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ABSTRACT

IZA DP No. 14214 MARCH 2021

Upside-Down Down-Under:
Cold Temperatures Reduce Learning  
in Australia*

Understanding how variation in weather and climate conditions impact productivity, 

performance and learning is of crucial economic importance. Recently, studies have 

established that high temperatures negatively impact cognition and educational outcomes 

in several countries around the world. We add to this literature by analysing test scores 

from a national assessment of Australian children aged between 8 and 15 years. Using 

comparable methods to previous studies, we find that high temperatures in the year prior 

to the test do not worsen performance. In fact, we find the opposite: additional cold days 

significantly reduces test scores. Moreover, the effect appears cumulative, with cold school 

days 1-2 years prior also having a negative effect. This seemingly contradictory finding 

is consistent with a literature which finds that people living in warm regions tend to 

inadequately protect themselves from cold temperatures, meaning they are susceptible to 

cold weather shocks. More generally, we demonstrate that effects of weather conditions 

are likely to be context specific.
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1. Introduction 

Increased average temperatures and extreme weather due to Global Warming has focussed 

attention on how environmental factors impact human capital accumulation and performance 

in cognitively demanding tasks. The preponderance of evidence from economics suggests that 

high temperatures (hot days) have a negative effect on a range of cognitive outcomes. Cho 

(2017), Graff Zivin et al. (2018), Roach and Whitney (2019), Park (2020), Park et al. (2020a, 

2020b), and Graff Zivin et al. (2020) all demonstrate that high temperatures on the test day 

and/or in previous days reduce student test scores.2 Similarly, high temperatures have been 

found to reduce trade performance by stock market investors (Huang et al. 2020), affect 

decisions by US immigration judges (Heyes and Saberian, 2019), and weaken performance in 

cognitively intensive sport (Qui and Zhao, 2019).  

But are the strong negative temperature effects universal? Older literatures studying the 

relationship between temperature and health find substantial heterogeneity across geographical 

regions, demonstrating that environmental context is crucial. For example, Curriero et al. (2002) 

conclude that “populations in warmer regions tend to be most vulnerable to cold, and those 

residing in cold climates are most sensitive to heat” (p.85). Vardoulakis et al. (2013) compared 

temperature-related mortality patterns in the UK and Australia, countries with similar 

socioeconomic characteristics but very different climates, and support this conclusion: heat-

related mortality risks in Sydney were lower than in London, while the reverse was true for 

cold-related mortality.  

A likely explanation for this counter-intuitive pattern is that people living in warm climates 

inadequately protect themselves from cold temperatures. Buildings in warmer climates tend to 

have inferior thermal efficiency (e.g. insulation) than buildings in cooler climates (Healy, 2003; 

Moore et al., 2019).3 Similarly, residents of warmer climates are less likely to wear appropriate 

clothing in winter.4 The large empirical Eurowinter study (1997) concludes that “protective 

                                                            
2 Cook and Heyes (2020) explore the cognitive effects of very cold temperatures (e.g. <15°C) relative to cold 
temperatures (2.5°C). They find that university exam performance in Ottawa worsens as the outdoor temperature 
declines. Mean temperature in the sample is around -5°C.  
3 Friedman (1987) argued it is rational for houses in warm climates to be colder than houses in cold climates. The 
article begins with the statement “A native of Chicago who spends a winter in Los Angeles or Canberra [Australia] 
is likely to find the houses uncomfortably cold and to express surprise that the natives are too stingy to heat their 
houses properly even though it would cost very little to do so” (p.1089). 
4 The Eurowinter study (1997) found that at the same cold-weather temperature (7°C), residents of Finland were 
much more likely to wear a hat than residents of Greece (72 percent versus 13 percent). Hats are important because 
the head has low internal insulation in the cold. 



 

 

measures against a given degree of cold were fewer in regions with mild winters”, implying 

that residents of warmer climates are particularly susceptible to cold weather shocks. 

