome and the realized outcome
obtained by applying the policy to the actual disease. This exercise illustrates
the price of deriving policy based on erroneous assumptions. Figure 4 and Table
4 report the results.
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Figure 4:

Planner Policy in the Three Models
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Table 4: Optimal Policy Timing and Outcomes
| Timing \ Planner cost V | Output loss Vy | D per 10° ‘

| To | Th | planned | realized | planned | realized | planned | realized |

SIR, vy =1/18 0 |14| 0484 0.651 0.020 0.025 5,609 7,421
SIRD,y=1/7 30 | 91 0.426 0.561 0.064 0.066 4,278 5,895
SEIR,c=1/3,y=1/4|37 |84 | 0418 0.418 0.051 0.051 4,335 4,335

Notes:

1. The values in the table are defined as follows:

540

To, T NSS

t=0

540

Vy:/e
0

min V = /e*” <YSS (N — N (t)) + xY*°D (t)) dt + Rp(540) + Ry(540)

—rt (;\/;SS(NSS — N(t))) dt + Ry (540)

2. D is the stock of fatalities, given here in terms of persons per 1 million.
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We see that the optimal timing using the SEIR model of the actual disease,
is to lock on day 37 for 47 days. This epidemiologically-correct timing implies
two waves of the epidemic, whereby deaths are minimized. This is so as the
planner accurately spreads the burden on ICU so that capacity is breached in
the first wave and fully utilized in the second (see the black solid lines in panels
a and b of Figure 4).

Optimal timing is very different when the planner assumes a slowly mov-
ing disease using the SIR model with v = 1/18. Looking at the top row of
Table 4, one sees that the planner locks immediately for only 14 days, the min-
imal time necessary to bring Ry down to 1.50. The planner builds on a slow-
moving disease that will not massively breach ICU capacity and not cause many
deaths (see planned dynamics shown in the dashed lines of panel a of Figure
4). However, in reality, the disease is much faster (SEIR is much faster than
SIR, as shown above), and it erupts immediately after release, breaching ICU
capacity by a factor of 4 and increasing the death toll by 71% relative to the
epidemiologically-correct policy. The costs of loss of output are of course low
due to the very short lockdown, but total planner costs are 56% higher than
under the epidemiologically-relevant strategy, due to a much higher death toll.

Under the SIRD model with v = 1/7, optimal lockdown timing is closer
to the epidemiologically-grounded one, and is in fact even more conservative,
with the lockdown starting one week earlier and ending one week later than un-
der the correct SEIR specification. However, timing is crucial here and seem-
ingly more stringent policies can be as dangerous as more relaxed ones. By
starting the lockdown too early relative to the policy based on the epidemio-
logical evidence, the planner suppresses the first wave and under-utilizes ICU
capacity at the beginning of the disease. After release, a second wave develops,
which is much higher than the first one, with a massive breach of ICU capac-
ity by almost three-fold and a high death toll. This type of mis-specification
implies a death toll that is 36% higher relative to the epidemiologically-correct
policy.

When planning interventions to manage epidemics, timing is of the essence.
Locking too early, when lockdown cannot last too long, means that the second
wave will be high and might breach the capacity constraint of the public health
system. Locking too late, when the disease is growing exponentially, poses
an immediate threat to ICU capacity and results in excess deaths. These are the
kinds of outcomes that emerge when the policymaker derives lockdown timing
based on erroneous assumptions on the dynamics of the disease. Using the
epidemiologically-grounded model to guide policy is crucial to get the timing
right and avoid unnecessary loss of life and output.

We have shown that a SIR model is very far from the SEIR specification
in terms of both implied disease dynamics and optimal interventions timing.
We have also shown that the SIRD model is close to the epidemiologically-
grounded model in terms of disease dynamics, but that it implies significantly
different outcomes when coming to derive and implement optimal policy tim-

ing.

27



Two additional notes should be made. One is that we deliberately consider a
simple planner problem with only two control variables T and T; and a binary
intervention type, either full lockdown or full release. This is to illuminate the
basic intuition of the policy distortions that arise due to the mis-specification
of the epidemiological model. With more sophisticated tools, such as a vari-
able lockdown or lockdown of selected population groups, planner outcomes
would by definition be better under any epidemiological model. However, the
costs of misspecification will persist. Any intervention, even the most sophis-
ticated one, has a start and end date. The planner, facing a trade-off between
fatalities and output losses, will get these dates wrong when perceiving the dis-
ease as slow-moving and moderate in scale. We have demonstrated that such
misperceptions cost human lives and output. We show examples in an analysis
of a much richer planner problem in Bar-On, Baron, Cornfeld, Milo, and Yashiv
(2021), where the costs of mis-specification remain high.

The second note is that it is useful to put the fatalities numbers here (Table
4) in perspective. One comparison is to the real world. U.S. death numbers
are currently (March 2021) around 530,000 or 1,640 per million, 38% of the
SEIR model scenario here. This difference arises because the model is com-
puted over two years while the real world numbers pertain to a year, and be-
cause U.S. policymakers have imposed longer lockdowns than the planner, hav-
ing access to wider policy choices. Another comparison is to the papers which
model a SIR-based planner. These present relatively high numbers of deaths,
typically ranging from 1% to 2% of the U.S. population, namely 3.2 to 6.4 million
fatalities. These numbers are 7 to 13 times higher than the current real world
numbers. At 10,000 — 20, 000 per million, they are 1.35 to 2.7 times higher than
the worst case SIR scenario here.

7 Conclusions

The key take away is that erroneous modelling of epidemic dynamics is of cru-
cial importance for economic analysis. Seemingly innocuous modelling choices
have direct consequences for the implied scale and speed of the disease, which
in turn impact optimal policy planning. The outcomes analyzed in research
in Economics on COVID19 usually include death tolls and GDP loss. If the
epidemic is deemed slower and less severe than it really is, the consequences
are dramatically higher death tolls and excessive output loss relative to the
case where the policymaker bases interventions on the correct epidemiological
model.

In companion work (Bar-On, Baron, Cornfeld, Milo, and Yashiv (2021)), we
use the epidemiologically-grounded model presented here to analyze an op-
timal planner model. Exploring the stringency of lockdown policies and its
timing, the emerging optimal policy is quite different from the one proposed
thus far in the Economics literature, and is shown to improve on real-world
outcomes.
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