Given this context, it is important to explore whether the negative temperature-cognition 

relationship can be replicated in different environments around the world. This is the aim of 

our study. We estimate the effects of temperature on maths and literacy test scores in Australia 

using individual-level data on over 2.2 million national standardised tests taken by almost 

400,000 students in over 1,500 schools between 2009 and 2018 in New South Wales.5 The tests 

are taken each year in May by nearly all students in grade 3 (age 8-9), grade 5 (age 10-11), 

grade 7 (age 12-13) and grade 9 (age 14-15). The wide range of ages allows us to explore the 

effects of temperature at younger ages than most previous studies. With matched government 

administrative data, we can also explore the moderating effects of family and school 

socioeconomic status. 

Comparing the within school-grade performance of students exposed to different temperatures 

across time, and controlling for test-day and non-school-day temperatures, we do not find a 

negative effect of heat on test scores. In fact, we find the opposite relationship: cold days 

significantly reduce test performance. Importantly, the effect sizes are large. Ten additional 

cold school days (<60°F) in the year prior to the test, instead of ten warm school days (70-

75°F), are estimated to reduce scores by 1.5% of a standard deviation. This is around twice the 

effect size of ten additional hot school days (>100°F) in the United States, as reported by Park 

et al. (2020b). Moreover, the negative effects appear cumulative, with cold school days 1-2 

years prior to the test also having a negative effect on scores. 

These findings for Australia suggest that the negative temperature-cognition relationship does 

not hold worldwide. In hotter areas, warmer winters caused by global warming may actually 

improve human capital accumulation. 

 

  

                                                            
5 New South Wales is Australia’s most populated state at approximately 8 million people. The state’s capital city 
is Sydney. 



 

 

2. Data and Methods 

We use individual-level test score data from the National Assessment Program—Literacy and 

Numeracy (NAPLAN) for all New South Wales (NSW) Government Schools.6 NAPLAN is 

an annual assessment of students in grades 3, 5, 7 and 9, designed to measure grade-specific 

knowledge. The tests cover knowledge in the areas of reading, writing, language conventions 

(spelling; grammar and punctuation) and numeracy. They are undertaken every year in the 

second week of May, and all students across Australia sit the tests on the same days. 

Students with significant intellectual disability and students who arrived in Australia less than 

one year before the tests may be exempted from testing (Miller and Voon, 2012). Parents also 

have the possibility to withdraw their children from the tests, for reasons such as religious 

beliefs and philosophical objections to testing. Overall, NAPLAN participation rates are over 

90% in all subjects and grades (ACARA, 2019, AIHW, 2018). 

In addition to test results, the data contain information on the date of birth and gender of each 

student, their quartile of socio-educational advantaged - derived from parental occupation and 

education, and the school in which they were enrolled when they completed the test. School-

level data is also provided including geographic coordinates and index of community socio-

educational advantage, which represents relative socioeconomic status of students in a 

particular school (ACARA, 2015).   

Data from the Australian Bureau of Meteorology were used to construct various temperature 

variables. Specifically, we matched each school to its five closest weather stations, and 

calculated the weighted average daily maximum temperature, with weights equalling the 

inverse squared Euclidian distance from schools to stations. Some schools are far from weather 

stations, introducing measurement error in the predicted temperatures for those schools. To 

reduce the associated estimation bias we restrict our main analysis to all students attending 

schools within 20km of at least one weather station (90 percent of all students). With this 

                                                            
6 We obtained data on NAPLAN test scores from the NSW Department of Education. Anonymised data were 
provided for all students who attended a NSW Government school in any calendar year between 2010 and 2018 
inclusive, and who completed at least three assessments (NAPLAN or HSC) assessments during these years. 2009 
NAPLAN data were also provided for students who met these criteria. In the main analysis we drop observations 
in year-grade cells that are significantly smaller than in other years. In Appendix A we show that the main results 
are not sensitive to alternate sample selection decisions.  



 

 

restriction, mean distance to the closest weather station is 7.85km. In a robustness analysis 

reported below, we test the sensitivity of our results by relaxing the 20km distance restriction. 

To estimate the effects of exposure to hot and cold days on student performance, we exploit 

year-to-year variation in temperature within a grade in a given school. Specifically, we estimate 

a baseline specification of the form: 

𝑦௦௧ ൌ ∑ 𝛽𝑇𝑒𝑚𝑝,௦௧

ୀଵ  𝛼௦  𝜃௧  𝛾𝑋௧  𝜆𝑇௦௧  𝜀௦௧    (1) 

where 𝑦௦௧ is the standardized numeracy or literacy score for student 𝑖 in grade 𝑔 at school 𝑠 

in year 𝑡.7 𝑇𝑒𝑚𝑝,௦௧ represents the number of school days in the prior twelve months in which 

the temperature was in bin j. Potential confounding factors are controlled for with the inclusion 

of school-grade fixed effects (𝛼௦), year-grade fixed effects (𝜃௧), and temperatures on non-

school days and test days (𝑇௦௧). Finally, student age and gender are also included (𝑋௧).  

Under the plausible assumption that temperature varies randomly across years within a given 

school, estimates of 𝛽 can be interpreted as the causal effect of exposure to hot and cold days 

on student performance. Below we present estimates from regression specifications that 

include control variables representing other weather conditions, atmospheric pollution, and 

local economic conditions. The results from these regressions support the identification 

assumption. 

 

3. Results 

3.1. Main Effect Estimates 

The main results are shown in Figure 1. Panel A shows estimated effects of cold and warm 

school days, relative to 70-75 degree days. Panel B shows estimated effects of cold or warm 

years, relative to years in the 5th decile. Visually, there is a similar pattern, with both panels 

illustrating a positive relationship between temperature and test scores: lower test scores 

coincide with cooler temperatures. 

                                                            
7 We standardize test scores by subject (literacy and numeracy), grade level and calendar year. 



 

 

Specifically, Panel A indicates that one additional cold school day (<60°F) reduces test scores 

by 0.15 hundredths of a standard deviation (HSD), one additional 60-65°F day reduces scores 

by 0.10 HSDs, and one additional 65-70°F day reduces scores by 0.09 HSDs. These magnitudes 

are comparable to, indeed larger than, Park et al.’s (2020) estimated effects of hot days. Though, 

the relatively large standard errors should be taken into account. 

Importantly, these estimated relationships are clearly very different to those presented in 

previous research, such as in Park et al. (2020). In particular, there is no evidence that hot days 

or hot years have any impact relative to moderate days or years. In Panel A the estimated 

coefficients of the highest four temperature categories are all small, similar and statistically 

insignificant. The results are similar for relatively high deciles in Panel B. 

Table 1 shows corresponding regression estimates. Column (1) Panel A shows estimates from 

the main specification, but with mean annual temperature instead of temperature categories. 

This estimate is not statistically significant, so there is no evidence of a monotonic relationship 

between temperature and test performance. Panel B of Column (1) shows the results which 

correspond to Figure 1 Panel A. The other columns in Table 1 test the sensitivity of the results 

to the inclusion of various control variables. Columns (2) and (3) include controls for school 

day and test day rainfall and for atmospheric pollution8, which are likely to be correlated with 

temperature and may also affect student outcomes. Column (4) includes controls for local 

economic conditions, because temperature-driven shocks to the economy might affect child 

wellbeing. The inclusion of these different controls has little impact on most of the results. The 

only exception is Panel A Column (3), where the inclusion of the pollution control results in a 

statistically significant effect of mean temperature. 

3.2 Lagged and Cumulative Effects 

We now consider whether these effects are temporary or have lasting effects on student 

performance. Table 2 shows results from models based on the main specification, with two 

modifications. For parsimony, these models include just one variable measuring the number of 

cold days (<70°F). Except for column (1), the models also include variables representing 

lagged number of cold days. Column (2) includes one lag, which captures the effect of cold 

                                                            
8 The pollution controls are constructed from the Air Quality Index. This is based on atmospheric concentrations 
of ozone, nitrogen dioxide, carbon monoxide, sulphur dioxide, particular matter (PM)-2.5 and PM-10, and 
visibility, collected from monitoring stations around the state. See 
https://www.environment.nsw.gov.au/topics/air/understanding-air-quality-data/air-quality-index 



 

 

school days between 24 and 12 months prior to the test date. Column (3) includes two lags. 

Each column also includes an estimated ‘cumulative’ effect, which is the sum of the lagged 

and unlagged coefficients. The results are largely consistent with those of Park et al. (2020). 

To the extent that temperature effects grades, the effect is not completely transitory. It lasts at 

least until the following year, and the cumulative effect is 2-3 times greater than the immediate 

effect.   

3.3 Heterogeneity 

Whilst constrained by statistical power, we present heterogeneity of the estimates along some 

key dimensions. Each estimate in Figure 2 is from models based on the main specification, 

with cold days defined as days where the maximum temperature was <70°F, with the sample 

restricted to the subpopulation of interest. The results suggest that the effects are larger for boys 

than girls, for English than Math test scores, larger in High Schools than Primary Schools, and 

similar for high and low SES schools. 

The larger effect for boys is consistent with earlier work. In particular Cook & Heyes (2020) 

find larger effects of cold weather on test scores for boys, also citing earlier work which 

suggests female students wear more layers of clothing in cold weather (Donaldson et al., 2001). 

Cho (2017) also finds slightly larger effects of heat on test performance for boys. Ebenstein et 

al. (2016) found male test performance to be more vulnerable to pollution, while a broader 

literature finds male mortality more vulnerable to heat (e.g. Deschênes & Greenstone, 2011). 

The larger effect for English vs Math is consistent with Cho (2017), although Cho also found 

no significant effect for reading. Others have found similar effects of temperature across 

English and Maths tests (Park et al. 2020b; Roach & Whitney, 2019). 

The larger effect for high school versus primary school children seems surprising at first glance. 

We are not aware of previous studies which have examined heterogeneity by age of children. 

A potential explanation is that younger children are more closely monitored and guided on their 

clothing and environment, with older children more likely to make their own choices and hence 

more vulnerable to weather fluctuations. 

Park et al. (2020b) found much larger immediate effects of heat for low income and minority 

students, partly due to differential access to air-conditioning access in schools and homes. We 



 

 

do not find such heterogeneity. This may reflect NSW’s centrally funded public school system, 

in which SES-related discrepancies in air-conditioning, insulation or heating are unlikely.   

3.4. Sensitivity Tests 

As indicated in the text, the original data provided by the custodian were restricted to students 

who completed at least three assessments (NAPLAN or HSC) assessments between 2010 and 

2018. This leads to some unusual sample characteristics- for example, Year 7 results for 2010 

and 2011 were only provided for the subset of students who completed the Year 12 exam (HSC), 

but for later years, students did not need to complete the HSC to meet the selection criteria. In 

the main analysis, we exclude observations in such clearly anomalous cells. Table A.1 show 

key results from the baseline specification (column 1), compared to corresponding results 

without excluding those observations (column 2). Column (3) shows results from another 

sample selection criterion, which ensures that student-year observations are included strictly 

consistently across calendar years for each grade.9 The key estimates are similar in all three 

columns, suggesting that the results are not sensitive to the chosen sample selection strategy.  

The main analysis excludes schools that are not within 20km of a weather station. Table A.2 

presents results that use alternate restrictions. Results are generally robust, however, increasing 

the allowable distance seems to introduce attenuation bias. For example, estimated effects for 

the most extreme temperature bin (days below 60°F) are 31 percent larger for our main sample 

(within 20km) than for the sample using all schools within 50km of a weather station.  

3.5. Testing a Potential Mechanism – Sickness and Attendance  

A potential mechanism for the cold-day effect is through greater rates of student illness and/or 

school absenteeism. We explored this mechanism using regression models based on the model 

in the main analysis, but with student attendance rates as the dependent variable. Our main 

database does not include school attendance. However, we accessed a published school-year 

level data set with student attendance rates for the first half of each school year from 2011 to 

2018. The results (shown in Figure 3) do not provide evidence for this mechanism. The 

estimates have the wrong sign to explain our main results. The estimates are also small and 

mostly statistically insignificant. For example, the point estimates suggest that a week of 

                                                            
9 There is more than one way to construct such a sample. We show results from the version that yields the largest 
sample size. Further details available from the authors. 



 

 

weather in the coldest category (relative to the omitted category) would increase attendance by 

less than 0.1 percentage points. 

 

4. Conclusion 

Unlike several previous studies for other countries, we have found that cold, not heat, inhibits 

learning in Australia. The estimated effects are meaningful. Experiencing 10 additional school 

days of moderately cold weather (<70F) is estimated to decrease test scores in the same year 

by 0.92% of a standard deviation, and by 0.79% of a standard deviation in the following year. 

These effect sizes are larger than the heat effects presented in most previous studies. The 

heterogeneity analysis is statistically under-powered, but suggests that boys and high-school 

students suffer most in cold weather, and that literacy learning is more negatively affected than 

mathematics learning. We find little heterogeneity in effect magnitude by family SES or by 

school SES. 

The relationship we have identified here is in-line with studies on morbidity and mortality that 

demonstrate cold temperatures are particularly damaging in hot regions with mild winters, and 

conversely, that hot temperatures are particularly damaging in cold regions with mild summers. 

International research suggests that this difference is due to populations in hot regions 

inadequately protecting themselves from cold temperatures. Australia has an ingrained identity 

of a sunburnt country, and has a long history of focusing on adaption and resilience to hot 

temperatures, rather than cold (Daniel et al., 2019).  

Further research is needed to determine whether the positive temperature gradients that have 

been robustly identified in the U.S., China, Korea and other countries, have broad external 

validity, especially in regions with mild winters and hot summers.  
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Figures 
Figure 1: Main Results 

A: Estimated test score effects of number of school days at various temperatures 

 

B Estimated test score effects of average school temperature during school days in past year 
by temperature decile 
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Figure 2 – Heterogeneity Analysis 

 
 

 
Figure 3 – Estimated school attendance effects of school days at various temperatures 
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Tables 
 

Table 1: Estimated effects of temperature on NAPLAN test scores 

 (1) (2) (3) (4) 
     

Panel A – Impact of average daily maximum temperature 

Average temperature 0.436 0.363 0.621** 0.450 
 (0.278) (0.315) (0.285) (0.280) 

Panel B – Impact of days in various maximum temperature ranges 

Days below 60°F -0.148*** -0.147** -0.144** -0.158*** 
 (0.058) (0.061) (0.058) (0.058) 
Days between 60°F and 64°F -0.097*** -0.088** -0.092*** -0.101*** 
 (0.033) (0.035) (0.033) (0.033) 
Days between 65°F and 69°F -0.090*** -0.071** -0.085** -0.088*** 
 (0.033) (0.034) (0.034) (0.033) 
Days between 75°F and 79°F -0.027 -0.021 -0.007 -0.026 
 (0.040) (0.040) (0.041) (0.040) 
Days between 80°F and 84°F 0.012 0.004 0.044 0.013 
 (0.043) (0.045) (0.045) (0.043) 
Days between 85°F and 89°F -0.036 -0.019 0.008 -0.036 
 (0.055) (0.057) (0.057) (0.055) 
Days above 90°F 0.016 0.035 0.062 0.016 

 (0.058) (0.060) (0.061) (0.058) 
     
Number of observations 2,234,842 2,234,842 2,234,842 2,234,842 
     
Prior year rain No Yes No No 
Prior year pollution No No Yes No 
Economic conditions No No No  Yes 

Note: Included covariates: Days with max temperatures in various ranges (as specified above) during the week and weekends 
in the last 12 months; max temperature on test day; age; gender; year-grade FE; school-grade FE. Standard errors clustered at 
school level. *, **, and *** represent statistical significance at the 10%, 5%, and 1% levels, respectively. 

 

 

  



 

 

 

Table 2: Estimated effects of lagged and cumulative temperature on NAPLAN test scores 

 
 (1) (2) (3) 
    
Days below 70°F in previous year -0.083*** -0.092*** -0.100*** 
 (0.021) (0.022)      (0.026) 
Days below 70°F 1 year earlier (t-1)  -0.079*** -0.084*** 
  (0.023) (0.025) 
Days below 70°F 2 years earlier (t-2)   -0.028 

(0.029) 
    
Total effect (sum of presented coefficients)  -0.170*** 

(0.036) 
-0.211*** 
(0.062) 

    
Number of observations 2,234,842 2,234,842 2,234,842 

Note: Included covariates: Days below 70°F in the last 12 months; max temperature on test day; age; gender; year-grade FE; 
school-grade FE. Standard errors clustered at school level. *, **, and *** represent statistical significance at the 10%, 5%, 
and 1% levels, respectively. 

 

 

  



 

 

Appendix 
 
 
Table A.1 – Analysis on different samples (varying samples’ restrictions) 
  

Baseline  Complete  
Sample 

Small Sample 

 (1) (2) (3) 
    
Days below 60°F -0.148*** -0.146** -0.169** 
 (0.058) (0.059) (0.069) 
Days between 60°F and 64°F -0.097*** -0.115*** -0.133*** 
 (0.033) (0.034) (0.040) 
Days between 65°F and 69°F -0.090*** -0.093*** -0.139*** 
 (0.033) (0.033) (0.040) 
Days between 75°F and 79°F -0.027 0.034 -0.002 
 (0.040) (0.041) (0.047) 
Days between 80°F and 84°F 0.012 0.050 0.019 
 (0.043) (0.043) (0.052) 
Days between 85°F and 89°F -0.036 0.007 0.028 
 (0.055) (0.055) (0.066) 
Days above 90°F 0.016 0.085 -0.017 
 (0.058) (0.060) (0.069) 
r2 0.234 0.238 0.252 
N 2,234,842 2,470,799 1,435,451 

Note: Included covariates: Days with max temperatures in various ranges (as specified above) during the week and weekends 
in the last 12 months; max temperature on test day; age; gender; year-grade FE; school-grade FE. Standard errors clustered at 
school level. *, **, and *** represent statistical significance at the 10%, 5%, and 1% levels, respectively. 

 

 

 

 



 

 

Table A.2 – Analysis varying distance from weather stations 
 
 No km restr <50km <40km <30km <20km <10 km 
       
Days below 60°F -0.104** -0.102* -0.113** -0.118** -0.148*** -0.131** 
 (0.052) (0.053) (0.054) (0.055) (0.058) (0.066) 
Days between 60°F and 64°F -0.076** -0.074** -0.078** -0.086*** -0.097*** -0.086** 
 (0.031) (0.031) (0.031) (0.032) (0.033) (0.038) 
Days between 65°F and 69°F -0.063** -0.063** -0.063** -0.073** -0.090*** -0.084** 
 (0.031) (0.031) (0.032) (0.032) (0.033) (0.040) 
Days between 75°F and 79°F -0.015 -0.013 -0.018 -0.024 -0.027 0.018 
 (0.037) (0.037) (0.038) (0.038) (0.040) (0.046) 
Days between 80°F and 84°F 0.021 0.021 0.025 0.018 0.012 0.069 
 (0.039) (0.040) (0.040) (0.041) (0.043) (0.050) 
Days between 85°F and 89°F -0.026 -0.029 -0.028 -0.026 -0.036 -0.041 
 (0.050) (0.051) (0.052) (0.053) (0.055) (0.066) 
Days above 90°F 0.015 0.016 0.025 0.019 0.016 0.052 
 (0.053) (0.054) (0.055) (0.056) (0.058) (0.067) 
r2 0.224 0.225 0.226 0.227 0.234 0.242 
N 2,471,999 2,444,519 2,418,593 2,370,926 2,234,842 1,651,009 

Note: Included covariates: Days with max temperatures in various ranges (as specified above) during the week and weekends in the last 12 months; max temperature on test day; age; gender; 
year-grade FE; school-grade FE. Standard errors clustered at school level. *, **, and *** represent statistical significance at the 10%, 5%, and 1% levels, respectively. 

 


